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ABSTRACT

Sergey Shpectorov, Advisor

In Chemistry, fullerenes are molecules composed entirely of carbon atoms, in the form

of a hollow sphere, ellipsoid or tube, such that each atom is bonded with three other atoms

and the atoms form pentagonal or hexagonal rings. The spherical fullerenes motivated the

related mathematical concept: a fullerene graph is a trivalent plane graph such that all faces

are pentagons and hexagons.

The goal of this research is to prove the conjecture that there are exactly five `1-

embeddable fullerenes. These are known to be the following fullerenes: F20(Ih), F26(D3h),

F40(Td), F44(T ) and F80(Ih) (where the group of symmetry is given in parentheses for each

fullerene). We proceed in proving this result by looking at the minimal distance between

the pentagonal faces of the fullerene. In the cases when the minimal distance between pen-

tagons is greater than two we obtain a contradiction, which leads us to conclude that in an

`1-embeddable fullerene there must exist at least two pentagons that either are adjacent or

have a common hexagonal neighbor. For the latter cases we show that the only possibilities

are the five fullerenes listed above.
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CHAPTER 1

INTRODUCTION

1.1 About `1-embeddable graphs

In recent years, a lot of research has been done around the `1-embeddability of finite or

infinite graphs. The present dissertation contributes to this line of research, filling one of the

existing gaps.

The main concept of this thesis is the concept of an `1-graph. To define it let us start

with a more familiar one. A distance space is a set X with a function d : X × X → R+,

such that d is symmetric and d(x, y) = 0 if and only if x = y. If d also satisfies the

triangle inequality, i .e., d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X, then d is called a

metric and (X, d) becomes a metric space. Examples of metric spaces are abundant, but

probably the most well known are the `p spaces. Given the vector space Rn we can define

on it the metric d`p(x, y) = (
∑n

i=1 |xi − yi|p)
1
p , thus obtaining an `p space. For p = 2 we

get the usual Euclidean metric. When p = ∞ the distance function can be defined as

d`∞(x, y) = max{|xi − yi|, 1 ≤ i ≤ n}. The `p spaces often play the role of the standard

metric spaces with which other metric spaces are compared.

In graph theory, many examples of metric spaces come from connected weighted graphs,

where each edge has a certain weight—also called its length. Ordinary connected graphs
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can be viewed as having constant edge weight one, which leads to the concept of the path

distance on the graph. Thus, every connected graph can be viewed as a distance space, in

fact, a metric space.

Given two distance spaces, an isometric mapping between the two spaces is a mapping

that preserves distances. These mappings are the natural morphisms in the category of

distance spaces. They are always injective mappings.

Observe that with every standard distance space we can associate a class of distance

spaces, namely the distance spaces isometrically embeddable into the standard space con-

sidered. Thus we can define the `p-distance spaces as the distance spaces isometrically

embeddable into the `p spaces for a fixed p. The most prominent of these are the `1-distance

spaces, the `2-distance spaces (these are actually subsets of the Euclidean space) and the

`∞-distance spaces. This thesis will deal with the class of `1-distance spaces, specifically

with the subclass of `1-graphs.

Some examples of `1-graphs are: the complete graphs, the Hamming graphs, the Johnson

graphs J(n, k). A further example is the infinite hexagonal lattice in the plane or any finite

convex part of it.

The above are examples of classes of graphs where all graphs are `1-embeddable. However,

not all classes of graphs have the nice property that all their members are `1-embeddable.

Therefore an interesting question to pose is which of the graphs in a given class of graphs

are `1-embeddable. This approach was taken in quite a few papers, among which we can

cite [DFS], [DDG], [CDG], [DDS] and [DDS05]. Of particular importance is the book [DGS],

where many classes of polyhedral and lattice graphs were systematically examined.

A central result in the problem of recognizing which graphs are `1-graphs was established

by Assouad and Deza in [AsDe1] and [AsDe2], see Theorem 2.1.1 below. According to this

result a graph is an `1-graph if and only if it is scale embeddable into a hypercube. A scale

embedding is an embedding of one space into the other such that the distance in the second

space is proportional with the distance in the first. The proportionality constant is called
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the scale of the embedding.

In the paper [Sh93] Shpectorov establishes, among other things, that the `1-graphs can be

recognized in polynomial time which is surprising since Karzanov proved that for the general

`1-distance spaces the recognition problem is NP -complete, that is, requires exponential

time.

In another paper [DeSh], Deza and Shpectorov proposed a concrete algorithm for deter-

mining the `1-embeddability of graphs. This algorithm was later implemented by Pasechnik

within the computer algebra programming system called GAP. Later, the algorithm has been

improved by Dutour and it has been used successfully to determine the `1-embeddability of

many concrete graphs. The five `1-embeddable fullerenes that we mentioned in the Abstract

have been discovered via this computer program.

Deza proposed as a research project the determination of all `1-graphs that are the edge

graphs of various polyhedra. Together with Grishukhin and Shtogrin, Deza systematically

examined many classes of polyhedral, polytopal and lattice graphs in the book [DGS]. Along

the same lines, Deza, Dutour and Shpectorov published the paper [DDS] which deals with

the Archimedean Wythoff polytopes.

Another interesting class of graphs is the class mn of trivalent plane graphs such that

every face is either a hexagon or an m-gon and n represents the number of vertices if the

graph is finite. The unique graph 6n is the infinite hexagonal lattice and it is embeddable into

the infinite dimensional `1-space. If m > 6 the graphs obtained are also infinite and drawn

naturally on the Minkovski plane. They have been shown to be `1-embeddable. When m < 6

the graphs mn are finite. In particular, 5n are the fullerene graphs. The `1-embeddable

4n graphs have been determined by Deza, Dutour and Shpectorov in [DDS05]. The `1-

embeddable 3n graphs have also been classified (only the tetrahedron is `1-embeddable among

such graphs; see [DDS05] for the explanation). Thus the present dissertation completes the

last open case (m = 5) of the classification of all mn graphs that are `1-embeddable.

Let us mention another class of `1-embeddable graphs: the outerplanar graphs. These
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are graphs that have an embedding into the Euclidean plane such that the vertices lie on a

fixed circle and the edges lie inside the disk and do not intersect. The outerplanar graphs

were shown to be `1-embeddable in [CDG].

More on `1-graphs: two papers complete the classification of complementary `1-graphs

(i .e., of those graphs that enjoy the property that both the graph and its complement graph

are `1-embeddable). These papers are by Shpectorov [Sh97] and Marcusanu [Ma02].

Research has been done also around relaxing the condition of `1-embeddability, i .e.,

graphs have been studied that have an embedding into an `1-space which is isometric only to a

limited distance t (such embeddings are called t-embeddings). The study of t-embeddings was

started by Deza and Shpectorov in [DeSh], where they constructed the unique 7-embedding

of C60(Ih). A comprehensive answer regarding the t-embeddings of icosahedral fullerenes

and their duals (icosahedral fullerenes are fullerenes of highest attainable symmetry Ih) was

obtained by Deza, Fowler and Shtogrin in [DFS].

Finally, Puharic in his PhD thesis [Puh] studied the face consistency of fullerenes. This

condition is for most fullerenes equivalent to 3-embeddability. In particular, he directed his

efforts to constructing new classes of fullerenes that are face consistent and that have as

symmetry groups the groups D5h or I.

1.2 About fullerenes

The fullerene geometrical structure seems to appear everywhere in nature - from the red

giant stars and interstellar gas clouds to the outer shell of viruses and the neural cells in our

bodies. But what exactly is a fullerene? We mentioned above that fullerenes are important

in Chemistry, that they are a variety of polyhedra and can be viewed as graphs belonging to

the class of graphs 5n, but we did not give a full precise definition. In the remainder of this

chapter we are going to define fullerenes (both from a chemical and a mathematical point of

view) and list some interesting facts about them together with some of their applications.
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So let us define fullerenes. In Chemistry, fullerenes are carbon molecules in which each

carbon atom is chemically bonded to exactly three other carbon atoms and the atoms in the

molecule form only pentagonal or hexagonal rings. Fullerenes were discovered (synthesized as

stable molecule) relatively recently in 1985 by Sir H. Kroto (U.K.) and two researchers at Rice

University (R. Curl and R. Smalley). They were named after Richard Buckminster Fuller, a

famous architect who popularized the geodesic dome (which the buckminsterfullerene, one

of the fullerenes with 60 vertices, resembles). The three researchers were awarded the Nobel

Prize in Chemistry in 1996 for their discovery.

The applications of fullerenes in Chemistry are numerous. Carbon nanotubes constitute

one application. These nanotubes are from the fullerene family but they are not spherical

fullerenes, being made only of hexagons (sheets of hexagons rolled up into a cylinder). These

nanotubes are characterized by high electrical conductivity, high resistance to heat, and

relative chemical inactivity (being round with no exposed atoms that can be easily displaced).

Another application surged when by crystallizing the buckminsterfullerene at high pressures,

chemists created a material that could scratch diamond.

Fullerene chemistry is a new field of organic chemistry devoted to the chemical properties

of fullerenes. Research in this field is driven by the need to functionalize fullerenes and tune

their properties to the particular applications. In addition to the examples mentioned above,

we can refer to the known fact that fullerenes are notoriously insoluble and thus by adding a

suitable group one can enhance their solubility. By adding a polymerizable group, a fullerene

polymer can be obtained. Functionalized fullerenes are divided into two classes: exohedral

with substituents outside the cage and endohedral fullerenes with trapped molecules inside

the cage. The latter involves the opening of fullerenes by breaking several of the double

bonds with the aim of inserting small molecules through the hole, for instance hydrogen in

endohedral hydrogen fullerene.

Next, let us look at applications of fullerene structures to microbiology (virology). In

microbioloy it is known that small organisms have to economize upon their resources. This
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holds true especially for viruses. If one is facing the problem of housing a genome with as few

protein as possible (in terms of coding effort) the approach may be to use one protein which

self-organizes to form the required capsule. The icosahedral viruses do so, by generating a

capsid (meaning, the outer shell of a virus) of 60 symmetry related subunits. Among the

small icosahedral viruses are the well known human or animal pathogens causing poliomyeli-

tis, cold (rhinovirus), hepatitis, foot and mouth disease or a variety of enteric diseases. Plant

pathogens, like the rice yellow mottle virus, destroy a year’s harvest in whole regions. Insect

viruses or bacteriophages employ the same construction principle as well.

Molecular biology is another field in which fullerene structures appear. Clathrin is a

fullerene-like protein which was discovered in 1969 by Kanaseki and Kadota. Clathrins are

the major components of coated vesicles - important organelles for intracellular material

transfer including synaptic neurotransmitter release. Neural cells (neurons) contain clathrin

with 12 pentagons and 20 hexagons (as molecule F60), with diameters of 70-80 nm. However,

liver cells contain clathrin with 30 hexagons, while fibroblasts have clathrin with 60 hexagons

(like higher fullerenes).

Mathematically, a fullerene Fn, n being the number of vertices, is a finite connected plane

trivalent graph whose faces are pentagons and hexagons. Fullerene structures appeared first

in a paper by Goldberg in 1933 and they were referred to as medial polyhedra.

The smallest fullerene is the dodecahedron - the unique fullerene on twenty vertices.

