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ABSTRACT 

 
John T. Chen, Advisor 

 

The logistic regression model is one of the popular mathematical models for the analysis 

of binary data with applications in physical, biomedical, and behavioral sciences, among others. 

The feature of this model is to quantify the effects of several explanatory variables on one 

dichotomous outcome variable. Normally, the asymptotic properties of the maximum likelihood 

estimates in the model parameters are used for statistical inference. However, logistic regression 

models have serious numerical problems if zero cells occur in the contingency table. For this 

scenario, this dissertation proposed a new approach to investigate the asymptotic properties of 

maximum likelihood estimators for the logistic regression models.  In this dissertation, a 

generalization of the hybrid logistic regression model was introduced, which was originally 

proposed by Chen et al. (2003). These models deal with situations in which risk factors 

associated with the outcome are exceedingly rare in the control group.  In principle, a two-stage 

hybrid procedure models the risks due to the rare factors in the first stage and models the residual 

risks due to the other factors in the second stage using the standard logistic regression model.   

Another highlight of this dissertation is on the multinomial logistic regression model, 

which handles the categorical dependent outcome variable with more than two levels. It extended 

the hybrid logistic regression model to the multinomial hybrid logistic regression model when the 

case group of the outcome variable has mutually exclusive and exhaustive subgroups. In the last 

part of the dissertation, we studied the bootstrap method to estimate the variances for the 

parameter estimates in the logistic regression model. 
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CHAPTER 1 

INTRODUCTION 

 

Regression analysis is one of the most useful and the most frequently used statistical 

methods (Efron and Tibsirani, 1993).  The aim of the regression methods is to describe the 

relationship between a response variable and one or more explanatory variables.  Among the 

different regression models, logistic regression plays a particular role.  The basic concept, 

however, is universal.  The linear regression model is, under certain conditions, in many 

circumstances a valuable tool for quantifying the effects of several explanatory variables on one 

dependent continuous variable.  For situations where the dependent variable is qualitative, 

however, other methods have been developed.  One of these is the logistic regression model, 

which specifically covers the case of a binary (dichotomous) response.  Cramer (2003) discussed 

an overview of the development of the logistic regression model.  He identifies three sources that 

had a profound impact on the model: applied mathematics, experimental statistics, and economic 

theory.  Agresti (2002) also provided details of the development on logistic regression in 

different areas.  He states, “Sir David R. Cox introduced many statisticians to logistic regression 

through his 1958 article and 1970 book, The Analysis of Binary Data.”  However, logistic 

regression is widely used as a popular model for the analysis of binary data with the areas of 

applications including physical, biomedical, and behavioral sciences.  For example, Cornfield 

(1962) presented the preliminary results from the Framingham Study.  The purpose of the study 

was to find the roles of risk factors of cholesterol levels (low versus high values) and blood 

pressure (low versus high values) in the development of coronary heart disease (yes or no) in the 

population of the town.  

The logistic regression model can be easily modified to handle the case in which the 
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outcome variable is nominal with more than two levels (Hosmer and Lameshow, 2000).  An 

extension of the logistic regression model is called the multinomial logistic regression model, 

when the categorical dependent outcome variable has more than two levels (Chan, 2004).  For 

example, Zocchi and Atkinson (1999) note that in their multinomial logistic regression model on 

the dose level experiment to measure the influence of gamma radiation on the emergence of 

house flies, three disjoint outcomes occurred: death before the pupae opened, death during 

emergence, and life after emergence.  A modification of the logistic regression model, known as 

the discrete choice model, was first proposed by McFadden (1974).  The model is also known as 

multinomial, polytomous, or polychotomous logistic regression in the health sciences and as the 

discrete choice model in econometrics (Breslow and Powers, 1978). The maximum likelihood 

estimation (MLE) is the most widely-used general method of estimation procedures and is 

treated as a standard approach to parameter estimation and inference in statistics (van der Vaart, 

1998).   

In this dissertation, the logistic and multinomial logistic regression models, as well as the 

maximum likelihood procedure for the estimation of their parameters, are introduced in detail.  

Based on two real data sets, an attempt has been made to illustrate the application of the logistic 

and multinomial logistic regression models. 

The MLE has good asymptotic (large sample) properties for the estimates. Under very 

general conditions, maximum likelihood estimates are consistent, asymptotically efficient, and 

asymptotically-normally distributed.  Notice that this normality allows one to compute the 

confidence interval and perform statistical tests in a manner analogous to the analysis of linear 

multiple regression models, provided the sample size is large.  However, asymptotic properties 

of the maximum likelihood (ML) estimator in logistic models had been studied earlier, see, for 



 3

example, Gourieroux and Monfort (1981) and Amemiya (1985), and different results have been 

established.  For example, different proofs of consistency can be found in the literature such as   

Beer (2005), Gourieroux and Monfort (1981), and Amemiya (1985). All of them are based upon 

the fact that the probability of the existence of the estimators approaches one as sample size 

tends to infinity.  Furthermore, they proceed on the assumption that the number of explanatory 

variables is fixed.  In other words, the number of variables is compelled to remain constant while 

the sample size increases.  Another result presented by Beer (2001) enables us to relax the 

former condition.  It allows for any number of variables, but depends on sample size, and 

examines the relationship between the number of variables and sample size that is necessary to 

preserve the consistency of the estimators.   

This dissertation focuses on a completely different approach to investigate the asymptotic 

properties of maximum likelihood estimators for logistic regression models.  More precisely, we 

are going to show that the maximum likelihood estimators converge under certain conditions to 

the real value of the parameters if the number of observations tends to infinity.  To show this, we 

follow the theorem described by Lehman and Casella (1998) in which the asymptotic properties 

of maximum likelihood estimators hold if certain regularity conditions are satisfied.  It needs to 

be pointed out that none of the authors cited above verified their work via the Monte Carlo 

simulation study. Gourieroux and Monfort (1981) note, “it should be stressed that all these 

asymptotic results give little indication on the properties of the estimators in finite sample, and it 

would be interesting to clarify this point by means of Monte Carlo studies.”  In this dissertation, 

we also provide an extensive standard Monte Carlo simulation study to show the consistency and 

asymptotic normality of the ML estimators of the logistic and multinomial logistic regression 

models. 
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Logistic regression encounters serious numerical calculation problems, especially for 

overestimating parameter coefficients and their standard errors for both the outcome variable and 

individual covariates if there are zero frequencies in the contingency tables (Agresti, 2002 and 

Hosmer and Lameshow, 2000).  The analysis of the contingency table with few or zero cell 

counts can have two types of problems.  One class of problems associated with such contingency 

tables is related to the goodness of fit testing since the asymptotic approximations of the standard 

chi-squared statistics tend to be poor for these tables. Another class of problems is related to the 

non-existence of the ML estimates and the asymptotic standard errors for logit models.  More 

precisely, sometimes parameter estimates take on values plus or minus infinity.  In such a 

situation, the Newton-Raphson algorithm may not converge (Clogg et al., 1991).  Even if the ML 

estimates exist, they may be biased.  However, there are some strategies to remove the zeroes in 

the contingency table and then apply the logistic regression model. Among many strategies, one 

general approach is adding 0.5 to each cell to perform statistical analysis.  Haldane (1956) 

suggested a correction term of 0.5 to add to all four cells prior to analysis of the 22 ×  

contingency table.  Goodman (1970,1971) recommends this procedure for a saturated model 

only.  Agresti (1996, 2002) suggests adding a very small constant to cell counts and doing a 

sensitivity analysis to determine the smallest such number to add to the zero cells.  Hosmer and 

Lemeshow (2000) recommend three strategies: collapsing the categories of the covariates in a 

sensible way, eliminating a category completely, or modeling ordinal variables as if they are 

continuous variables. 

There is another approach discussed by Agresti (2002) for smoothing contingency tables 

called the pseudo-Bayes approach.  This approach provides a way of smoothing the data in a less 

ad hoc manner than adding an arbitrary constant to cells.  The pseudo-Bayes approach, originally 
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proposed by Bishop et al. (1975), postulates that their method is superior to the generally-

accepted practice of adding 0.5 to the count in each cell of a large, sparse table. The details of 

this method are discussed in Chapter 3. 

Each of the remedial approaches generates positive adjusted counts for all cells; the 

adding 0.5 approach and the pesudo-Bayes approach both generate cell counts that are equal 

across both response groups. On the other hand, the pseudo-Bayes estimation approach is of 

limited usefulness because of the difficulty in setting values for the λ  parameter. The effect of 

setting ),,( 11 −−
= TT Κλ  is essentially to smooth each cell by the same constant.  Hence, cells 

having equal counts prior to smoothing will have different counts but become equal after 

smoothing (Dillon et al., 1981). 

1.1 The Hybrid Logistic Regression Model 

 Avoiding such problems, Chen et al. (2003) proposed another method called the hybrid 

logistic regression model for use in case-control studies.  It is worthwhile to mention that the 

odds ratio estimators are the same for both cohort and case-control studies (see, for example, 

Cornfield, 1951 and Prentice, 1976).  Prentice and Pyke (1979) showed that the odds ratio 

estimators and their asymptotic covariance matrices may be obtained by applying the prospective 

(cohort) logistic regression model to the case-control study as if the data had been obtained in a 

prospective (cohort) study.  Others with significant contributions to the logistic regression for 

case-control studies include Breslow (1996), Anderson (1972), Fears and Brown (1986), Breslow 

and Cain (1988), Scott and Wild (1986,1991), Farewell (1979), Zhang (2006), Breslow and 

Powers (1978), and Mantel (1973).   

The basic idea of the hybrid logistic regression model (Chen et al., 2003) for case-control 

studies is that if there is a rare disease in the control group for some risk factors, then the 
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estimation of the parameters for those risk factors is difficult to achieve.  To avoid such 

troublesome risk factors, in practice, investigators (for example, Shaffer et al., 1996 and Brent 

et.al., 1999) usually do not include such risk factors and consider instead the other risk factors.  

However, their approach spreads the contribution of the troublesome risk factors among the 

remaining factors in the model and may consequently result in an overestimate of the odds ratio 

of the later in the model. In sum, Chen et al. (2003) proposed the hybrid logistic regression 

model because previous work on backward and forward logistic regression models do not 

account for the proper handling of troublesome risk factors.  In the hybrid logistic regression 

model, Chen et al. (2003) adjust the troublesome risk factor first and then model the rest of the 

risk factors by using regular logistic regression. They note that the rare risk factor is considered 

as univariate.   

One contribution of this dissertation is that we develop a theoretical generalization of 

Chen et al. (2003) procedure for k-variate rare risk factors. In addition, we also extend the hybrid 

logistic regression model to a multinomial hybrid logistic regression model under a case-control 

study. In this case, we assume that there are k mutually exclusive and exhaustive disease groups 

existing in the case group. In the generalization of the hybrid logistic regression model, when we 

estimate the troublesome risk factors, we adjust them with possible combinations of all risk 

factors.  In this case, we assume that proportions of having diseases are equal across all strata.  

As a result, it would not be convenient to deal with it in practice if the risk factors having more 

levels are included in the model.  In addition, in the model fitting strategies, we consider all risk 

factors as well as their possible interaction terms.  In the hybrid logistic model, it would be 

intricate not only to consider the interaction terms in the model, but also to estimate and interpret 

the parameters for those terms.  
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Efron (1979) introduced a very general resampling procedure called the bootstrap for 

estimating the distributions of statistics based on independent observations. The term 

‘bootstrapping,’ is an allusion to the expression ‘pulling oneself up by one’s bootstraps’ – in this 

case, using the sample data as a population from which repeated samples are drawn.  As a result, 

by making use of numerous samples drawn from the initial observation, these techniques require 

fewer assumptions and offer greater accuracy and insight than do standard methods (Stine, 

1989).  The use of this technique plays a central role in statistics, especially when the estimators 

of interest do not have an explicit formula.  The first approach in the development of bootstrap 

methods is the non-parametric bootstrap, followed by parametric and the Bayesian approaches. 

Efron (1979) considered a variety of statistical problems and showed how easy it is to apply this 

simulation method.  The bootstrap has been the object of much research in statistics since its 

introduction.  For the linear regression model, Freedman (1981) and Wu (1986) discussed the 

asymptotic properties using the bootstrap method.  Moulton and Zeger (1991) used a bootstrap 

technique for generalized linear models (GLMs).   

In this dissertation, we study the bootstrap strategies to evaluate its performance in 

estimating the variances for the logistic regression model. Friedl and Tilg (1995) used the one-

step bootstrap procedure for the variance estimates in the logistic regression model based on the 

residual resampling, which was introduced by Moulton and Zeger (1991) for the whole class of 

GLMs. To use the vector resampling method for the GLMs, Moulton and Zeger (1991) 

mentioned two problems: first, if the sample size is large, several iterations might be needed for 

each bootstrap replication. As a result, the computational cost may be quite high. Another 

problem they pointed out was that obtaining extreme data replications would result in the 

parameter estimates failing to converge.  However, Carroll et al. (2006) mentioned that as a 
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general-purpose technique, the vector resampling procedure can be used for the logistic 

regression model. In this dissertation, we implement the vector resampling procedure for the 

variance estimation of the parameters in the logistic regression model. 

1.2 Chapter Outline 

The dissertation is structured as follows: Chapter 1 introduces the motivation of this 

study.  Chapter 2 discusses the estimation procedures and the interpretation of the parameters in 

the logistic regression model and relates the model to prospective and case-control studies. 

Chapter 2 also provides the asymptotic properties of the model and presents results based on an 

extensive simulation study. In addition, an application of the logistic regression model based on a 

real data set is given at the end of this chapter. Chapter 3 discusses theoretical aspects of the 

pseudo-Bayes approach, introduces the hybrid logistic regression model and its extension to the 

k-rare risk factors, and provides the estimation procedure for the model.  Chapter 4 discusses the 

multinomial distribution and its parameter estimation procedure, introduces the multinomial 

logistic regression model and the estimation of parameters for the models, and provides a 

simulation study to show the consistency and normality of the ML estimators. In Chapter 4, an 

application of the multinomial logistic regression model is illustrated. Furthermore, this chapter 

introduces the multinomial hybrid logistic regression model, and the estimation procedures of the 

model parameters are discussed.  Chapter 5 discusses the bootstrap method and its consistency, 

applies the bootstrap method to the regression model, and employs the vector resampling 

procedure to the logistic regression model to estimate the variances. Finally, Chapter 6 presents 

concluding remarks and suggestions for future research. 
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CHAPTER  2

PROPERTIES OF ESTIMATES FOR THE PARAMETERS IN THE LOGISTIC 

REGRESSION MODEL

2.1  The Logistic Regression Model

Suppose a binary random variable y follows a Bernoulli distribution, that is, y takes either 

the value 1 or the value 0 with probabilities )(x  or )(1 x  respectively, where 

p
pxxxx  ),,,( 21  is a vector of p explanatory variables.  In fact, )(x represents the 

conditional probability P(y =1|x) of y =1, given x.  Based on the binary outcome variable, we use 

the logistic distribution (see, for example, Cox and Snell, 1989; Hosmer and Lameshow, 2000). 

The specific form of the logistic regression model with unknown parameters 0 , ,1 …, p  is

pp

pp

xx

xx

e

e
x 



 










110
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1
)(

At times, it is convenient to change the notation slightly by writing 10 x , thus the above model 

becomes





 T

T

x

x

e

e
x




1
)(              (2.1.1)

where T
pxxxx ),,,( 10   and T

p ),,,( 10   . 

A transformation of )(x is called the logit transformation, and is given by

(x)
log it (x) ln

1 (x)






             (2.1.2)

Under the above transformation, we can write the regression model (2.1.1) as 

Tlog it (x) x                                             (2.1.3)
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Figure 2.1.1:  Logistic regression function, 
)exp(1
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2.2  Maximum Likelihood (ML) Estimation of the Parameters

Suppose we have a sample of n independent observations {1,2,..., ){( , )}i i i ny x

1({0,1} )  p n , where iy  denotes the value of a dichotomous outcome variable, and ix  is the 

value of the explanatory variables for the ith subject.  Assume 

))(,1(~ ii xBernoulliy  , ni ,,2,1 

Based on a set of data, we estimate the parameter vector 1
10 ),...,,(  pT

p to fit the 

logistic regression model in equation (2.1.1).  To find the ML estimator of  , we define the 

likelihood function as follows
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Now, we find the ML estimates, ̂ , of   by maximizing the log-likelihood function for the 

observed values of iy  and ix .  Since maximizing the log of a function is equivalent to 

maximizing the function, we often work with the log-likelihood because it is generally less 

cumbersome to use for mathematical operations, such as differentiation.  Therefore, the log-

likelihood function yields,





n

i

x
n

i

T
ii

T
iexy

11

)1(ln)(      (2.2.1)

The first derivative of the log-likelihood function gives the gradient.

We have the first derivative of T
ix  with respect to j  is ijx , so








n

i
ijx

xn
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xy T
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


 

= 



n
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n
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iji xxy

11







n

i
ijii xy

1

)(  , where iii yE   )(  (2.2.2)
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The second derivatives are
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The third derivatives are
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Notice that y  and   are 1n , X is )1(  pn , and the elements of   are non-linear functions 

of an assumed value for  .  Also, we define

))1(( iidiagW  

which is nn .  Then, we can write the gradient 

)(
)(

)( 



  yX T

j




and the Hessian matrix

WXX T

kj



 )(

)(
2


 .

Now, we are going to show that )(l   is negative semi-definite for any 1 p .

We have, 



n

i
ii

T
i

TTT diaguxuXWXuuu
1

2 ))1(()()(  . As ))1(( iidiag    is always 

positive, we can see that 0)(  uuT   for all 1 pu  and all 1 p .

