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ABSTRACT

Tong Sun, Advisor

In this dissertation, long time error estimates are obtained using non-traditional methods

for the Hodgkin-Huxley equation

ut − uxx = u(1 − u)(u− a) for 0 < a < 1/2,

and the extended Fisher-Kolmogorov equation

ut + γ∆2u− ∆u = u− u3.

Traditional methods for analyzing exact error propagation depends on the stability of the

numerical method employed. Whereas, in this dissertation the analysis of the exact error

propagation uses evolving attractors and only depends on the stability of the dynamical

system. The use of the smoothing indicator yields a posteriori estimates on the numerical

error instead of a priori estimates.
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CHAPTER 1

Introduction

The ever increasing activity in the area of mathematics and those applied sciences concerned

with parabolic equations marks the important role of modeling physical phenomena in such

diverse fields as physics, chemistry, biology, computer science, engineering, finance and soci-

ology. Numerical analysis of parabolic problems has become a central tool in such studies,

because of the many barriers that exist for mathematical analysis. In these situations, when

little is known about the true solution, determining the accuracy of a numerical solution

becomes critical.

At the same time, it is crucial to understand that all numerical solutions are subject to some

form of a deviation from the exact solution of the differential equation. So it is important to

understand how to express and how to analyze such approximations in order to draw reliable

conclusions using them. The ability to draw valid conclusions relies on the ability to deal

with error properly. In view of which, very little is known about the reliability of results

unless probable size of the error in the numerical results can be estimated or controlled.

However, the same difficulties that occur in the mathematical analysis also give rise to some

difficult problems in accurate analytical estimation of the error in the numerical scheme.

Stability of the numerical scheme is one such issue. Numerical stability usually depends on

controlling the error propagation of the numerical scheme.
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Particularly when dealing with long time error, careful analysis of error propagation is re-

quired. Traditionally error analyzes of evolution equations are based on the stability of the

numerical scheme. Under typical conditions, in order for the numerical solution to converge

to the real solution, it is necessary and sufficient to have numerical stability (See Theorem 5.4

on p. 91, [22]). Determining the stability of numerical schemes used to analyze complicated

non-linear equations is typically difficult and tedious. In view of which there often is a huge

gap between the theory of the error analysis and implementation of particular numerical

methods.

This fact can be illustrated by examining a traditional error splitting technique in a way that

it is applied in many publications. Let u(tn+1|u(tn)) denote the exact solution at time tn+1

having exact initial condition u(tn). Similarly, let uN(tn+1|uN(tn)) denote the corresponding

numerical solution with numerical initial condition uN(tn). Traditional methods estimate

the error over the time interval [tn, tn+1] by applying the triangular inequality as follows:

|u(tn+1|u(tn)) − uN(tn+1|uN(tn))|

≤ |u(tn+1|u(tn)) − uN(tn+1|u(tn))| + |uN(tn+1|u(tn)) − uN(tn+1|uN(tn))|,

where uN(tn+1|u(tn)), is the numerical solution with exact initial condition u(tn). Figure

(a) indicates an estimate of the error when split using this traditional method. The first

difference on the right hand side of above is the local error, and can be estimated using the

smoothing properties of the numerical scheme. The second difference above is the error at

time tn+1 propagated by the numerical scheme over the time interval.

An alternate error splitting method, that we are going to use, can be found in Estep and

Stuart [7], and Sun and Ewing [26]. This method estimates the error over the time interval
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[tn, tn+1] by applying the triangular inequality as follows:

|u(tn+1|u(tn)) − uN(tn+1|uN(tn))|

≤ |u(tn+1|u(tn)) − u(tn+1|uN(tn))| + |u(tn+1|uN(tn)) − uN(tn+1|uN(tn))|,

where u(tn+1|uN(tn)), is the exact solution with numerical initial condition u(tn).

Figure (b) indicates an estimate of the error when split using this alternate method. Now,

the second difference above is the actual local error. Because both terms have numerical

initial values, estimates of the actual error can be obtained using the smoothing properties

of the numerical schemes [26]. That is, the smoothing indicator can be used to estimate the

actual local error. In traditional methods, it is difficult to compute an indicator in order to

determine whether the numerical scheme is stable, because the splitting term uN(tn+1|u(tn))

is not computable. However, it is easy to compute an indicator for a computational numerical

scheme using its smoothing properties [27].

The first difference above is the error at time tn+1, and is propagated by the dynamical

system. This error can be estimated using the contraction properties of the solution to

the dynamical system and evolving attractors, a concept which was first introduced by Sun

and Ewing [26]. Evolving attractors are collection of sets which depend on time. It is this

more general notion of evolving attractor which facilitate effective long time error analysis,

unattainable by the use of the attractors alone, in the nonlinear problems [26].

In this dissertation, we obtain long-term estimates when finite element methods are applied

to the Hodgkin-Huxley equation,

ut − uxx = u(1 − u)(u− a), on R × [0,∞),

an equation widely regarded as one of the greatest achievements of 20th century biophysics.

Then we generalis these results to a fourth order parabolic equation, the extended Fisher
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Kolmogorov (EFK) equation,

ut + γ∆2u− ∆u = u− u3, in Ω × ([0,∞),

u = 0, on ∂Ω × ([0,∞).

This type of equations occurs mainly in the application of pattern formulation in bi-stable

systems [5].

In Chapter 2, we show that the solutions of the Hodgkin-Huxley equation contract to a

traveling wave solution of the form φ(x− vt), where v is a constant.

In Chapter 3, we describe the long time error estimates of the Hodgkin-Huxley equation,

using evolving attractors and the smoothing indicator.

In Chapter 4, we estimate errors for the numerical solutions of semi-discrete and completely

discrete EFK equations.

In Chapter 5, we obtain long time error estimates for the EFK equation in polygonal domains,

using evolving attractors and the smoothing indicator.

In Chapter 6, we summarize the results and show the value of the present research.

(a) Numerical Stability (b) Numerical Smoothing

Figure 1.1: Error Splitting.
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CHAPTER 2

Contractive Solutions of

Hodgkin-Huxley Equations

In this chapter we deduce the contraction properties of solutions to Hodgkin-Huxley equa-

tions, which in Chapter 3 we use to obtain estimates for exact error propagation. Contraction

is a local property in terms of time, which shows how solutions evolve in a finite time in-

terval. It has been shown by Evans [9] and Sattinger [24] that solutions of many parabolic

equations converge to a traveling wave. This convergence is a global property in terms of

time. However, using techniques developed in these two papers, we can show contraction

property of solutions to Hodgkin-Huxley equations.

In section 2.1, we introduce Hodgkin-Huxley equations. Then in section 2.2 we define, what

it mean for the solutions of Hodgkin-Huxley equations to have a contraction property. After

showing existence of the solution in section 2.3, in section 2.4 we study contraction properties

of the linearized version of the Hodgkin-Huxley equation. Then in section 2.5, we use the

contraction of the linearized solution to show the contraction of solutions of Hodgkin-Huxley

equations. Finally in section 2.6 we provide some computational results.
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2.1 The Hodgkin-Huxley Equations

The theory of a cable consisting of a resistive core surrounded by a membrane offering

capacitance and variable resistance to ionic current is important in neurology. The Hodgkin-

Huxley equation is one of the few equations that realistically model the propagation of nerve

impulses [14]. This equation is a PDE system in four variables. A simplified equation that

retains some of its crucial features is Huxley’s equation namely,

Wt = ∆W + g(W ), (2.1)

where g(W ) = W (1 −W )(W − a) with 0 < a < 1/2. Note that this equation has a linear

diffusion term and a nonlinear reaction term.

2.2 The Contraction Property

Propagation of waves, described by nonlinear parabolic equations, were first considered in

a paper by A. N Kolmogorov, I. G. Petrovski and N. S. Piskunov. These mathematical

investigations arose in connection with a model for the propagation of dominant genes, a

topic also considered by R. A. Fisher. In systems with more than one stationary homogeneous

solution, a typical solution is given by a traveling wave front. These solutions move with

constant speed without changing their shape and are of the form u(x, t) = φ(y) with y =

x − vt, where v is the speed of the traveling wave. Wave solutions of above type arise in

numerous problems of physical interest; such as propagation of nerve impulses, propagation

of favorable genes, shock waves, and propagation of flams.

Homogeneous solutions to Huxley’s equations have monotone traveling wave solutions. Most

importantly according to Sattinger [24], if Huxley’s equation has the initial data of the form

u(x, 0) = φ(x) + ǫu0(x),
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then for sufficiently small ǫ, there exist constants K,ω > 0 such that,

‖u(y, t) − φǫ(y, t)‖ ≤ Ke−ωt, t ≥ 0,

where φǫ = φ(y + ǫ). Based on the above stability property of solutions, we can define the

contraction property of solutions to the Huxley’s equations as follows: There exist constants

s, T0 and θs ∈ (0, 1) such that

‖u(y, t+ s) − φǫ(y, t+ s)‖ ≤ θs‖u(y, t) − φ(y, t)‖,

for all t > T0.

Purpose of Chapter 2 is to show that solutions to Huxley’s equations are contractive. In

the next chapter we define the evolving attractor as a collection of all translates of the wave

profile φ(y). Using this attractor and the smoothing indicator, we can estimate long time

error of the numerical solutions to the Huxley’s equations.

2.3 Existence of Solutions

Huxley’s equation Wt = ∆W + g(W ) in the 1-dimensional case takes the form

−v∂φ
∂y

− ∂2φ

∂y2
= g(φ), (2.2)

where W (x, t) = φ(x− vt) = φ(y) is a traveling wave propagating at a constant velocity v.

The existence and uniqueness of the solution to (2.2) can be obtained by standard phase

plane arguments. we deduce in Section 2.5 contraction of solutions W (x, t) to Huxley’s

equation, using stability properties of the solutions to the linear equation approximating

the equation (2.1) about φ. Therefore, if φ(y) is a solution to (2.2) with y = x − vt, let
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U(y, t) = W (y + vt, t), where W is a solution to (2.1). Thus on the moving frame

∂U

∂t
− v

∂U

∂y
− ∂2U

∂y2
= g(U). (2.3)

On the other hand, linearization of (2.3) about φ leads to the equation

∂Ũ

∂t
(y, t) − v

∂Ũ

∂y
(y, t) − ∂2Ũ

∂y2
(y, t) =

∂g

∂φ
(φ(y))Ũ(y, t). (2.4)

Note that if φ is a solution of (2.2), so is φǫ = φ(ǫ + y). Furthermore, Ũ(y, t) = dφ
dy

(y) is a

solution of the linear system (2.4). Formally, (2.1) can be integrated using the fundamental

solution of the heat equation

F (x, y, t) = exp

[−(x− y)2

4

]

/
√

4πt.

This gives

W (x, t) =

∫ ∞

−∞

F (x, y, t)W (y, 0)dy+

∫ t

0

∫ ∞

−∞

F (x, y, t− s)g(W (y, s))dyds, (2.5)

for 0 ≤ t ≤ T and all x. For bounded continuous initial conditions W (·, 0), an iterative

procedure based on Picards iterative procedure for ODEs shows the existence of a unique

bounded solution W (x, t) to (2.5) for 0 ≤ t ≤ T . Since (2.3) is related by a change of

coordinates, we have that if U(·, 0) is bounded and continuous, a bounded U(x, t) for 0 ≤

t ≤ T and all x with initial value U(·, 0) satisfies

U(x, t) =

∫ ∞

−∞

F (x+vt, y, t)U(y, 0)dy+

∫ t

0

∫ ∞

−∞

F (x+vt, y, t−s)g(U(y−vs, s))dyds. (2.6)
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In an identical fashion there corresponds to (2.4) the system of integral equation

Ũ(x, t) =

∫ ∞

−∞

F (x+vt, y, t)U(y, 0)dy+

∫ t

0

∫ ∞

−∞

F (x+vt, y, t−s)∂g
∂φ

(φ(y−vs))Ũ(y−vs, s)dyds.