Since the number of vertices of a fullerene is always even, it follows in particular that there

are no fullerenes with 21 vertices. It has also been proven that there are no fullerenes with

22 vertices (see [Gr67], page 271). The number of fullerenes Fn grows with increasing n

= 24, 26, 28... For instance, there are 1812 non-isomorphic fullerenes F60 (non-isomorphic

fullerenes with the same number of vertices are called isomers). Among all fullerenes F60,

only one (specifically, the buckminsterfullerene, alias truncated icosahedron) has no pair of

adjacent pentagons and this is the smallest fullerene with such property. A fullerene without

a pair of adjacent pentagonal faces is called a preferable fullerene. In Chemistry, preferable
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fullerenes correspond to more stable molecules.

To further illustrate the growth of the number of isomers as n increases, consider an-

other example: there are 214,127,713 non-isomorphic fullerenes F200. Among these, only

15,655,672 have no adjacent pentagons. It was proved (Thurston, 1998) that the number of

fullerenes with n vertices grows as n9. In order to distinguish between the many isomers of

a fullerene, their group of symmetries is considered. There are 28 groups of symmetries for

fullerenes. For instance, the most famous fullerene (the buckminsterfullerene) has as group

of symmetries Ih (the icosahedral group). Similarly, the dodecahedron (the only fullerene

with 20 vertices) also admits Ih as its group of symmetries. For more details on groups of

symmetries for fullerenes, see [FMRR].

Regarding the `1-embeddability of fullerenes, the `1-status of more than 4,000 small

fullerenes and their duals is known. It was determined by Pasechnik and Dutour via a

computer program in GAP. The conclusion of their work is that among fullerenes with less

than 60 vertices, only four fullerenes, F20(Ih), F26(D3h), F40(Td), F44(T ) are `1-embeddable,

and that among preferable fullerenes with less than 86 vertices, only one fullerene, F80(Ih), is

embeddable. However, for fullerenes with at least 60 vertices or for preferable fullerenes with

at least 86 vertices, no research determined exhaustively the `1-status of all such fullerenes.
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CHAPTER 2

BASIC THEORY OF `1-GRAPHS

Let Γ be a graph and u, v two of its vertices. We denote by dΓ(u, v) the path distance in

Γ between u and v, i.e., the length of a shortest path between u and v (such a path will be

referred to as a geodesic). In particular, dΓ(u, v) can be infinite if u and v belong to different

connected components of Γ. When Γ is connected, dΓ is a metric on Γ which turns Γ into a

metric space.

2.1 Isometric embeddings, labels, shifts

A scale k embedding between two distance spaces (Γ, dΓ) and (∆,d∆) (where k is a

positive integer) is a mapping f : Γ → ∆ such that d∆(f(u), f(v)) = kdΓ(u, v), for every

u, v ∈ Γ. If k = 1, we say that f is an isometric embedding. Note that every graph is

naturally a distance space (with respect to its distance function). Also note that Rn with

the `1-distance d(x, y) =
∑n

i=1 |xi− yi| is a metric space to which we refer to as the standard

`1-space.

With these remarks, a graph is called an `1-graph if, as a distance space (the path distance

being its metric), it has an isometric embedding into the standard `1-space Rn (for some n).

A nice and important example of `1-graph is the Hamming Hypercube graph Hn. Con-

sider Ω = {1, 2, . . . , n}. Then we construct Hn by considering as vertices all subsets of Ω
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(2n vertices) and by joining vertices A and B if |A4B| = 1, where the symbol 4 denotes

the symmetric difference of the sets A and B (i.e., the set formed with elements that be-

long either to A or to B but not to both). The path distance in Hn can be computed via

dHn(A, B) = |A4B| for any pair A, B of subsets of Ω. Thus Hn can be isometrically embed-

ded into Rn endowed with the `1-norm by the mapping that assigns to each vertex of Hn its

characteristic vector in Rn.

The graph 1
2
Hn obtained from Hn by considering only the even size subsets of Ω is called

the half-cube graph. In this graph, vertices are adjacent if their symmetric difference has size

two and the distance between any two vertices A, B is half the cardinality of their symmetric

difference. Thus the half-cube graph 1
2
Hn is scale two embeddable in Hn.

Note that the set of all subsets of the set Ω considered above together with the operation

of symmetric difference 4 forms an abelian group. In order to see this, the associativity and

commutativity of the symmetric difference are to be verified. Indeed, from the definition

of the symmetric difference it follows that it is commutative. To prove the associativity,

we note that every subset of Ω is represented by its characteristic function with values in

Z mod two (in the field GF(2)). Then the symmetric difference is simply the addition of

the characteristic functions, which is known to be associative. The group of all subsets of Ω

is the same as the (n-dimensional) GF(2)-vector space of all functions on Ω with values in

GF(2). The unity in this group is the element ∅. Moreover, each subset A of Ω admits itself

as inverse, given the equality A4A = ∅.

The following characterization of `1-graphs from [AsDe1] and [AsDe2] will be used through-

out this text:

Theorem 2.1.1. (Assouad, Deza) A graph is an `1-graph iff it admits a scale embedding

into a hypercube.

Let Γ be an `1-graph and let it embed in a hypercube Hn with scale k via the mapping

φ that assigns to each vertex of Γ a vertex of Hn, i.e., a subset of {1, 2, . . . , n}. The set φ(v)

is referred to as a coordinate set (or simply, the coordinates) of the vertex v. Note that the
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coordinates of the vertices of Γ depend on the chosen embedding φ.

For each edge between two vertices u, v ∈ Γ we have dΓ(u, v) = 1 = 1
k
|A4B| , where

A = φ(u) and B = φ(v). The set A4B constitutes the label of the edge uv and by the equality

above we see that every edge label consists of precisely k elements from {1, 2, . . . , n}.

For a scale k embedding φ of Γ into Hn we define a shift of φ by A (where A is an

arbitrary subset of {1, 2, . . . , n}) to be the mapping φA : Γ → Hn that assigns to a vertex v

the set φA(v) = φ(v)4A.

Lemma 2.1.2. Any shift φA of a scale k embedding φ is also a scale k embedding. Moreover,

φA induces exactly the same edge labels as φ.

Proof: Using the commutativity and associativity of the symmetric difference and the fact

that A4A = ∅, we get φA(u)4φA(v) = (φ(u)4A)4(φ(v)4A) = φ(u)4φ(v), for all u, v ∈ Γ.

In particular, dHn(φA(u), φA(v)) = dHn(φ(u), φ(v)) = kdΓ(u, v). Therefore, φA is a scale k

embedding. Furthermore, if u and v are adjacent, the equality φA(u)4φA(v) = φ(u)4φ(v)

shows that φ and φA induce the same labels on the edges.

We will consider φ and all its shifts φA to be equivalent embeddings. This is justified since

φB = (φA)A4B for all subsets A and B of Ω. So two different shifts of one scale embedding

are shifts of each other.

Thus for every scale embedding φ and any given vertex v there is an equivalent embedding

that assigns to v the coordinate set ∅, namely, the embedding φφ(v), which indeed maps v to

∅. Then all vertices adjacent to v have coordinate sets consisting of k elements, all vertices

situated at distance two from v have coordinate sets with 2k elements, etc.

2.2 Labels on geodesics and isometric cycles

Lemma 2.2.1. Let v0, vn be two vertices of an `1-graph Γ and φ a scale k embedding of Γ

into a hypercube. The following hold:

a) For any path from v0 to vn, φ(v0)4φ(vn) is the symmetric difference of all edge labels.
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b) In the case of a geodesic path, the edge labels are pairwise disjoint and φ(v0)4φ(vn) is

the disjoint union of edge labels.

Proof: a) Consider an arbitrary path {v0, v1, . . . , vn}. Then the edge labels are the sets

Ei = φ(vi−1)4φ(vi), where i = 1, ..., n. The symmetric difference of all edge labels is E =

E14E24 . . .4En. Hence E = (φ(v0)4φ(v1))4(φ(v1)4φ(v2))4 . . .4(φ(vn−1)4φ(vn)) =

φ(v0)4φ(vn), since all other terms cancel.

b) Now consider a geodesic path {v0, v1, . . . , vn}. We then have dΓ(v0, vn) = n =

1
k
|φ(v0)4φ(vn)| and thus the symmetric difference of all edge labels has cardinality kn.

Given that each edge label has k elements and that there are n edge labels we deduce that

these edge labels are pairwise disjoint (otherwise their symmetric difference has less than kn

elements).

A subgraph ∆ of Γ is called isometric if for all vertices u and v of ∆ we have d∆(u, v) =

dΓ(u, v). Equivalently, ∆ is isometric if its identity embedding into Γ is an isometric mapping.

Geodesic paths in Lemma 2.2.1, part b, are examples of isometric subgraphs. The next result

shows how we can use edge labels to characterize some other isometric subgraphs of an `1-

graph, specifically, the isometric cycles on five or six vertices. This result will be applied

later to the faces of an `1-fullerene.

Proposition 2.2.2. In an `1-embeddable graph the following hold:

1) Opposite edges in a hexagonal isometric cycle have the same label. Edges that are not

opposite have disjoint labels.

2) In the case of pentagonal isometric cycles, the opposite edges share half of their label

(i.e., k
2

elements, k being the scale of the embedding). Edges that are not opposite have

disjoint labels.

Proof: 1) Consider a hexagonal cycle with vertices {v1, . . . , v6}. Denote the edge labels by

Ei = φ(vi)4φ(vi+1), where i = 1, ..., 6, v7 = v1 and φ is a scale k embedding. The cycle

being isometric, we have that d(v1, v4) = 3. The paths {v1, v2, v3, v4} and {v1, v6, v5, v4}
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Figure 2.1: Edge labels on hexagonal and pentagonal isometric cycles

are geodesics and therefore the edge labels E1, E2, E3 are pairwise disjoint and similarly for

E4, E5, E6. Applying the same argument to the pairs of vertices {v2, v5} and {v3, v6} we

infer that non-opposite edges of the cycle have disjoint labels. We now turn our attention to

opposite edges. Let us prove that E1 = E4. We have d(v2, v4) = 2 and by the previous lemma

applied to the path {v2, v1, v6, v5, v4} we also get that |E14E64E54E4| = |φ(v2)4φ(v4)| =

2k. Since the sets E1, E6, E5 are pairwise disjoint and E4, E5, E6 are pairwise disjoint we

must have that E1 = E4, otherwise the symmetric difference of the four edge labels above

has more than 2k elements.

2) For the case of a pentagonal cycle we employ similar notation as for the hexagonal

cycles (vi denote vertices and Ei denote edge labels). We have d(v1, v3) = 2 and thus the

path {v1, v2, v3} is a geodesic which implies that E1, E2 are disjoint. Similarly, we see that

E2, E3 are disjoint, E3, E4 are disjoint, E4, E5 are disjoint and E5, E1 are disjoint i.e., we

proved that non-opposite edges have disjoint edge labels. Let us prove that |E1 ∩E3| = k/2.

We consider the path {v1, v2, v3, v4} and we have |E14E24E3| = |φ(v1)4φ(v4)| = 2k. Since

E1, E2 are disjoint and E2, E3 are disjoint, we get that |E14E3| = k. But we know that

|E14E3| = |E1|+ |E3|−2|E1∩E3| and |E1| = |E3| = k. Thus it follows that |E1∩E3| = k/2.

The argument can be applied to all pairs of opposite edges.
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2.3 Zones

For any element j (1 ≤ j ≤ n), consider the set of all edges in Γ that contain j in their

label and call it the j-zone. The concept of a zone will be very useful in proving the main

result of this paper.

We next define a cut in Γ. Consider a partition of the vertices of Γ into two parts P and

P̄ . The cut in Γ corresponding to the partition (P, P̄ ) is the set of all edges that have one

end vertex in P and the other one in P̄ .