Since )(  is negative semi-definite, the log-likelihood,  , is a concave function of the 

parameter  ; several optimization techniques are available for finding the maximizing 

parameters (see, for example, Mak, 1993; Givens and Hoeting, 2005).  We use the Newton-

Raphson algorithm for maximizing  .  For one step of the Newton-Raphson, we use )(t , the 

current estimate of  , to calculate )(t  and )(tW .  The new estimate of   is then 

)()( )(1)()()1( tTtTtt yXXWX    .

This process is repeated until the estimates stop changing, that is, until )1( t  is sufficiently close 

to )(t , then we say the Newton-Raphson method converges.  To better understand what ensures 

convergence, we must carefully analyze the errors at successive steps.  This can be shown by 
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using the following theorem, a notation and terminology that differs slightly from that of the 

theorem discussed by Givens and Hoeting (2005).

Theorem 2.2.1.  If )(l  is continuous and   is a simple root of )( , then there exists a 

neighborhood of   for which Newton-Raphson method converges to   when started from any 

)(t , t = 0,1,2… in that neighborhood.

Proof:  Suppose )(  has two continuous derivatives and 0)(  
 .  Since 0)(  

  and 

)(  is continuous at  , there exists a neighborhood of   within which 0)(   for all  .  

Let us confine interest to this neighborhood, and define   )()( tt .  A Taylor expansion 

yields

2/)()()()()()(0 )(2)()()()( ttttt q   

for some )(tq  between )(t  and  .  Rearranging terms, we find

)(2

)(
)(

)(

)(
)(

)(
2)(

)(

)(
)(

t

t
t

t

t
t q






















   (2.2.5)

or, 2)()()()()( ))((
2

1
)()( ttttt q     (2.2.6)

Since the left hand side of equation (2.2.5) equals    )1(t , we conclude

2)(2)(2)(
)(

)(
)1( )()(

)(

)(

2

1
)(

)(2

)( ttt
t

t
t C

q 




 








 











 (2.2.7)

This implies that the rate of convergence of Newton-Raphson method is quadratic.

Now, consider a neighborhood of  , ],[)(   N , for 0 . Let

)(

)(

2

1
max)(

2

1

*)(, 21 



  







N

c .
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Since 
)(

)(

2

1
)(















c  as 0 , it follows that 0)(  c  as 0 .  Let us choose   such 

that 1)(  c .

Having fixed  , set )( c . 

Suppose start Newton-Raphson method with )0(  satisfying   )0( .  Then 

 )0(  and   )0(q

This implies by definition of )(c

)(
)(

)(

2

1
)0(

)0(




c
q










By (2.2.6),

   )0()0()0()0()0(2)0()1()1( )()()()( ccc

)1(  lies within   distance to  .  Repeating,

)0()1(  

)0(2)1()2(  

)0(3)3(  



)0()(  tt 
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Since 10   0lim0lim )( 


t

t

t

t


So,   )(t .

Hence, the proof follows.

Therefore, the value at which the Newton-Raphson method converges is the estimate of 

parameter vector )ˆ,...,ˆ,ˆ(ˆ
10 p  .

2.3 Odds and Odds Ratio

The odds ratio is a measure of association, which quantifies the relationship between an 

exposure and health outcome from a comparative study.  It is the ratio of the odds in favor of 

getting the disease, if exposed, to the odds in favor of getting the disease, if not exposed. Cox 

(1970) discussed some general advantages of the odds ratio as a measure of association for 

binary responses.  Bland and Douglas (2000) mentioned that there are mainly three reasons to 

use the odds ratio. Firstly, they provide an estimate (with confidence interval) for the relationship 

between two binary variables.  Secondly, they enable us to examine the effects of other variables 

on that relationship, using logistic regression.  Thirdly, they have a special and very convenient 

interpretation. 

Therefore, it is essential to introduce the terms odds and odds ratio in order to discuss 

binary data and to interpret the logistic regression coefficients. For a probability   of success, 

the odds are defined to be 

odds =



1

The odds are nonnegative, with 0.1odds  when a success is more likely than a failure. In a 

22  table, the probability of success is 1  in row 1 and 2  in row 2.  Within row 1, the odds of 

success are defined to be
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1

1
1 1 




odds

and within row 2, the odds of success are defined to be

2

2
2 1 




odds

The ratio of odds from the two rows is called the odds ratio, which is given by

2

2

1

1

1

1










ratioodds  (2.3.1)

To illustrate the odds ratio, we consider the following table where it reports on the relationship 

between aspirin use and myocardial infarction (heart attacks) by the Physicians’ Health Study 

Research Group at Harvard Medical School (Agresti, 1996).  The Physicians’ Health Study was 

a five-year randomized study testing whether regular intake of aspirin reduces mortality from 

cardiovascular disease.  Every other day, physicians participating in the study took either one

aspirin tablet or a placebo.  The study was blind: the physicians in the study did not know which 

type of pill they were taking.

Table 2.3.1: Cross-classification of Aspirin Use and Myocardial Infarction (MI).

Myocardial Infarction
Group Yes No Total
Placebo 189 10,845 11,034
Aspirin 104 10,933 11,037

Source: An introduction to categorical data analysis (Agresti, 1996)

For the physicians taking the placebo, the estimated odds of MI equal 189/10,845=0.0174 and 

the estimated odds for those taking aspirin equal 104/10,933=0.0095.  Thus, the sample odds 
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ratio equals 0.0174/0.0095=1.832.  This implies that the estimated odds of MI for physicians 

taking the placebo equal 1.832 times the estimated odds for physicians taking aspirin.

2.4  Interpretation of the Parameter 

To understand the interpretation of the logistic coefficients, we consider here a single 

explanatory variable coded as either 0 or 1.  The odds of the outcome being present among 

individuals with 1x  is defined as 
)1(1

)1(





.  Similarly, the odds of the outcome being present 

among individuals with 0x  is defined as 
)0(1

)0(





. The possible values of the logistic 

probabilities may be displayed in the following table.

Table 2.4.1: Values of the logistic regression model when the independent variable is binary.

Outcome variable
Explanatory variable 1y 0y Total

1x
10

10

1
)1( 



 






e

e
101

1
)1(1  


e
1.0

0x
10

10

1
)0( 




e

e




101

1
)0(1 

e
 1.0

Therefore, the odds ratio is defined as the ratio of the odds for x=1 to the odds for x=0, and is 

given by 

ratioOdds

(1)
1 (1)

(0)
1 (0)


 


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1

1

1

1

1

1
0

0

0
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10

10













e

e
e

e

e
e

















0

10





e

e 



      1e

This implies that the relationship between the odds ratio and an independent dichotomous 

variable for the logistic regression coefficient is 

1eratioOdds   (2.4.1)

This tells that the odds on the event that y equals 1 increase (or decrease) by the factor 1e among 

those with 1x  than among those 0x .  Hosmer and Lameshow (2000) state, “this fact 

concerning the interpretability of the coefficients is the fundamental reason why logistic 

regression has proven to be such a powerful analytic tool for epidemiologic research.”

2.5  Odds Ratio: Prospective versus Retrospective Studies

Cornfield (1951) first studied the invariance of the odds ratio under prospective (cohort) 

and retrospective (case-control) study designs.  Mantel and Haenszel (1959), Mantel (1973), 

Siegel and Greenhouse (1973), Prentice and Breslow (1978), Santnner and Duffy (1989), 

Christensen (1997) and so on emphasized the relationship between prospective and retrospective 

studies.  Consider, for instance, an experiment in which 300 people of an arbitrary population are 

sampled.  A binary response “diseased” (D) or “non-diseased” ( D ) is observed for each person.  

Then, there is an explanatory variable “exposed” (E) or “non-exposed” ( E ). This kind of study 

is called prospective or cohort study.  According to Farewell (1979), “In a prospective study of 

the incidence of a disease, a sample of individuals is drawn from the population of interest, and 
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risk factors under study are recorded and regarded as fixed variables. The sample is then 

followed through time to determine disease incidence, viewed as a random event.” Let POR

denote the (prospective) ratio of odds of disease for the exposed group to odds of disease for the 

non-exposed group as 

( | )
1 ( | )

( | )
1 ( | )





P

P D E
P D E

OR
P D E

P D E

According to the nature of the study, diseased individuals may be very rare in a random sample 

of 300 people.  So, most of the collected data is about non-diseased persons.  It is, therefore, 

sometimes useful to fix the sample size, in the rare event category, by design.  In our example, 

one could possibly study a separate sample of 150 diseased and 150 non-diseased individuals 

while determining for every person whether he or she had been exposed or not.  This procedure 

is called retrospective or case-control study and leads directly to information about the 

probability of exposure among the diseased and among the healthy groups. According to 

Farewell  (1979), “The retrospective study consists of separate samples of individuals with the 

disease under study, termed cases, and of individuals who do not have the disease, termed 

controls.  In this particular study, risk factors are treated as random variables, and the occurrence 

of disease is regarded as a fixed variable.”  Let ROR  denote the (retrospective) ratio of odds of 

disease for the exposed group to odds of disease for the non-exposed group as 

( | )
1 ( | )

( | )
1 ( | )





R

P E D
P E D

OR
P E D

P E D

However, we obtain by Bayes’s rule that 
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( | ) ( )( | ) ( | ) ( | )
( | ) ( )( | ) ( | ) 1 ( | )

( | ) ( | ) ( ) ( | ) ( | )
( | ) ( | ) ( ) ( | ) 1 ( | )

    



P R

P E D P DP D E P E D P E D
P E D P DP D E P E D P E D

OR OR
P D E P E D P D P E D P E D
P D E P E D P D P E D P E D

 (2.5.1)

so that we are able to make inferences about POR  even from a retrospective study. 

McCullough and Nelder (1989) pointed out that the logistic function applies for both prospective 

(cohort) and retrospective (case-control) studies.  Therefore, one can easily come up with the 

model for case-control data and can estimate the parameters.

2.6  Logistic Regression Model Under Case-Control Study

Let the variable s  denote the selection )1( s or non-selection )0( s  of a subject. Let 

)1|1(1  ysP  denote the probability of sampling a case, and let )0|1(0  ysP

denote the probability of sampling a control.  According to Hosmer and Lameshow (2000), the 

full likelihood for a sample of size 1n  cases ( )1y  and 0n controls ( )0y  is

)1,0|()1,1|(
01

10

 


iii

n

i
ii

n

i
i syxPsyxP              (2.6.1)

For an individual term in the likelihood function shown in equation (2.6.1) yields
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),1,(
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xsyP
syxP

      
)1,(
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
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sxPsxyP
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
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sxPsxyP

That is, 
)1|(

)1|()1,|(
)1,|(





syP

sxPsxyP
syxP                         (2.6.2)
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The first term in the numerator of equation (2.6.2) for 1y  yields

)1,(
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xyPyxsP






)|1()1,|1()|0()0,|1(

)|1()1,|1(

xyPyxsPxyPyxsP

xyPyxsP






That is, 
)|1()1,|1()|0()0,|1(

)|1()1,|1(
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xyPyxsPxyPyxsP

xyPyxsP
sxyP




  (2.6.3)

Assume that the selection of cases and controls is independent of the covariates with respective 

probabilities 

),1|1(),1|1(1  ysPxysP

and )0|1(),0|1(0  ysPxysP .

Now, we rewrite the logistic model 
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
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)( , and then 

substitution of 1 , 0  and the logistic regression model, ),(x  for )|1( xyP  , into equation 

(2.6.3) yields
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
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)())(1(
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Dividing numerator and denominator by ))(1(0 x  , we get
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Therefore, the equation (2.6.2) becomes, for 1y ,

)1|1(

)1|(
)()1,1|(




 

syP

sxP
xsyxP 

Since we assume that sampling is carried out independent of covariate values, 

)()1|( xPsxP  , where )(xP  denotes the probability distribution of the covariates.

Thus, 
)1|1(

)(
)()1,1|(


 

syP

xP
xsyxP 

Similarly, 
)1|0(

)(
))(1()1,0|(


 

syP

xP
xsyxP 

If we let 


 
n

i

y
i

y
i

ii xxL
0

1)](1[)()(   the likelihood function (2.6.1) becomes
















n

i ii

i

syP

xP
L

1 )1|(

)(
)(                      (2.6.4)

where, )(L  is the likelihood obtained where we pretend that the case-control data were 

collected in a cohort study, with the outcome of interest modeled as the dependent variable.

Notice that the estimates of the parameters and variance-covariance matrix can be obtained by 

any standard computer statistical packages such as SAS and SPSS.

2.7  Asymptotic Properties of the ML Estimators

In the 1920s, R.A. Fisher originally developed the principle of maximum likelihood 

estimation (MLE) and established optimum properties of estimates by maximizing the likelihood 

function (see, for example, Aldrich, 1997 and Myung, 2003).  The optimal properties in 

estimation are: consistency (true parameter value that generated the data recovered 

asymptotically, that is, for data of sufficiently large samples); sufficiency (complete information 

about the parameter of interest contained in its MLE estimator); efficiency (lowest-possible 
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variance of parameter estimates achieved asymptotically); and parameterization invariance (same 

MLE solution obtained independent of the parameterization used).  Under certain regularity 

conditions, the MLE exhibits several characteristics that can be interpreted to mean that it is 

“asymptotically optimal.”  Lehmann and Casella (1998) provided the following results in 

Theorem 2.7.1 of the MLE under some regularity conditions. These conditions are:

 (A0) The distributions P  of the observations are distinct (otherwise,   cannot be estimated 

consistently).

(A1) The distributions P  have common support.

(A2) The random variables are ),,( 1 ipii XXX  , ni ,,2,1   where the iX  are independent 

and identically distributed (iid) with probability density )|( ixf  with respect to probability 

measure .

 (A3) There exists an open subset  of   containing the true parameter point 0  such that for 

almost all x  the density )|( xf admits all third derivatives )|(
3




xf
lkj 


 for all   .

(A4) The first and second derivatives of log f satisfy the equations

0)|(log 













 
 XfE

j

 for ,,,1 pj   and




















 )|(log)|(log 



 XfXfEI

kj
jk
















 )|(log
2


 XfE

kj

.

(A5) Since the pp  matrix )(I is a covariance matrix, it is positive semidefinite. We will 

assume that )(jkI are finite and that the matrix )(I is positive definite for all  in  , and 

the p statistics
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)|(log,),|(log
1







xfxf
p







are affinely independent with probability 1.

(A6) Finally, we will assume that there exists function jklM  such that

)()|(log
3

xMxf jkl
lkj




 


 for all  

where  )]([0 XMEm jkljkl 
 for all .,, lkj

Theorem 2.7.1.  Let nXX ,,1  be iid each with a density )|( xf (with respect to  ) which 

satisfies (A0)-(A6) above.  Then, with probability tending to 1 as n , there exist solutions 

),,(ˆˆ
1 nnn XX    of the likelihood equations

  0)|()|( 1 

 
 n

j

xfxf  , ,,,1 pj 

or, equivalently, 

  ,0)(log 

 


L
j

,,,1 pj 

such that 

(a) jn̂ is consistent for estimating j .

(b) )ˆ(  nn is asymptotically normal with mean (vector) zero and covariance matrix [ 1)( I ],  

and

(c) jn̂  is asymptotically efficient in the sense that 

  1)(,0)ˆ(  jj
L

jjn INn  .
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2.8  Asymptotic Properties of the ML Estimators in Logistic Regression Model

In this section, we verify all the regularity conditions under the logistic regression model 

discussed in section 2.7 and then we apply Theorem 2.7.1 to show the asymptotic properties of 

ML estimators for the logistic regression model. 

Assumption (A0):  Let  ),...,,( )1()1(
1

)1(
01 p   and ),...,,( )2()2(

1
)2(

02 p  . We define the 

models as 
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)1(

)1(

)1(
1

)1(
10

)1(
0

)1(
1

)1(
10

)1(
0

1

11
)|1(








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
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)2(
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)2(
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)2(
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


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
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





             (2.8.2)

where ),...,,( )1()1(
1

)1(
0

)1(
p

T

  , ),...,,( )2()2(
1

)2(
0

)2(
p

T

   and ),...,,( 10 p
T xxxx 

If )2()1(   , then the equations (2.8.1) and (2.8.2) are the same. On the contrary, we are going 

to show that if the equations (2.8.1) and (2.8.2) are equal, then )2()1(   .

We have, 
x

x

x

x

T

T
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e

e

e

e
)2(

)2(

)1(

)1(
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

That is,  





 






 

xxxx
TTTT

eeee
)1()2()2()1(

11


That is,  
xxxxxx

TTTTTT

eeeeee
)1()2()2()2()1()1( 



That is,  
xx

TT

ee
)2()1( 



That is,  xx
TT )2()1(  

That is,  (1) (1) (1)
0 1 p( , ,..., )   x = (2) (2) (2)

0 1 p( , ,..., )   x
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That is,  (1) (1) (1) (2) (2) (2)
0 1 p 0 1 p( , ,..., ) ( , ,..., )        x = 0

That is,  (1) (2) (1) (2) (1) (2)
0 0 1 1 p p( ), ( ),..., ( )          x = 0

That is,  (1) (2) (1) (2) (1) (2)
0 0 0 1 1 1 p p p( )x ( )x ,..., ( )x 0           

That is,  0 0 1 1 ,..., 0   p pa x a x a x , where (1) (2) , 0,1,...,   i i ia i p

Since x’s are independent, so 0 1 ... 0   pa a a

This implies that,  )2()1(     

This indicates that the distributions are unique, therefore, if 21   , then the distributions P  of 

the observations are distinct.

Assumption (A1): The variables in the model are pxxx ,...,, 21 , let ),...,,( 21 pxxxx   where px 

and the parameter   takes values  j , pj ,,2,1  .  This is true for each model 

stated in the assumption (A0).  Therefore, the distributions P  have common support.

Assumption (A2):  In this case, we consider the observations of the form ),,( 1 ipii xxx  ,  i = 

1,…,n,  where the ix  are iid with probability density ( | .)P x .