(2.7)

2.4 Contraction of Solutions Linearized Problem

In this section we study the related linearized system of (2.3). By use of the spectral theory of

linear operators, contraction of the system under small perturbations of the initial conditions

is shown to depend on the solution to certain ordinary differential equations derived from

(2.1) and φ. Of importance in neurology are the resting states and the traveling waves. The

resting states correspond to g(W ) = W (1−W )(W − a) = 0 in (2.1), which occur at W = 0,

W = a and W = 1, and the traveling wave corresponds traveling solution to (2.1), which

has the form φ(x − vt). As a matter of fact, Huxley found the traveling solution with the

traveling front to be

φ(y) =
1

1 + e
−y
√

2

, y = x− vt, v =
√

2(a− 1

2
).

Because φ(y) → 0 and φ(y) → 1 as y → ∞ and y → −∞ receptively, W = 0 and W = 1 are

stable stationary points and W = a is an unstable point. So after long period of time, any

initial solution of the Huxley’s equation tend to move closer to the stable stationary points 0

and 1. In other words they converge into a traveling front with above asymptotic properties.

Next, we want to normalize Huxley’s equation so that the traveling velocity v = 1. To this

end, set

x̃ = vx t̃ = v2t W̃ (x̃, t̃) = W

(

x̃

v
,
t̃

v2

)

,

and with g̃(W̃ ) = v−2g(W ) we obtain a system equivalent to (2.1),

∂W̃

∂t
= ∆W̃ + g̃(W̃ )
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with a solution

W̃ (x̃, t̃) = φ̃(x̃− t̃) = φ

(

x̃

v
− t̃

v2

)

.

We will therefore assume that v = 1. Under the coordinate change y = x− t with U(y, t) =

W (y + t, t) we obtain the system

∂U

∂t
=
∂2U

∂y2
+
∂U

∂y
+ g(U) (2.8)

with U(y, t) = φ(y) as a standing solution. Now in this new coordinates the linearization of

(2.8) about U = φǫ is given by

∂Ũ

∂t
=
∂2Ũ

∂y2
+
∂Ũ

∂y
+

∂g

∂φǫ
(φǫ(y))Ũ . (2.9)

Note that, the function U(y, t) = (dφǫ/dy)(y) is a solution of (2.9). Furthermore, we define

operator L,

Lψ =
∂2ψ

∂y2
+
∂ψ

∂y
+

∂g

∂φǫ
(φǫ(y))ψ, (2.10)

Now, for a fixed t > 0, let Y be the space of functions u(x, t), defined for 0 < t < T for all

x. Define the function G form Y into Y by

(Gu)(x, t) =

∫ ∞

−∞

F (x+ t, t)u(y, t)dy

+

∫ t

0

∫ ∞

−∞

F (x+ t, y, t− s)

(

∂g

∂u
(φ(y − s))u(y − s, s)

)

dyds, (2.11)

where F (x, y, t) is the fundamental solution of the heat equation. Given ψ ∈ L2, if we set

u0(x, t) = ψ(x) for 0 ≤ t ≤ T and all x, then limm→∞(Gmu0)(x, t) = u(x, t) exists with

uniform convergence for 0 ≤ t ≤ T and all x. Moreover, u is the unique solution to Gu = u

with u(·, 0) = ψ. For t ≥ 0 and ψ ∈ X, we denote Λtψ with the function ψ = u(·, 0), where

u is the unique solution to Gu = u. We note that from [9], there exists a semigroup operator
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Λt = etL on X with infinitesimal generator L, where X is a space of continuous bounded

functions.

It has been shown in Sattinger [24] and Evans [9] that the operator L has an isolated

simple eigenvalue at the origin with the remainder of the spectrum in the parabolic region

{y2 + a+ x < 0}, (0 < a < 1/2) in the left half plane. Then using the fact that Λt

(

dφǫ

dy

)

=

dφǫ

dy
for t ≥ 0, we can define a projection operator S from the space of continues bounded

functions, onto the space of multiples of dφǫ

dy
, by Sψ = (ψ, γ∗)dφǫ

dy
, where γ∗ ∈ Null(Λ∗

t − I)

and (·, ·) is the L2 inner product (see [9]).

For such an operator S, from Theorem 5 of [9], we can find a small circle C about 1, such

that

1

2πi

∫

C

(zI − Λt)
−1dz = S. (2.12)

Theorem 2.1 There exist constants K and ω such that,

∥

∥

∥

∥

Ṽ (t) − h

(

dφǫ
dy

)∥

∥

∥

∥

Lp

≤ Ke−ωt‖Ṽ (0)‖Lp, p = 2,∞,

for all t > 0, where Ṽ (t) is the solution of the linearized equation (2.9) with initial condition

Ṽ (0), k = 1/(γ∗, dφǫ

dy
) and h = (Ṽ (0), key dφǫ

dy
).

Proof. From the proof of Theorem 1, of Evans [9], if Ṽ (0) is the initial condition of the

linearized equation (2.9), then there exist constants K and ω such that,

‖(Λt − S)Ṽ (0)‖Lp ≤ Ke−ωt‖Ṽ (0)‖Lp

for all t > 0 and p = 2,∞. Now, let Ṽ (t) be the solution of linearized equation (2.9) with

the initial condition Ṽ (0). Since Ṽ (t) = ΛtṼ (0) and hdφǫ

dy
= SṼ (0), we have that,

∥

∥

∥

∥

Ṽ (t) − h

(

dφǫ
dy

)∥

∥

∥

∥

Lp

≤ Ke−ωt‖Ṽ (0)‖Lp, p = 2,∞,
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for all t > 0. �

Remark: It follows from the proceeding theorem that, there exist constants K and ω such

that
∥

∥

∥

∥

Ṽ (t+ s) − h
dφǫ
dy

(t+ s)

∥

∥

∥

∥

Lp

≤ Ke−ωs‖U(t) − φǫ(t)‖Lp

for all s > 0 and t > 0, where U(t) is the solution to Huxley’s equation (2.1) and Ṽ (r) =

U(r) − φǫ(r). In particular for all s > (logK)/ω we have that,

∥

∥

∥

∥

Ṽ (t+ s) − h
dφǫ
dy

(t+ s)

∥

∥

∥

∥

Lp

≤ θs‖U(t) − φǫ(t)‖Lp,

where θs = Ke−ωs < 1 and p = 2,∞.

2.5 Contraction of Solutions to Huxley’s Equation

Now we are in a position to prove the contraction property of the second order parabolic

equations. If U is the solution of original nonlinear Huxley’s equation. Let

ρ(t) = ‖U(·, t) − φǫ(t) − Ṽ (·, t)‖∞.

Note that, if the initial condition of the linearized form is Ṽ (0) = U(0)−φǫ(0) then ρ(0) = 0.

This property going to be very useful in the proof of the next theorem. To show the relation

between the linear and nonlinear solutions to the Huxley’s equation, we state and prove the

Lemma 1 of Evans [8], for the case of the Huxley’s equation.

Lemma 2.2 If ‖Ṽ (·, t)‖∞ of (2.9) is bounded by M for all t ≥ 0, then

ρ(t) ≤ ρ(0)eLt +
M2Q

L
(eLt − 1), t ≥ 0,

where L and Q are upper bounds for
∣

∣

∣

∂g(U)
∂U

∣

∣

∣
and

∣

∣

∣

∂2g(U)
∂U2

∣

∣

∣
respectively.
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Follwing proof is due to Evans [8].

Proof. Recall that U has the representation (2.6)

U(x, t) =

∫ ∞

−∞

F (x+ vt, y, t)U(y, 0)dy+

∫ t

0

∫ ∞

−∞

F (x+ vt, y, t− s)g(U(y − vs))dyds.

Similarly φǫ has the representation

φǫ(x) =

∫ ∞

−∞

F (x+ vt, y, t)φǫ(y)dy +

∫ t

0

∫ ∞

−∞

F (x+ vt, y, t− s)g(φǫ(y − vs))dyds

and Ṽ has the representation (2.7)

Ṽ (x, t) =

∫ ∞

−∞

F (x+vt, y, t)Ṽ (y, 0)dy+

∫ t

0

∫ ∞

−∞

F (x+vt, y, t−s) ∂g
∂φǫ

(φǫ(y−vs))Ṽ (y−vs, s)dyds.

Using, the fact that
∫∞

−∞
F (x, y, t)dy = 1 for t > 0 and all x, and the representation of φǫ,

we have that

|U(x, t) − φǫ(x) − Ṽ (x, t)| ≤ ‖U(·, 0) − φǫ − Ṽ (·, 0)‖∞ +

∫ t

0

H(s)ds,

where H(s) is the least upper bound for all y of

∣

∣

∣

∣

g(U(y − vs, s)) − g(φǫ(y − vs)) − ∂g

∂φǫ
(φǫ(y − vs))Ṽ (y − vs, s)

∣

∣

∣

∣

.

Now letting V = U − φǫ, by the mean value theorem and Taylor’s expansion, we have

∣

∣

∣

∣

g(φǫ + V ) − g(φǫ) −
∂g

∂φǫ
Ṽ

∣

∣

∣

∣

≤
∣

∣

∣

∣

g(φǫ + V ) − g(φǫ + Ṽ ) + g(φǫ + Ṽ ) − g(φǫ) −
∂g

∂φǫ
Ṽ

∣

∣

∣

∣

≤ L‖V − Ṽ ‖∞ +Q‖Ṽ ‖2
∞. (2.13)

If ‖Ṽ ‖∞ is bounded by M for t > 0, the above gives ρ(t) ≤ ρ(0) +
∫ t

0
(Lρ(s) + QM2)ds

and by standard methods ρ(t) is dominated by ρ(0)eLt + (M2Q/L)(eLt − 1), the solution to
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dy/dt = Ly +QM2 with y(0) = ρ(0).�

Note that, L ∈ (1/4, 1/3) and Q ∈ (1/3, 1/2).

Now we prove the main theorem of this section.

Theorem 2.3 Let U(t) = U(y, t) be a solution to Huxley’s equation with initial data U(y, 0) =

φ(y)+ǫU0(y), for all ǫ such that U(y, t) converge to φǫ, where φ is the traveling wave solution

and U0 is a continuous bounded function. Then, there exist numbers s, T0, δ and θs ∈ (0, 1)

such that,

‖U(s + t) − φδ(s+ t)‖∞ ≤ θs ‖U(t) − φǫ(t)‖∞

for all t > T0.