Lemma 2.3.1. Every zone is a cut. Thus, the j-zone determines a partition of the vertex

set of Γ.

Proof: Let φ be the map via which Γ embeds into Hn. Let P be the set of vertices of Γ

that contain j in their coordinate set and P̄ be the complement of P , i .e., the set of vertices

that do not contain j in their coordinate set. Obviously, this constitutes a partition of the

vertex set of Γ. Moreover, any edge of the zone contains j in its label which means that j

must be present in exactly one of the coordinate sets of its end vertices (since the edge label

is by definition the symmetric difference of the coordinate sets of the edge’s end vertices).

Thus every edge of the zone must have an end vertex in P and the other end vertex in P̄

and therefore the j-zone is a cut.

A subset C of Γ is called a convex subset if for any vertices u, v ∈ C the vertices of every

geodesic from u to v lie in C.

Proposition 2.3.2. Every j-zone partitions the vertex set of Γ into two convex subgraphs.

Proof: Let P and P̄ be the partition of the vertex set of Γ as in the previous lemma. It

is enough to prove that P is convex. Consider v, u in P and a geodesic path from v to u

consisting of the vertices {v0, v1, . . . , vn} in this order (with v = v0, u = vn and n = d(v, u)).

If this path is not entirely in P it follows that there exists a smallest index i and a largest

index h such that vi and vh are not in P (i and h can be equal, 1 ≤ i ≤ h ≤ n − 1). Then
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the edges vi−1vi and vhvh+1 belong both to the geodesic path and to the j-zone, having one

vertex in P and the other in P̄ . Thus, on one hand, the labels of these two edges must be

disjoint (by Lemma 2.2.1) and, on the other hand, both labels contain j (the edges are in

the j-zone), impossible. Thus we conclude that any geodesic path between two vertices in

P must lie entirely in P , i .e., P is convex.

In what follows we will call halves each of the two convex subgraphs defined by a zone

from Γ.
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CHAPTER 3

PROPERTIES OF FULLERENES

3.1 Basic properties

The results in this section apply to fullerenes in general, no `1-embeddability being as-

sumed.

Recall that a fullerene is a finite connected trivalent plane graph, whose faces are pen-

tagons and hexagons only. By faces we mean all faces: the finite faces as well as the infinite

face. This means that we adopt the point of view that the fullerene is drawn on a sphere,

where all faces have equal status.

The next theorem establishes some of the basic properties of fullerenes.

Theorem 3.1.1. The number of pentagons in every fullerene is exactly twelve, the number

of hexagons is (n− 20)/2 (where n is the number of vertices of the fullerene). In particular,

the number of vertices of a fullerene is even.

Proof: We apply Euler’s Theorem to get n− e + f = 2, where e is the number of edges and

f is the number of faces. Let us denote by p and h the number of pentagons and hexagons,

respectively. Taking into account that a fullerene is a trivalent graph and that every edge

belongs to two faces we obtain: n = 5p+6h
3

and e = 5p+6h
2

. From the three equations we

immediately see that p = 12, h = n−20
2

and thus the theorem is proved.
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3.2 Cycles in a fullerene

In this section we study short cycles (up to length six) in a fullerene Γ. We show that

such cycles are necessarily isometric and that, in fact, the only short cycles are the face

cycles of Γ.

Consider γ = uvw, a path in Γ with u 6= w (that is, not a return). We say that γ

makes a right turn at v if vw immediately follows uv (no other edge in between) in the

counterclockwise direction around v (we refer here to the embedding of Γ into the sphere).

Similarly, the path makes a left turn at v if vw immediately follows vu (no other edge in

between) in the clockwise direction around v.

Figure 3.1: Right and left turns

Correspondingly, a path γ = a0a1 . . . an without returns (i .e.,, ai+1 6= ai−1, 1 ≤ i ≤ n−1)

makes a right turn at ai or a left turn at ai, where 1 ≤ i ≤ n − 1, if so does the subpath

ai−1aiai+1.

Note that for an ordered edge uv we can speak of the face on the right side and the face

on the left side of uv. If uvw makes a right turn then on the right side of uv and vw lies

the same face. Similarly, if uvw makes a left turn then on the left side of uv and vw lies the

same face. This immediately yields the following lemma.

Lemma 3.2.1. (Face Cycle Lemma) Let γ = a0a1 . . . an be a path without returns. Then

γ follows the boundary of a face F if and only if γ makes only right turns at each vertex



17

ai (0 < i < n) or makes only left turns at each vertex. In the first case γ goes around F

in the clockwise direction, while in the second case it goes around F in the counterclockwise

direction.

We give a few more definitions and some comments before proceeding with the next

results. If γ = a0a1 . . . an is a path without returns in Γ then at every ai, 1 ≤ i ≤ n−1, there

is a unique edge that is not on γ. We will refer to this edge as the side edge at ai. If γ makes

a right turn at ai, we say that the side edge at ai points left, and similarly, if γ makes a left

turn then the side edge points right. When γ is a cycle without returns and self-intersections,

cutting the sphere through γ produces two disks, which we will call the sides of γ; there is

the left side and the right side. Note that there is a symmetry between left and right: if we

reflect the sphere in any hyperplane then we obtain another plane realization of the same

graph, where all right becomes left and vise versa. Also, if we reverse the path (cycle) then

again the left and the right switch.

Lemma 3.2.2. Γ contains no 3-cycles.

Figure 3.2: Side edge at a points left

Proof: Suppose that γ = abca is a 3-cycle in Γ. If all side edges of γ point to one side

then the other side is a face by the Face Cycle Lemma, which is impossible since Γ has no

triangular faces. Thus, two of the side edges point to one side, say, right, and the remaining

side edge points to the other side, that is, left. Suppose the side edge at a points right, as
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shown in Figure3.2, and let d be the other end of that edge. Let a, f , and e be the neighbors

of d in the clockwise order. Since the path edacbadf makes only left turns, it must be part

of a face boundary. Moreover, this path has six different vertices and is not closed (e 6= f)

which implies that the face it goes around has more than six vertices, a contradiction.

Corollary 3.2.3. If abc is a path without returns in Γ then dΓ(a, c) = 2.

Proof: Since the path is without returns we have a 6= c. If d(a, c) = 1 then abc is a 3-cycle,

which is prohibited by the previous lemma. Thus d(a, c) = 2.

Lemma 3.2.4. There is no 4-cycle without returns in Γ.

Figure 3.3: Side edges at a and b point right

Proof: Suppose γ = abcda has no returns. If all side edges point to one side then Γ has a

quadrangular face, a contradiction. Suppose one side edge points to one side (say, right) and

the remaining three side edges point to the other side. By symmetry, we may assume that

the side edge at a points right. Let e be the second end of that side edge and let a, g, f be the

neighbors of e, read clockwise. Note that f, g cannot coincide with either of a, b, c, d because

otherwise there would be either a 3-cycle or a quadrangular face in Γ, a contradiction. The

path feadcbaeg has seven different vertices and makes only left turns, which means that it

must be part of the boundary cycle of a face with at least seven vertices, contradiction.

It remains to consider the case where two side edges point to each side. First suppose

that the edges pointing right are at consecutive vertices of γ, say, at a and b. Let e, f , g
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be as above, and let also h be the third neighbor of b, with b, m, l being the neighbors of h

(read clockwise) as shown in Figure 3.3. The path feadcbhm makes only left turns, so it goes

around a face. If that face is a pentagon then f = b, yielding a 3-cycle, a contradiction with

Lemma 3.2.2. So the face is hexagonal, which means that f = h and m = e (see Figure 3.4).

Figure 3.4: Side edges at a and b point right, iterative case

Now the 4-cycle γ′ = heabh has the side edges at two consecutive vertices pointing right,

so we can iterate the above argument, constructing an infinite sequence of 4-cycles γi (with

γ0 = γ and γ1 = γ′) such that the right side of γi+1 is strictly contained in the right side of

γi. This means that all cycles γi are distinct, which is a contradiction with finiteness of Γ.

Figure 3.5: Side edges at a and c point right, iterative case

Now suppose that the side edges pointing right are at nonconsecutives vertices of γ, say
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at a and c. Let e, g, f be as above and let h, l, m be also as above, except h is now adjacent

to c instead of b. Since the path feadchm makes left turns only, we have that either f = h

and e = m, or f = m. Similarly, looking at geabchl, which makes right turns only, we have

that either g = h and e = l, or g = l. Since Γ has no double edges and no 3-cycles, we must

in fact have that f = m and g = l, giving raise to a 4-cycle γ′ = feghf . Note that the side

edges of γ′ at f and g point right, since both feadchf and geabchg are hexagonal faces (see

Figure 3.5). So we can again iterate our argument to construct an infinite array of distinct

4-cycles, contradicting the finiteness of Γ.

Corollary 3.2.5. Every 5-cycle in Γ has no returns and is an isometric subgraph.

Proof: If this cycle (call it γ) would have returns then we would get a 3-cycle in Γ, con-

tradiction. To prove the second part of the corollary, note that in γ the possible distances

between vertices are either one or two. If a, b are two vertices at distance one in γ then these

vertices are adjacent and thus dγ(a, b) = dΓ(a, b) = 1. If the vertices a, b are at distance two

in γ then they have a common neighbor c in γ. Then acb is a path without returns and thus

by the previous lemma dΓ(a, b) = 2.

Lemma 3.2.6. Every 5-cycle is the boundary cycle of a face.

Figure 3.6: Side edges at a and c point right
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Proof: We prove this lemma by contradiction, i .e., we assume that there exists a 5-cycle

γ = abcdea which is not the boundary cycle of a face. By assumption, not all side edges

point to the same side and therefore we have to consider only the cases: 1) one side edge

points to one side (say, right), while the other four point to the other side; 2)two side edges

point to one side (again, right), while the remaining three point to the other side.

In case 1), suppose the side edge of a points right, its second end vertex being f and the

neighborhood of f consisting of a, g, h in the clockwise order around f . The path hfaedcb

makes left turns only, so it goes around a face. If the face is pentagonal then h = c,

producing a 4-cycle without returns, a contradiction with Lemma 3.2.4. Similarly, if the face

is hexagonal then h = b, producing a 3-cycle, again a contradiction.

In case 2), there are two subcases: either the side edges pointing right are at two con-

secutive vertices of γ, say, a and b, or at two nonconsecutive vertices, say, a and c. In both

subcases, let f, g, h be as above.

In the first subcase, we employ exactly the same argument as in case 1). Indeed, hfaedcb

makes left turns only, implying that h = c or h = b. This gives a 4-cycle without returns,

or a 3-cycle, a contradiction. In the second subcase, let l be the second end of the side edge

at c and let m, n be the two neighbors of l, so that c, m, n form the neighborhood of l, read

clockwise. The path hfaedclm makes left turns only, hence either h = c, producing a 4-cycle

without returns, a contradiction, or h = l and also f = m (see Figure 3.6). Note that the

5-cycle abclma has exactly two side edges pointing right, and they are at consecutive vertices

of the 5-cycle. This configuration was ruled out in case 2), first subcase.

Corollary 3.2.7. Every 6-cycle in Γ, that has no returns, is an isometric subgraph.

Proof: Let γ=abcdefa be a 6-cycle. If two vertices are at distance one or two in γ then

they are at the same distance in Γ. (For distance two we use Corollary 3.2.3 and the fact

that γ has no returns.) So we just need to consider pairs of vertices at distance three in γ.