Assumption (A3):  When Y=1, we define 
i

T

i
T

x

x

e

e
xf













0

0

1
:)|( have the likelihood for the 

logistic regression model is proportional to











n

i
x

x

i
T

i
T

e

e
L

1 0

0

1 



Taking log on both sides and we get,

 



n

i

x
i

T i
T

exL
1

0 )1log(log 0 
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Now, taking derivative with respect to j , we have
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
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e

ex
x

L

11 00
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log
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


The above derivative comes to the form 
i

T x

ij

e

x
  01

 and if we take the derivative of kth order, 

then the derivative continues to the form 
kx

ij

i
T

e

x

)1( 0  
, which can be proved by the 

mathematical induction.  Therefore, not only does the derivative of )|( xf  third order exist, 

but the derivatives of all orders also exist.

Assumption (A4):  The condition (A4) can be proved, in general, for the density )|( xf  under 

the condition that the differentiation under the integral sign is allowed.  The only thing we need 

to check for the logistic model is whether it permits the differentiation under the integral sign.  

To show that part we consider the following theorem, available in real analysis or probability 

books (see, for example, Durrett, 2004), which allows the differentiation under the integral sign.

Theorem 2.8.1.  Suppose we are given the following:

 An open interval I .

 A measurable subset X .

 A function  XIH :

 A function ],0[: Xg

Assume the following:

 )(),( xgxt
t

H





for every It   and Xx .

 g is integrable.
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 ),( xtHt   is a differentiable function of It   for every Xx .

 ),( xtHx   is an integrable function of Xx for every It  .

Then the following hold:

 ),( xt
t

H
x




  is an integrable function of Xx for every It  .

 
X

dxxtHt ),(  is a differentiable function of It  .

  



XX

dxxtH
t

dxxtH
dt

d
),(),(  for every It  .

To verify the above assumptions of Theorem 2.8.1 for logistic regression model, we consider the 

following function when y =1. 
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e
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

Similarly, this can be shown for y =0.

Since ),( xH   is a differentiable function of Xx for every p and integrable for 

Xx for every p .  Thus, the results of Theorem 2.8.1 hold.

Assumption (A5):  We take the derivative of )|(log xf  with respect to p ,,, 21  , we have 

x

x
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j
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e

ex
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f
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

 









0

0

1

log
, j =1,2,…,p

Now, we write the vectors in the form so that they are linearly dependent in the following way,
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 , which is finite.

Since the logistic regression model satisfies all the regularity conditions (A0)-(A6), therefore, ̂

satisfies (a) – (c) of Theorem 2.7.1.

2.9  A Simulation Study

2.9.1 Consistency of the ML Estimators 

We now assess, via standard Monte Carlo simulation, the finite sample performance of 

consistency of the maximum likelihood estimators of the logistic regression model.  In our 
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simulation study, we consider four explanatory variables 1x , 2x , 3x , and 4x , which are fixed and 

the binary response variable y, which is treated as a random variable in the logistic model.  For 

fixed values of the intercept parameter 0  and four other parameters 1 , 2 , 3 , and 4 , our aim 

is to compare the performance of the values of parameters and their standard errors when sample 

size increases.  For fixed values of 0 = 0.7, 1 =1.0, 2 =1.3, 3 =0.25, and 4 =0.05, the 

logistic regression model becomes

432

432

05.025.03.10.17.0

05.025.03.10.17.0

1
)(

xxxx

xxxx

i

i

e

e
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


In the simulation, we consider sample sizes of n 50, 100, 150, and 200 and generate 

1,000 independent sets of random samples for each different sample size.  For each set of 

random sample with a particular sample size, we estimate 0 , 1 , 2 , 3 , and 4  and their 

standard errors based on the logistic regression model.  The final estimates and standard errors of 

0 , 1 , 2 , 3 , and 4  are the average of 1,000 estimates of 0 , 1 , 2 , 3 , and 4  for that 

particular sample size. The following table gives the results of the simulation study for different 

sample sizes.
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Table 2.9.1: Estimated parameter values and their standard errors using the logistic regression 
model for different sample sizes of 50, 100, 150, and 200.

n 50 n 100 n 150 n 200Parameters

Estimate SE Estimate SE Estimate SE Estimate SE

0 1.236 0.132 0.864 0.043 0.736 0.017 0.747 0.015

1 2.644 0.184 1.263 0.058 1.084 0.026 1.082 0.025

2 4.143 0.225 1.759 0.081 1.461 0.041 1.382 0.025

3 1.030 0.159 0.320 0.041 0.252 0.017 0.263 0.015

4 0.380 0.147 0.016 0.044 0.060 0.017 0.045 0.015

SE=Simulation standard error

As seen in the above table, for sample size n 50, the estimated values of parameters are 

different from the true values 2( = 0.7, 1 =1.0, 2 =1.3, 3 =0.25, and 4 =0.05), and also the 

standard errors become larger.  However, when the sample size increases from n 50 to 

n 200, the estimated values of the parameters 0 , 1 , 2 , 3 , and 4  are very close to the 

true values, and the standard errors of the estimates are noticeably smaller.  This indicates that 

this simulation study performs well in showing the consistency of the maximum likelihood 

estimators for parameters of the logistic regression model.

2.9.2  Normality of ML the Estimators 

In this section, we illustrate the large sample behavior of the estimated parameters 

T)ˆ,ˆ,ˆ,ˆ,ˆ(ˆ
43210   . Specifically, we want to show

   1)]([,0ˆ   INn                                                     (2.9.1)
L
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For different sample sizes of n = 100, 250, 500, we calculate the equation (2.9.1) and repeat it 

1,000 times.  The results are presented below (Figures 2.9.1 – 2.9.4) through the quantile-normal 

graphs of ̂ .  A quantile-normal graph plots the quantiles of the data set against the theoretical 

quantiles of the standard normal distribution. If the data set appears to be a sample from a normal 

population, then the points will fall roughly along a line.  The computation results indicate that 

the distribution of parameters approximates normal distribution as sample size, n, increases.  



36

Figure 2.9.1:  Monte Carlo simulation of finite sample behavior for normality of the parameter 1̂
(Simulation size = 1,000)

Sample size: 100

Sample size: 250

Sample size: 500
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Figure 2.9.2:  Monte Carlo simulation of finite sample behavior for normality of the parameters 2̂
(Simulation size = 1,000)

Sample size: 100

Sample size: 250

Sample size: 500
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Figure 2.9.3:  Monte Carlo simulation of finite sample behavior for normality of the parameters 3̂
(Simulation size = 1,000)

Sample size: 100

Sample size: 250

Sample size: 500
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Figure 2.9.4:  Monte Carlo simulation of finite sample behavior for normality of the parameters 4̂
(Simulation size = 1,000)

Sample size: 100

Sample size: 250

Sample size: 500
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2.10  Application of the Logistic Regression Model in a Real Data Set

Rashid and Ahmed (2002) studied the correlates of timing of induced abortion in a rural 

area of Bangladesh.  Abortion is not permitted in Bangladesh unless it is done to save the life of 

a woman.  Khan et al. (1986) showed that the highest number of induced abortions occurred at 

three or more months of gestation, causing unavoidable morbidity and mortality.  Other studies 

showed that the contribution of unsafe induced abortion is related to maternal morbidity and 

mortality (Sai and Nassim, 1989).  Here, we concentrate on the application of the logistic 

regression model in the area of public health to identify important risk factors associated with the 

timing of induced abortion.  The data for this study relates to the period 1991-1998 during which 

2,247 abortion cases were obtained.  The data were extracted from a longitudinal Health and 

Demographic Surveillance Unit (HDSU), which has been maintained by the ICDDR,B since 

1966 (see, www.icddrb.org for details).  The HDSU has collected information for both ICDDR,B 

area and Comparison area on pregnancy outcomes (live births, stillbirths, spontaneous abortions, 

and induced abortions) and other demographic events such as deaths, migrations, and marriages.  

Community health workers who make routine visits to every household monthly register all of 

these events and are strongly supervised for accurate completion of the vital events. 

In this study, the outcome variable is

                             





,0

,1
y

and a reduced set of categorical explanatory variables is the following

1x : maternal age,

2x : number of living children, 

3x  : women’s education,

if woman sought abortion three or later months of gestation.

otherwise.
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4x : study area, and 

5x  : women’s occupation.

To investigate the association between the explanatory variables and the binary response 

variable, we express the logistic regression model as the following

55443322110)|1(1

)|1(
ln xxxxx

xyP

xyP  







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

The parameters of the model can be estimated using standard statistical software, and thus, the 

results of the fitted model can be organized in the following tabulated form.

Table 2.10.1:  Logistic regression of three months or later months of gestation of abortions by 
selected characteristics.

Characteristics  Odds ratio Confidence interval
Number of living children 
      None (ref.)
      1-2
      3+

1.00
0.60**
0.50**

–
0.35–0.75
0.31–0.73

Women’s education
      None (ref.)
      Some 

1.00
0.65**

–
0.56–0.82

Study area
      ICDDR,B area (ref.)
      Comparison area

1.00
2.28**

–
1.94–2.88

*p<0.01 and **p<0.001; ref. indicates reference category

As can be seen, the odds of women who had sought abortion three months or later having three 

or more children were expected to be 0.50 times the odds of women having no child.  This 

indicates that the practice of abortion in the later gestational period was higher among women 

who had no children. The odds of educated women who had sought an abortion three months or 

later were 0.65 times the odds of women who had no education. This means that educated 

women wanted an abortion earlier in the pregnancy compared to women who had no education.  
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This model also shows the odds of women living in the Comparison area who had sought 

abortion three months or later were estimated to be 2.30 times the odds of women living in the 

ICDDR,B area. This implies that women residing in the Comparison area sought abortion in the 

third or later months of gestation. Our study found that the differences in the timing of induced 

abortion depend on a variety of factors. Factors such as residing in the Comparison area, having 

no living children, and having no education significantly increased the risk of having an induced 

abortion in or after the third month of pregnancy.
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CHAPTER 3

THE HYBRID LOGISTIC REGRESSION MODELS FOR MORE THAN ONE RARE 

RISK FACTOR

3.1  Definition: Zero Cells Count

When analyzing sample tables of counts, we encounter two types of empty cells: 

sampling zeroes and structural zeroes.  Sampling zero cells occur in situations where one or more 

cases exist in the population of interest, but such zero cell counts arise because of sampling 

variation, especially the use of small sample sizes for a contingency table composed of a large 

number of cells.  Such zero cells will tend to disappear if sample size is sufficiently large 

(Agresti, 1996).  The classic example used by Fienberg (1980) to illustrate sampling zeroes is the 

observed zero cell count for Iowa Jewish farmers; such individuals exist, but small simple 

random samples of Iowa farmers will often not include these people because of their small 

population size.  On the other hand, structural zero cells occur in situations where a cell is empty 

due to the impossibility of observing positive cell counts for specific combinations of various 

categories. An example by Agresti (1996) to illustrate structural zeroes, “suppose that professors 

employed in a given department at the university of Rochester for at least five years were cross-

classified on their current rank (assistant professor, associate professor, professor) and their rank 

five years ago.  Professors cannot be demoted in rank, so three of the nine cells in the table 

contain structural zeroes.  One of these is the cell corresponding to the rank of professor five 

years ago and assistant professor now; it cannot contain any observations.”

The sampling zeroes are the part of the observed data set that are much more common 

than the structural zeroes and have the contributions to the likelihood function and the model-

fitting process.  Our discussions based on sampling zeroes, which can affect the ML estimation 
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of the parameters in the logistic regression model, often by reporting infinite estimates for the 

parameters.  A value of   (or )  for a parameter estimate means that the likelihood function 

keeps increasing as the parameter moves toward   (or ) .  Such results imply that ML fitted 

values equal to 0 in some cells, and some odd ratio estimates have values of  or 0.  The 

consequence of the sampling zeroes has a severe bias in estimators of odds ratios and poor chi-

squared approximations for goodness-of-fit statistics.  However, different ideas appeared in the 

literature are discussed below to smooth the data before fitting the model.

3.2 Methods for Smoothing the Data

3.2.1 “Add-a-Constant” Approach

Adding a small constant, generally 0.5, to every cell of the table has been a common 

recommendation in some standard references; for example, Haldane (1956) suggested a 

correction term 0.5 to add to all four cells prior to analysis of the 22  contingency table.  If a, b, 

c, and d are the cells count of the 22  contingency table, then the odds ratio estimate is given 

by
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(see, for example, Walter and Cook, 1991).  For a multi-way table, Goodman (1970,1971) 

recommended this procedure for the saturated models only.  An example of the beneficial effect 

of this for a saturated model is bias reduction for estimating as odds ratio in a 22  table (Gart, 

1966; Gart and Zweiful, 1967).  A different approach proposed by Clogg et al., (1991) is to 

preserve the marginal distribution of the dependent variable when prior observations are divided 

among cells of the contingency table.  Agresti (2002) mentioned that adding 0.5 to the 

unsaturated model smoothes the data too much that causes an influence on estimated effects and 
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test statistics.  However, this practice helps to find the asymptotic variances of the parameters for 

which the confidence intervals are calculated as well as point estimate for the unknown 

parameters.  Hosmer and Lemeshow (2000) and Agresti (1996, 2002) suggested certain ways to 

deal with zero cells:

Hosmer and Lemeshow (2000) recommend three strategies as ad hoc solutions for eliminating 

the problems caused by zero cells for sampling zeroes:

(i) collapse the categories of a nominal variable by combining a zero cell with a  

non-zero cell, thus eliminating the zero cell by reducing the number of variable 

categories (levels) by pooling two or more cell counts;

(ii) simply eliminate the zero cell by discarding the variable category in which it 

appears;

(iii) treat the variable as intervally measured, if the variable with a zero cell in one of 

its categories is an ordinal measure.

In addition, Agresti (1996, 2002) recommends the following approach:

add a very small constant (such as 810 ) to cell counts and perform a sensitivity 

analysis by  adding constants of varying sizes to determine the effect on the 

parameter estimates and goodness-of-fit statistics. The total amount added should 

be very small in comparison to the total sample size.

3.2.2 “Pseudo-Bayes” Approach

Bayesian methods, an alternative approach to ML estimation, provide a way of 

smoothing the data in a less ad hoc manner than adding arbitrary constant to cells (Agresti, 
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2002).  Bishop et al. (1975) proposed pseudo-Bayes estimators which provide an all purpose 

method for removing the zeros in an observed frequency distribution or contingency table, so 

that other analyses, can be made that were previously hampered by the presence of zero cell 

counts, can be made.  In Bayes and pseudo-Bayes estimation approaches (see, Bishop et al., 

1975; Dillon et al., 1981; and Agresti, 2002), the parameters of the multiway table (that is, the 

cell probabilities) themselves are assumed to have a probability distribution that can be 

characterized by a smaller set of "hyperparameters”.  In the process of estimating the 

hyperparameters, estimators for the original set of parameters are obtained which often have 

more superior properties (that is, smaller risk) than the estimators not based on the 

hyperparametric structure.

Let ),,,( 21 tXXXX   have the multinomial distribution with parameters 
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The kernel of the likelihood function for this multinomial distribution is 
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Assuming the natural conjugate family of prior distributions for this likelihood is the Dirichlet, 

whose densities have the form
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The posterior distribution can be obtained from the likelihood and the prior, that is, 

Posterior   Prior  Likelihood
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Now, we can rewrite in vector notation the mean of the posterior distribution as
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N
xKpE ,,|              (3.2.1)

In this case, a Bayesian would specify K and  on the basis of his prior information.  According 

to the Bayesian interpretation, the right–hand side of (3.2.1) illustrates a well-known method for 



48

“smoothing” multinomial data.  The data, Nx / , is shrunk towards a “smooth” probability 

vector, , by a convex weight, )/( KNN  .  This is the same as adding iK  “pseudo-counts” to 

ix  and normalizing by the new total N+K.  Various choices of K in (3.2.1) have appeared in the 

literature (see, for example, Fienberg and Holland, 1972).  A popular choice of parameters in this 

situation is c  and tK
2

1
 , which corresponds to adding a fake count of 

2

1
 to each cell.  

Here, K is called the smoothing constant and  is regarded as a device for allocating a fraction of 

K to each cell of the multinomial.  Adding 
2

1
 is an example of a data-independent smoothing 

constant.

Next, we discuss another standard device called “pseudo-Bayes approach” which 

removes zero counts in contingency tables.  Pseudo-Bayes estimates are obtained by using data-

dependent values of both K and .  Note that the smoothing constants K and  are functions of x.

Now, we denote the random variable version of the Bayes estimator given in (3.2.1) by

 
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N
Kqq ),(ˆˆ              (3.2.2)

Since K and  are constants, the risk function of q̂  is given by:
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The risk function of 





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ctq ,
2
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ˆ  is obtained by substituting the appropriate values into equation 

(3.2.3).  This yields,
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where 
t

N
 .
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In order to use Bayesian estimator given in (3.2.1), we need to know the values of K and  .  

Typically, the assessment of these prior parameters is a difficult task.  The following is discussed 

a way of choosing K so that it depends on the data and the choice of  .

If   is regarded as fixed and particular value of p, then we can find the value of K that 

minimizes the risk  pKqR ),,(ˆ   by differentiating (3.2.3) in K and solving the resulting 

equation. This yields,

2

2
1

),(








p

p
pKK              (3.2.5)

The optimal value of K depends on the unknown value of p.  We may obtain an estimate of this 

unknown optimal value of K by replacing p by 
N

X
p ˆ , yielding 
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or in terms of x, the observed value of the random variable X ,
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A pseudo-Bayes estimator of p is then

 











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K
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ˆ
ˆ

ˆ
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where K̂  is given in equation (3.2.7). 