Proof. We know that φ(y), converge to 0 and 1 exponentially as y goes to −∞ and ∞,

respectively. So we use the interval Ω = [−A,A] with sufficiently large A as our domain, for

this estimation. From the remark after the Theorem 2.1, there exists a number s such that

∥

∥

∥

∥

Ṽ (t+ s) − h
dφǫ
dy

(t+ s)

∥

∥

∥

∥

∞

≤ θs‖U(t) − φǫ(t)‖∞

for all t > 0. Then for this s, we can choose T0 so that for a fixed t > T0, we have

‖U(t) − φǫ(t)‖∞
(

1 +
PN∞

θs

)2
Q

L
esL ≤ 1, (2.14)

4RP 2‖U(t) − φǫ(t)‖∞ ≤ θs, (2.15)

where N∞, R and P are the upper bounds of ‖dφǫ/dy‖∞, ‖d2φǫ/dy
2‖∞ and ‖key dφǫ

dy
‖L1(Ω),

and Q,L are constants defined in the previous Lemma. So from (2.14) we can have,

‖U(t) − φǫ(t)‖∞
(

1 +
PN∞

θs

)2
Q

L
θs(e

sL − 1) ≤ 1. (2.16)
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Then if we choose initial condition Ṽ (t) = (U(t) − φǫ(t)) because φ(y) = 1/(1 + e−vy), by

definition of h in Theorem 2.1 we have,

h =

(

U(t) − φǫ(t), ke
y dφǫ
dy

)

≤ ‖U(t) − φǫ(t)‖∞
∥

∥

∥

∥

key
dφǫ
dy

∥

∥

∥

∥

L1(Ω)

≤ P‖U(t) − φǫ(t)‖∞. (2.17)

Then from Theorem 2.1 and (2.17) we have that,

‖Ṽ (t+ s)‖∞ ≤
∥

∥

∥

∥

Ṽ − h
dφǫ
ds

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

h
dφǫ
ds

∥

∥

∥

∥

∞

≤ θs‖U(t) − φǫ(t)‖∞ + |h|N∞

≤ θs‖U(t) − φǫ(t)‖∞
(

1 +
PN∞

θs

)

(2.18)

= M. (2.19)

Now, from Lemma 2.2 and, (2.16) and (2.19),

∥

∥

∥

∥

∥

(

U − φǫ −
Ṽ

4

)

(t+ s)

∥

∥

∥

∥

∥

∞

≤ M2

42

Q

L
(esL − 1)

= θ2
s‖U(t) − φǫ(t)‖2

∞

(

1 +
PN∞

θs

)2
Q

16L
(esL − 1)

≤ θs
16

‖U(t) − φǫ(t)‖∞. (2.20)

Again from Theorem 2.1,

1

4

∥

∥

∥

∥

Ṽ (t+ s) − h
dφǫ
dy

(t+ s)

∥

∥

∥

∥

∞

≤ 1

4
θs ‖U(t) − φǫ(t)‖∞ . (2.21)
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From (2.15) and (2.17),

Rh2 ≤ RP 2‖U(t) − φǫ(t)‖2
∞

≤ 1

4
θs‖U(t) − φǫ(t)‖∞ (2.22)

Then since R is an upper bound for d2φǫ/dy
2 using (2.20), (2.21) and (2.22), we have that,

∥

∥U(t+ s) − φh/4(t+ s)
∥

∥

∞
≤

∥

∥

∥

∥

∥

U − φǫ −
Ṽ

4

∥

∥

∥

∥

∥

∞

+
1

4

∥

∥

∥

∥

Ṽ − h
dφǫ
dy

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

φh/4 − φǫ −
h

4

dφǫ
dy

∥

∥

∥

∥

∞

≤ 1

16
θs‖U(t) − φǫ(t)‖∞ +

1

4
θs‖U(t) − φǫ(t)‖∞ +

Rh2

16

≤ θs‖U(t) − φǫ(t)‖∞.

When δ = h/4 gives the required result. �

Now we can prove the same result for the L2 norm in the finite domain Ω = [−A,A]. First

we prove the similar result to Lemma 2.2. So let

ρ(t) = ‖U(·, t) − φǫ(t) − Ṽ (·, t)‖,

and if the initial condition of the linearized form is Ṽ (0) = U(0) − φǫ(0) then ρ(0) = 0.

Lemma 2.4 If ‖Ṽ (·, t)‖ of (2.9) is bounded by M for all t ≥ 0, then

ρ(t) ≤ ρ(0)eLt +
M2Q

L
(ePΩLt − 1), t ≥ 0,

where L and Q are upper bounds for
∣

∣

∣

∂g(U)
∂U

∣

∣

∣
and

∣

∣

∣

∂2g(U)
∂U2

∣

∣

∣
respectively.

Proof. Recall that U has the representation (2.6)

U(x, t) =

∫ ∞

−∞

F (x+ vt, y, t)U(y, 0)dy+

∫ t

0

∫ ∞

−∞

F (x+ vt, y, t− s)g(U(y − vs))dyds.
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Similarly φǫ has the representation

φǫ(x) =

∫ ∞

−∞

F (x+ vt, y, t)φǫ(y)dy +

∫ t

0

∫ ∞

−∞

F (x+ vt, y, t− s)g(φǫ(y − vs))dyds

and Ṽ has the representation (2.7)

Ṽ (x, t) =

∫ ∞

−∞

F (x+vt, y, t)Ṽ (y, 0)dy+

∫ t

0

∫ ∞

−∞

F (x+vt, y, t−s) ∂g
∂φǫ

(φǫ(y−vs))Ṽ (y−vs, s)dyds.

Using, the fact that
∫∞

−∞
F (x, y, t)dy = 1, and ‖F (x, y, t)‖∞ ≤ 1 for all x and t > 0, we have

that

∫ ∞

−∞

F (x+ vt, y, t)(U(y, 0)− φǫ(y) − Ṽ (y, 0))dy

≤ ‖F (x+ vt, y, t)‖‖U(y, 0)− φǫ(y) − Ṽ (y, 0)‖

≤ ‖F (x+ vt, y, t)‖∞‖F (x+ vt, y, t)‖L1‖U(y, 0) − φǫ(y) − Ṽ (y, 0)‖

≤ ‖U(y, 0) − φǫ(y) − Ṽ (y, 0)‖,

and similarly

∫ t

0

∫ ∞

−∞

F (x+ vt, y, t− s)

(

g(U) − g(φǫ) −
∂g

∂φǫ
Ṽ

)

dyds

≤
∫ t

0

‖F (x+ vt, y, t− s)‖
∥

∥

∥

∥

g(U) − g(φǫ) −
∂g

∂φǫ
Ṽ

∥

∥

∥

∥

ds

≤
∫ t

0

∥

∥

∥

∥

g(U) − g(φǫ) −
∂g

∂φǫ
Ṽ

∥

∥

∥

∥

ds.

Thus,

|U(x, t) − φǫ(x) − Ṽ (x, t)| ≤ ‖U(·, 0) − φǫ − Ṽ (·, 0)‖ +

∫ t

0

H(s)ds (2.23)

for all x, where

H(s) =

∥

∥

∥

∥

g(U(y − vs, s)) − g(φǫ(y − vs)) − ∂g

∂φǫ
(φǫ(y − vs))Ṽ (y − vs, s)

∥

∥

∥

∥

.
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Moreover, For finite domain Ω = [−A,A], there exists a constant PΩ depends on Ω such

that,

‖U(x, t) − φǫ(x) − Ṽ (x, t)‖ ≤ PΩ‖U(x, t) − φǫ(x) − Ṽ (x, t)‖∞. (2.24)

Now letting V = U − φǫ, by the mean value theorem, we have

∥

∥

∥

∥

g(φǫ + V ) − g(φǫ) −
∂g

∂φǫ
Ṽ

∥

∥

∥

∥

≤
∥

∥

∥

∥

g(φǫ + V ) − g(φǫ + Ṽ ) + g(φǫ + Ṽ ) − g(φǫ) −
∂g

∂φǫ
Ṽ

∥

∥

∥

∥

≤ L‖V − Ṽ ‖ +Q‖Ṽ ‖2. (2.25)

If ‖Ṽ ‖ is bounded by M for t > 0, then (2.23), (2.24) and (2.25) gives ρ(t) ≤ PΩρ(0) +

PΩ

∫ t

0
(Lρ(s)+QM2)ds and by standard methods ρ(t) is dominated by PΩρ(0)ePΩLt+(M2Q/L)(eLt−

1), the solution to dy/dt = Ly +QM2 with y(0) = ρ(0).�

Theorem 2.5 Let U(t) = U(y, t) be a solution to Huxley’s equation with initial data U(y, 0) =

φ(y)+ǫU0(y), for all ǫ such that U(y, t) converge to φǫ, where φ is the traveling wave solution

and U0 is a continuous bounded function. Then, there exist numbers s, T0, δ and θs ∈ (0, 1)

such that,

‖U(s+ t) − φδ(s+ t)‖ ≤ θs ‖U(t) − φǫ(t)‖

for all t > T0.

Proof. The Proof follows from the same argument replacing L∞ norm with L2 norm in the

Theorem 2.3, we can get the required result. �
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2.6 Computational Result

Consider Huxley’s equation on the following form

Ut = Uxx + U(1 − U)(U − 0.25)

U(x, 0) =































1, if −100 < x < −75

−0.04x− 2, if −75 < x < −50

0, if −50 < x < 100.

Then convergence of the solution is shown in the following figure.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
time t = 0,  20, 50, 100, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000 

(c)

Figure 2.1: Convergence to the Traveling Wave.
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CHAPTER 3

Long-Time Error Estimate for the

Second Order Problem

This chapter sets the stage towards the development of long-time error analysis for the

numerical solution of the EFK equation. We begin with the error estimation for the numerical

solution of the Huxley’s equation, which can be viewed as the second order counterpart of the

fourth order EFK equation. To establish the estimates for the numerical error propagation

and actual error defined in Chapter 1, we use the concepts of the smoothing indicator initiated

by Sun([26], [27]) and the evolving attractor defined in Chapter 2.

We start with general notation in Section 2.1. Then in Section 2.2 we describe briefly the

finite element method and some properties of the solutions of the Huxley’s equations. Next

the smoothing indicator is determined in Section 2.3. The moving attractor is introduced in

Section 2.4 and finally the error estimates are presented in Section 2.5.
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3.1 General Notations

Here and throughout, we use the standard Banach spaces Lp = Lp(Ω), 1 ≤ p ≤ ∞ and

standard Sobolov space Hm = Hm(Ω), m = 1, 2, . . .. The norm for elements in Lp(Ω) are

‖u‖Lp
=

(
∫

Ω

|u|pdΩ
)1/p

‖u‖L∞
= sup

x∈Ω
|u(x)|.

‖u‖W r
∞

= sup
|α|≤r

‖Dαu‖∞.

For p = 2, we use the simplified notation ‖u‖ = ‖u‖L2 and ‖u‖∞ = ‖u‖L∞. The inner

product L2(Ω) is denoted by

(u, v) =

∫

uvdΩ.

The norm for the elements in Hm(Ω) is

‖u‖m =





∑

|α|≤m

‖Dαu‖m




1/m

.

We will also use the standard Sobolov space with the homogeneous boundary condition

H1
0 (Ω) =

{

u ∈ H1(Ω); ∀x ∈ ∂Ω, u(x) = 0
}

.

For the convenience of error propagation analysis in the following sections, we use the nota-

tion

u(p, t, v)

to stand for the value of the solution of PDE at time t + p with initial time t, initial value

v ∈ L2(Ω), and time increment p.
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3.2 Finite Element Methods

We define a class of initial boundary value problem to which Huxley’s and FK equations

belong:

∂u

∂t
= ∆u+ f(u), in Ω (3.1)

in a convex polygonal domain Ω ∈ R
2, subject to the boundary conditions

u = 0 on ∂Ω

or

∂u

∂n
= 0 on ∂Ω

for t ∈ [t0,∞) and the initial condition

u(t0) = u0.

The equation (3.1) is Huxley’s equation when f(u) = u(1 − u)(u− a).

For the global existence of a solution, we consider the concept of an invariant region [25].