By symmetry, we may assume that these vertices are a and d. So it suffices to show that

dΓ(a, d) = 3. If dΓ(a, b) = 0 or 1 then Γ contains a 3-cycle or a 4-cycle without returns,
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impossible. Suppose dΓ(a, d) = 2. Let h be the common neighbor of a and d. Then abcdha

and afedha are 5-cycles, and so by Lemma 3.2.6 they are the boundary cycles of two faces,

say F1 and F2. If F1 6= F2, then they are the two faces on the two sides of the edge dh and

so dha must now turn both left and right, impossible.

If F1 = F2 then the cycles must coincide, yielding b = e, which means that the initial

cycle had a return, a contradiction.

Lemma 3.2.8. 6-Cycles without returns in Γ are boundary cycles of faces.

Proof: Let γ = abcdefa be a 6-cycle without returns. If all side edges of γ point to one

side then γ is the boundary cycle of a face. So we need to eliminate all other cases, that

is, where part of the side edges point to one side and the remaining side edges point to the

other side. It suffices to consider the following cases: 1) exactly one side edge points to one

side (say, right), the rest of the side edges pointing to the other side; 2) two side edges point

to one side (right), the remaining side edges pointing to the other side; 3) three side edges

point to one side (right), the remaining side edges pointing to the other side.

For case 1) let ag be the only side edge that points right. Then gafedcb is a path

that makes left turns only, so it goes around a face. Depending on whether this face is a

pentagon or a hexagon, we get g = c, leading to a 3-cycle, or g = b, leading to a double edge;

a contradiction in both cases.

In view of symmetry, in case 2) we need to consider the following subcases: side edges

at a, b point right, side edges at a, c point right or side edges at a, d point right. In the first

subcase the path gafedcb still makes only left turns and the argument from case 1) applies,

giving a contradiction. In the second subcase, let ag and cl be the side edges that point

right. Looking at the path gafedcl, making left turns only, we conclude that either g = c,

leading to a 3-cycle, or g = l, leading to a 4-cycle without returns. None of these is possible.

In the third subcase, where ag and dl are the only side edges pointing right, we look at the

path gafedl, that makes only left turns. If the face it goes around is a pentagon then g = l,

yielding dΓ(a, d) = 2, a contradiction with Corollary 3.2.7. If the face is a hexagon then l and
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g are adjacent and furthermore, both side edges of dlga point right. However, considering

now the path gabcdl, making right turns only, we conclude similarly that both side edges of

dlga point left, a contradiction.

Figure 3.7: Side edges at a, b and d point right

Case 3) has three subcases, up to the symmetries of γ. First, suppose the side edges

pointing right are ag, bh, and cl. Then the path gafedcl makes left turns only, and so either

g = c or g = l, leading to a 3-cycle or a 4-cycle without returns; a contradiction. Secondly,

suppose the side edges pointing right are ag, bh, and dl. Looking at the path gafedl and

arguing as in the last subcase of case 2), we either get l = g, giving a contradiction with

Corollary 3.2.7, or that l and g are adjacent with both side edges of dlga pointing right, see

Figure 3.7. Consider the 6-cycle γ′ = lgabcdl, which has exactly three side edges pointing

right and they are at l, g, and b, so γ′ is in the same subcase as γ. Iterating our argument

we construct an infinite sequence of 6-cycles γi, such that the right side of γi+1 is properly

contained in the right side of γi. This contradicts finiteness of Γ.

Finally, suppose the side edges pointing right are ag, ch, and el and let the neighbors

of these three vertices be as shown in Figure 3.8. Since the path igabchk makes only right

turns, we have that either i = h and g = k, or i = k and the side edge of hkg points left.

Similarly, looking at mhcdeln, we get that either h = n and m = l, or m = n and the side

edge of lnh points left. Similarly still, either l = j and p = g, or p = j and the side edge of

gjl points left. Note that these equalities mean that a new cycle γ′ arises in the middle of
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Figure 3.8: Side edges at a, c and e point right

Figure 3.8. Its length varies from three, if the first option holds for all three choices above,

to six, if the second option holds for all three choices. Recall that Γ contains no 3-cycles

(Lemma 3.2.2), no 4-cycles without returns (Lemma 3.2.4), and no 5-cycles with side edges

pointing to both sides (Lemma 3.2.6).

Figure 3.9: Side edges at a, c and e point right, iterative subcase

Therefore, for each of the three choices above, the second option must hold, that is, i = k,

m = n, and p = j. Now γ′ = igplmhi is a 6-cycle that falls in the same subcase as γ, see

Figure 3.9. Again, iterating the above, we construct an infinite sequence of 6-cycles such

that the right side of each subsequent 6-cycle is properly contained in the right side of the

preceding 6-cycle; a contradiction with finiteness of Γ.
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3.3 `1-embeddable fullerenes

In the remainder of the paper we study an `1-embeddable fullerene Γ. Note that Γ is a

plane graph and therefore it comes with an embedding into a sphere S.

Given a plane graph Γ we consider its dual graph ∆ as follows: the vertices of ∆ correspond

to the faces of Γ, and the edges of ∆ correspond to the edges of Γ. If e is an edge of Γ and E

and F are the faces on the two sides of e then the edge of ∆ corresponding to e connects the

vertices corresponding to E and F . Note that, when Γ is a general plane graph, E and F

may be the same face, in which case the edge of ∆ is a loop. Also, when E and F share more

than one edge, ∆ may have multiple edges between vertices. However, when Γ is a fullerene,

one can see that a loop in ∆ leads to a loop or a multiple edge in Γ, which is impossible. So

∆ has no loops. Similarly, a multiple edge in ∆ yields a cycle without returns in Γ of length

at most four, which is also impossible by the results of Section 3.2. Thus, ∆ has no loops

and no multiple edges, that is, ∆ is a simple graph.

The dual graph ∆ is a plane graph, namely, it can be drawn on the same sphere S. The

vertices of ∆ can be placed within the corresponding faces of Γ and the edges of ∆ would

go across the corresponding edges of Γ. Every face of ∆ then has a unique vertex of Γ in it,

and in fact, Γ is the dual graph of ∆. Every vertex of ∆ has either five or six edges incident

to it, depending on the gonality of the corresponding face of the fullerene Γ. Finally, every

face of ∆ is a triangle, since Γ is trivalent.

We can label the edges of ∆ reusing the labels from the corresponding edges of Γ. Now, by

the analogy with zones in Γ, we can define the dual j-zone as the set of edges of ∆ that have

j in the label. In fact, we view the dual j-zone as a subgraph of ∆, that is, for every edge

we throw in its end vertices as well. Note that every vertex of the dual j-zone is adjacent to

exactly two edges. This follows from Proposition 2.2.2, since Γ is an `1-graph and since its

face cycles are isometric by Corollaries 3.2.5 and 3.2.7. Thus, a dual j-zone is a subgraph

of valency two, i.e., it is a union of cycles. Note that a dual zone goes straight through

a vertex of ∆ of degree six and makes just a slight left or right turn at a vertex of degree
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five. An illustration of dual zones can be found in the figure below which is based on Figure

2.1. The first part of the figure shows a portion of a dual zone (the dashed segments) going

straight through a six degree vertex in ∆. The second part shows portions of two dual zones,

one making a slight left (dual a-zone) and the other making a slight right (dual b-zone).

Figure 3.10: Dual zones: straight through and slightly left/right

Proposition 3.3.1. Every dual j-zone subgraph is a simple cycle in ∆.

Proof: Consider a dual zone subgraph in the dual graph. Specifically, this dual zone sub-

graph is a union of paths in ∆ (it cannot contain any face of ∆ due to the fact that in Γ the

three edges that stem from a given vertex cannot share an element of their labels). We first

prove that each of these paths (call a generic one δ) is a simple cycle and that the union

actually consists of just one path (only one component). Given the fact that elements of

the edge labels repeat exactly once on opposite edges inside faces of the `1 fullerene Γ, we

obtain that each vertex of δ is linked with exactly two other vertices of δ. Thus δ is of degree

two and must be a cycle since fullerenes are finite graphs. If δ would not be simple i.e.,

there would exist at least one vertex of δ that is linked with at least three other vertices

in the path, then this vertex would represent a face in Γ in which the same coordinate j

appears on three of its edges, contradiction. Now suppose the dual zone subgraph consists of

two or more such simple cycles. Then these cycles determine at least three disjoint regions

(subgraphs) in the fullerene. Using the result that a zone cuts the graph Γ into two convex
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halves, we must have that one of the convex halves contains two or more of the disjoint

disconnected regions formed by the cycles, a contradiction.

Given the result proved above, for simplicity we will use the terminology dual j-cycle

instead of dual j-zone subgraph.

We now define a straight zone of an `1-embeddable fullerene to be a zone that passes only

trough hexagons. A crooked zone will be a zone that passes through at least one pentagon.

Similar definitions apply to dual zones.

Recall that we called halves the two subgraphs of Γ obtained by removing a zone. Sim-

ilarly, in the dual graph, a hemisphere is one of the two subgraphs obtained by cutting the

dual graph ∆ along a dual cycle i.e., a hemisphere is one of the two disks obtained by

cutting the sphere S (on which we draw the fullerene and its dual) by a simple cycle. Thus

the halves are the subgraphs of Γ located in the corresponding hemispheres.

The next result will be used many times in this paper.

Proposition 3.3.2. A half of an `1 fullerene is a convex subgraph. The intersection of any

two halves (corresponding to different zones) is a convex subgraph. The same result holds for

hemispheres in the dual graph ∆.

Proof: We have already seen that a zone cuts the fullerene into convex parts. The half is

by definition one of those parts. The second claim of the proposition follows from the fact

that the intersection of convex sets is convex.

We turn our attention to intersections of zones (dual zones) and to some properties of such

intersections. We say that two different dual cycles intersect if they pass through the same

vertex of ∆ and do not have common edges next to this vertex. We say that two dual cycles

partially overlap if they have a common continuous subpath such that one dual cycle comes

to that subpath from the left and leaves it to the right and correspondingly, the second dual

cycle comes from the right and leaves it to the left. Note that the intersection phenomenon

can happen for both straight and crooked dual zones, while the partial overlapping can only

happen for crooked dual zones.
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Remark 3.3.3. If two dual cycles intersect in one vertex then they intersect into exactly

two vertices.

Proof: Each of the two dual cycles (call them z1, z2) is a simple cycle in the dual graph ∆.

Their intersection cannot consist of only one vertex, i.e., a face F of the initial graph Γ,

since that would imply that pairs of non-opposite edges of the face F form the two zones,

contradiction. Thus for each point of intersection of the two dual cycles there exists another

one, different from the first. This shows that the two dual cycles intersect in at least two

points. Suppose they intersect in more than two points. Then we can find two hemispheres

such that their intersection has disconnected components, contradiction with the convexity

of such an intersection.

As a final note, the definition of the dual graph allows us to talk about the distance

between faces of a fullerene. Specifically, the distance between two faces of Γ will be the

distance between the two corresponding vertices in the dual graph ∆.
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CHAPTER 4

PREFERABLE FULLERENES

4.1 Minimal distance between pentagons ≥ 3 or of the

type {1,1}

We define a dual path between two pentagons P1 and P2 of a fullerene to be a sequence

of adjacent faces that starts at P1 and ends at P2. We can view this dual path as a path

in the dual graph from the vertex corresponding to P1 to the vertex corresponding to P2.

A geodesic dual path will be a shortest dual path between P1 and P2. Note that such a

path always exists between any two pentagons of the fullerene. The distance between two

pentagons P1 and P2 is the length of a geodesic dual path (and thus equal to one plus the

number of faces of the geodesic, excluding P1 and P2).