Pseudo-Bayes estimates are found by using data-dependent values for both K and  .  However, 

the problem here is that there are no good rules for choosing the   parameters; the problem 

exacerbated in large sparse tables.  When 1 1( , , )t t    ,  (3.2.7) may be written as 
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
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

              (3.2.9)

(see, for example, Dillon et al., 1981).

3.3 A Hybrid Logistic Regression Procedure

3.3.1  A Hybrid Logistic Regression Model for the Case-Control Study

Chen et al. (2003) proposed a hybrid logistic regression model for case-control studies to 

deal with the zero cells.  In case-control studies, if there tends to be rare disease in the control 

group for the risk factors, then the estimation of the parameters of those risk factors is difficult.  

The following table provides an example of the rare risk factor for case-control study.

Table 3.3.1:  Female adolescent suicides and controls by PAS
Case Control

Yes 13 0Past attempt of 
suicide (PAS) No 8 40

Source: Chen et al. (2003)

In this situation, previous investigations (for example, Shaffer et al., 1996) do not include such 

risk factors and consider the other risk factors instead.  Avoiding the former risk factors may 

overestimate the odds ratio of the remaining risk factors in the model (Brent et al., 1999).  

However, if all risk factors are included in the model, the model may not converge. As noted in 

Chapter 1, the hybrid logistic model (Chen et al., 2003) overcomes these limitations by adjusting 

troublesome risk factor first, and then models the remaining risk factors using the logistic 

regression.  The specific form of the hybrid logistic model for case-control studies is expressed 

for one rare risk factor z  and the other risk factors ),...,,( 21 p
T xxxx  as 
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  (3.3.1)

where,   is the proportion of the covariate 1z  in the case group

 )1,,1|1( sxyzP ,   depends on x and  1)1,,1|0( sxyzP

The parameters in the model   and ),...,,( 21 p
T    are estimated using the maximum 

likelihood estimation procedure.

3.3.2  A Hybrid Logistic Model: Bivariate Case

3.3.2.1  Consider the case when the rare risk factors 1z and 2z are independent

Suppose nYYY ,...,, 21  are a family of mutually independent {0,1} valued indicator random 

variables representing the cases (Y=1) or controls (Y=0) for n individuals in a case control study.  

The set of risk factors ),( TT xz  where ),( 21 zzzT   is the rare risk factors and 

),...,,( 21 p
T xxxx   is the other risk factors.  These risk factors for subject i take the values 

( )...,,, ,2,121 ipiiii xxxzz .  In this case we consider the rare risk factor iz , i = 1,2 takes two possible 

values with 1 (occurrence of the event) and 0 (not occurrence).  The structure of the covariate iz , 

i = 1,2 has the pattern with the outcome variable, Y for a sample of size 1n  cases ( )1y  and 

0n controls ( )0y  as shown in the following table.
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The full likelihood for a sample of 1n  cases )1( y  and 0n controls )0( y  is,

)1,0|,,()1,1|,,( 21
10

21

01

 


iiiii

n

i
ii

n

i
iii syzzxPsyzzxP  (3.3.2)

For an individual term in the likelihood function shown in equation (3.3.2), the simplification is 

given using the Bayes theorem.
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syP

szzxyPszzxP
syzzxP            (3.3.3)

The first term in the numerator of equation (3.3.3) yields,
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
sP

sPsxPsxzzP

)1|()1,|,( 21  sxPsxzzP  (3.3.4)

The second term in the numerator of equation (3.3.3) yields,
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)1,,,|(
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21
21 


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sxzzP
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1y
(Case)

0y
(Control)

1 )1(
11n )1(

01n = 0
1z

0 )1(
10n )1(

00n

Total )1(
1n )1(

0n

1y
(Case)

0y
(Control)

1 )2(
11n )2(

01n = 0
2z

0 )2(
10n )2(

00n

Total )2(
1n )2(

0n

Table 3.3.2: Cross-classification between the variables 2,1, izi  versus y
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Substituting (3.3.4) and (3.3.5) in (3.3.3) we get,
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sxyzPsxyzPsxyP ,  as 1z  and 

2z  are independent.              (3.3.6)

Let 1  be the proportion of the covariate 11 z  and 2  be the proportion of the covariate 12 z

in the case group

11 )1,,1|1(  sxyzP

and

22 )1,,1|1(  sxyzP , 1  and 2  depends on x
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In the case when 01 z  and 02 z , we have

11 1)1,,1|0(  sxyzP

and

22 1)1,,1|0(  sxyzP

The following model is obtained for the joint distribution of risk factors 

1,0,1,0),1,|,,()1,|,,( 21221121  yzzsyYzZzZxPsyzzxP  in the case-

control study,
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To find the MLE of ,, 21  and  , we substitute (3.3.7) in (3.3.2) for the 1n  cases and 0n

controls, we have the likelihood is proportional to 
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Taking ln on both sides of the equation (3.3.8) and we get,
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To obtain the variance of 2,1,ˆˆ  kkik  , we take the second derivative and we get
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We consider the expression 2,1,ˆ kk  can be simplified in the case where 2,1, kki  is the 

same across all permissible strata.  Summarizing the above analysis we have the following 

theorem.

Result 3.3.1: The ML estimates of k , k̂ , k =1,2 can be obtained based on the outcome 

variable y and the risk factors pxxxzz ...,,, ,2,121  under case-control sampling design in the model 

(3.3.7) ,
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, where )(
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)(

10 , kk nn are the number of cases in the 0kz  and 

1kz , 2,1k  groups, respectively and )(
11

)(
10

)(
1

kkk nnn  , 2,1k , the total number of cases.

For the other parameters involved in the model, Model (3.3.7) can be expressed in the following 

forms:
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0)1,0|1,1,( 21  syzzxP                        (3.3.13)
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0)1,0|1,0,( 21  syzzxP                        (3.3.15)
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By combining equation (3.3.9)-(3.3.12), we have

Result 3.3.2: The ML estimates of **
1 ,..., p  for model (3.3.7) is the same as the estimates from 
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3.3.2.2  Consider the case when the rare risk factors 1z and 2z are not independent

Suppose the variables 1z and 2z are not independent and the following table gives the 

cross-classification between these two variables

Suppose that 1121 ),1|1,1(  xyzzP

1021 ),1|0,1(  xyzzP

0121 ),1|1,0(  xyzzP

    and 0021 ),1|0,0(  xyzzP

where, ,,, 011011  and 00  depend on the covariate x.

The following model is proposed for the joint distribution of risk factors where the variables 

1z and 2z are not independent 

1,0,1,0),1,|,,()1,|,,( 21221121  yzzsyYzZzZxPsyzzxP  in the case-

control study:
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Theorem 3.3.3.  If 2111   , then the model defined in equation (3.3.17) is similar to the 

model in equation (3.3.7).

Z2

1 0

1 11 10
Z1

0 01 00

Table 3.3.3: Cross-classification between 1z and 2z
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Proof:  Suppose 11011  

20111  
and 112100 1  

 then the model (3.3.17) becomes
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which is the model shown in (3.3.7).

Hence, the proof follows.

Now, to find the MLE of 00011011 ,,,  , and  , we substitute equation (3.3.17) in 

(3.3.2) for the 1n  cases and 0n  controls and we have the likelihood is proportional to 
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Taking ln on both sides of the equation (3.3.18) and we get,
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Now, we take the derivatives with respect to ,, 1011   and 01  respectively. This yields,
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Thus, 
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number of cases of the combination of the variables 0,1, 21 zz  for all permissible strata of the 

covariates respectively, and let i11 , ,10i ,01i and i00  be the proportion of the combination of 

0,1, 21 zz  in stratum numbered i.  Therefore, we have
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We consider the proportions are the same across all permissible strata.  Therefore, summarizing 

the above we have the following statement. 

Result 3.3.4:  The ML estimates of ,,, 111011  and 00  for Model (3.3.17) under case-control 

data can be obtained by,
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and estimated variances are obtained by
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where ijn , 0,1, ji  is the number of cases of the combination of variables 0,1, 21 zz and 1n  is 

the total number of cases.

For the other parameters involved in the model, Model (3.3.17) can be expressed in the following 

forms:
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By combining equation (3.3.19)-(3.3.22), we have

Result 3.3.5:  The ML estimates of **
1 ,..., p  for model (3.3.17) are the same as the estimates 

from 
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3.3.3 A Hybrid Logistic Model: k-Variate Case

3.3.3.1 When the rare risk factors 1z , 2z ,…, kz  are independent

In this case, we consider k covariates, ,,...,,, 1321 kzzzz and kz have no event in the 

control group. Consider ),( TT xz  is a set of explanatory variables in the model, where 

),...,,,( 321 k
T zzzzz   represents a rare risk factors and ),...,,( 21 p

T xxxx   represents the other 

risk factors. In the case, assuming 1z , 2z , …, 1kz , and kz  are independent and each variable 

consists two groups 1 and 0, we propose the following model,
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where j , j = 1,2,…,k be the proportion of the covariate 1jz  in the case group

jj sxyzP  )1,,1|1(  , j=1,2,…,k

The estimates for the case-control data can be obtained by finding the MLE of j , j=1,2,…,k 

which is similar to described in Theorem 3.3.1. The estimates of other parameters can be 

obtained by applying Theorem 3.3.2. 
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3.3.3.2 When the rare risk factors 1z , 2z ,…, kz  are not independent

Suppose the rare risk factors 1z , 2z ,…, kz are not independent and ),...,,( 21 p
T xxxx 

represents the other risk factors. The following model is proposed for the joint distribution of risk 

factors 
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the case-control study:
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The estimates for the case-control data can be obtained by finding the MLE of 
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iii 
 which is similar to described in Theorem 3.3.4.  The estimates of other parameters 

can be obtained by applying Theorem 3.3.5. 
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CHAPTER 4

THE MULTINOMIAL HYBRID LOGISTIC REGRESSION MODEL

4.1 The Multinomial Distribution 

4.1.1 The Distribution

Multinomial distribution is the generalization of the binomial distribution.  In the case of 

binomial distribution, each trial consists of two outcomes with probabilities p and q.  Let each 

trial consists of k mutually exclusive outcomes kEEE ,...,, 21  with probabilities kppp ,...,, 21  such 

that 



k

i
ip

1

1.  If this experiment is repeated n times, then the probability that 1E  occurs 1x

times, 2E  occurs 2x  times, … , kE  occurs kx  times is

kx
k

xx

k
kk ppp
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2121                              (4.1.1)

such that 



k

i
ixn
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 and 
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i
ip

1

1.

The probability function defined in (4.1.1) is known as multinomial distribution, since the 

probability function is the general term of the multinomial expansion n
kppp )...( 21  .

To estimate the parameters of multinomial distribution, we consider the kernel of the probability 

mass function defined in (4.1.1).  Thus, the log-likelihood function becomes
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loglog)(
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Taking the partial derivatives with respect to 121 ,...,, kppp  and then setting them equal to 0, we 

have
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Theorem 4.1.1.  Let kXXX ,...,, 21  be k discrete random variables which follows multinomial 

distribution with probability function defined in (4.1.1) then
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kXXX

k

k
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where ),...,,( 21...,, ,21 kXXX tttM
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 is the moment generating function of kXXX ,...,, 21 .

ii npXE )(  for all ki ,...,2,1 .

)1()( iii pnpXVar  , and 
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Proof:  By definition,
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ji ppnn )1( 

Thus, jijiji ppnppnnXXCov 2)1(),( 

                               ji pnp

Hence, the proof follows.

4.1.2  The Asymptotic Distribution

Let T
kpppp )ˆ,...,ˆ,ˆ(ˆ 21 , where ki

n

x
p i

i ,...,2,1,ˆ 

We have, 





















kp

p

p

PE


2

1

)ˆ(


























)1(

)1(

)1(

1
)ˆ(

21

22212

12111

kkkk

k

k

pppppp

pppppp

pppppp

n
PCov









 Tpppdiag
n

 )(
1

where )( pdiag  is the diagonal matrix with the elements of p on the main diagonal.

This covariance matrix is singular because of the linear dependence, 1
1
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ip .

Using the multivariate central limit theorem (Rao, 1973), we have

 T
d

pppdiagNppn  )(,0)ˆ(

By the delta method, functions of p̂  having nonzero differential at p are also asymptotically 

normal.  Let ),...,,( 21 ktttg  be a differentiable function, and let
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4.2 The Multinomial Logistic Regression Model

Multinomial logistic regression model, a generalization of logistic model (binary 

response), can handle multiple category responses.  At each combination of levels of the 

explanatory variables, the model assumes that the response counts for the categories of outcome 

variable have multinomial distribution.  According to Hosmer and Lameshow (2000), the 

multinomial logistic model could be extended by any number of levels (or categories) of the 

outcome variable, but the details of the model would be most understandable if the outcome 

variable has three categories.  This is because the generalization to more than three categories is 

a problem more of notation than of concept.  Following Hosmer and Lameshow (2000), in this 

chapter we consider only the situation where the outcome variable has three levels.

4.2.1 The Model and Estimation of the Parameters

Let Y be a categorical response variable with three categories, codes as 1, 2, or 3. Since 

the outcome variable has three categories, we need two logit models as the logistic regression 
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model uses for a binary outcome variable which parameterizes in terms of the logit Y = 1 versus 

Y = 0.  We assume there are p explanatory variables, ),...,,( 21 pxxxx  , in the model. 

The logit models for nominal responses pair each response category to a baseline 

category and the choice is arbitrary.  If the last category is the baseline, then the baseline-

category logits are
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Under this model, the response probabilities are
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with unknown parameters ),( 21  

Now, we recode the outcome variables as the following

0,0,1 321  YYY  for Y =1

0,1,0 321  YYY  for Y =2

1,0,0 321  YYY  for Y =3

We note that no matter what value Y takes on, the sum of these variables is 



3

1

1
j

jy .
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The conditional likelihood function given the covariates for sample of n independent 

observations is
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Taking log on both sides we have,
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The maximum likelihood estimators are obtained by taking the first partial derivatives of )(

with respect to each of the unknown parameters and setting these equations equal to zero.  As 

nonlinear equations, we use similar iterative procedures like Newton-Raphson method.  The 

Hessian matrix is calculated to obtain the estimator of the covariance matrix of the ML estimator, 

which is the inverse of the observed information matrix. Again, the estimates of the parameters 

and variance covariance matrix can be obtained by any standard statistical computer packages 

like SAS, SPSS, and R (nnet package). 

4.2.2  Odds Ratio: Prospective Versus Case-Control Studies
(When the outcome variable is more than two categories)

Prentice and Pyke (1979) showed that odds ratios are the same for both the prospective 

(cohort) and case-control studies when there are more than two categories of the outcome 

variable.  Suppose that k mutually exclusive and exhaustive disease groups are defined and let     

Y = i denote the development of the ith disease during the defined study period, and Y = 0 denote 
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the disease-free state at the end of the study period.  Suppose that a regression vector

),...,,( 21 pxxxx   is to be related to disease incidence.  The odds ratio for disease Y = i for an 

individual with characteristics x, relative to that for an individual with some standard regression 

vector 0x  is

)|0(/)|(

)|0(/)|(

00
)( xYPxiYP

xYPxiYP
RatioOdds cohort 


 , i=1,2,…,k              (4.2.2)

Let P(Y) and P(x) represent marginal probability functions or probability density functions in the 

population as a whole.  We have
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Substituting (4.2.3) in (4.2.2) we get,
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4.2.3 Asymptotic Properties of Multinomial Logistic Regression Model

4.2.3.1 Consistency of ML estimators

In this section, we show the consistency of the ML estimators for the multinomial logistic 

regression model via standard Monte Carlo simulation.  In this case, we consider the outcome 

variable Y is random and has three categories, that is, Y takes values coded as 1, 2, and 3.  We 
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assume that there are four explanatory variables 1x , 2x , 3x , and 4x  in the model, where each of 

them is a vector and takes two possible values coded as 0 or 1.  If we treat the last category of the 

outcome variable as the baseline, then the multinomial logistic regression model can be written 

as
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Under these models, the response probabilities are
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For the above models, we estimate the unknown parameters ,,,,, 1413121101  2102 , ,, 22

23  and 24 .  The purpose is to show that if the number of observations ),,,,( 4321 iiiii xxxxy , 

i 1,2,…,n  increases, then the estimates of the parameters converge to their true values. Now, 

we simulate the values of the outcome and explanatory variables. As the explanatory variables 

are fixed, the variables ,, 21 xx 3x , and 4x  are created based on the binomial distribution for 

arbitrary number of sample size.  Once the variables ,, 21 xx 3x , and 4x  are in hand, we calculate 

probabilities for the outcome variable based on the above equations (4.2.4), (4.2.5), and (4.2.6).  
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These probabilities are used to simulate the data for Y from the multinomial distribution as Y

exceeds more than two categories (actually, in this case it would be trinomial since Y has only 

there categories).  The results of the simulation study are provided in the following table.

Table 4.2.1: Estimated parameter values and their standard errors using the multinomial logistic 
regression model for different sample sizes of 200, 500, and 1,000.

n = 200 n = 500 n = 1,000Estimated
parameter

Estimate SE Estimate SE Estimate SE

10̂ 0.462 0.026 0.437 0.013 0.420 0.010

11̂ 0.884 0.027 0.804 0.013 0.811 0.009

12̂ 2.403 0.095 1.365 0.018 1.344 0.011

13̂ -0.494 0.026 -0.497 0.0130 -0.505 0.010

14̂ 1.171 0.028 1.113 0.013 1.109 0.010

20̂ 1.263 0.024 1.235 0.012 1.231 0.010

21̂ 1.637 0.026 1.520 0.013 1.507 0.009

22̂ 2.012 0.095 0.967 0.017 0.942 0.012

23̂ 0.233 0.025 0.204 0.012 0.200 0.009

24̂ -0.475 0.027 -0.506 0.013 -0.504 0.009

SE: Simulated standard error

For standard Monte Carlo simulation, we consider sample sizes of n 200, 500, and 1,000.  For 

the arbitrary fixed values of 1.1,5.0,3.1,8.0,4.0 1413121110   , 

,5.1,2.1 2120   2.0,9.0 2322   , and 5.024  , we generate 1,000 independent sets 

of random samples for each different sample sizes. Then we estimate 

1413121101 ,,,,  , ,, 2102  ,, 2322  and 24 based on the average of 1,000 estimates of 

1413121101 ,,,,  , ,, 2102  ,, 2322  and 24 , which are estimated from the simultaneously

fitted multinomial logistic regression model, and so are their standard errors for each estimated 
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parameter.  The results in Table 4.2.1, however, reveal that the estimated parameters converge to 

their true value when sample size increases, and also the simulated standard errors decrease with 

the increase of sample size. 