With this, the possibility of any finite time blow-up can be excluded. It has been shown

that for any initial value u0 ∈ H1
0 , there exists u(t) in [t0,∞), for all t. (See [25], Chapter 14

for a more general results and their proof). Since both Huxley’s equation and FK equation

satisfy one-sided Lipschtiz condition

(∆u+ f(u) − ∆v − f(v), u− v) ≤ m‖u− v‖2, (3.2)

for all u, v ∈ H1
0 (Ω). By Theorem 3.3 of [27] we can see that for any initial value u(t0) = u0

and v(t0) = u0 in H1
0 (Ω) the corresponding solutions u(t) and v(t) satisfy,

‖u(t) − v(t)‖ ≤ em(t−t0)‖u0 − v0‖. (3.3)
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We next consider a weak formulation of the above IBVP: Find u(t) ∈ C1([t0,∞), H1
0(Ω)),

such that
(

∂u

∂t
, v

)

+ (∇u,∇v) = (f(u), v) (3.4)

for all v ∈ H1
0 (Ω). Let Th be a quasi-uniform triangulation of Ω, where h is the maximum

mesh size of Th,

h = max {diam(T ), T ∈ Th} .

Let Vh,p be the finite element space consisting of continuous piecewise polynomials of order

p:

Vh,p =
{

q ∈ H1
0(Ω) : q|T ∈ Pp(T )

}

where Pp(T ) is the set of all the polynomials in T up to order p. When it is clear that the

order is p from the context, we use Vh for Vh,p.

After these preparations we now turn to the initial-boundary value problem (3.1) for the

heat equation. It is convenient to proceed in two steps with the definition and analysis of the

approximation solution. As the first step we shall approximate u(x, t) by means of a function

uh(x, t) which for each fixed t, belongs to a finite dimensional linear space Vh of functions

of x of the type considered above. This function will be the solution of h-dependent finite

system of ordinary differential equations in time and is referred to as a semidiscrete solution.

The specially discrete problem is based on a variational formulation (3.4). In the second

step, we discretize this system in the time variable to produce a fully discrete scheme for

the approximated solution of (3.1). For simplicity, we use a fixed time step size τ for the

discretization of time.

For the numerical solution for the fully discrete scheme, we use the notation uN(t), and in

error propagation we write the numerical solution as uN(p, t, v). Similarly the semi-discrete

solution is written in the form uh(p, t, v), mimicking those notations we introduces in Section

2.

For the discrete space, we introduce the discrete Laplacian operator ∆h : H1
0 (Ω) → Vh
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defined by

(∆hu, v) = −(∇u,∇v) ∀v ∈ Vh

and the L2 projection operator Ph : L2(Ω) → Vh by

(Phu, v) = (u, v) ∀v ∈ Vh.

Then we can prove following short time stability property for the semi-discrete solution.

Lemma 3.1 For the initial values u0 and v0 ∈ H1
0 the corresponding semi-discrete solutions

uh(t) and vh(t) satisfy

‖uh − vh‖ ≤ em(t−t0)‖u0 − v0‖. (3.5)

Proof of (a). Theorem 4.1 of [27]. �

3.3 Smoothing Indicator

The numerical error is uniformly bounded if the numerical method is stable. According to

[11] the concept of stability is continuous dependence of the solution on initial data in the

infinite interval in time. The stability of the solutions for the differential equations is also

discussed in [19], [21], [31]. In general, we expect the numerical solution to approximate

the exact solution for the differential equation with certain accuracy. That is, the solutions

of the discretized problem to converge to the solution of the original problem, as mesh size

decreases to zero. However, this question of convergence is usually very hard to investigate.

The concept of stability helps us to discuss the question of convergence. As a matter of

fact, they are closely related. From Lax-Richtmyer Theorem, we know that given a well

posed initial value problem and a consistent difference method, stability is necessary and

sufficient for convergence. In the literature the definition of the stability is given as “for

a stable difference scheme small errors in the initial conditions cause the small error in

the solution.” Though it is easier to show stability than convergence, showing stability is
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still a difficult problem, especially for nonlinear parabolic problems. Moreover, for complex

nonlinear systems treated by combination of numerical techniques such as linearization,

partially implicit schemes, local time stepping etc., it is difficult, sometimes impossible to

carry out stability analysis. So we adapt a methodology suggested by Sun and Ewing [26]

to do our long-time error analysis. Their techniques were specially designed to overcome

difficulties in nonlinear problems. The next theorem is crucial for the estimation of the

actual error, and consequently for the definition of the smoothing indicator.

Theorem 3.2 For any initial value ū ∈ Vh, if

v̄ = ∆hū+ Phf(ū),

w̄ = ∆hv̄ + Ph(f
′(ū)v̄),

and there is a constant C̄ such that ‖ū‖1 ≤ C̄, ‖v̄‖ ≤ C̄, ‖w̄‖ ≤ C̄, then the corresponding

semi-discrete solution uh(p, t, ū) satisfies

(a)

∥

∥

∥

∥

∂2

∂p2
uh(p, t, v)

∥

∥

∥

∥

≤ C0 + C1‖ū‖ + C2‖v̄‖ + C3‖w̄‖

(b)

∥

∥

∥

∥

∂2

∂p2
uh(p, t, v)

∥

∥

∥

∥

∞

≤ C0 + C1‖ū‖ + C2‖v̄‖ + C3‖w̄‖

for sufficiently small p and some constants C0, C1, C2 and C3.

Proof of (a): Same as the proof of the Theorem 4.2 in [27].

Proof of (b): Let vh = duh

dp
and wh = d2uh

dp2
. Since the weak solution is also a strong solution,

it is easy to see that uh, vh and wh satisfy that

∂uh
∂p

= ∆huh + f(uh) (3.6)

∂vh
∂p

= ∆hvh + f ′(uh)vh (3.7)

∂wh
∂p

= ∆hwh + f ′(uh)wh + f ′′(uh)v
2
h. (3.8)
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Since

f(uh) = uh(1 − uh)(uh − a)

f ′(uh) = (1 − 2uh)(uh − a) − a(uh − u2
h)

f ′′(uh) = 2(a− uh) − 2a(1 − 2uh),

using the bounds of of uh, vh and wh we have

d

dp
(1 + ‖uh‖∞ + ‖vh‖∞ + ‖wh‖∞) ≤ C(1 + ‖uh‖∞ + ‖vh‖∞ + ‖wh‖∞).

Then by the Gronwall lemma we have

(1+‖uh(t+p)‖∞+‖vh(t+p)‖∞+‖wh(t+p)‖∞) ≤ eCp(1+‖uh(t)‖∞+‖vh(t)‖∞+‖wh(t)‖∞).

A special case of the last inequality is

∥

∥

∥

∥

∂2

∂p2
uh(p, t, v)

∥

∥

∥

∥

∞

≤ C0 + C1‖ū‖ + C2‖v̄‖ + C3‖w̄‖. �

Now to monitor the stability and smoothing behavior of the numerical scheme, we define

smoothing indicator as proposed in [26] and [27]. Suppose that a time step size τ of a fully

discrete scheme is less than the sufficiently small p given in the previous theorem.

Definition 3.3 For each node ti of the time stepping, ti = t0 + iτ , and the value of the

numerical solution at ti, ū = uN(ti), let

v̄ = ∆hū+ Phf(ū),

w̄ = ∆hv̄ + Ph(f
′(ū)v̄).

Depending on the necessity for
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1. L2 norm S2
i = (‖ū‖1, ‖v̄‖, ‖w̄‖, ‖∆hū‖)

2. L∞ norm S2
i = (‖ū‖1, ‖v̄‖∞, ‖w̄‖∞, ‖∆hū‖)

We call the Sqi the smoothing indicator.

3.4 Moving Attractor

In this section we recall the concept of the moving attractor initially introduced in [26] and

[27]. It is a compact subset of phase space that attracts all the trajectories. As such we

can expect the set of solutions that lie in the attractor to cover all the possible dynamical

behaviors of the system [23]. We also need an invariant condition, which guarantees that

the absorbing set does not decrease as t→ ∞. For many problems such as those in [6],[30],

the concept of moving attractor is more general than that of the global and exponential

attractor.

If M is a one-parameter family of sets in L2, M = {Mt ⊂ L2|t > T}, we say that M is

positively invariant under the dynamical system if for any v ∈ Mt and p > 0, u(p, t, v) ∈

Mt+p. Now we define the moving attractor as in [27].

Definition 3.4 A positively invariant one parameter family of sets M in L2 is called a

moving attractor, if there exists real number θs ∈ (0, 1) depending on s, and a one parameter

family of open sets U = {Ut ⊂ L2|t > T}, positively invariant under the dynamical system,

with Mt ⊂ Ut for all t > T , such that for any v ∈ Ut

d(u(s, t, v),Mt+s) ≤ θsd(v,Mt),

where d(u,M) = infw∈M ‖u− w‖. U is called a basin of the moving attractor.

Now, let

Mt = {φ(x+ vt+ c)|c ∈ R, φ a wave profile of Huxley’s equation} .
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Then if φ(x+vt+c) is initial value of the Huxley’s equation, we know that φ(x+v(t+s)+c)

is solution to Huxley’s equation after time s. In other words if φ(x + vt + c) ∈ Mt then

φ(x+ v(t+ s) + c) ∈Mt+s. Therefore, the sets

M = {Mt|t > T0}

positively invariant under the Huxley’s equation. Similarly,

U = {Ut|t > T0} ,

where

Ut = {u(x, t)|solutions to Huxley’s equation with initial conditions φ(x) + ǫu0(x)} ,

also positively invariant under the Huxley’s equation and Mt ⊂ Ut. Then, from the contrac-

tion property that we introduced in the last chapter we know that, there exist s > 0 and

θs ∈ (0, 1), for any v ∈ Ut such that

‖u(s, t, v) − φǫ(t+ s)‖ ≤ θs‖v − φǫ(t)‖.

Thus

d(u(s, t, v),Mt+s) ≤ θsd(v,Mt).

Hence

M = {Mt|t > T0}

= {φ(x+ vt+ c)|c ∈ R, t > T0}

is a moving attractor for the Huxley’s equation.
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3.5 Error Estimation

Now we state the error estimation theorems.

Theorem 3.5 Assume that

1. uN(t) is a numerical solution of equation (3.1), computed by the finite element method

and the discretization in time is consistent with the differential equation with a local

error of order q = 2 or q = 3.

2. A one-sided Lipschtiz condition is satisfied in H1
0 (Ω)

(∆u+ f(u) − ∆v − f(v), u− v) ≤ m‖u− v‖2

for some m.

3. There is a moving attractor M such that

d(u(s, t, v),Mt+s) ≤ θsd(v,Mt)

for all t ≥ t0.

4. The time step size τ is chosen so that s is a multiple of τ : s = kτ for a positive integer

k.

5. The smoothing indicator remains bounded.

Then we have the following global error estimate:

d (M, uN(ns, t0, uN(t0))) ≤ C
sem

+sτ q−1SqM + em
+sh2S2

H

1 + θs
+ θns d(Mt0 , uN(t0)),
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where m+ = max {0, m}, and

SqM = CM +

q
∑

j=0

Cj max
i
Sqij

S2
H = max

i
‖∆huN(ti)‖ .

Here Sqij denotes the jth node component of Sqj .

Proof. Theorem 6.1 of [27]

Even though we can define moving attractor for L∞, it is still a challenge to find short

term error estimates and Lipschitz conditions for the problem defined in an infinite domain.
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CHAPTER 4

Finite Element Methods for the EFK

Equation

Extended Fisher Kolmogorov equation occurs in a variety of applications such as pattern

formulation in bistable systems [5], propagation of domain walls in liquid crystals [32], trav-

elling waves in reaction diffusion systems and mezoscopic model of a phase transition in a

binary system near the Lipschitz point [13]. In particular, in the phase transition near crit-

ical points (Lipschitz points), the higher order gradient terms in the free energy functional

can no longer be neglected and the fourth order derivative becomes important [4].