We need a few more definitions in order to proceed with the next results. Consider

two pentagons of the fullerene that are at minimal distance d∗ (i.e., for any other pair of

pentagons the distance between them is greater or equal than d∗). Then a geodesic dual path

between the two pentagons will only go through hexagonal faces (otherwise the minimality

of the distance between pentagons is contradicted). If such a path makes a turn in one of

the hexagonal faces we call it a crooked dual path, whereas if it always goes in and out of

faces through opposite edges of the hexagons, we call it a straight dual path. A crooked dual
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path is said to make a right turn in one of the faces if the new direction it takes is to the

right of the straight path it would have followed if it wouldn’t have turned. Similarly, we

can define a left turn.

Furthermore, a crooked dual path is of type {m1, ...,mn} if the length of each subpath

(before it turns) is mi (i < n) and the length of the piece after the last turn is mn. In the

next lemma we prove that a crooked dual path of type {m1, ...,mn} is equivalent to a crooked

dual path of type {m, k} and also that when a crooked dual path of type {m, k} exists then

a second crooked dual path of type {k,m} also exists and by connecting the centers of all

the faces involved in both crooked paths we obtain a parallelogram π (in the dual graph).

Lemma 4.1.1. Consider two pentagons at minimal distance such that no straight dual path

exists from one to the other. The following then hold:

a) A crooked dual path (i.e., geodesic) cannot make two consecutive left turns or two

consecutive right turns;

b) A type {m, k} crooked dual path between the two pentagons at minimal distance is well

defined, i.e., if there exists a crooked geodesic dual path (making any number of alternating

left and right turns) then there exists a geodesic dual path that makes only one left turn, and

also a geodesic dual path that makes only one right turn. In particular, the parallelogram π

is well defined.

c) The parallelogram π can be extended to a larger one by adding two triangles.

Proof: a) If by contradiction we assume a geodesic dual path makes two consecutive left

turns, then we can find a shorter dual path between the two pentagons, which contradicts

the minimality of the length of the geodesic. See Figure 4.1 (part of the thick path can be

replaced by the shorter dashed path).

b) Consider a geodesic path between the two pentagons such that it makes more than

one turn. By part (a) we know that the turns must alternate, i.e., if one goes left the next

must go right, and so on. For simplicity, assume the geodesic dual path makes exactly two

turns: left, then right, as illustrated in the second drawing of Figure 4.1. Then the middle



31

Figure 4.1: No consecutive left turns and the type {m, k} is well defined

part (from H3 to H4) of the dual geodesic path can be moved or replaced with the path from

H1 to P1 and similarly, with the path from P2 to H2. Thus we obtain two new dual geodesics

- one being P1H1P2, the other being P1H2P2. We can now say that there is a crooked dual

path of type {1, 3} and the parallelogram π is determined by P1, H1, P2, H2. Note that all

faces involved in the frontier of π and inside π are hexagons, otherwise the pentagons P1, P2

are not at minimal distance.

c) We can add to the last remark that de faces H5, H6 are also hexagons. In general, this

translates to the fact that the faces that determine the frontier and the inside of the (dual)

triangles with edges of length m (m <= k) and passing through one of P1, P2 and one of the

other two vertices of π are all hexagons. Thus π can be extended by these two dual triangles.

In the picture above, the extended parallelogram is P1H5P2H6.

Proposition 4.1.2. Two pentagons at minimal distance d∗ cannot allow a crooked dual path

of type {m, k} between them, where d∗ ≥ 3.

Proof: Suppose by contradiction that there exists such crooked dual path between two

pentagons P1 and P2 at minimal distance d∗ (where d∗ = m+k). Without loss of generality,

we can also assume that k ≥ m. Consider the parallelogram π mentioned above, having as

vertices the faces P1, P2 and P3, P4, where P3 and P4 must be hexagons and the distance
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Figure 4.2: Crooked dual path of type {2, 1}

between P1 and P3 is k, the distance between P1 and P4 is m. Also consider the two crooked

zones z1 and z2 that pass through P1, P3 and P4, P2 respectively and that intersect at an

acute angle in two faces F1 and F2, such that F1 is at distance m from both P1, P4 and F2

is at distance m from both P2, P3. We know that each of the two zones cuts the fullerene

into two convex regions. Call these R11 and R12 (corresponding to z1) and R21 and R22

(corresponding to z2), such that P1 is in R21 and P2 is in R11. Let v1 be the vertex belonging

to the face F1 that lies in both R12 and R22. The vertex v1 is unique with such properties

given our construction up to this point and the fact that z1 and z2 intersect at an acute angle.

Similarly, consider v2 in F2. Now let’s construct two other zones z3 and z4 such that these

pass through faces that are adjacent to the faces of the parallelogram π, lying in the exterior

of it. We can always consider coordinates j1, j2 such that z3 = j1 − zone, z4 = j2 − zone

and z3, z4 intersect in two faces I1, I2, I1 being at distance m + 2 from P1 and I2 being at

distance m + 2 from P2. If m + 2 < d∗ then I1, I2 are hexagons together with the other

faces on z3, z4 that are adjacent to the faces of π. When m + 2 ≥ d∗ the faces I1, I2 can

be pentagons being at distance at least d∗ from P1, P2 (but z3, z4 still intersect in I1, I2 by

carefully choosing the coordinates j1, j2 that determines them). With these observations, z3

cuts the fullerene into two convex regions R31 and R32 and, similarly, z4 cuts the fullerene
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into two convex regions R41 and R42. Suppose our notations are such that R31 and R41 each

contain the faces P1 and P2. Notice that the regions R12, R22, R31 and R41 are all convex

and their intersection (call it C) must also be convex. Moreover, the vertices v1, v2 are both

in C. We obtain a contradiction by noticing that there is no path from v1 to v2 which is

contained in the convex region C. Thus the proposition is proved.

Proposition 4.1.3. Two pentagons at minimal distance d∗ cannot allow a straight dual

path, where d∗ ≥ 3.

Proof: The proof relies on the same argument used in the previous Proposition: we construct

four zones, consider the intersection of four of the regions formed by them and show that

this intersection is disconnected, which contradicts the convexity of it. Let z1 and z2 be the

two zones that pass through the hexagonal faces adjacent to the dual path between P1 and

P2 (one zone on each side of the dual path). Then these zones intersect in two faces F1, F2,

such that F1 is at distance two from P1 and F2 at distance two from P2. Note that the faces

adjacent to the dual path together with F1, F2 are hexagonal, otherwise we contradict the

minimality of d∗. Let’s further consider z3, z4 passing through faces that are adjacent to the

faces of z1, z2 just mentioned above. In the case d∗ ≥ 3, these faces are all hexagonal (by

taking into account the previous proposition coupled with our assumption of P1, P2 being at

minimal distance d∗). Furthermore, z3, z4 intersect in two faces I1, I2, situated at distance

one or two from F1, respectively F2. Finally, we consider v1 to be a vertex of F1 and v2 a

vertex of F2 such that v1, v2 are in the intersection of those regions formed by z1, z2 that do

not contain P1, P2 in them. Then v1, v2 lie also in the regions formed by z3, z4 that contain

P1, P2. Let C be the intersection of the four regions mentioned. Then C is convex but for

the pair v1, v2 there is no geodesic in C, contradiction.

We now need to deal with the cases when the minimal distance d∗ between pentagons is

less than three. For d∗ = 2 we have to consider the cases of straight path or of crooked path

of type {1, 1}. For d∗ = 1 the dual path is necessarily straight, in which situation at least

two pentagons of the fullerene are adjacent.
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Proposition 4.1.4. Two pentagons at minimal distance two cannot allow a crooked dual

path of type {1, 1}.

Figure 4.3: Crooked dual path of type {1, 1}

Proof: We prove this result by contradiction. Suppose P1, P2 are at minimal distance with

crooked dual path of type {1, 1}. Note that since the minimal distance between pentagons

is two, all faces adjacent with P1 or P2 must be hexagons (being at distance one from

P1 or P2). Let P1, H1, P2, H2 be the vertices of the parallelogram π in clockwise order

and let H1, H2, H3, H4, H5 and H2, H1, H6, H7, H8 be the hexagons adjacent with P1 and P2

respectively (in clockwise order). Then there is a zone z1 that passes through H5, P1, H2, H8

and a second zone z2 that passes through H5, H1, P2, H8. These two zones obviously intersect

inside the faces H5, H8. Let v1 be the vertex of H5 and v2 be the vertex of H8 that lie in the

intersection of the regions determined by z1, z2 and which do not contain π. Now construct

two more zones z3, z4 such that z3 passes through H3, H4 and z4 passes through H6, H7. Let’s

show that these two new zones are well defined and that they intersect in two faces, each at

distance ≤ 2 from H5, respectively H8. First, consider the faces F1, ..., F8 as shown in the

Figure above. Note that out of these faces no two adjacent ones can be pentagons (since

the minimal distance between pentagons is assumed to be two). If all of these faces are
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hexagons then zones z3, z4 exist indeed and intersect in F3, F7. If either F2 or F6 (or both)

are pentagons, then the labels for these two zones (i .e., the j, k that make z3 be a j-zone and

z4 be a k-zone) can be chosen in such a way that z3, z4 intersect in F3, F7. Going through all

possibilities we see that no matter the type of the faces F1, ..., F8 we still obtain the zones

z3, z4 and that they intersect within F6, F7, F8 on one end, and within F2, F3, F4 at the other

end. We note that in any of these situations, the vertices v1, v2 are in the intersection C

of four regions determined by the four zones considered but there is no path between these

vertices that lies in C, contradiction.

4.2 Minimal distance between pentagons of type {2,0}

When the minimal distance between pentagons is two we show that all the pentagons have

to be situated with respect to each other in a certain way and that any other arrangement

of pentagons leads to a non-embeddable fullerene. It will straightforward to construct the

only `1-embeddable fullerene with such property (which will be a fullerene on 80 vertices).

Proposition 4.2.1. If the minimal distance between pentagons is two (with a straight dual

path between them) then each pentagon is surrounded by five other pentagons, each of them

at distance two from it (via straight dual paths).

Proof: Let P1 and P2 be two pentagons at minimal distance two admitting a straight

dual path between them (the path consisting of the faces P1, H and P2). Then all faces

adjacent with either P1 or P2 must be hexagons since otherwise the minimal distance between

pentagons would be one, not two. Moreover, the faces at distance two from P1 or P2 admitting

a crooked dual path to P1 or P2 must also be hexagons, otherwise we contradict the previous

proposition. We are left with six faces that lie at distance two from either P1 or P2, all of

them admitting a straight dual path to one or both of these pentagons. These six faces can

be either pentagons or hexagons, our goal being to show that all of them are pentagons.

We consider the zone z1 passing through four of the hexagons adjacent to the minimal dual
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path P1, H, P2 (say the ones on the right of the dual path) and z2 the zone symmetric to z1

(situated on the left of the dual path). Then z1, z2 intersect in two faces: one at distance

two from P1 (call it H1) and the other one at distance two from P2 (call it H2). These zones

determine four regions in the fullerene. Consider v1 the vertex of H1 that lies in the region

not adjacent to the region containing the dual path P1, H, P2. Similarly, take v2 the vertex

in H2 with the same property. We now return to the six faces at distance two from P1 or P2

that could be either pentagons or hexagons. Three of these faces are to the right of z1, the

other three being to the left of z2. If at most one of the faces to the right of z1 and at most

one of the faces to the left of z2 are pentagons, we can find two new zones z3 and z4 such that

z3 passes through the faces to the right of z1 and z4 passes through the faces to the left of

z2. Moreover, these zones will intersect such that the vertices v1, v2 considered above will lie

in the same region as the dual path P1, H, P2. Thus we get that v1, v2 lie in the intersection

of four of the regions determined by z1, z2, z3, z4, which must be convex. Since there is no

path between v1, v2 that lies in that intersection we obtain a contradiction with its convexity.