4.2.3.2 Normality of the ML estimators

In this section, we show the large sample behavior of ML estimators of the parameters 

for the multinomial logistic regression model; that is, we show that the ML estimators of the 

parameters follow approximately normal distribution as sample size increases. This idea is  

similar to what we demonstrated in Chapter 2, Section 2.9.2.  The result of the simulation 

study is provided below for the sample of sizes 750, 1,500, and 3,000. For each of the sample 

sizes, we replicate 1,000 times, and then results of the estimated parameters are provided 

through Q-Q plots.  The result indicates that as the sample size increases, the parameters of 

multinomial distribution approximately follow normal distributions.
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Figure 4.2.1:  Monte Carlo simulation of finite sample behavior for normality of the parameters
(Simulation size = 1,000)

)ˆ( 11
Sample size: 750, 1,500, 3,000 respectively

)ˆ( 21
Sample size: 750, 1,500, 3,000 respectively
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Figure 4.2.2:  Monte Carlo simulation of finite sample behavior for normality of the parameters
(Simulation size = 1,000)

)ˆ( 12
Sample size: 750, 1,500, 3,000 respectively

)ˆ( 22
Sample size: 750, 1,500, 3,000 respectively
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Figure 4.2.3:  Monte Carlo simulation of finite sample behavior for normality of the parameters
(Simulation size = 1,000)

)ˆ( 13
Sample size: 750, 1,500, 3,000 respectively

)ˆ( 23
Sample size: 750, 1,500, 3,000 respectively
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Figure 4.2.4:  Monte Carlo simulation of finite sample behavior for normality of the parameters
(Simulation size = 1,000)

)ˆ( 14
Sample size: 750, 1,500, 3,000 respectively

)ˆ( 24
Sample size: 750, 1,500, 3,000 respectively
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4.2.4  An Application Based on a Real Dataset

Rashid and Shifa (2007) conducted a study to investigate the important risk factors 

associated with women’s unintended pregnancy. The data for this study were extracted from the 

Bangladesh Demographic and Health Survey (BDHS) conducted during 2004.  This study 

considers women whose most recent pregnancy occurred five years preceding the date of the 

interview or who were currently pregnant. The pregnancy data were extracted using the question: 

Are you pregnant now? The answer was coded as either yes, no, or not sure. If she answered yes, 

she was considered as pregnant. Further, she was asked the question, "At the time of becoming 

pregnant, did you want this pregnancy now, or later, or did not want to have any (more) children 

at all?" The women who wanted the pregnancy ‘now’ were considered under the wanted group, 

the women who desired pregnancy ‘later’ were considered under the mistimed group, and the 

women who did not want to have any (more) children were considered under the unwanted 

group. The BDHS 2004 covered a nationally representative sample of 11,440 ever-married

women from the ages of 10-49 years.  The analysis is based on 5,817 women who had a 

pregnancy five years preceding the survey or who were currently pregnant.  To analyze the data, 

the study considers pregnancy intention status (wanted, mistimed, and unwanted) as a response 

variable ( )Y , that is,

Response variable, 












Wanted

Mistimed

Unwanted

Y

3

2

1

:

and a set of explanatory variables considered as risk factors of  the pregnancy intentions which is 

given below.
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Explanatory variables, X : 





















). x(index wealth 

)(xstatus workings'respondent

)(xpregnancy prior toFPofmethodmodern used

)(xmarriagefirst at age

) x(children livingofnumber 

) x(religion 

)(xsrespondentofeducation 

) x(media toaccess

) x(srespondentofage

9

8

7

6

5

4

3

2

1

The mathematical form of the multinomial logistic regression model with three categories 

outcome variable and explanatory variables is
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In the above models, 2,1),,,( 910  iiii    is a vector of regression parameters 

corresponding to vector of covariates ),,( 91 xxX  . The parameters of the models are 

estimated using standard statistical package SPSS. Results of the multivariate analysis are 

presented in the following table. 
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Table 4.2.2:  Odds ratios from multinomial logistic regression model showing likelihood that a 
woman’s pregnancy was unwanted or mistimed by selected characteristics, Bangladesh, 2004

Characteristics Unwanted
versus 
Wanted

Mistimed 
versus 
Wanted

Unwanted
versus 
Mistimed

Age of respondents
    <19
    20-29
    30+

0.04***
0.58***
1.00

 2.62*** 
 1.92*** 
 1.00 

0.02***
0.30***
1.00

Access to media
    No
    Yes

0.90
1.00

1.10 
1.00 

0.81*
1.00

Education of respondents
    No education
    Primary
    Secondary
    Higher

2.24**
2.12**
2.20**
1.00

0.88 
1.05 
1.08 
1.00 

2.55**
2.02**
2.04**
1.00

Religion***
    Muslim
    Non-Muslim

1.36*
1.00

1.41** 
1.00 

0.96
1.00

Number of living children***
    None
    1-2
    3-4
    5+

0.01***
0.05***
0.54***
1.00

1.32 
1.33 
1.63* 
1.00 

0.01***
0.03***
0.33***
1.00

Age at first marriage***
    <15
    15-19
    20+

1.86***
1.65**
1.00

0.88 
1.04 
1.00 

2.10**
1.59
1.00

Used modern method of FP 
prior to pregnancy***
    No
    Yes

0.36***
1.00

0.70*** 
1.00 

0.51***
1.00

Respondent’s working status***
    No
    Yes

0.80**
1.00

1.13 
1.00 

0.71**
1.00

Wealth index***
    Poorest
    Poorer
    Middle
    Richer 
    Richest

1.02
1.04
1.16
0.80

1.00

1.09 
0.97 
1.27** 
1.03 
1.00 

0.94
1.06
0.91
0.77
1.00

P-value: ***p<0.01, **p<0.05, *p<0.10
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In the following paragraphs, we provide some explanations of the results in Table 4.2.2.

Unwanted vs. wanted: Compared to women age 30 and above, those women younger 

than 19 and those between the ages of 20 and 29 were about 96 and 42 percent less likely to say 

that the pregnancy was unwanted than wanted.  The result indicates that women who had higher 

education had fewer tendencies for unwanted pregnancy; for example, the odds of women with 

less than higher education were 2 times more likely than women with higher education to say 

that their most recent birth or current pregnancy was unwanted as opposed to wanted. The 

practice of unwanted pregnancy was 36 percent higher for Muslim women compared to non-

Muslim women. With regard to the number of living children, women having no child, having 1 

to 2 children, having 3 to 4 children were 99 percent, 95 percent, 46 percent respectively were 

less likely than the women with more than 5 living children to report that a pregnancy was 

unwanted as opposed to wanted. Results showed that unwanted pregnancy was higher for those 

women who had married before 20 years of age. Women who never used modern contraception 

were 64 percent less likely to say that their most recent pregnancy was unwanted as opposed to 

wanted. Results also found that employed women had 20 percent higher unwanted pregnancies 

compared to women who were not employed.

Mistimed vs. wanted: The relationship between women’s age and mistimed pregnancy, as 

opposed to wanted pregnancy, was negative. Compared to women age 30 and above, those 

women younger than 19 and those between the ages 20 and 29 were about 3 and 2 times more 

likely to say that the pregnancy was mistimed than wanted. Similar to findings in pattern showed 

that the previous paragraph, practice of unwanted pregnancy was 41 percent higher for Muslim 

women compared to non-Muslim women. Women with 3 to 4 living children were 63 percent 

more likely than the women with more than 5 living children to report that a pregnancy was 
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mistimed as opposed to wanted. Women who never used modern contraception were 30 percent 

less likely to say that their most recent pregnancy was mistimed as opposed to wanted.

Unwanted vs. mistimed: The relationship of women’s age to planning status of the index 

birth is such that the youngest women (less than 19) were about 98 percent less likely than the 

oldest women to say that their most recent pregnancy was unwanted as opposed to mistimed. 

Unwanted pregnancy was 19 percent lower for women who did not have access to media 

compared to women who had. Education increased the odds that a pregnancy was unwanted 

rather than mistimed. For example, women who had primary or secondary education were about 

2 times more likely than those who had higher education to have experienced an unwanted 

pregnancy rather than a mistimed pregnancy. With regard to the number of living children, 

women having no child, having 1 to 2 children, having 3 to 4 children were 99 percent, 97 

percent, 67 percent were less likely than the women with more than 5 living children to report 

that a pregnancy was unwanted as opposed to mistimed. Women who never used modern 

contraception and were not employed were 49 percent and 29 percent respectively less likely to 

say that their most recent pregnancy was unwanted as opposed to mistimed.
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4.3 The Multinomial Hybrid Logistic Model for Case-Control Study

In this section, we generalize the hybrid logistic model when the outcome variable is 

more than two categories. We assume that the case group has several different diseases, and the 

control group is disease free. 

4.3.1 The Model 

Consider the following table where the rare risk factor z has the zero event in the control 

group. In this table, we assume the outcome variable, Y = i,  i = 1,2 treated as cases (two 

diseases) and Y = 0 treated as control.

Table 4.3.1:  Cross-classification between the outcome variable (Y) and the factor, z

Let isxiYZP  )1,,|1(

and isxiYZP  1)1,,|0( , where i , i = 1,2 depend on x.

We propose the following model for the joint distribution of risk factors in the case-control 

study: 

2211 )1(
22
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sxP
             (4.3.1)

Y = i, i = 1,2 (disease) Y = 0 (disease free)

1 2 3

1 a b 0
Z

0 c d e

* a-e indicate positive integers like Table 3.3.1
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4.3.2 Estimation of the Parameters

To estimate the MLE of  and  , we consider the conditional likelihood function for a sample 

of n independent observations ( 01 nnn  , 1n  cases, 0n  controls) is proportional to
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Since 2,1, jy ji  depends on x, so i , i=1,2 depend on x.  After setting each above equation 

equal to zero, we have
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Now, the model (4.3.1) can be written as,
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The remaining parameters involved in the model (4.3.1) can be obtained by pairwise combining 

the above, we get
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The likelihood function is set as a regular multinomial regression, and thus, we get the estimates 

of  ’s. Hence, the odds ratios can be estimated.
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CHAPTER 5

VARIANCE ESTIMATION IN LOGISTIC REGRESSION MODEL USING 
THE BOOTSRAP

5.1 The Bootstrap Method

5.1.1 The Basic Idea

The use of resampling techniques plays a central role in statistics, especially when the 

estimators of interest do not have an explicit formula.  A very general resampling technique, 

called the bootstrap method, was introduced by Efron (1979) for estimating unknown quantities 

associated with the statistical models.  The bootstrap method is often used to find standard errors 

for estimators, confidence intervals for unknown parameters, or p values for test statistics under a 

null hypothesis (Boos, 2003).  This method consists of approximating the distribution of a 

function of the observations based on independent observations.  Freedman et al. (1981) state 

that “this distribution is obtained by replacing the unknown distribution by the empirical 

distribution of the data in the definition of the statistical function, and then resampling the data to 

obtain a Monte Carlo distribution for the resulting random variable.”  A formal description of the 

bootstrap method follows. 

Let nXXX ,,, 21   be a random sample of size n from a population with distribution F

and let  ( nXXX ,,, 21  ; F) be the specified random variable of interest, possibly depending 

upon the unknown distribution F.  Let nF  denote the empirical distribution function (EDF) of 

nXXX ,,, 21  , that is, the distribution that puts mass n/1 at each of the points of nXXX ,,, 21  . 

The bootstrap method is to approximate the distribution of  ( nXXX ,,, 21  ; F) under F by that 
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of  ( **
2

*
1 ,,,, nXXX  ; nF ) under nF , where **

2
*
1 ,,,, nXXX   denotes a random sample of size n

from nF . 

Usually, the distribution of  ( **
2

*
1 ,,,, nXXX  ; nF ) under nF cannot be evaluated 

analytically.  It can, however, be estimated with arbitrary accuracy by carrying out a Monte 

Carlo simulation in which random samples are drawn from nF .  In fact, the bootstrap is usually 

implemented by the Monte Carlo simulation study.  The Monte Carlo procedure for estimating 

the distribution of  ( nXXX ,,, 21  ; Fn) is as follows 

Step 1: Generate a bootstrap sample of size n, say,  **
2

*
1 ,,, nXXX   from nF randomly 

with replacement.

Step 2: Compute ),,,( **
2

*
1 nXXX 

Step 3: Use the results of many repetitions, say, B times of steps 1 and 2 to construct the 

bootstrap EDF of T̂  =  ( **
2

*
1 ,,,, nXXX  ; nF ).  Suppose that the sequence 

)ˆ,,ˆ,ˆ( )()2()1( BTTT   represents the set of estimates obtained by repeating steps 

(1) and (2) and then the bootstrap EDF can be obtained by 
 

,
ˆ#

)(ˆ
)(

B

tT
tG

b 


,,,2,1 Bb   where )(ˆ G  is a bootstrap empirical distribution function and t is 

some specific value of T̂ .

Based on )()2()1( ˆ,,ˆ,ˆ BTTT  , the bootstrap estimate of T̂  =  ( **
2

*
1 ,,,, nXXX  ; nF ) is defined as 

the average of the B bootstrap estimates:





B

b

bboot T
B

T
1

)()( ˆ1ˆ                                                                    (5.1.1)
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and the variance of the bootstrap estimate )(ˆ bootT  is

 
2

1

)()()( ˆˆ
1

1ˆ 






B

b

bootbboot TT
B

V                                              (5.1.2)

Large-sample distribution can be derived from the bootstrap distribution of )()2()1( ˆ,,ˆ,ˆ BTTT  , if 

the bootstrap distribution is approximately normal, a )%1(100   bootstrap confidence interval 

for a scalar T =  ( nXXX ,,, 21  ; F) can be computed as

)(
2/1

)( ˆˆ)( bootboot
norm VzTTCI                                          (5.1.3)

Alternatively, if the bootstrap distribution is non-normal, a )%1(100   bootstrap confidence 

interval can be computed empirically as

)ˆ,ˆ()( ),(),( ublb
emp TTTCI                                                           (5.1.4)

where ),(ˆ lbT  and ),(ˆ ubT  are the 2/  and 2/1   percentiles of the empirical bootstrap 

distribution of T.  Stable intervals based on equation (5.1.3) requires bootstrap sample of the 

order of B = 200 and equation (5.1.4) requires larger samples, for example, B = 2000 or more 

(Efron, 1994).

5.1.2 The Bootstrap Consistency

Most of the mathematical results regarding the bootstrap describe how it performs as the 

sample size increases.  Asymptotic theory of the Efron’s bootstrap were discussed by many 

authors; see, for example, Bickel and Freedman (1981), Singh (1981), Beran and Dunharme 

(1991), and Mammen (1992), among others.  We now discuss the consistency of the bootstrap.

Let ,, 21 XX  be a sequence of independent and identically distributed (iid) random 

variables with distribution function F .  Assume that F has finite mean   and variance

2 , both unknown. Consider the parameter function
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 )()()()( XhExdFxhF F 

Now, the plug-in estimate of an expectation  )(XhEF  is
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(see, for example, Efron and Tibshirani, 1993), where nF  is the empirical distribution of the 

sX i ' .  The empirical distribution function (EDF) is defined by 
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Let ),( yFGn be the distribution function for )(ˆ Fn   , that is,

))(ˆ(),( yFPyFG nFn  

Now, if  nˆ  is a pivot, then ),( FGn  does not depend on F at all.  But as strict pivotness is 

too much to hope for, it is sensible to examine just to see how much nG  varies with F.  Now, we 

examine this variability in terms of the uniform distance between the distribution functions, 

),(),(sup),(),( yFGyFGFGFG nn
y

nn 


Theorem 5.1.1. (Berry-Esseen): Let ,, 21 XX  be independent and identically distributed real 

stochastic variables with

0)( iXE , 1)( iXV , 3
XE .

Let nG  be the distribution function for 


n

i
iX

n 1

1
 and   be the distribution function for the

standard normal distribution.  It holds that 

n

XE
CG i

BEn

3


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for a global constant BEC  (Berry-Esseen constant).

See, for example, Durret (2004) for details of the proof.

Theorem 5.1.2.  It holds that
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 (5.1.5)

where   is the distribution function for the standard normal distribution, where 
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Proof:  Standard use of the triangle inequality shows that
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In this case, we are hoping that the specific choice of intermediate normal distributions gives rise 

to sensible estimates, since the central limit theorem (CLT) implies that
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and as 



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  is the distribution function for this approximating normal 

distribution.  Using the fact
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Hence, the proof follows.

The distance estimate (5.1.5) holds for any two measures F  and ,F   as long as the 

relevant moments exists.  If we plug in the true measure F  and the empirical measure nF  based 

on the observations of nXXX ,,, 21  , we obtain the distance between the distribution function 

we would like to know and the distribution function that comes from bootstrapping (in the limit 

of infinitely many replications).  We can bind this distance as 
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
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The left-hand side of the equation (5.1.6) is the distance between a deterministic-but unknown-

sequence of distribution functions and a random-but observable-sequence of distribution 

functions.  It is random in the sense that it depends on the observations nXXX ,,, 21  .  Note also 

that the bound on the right hand side is random.
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Theorem 5.1.3. (Bootstrap consistency)  It holds that

0),(),(  nnn FGFG for n  almost surely

Proof: By the law of large numbers we have that
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This implies that 
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 for n  almost surely

It also implies that

1
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F
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for n  almost surely

So the Theorem 5.1.3 will follow if we can show that for any sequence of scalars nn )(  with 

the property that 1n  for n , it holds that 

0)()(  yyn for n

Recall Scheffés lemma: if nf  is a sequence of probability densities, eg. with respect to m, if f is 

a probability density and if ff n  almost surely, then ff n  in 1L .