In this chapter we study the standard Galerkin finite element method for the approximation

of the solutions of extended Fisher-Kolmogorov equation,

ut + γ∆2u− ∆u = f(u) in Ω for t > 0,

u(·, 0) = v in Ω.

with Dirichlet boundary conditions

u = ∆u = 0 on ∂Ω for t > 0,



32

or with Neumann boundary conditions

∂u

∂n
=
∂∆u

∂n
= 0 on ∂Ω for t > 0

where Ω is a convex polygonal domain in R
2 with boundary ∂Ω. As for the computational

studies there is not much literature on the numerical approximations of the EFK equation.

Moreover error estimates in the paper [4] have bounds containing the factor exp T
γ
, which is

less useful when γ is small. We shall establish in this chapter short error analysis and the

long term error estimates in the next chapter. Our error estimates only depend on the γ−1.

In the future, special efforts will be made to establish error estimates free of the term γ.

In Section one we define finite element method for the EFK equation. In Section two we

proceed to discretized the problem in the spacial variable and approximate the solution in

the finite element space, as a finite dimensional system of ordinary differential equations.

Then in Section three we define fully discrete scheme by discretizing in time using finite

difference approximations. Error estimates are derived for both the spatially and complete

discrete solutions.

4.1 Finite Element Method

We construct the finite dimensional space Vh ∈ H2(Ω) of continuous bilinear polynomials.

Let Kh be quasi-uniform decomposition of the domain Ω into disjoint triangles such that

no vertex of any triangle lies on the interior of a side of another triangle. Let h denote

the maximal length of a side of a triangle. We also knows that Vh ∈ H2
0 (Ω), if and only if

Vh ∈ C1(Ω). Thus we work with polynomials of degree five on each triangle. Therefore let

K be a triangle with vertices’s ai i = 1, 2, 3 and let aij be the mid point on the side aiaj

i, j = 1, 2, 3, i < j. A function v ∈ P5(K) is uniquely determined by the following degrees of
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freedom

Dαv(ai), i = 1, 2, 3, |α| ≤ 2

∂v

∂n
(aij), i, j = 1, 2, 3, i < j,

where ∂
∂n

denotes differentiation in the outward normal direction to the boundary of K.

This space is often known as the space of Argyris triangular elements and it belongs to C1

finite element class. The following approximation property holds (chapter 6 of [2]). When

Hr
0 →֒ Hm

0 for all v ∈ Hr
0 there is a positive constant c, so that

inf
χ∈Sh

‖v − χ‖m ≤ chr−m‖v‖r, 3 ≤ r ≤ 6 m = 0, 1, 2. (4.1)

4.1.1 Semi-Discrete Schemes

In this section we study the spatially semidiscrete problem. The problem can be formulated

as: Find uh ∈ Vh, such that,

(uh,t, χ) + γ(∆uh,∆χ) + (∇uh, χ) = (f, χ), ∀χ ∈ Vh, t ∈ [0,∞) (4.2)

(uh(., 0), χ) = (v, χ), ∀χ ∈ Vh.

Now let the basis function in Vh be denoted by ψ, i = 1, 2, . . . , m and express uh as

uh(x, t) =
m
∑

j=1

aj(t)ψj(x), (x, t) ∈ Ω × [0,∞) (4.3)

where aj are nodal values. For j = 1, 2, . . . , m taking v = ψj in (4.2) with (4.3), we see that

m
∑

j=1

a′i(t)(ψi, ψj) +
m
∑

j=1

ai(t)γ(∆ψi,∆ψj) +
m
∑

j=1

ai(t)(∇ψi,∇ψj) = (f, ψj) (4.4)

m
∑

j=1

(ψi, ψj)ai(0) = (v, ψj).
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In the matrix form, this is

a′(t) + M−1(γA + B)a(t) = M−1f ,

Ma(0) = v,

where the m×m matrices A, B and M and the vectors a, v, f are

A = (aij) = (∆ψi,∆ψj),

B = (bij) = (∇ψi,∇ψj),

M = (mij) = (ψi, ψj),

a = (aj),

f = (fj) = (f, ψj),

v = (v − j) = (v, ψj).

In the standard finite element method the matrix with elements mij = (ψi, ψj) is the

mass matrix M, and the matrix with the elements aij = (∇ψi,∇ψj) and aij = (∆ψi,∆ψj) is

the stiffness matrices A and B. The mass matrix M is positive definite and hence invertible.

So we can write (4.4) as a system of ordinary differential equations:

a′(t) + M−1 (A + γB)a(t) = M−1f .

Now we prove the L2 error estimate between the solution of the semidiscrete and continuous

problem. Define the Ritz or elliptic projection Rh : H2
0 → Sh as the orthogonal projection

with respect to bilinear form A(u, v) = γ(∆u,∆v) + (∇u,∇v), so that for v ∈ H2
0 ,

A(Rhv, χ) = A(v, χ) for all χ ∈ Sh.
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Then we split the error

uh − u = θ + ρ,

where θ = uh −Rhu and ρ = Rhu− u. Then for all χ in Sh

A(Rhu− u,Rhu− u) ≤ γ(∆(Rhu− u),∆(Rhu− u)) + (∇(Rhu− u),∇(Rhu− u))

= γ(∆(Rhu− u),∆(χ− u)) + (∇(Rhu− u),∇(χ− u))

≤ γc‖Rhu− u‖2‖χ− u‖2 + c‖Rhu− u‖1‖χ− u‖1.

Thus by approximation property (4.1) with m = 2 and m = 1

A(Rhu− u,Rhu− u) ≤ γc‖Rhu− u‖2 inf
χ∈Sh

‖χ− u‖2 + c‖Rhu− u‖1 inf
χ∈Sh

‖χ− u‖1

≤ γc‖Rhu− u‖2h
r−2‖u‖r + c‖Rhu− u‖1h

r−1‖u‖r, 3 ≤ r ≤ 6.

That is

γ‖Rhu− u‖2
2 + ‖Rhu− u‖2

1 ≤ γchr−2‖Rhu− u‖2‖u‖r + chr−1‖Rhu− u‖1‖u‖r. (4.5)

Now when γ < 1, for small enough h, there is constant c independent of γ such that

γ2‖Rhu− u‖2
2 + ‖Rhu− u‖2

1 ≤ chr−2‖u‖r (γ‖Rhu− u‖2 + ‖Rhu− u‖1) ,

1

2
(γ‖Rhu− u‖2 + ‖Rhu− u‖1)

2 ≤ chr−2‖u‖r (γ‖Rhu− u‖2 + ‖Rhu− u‖1) ,

(γ‖Rhu− u‖2 + ‖Rhu− u‖1) ≤ chr−2‖u‖r. (4.6)

Thus

γ‖ρ‖2 = γ‖Rhu− u‖2 ≤ chr−2‖u‖r, 3 ≤ r ≤ 6. (4.7)
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When γ > 1, from the boundedness of A(., .) from (4.5) we have

γ‖Rhu− u‖2
2 ≤ γ‖Rhu− u‖2

2 + ‖Rhu− u‖2
1 ≤ γchr−2‖Rhu− u‖2‖u‖r

Thus

‖ρ‖2 = ‖Rhu− u‖ ≤ chr−2‖u‖r 3 ≤ r ≤ 6,

which is similar to inequality as (4.7). For the L2 error analysis we use the Aubin-Nitsche

duality argument. Let ψ be a solutions of

γ∆2ψ − ∆ψ = ϕ in Ω,

ψ = ∆ψ = 0 on ∂Ω.

For any ψh ∈ Sh we have

(Rhu− u, ϕ) = γ(∆(Rhu− u),∆ψ) + (∇(Rhu− u),∇ψ)

= γ(∆(Rhu− u),∆(ψ − ψh)) + (∇(Rhu− u),∇(ψ − ψh))

≤ cγ‖Rhu− u‖2‖ψ − ψh‖2 + c‖Rhu− u‖1‖ψ − ψh‖1.

Hence by (4.1) for r = 4

(Rhu− u, ϕ) ≤ cγ‖Rhu− u‖2 inf
ψh∈Vh

‖ψ − ψh‖2 + c‖Rhu− u‖1 inf
ψh∈Vh

‖ψ − ψh‖1

≤ cγ‖Rhu− u‖2h
2‖ψ‖4 + c‖Rhu− u‖1h

3‖ψ‖4. (4.8)
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When γ < 1, multiply above inequality by γ and together with (4.6) and the elliptic regularity

γ(Rhu− u, ϕ) ≤ cγ2‖Rhu− u‖2h
2‖ψ‖4 + cγ‖Rhu− u‖h3‖ψ‖4

≤ ch2‖ϕ‖(γ‖Rhu− u‖2 + ‖Rhu− u‖1)

≤ ch2‖ϕ‖chr−2‖u‖r.

So when ϕ = Rhu− u we have

γ‖ρ‖ = γ‖Rhu− u‖ ≤ chr‖u‖r 3 ≤ r ≤ 6. (4.9)

For γ > 1 from (4.8)

(Rhu− u, ϕ) ≤ cγ‖Rhu− u‖2h
2‖ψ‖4

≤ cγhr−2‖u‖rh2‖ψ‖4

≤ chr‖u‖r‖ϕ‖.

Again when ϕ = Rhu− u we have

‖ρ‖ = ‖Rhu− u‖ ≤ chr‖u‖r, 3 ≤ r ≤ 6. (4.10)

Moreover, in order to estimate θ, note that

(θt, χ) + (∇θ,∇χ) + γ(∆θ,∆χ)

= (uh,t, χ) + (∇uh,∇χ) + γ(∆uh,∆χ) − (Rhut, χ) − (∇Rhu,∇χ) − γ(∆Rhu,∆χ) (4.11)

= (f, χ) − (Rhut, χ) − (∇u,∇χ) − γ(∆u,∆χ)

= (ut, χ) − (Rhut, χ)

= (ut − Rhut, χ),
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or

(θt, χ) + γ(∆θ,∆χ) + (∇θ,∇χ) = −(ρt, χ).

When χ = θ

1

2

d

dt
‖θ‖2 + ‖∇θ‖2 + γ‖∆θ‖2 = −(ρt, θ) ≤ c‖ρt‖‖θ‖.

Thus

1

2

d

dt
‖θ‖2 ≤ c‖ρt‖‖θ‖

(θ2)
1

2
d

dt

(

‖θ‖2
)

1

2 ≤ c‖ρt‖‖θ‖.

After integrating and multiplying by γ

γ‖θ(t)‖ ≤ γ‖θ(0)‖ + γ

∫ t

0

‖ρt‖ds. (4.12)

For γ < 1, since γ‖ρ‖ ≤ chr‖u‖r, we have

γ‖θ(0)‖ ≤ ‖vh −Rhv‖

≤ γ‖vh − v‖ + γ‖Rhv − v‖

≤ γ‖vh − v‖ + chr‖v‖r.

And we already know that

γ‖ρt‖ = γ‖Rhut − ut‖ ≤ chr‖ut‖r.

Then together with (4.9) and (4.12)

γ‖ρ(t)‖ ≤ chr
(

‖v‖r +

∫ t

0

‖ut‖rds
)

γ‖θ(t)‖ ≤ γ‖vh − v‖ + chr‖v‖r + chr
∫ t

0

‖ut‖rds.
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Hence the semi-discrete error when γ < 1 is

γ‖uh(t) − u(t)‖ ≤ ‖vh − v‖ + chr
(

‖v‖r + chr
∫ t

0

‖ut‖rds
)

, for 3 ≤ r ≤ 6.

Similarly for γ > 1 we have

‖uh(t) − u(t)‖ ≤ ‖vh − v‖ + chr
(

‖v‖r + chr
∫ t

0

‖ut‖rds
)

, for 3 ≤ r ≤ 6.

4.1.2 Completely Discrete Schemes

In complete discrete approximation of the solution of EFK equation we discretize the problem

in both spatial and time variables. The time discretization is accomplished by a finite

difference approximation of the time derivative. Let k be the time step and Un be the

approximations in Vh of u(t), at t = tn = nk. Set wn = w(tn) for generic function w of time.