This shows that at least on one side of the dual path we must have two or more pentagons at

distance two from P1 or P2. Suppose now that there exist two such pentagons P3, P4, where

P3 is adjacent to H1 and P4 is at distance two from both P1, P2 (P3, P4 being on the right

side of the initial dual path P1, H, P2). Notice that for the pair of pentagons {P1, P4} we

have that P2 is a pentagon at distance two from both, situated on the left of their dual path,

whereas P3 has the same property but is situated on the right. If there is no other pentagon

at distance two from P1, P4 then we apply again the argument with the four zones and their

convex intersection to get a contradiction. So there must exist at least one more pentagon

at distance two from either P1, P4. Without loss of generality, we can suppose it is situated

on the right side of dual path linking P1, P4. Let’s denote this pentagon by P5. Notice now

that the zone z2 will wrap around all of P1, P2, P3, P4, P5 being adjacent to P1, P2, P3, P5 (not

to P4). Most of the faces through which z2 passes are hexagons, except for one or two that

we do not know what they are at this point. Denote first by P6 the face to the right of z1
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that is at distance two from both P2 and P4. We show that this face is a pentagon. Suppose

this is not true, i.e., P6 is a hexagon. Then there are two more faces adjacent to P6 and

such that z2 passes through them. These two faces cannot both be pentagons (we would

contradict the minimal distance of two between pentagons). Moreover, exactly one of them

cannot be pentagon because it would follow that z2 consists of several hexagons and exactly

one pentagon, which would imply that two opposite faces of the pentagon carry the exact

same edge label, a contradiction. Thus these two faces must be hexagons and therefore z2 is

a straight zone. We obtain a contradiction by noting that z2 involves non-opposite edges of

one of the hexagons, which is not possible. Thus P6 must be a pentagon. In conclusion, we

proved that if for a pair of pentagons at straight dual distance two there exist two pentagons

such that both are on the same side of the dual path and at distance two from each other,

then there is a third pentagon situated on the same side. We can apply this finding to the

pair P1, P4, thus obtaining P7 (on the same side as P3, P5). We repeat this argument to other

pairs of pentagons and in the end we obtain the desired result that for each pentagon there

are other five pentagons at straight distance two from it.

The last case that remains to be proved is when P1, P2 admit two pentagons P3, P4 such

that both of these are situated on the same side (say, to the right) of {P1, P2} and P3 is at

distance two from P1, whereas P4 is at distance two from P2 and neither P3 or P4 are at

distance two from both {P1, P2}. Denote by F the face which is on the same side as P3, P4

and which is at distance two from both P3, P4 (and also from P1, P2). Suppose that F is

not a pentagon. Then construct the zone z that passes through the faces adjacent to and

to the right of the faces P3, H1, F,H3, P4, such that z does not coincide with the zone z1

considered at the beginning of the proof. We will next look at the vertices v1, v2 as defined

at the beginning of the proof. This two vertices are the only ones that can be found in the

intersection of three of the regions determined by the zones z1, z2, z. No edge exist though

between these vertices that lies in the intersection of the regions, contradiction with the

convexity of the intersection. Thus F must be a pentagon and for each pair of pentagons
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there exist at least three more pentagons at distance two from one or both of the pentagons

of the pair and such that all three are on the same side of the dual path between the two

pentagons of the pair. Applying this result to different (carefully chosen) pairs of pentagons

we obtain the needed result.

Proposition 4.2.2. There exists exactly one `1-embeddable fullerene such that the minimal

distance between pentagons is greater than or equal to two.

Figure 4.4: Embedding of F80(Ih) into 1
2
H22

Proof: We know that if in the fullerene there are two pentagons at distance two then there

must be a straight path between them and we can find other six pentagons at distance two

from one or both of them, such that three of these pentagons are on one side of the straight

dual path and the other three on the other side. Thus we already have the position of eight

of the twelve pentagons of the fullerene. Taking other pair of pentagons from the eight we

have, we see that we can quickly construct the whole fullerene in this way. We obtain an



39

80 vertices fullerene with 30 hexagonal faces (and twelve pentagonal ones, obviously). This

fullerene is unique by construction and we can put edge labels on each of its edges as shown

in Figure 4.4. This fullerene is `1-embeddable.

It remains to deal with the cases when the minimal distance between pentagons is one.

We will consider subcases based on the maximum number of pentagons that are adjacent to

a pentagon in the fullerene.
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CHAPTER 5

ADJACENT PENTAGONS: THE

CLUSTER CASE

In the case of adjacent pentagons, there are four known `1-embeddable fullerenes. We

show that these are the only ones possible.

5.1 Labels on a three pentagons cluster

Lemma 5.1.1. The labeling of the edges of the three pentagons cluster cannot follow the

example in figure A, but must be as shown in figure B,i.e., the label 1 does not split on the

vertical edge starting from v2 but on the horizontal one.

Proof: Suppose the edge label {13} splits as shown in Figure A. Then the distance between

the vertices v1, v2 must be three. Indeed, the path from v1 to v2 consisting of the edges

labeled 12, 45, 67, 1x has the property that the symmetric difference of these labels has size

six, which implies that d(v1, v2) = 1
2
6 = 3. Thus there must exist two vertices in the fullerene

such that together with v1, v2 they form a geodesic from v1 to v2. There are two cases to

consider. One is when a geodesic does not go through any of the vertices of the cluster of

pentagons (which is shown in Figure A, the geodesic being v1, B, C, v2). The other case is
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Figure 5.1: Labels on a three pentagons cluster

when there exists a geodesic that goes through one more vertex of the cluster besides v1, v2.

Let’s disprove the first case. If the third edges of B and of C (not shown in Figure A)

are both going inside the shape formed by v1, B, C, v2 then starting from A, we obtain a

path that makes only left turns, has no returns and has length ≥ 7, contradiction. If the

third edges of B and of C (not shown in Figure A) are both going outside the shape formed

by v1, B, C, v2 then starting from D, we obtain a path that makes only left turns, has no

returns and has length ≥ 7, contradiction. The only possibility remaining is when one of

the third edges of B and of C goes outside (say for B) and the other (for C) goes inside.

Then starting at the third edge of C and making only left turns we see that the vertices C, E

must be linked by an edge, otherwise we obtain a contradiction. Further, consider the third

edge of E (which must go towards D). Starting at this edge and making only right turns

(passing through E, C, v2, etc) we obtain a path that has length six and ends at D. Since

D, E cannot be linked by an edge (otherwise, a 4-cycle is formed, impossible in a fullerene)

we deduce that the path obtained can be augmented, i.e., it has length ≥ 7, contradiction.

Thus, we have shown that any geodesic between v1, v2 must pass through at least one

more vertex of the cluster. Suppose a geodesic passes through the vertices t, w. This can

happen only if v1, w are linked by an edge. Then we consider E and one of its third edges,

such that starting at that third edge and making only right turns (through E, v1, w, E

again, etc) we obtain a path of length eight, contradiction. Suppose now that a geodesic
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goes through u and another vertex (say F , not shown in Figure A). We assume F to be

at the left of the cluster. If F has a third edge that does not go towards the cluster then

we obtain a contradiction by paths (right turns only) using one of the third edges of A. If

F goes towards the cluster then we still obtain contradictions by using paths arguments,

specifically paths that start from the third edge of F and make either only left turns or only

right turns.

5.2 Six pentagons cluster case

Lemma 5.2.1. a) The labeling of a cluster of six pentagons consisting of one central pentagon

P surrounded by five other pentagons P1, P2, P3, P4, P5 in clockwise order around P , is as

shown in Figure 5.2.

b) In an `1-embeddable fullerene a cluster of six pentagons (one of them surrounded by

the others) cannot be surrounded by a layer of five hexagons.

Proof:

a) Using the previous lemma, we first label the cluster of three pentagons P, P1, P2, then

proceed in labeling the cluster P, P2, P3 and so on until all six pentagons are labeled. We

see that the decagon obtained using the outer edges of the pentagons P1, P2, P3, P4, P5 has

the property that its opposite edges have the same label.

b) If the cluster of six pentagons would be surrounded by five hexagons then in the new

decagon formed by the outer edges of this layer of hexagons, edge labels would be repeated

on non-opposite edges. Turning our attention to the faces surrounding this layer of hexagons,

we note that two such adjacent faces (no matter their type) would share a vertex that admits

non-disjoint labels on two of the three edges that stem from it, contradiction.

Proposition 5.2.2. There exists exactly one `1-embeddable fullerene such that one pentagon

is adjacent to other five pentagons.
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Figure 5.2: Embedding of F20(Ih) into 1
2
H10

Proof: Denote by P the pentagon having only pentagons as neighbors (call these neighbors

P1, P2, P3, P4, P5, in clockwise order). Notice that there exist five other faces F1, F2, F3, F4, F5

(also in clockwise order) in the fullerene that surround the 6-pentagon cluster. If all these

faces are pentagons then the only fullerene which can be constructed with this property is a

fullerene on 20 vertices which is `1-embeddable (see Figure 5.2 above). If four of these faces

are pentagons (say, F1, F2, F3, F4) and only one is hexagon (F5) then F5 has a vertex v not

belonging to F1, F2, F3, F4 (call this vertex the sixth vertex of F5) and there is a third edge

vw which is not part of F5. Then there is a path starting with wv that makes only right

turns, going around the faces F5, F4, F3, F2, F1, F5 and ending at w. Since this path has more

than six edges and has no returns we obtain a contradiction. Suppose, next, that three of

the Fi faces are pentagons and the other two are hexagons. The first possibility is that the

two hexagonal faces are adjacent (say that they are F4 and F5). Then a similar argument

using paths can be applied to obtain a contradiction (by considering the sixth vertex of F4

and of F5 and their third edges). The second possibility is when the two hexagonal faces

are not adjacent. Thus suppose F3, F5 are hexagons and F1, F2, F4 are pentagons. Let v be

the sixth vertex of F5 and w be the sixth vertex of F3. Note that v, w cannot be linked by

an edge since we would obtain a 4-cycle consisting of this edge and three more edges from
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F5, F4, F3. On the other hand, if v and w are not part of the neighborhood of a vertex u,

then we find a path of more than six edges making only left turns, contradiction. Thus

there exists a vertex u adjacent with both v and w. Let t be its third neighbor. In the case

that t, w, v are in clockwise order around u, the path through t, u, v making a right turn

towards F4, then F3 and ending with w, u, t makes only right turns and has seven edges,

contradiction. Similar argument if t, v, w are in clockwise order around u. In conclusion, in

an `1-embeddable fullerene three of the faces surrounding the cluster cannot be pentagons.

Suppose now that two of these faces are pentagons. Consider first the case when the two

faces are adjacent, i.e., say that F1, F2 are pentagons, the other three faces being hexagons.