We observe that )( yy n  is the distribution function for the normal distribution with 

mean 0 and variance 
2

1

n
.  Let n  be the density for this normal distribution, and   be the 

density for the standard normal distribution. As

)()( yy nnnn  

and as   is continuous, we see that )()( yyn   for n  for every y. Hence  n  in 1L

according to the Scheffés lemma.  And thus
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Therefore,

0),(),(  nnn FGFG for n  almost surely.

Hence the proof follows.

5.1.3 An Example

Suppose a random sample nXXX ,,, 21   of size n is observed from a completely 

unspecified probability distribution F. Assume F has finite mean   and variance 2 , both 

unknown. The sample average X  and sample standard deviation 2s  are the conventional 

estimate for   and variance 2 respectively. By the Central Limit Theorem, the distribution of 

the pivotal quantity

s

Xn
Q

)( 


tends weakly to N (0,1). So the asymptotics are known in this situation.

Let  nF  be the empirical distribution of nXXX ,,, 21  , putting mass n/1  on each iX , i = 1,…,n. 

Now, we draw a random sample **
2

*
1 ,,, nXXX   , called bootstrap sample, of size n from nF

with replacement and estimate the distribution of the bootstrap pivotal quantity

*

*
* )(

s

XXn
Q


 , where 
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
n

i
iX

n
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1

** 1
 and 
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



n

i
i XX

n
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1

2**2* )(
1

1
.

In the bootstrap technique, the random sample nXXX ,,, 21   are treated as a population, with 

distribution function nF  and mean X ; and *X  is considered as an estimator of X . The idea is 

that the behavior of the bootstrap pivotal quantity *Q mimics that of Q . Thus, the distribution of 
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*Q  could be computed from the data and used to approximate the unknown distribution of Q . In 

other words, the bootstrap distribution of )( * XXn   could be used to approximate the 

sampling distribution of )( Xn .  

A Monte Carlo evaluation is performed of the above ideas. The quantile-normal graphs of 

Q  and *Q  are provided below. It is clear from the graphs (a) and (b) that they follow normal 

distribution. The Q-Q plot of Q  and *Q  is given in the graphs (c) which allows to compare two 

sample distributions with one another. As most of the values of Q  and *Q  fall on a straight line, 

it can be said that the two data sets have the same parent distribution. Therefore, it is concluded 

that the bootstrap method is used for estimating the distribution of an estimator by resampling 

one’s data.

    Figure 5.1.1: Q-Q plot of Q  and *Q  for sample size= 50 and Monte Carlo sample size= 1,000

(a) (b) (c)
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5.2 Bootstrapping a Linear Regression Model

In the linear regression model, T
nyyyY ),,,( 21   denotes the 1n vector of the 

response, and T
nxxxX ),,,( 21   is the matrix of regressors with pn dimension including 

the intercept, p is the number of parameters. The usual linear regression model is then 

111 


nppnn
XY   or i

T
ii xy    , ni ,,2,1 

where,   is an 1n vector of uncorrelated error terms having mean zero and identical variance 

2 , usually unknown. The 1p  vector   holds the unknown parameters, for which the 

ordinary least squares (OLS) estimator is YXXX TT 1)(ˆ   and has variance-covariance matrix 

12 )( XX T . 

Theorem 5.2.1. Under the linear regression model, if the Y-vector is treated to be the observed 

value of the random vector  X , then  )ˆ(E  and )ˆ(Var 12 )( XX . Suppose that 

VXX
n

1
, which is positive definite and also suppose that the elements of X are uniformly 

small by comparison with n , then 

 12
.

,0~)ˆ(  VNn
asympt



and the distribution of the pivotal quantity

 IN
XX asympt

,0~
)ˆ()( .2/1


 

where, I is the pp identity matrix (see, for details, Freedman, 1981).

Traditional approaches, like ordinary least squares, rely very much on some major 

modeling assumptions, for example, normal random errors with constant variances. But for 

generalizations to non-normal errors and non-constant variance, exact methods rarely exist, and 
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we are faced with approximate methods based on linear approximations to estimators and central 

limit theorem. As a result, the ordinary sampling techniques use some assumptions related to the 

form of the estimator distribution, but resampling methods do not need these assumptions 

because the sample is thought as population. Therefore, resampling methods have the potential to 

provide more accurate analysis. See, references for bootstrapping regression, Efron and 

Tibshirani (1993), Davison and Hinkley (1997), Wu (1986), Freedman (1981), Stine (1985), and 

Peters and Freedman (1984). 

There are two approaches for bootstrapping the regression model, and the choice of either 

methods depends upon the regressors being fixed or random. If the regressors are fixed, the 

bootstrap uses resampling of the error term. If the regressors are random, the bootstrap uses 

resampling of observations (Stine, 1989).

(a) Bootstrap based on the resampling observations (or vector resampling)

This approach is usually applied when the regression models built from data have 

regressors that are as random as the response. Let the 1)1( p  vector TT
iii xyz ),(  denote the 

values associated with ith observation and assume that iz ’s are drawn independently and 

identically from a distribution of F. In this case, the set of observations are the vectors 

),,,( 21 nzzz  . The bootstrap procedure based on the resampling observations is as follows.

1. Draw a n sized bootstrap sample ),,,( **
2

*
1 nzzz   from the observations with replacement 

giving 1/n probability each iz  values and label the elements of each vector  

TT
iii xyz ),( ***  ,  i =    1, 2, …, n,

and then form the vector T
nyyyY ),,,( **

2
*
1

*
  and the matrix T

nxxxX ),,,( **
2

*
1

*
 .

2. Calculate the OLS coefficients from the bootstrap sample
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**1*** )(ˆ YXXX TT 

3. Repeat steps 1 and 2 for B times, where B is the number of repetition and then use the 

resulting bootstrap estimates )*()2*()1*( ˆ,,ˆ,ˆ B   to estimate variances or confidence 

intervals. The bootstrap estimate of the covariance matrix of ̂  is 

2

1

*** ˆˆ
1

1
)ˆ( 





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
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


B

b
bB

Var  ,  where 



B

b
bB 1

** ˆ1ˆ 

(b) Bootstrap based on the resampling errors (or residual resampling)

The bootstrap procedure based on the resampling errors is as follows.

1. Fit the least squares regression equation for full sample to obtain the fitted responses iŷ

and residuals i̂ , where iii yy ˆˆ  .

2. Draw a n sized bootstrap set of residuals  **
2

*
1 ˆ,,ˆ,ˆ n   completely at random with 

replacement from the set of fitted residuals  n ˆ,,ˆ,ˆ 21  , giving 1/n probability each i̂

values.

3. Create a bootstrap set of pseudo-responses, ** ˆˆ   XY , where T
n )ˆ,,ˆ,ˆ(ˆ **

2
*
1

*    is 

the 1n  vector.

4. Regress *Y  on X  to obtain a bootstrap parameter estimate by

*1* )(ˆ YXXX TT 

5. Repeat steps 2-4 for B times, where B is the number of repetition and use the resulting 

bootstrap estimates )*()2*()1*( ˆ,,ˆ,ˆ B   to estimate variances or confidence intervals. 

The bootstrap estimate of the covariance matrix of ̂  is 
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It can be shown that the bootstrap will give the same asymptotic results as the classical methods 

if the simulations are performed. Freedman (1981) discussed the asymptotic theory for 

bootstrapping multiple regression models. The theoretical results of the asymptotic properties are 

summarized by the following theorem.

Theorem 5.2.2. Assume the linear regression model defined above with assumptions given by 

Theorem 6.1. Along almost all sample sequences, given nYYY ,,, 21  , as n tends to  ,

a) the conditional distribution of )ˆˆ( *  n  converges weakly to normal with mean 0 and 

variance-covariance matrix 12 V .

b) the conditional distribution of *̂  converges to point mass at  .

c) the conditional distribution of the pivot 
*

**2/1**

ˆ
)ˆ()(


 


XX

 converges to standard normal in 

p .

To verify the above theorem with the bootstrap method, a Monte Carlo simulation study 

is carried out. We start with the sample of size 50 and then we draw a bootstrap sample of the 

same size with replacement. Using the regression model, we calculate the quantities 

)ˆˆ( *
1   nz  and 

*

**2/1**

2 ˆ
)ˆ()(


 




XX
z , and then we replicate the procedure for 1000 

times. To see whether the calculated statistics follow normal distribution, we represent the results 

by the following Q-Q plots.
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Figure 5.2.1: Q-Q plot of the quantity )ˆˆ( *
1   nz  for different sample sizes

Sample size = 50
Mean =-0.01328 (~ 0)
Variance = 0.04679 (~ 0.03394)

Sample size = 100
Mean = -0.00443 (~ 0)
Variance = 0.02510 (~ 0.03394)

Sample size = 500
Mean = -0.01433 (~ 0)
Variance = 0.03883 (~ 0.03394)

Figure 5.2.2: Q-Q plot of the quantity 
*

**2/1**

2 ˆ
)ˆ()(


 




XX
z for different sample sizes.

Sample size = 50
Mean =  -0.04748 (~ 0)
Variance = 1.06303 (~ 1)

Sample size = 100
Mean = -0.01527 (~ 0)
Variance = 0.86465 (~ 1)

Sample size = 500
Mean =  -0.06711 (~ 0)
Variance = 0.93794 (~1)

It appears from the Q-Q plots that both statistics approximately follow normal distribution. 

Figure 5.2.2 indicates that with the increases of sample size, mean and variances converge to 

zero and true variances respectively. However, Figure 5.2.2 shows that though mean of z2

converges to zero as sample size increases, there are slight variations observed among the 

variances. Freedman (1981) discussed about the choice of bootstrap sample size. For instance, a 
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sample of size n can be bootstrapped to see what would happen with a sample of size is 2n , or 

n , or others. In our case, we consider same bootstrap sample size as the sample size. The result 

in Figure 5.2.3 provides that the square root of the estimated variance of the random error for 

bootstrap converges to true square root of the variance of the random error when the sample sizes 

are increased.

Figure 5.2.3:  Histogram of the distribution of * for different sample sizes.

Figure

5.3 Logistic Regression Model Using the Bootstrap Method

For the generalized linear models (GLMs), Moulton and Zeger (1991) used bootstrap 

methods to estimate the functions of the estimated parameters. In that paper, they adopt 

bootstrapping techniques for GLM analogous to those used for ordinary linear models. 

Furthermore, they proposed a one-step procedure to estimate the parameters for each bootstrap 

replication though iteration to convergence cannot generally be expected. The reason behind the 

Sample size = 50
Mean = 2.25350 (~2)
Variance =  0.03663

Sample size = 100
Mean = 2.00085
Variance =  0.01768

Sample size = 500
Mean = 2.010431
Variance =  0.00440
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one-step procedure is that they are efficient in terms of computation time. Like the linear 

regression models, we do not assume additivity of the error for the logistic regression models,

and hence, the exchangeability of the error terms is typically no longer valid for these models. 

Nevertheless, Friedl and Tilg (1995) used the residual resampling method for the variance 

estimation in the logistic regression model. However, in this section, we use the vector 

resampling algorithm for the logistic regression model to estimate the variances. The algorithm 

of vector resampling method for the logistic regression model is as follows:

Step 1: Create the following pseudo-data set by resampling from the original data as 

            mentioned in section 5.2,  we get

TT
ii xy ),( ** , i = 1, 2, …, n

Step 2: Carry out the Newton-Raphson method as discussed in chapter 2, 

)()(
)(***1*)(**)(*)1(* tTtTtt

yXXWX   

                        to estimate * (notations and terminologies are the same as discussed in 

                       chapter 2) 

            Step 3: Repeat steps 1 and 2 for B times, where B is the number of repetition, one 

            could use the resulting bootstrap estimates )*()2*()1*( ˆ,,ˆ,ˆ B   to estimate 

            variances or confidence intervals. The bootstrap estimate of the covariance 

            matrix of ̂  is

T

b

B

b
bB

Var 




 




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
 



**

1

*** ˆˆˆˆ
1

1
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We use two datasets the Low Birth Weight Study (see, Hosmer and Lameshow, 2000) and 

Timing of Induced Abortion Study discussed in Chapter 2 to illustrate this technique. Then the 

comparative pictures of the variances are discussed.

5.3.1 Applications of Bootstrapping Logistic Regression Model

Study I (sample size=189):

The following example explains the method relating to a sample data of 189 subjects 

obtained from the Baystate Medical Center in Springfield, Massachusetts (Hosmer and 

Lameshow, 2000).  The data set contains information on births in which 59 were low birth 

weight to women seen in the obstetrics clinic. Low birth weight, defined as birth weight less than 

2500 grams, is an outcome that has been of concern to physicians for years because infant 

mortality rates and birth defect rates are very high due to the low birth weight. There are several 

factors, such as mother’s age and smoking habits, that greatly affect the delivery of a baby of 

normal birth weight. Here, we discuss the estimates of )ˆ(Var  in the logistic regression model 

using the vector resampling method.  The description of the variables is given below:

Table 5.3.1: Code sheet for the selected variables in the low birth weight data

Variables Codes/Values Varable’s Name

Low Birth Weight 25000  gm
25001  gm

LOW

Smoking Status During Pregnancy 1 = Yes
0 = None

SMOKE

Age of Mother 250  Years
251  Years

AGEYR
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The cross-classification of the variables is shown in the following table. As can be seen from the 

table, the data are distributed evenly, that is, without any sparse cell.

Table 5.3.2: Cross-classification of Low Birth Weight  Age of Mother  Smoking Status

Low Birth Weight Total

Age of Mother 2500 gm 2500 gm

25 years Smoking Status No 53 19 72
Yes 27 21 48

Total 80 40 120
25 years Smoking Status No 33 10 43

Yes 17 9 26
Total 50 19 69

For the bootstrapping logistic regression model using vector resampling, we take the 

bootstrap sample of the same size from the original sample data and then estimate the parameter 

using the logistic regression model. We replicate the procedure 1,000 times, and then estimates 

of the parameters are the average of parameters’ values obtained from 1,000 replication. The 

variances of the parameters are obtained by the equation (5.3.1). The results of Table 5.3.3 are 

provided based on both the classical and bootstrapping logistic regression models. It indicates 

that both models provide almost similar estimates of the parameters, but the standard errors are 

slightly higher for the bootstrap method.

Table 5.3.3: Comparative results of the estimated parameters and their standard errors based 
on the classical logistic and bootstrapping logistic regression models 

Classical logistic regression model Bootstrapping logistic regression model
Variables Coefficients Std. Errors Variables Coefficients Std. Errors
SMOKE 0.701 0.320 SMOKE 0.716 0.338

AGEYR -0.265 0.336 AGEYR -0.264 0.356
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Study II (sample size=2,247):

We consider here the part of the data in the timing of the induced abortion study 

discussed in the last section of Chapter 2. Here, we have included only the outcome variable of 

the women’s abortion in or after the 3 months of gestation and two other explanatory variables, 

study area and women’s education. The purpose of the study is to see the effects of study area 

and women’s education of the women who had sought abortion in or after the third month of 

gestation. The variable description is provided below.

Table 5.3.4: Code sheet for the selected variables in the timing of induced abortion study

Variables Codes/Values Variable’s Name

Gestational age 0 = less than 3 months
1 = 3+ months

GEST

Study area 1 = ICDDR,B area
2 = Comparison area

AREA

Women’s education 0 = No education
1 = Some education

EDUYR

To see the cell frequencies of the contingency table, the results of the cross-classification 

of the variables are displayed in the following table. Again, the cross-classification shows that 

the data are distributed without any sparse cell.

Table 5.3.5: Cross-classification of Area  Gestational age  Mother’s education

Gestational age Total

  Women’s education <3 months 3+ months

  No education Area ICDDR,B area 111 166 277

Comparison area 158 516 674

Total 269 682 951

  Some education Area ICDDR,B area 200 192 392

Comparison area 269 635 904
Total 469 827 1296
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Table 5.3.6: Comparative results of the estimated parameters and their standard errors based on the 
classical logistic and bootstrapping logistic regression models 

Classical logistic regression model Bootstrapping logistic regression model
Variables Coefficients Std. Errors Variables Coefficients Std. Errors
AREA 0.852 0.096 AREA 0.851 0.098

EDUYR -0.366 0.094 EDUYR -0.367 0.097

After performing the classical logistic and bootstrapping logistic regression models, it is seen 

that parameter estimates are quite similar for both models, but the standard errors are little bit 

higher for bootstrap model. 

Therefore, based on the two studies of different sample sizes, results of the simulation 

suggest that the bootstrap method provides slightly high variances compared to that of the 

classical logistic regression method. It would be interesting to see how the bootstrap method 

performs if the contingency table contains sparse data in one more cells.
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 
This dissertation dealt with logistic regression models and their variations. In Chapter 2, 

the details of the logistic regression model were demonstrated, followed by the MLE procedure 

to estimate the unknown parameters of the model. The main emphasis of this chapter was to 

prove the asymptotic properties of the MLE for the logistic regression model using a completely 

different approach. In particular, the logistic regression models have serious numerical problems 

if zero cells occur in the contingency table, and for this scenario, the different approach was 

motivated. In addition, the simulation study was carried out to assess the finite sample behavior 

of the consistency and normality of the MLE. The results of the simulation studies were provided 

through the tabular form and graphical display to get a clear pictures of the consistency and 

normality of the MLE for different sample sizes. In the last section of the second chapter, an 

application based on the real dataset was illustrated. This application identifies several risk 

factors, such as women residing in the Comparison area, having no living children, and having 

no education which significantly increased the risk of having an induced abortion in or after the 

third month of pregnancy. 