The backward Euler method is defined by replacing the time derivative of the semidiscrete

version (4.2) by

∂̄Un =
Un − Un−1

k
.

That is: Find Un ∈ Sh, n ≥ 1, such that

(∂̄Un, χ) + γ(∆Un,∆χ) + (∇Un,∇χ) = (f(Un), χ) ∀χ ∈ Sh (4.13)

(U0, χ) = (c, χ).

As in (4.2), (4.13) can be expressed in the matrix form

(M + k(γA + B))an = Ban−1 + kf

Man = v
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where

Un =

m
∑

j=1

anjψ
n
j

and

an = (an1 , a
n
2 , . . . , a

n
m)T .

As in the semi-discrete scheme, we split the error and define

Un − u(tn) = (Un − Rhu(tn)) + (Rhu(tn) − u(tn))

= θn + ρn.

Similar to (4.9) and (4.10) we can write

γρn ≤ chr‖u(tn)‖r, for γ < 1,

ρn ≤ chr‖u(tn)‖r, for γ ≥ 1.

In analogy with (4.11) we have

(∂̄θn, χ) + γ(∆θn,∆χ) + (∇θn,∇χ) = −(ωn, χ), ∀χ ∈ Vh, n > 0, (4.14)

where

ωn = Rh∂̄u(tn) − ut(tn)

= (Rh − I)∂̄u(tn) + (∂̄u(tn) − ut(tn)),

and define

ωn1 = Rh∂̄u(tn) − ∂̄u(tn),

ωn2 = ∂̄u(tn) − ut(tn).
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Letting χ = θn on (4.14), we have

(∂̄θn, θn) =

(

θn − θn−1

k
, θn
)

≤ ‖ωn‖‖θn‖.

That is

‖θn‖2 − (θn−1, θn) ≤ k‖ωn‖‖θn‖

‖θn‖ ≤ ‖θn−1‖ + k‖ωn‖.

Using above inequality repeatedly

‖θn‖ ≤ ‖θ0‖ + k
n
∑

j=1

‖ωj‖

≤ ‖θ0‖ + k

n
∑

j=1

‖ωj1‖ + k

n
∑

j=1

‖ωj2‖,

here it is clear that θ0 = θ(0). Then

ωj1 = (Rh − I)k−1

∫ tj

tj−1

utds = k−1

∫ tj

tj−1

(Rh − I)utds,

and using boundedness of ρn, we can obtain

γk
n
∑

j=1

‖ωj1‖ ≤
n
∑

j=1

∫ tj

tj−1

chr‖ut‖rds = chr
∫ tn

0

‖ut‖rds for γ < 1,

k

n
∑

j=1

‖ωj1‖ ≤
n
∑

j=1

∫ tj

tj−1

chr‖ut‖rds = chr
∫ tn

0

‖ut‖rds for γ ≥ 1.

Moreover

kωj2 = u(tj) − u(tj−1) − kut(tj) = −
∫ tj

tj−1

(s− tj−1)utt(s)ds,
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so that

k

n
∑

j=1

‖ωj2‖ ≤
n
∑

j=1

∥

∥

∥

∥

∥

∫ tj

tj−1

(s− tj−1)utt(s)ds

∥

∥

∥

∥

∥

≤ k

∫ tn

0

‖utt‖ds.

Together, for γ < 1 we can estimate,

γ‖Un − u(tn)‖ ≤ γθ(0) + γk

k
∑

j=1

‖ωj1‖ + γk

k
∑

j=1

‖ωj2‖ + γρn

≤ γ‖vh − v‖ + chr
∫ tn

0

‖ut‖rds+ γk

∫ tn

0

‖utt‖ds+ chr
(

‖v‖r +

∫ tn

0

‖ut‖rds
)

.

Hence when γ < 1 the complete discrete error with backward Euler method, if γ‖vh − v‖ ≤

Chr‖v‖r is

γ‖Un − u(tn)‖ ≤ Chr
(

‖v‖r +

∫ tn

0

‖ut‖rds
)

+ k

∫ tn

0

‖utt‖ds,

and similarly for γ ≥ 1 we have

‖Un − u(tn)‖ ≤ Chr
(

‖v‖r +

∫ tn

0

‖ut‖rds
)

+ k

∫ tn

0

‖utt‖ds.

Note that backward Euler method is of orderO(hr+k). It is only first order in k. We therefore

now turn to the backward difference method. We can obtain second order accuracy in the

discretization in time if we approximate the time derivative in the differential equation by a

second order backward difference quotient. Let

D̄Un = ∂̄Un +
1

2
k∂̄2Un =

1

k

(

3

2
Un − 2Un−1 +

1

2
Un−2

)

.
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Then we define the discrete problem in two steps, when n ≥ 2 and n = 1. That is, find

Un ∈ Vh such that

(D̄Un, χ) + γ(∆Un,∆χ) + (∇Un,∇χ) = (f, χ), ∀χ ∈ Vh, n ≥ 2, (4.15)

(∂̄U1, χ) + γ(∆U1,∆χ) + (∇Un,∇χ) = (f, χ), ∀χ ∈ Vh, n = 1,

(Un, χ) = (v, χ).

The linear system for (4.15) is

(

3

2
M + k(γA + B)

)

an = 2Man−1 − 1

2
Man−2 + kfn n ≥ 2.

Writing again Un − un = θn + ρn we only need to bound θn. As before we can show that θn

satisfies

(D̄θn, χ) + γ(∆θn,∆χ) + (∇θn,∇χ) = −(ωn, χ), for n ≥ 2,

(∂̄θ1, χ) + γ(∆θ1,∆χ) + (∇θ1,∇χ) = −(ω1, χ),

where

ωn = D̄Rhu
n − unt = (Rh − I)D̄un + (D̄un − unt ) = ωn1 + ωn2 , n ≥ 1,

ω1 = (Rh − I)∂̄u1 + (∂̄u1 − u1
t ) = ω1

1 + ω1
2.

It is shown in [29] page 19, that

‖θn‖ ≤ ‖θ0‖ + 2k

n
∑

j=2

‖ωj‖ +
5

2
k‖ω1‖, for n ≥ 1.
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Now we can bound ωj1 and ωj2. Using Taylor expansion as before we can find

k‖ωj1‖ ≤ Chrk‖D̄uj‖r ≤ Chr
∫ tj

tj−2

‖ut‖rds,

k‖ωj2‖ ≤ Ck2

∫ tj

tj−2

‖uttt‖ds.

As for the backward Euler method we have

k‖ω1
1‖ + k‖ω1

2‖ ≤ Chr
∫ k

0

‖ut‖rds+ k

∫ k

0

‖utt‖ds,

then together for γ < 1 we can estimate the complete discrete error, if ‖vh − v‖ ≤ chr‖v‖r
as

γ‖Un − un‖ ≤ Chr
(

‖v‖r +

∫ tn

r

‖ut‖rds
)

+ Ck

∫ k

0

‖utt‖ds+ Ck2

∫ tn

0

‖uttt‖ds, for n ≥ 0, 3 ≤ r ≤ 6.

Similarly for γ ≥ 1, we have

‖Un − un‖ ≤ Chr
(

‖v‖r +

∫ tn

r

‖ut‖rds
)

+ Ck

∫ k

0

‖utt‖ds+ Ck2

∫ tn

0

‖uttt‖ds, for n ≥ 0, 3 ≤ r ≤ 6.

Therefore we have O(hr + k2) error estimate.
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CHAPTER 5

Long Time Error Analysis

In this chapter we study the a priori error estimates, considering the exact error propagation.

In the first section we establish global existence and some bounds for the solution and its

first and second derivatives. In the second section we introduce the concept of smoothing

indicator. In the last section we estimate the total error by considering contribution of the

error from local and propagation errors.

5.1 Existence, Uniqueness, and Stability

In order to study the long time error, we need the global existence, uniqueness and stability

of the EFK equation. We start with the weak formulation of the EFK equation: Find

u(., t) ∈ H2
0 (Ω), t ∈ (0, T ], such that

(ut, χ) + γ(∆u,∆χ) + (∇u,∇χ) = (f(u), χ), (5.1)

u(0) = u0,

for all χ ∈ H2
0 , where f(u) = u−u3. For the convenience of the error propagation analysis we

use the notation of a dynamical system for the solution of equation (5.1). That is, u(p, t, v)

stands for the value of the solution of equation (5.1) at the time t + p with initial time
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t, initial value v of H2
0 (Ω), and time increment p. With this relation it is also clear that

u(p+ r, t, v) = u(p, t+ r, u(r, t, v)), which is well known semigroup property.

The global existence and uniqueness result is established in [4] by Danumjaya and Panni.

We include this result for convenience.

Theorem 5.1 Let u0 ∈ H2
0 (Ω). For any T > 0, there exists a unique u = u(x, t) in Ω×[0, T )

with u ∈ L∞(0, T ;H2
0(Ω)) and ut ∈ L∞(0, T ;L2

0(Ω)), such that u satisfies the initial condition

u(0) = u0 and equation (5.1).

Then we show local stability of the boundary value problem, which will be useful later in

this chapter.

Theorem 5.2 Let B̃ be a bounded subset of H2
0 (Ω). If the EFK equations

ut + γ∆2u− ∆u = f(u), u(t0) = u0,

vt + γ∆2v − ∆v = f(v), v(t0) = v0,

are satisfied for all u and v in B̃ then

‖u(t) − v(t)‖ ≤ exp(m(t− t0))‖u0 − v0‖.

Proof: Consider the Lyapunov functional L(u) as

L(u) =

∫

Ω

{

γ

2
|∆u|2 +

1

2
|∇u|2 + F (u)

}

dx (5.2)

where F (u) = 1
4
(u2 − 1)2, and note that F ′ = −f . Differentiate the Lyapunov functional

with respect to t, we get

d

dt
L(u) = γ(∆u,∆ut) + (∇u,∇ut) + (F ′(u), ut).
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Setting χ = ut in (5.1), we obtain

γ(∆u,∆ut) + (∇u,∇ut) − (f(u), ut) = −‖ut‖2.

From above two equations, we find that

d

dt
L(u) = −‖ut‖2 ≤ 0,

and hence L(u) ≤ L(u0). Using the definition of L(.) with elliptic regularity γ‖∆u‖2+‖u‖2 ≤

‖f(u)‖, it follows that

∫

Ω

(

γ

2
|∆u|2 +

1

2
|∇u|2 + F (u)

)

dΩ ≤
∫

Ω

(

γ

2
|∆u0|2 +

1

2
|∇u0|2 + F (u0)

)

dΩ

≤ 1

2
‖f(u0)‖2 +

∫

Ω

F (u0)dΩ

≤ Cu0
.

Thus ‖u‖2
1 ≤ Cu0

. Since Ω is bounded convex domain in R
2, by Sobolov embedding theorem

‖u‖Lp ≤ C‖u‖1 ≤ Cu0
. Now because u, v ∈ B̃ ⊂ H1

0 (Ω),

(ut − vt, u− v) + γ‖∆(u− v)‖2 + ‖∇(u− v)‖2 = (f(u) − f(v), u− v).

Also we have

1

2

d

dt
‖u− v‖2 ≤ (f(u) − f(v), u− v)

= (u− u3 − (v − v3), u− v)

= C‖u− v‖2.

That is

d

dt
‖u− v‖ ≤ C‖u− v‖,
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where C is a constant depend only on u0 and v0. This implies

e−mt‖u(t) − v(t)‖ ≤ e−mt0‖u(t0) − v(t0)‖,

and the required result. �

5.2 Stability and Smoothing Indicator

In the proof of the error analysis of discretized space, we split the error between a solution

of the weak formulation (5.1) and numerical schemes (semi-discrete and complete discrete).