Assume that P1 is the pentagon of the cluster that is adjacent to both F1, F2. Let e1 be the

edge in between P1, F1, let e2 be the edge in between P1, F2 and e3 be the edge in between

F1, F2. Let also ab be the edge label of the edge between F1, F5. This label is carried on

the opposite edge in each of the hexagons F5, F4, F3. Inside the pentagons F1, F2 half of this

label goes to e3 and half to e1 and e2. Therefore two of the edges e1, e2, e3 must contain one

of a, b in their label which leads to contradiction (since then one of the faces F1, F2, P1 would

have two adjacent edges with nondisjoint labels). We look now at the case when F1, F3 are

pentagons (non adjacent) and F2, F4, F5 are hexagons. Let v be the sixth vertex of F5, u

the sixth vertex of F2 and w the sixth vertex of F4. Let also vv1, uu1, ww1 be the third

edges of v, u, w respectively. If v1, w1 coincide we obtain a 4-cycle in the fullerene (via the

vertices v1, v, w and a fourth vertex belonging to both F4, F5), impossible. If w1 = u1 then

using the third neighbor of w1 (besides u and w, let’s call it t) we consider the cases when

w, t, u are in clockwise or counterclockwise order. In one of these cases we obtain a more

than seven edge path that makes only right turns, impossible. The other case leads to the

fact that t and v1 must coincide, and further, to contradictions based on the third neighbor

of v1 and on its position relative to the other two neighbors of v1. If all three u1, v1, w1

are different, then u1, v1 must be linked by an edge and the same holds for u1, w1. Then

the label of the edge uu1 is carried on a pair of opposite edges of F5 and also on a pair of
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opposite edges of F4, ending on two adjacent edges of the pentagon in the cluster that is

adjacent to both F4, F5, a contradiction. Thus the case of two non adjacent pentagons and

three hexagons is not possible. The next case is when there is only one pentagon and four

hexagons. Say F1 is the only pentagon. This case can be disproved by looking at the labels

of the edges in between the faces Fi. The label on the edge between F1, F2 will be carried on

the edge between F2, F3, then between F3, F4, F4, F5 and finally, between F5, F1. Thus F1 (a

pentagon) will have two opposite edges with exactly the same edge label, contradiction with

the fact that in a pentagon the labels of opposite edges share only half of their digits. The

last case is when all F1, F2, F3, F4, F5 are hexagons. The previous lemma (part b) showed

that such a subgraph is not possible in an `1-embeddable fullerene.

5.3 Four pentagons cluster case

We now turn our attention to four-pentagon clusters which consist of two central pen-

tagons (these are the pentagons adjacent to other three pentagons in the cluster) and two

noncentral ones (pentagons adjacent to only two other pentagons in the cluster). We can

draw such cluster starting from the central pentagons P1, P2 - say these two faces share a

horizontal edge. Then P3 is at the left of P1, P2, adjacent to both, whereas P4 is at the right

of P1, P2. Denote by A the face that is adjacent to P3 but not to the central pentagons;

continue clockwise to label the faces around the cluster by C, D,B, F,E.

Lemma 5.3.1. If P1, P2, P3, P4 is a cluster of pentagons (P1, P2 being central and P3, P4

noncentral) and no pentagon inside the fullerene is adjacent with five pentagons, then the

following hold:

a) All of the faces C, D,E, F cannot be hexagons if Γ is an `1-embeddable fullerene;

b) There is no `1-embeddable fullerene such that exactly one of the faces C, D,E, F is a

pentagon, the remaining three being hexagons;

c) Thus exactly one of C, D and one of E, F must be pentagons;
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Proof: a) Suppose C, D,E, F are hexagons. Further suppose that A is a pentagon. Let cd

be the label on the edge between A and M . Without loss of generality, suppose c is carried

onto the edge between A, E and thus, ultimately, also on the edge between F, B. But c

will also be on the edge between B, D (via the hexagons C, D) which implies that B is a

pentagon and that there exists a c-zone (call it z). Consider two other zones: one going

through D, P4, F and the other through C, P3, E. Let v1 be the vertex that belongs to C, D

but not to the cluster and v2 the vertex that belongs to E, F but not to the cluster. Then

v1, v2 are the only vertices in a convex intersection of regions determined by the three zones

considered above, contradiction.

Thus A, B must both be hexagons. Then we obtain a zone z1 through A, C,D,B and a

zone z2 through A, E, F,B. Let v1, v2 be the two vertices of A that are not in C or E and

let u1, u2 be the two vertices of B that are not in D or F . Consider also the face M adjacent

to both A, E and continue in counterclockwise order to label the faces on the second layer

around the cluster by N, P, Q, R, S, T, U . We show that if M is a pentagon then P must

be a pentagon too. Let cd be the label on the edge between A and M . Then this label is

carried (by virtue of opposite edges in hexagonal faces) to the edge between B, P . Moreover,

half of this label, say c, is carried to the edge between M, N (since M is a pentagon). If

c would further go on the edge between N, F , then inside F two non-opposite edges would

share c in their labels, contradiction. Thus c goes on the edge between N, P and therefore

P must be a pentagon. This also shows that if M is a hexagon then P is also a hexagon

(otherwise, P being pentagon will imply M is pentagon by the argument above). If all

M, P, T, R are hexagons then we can find two more zones (z3 through U,M,N, P, Q and z4

through U, T, S,R,Q) such that v1, v2 and u1, u2 will be in different connected components

of a convex intersection of regions formed by the zones z1, z2, z3, z4, contradiction. Note also

that if N is a hexagon then z3 still exists, no matter what type of faces M, P are. To see this,

consider ab the label on the edges between N, M and N, P . Suppose that in M , a goes on

the edge between U,M . Then in P , a must go on the edge between P, Q since otherwise, it



47

goes between P, B and further, through the hexagons B, D, C,A, labeling the edge between

A, M . Then M has two adjacent edges sharing a digit of their label, contradiction.

Thus the only scenario in which we may not be able to construct z3 is when all three

faces M, N, P are pentagons. In this case, there is a face F adjacent with all these three

faces and F must be a pentagon since the edges between M, F and P, F share d in their

label. Furthermore, F and U are adjacent faces. If U is a pentagon, then Q is a hexagon

(otherwise F is a pentagon surrounded by five other pentagons). Let w1 the third vertex in

the neighborhood of v1 and such that it is not part of the face A. Similarly, let y1 in the

neighborhood of u1. Then w1, y1 are linked by an edge (since Q is a hexagon). Let s be the

third vertex in the neighborhood of y1. Then the path starting with s, y1, w1, going along

the face T makes only left turns and is too long, contradiction.

Thus U is a hexagon, Q is a hexagon and U,Q are adjacent. If T, S, R are all three

pentagons then all the vertices in the picture have valency three and we obtain a fullerene

on 36 vertices which was listed in [DGS] (at page 26) as non-`1. The case when S is hexagon

but T,R are pentagons is impossible (due to the sixth vertex of S). If T,R are hexagons

then their sixth vertices must be adjacent (say their third edges meet in a vertex v) otherwise

there is a seven edges path that makes only right turns, contradiction. Then considering the

neighborhood of v and applying the argument with paths that make only right (or only left)

turns we obtain a 3-cycle or a 4-cycle, i.e., not a fullerene.

b) Suppose C is a pentagon and D, E, F are hexagons. If A, B are both hexagons let ab

be the edge label on the edge between the faces A, E. Since A, E, F, B are hexagons, this

label is carried on the edges between E, F , between F, B, between B, R and between A, S

(where S is the face adjacent to faces A, C,D and R is adjacent to faces S, D, B). If S is

a hexagon, then ab is also carried on the edge between S, R and we obtain a contradiction

because two edges of R have the same label and have just one edge in between them (so R

cannot be a pentagon and neither a hexagon). Thus S must be a pentagonal face. Hence

the label ab splits on the two opposite edges in S. Suppose, without loss of generality, that
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a goes onto the edge in between S and D. But D is a hexagon and therefore carries A on

the edge between D, P4. P4 is a pentagon so we have two choices of edges that can carry a in

their label. But a cannot go on the edge between P4, F since ab already labels two opposite

edges of F . Thus a goes on the edge between P4, P2 and further (with a similar argument)

on the edge between P2, P3. From P3 it can either go into the faces A or C but in both those

cases we obtain contradictions. This proves that the faces A, B cannot be both hexagons.

The case when one of A, B is a pentagon and the other a hexagon can also be shown to be

impossible. Indeed, assume A is a pentagon and B a hexagon. Let again ab be the label

on the edge between A, E. So ab will also label the edges between E, F , between F, B and

between B, R. But A is a pentagon so the label ab splits onto the opposite edges. Say that

a goes onto the edge between A, C. Then since C is also a pentagon, a will go either on

the edge between faces C, P1 or between faces C, D. We continue to follow a and in the

same manner as above we reach to a contradiction. Thus the only possible case remaining

is when both A, B are pentagons. Our assumption then is that A, B, C are pentagons and

D, E, F are hexagons. We split this case into two subcases based on the type of the face S.

First suppose that S is a hexagon. Let ab be again the label on the edge between A, E, and

suppose a goes on the edge between A, C and that bm is the label on the edge between A, S.

Then a is carried onto the edge between C, D (all other choices are impossible) and thus

also on the edge between D, B (D being a hexagon). Let ax be the full label on the edge

between C, D (and D, B too). Since S is a hexagon, bm will label the edge between S, R.

But b already labels the edge between B, R and thus R must be a pentagon. Moreover, m

will label the edge between R,P . We prove that P is also a pentagon by showing that m

labels the edge between F, P . In A, m is carried onto the edge between A, P3 and from P3

the only possible way is that it goes onto the edge between P3, P2 and further, on the edge

between P2, F , thus also on the edge between F, P . So P is a pentagon. Let’s look now at

the label x which is on the edge between B, P and must go onto the edge between N, P .

But x must also be on the edge between C, P3 and on the edge between P3, E (otherwise, if
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it goes in P2 we would get contradictions in either of the faces P4, F ) and thus also between

E, N . This shows that the face N must be a pentagon. The last face that remains to look

at and that belongs to the second layer of faces around our initial four pentagons cluster, is

M . If M would be a hexagon there would exist a vertex v in M , but not in S, N and there

would be a path starting from the third neighbor of v such that this path makes only right

turns and has at least seven edges, contradiction. Thus M must also be a pentagon and now

our fullerene is complete (all vertices have valency three). This fullerene has 28 vertices and

is not `1-embeddable, as was stated in [DGS] (see page 26).

We are left with the case when S is a pentagon. In this case we again have that a is

carried on edges between A, C; C, D; D, B; B, F ; E, F and E, A. The label of the edge

between A, S is bm and in S, b must be carried on the edge between S, R (otherwise if it

goes between S, D it would go inside P4 and from there it would land in either of the faces

A, F,E, S, in which we would obtain contradictions). Using the element x of the label ax

of the edge between C, D and using the same argument employed above regarding x we get

that both P, N are pentagons. Let v be the vertex of N that does not belong to either of

E, F, P . Let w be its third neighbor, w not in N . Then starting at w and going through

v we find a path that makes only right turns and has length ≥ 7, contradiction. Thus part

(b) of the lemma is completely proved i.e., there is no `1-embeddable fullerene such that

exactly one of C, D, E, F is a pentagon.

c) From parts (a) and (b) we infer that at least two of the faces C, D,E, F are pentagons.

Since we assumed in the beginning that there is no pentagon having all five neighbors pen-

tagons, we must have that C, D cannot both be pentagons and, similarly, E, F cannot both

be pentagons. Thus one of C, D must be a hexagon and one of E, F must be a hexagon.