 In Chapter 3, the generalization of the hybrid logistic regression model under case-

control study was discussed. The hybrid logistic model was originally proposed by Chen et al. 

(2003) which deals with situations in which risk factors associated with the outcome are 

exceedingly rare in the control group.  In principle, a two-stage hybrid procedure models the 

risks due to the rare factors in the first stage and models the residual risks due to the other factors 

in the second stage using the standard logistic regression model.  In the case of the 
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generalization, the rare risk factors were considered both independent and not independent, and 

we discussed the relevant estimation procedures for the parameters. 

An outline of the multinomial logistic regression model was given in Chapter 4, followed 

by the simulation study for the consistency and normality of the MLE for this model. This 

simulation study ensured that when sample size increases, the estimated parameters converge to 

their true values and follow approximately normal distributions. For the three categories’ 

outcome variable of certain data, a set of important risk factors was identified by applying the 

multinomial logistic regression model. In addition, this chapter extends the hybrid logistic 

regression model to the multinomial hybrid logistic regression model, and this can be employed 

when the case group of the outcome variable has mutually exclusive and exhaustive subgroups. 

Based on the three categories’ outcome variable with a rare risk factor, the estimation procedure 

of the parameters was discussed at the end of this chapter.  

In the last part of the dissertation, the bootstrap method to estimate the variances for the 

parameter estimates in the logistic regression model was studied. Two examples of different 

sample sizes were applied to the classical logistic and bootstrapping logistic regression models. 

The results of the simulation suggested that the bootstrap method provides slightly high 

variances compared to that of the classical logistic regression method.   

Elsewhere in the dissertation, we identified some follow on work that others could 

pursue. Those are summarized below. 

(i) The hybrid logistic regression models were developed for the case-control studies only; one 

could propose a new model for the cohort or prospective studies and discuss the estimation 

procedures of the unknown parameters for the model. 
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(ii) The hybrid logistic regression models can be fitted in stratified case-control studies if 

separate samples of cases and controls might be taken within each stratum. 

(iii) The hybrid logistic regression model and its generalization considered the rare risk factors 

are categorical, one could model the rare risks measured on a continuous scale.  

(iv) It would be interesting to perform a simulation study to show the asymptotic properties of 

the hybrid logistic and multinomial hybrid regression models under case-control study.  

(v) If the data are available, then one could provide applications of the generalization of the 

hybrid logistic regression models and the multinomial hybrid logistic model.  

(vi) It would be interesting to see how the bootstrapping logistic regression model performs if the 

contingency table contains sparse data. 
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APPENDIX:  R AND SPSS CODES 

 
 

#----------------------------CHAPTER 2------------------------------------- 

# Figure 2.1.1: logistic regression function 

 

x=seq(-4,4,.0001) 

p=exp(x)/(1+exp(x)) 

plot(x,p,”l”) 

 

# Consistency and Normality: 

 

data1=rbinom(200,1,.5); x1=data1 

data2=rbinom(200,1,.5); x2=data2 

data3=rbinom(200,1,.5); x3=data3 

data4=rbinom(200,1,.5); x4=data4 

 

N=1000; a=0; b1=0; b2=0; b3=0; b4=0 

for (j in 1:N) 

{ 

   alpha=0.7; beta1=1; beta2=1.3; beta3=0.25; beta4=0.05 

   p=0 

   y=0 

   for (i in 1:length(x1)) 

   { 

   p[i]=exp(alpha+beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+beta4*x4[i])/ 

   (1+exp(alpha+beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+beta4*x4[i])) 

   y[i]=rbinom(1,1,p[i]) 

   } 

  

# Newton-Raphson algorithm 

 lmodel = function(x, y, maxits=20, eps=1e-10) 

 { 

   # use a starting value of beta=0 

   newbeta = rep(0, ncol(x) ) 

   iter = 0 

   converged = F 

   while( (!converged) & (iter<maxits) ) 

   { 

   iter = iter+1 

   cat(iter); cat("...") 

   beta = newbeta 

   tmp = exp(x%*%beta) 

   pi = tmp/(1+tmp) 

   mu = pi 

   w = as.vector(pi*(1-pi)) # this is a vector, not a matrix 

   xtwx = t(w*x)%*%x 

   xtwxinv = solve(xtwx) 

   newbeta = beta + xtwxinv%*%t(x)%*%(y-mu) 

   converged = all(abs(newbeta-beta)<eps) 

   } 

 cat("\n") 

 tmp = exp(x%*%newbeta) 

 pi = tmp/(1+tmp) 

 loglik = sum( y*log(pi) + (1-y)*log(1-pi) ) 

 # add names to coefficients 
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 names(newbeta) = dimnames(x)[[2]] 

 result = list(beta=newbeta, cov.beta=xtwxinv, iter=iter, 

 converged=converged, loglik=loglik) 

 result 

 } 

  

x = cbind(int=1,x1,x2,x3,x4) 

 res = lmodel(x,y) 

  

# Consistency 

   a[j]=res$beta[1,] 

   b1[j]=res$beta[2,] 

   b2[j]=res$beta[3,] 

   b3[j]=res$beta[4,] 

   b4[j]=res$beta[5,] 

 

 

# Normality 

 n = length(x1) 

 betao = c(alpha,beta1,beta2,beta3,beta4) 

 betao = matrix(betao,5,1) 

  

 betae = c(res$beta[1,],res$beta[2,],res$beta[3,],res$beta[4,],res$beta[5,]) 

 betae = matrix(betae,5,1) 

  

 d1 =(betae-betao) 

 d2 = sqrt(solve(matrix(res$cov.beta[1:25],nrow=5,ncol=5))) 

 d=d2%*%d1 

 dd1[j]=d[1,];dd2[j]=d[2,];dd3[j]=d[3,];dd4[j]=d[4,];dd5[j]=d[5,] 

  

} 

 

# Output for consistency 

mean(a); mean(b1); mean(b2); mean(b3); mean(b4) 

sd(a)/sqrt(N); sd(b1)/sqrt(N); sd(b2)/sqrt(N); sd(b3)/sqrt(N); sd(b4)/sqrt(N) 

 

# Output for normality 

qqnorm(dd2, ylab='Beta1', main="Beta1 versus Normal (0,1)"); qqline(dd2) 

mean(dd2);  sd(dd2)^2;sd(dd2)/sqrt(1000) 

 

qqnorm(dd3, ylab='Beta2', main="Beta2 versus Normal (0,1)"); qqline(dd3) 

mean(dd3);  sd(dd3)^2;sd(dd3)/sqrt(1000) 

 

qqnorm(dd4, ylab='Beta3', main="Beta3 versus Normal (0,1)"); qqline(dd4) 

mean(dd4);  sd(dd4)^2;sd(dd4)/sqrt(1000) 

 

qqnorm(dd5, ylab='Beta4', main="Beta4 versus Normal (0,1)"); qqline(dd5) 

mean(dd5);  sd(dd5)^2;sd(dd5)/sqrt(1000) 

 

 

****Application : SPSS syntax code**** 

 

get translate file='c:\Mamun\Research_Paper\kapil\Time\DABR8998.DBF'. 

 

recode gest (1,2=0)(else=1). 

value labels gest 0'<3' 1'3+'. 
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*recode gest (1=1)(2=2)(else=3). 

*value labels gest 1'1' 2'2' 3'3+'. 

 

recode mage (lo thru 19=1)(20 thru 29=2)(30 thru 39=3)(40 thru hi=4). 

value labels mage 1'<20' 2'20-29' 3'30-39' 4'40+'. 

 

recode livch (0=0)(1 thru 2=1)(else=2). 

value labels livch 0'0' 1'1-2' 2'3+'. 

 

recode meduyr (0=0)(1 thru 16=1)(99=sysmis). 

value labels meduyr 0'No education' 1'Some education'. 

 

recode dwell (low thru 349=1)(else=2). 

value labels dwell 1'<350' 2'350+'. 

 

value labels area 1' MCH-FP' 2'Comparison'. 

 

value labels religion 1'Muslim' 2'Non-muslim'. 

 

*recode occu (999=sysmis)(50,106=1)(104,45=2)(else=3).  

*value labels occu  2'Students' 3'Others'. 

 

recode occu (999=sysmis)(50,106,104,45=1)(else=2).  

value labels occu  1'Not working' 2'Working'. 

 

recode marr_age (0 thru 11=sysmis)(12 thru 16=1)( 17 thru 20=2)(21 thru 

hi=3). 

value labels marr_age 1'12-16' 2'17-20' 3'21+'. 

 

*recode age_m_a (0 thru 4=1)(5 thru 900=2)(999=sysmis). 

*value labels age_m_a 1'<5' 2'5+'. 

 

*recode con (1 thru 9=1) (44=2) (else=sysmis). 

*value labels con 1'User' 2'Non-user'. 

 

*recode con (1=1) (2=2) (3=3) (5=5) (6 thru 9=6) (44=7) (else=sysmis). 

*value labels con 1'Pill' 2'IUD' 3'Injection' 5'Condom' 6'Others' 7'Non-

user'. 

 

*recode con (1 thru 5=1) (6 thru 9=2) (else=sysmis). 

*value labels con 1'Modern' 2'Traditional' . 

 

cross mage livch meduyr dwell area religion occu marr_age by gest/cells=count 

row/stat=chisq. 

 

LOGISTIC REGRESSION VAR=gest 

  /METHOD=BSTEP(LR) mage livch meduyr area occu 

  /CONTRAST (mage)=Indicator(1)  /CONTRAST (livch)=Indicator(1)  /CONTRAST 

  (meduyr)=Indicator(1)  /CONTRAST (area)=Indicator(1)  /CONTRAST 

  (occu)=Indicator(1) 

  /PRINT=GOODFIT 

  /CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5) . 
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#----------------------------CHAPTER 4------------------------------------- 

#Consistency and Normality: 

 

data1=rbinom(1500,1,.8); x1=data1 

data2=rbinom(1500,1,.4); x2=data2 

data3=rbinom(1500,1,.5); x3=data3 

data4=rbinom(1500,1,.5); x4=data4 

 

beta01=0.4; beta11=0.8; beta12=1.3; beta13=-0.5; beta14=1.1 

 

beta02=1.2; beta21=1.5; beta22=0.9; beta23=0.2; beta24=-0.5 

 

p1=exp(beta01+beta11*x1+beta12*x2+beta13*x3+beta14*x4)/(1+exp(beta01+beta11*x

1+beta12*x2+beta13*x3+beta14*x4)+exp(beta02+beta21*x1+beta22*x2+beta23*x3+bet

a24*x4)) 

 

p2=exp(beta02+beta21*x1+beta22*x2+beta23*x3+beta24*x4)/(1+exp(beta01+beta11*x

1+beta12*x2+beta13*x3+beta14*x4)+exp(beta02+beta21*x1+beta22*x2+beta23*x3+bet

a24*x4)) 

 

p0=1-p1-p2 

 

N=1000 

b01=0;b11=0;b12=0;b13=0;b14=0 

b02=0;b21=0;b22=0;b23=0;b24=0 

 

d1=0;dd1=0;dd2=0;dd3=0;dd4=0;dd5=0 

d2=0;g1=0;g2=0;g3=0;g4=0;g5=0 

 

for (j in 1:N) 

{ 

  n=length(x1) 

  y=0 

  for (i in 1:n) 

 { 

 x=rmultinom(1,1,prob=c(p0[i],p1[i],p2[i])) 

 if (x[1,]==1)  

 { 

 y[i]=0 

 } 

  if (x[2,]==1)  

  { 

  y[i]=1 

  } 

   if (x[3,]==1)  

   { 

   y[i]=2  

   } 

     

} 

 

cbind(y,x1,x2,x3,x4) 

 

# nnet package for multinomial distribution 

 

library(nnet) 

 out=summary(multinom(y~x1+x2+x3+x4, Hess=T)) 
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# Consistency 

b01[j]=out$coefficients[1] 

b11[j]=out$coefficients[3] 

b12[j]=out$coefficients[5] 

b13[j]=out$coefficients[7] 

b14[j]=out$coefficients[9] 

 

b02[j]=out$coefficients[2] 

b21[j]=out$coefficients[4] 

b22[j]=out$coefficients[6] 

b23[j]=out$coefficients[8] 

b24[j]=out$coefficients[10] 

 

# Normality 

 

 n = length(x1) 

 betao1 = c(beta01,beta11,beta12,beta13,beta14) 

 betao1 = matrix(betao1,5,1) 

  

 betae1 =   

 c(out$coefficients[1,1],out$coefficients[1,2],out$coefficients[1,3], 

 out$coefficients[1,4],out$coefficients[1,5]) 

 betae1 = matrix(betae1,5,1) 

  

 d11 =(betae1-betao1) 

 d21 = sqrt(solve(solve(out$Hessian)))[1:5,1:5] 

 d1=d21%*%d11 

 dd1[j]=d1[1,];dd2[j]=d1[2,];dd3[j]=d1[3,];dd4[j]=d1[4,];dd5[j]=d1[5,] 

 

#-------------------------------------------- 

 

 betao2 = c(beta02,beta21,beta22,beta23,beta24) 

 betao2 = matrix(betao2,5,1) 

  

 betae2 =   

 c(out$coefficients[2,1],out$coefficients[2,2],out$coefficients[2,3], 

 out$coefficients[2,4],out$coefficients[2,5]) 

 betae2 = matrix(betae1,5,1) 

  

 d12 =(betae2-betao2) 

 d22 = sqrt(solve(solve(out$Hessian)))[6:10,6:10] 

 d2=d22%*%d12 

 g1[j]=d2[1,];g2[j]=d2[2,];g3[j]=d2[3,];g4[j]=d2[4,];g5[j]=d2[5,] 

} 

 

# Output for consistency 

 

mean(b01); mean(b11); mean(b12); mean(b13); mean(b14) 

 

mean(b02); mean(b21); mean(b22); mean(b23); mean(b24) 

 

sd(b01)/sqrt(N); sd(b11)/sqrt(N); sd(b12)/sqrt(N); sd(b13)/sqrt(N); 

sd(b14)/sqrt(N) 

 

sd(b02)/sqrt(N); sd(b21)/sqrt(N); sd(b22)/sqrt(N); sd(b23)/sqrt(N) 

sd(b24)/sqrt(N) 
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# Output for normality 

# For 1st set of beta 

 

qqnorm(dd2, ylab='Beta11', main="Beta11 versus Normal (0,1)"); qqline(dd2) 

mean(dd2);  sd(dd2)^2;sd(dd2)/sqrt(1000) 

 

qqnorm(dd3, ylab='Beta12', main="Beta12 versus Normal (0,1)"); qqline(dd3) 

mean(dd3);  sd(dd3)^2;sd(dd3)/sqrt(1000) 

 

qqnorm(dd4, ylab='Beta13', main="Beta13 versus Normal (0,1)"); qqline(dd4) 

mean(dd4);  sd(dd4)^2;sd(dd4)/sqrt(1000) 

 

qqnorm(dd5, ylab='Beta14', main="Beta14 versus Normal (0,1)"); qqline(dd5) 

mean(dd5);  sd(dd5)^2;sd(dd5)/sqrt(1000) 

 

# For 2nd set of beta 

 

qqnorm(g2, ylab='Beta21', main="Beta21 versus Normal (0,1)"); qqline(g2) 

mean(g2);  sd(g2)^2;sd(g2)/sqrt(1000) 

 

qqnorm(g3, ylab='Beta22', main="Beta22 versus Normal (0,1)"); qqline(g3) 

mean(dd3);  sd(g3)^2;sd(g3)/sqrt(1000) 

 

qqnorm(g4, ylab='Beta23', main="Beta23 versus Normal (0,1)"); qqline(g4) 

mean(g4);  sd(g4)^2;sd(g4)/sqrt(1000) 

 

qqnorm(g5, ylab='Beta24', main="Beta24 versus Normal (0,1)"); qqline(g5) 

mean(g5);  sd(g5)^2;sd(g5)/sqrt(1000) 

 

 

******Application: SPSS Code********** 

 

get file='c:\mamun\paa2007\unintended\women_2004.sav'. 

 

compute wtvar=v005/1000000. 

weight by wtvar. 

 

*Dependent variable. 

recode v225 v367(9=sysmis). 

recode v225 v367(sysmis=0). 

 

compute v3677=v367. 

if v225<>0  v3677=0. 

compute unintd=v225+ v3677. 

value labels unintd 1'planned' 2' mistimed' 3'unwanted'. 

select if unintd<>0. 

 

*freq unintd. 

*Explanatory variables. 

 

*v024=region of residence. 

*v025=urban/rural. 

*v012=current age. 

recode v012 ( lo thru 19=1) (20 thru 29=2) (30 thru hi=3). 

value label v012 1 '<19' 2'20-29' 3'30+'. 

*v106=education. 

*v302=ever use modern method. 
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recode v302 (3=1)(else=0). 

value labels v302 1'yes' 0'no'. 

*v511=age at first marriage. 

recode  v511(lo thru 14=1)(15 thru 19=2)(20 thru hi=3). 

value labels v511 1'<15' 2'15-19' 3'20+'. 

*v714=employment. 

recode v714(9=sysmis). 

*v190=wealth. 

**v218=lchild. 

recode v218 (0=0) (1 thru 2=1) (3 thru 4=2)( 5 thru hi=3). 

value labels v218 0'None' 1'1-2' 2'3-4' 3'5+'. 

*access to media. 

compute media=1. 

if (v157=0 and v158=0 and v159=0) media=0. 

*v611=dicuss FP. 

recode v611 (9=sysmis). 