In each of them, how well we can control the local error over the time period of length p ,

which depends on the numerical solution of the previous step. So it is crucial to monitor

the stability and the smoothing behavior of the numerical scheme. To this end we define

stability-smoothing indicator as proposed in [26], which is computed from numerical scheme.

For the numerical solution of the complete discrete form we use the notation uN(t). However

in error analysis we will write the numerical solution as uN(p, t, v) mimicking the notation we

used in the previous section. In uN(p, t, v), t is the initial time, v is the initial value at time

t, and p is the time increment. It is easy to see the semi-group property uN(p + r, t, v) =

uN(p, t + r, uN(r, t, v)) holds. Similarly, we use the notation uh(p, t, v) for semi-discrete

solution with initial time t, initial value v and time increment p. Again for the semi-discrete

solution we can verify semi-group property uh(p + r, t, v) = uh(p, t + r, uh(r, t, v)). For

the proofs of the next two theorems and definition, we need to introduce discrete Laplace

operator ∆h : H1
0 (Ω) → Vh defined by (∆hu, v) = −(∇u,∇v), ∀v ∈ Vh, and discrete bi-

harmonic operator ∆2
h : H2

0 (Ω) → Vh defined by (∆2
hu, v) = −(∆u,∆v), ∀v ∈ Vh, where Vh

is finite element space. Moreover the L2 projection operator Ph : L2(Ω) → Vh defined by

(Phu, v) = (u, v), for all v ∈ Vh.
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Now let vh = duh

dp
, wh = d2uh

dp2
. From (5.1) it is easy to verify that uh, vh and wh satisfy

(

∂uh
∂p

, z0

)

+ γ(∆uh,∆z0) + (∇uh,∇z0) = (f(uh), z0), (5.3)

(

∂vh
∂p

, z1

)

+ γ(∆vh,∆z1) + (∇vh,∇z1) = (f ′(uh)vh, z1), (5.4)

(

∂wh
∂p

, z2

)

+ γ(∆wh,∆z2) + (∇wh,∇z2) = (f ′(uh)wh + f ′′(uh)v
2
h, z2), (5.5)

for all z0, z1 and z2 in Vh. Furthermore, for any initial value ū of (5.3) we can define initial

values of (5.4) and (5.5) as

v̄ = −∆2ū+ ∆ū+ f(ū),

w̄ = −∆2v̄ + ∆v̄ + f ′(ū)v̄.

Theorem 5.3 Let uh be a solution of (5.3). Then there exists positive constant Cū depends

only on ū such that

1. γ‖uh‖2 ≤ Cū.

2. ‖uh‖1 ≤ Cū.

3. ‖uh‖Lp ≤ Cū.

Proof: Define the Lyapunov functional L(χ) such that

L(χ) =

∫

Ω

(

γ

2
|∆χ|2 +

1

2
|∇χ|2 + F (χ)

)

dΩ,

where F (χ) = 1
4
(χ2 − 1)2 ≥ 0 and F ′ = −f . Setting z0 = duh

dp
= vh on (5.3) we have

‖vh‖2 + γ(∆uh,∆vh) + (∇uh,∇vh) = (f(uh), vh),
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and

d

dp
L(uh) = γ(∆uh,∆vh) + (∇uh,∇vh) + (F ′(uh), vh) = −‖vh‖2.

That is

d

dp
L(uh) = −‖vh‖2 ≤ 0.

Thus L(uh) ≤ L(ū). Then

∫

Ω

(

γ

2
|∆uh|2 +

1

2
|∇uh|2 + F (uh)

)

dΩ ≤
∫

Ω

(

γ

2
|∆ū|2 +

1

2
|∇ū|2 + F (ū)

)

dΩ

≤ 1

2
‖f(ū)‖2 +

∫

Ω

F (ū)dΩ

≤ Cū.

Since F (uh) ≥ 0, using Poincaré inequality, we arrive at

γ‖uh‖2 ≤ Cū, (5.6)

‖uh‖1 ≤ Cū. (5.7)

Since Ω ⊂ R
2, Sobolov embedding theorem gives us ‖uh‖Lp ≤ C‖uh‖1 ≤ Cū. �

Note: Integrating both sides of d
dp
Luh + ‖vh‖2 = 0 and using the fact that L(ū) > L(uh),

we have

∫ t+p

t

‖vh(s)‖2ds = L(ū) −L(uh)

≤ L(ū)

≤ Cū. (5.8)

Next theorem is crucial for the estimation of the error, resulting from the discretization of

time.



51

Theorem 5.4 For any initial value ū ∈ Vh, if

v̄ = −∆2
hū+ ∆hū+ Phf(ū),

w̄ = −∆2
hv̄ + ∆hv̄ + Phf

′(ū)v̄,

and there is a constant C̄ such that ‖ū‖2 ≤ C̄, ‖v̄‖ ≤ C̄, ‖w̄‖ ≤ C̄, then the corresponding

semi-discrete solution uh(p, t, ū) satisfies

∥

∥

∥

∥

∂2

∂p2
uh(p, t, v)

∥

∥

∥

∥

≤ C0 + C1‖ū‖ + C2‖v̄‖ + C3‖w̄‖,

for sufficiently small p and some constants C0, C1, C2 and C3.

Proof: Since Ω is in R
2 and uh is inH2

0 (Ω) ⊂ H1
0 (Ω), by Sobolov inequality we have ‖uh‖Lp ≤

C‖uh‖1, for 1 ≤ p <∞. And Holder’s inequality for 1
r

= 1
p
+ 1

q
is given by

(∫

Ω
|ab|rdΩ

)1/r ≤

‖a‖Lp‖b‖Lq . We start by showing bounds for ‖f ′(uh)vh‖ and | (f ′(uh)wh + f ′′(uh)u
2
h, wh) |,

where f(u) = u− u3.

‖f ′(uh)vh‖2 = ‖(1 − 3u2
h)vh‖2

≤ ‖vh‖2 + 9‖u2
hvh‖2

≤ ‖vh‖2 + 9‖u2
h‖2

L4‖vh‖2
L4

≤ ‖vh‖2 + 9‖uh‖4
L8‖vh‖2

L4

≤ C‖vh‖2
1 + C‖uh‖4

1‖vh‖
2
1.

That is from from previous theorem,

‖f ′(uh)vh‖2 ≤ C
(

1 + ‖uh‖4
1

)

‖vh‖2
1 ≤ Cū‖vh‖2

1. (5.9)
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Similarly because (u2
hwh, wh) = ‖uhwh‖ > 0

(

f ′(uh)wh + f ′′(uh)v
2
h, wh

)

=
(

(1 − 3u2
h)wh + (−6uh)v

2
h, wh

)

=
(

1 − 3u2
h)wh, wh

)

−
(

6uhv
2
h, wh

)

= (wh, wh) − 3(u2
hwh, wh) − 6(uhv

2
h, wh)

≤ ‖wh‖2 + 6|(uhv2
h, wh)|

≤ ‖wh‖2 + 3‖uhv2
h‖2 + 3‖wh‖2.

Then by Holder’s and Sobolov inequality and Theorem 5.3, as before

|
(

f ′(uh)wh + f ′′(uh)u
2
h, wh

)

| ≤ C‖wh‖2 + C‖uh‖2
L4‖vh‖4

L8

≤ C‖wh‖2 + C‖uh‖2
1‖vh‖

4
1. (5.10)

≤ Cū(‖wh‖2 + ‖vh‖4
1). (5.11)

Now choosing z1 = wh on (5.4), we obtain

‖wh‖2 +
γ

2

d

dp
‖∆vh‖2 +

1

2

d

dp
‖∇vh‖2 = (f ′(uh)vh, wh)

≤ 1

2
‖f ′(uh)vh‖2 +

1

2
‖wh‖2

≤ Cū‖vh‖2
1 +

1

2
‖wh‖2,

and hence

‖wh‖2 + γ
d

dp
‖∆vh‖2 +

d

dp
‖∇vh‖2 ≤ Cū‖vh‖2

1.

Integrating both sides with respect to t, then (5.9) and elliptic regularity γ‖∆hv̄‖2+‖∇hv̄‖2 ≤
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‖Phf(ū)v̄‖2 yield

∫ t+p

t

‖wh‖2ds+ γ‖∆vh‖2 + ‖∇vh‖2 ≤ Cū

∫ t+p

t

‖vh‖2
1ds+ γ‖∆hv̄‖2 + ‖∇hv̄‖2

≤ Cū

∫ t+p

t

‖vh‖2
1ds+ ‖Phf(ū)v̄‖2

≤ Cū

∫ t+p

t

‖vh‖2
1ds+ Cū‖v̄‖2

1. (5.12)

We now evaluate ‖v̄‖1 and
∫ p

t
‖vh‖2

1ds. A use of (5.4) gives us,

γ‖∆v̄‖2 + ‖∇v̄‖2 = −(w̄, v̄) + (f ′(ū)v̄, v̄)

≤ C‖w̄‖‖v̄‖ +
(

(1 − 3ū2)v̄, v̄
)

≤ C‖w̄‖‖v̄‖ + ‖v̄‖2 − 9‖ūv̄‖2

≤ C
(

‖w̄‖ + ‖v̄‖2) ‖v̄‖1.

Thus

‖v̄‖1 ≤ C‖w̄‖ + ‖v̄‖. (5.13)

Again choosing z1 = vh of (5.4), Similarly,

(wh, vh) + γ‖∆vh‖2 + ‖∇vh‖2 = (f ′(uh)vh, vh)

1

2

d

dp
‖vh‖2 + γ‖∆vh‖2 + ‖∇vh‖2 =

(

(1 − 3u2
h)vh, vh

)

≤ ‖vh‖2.

So then integrating both sides with respect to t and from (5.8) we obtain

∫ t+p

t

‖vh‖2
1ds ≤ 2

∫ t+p

t

‖vh‖2ds+ ‖v̄‖2 ≤ Cū + ‖v̄‖2. (5.14)
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Together with inequalities (5.12), (5.13) and (5.14) we can write,

∫ t+p

t

‖wh‖2ds ≤ Cū

(

‖w̄‖2 + ‖v̄‖2 +

∫ t+p

t

‖vh‖2
1ds

)

≤ Cū + 2‖v̄‖2 + ‖w̄‖2. (5.15)

Similarly from (5.12),

‖vh‖2
1 ≤ Cū + ‖v̄‖2 + ‖w̄‖2. (5.16)

Finally setting z2 = wh on (5.5), we have

1

2

d

dp
‖wh‖2 + γ‖∆wh‖2 + ‖∇wh‖2 =

(

f ′(uh)wh + f ′′(uh)v
2
h, wh

)

.

Thus from (5.11) and (5.16),

1

2

d

dp
‖wh‖2 ≤ Cū(‖wh‖2 + ‖vh‖4

1)

≤ Cū(‖wh‖2 + Cū
(

Cū + 2‖v̄‖2 + ‖w̄‖2
)

‖vh‖2
1).

Now integrating both sides of the above inequality with (5.15),

‖wh‖2 ≤ 8

∫ t+p

t

‖wh‖2ds+ ‖w̄‖ + C‖ū‖

(

C‖ū‖ + 2‖v̄‖2 + ‖w̄‖2
)

∫ t+p

t

‖vh‖2
1ds

≤ C‖ū‖ + 9‖w̄‖2 + 2‖v̄‖2 + C‖ū‖

(

C‖ū‖ + 2‖v̄‖2 + ‖w̄‖2
) (

C‖ū‖ + ‖v̄‖2
)

.

Hence we have the required inequality

‖wh‖ ≤ C0 + C1‖ū‖ + C2‖v̄‖ + C3‖w̄‖. �

Based on above theorem we define the following stability and moving indicator.

Definition 5.5 For each ti of the ti = t0 + iτ and the value of the numerical solution at ti,
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ū = uN(ti), let

v̄ = ∆hū− γ∆2
hū+ Phḟ(ū),

w̄ = ∆hv̄ − γ∆2
hv̄ + Phf̈(ū)v̄,

and let

S2
i =

(

‖ū‖2, ‖v̄‖, ‖w̄‖, ‖γ∆2
hū+ ∆hū‖

)

.

We call the sequence {Si|i ≥ 0} the stability and smoothing indicator.

5.3 The Error Estimation Theorem

Theorem 5.6 Assume that

1. uN(t) is numerical solution of equation (5.1), computed with a finite element method

described in chapter 3 and the discretization in time is consistent to the differential

equation with a local error of order q = 2 or 3.

2. There is a moving attractor M for equation (5.1)

d(u(s, t, v),Mt+s) ≤ θsd(v,Mt)

for all t > t0.

3. The time step size τ chosen so that s is a multiple of τ : s = kτ for a positive

integer k.

4. Stability-smoothing indicator remains bounded.
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Then we have following global error estimate. For any node of the form

t0 + ns from t0 to ∞, when γ < 1

d (M, uN(ns, t0, uN(t0))) ≤ C
sem

+sτ q−1SqM + em
+sh2S2

H + C‖uN (t0)‖4

γ(1 + θs)
+ θns d(Mt0 , uN(t0)),

when γ ≥ 1,

d (M, uN(ns, t0, uN(t0))) ≤ C
sem

+sτ q−1SqM + em
+sh2S2

H

1 + θs
+ θns d(Mt0 , uN(t0)),

where m+ = max {0, m}, and

SqM = CM +

q
∑

j=0

Cj max
i
Sqij,

S2
H = max

i

∥

∥∆2
huN(ti) − ∆huN(ti)

∥

∥ .

Here Sqij denotes the jth node component of Sqj .

Proof. First we consider the case where γ < 1. For any node t ≤ t0 and the value of the

numerical solution uN(t) at t, we consider a function w in H2
0 (Ω) ∩H4(Ω) given by

γ(∆w,∆v) + (∇w,∇v) = γ(∆2
huN(t), v) − (∆huN(t), v) (5.17)

=
(

γ∆2
huN(t) − ∆huN(t), v

)

, (5.18)

for all v ∈ H2
0 (Ω). From the regularity of the solution, we knows that

γ‖w‖4 + ‖w‖2 ≤ ‖γ∆2
huN(t) − ∆huN(t)‖ ≤ S2

H .

If v is restricted in Vh in (5.17) we can obtain

γ (∆uN(t),∆v) + (∇uN(t),∇v) = γ
(

∆2w, v
)

− (∆w, v) ∀v ∈ Vh,
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by Greens theorem. Since

γ (∆w,∆v) + (∇w,∇v) = γ
(

∆2w, v
)

− (∆w, v) ∀v ∈ H2
0 (Ω).

We realize that uN(t) is the Galerkin finite element approximation of the solution w, of above

equation. Moreover we have proved in chapter 3 that

γ‖w − uN(t)‖ ≤ chr‖w‖r. (5.19)

We now split the error between the numerical solution of time t+ s and the attractor in to

five parts

d (Mt+s, uN(s, t, uN(t))) ≤ d(Mt+s, u(s, t, uN(t))) (5.20)

+ ‖u(s, t, uN(t)) − u(s, t, w)‖ (5.21)

+ ‖u(s, t, w) − uh(s, t, w)‖ (5.22)

+ ‖uh(s, t, w) − uh(s, t, uN(t))‖ (5.23)

+ ‖uh(s, t, uN(t)) − uN(s, t, uN(t))‖. (5.24)

Since M is a moving attractor, the distance in (5.20) can estimated by

d(Mt+s, u(s, t, uN(t))) ≤ θsd(Mt, uN(t)). (5.25)

Due to the inequality in theorem 5.2 and (5.19), the difference in (5.21) satisfy

‖u(s, t, uN(t)) − u(s, t, w)‖ ≤ ems‖uN(t) − w‖ ≤ C

γ
emsh2‖w‖2. (5.26)

For the difference in (5.22), we observe that semi discrete solution (chapter 3), both having
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H2 smooth initial value w, bounded by

‖u(s, t, w)− uh(s, t, w)‖ ≤ C

γ
h2‖w‖2. (5.27)

Again from the inequality in theorem 5.2 for the semi discrete problem we have, for the

difference in (5.23)

‖uh(s, t, w) − uh(s, t, uN(t))‖ ≤ ems‖w − uN(t)‖ ≤ C

γ
emsh2‖w‖2. (5.28)

The difference in (5.24) is the error in approximating the ODE from time t to t + s. Since

the local error of the time discretization is of order q = 2 or q = 3 for each ti ∈ [t, t+ s), we

have

‖uN(τ, ti, uN(ti) − uh(τ, ti, uN(ti)))‖ ≤ Cτ q max
p∈[0,τ ]

∥

∥

∥

∥

∂q

∂pq
uh(p, ti, u(ti))

∥

∥

∥

∥

. (5.29)

Based on the stability-smoothing indicator we know that,

max
p∈[0,τ ]

∥

∥

∥

∥

∂q

∂pq
uh(p, ti, u(ti))

∥

∥

∥

∥

≤ SqM .

Therefore,

‖uh(τ, ti, uh(ti) − uN(τ, ti, uN(ti)))‖

≤ |uh(τ, ti, uh(ti) − uh(τ, ti, uN(ti)))‖ + ‖uh(τ, ti, uN(ti) − uN(τ, ti, uN(ti)))‖

≤ emτ‖uh(ti) − uN(ti)‖ + Cτ qSqM . (5.30)

Recall that s = kτ and identify each node ti ∈ [t, t+ s] with t+ jτ for some t ≥ 0. By using

(5.30) repeatedly, we obtain
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‖uh(s, t, uN(t)) − uN(s, t, uN(t))‖

= ‖uh(kτ, t, uN(t)) − uN(kτ, t, uN(t))‖

≤ ‖uh(τ, t+ kτ − τ, uN(kτ − τ, t, uN(t))) − uh(τ, t+ kτ − τ, uN(t+ kτ − τ))‖

+ ‖uh(τ, t+ kτ − τ, uN(t+ kτ − τ)) − uN(τ, t+ kτ − τ, uN(t+ kτ − τ))‖

≤ emτ‖uh((k − 1)τ, t, uN(t)) − uN((k − 1)τ, t, uN(t))‖ + Cτ qSqM

≤ · · · ≤ ejmτ‖uh((k − j)τ, t, uN(t)) − uN((k − j)τ, t, uN(t))‖

+ (1 + emτ + · · ·+ e(j−1)mτ )Cτ qSqM

≤ · · · ≤ (1 + emτ + · · · + e(k−1)mτ )Cτ qSqM .

if m ≤ 0,

τ
(

1 + emτ + · · · + e(k−1)mτ
)

≤ kτ = s.

if m > 0, by the simple inequality 1 ≤ (ex − 1)/x ≤ ex for x > 0, we know

τ(1 + emτ + · · ·+ e(k − 1)mτ) = τ
ems − 1

emτ−1
≤ ems − 1

m
= s

ems − 1

ms
≤ sems.

In either case, we have

‖uh(s, t, uN(t)) − uN(s, t, uN(t))‖ ≤ Cτ q−1sem
+sSqM . (5.31)

Now combining the terms (5.20)and (5.21) to (5.24) with (5.25), (5.26),(5.27), (5.28) and

(5.31) we get

d(Mt+s, uN(s, t, uN(t))) ≤ θsd(Mt, uN(t)) + C(sem
+sτ q−1SqM +

1

γ
em

+sh2S2
H)
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Now be repeatedly using above inequality,

d(Mt0+ns, uN(ns, t0, uN(t0)))

≤ d(Mt0+(n−1)s+s, u(s, t0 + (n− 1)s, uN((n− 1)s, t0, uN(t0))))

+ ‖u(s, t0 + (n− 1)s, uN((n− 1)s, t0, uN(t0)))

− u(s, t0 + (n− 1)s, uN((n− 1)s, t0, uN(t0)))‖

+ ‖u(s, t0 + (n− 1)s, uN((n− 1)s, t0, uN(t0)))

− uN(s, t0 + (n− 1)s, uN((n− 1), t0, uN(t0)))‖

≤ θsd(Mt0+(n−1)s, uN((n− 1)s, t0, uN(t0))) + C(sem
+sτ q−1SqM + γ−1em

+sh2S2
H)

≤ . . . ≤ C(1 + θs + . . .+ θn−1
s )(sem

+sτ q−1SqM + γ−1em
+sh2S2

H) + θns d(Mt0 , uN(t0))

≤ C
sem

+sτ q−1SqM + γ−1em
+sh2S2

H + C‖uN (t0)‖4

1 + θs
+ θns d(Mt0 , uN(t0)).

Similarly we can prove for the γ > 1. �
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CHAPTER 6

Concluding Remarks

In this chapter, summaries of the main results are presented.

In this dissertation, new results are presented for the long time error estimations for the

Hodgkin and Huxley’s equation and Extended Fisher-Kolmogorov (EFK) equation. Hux-

ley’s equation is a second order parabolic equation and the EFK equation is a fourth order

parabolic equation, which has a parameter γ with the fourth order term. We estimate the

error using nontraditional but more practical error splitting technique, considering exact

error propagation instead of classical numerical error propagation.

Our analysis for the Huxley’s equation shows that its solutions are contracted to a trav-

eling wave form locally. Using this local contraction property we show that the exsistance

of the evolving attractor, and it is in the form

Mt = {φ(x− vt− c)|c ∈ R},

where φ(x − vt) is the traveling wave solution of the Hodgken-Huxley equation at time t.

This result is very important and it provides an essential foundation for the long time error

estimates. This estimate on exact error propagation is actually what makes long time error

estimation possible.

This preliminary result allows us to develop a non-traditional method to solve Huxley’s
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equation. Instead of using the stability of the numerical scheme, we compute a smoothing

indicator, which allows us to estimate the numerical error. Moreover, with the help of this

evolving attractor, we can show that the global error of a numerical solution is uniformly

bounded in time.

To solve the EFK equation, we first discretize it in space, with the Agyris finite elements.

Using error estimates for the semi-discrete problem, we are able to obtain the estimate for

the local error. This local error is proven to be of order h2 + ∆t. Then we discretize the

time, using backward Euler and multi strip methods to find the complete discrete solution.

Furthermore, we also compute a smoothing indicator and long time time error estimates for

the EFK equation. We note that of all the error bounds for the EFK equation contain a

factor, γ−1, which is less useful when γ is small. However, they are better than the existing

bounds which grow in a low polynomial order of γ−1 [4].

There are several advantages of using exact error propagation and numerical smoothing.

Since error propagation is estimated by using evolution equation instead of scheme, we can

apply any contraction properties of the dynamical system. The smoothing indicator gives

essentially an upper bound of the second time derivative. Knowing this, we can choose the

size of the next time step. So the indicator also serves as a tool for adaptive step sizing.

Moreover, because the computation of the smoothing indicator at each tn does not depend on

the time discretization, error estimates can be computet regardless of scheme complications.

The main result of the present research is the theoretical foundation for long-time error

estimates using exact error propagation and numerical smoothing. Future research in this

area may involve study of contraction properties of other PDEs, smoothing indicator for the

mixed finite elements, finite volume and other finite element methods, stronger and weaker

norm estimates, and applications to hyperbolic problems.

The author believes that present research will help to solve various computational prob-

lems more effectively.
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