*v130=religion. 

recode v130 (1=1) (2 thru 8=2) (9=sysmis). 

value labels v130 1'Muslim' 2'Non-Muslim'. 

 

*freq unintd v024 v025 v012 v106 v302  v511 v714 v190 v218 media v611 v130. 

 

*CROSSTABS 

/TABLES=v024 v025 v012 v106 v302  v511 v714 v190 v218 media v611 v130 by 

unintd/FORMAT= AVALUE TABLES/STATISTIC=CHISQ CORR/CELLS= COUNT ROW . 

 

*Unwanted VS wanted**Mistimed VS wanted 

*recode unintd (1=3)(2=2)(3=1). 

*value labels unintd 1'unwanted' 2'mistimed' 3'planned'. 

 

*freq unintd. 

 

*NOMREG unintd  BY v012  media v106 v130 v218 v511 v302 v714 v190 

/CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0) 

PCONVERGE(1.0E-6) SINGULAR(1.0E-8)/MODEL/INTERCEPT = INCLUDE 

/PRINT = FIT PARAMETER SUMMARY LRT. 

 

*Unwanted VS Mistimed 

 

recode unintd (1=1)(2=3)(3=2). 

value labels unintd 1'wanted' 2'unwanted' 3'mistimed'. 

 

freq unintd. 

 

NOMREG unintd  BY v012  media v106 v130 v218 v511 v302 v714 v190 

/CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0) 

PCONVERGE(1.0E-6) SINGULAR(1.0E-8)/MODEL/INTERCEPT = INCLUDE 

/PRINT = FIT PARAMETER SUMMARY LRT . 

 

 

 

#----------------------------CHAPTER 5------------------------------------- 

 

# An Example: Bootstrap consistency 

 

n=50 

mu=20; sigma=3 
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Q=0 

for ( i in 1:1000) 

{ 

x=rnorm(n,mu,sigma) 

x.bar=mean(x) 

Q[i]=sqrt(n)*(x.bar-mu) 

} 

qqnorm(Q, ylab='Q', main="Q versus Normal (0,1)");qqline(Q) 

 

#-bootstrap--------- 

 

x1=rnorm(n,mu,sigma) 

xx=x1 

x1.bar=mean(xx) 

 

Qstar=0 

 

for ( i in 1:1000) 

{ 

xstar=sample(xx,replace=T) 

xstar.bar=mean(xstar) 

Qstar[i]=sqrt(n)*(xstar.bar-x.bar) 

} 

 

qqnorm(Qstar, ylab='Q*', main="Q* versus Normal (0,1)");qqline(Qstar) 

 

qqplot(Qstar,Q, main="Q* versus Q") 

 

# Linear regression consistency and normality 

rm(list=ls()) 

set.seed(12345) 

 

n=100  # original sample size 

 

dat=rnorm(n,19,10) 

x=dat 

  

mean=0;sd=2 

b0=0.9; b1=1.5 

b01=as.matrix(c(b0,b1)) 

   

datax=matrix(c(rep.int(1, n),x),c(n,2)) 

v=(1/n)*t(datax)%*%datax 

  

sd^2*solve(v) 

 

error=rnorm(n,mean,sd) 

y=b0+b1*x+error 

fit=lm(y~x)  

b0hat=summary(fit)$coef[1] 

b1hat=summary(fit)$coef[2] 

 

a1=data.frame(x,y) 

a=data.matrix(a1) 

 

b=1000 # number of bootstrap replication 
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x0=0; x1=0; sigma.boot=0; x00=0; x11=0 

 

for (i in 1:b) 

{ 

 m=n  # bootstrap sample size 

 v=sample(1:length(x),m,replace=TRUE) 

 indep=a[v,1] 

 dep=a[v,2] 

  

 res=lm(dep~indep) 

 bet0=summary(res)$coef[1] 

 bet1=summary(res)$coef[2] 

  

 

x0[i]=sqrt(m)*(bet0-b0hat) 

x1[i]=sqrt(m)*(bet1-b1hat) 

 

sigma.boot[i]=summary(res)$sigma   

 

x00[i]=(bet0-b0hat)/sqrt(vcov(res)[1,1]) 

x11[i]=(bet1-b1hat)/sqrt(vcov(res)[2,2]) 

 

} 

 

mean(x0); var(x0) 

mean(x1); var(x1) 

 

mean(sigma.boot) 

 

mean(x00); var(x00) 

mean(x11); var(x11) 

 

qqnorm(x1, ylab='z1', main="z1 versus Normal (0,1)");qqline(x1) 

qqnorm(x11, ylab='z2', main="z2 versus Normal (0,1)");qqline(x11) 

 

 

 

########### Bootstrapping logistic model############# 

# Study I 

 

data.lbwt=read.table("lbwt.dat",header=TRUE) 

 

data.lbwt 

 

names(data.lbwt) 

attach(data.lbwt) 

 

logis.fit=glm(LOW~ SMOKE + AGEYR, family=binomial(link = logit)) 

 

summary(logis.fit) 

 

detach(data.lbwt) 

 

#Bootstrap method for study I 

 

data.lbwt=read.table("lbwt.dat",header=T) 

attach(data.lbwt) 
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n=length(SMOKE) 

detach(data.lbwt) 

 

boot0=0; boot1=0; boot2=0 

for (i in 1:1000) 

{ 

 m=n  # bootstrap sample size 

 v=sample(1:n, m, replace=TRUE) 

 

 LOWstar=data.lbwt[v,1] 

 SMOKEstar=data.lbwt[v,2] 

 AGEYRstar=data.lbwt[v,3] 

 

 boot.fit=glm(LOWstar~SMOKEstar+AGEYRstar, family=binomial(link = 

logit)) 

 

 boot0[i]=summary(boot.fit)$coef[1] 

 boot1[i]=summary(boot.fit)$coef[2] 

 boot2[i]=summary(boot.fit)$coef[3] 

} 

 

mean(boot0); sd(boot0) 

mean(boot1); sd(boot1) 

mean(boot2); sd(boot2) 

 

 

#Study II 

data.t=read.table("data3.dat", header=T) 

data.t 

 

 

names(data.t) 

attach(data.t) 

 

logis.fit=glm(GEST~ AREA + MEDUYR, family=binomial(link = logit)) 

 

summary(logis.fit) 

 

detach(data.t) 

 

#Bootstrap method for study II 

 

data.t=read.table("data3.dat", header=T) 

attach(data.t) 

n=length(GEST) 

detach(data.t) 

 

boot0=0; boot1=0; boot2=0 

for (i in 1:1000) 

{ 

 m=n  # bootstrap sample size 

 v=sample(1:n, m, replace=TRUE) 

  

 AREAstar=data.t[v,1] 

 GESTstar=data.t[v,2] 

 MEDUYRstar=data.t[v,3] 
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 boot.fit=glm(GESTstar~AREAstar+MEDUYRstar, family=binomial(link = 

logit)) 

 

 boot0[i]=summary(boot.fit)$coef[1] 

 boot1[i]=summary(boot.fit)$coef[2] 

 boot2[i]=summary(boot.fit)$coef[3] 

} 

 

mean(boot0); sd(boot0) 

mean(boot1); sd(boot1) 

mean(boot2); sd(boot2) 
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CHAPTER 3


THE HYBRID LOGISTIC REGRESSION MODELS FOR MORE THAN ONE RARE RISK FACTOR


3.1  Definition: Zero Cells Count


When analyzing sample tables of counts, we encounter two types of empty cells: sampling zeroes and structural zeroes.  Sampling zero cells occur in situations where one or more cases exist in the population of interest, but such zero cell counts arise because of sampling variation, especially the use of small sample sizes for a contingency table composed of a large number of cells.  Such zero cells will tend to disappear if sample size is sufficiently large (Agresti, 1996).  The classic example used by Fienberg (1980) to illustrate sampling zeroes is the observed zero cell count for Iowa Jewish farmers; such individuals exist, but small simple random samples of Iowa farmers will often not include these people because of their small population size.  On the other hand, structural zero cells occur in situations where a cell is empty due to the impossibility of observing positive cell counts for specific combinations of various categories. An example by Agresti (1996) to illustrate structural zeroes, “suppose that professors employed in a given department at the university of Rochester for at least five years were cross-classified on their current rank (assistant professor, associate professor, professor) and their rank five years ago.  Professors cannot be demoted in rank, so three of the nine cells in the table contain structural zeroes.  One of these is the cell corresponding to the rank of professor five years ago and assistant professor now; it cannot contain any observations.”


The sampling zeroes are the part of the observed data set that are much more common than the structural zeroes and have the contributions to the likelihood function and the model- fitting process.  Our discussions based on sampling zeroes, which can affect the ML estimation of the parameters in the logistic regression model, often by reporting infinite estimates for the parameters.  A value of 
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 for a parameter estimate means that the likelihood function keeps increasing as the parameter moves toward 
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.  Such results imply that ML fitted values equal to 0 in some cells, and some odd ratio estimates have values of 
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or 0.  The consequence of the sampling zeroes has a severe bias in estimators of odds ratios and poor chi-squared approximations for goodness-of-fit statistics.  However, different ideas appeared in the literature are discussed below to smooth the data before fitting the model.

3.2 Methods for Smoothing the Data

3.2.1 “Add-a-Constant” Approach


Adding a small constant, generally 0.5, to every cell of the table has been a common recommendation in some standard references; for example, Haldane (1956) suggested a correction term 0.5 to add to all four cells prior to analysis of the 
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(see, for example, Walter and Cook, 1991).  For a multi-way table, Goodman (1970,1971) recommended this procedure for the saturated models only.  An example of the beneficial effect of this for a saturated model is bias reduction for estimating as odds ratio in a 
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 table (Gart, 1966; Gart and Zweiful, 1967).  A different approach proposed by Clogg et al., (1991) is to preserve the marginal distribution of the dependent variable when prior observations are divided among cells of the contingency table.  Agresti (2002) mentioned that adding 0.5 to the unsaturated model smoothes the data too much that causes an influence on estimated effects and test statistics.  However, this practice helps to find the asymptotic variances of the parameters for which the confidence intervals are calculated as well as point estimate for the unknown parameters.  Hosmer and Lemeshow (2000) and Agresti (1996, 2002) suggested certain ways to deal with zero cells:

Hosmer and Lemeshow (2000) recommend three strategies as ad hoc solutions for eliminating the problems caused by zero cells for sampling zeroes:


(i)
collapse the categories of a nominal variable by combining a zero cell with a  non-zero cell, thus eliminating the zero cell by reducing the number of variable categories (levels) by pooling two or more cell counts;


(ii) 
simply eliminate the zero cell by discarding the variable category in which it appears;


(iii) 
treat the variable as intervally measured, if the variable with a zero cell in one of its categories is an ordinal measure.


In addition, Agresti (1996, 2002) recommends the following approach:



add a very small constant (such as 
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) to cell counts and perform a sensitivity analysis by  adding constants of varying sizes to determine the effect on the parameter estimates and goodness-of-fit statistics. The total amount added should be very small in comparison to the total sample size.

3.2.2 “Pseudo-Bayes” Approach

Bayesian methods, an alternative approach to ML estimation, provide a way of smoothing the data in a less ad hoc manner than adding arbitrary constant to cells (Agresti, 2002).  Bishop et al. (1975) proposed pseudo-Bayes estimators which provide an all purpose method for removing the zeros in an observed frequency distribution or contingency table, so that other analyses, can be made that were previously hampered by the presence of zero cell counts, can be made.  In Bayes and pseudo-Bayes estimation approaches (see, Bishop et al., 1975; Dillon et al., 1981; and Agresti, 2002), the parameters of the multiway table (that is, the cell probabilities) themselves are assumed to have a probability distribution that can be characterized by a smaller set of "hyperparameters”.  In the process of estimating the hyperparameters, estimators for the original set of parameters are obtained which often have more superior properties (that is, smaller risk) than the estimators not based on the hyperparametric structure.
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The kernel of the likelihood function for this multinomial distribution is 
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Assuming the natural conjugate family of prior distributions for this likelihood is the Dirichlet, whose densities have the form
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The posterior distribution can be obtained from the likelihood and the prior, that is, 


Posterior  ( Prior ( Likelihood


That is,



[image: image28.wmf])


|


(


)


|


(


)


|


(


x


p


l


p


f


p


´


µ


b


b


p




That is, 


[image: image29.wmf]Õ


Õ


å


=


-


+


=


=


µ


t


i


x


i


t


i


i


t


i


i


i


i


p


p


1


1


)


(


1


1


)


|


(


b


b


b


b


p




If we set 

[image: image30.wmf]å


=


=


t


i


i


K


1


b


 and 

[image: image31.wmf]K


i


i


b


l


=


, then the prior and posterior means of 

[image: image32.wmf]i


p


 are given by 


Prior mean, 

[image: image33.wmf](


)


i


i


K


p


E


l


l


=


,


|


 


Posterior mean, 

[image: image34.wmf](


)


K


N


K


x


x


K


p


E


i


i


i


+


+


=


l


l


,


,


|




Now, we can rewrite in vector notation the mean of the posterior distribution as
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In this case, a Bayesian would specify K and ( on the basis of his prior information.  According to the Bayesian interpretation, the right–hand side of (3.2.1) illustrates a well-known method for “smoothing” multinomial data.  The data, 
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Next, we discuss another standard device called “pseudo-Bayes approach” which removes zero counts in contingency tables.  Pseudo-Bayes estimates are obtained by using data-dependent values of both K and (.  Note that the smoothing constants K and ( are functions of x. Now, we denote the random variable version of the Bayes estimator given in (3.2.1) by
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Since K and 
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The risk function of 

[image: image48.wmf]÷


ø


ö


ç


è


æ


c


t


q


,


2


1


ˆ


 is obtained by substituting the appropriate values into equation (3.2.3).  This yields,




[image: image49.wmf](


)


2


2


2


2


1


1


2


1


1


1


2


2


,


,


2


1


ˆ


t


p


N


p


p


c


t


q


R


-


÷


ø


ö


ç


è


æ


+


+


-


÷


ø


ö


ç


è


æ


+


=


÷


÷


ø


ö


ç


ç


è


æ


÷


ø


ö


ç


è


æ


d


d


d



             (3.2.4)


where 
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The optimal value of K depends on the unknown value of p.  We may obtain an estimate of this unknown optimal value of K by replacing p by 
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or in terms of x, the observed value of the random variable 
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A pseudo-Bayes estimator of p is then
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where 

[image: image61.wmf]K


ˆ


 is given in equation (3.2.7). 
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             (3.2.9)


(see, for example, Dillon et al., 1981).


3.3 A Hybrid Logistic Regression Procedure

3.3.1  A Hybrid Logistic Regression Model for the Case-Control Study

Chen et al. (2003) proposed a hybrid logistic regression model for case-control studies to deal with the zero cells.  In case-control studies, if there tends to be rare disease in the control group for the risk factors, then the estimation of the parameters of those risk factors is difficult.  The following table provides an example of the rare risk factor for case-control study.


Table 3.3.1:  Female adolescent suicides and controls by PAS


		

		Case

		Control



		Past attempt of suicide (PAS)

		Yes

		13

		0



		

		No

		8

		40



		Source: Chen et al. (2003)





In this situation, previous investigations (for example, Shaffer et al., 1996) do not include such risk factors and consider the other risk factors instead.  Avoiding the former risk factors may overestimate the odds ratio of the remaining risk factors in the model (Brent et al., 1999).  However, if all risk factors are included in the model, the model may not converge. As noted in Chapter 1, the hybrid logistic model (Chen et al., 2003) overcomes these limitations by adjusting troublesome risk factor first, and then models the remaining risk factors using the logistic regression.  The specific form of the hybrid logistic model for case-control studies is expressed for one rare risk factor 
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 (3.3.1)


where, 
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The parameters in the model 
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3.3.2  A Hybrid Logistic Model: Bivariate Case


3.3.2.1  Consider the case when the rare risk factors 
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 (3.3.2)


For an individual term in the likelihood function shown in equation (3.3.2), the simplification is given using the Bayes theorem.
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(3.3.3)


The first term in the numerator of equation (3.3.3) yields,
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 (3.3.4)


The second term in the numerator of equation (3.3.3) yields,
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 (3.3.5)


Substituting (3.3.4) and (3.3.5) in (3.3.3) we get,
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Let 
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The following model is obtained for the joint distribution of risk factors 
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Taking ln on both sides of the equation (3.3.8) and we get,
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For the other parameters involved in the model, Model (3.3.7) can be expressed in the following forms:
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By combining equation (3.3.9)-(3.3.12), we have


Result 3.3.2: The ML estimates of 
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3.3.2.2  Consider the case when the rare risk factors 
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The following model is proposed for the joint distribution of risk factors where the variables 
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Theorem 3.3.3.  If 
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which is the model shown in (3.3.7).


Hence, the proof follows.
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Taking ln on both sides of the equation (3.3.18) and we get,
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We consider the proportions are the same across all permissible strata.  Therefore, summarizing the above we have the following statement. 
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For the other parameters involved in the model, Model (3.3.17) can be expressed in the following forms:
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By combining equation (3.3.19)-(3.3.22), we have


Result 3.3.5:  The ML estimates of 
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3.3.3 A Hybrid Logistic Model: k-Variate Case


3.3.3.1 When the rare risk factors 
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                       (3.3.27)


where 
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The estimates for the case-control data can be obtained by finding the MLE of 
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3.3.3.2 When the rare risk factors 
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  (3.3.28)


The estimates for the case-control data can be obtained by finding the MLE of 
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which is similar to described in Theorem 3.3.4.  The estimates of other parameters can be obtained by applying Theorem 3.3.5. 










Table 3.3.3: Cross-classification between � EMBED Equation.3  ���and � EMBED Equation.3  ���







� EMBED Equation.3  ���







Table 3.3.2: Cross-classification between the variables � EMBED Equation.3  ��� versus y
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