Lemma 5.3.2. If P1, P2, P3, P4 is a cluster of pentagons (P1, P2 being central and P3, P4

noncentral) and no pentagon inside the `1 fullerene is adjacent with five pentagons, then the

following hold:

a) The faces A, B cannot both be pentagons;
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b) The faces A, B cannot both be hexagons;

c) Thus exactly one of C, D, exactly one of E, F and exactly one of A, B must be pen-

tagons;

Proof: a) Given the previous result, and the assumption that both A, B are pentagons we

can only have the case that C, F are pentagons (thus D, E are hexagons) or the symmetrical

case when D, E are pentagons (C, F being hexagons). It is enough to consider one of these

situations. Suppose C, F are pentagons. Let ab be the label on the edge between A, E and

suppose inside A it splits as follows: a goes between A, C and b goes between A, S (S being

the face adjacent to all of A, C,D).

If, in C, a is carried on the edge between C, D we show that we obtain a fullerene on 24

vertices which was shown in [DGS] (see pages 25-26) not to be `1-embeddable. Indeed, let

ay be the label on the edge between C, D. Then ay also labels the edge between D, B (D is

a hexagon). Furthermore, inside the face B, a cannot go on the edge between B, N (where

N is the face adjacent with E, F, B). This is because if it would, then inside the face F , a

would have to split on the edge between F, P4 , then between P1, P4, between P3, P1 and from

P1 it would go into either A or E on edges adjacent to the edge labeled ab, contradiction.

Thus a goes between B, F and b goes between P4, F . Moreover, b must continue between

P4, D and thus also between D, S. This shows that S is a pentagon. In the same way (but

using y) we prove that N is a pentagon (y is part of the label of the edge between B, N and

of the edge between E, N). It follows that the faces R (adjacent with all S, D, B,N) and

M (M is adjacent with all S, A,E,N) must also be pentagons because otherwise, using the

sixth vertex of R we would find a path that makes only right (or only left) turns and that

has length ≥ 7. With R,M being pentagons we obtain a complete fullerene (all vertices

considered have valency three) with 24 vertices. We know that no fullerene with 24 vertices

is `1-embeddable (see [DGS]).

It remains to deal with the case when a is carried on the edge between C, P1. Then a

goes also between P1, P4, between P4, F (all other choices ending in a contradiction). On
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the other hand, b is carried between S, R (otherwise it ends up in either of the faces A, E, F ,

on an edge adjacent to other edge already labeled with b, impossible) and between B, R.

Thus R is a pentagon. A similar argument involving x shows that M is a pentagon too.

If S is a pentagon, we can draw the complete fullerene and obtain 24 vertices i.e., not an

`1-embeddable fullerene (this is the same fullerene we obtained above). If S is a hexagon,

then the face N is also a hexagon and the graph obtained has a four cycle as the outer face,

which is prohibited in a fullerene.

b) We assume A, B are hexagons.

If C, E are pentagons (and D, F hexagons), we let ab be the label of the edge between

A, E, cd the label between A, C, dx the label between C, D and by the label between E, F .

Note that x, y cannot be the same because they lie on non-opposite edges of the hexagon

B. Inside C, x goes between C, P3, and further on, between P3, E (if it would have gone

between P3, P2 then it would have ended in either of D, B, F on edges adjacent to edges

already labeled by x). On the other hand, y must go between E, P3, then P3, P1, then P1, P4

and then in either B or F on an edge adjacent to the edge labeled by, contradiction.

By symmetry, it only remains to consider the case when C, F are pentagons (thus D, E

are hexagons). Using again label arguments as employed above, we deduce that both S, N

are pentagons. Moreover, M, R are also pentagons. We obtain a fullerene on 28 vertices such

that all faces on the second layer of faces surrounding the cluster P1, P2, P3, P4 are pentagons.

This fullerene is not `1-embeddable, as we know from [DGS].

c) This part follows from (a), (b) and from the previous lemma.

Proposition 5.3.3. There exists exactly one `1-embeddable fullerene such that there is a

four-pentagon cluster but no pentagon is adjacent to five other pentagons.

Proof: Without loss of generality, assume first that A is a pentagon and B is a hexagon.

Note that since no pentagon in the fullerene is adjacent to five other pentagons, we cannot

have the case when both C, E are pentagons (P3 would be adjacent with pentagons only).

Then given the previous two lemmas we only have two cases to consider. one case is when
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Figure 5.3: Embedding of F26(D3h) into 1
2
H12

C, F are hexagons and D, E are pentagons; the second case is when C, E are hexagons and

D, F are pentagons. Consider the first case and let ab be the label on the edge between E, F

and therefore also between F, B and between B, R (where R is the face adjacent to all of

C, D,B). Inside E the label ab splits on opposite edges. Say that b goes between E, P3 and

a between A, E. Inside P3, b cannot go on the edge between P3, P1 since it would end up in

D or P4 on an edge adjacent to an edge already admitting b in its label, contradiction. Thus

b goes between C, P3 and since C is a hexagon, it further goes between C, R. This shows

that R is a pentagon. With a similar argument we get that a goes between A, S (where S is

the face adjacent to A, C,R). Moreover, in R, a goes between S, R (the edge of R labeled ab

splits such that b goes between R,C which means a must go on the other opposite edge, i.e.,

between S, R). Thus S must also be a pentagon. Now, if the face M (adjacent to A, E, F )

is a pentagon, then all vertices in the picture have valency three except one, which belongs

to the face B but is not in either of F, P4, D,R. This vertex must have a third neighbor, say

v. Starting at v we find a path that makes only right turns and has more than six edges,

contradiction. Thus M must be a hexagon. Looking at the face N (adjacent to F, B, M) we

see that no matter if N is a pentagon or a hexagon we can apply the paths argument and

obtain a contradiction. Thus the first case does not lead to an `1-embeddable fullerene.
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Next, consider the second case (C, E are hexagons). Let ab be the label on the edge

between A, E (so also between E, F ). Without loss of generality, suppose a goes (inside A)

between A, C, while b goes between A, S. Let the full label of the edge between A, C be ax.

Then ax also labels the edge between C, D (since C is a hexagon). Moreover, a cannot go

between D, B since any choice would lead to a contradiction (if a would go between D, B

it would also go on the edge between B, N ; then consider the face F in which the label ab

splits on the opposite edges; a would go between F, P4, then P1, P4, etc). So a labels the

edge between D, P4 and between P4, F . In R (the face adjacent to C, D,B), b cannot label

the edge between R,C because then it would go inside P3 and from there, either in P2 or

E, which already have edges labeled by it. Thus b goes between S, R which shows that S

is a pentagon. Using x we can prove in a similar fashion that M (adjacent to S, A,E) is a

pentagon. Finally, we turn our attention to the faces N, R. If both are hexagons or if one is

a hexagon and the other a pentagon, then we can find a path that makes only right (or only

left) turns and that has length ≥ 7, contradiction. Thus both R,N are pentagons and we

obtain a complete fullerene on 26 vertices. This fullerene is `1-embeddable as was verified in

GAP (the algebra software).

5.4 Three pentagons cluster case (no four cluster)

In order to find the `1-embeddable fullerenes possessing a cluster of three pentagons

(but no cluster of four or more pentagons) we look at the first and second layers of faces

surrounding the three pentagons cluster. The next lemma shows that the first layer of faces

surrounding the cluster consists of hexagons only. On the second layer, there are nine faces.

We note that six of these faces are adjacent to two hexagons of the first layer, whereas three

of these faces are adjacent to only one hexagon of the first layer. Let’s call the six faces

degree two faces and the remaining three faces degree one faces. We split the discussion

of three pentagons cluster into subcases based on the type (hexagonal or pentagonal) of
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the degree two faces. The second lemma that follows will be used throughout the proofs of

the subcases. It essentially says that two adjacent pentagons in an `1-embeddable fullerene

cannot be surrounded by too many hexagons, unless these pentagons are part of a cluster of

three pentagons.

Lemma 5.4.1. Consider an `1-embeddable fullerene such that no pentagon has all neigh-

bors pentagons and also no four-pentagon cluster exists. Then if a three-pentagon cluster is

present, it follows that this cluster is surrounded by a layer of hexagons.

Proof: Let P1, P2, P3 be the three-pentagon cluster in clockwise order. Since no four-

pentagon cluster exists, we must have that the other face adjacent with both P1, P2 (besides

P3) is a hexagon (call it H1). Similarly, we can consider the hexagon H2 adjacent with P2, P3

and the hexagon H3 adjacent with P3, P1. Let F1 be the face adjacent to H1, P2, H2, let F2

be adjacent to H2, P3, H3 and F3 be adjacent to H3, P1, H1. We need to show that all three

faces F1, F2, F3 are hexagons.

Suppose F1 ia a pentagon. Let x be part of the edge label of both the edge between

H1, F1 and the edge between H2, F1. Thus x is in the label of the edge between H1, F3 and

of the edge between H2, F2. Consider the vertex v1 belonging to both H1, F3 but not to P1,

and v2 belonging to both H2, F2 but not to P3.

Suppose further that F2, F3 are both hexagons. Then we consider the zone z consisting

of the edges that contain x in their label. We also consider the zone z1 going through the

edges in between H1, P2 and P2, H2 and the zone z2 going through the edges between F3, H3

and H3, F2. Then v1, v2 is the intersection of three of the regions determined by the three

zones above, contradiction (since there is no edge in between v1, v2, i.e., the intersection of

regions is disconnected).

Thus F2, F3 cannot be both hexagons. Suppose F2 is a pentagon, F3 is a hexagon. We

consider again the three zones defined above and obtain a contradiction.

This shows that F2, F3 must be pentagons, i.e., we are in the case when all three of

F1, F2, F3 are pentagons. With x being part of the edge label of both the edge between
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H1, F1 and the edge between H2, F1, we see that x also labels the edges in between H1, F3

and H2, F2 (since H1, H2 are hexagons).

Suppose that x also labels the edge between F2, J5 and thus also between F3, J6 (see

Figure below).

Figure 5.4: First layer lemma

Then we claim that all faces Ji, i = 1, ..., 6 are pentagons. Indeed, consider v3 a vertex

shared by the faces J1, J2 (as shown above). Inside J1 (where J1 can be either pentagon

or hexagon), the label t will go on one of the edges going through v3. Similarly, the label

t inside J2 goes on v3v4 or on v3v6. If at least one of the faces J1, J2 are hexagons then

two different edges starting from v3 share t in their label, which cannot happen in an `1-

embeddable fullerene. Thus J1, J2 are both pentagons and t goes on the edge v3v4. In the

same manner, J3, J4 are pentagons and J5, J6 are pentagons. We obtain a complete fullerene

on 28 vertices, which is not `1-embeddable (as stated in [DGS]).

It remains to examine the case when x labels the edge between H3, F2. Then x also

labels the edge between H3, F3 (since H3 is a hexagon). Let xy be the full label of the edge

between H3, F2 and between H3, F3. Consider the zone z1 determined by y (i.e., z1 goes

through the edges between J1, F3, F3, H3, H3, F2 and F2, J4, where the Jis are the faces on
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the second layer around the cluster and they are not necessarily pentagons). Let also z2 be

the zone determined by x (so it goes through the faces of the first layer around the cluster).

Finally, let z3 be the zone determined by the label digit 2, i.e., z3 goes through J1, H1, P2,

H2, J4. The vertices v1, v2 will then constitute the intersection of three of the regions formed

by these three zones. Since in this intersection, v1, v2 are disconnected, we contradict the

convexity of regions in an `1-embeddable fullerene. In conclusion, the assumptions that at

least one of the faces F1, F2, F3 is a pentagon leads to contradictions or to non-embeddable

fullerenes, which proves that all of these faces must be hexagons.

Lemma 5.4.2. There exists no `1-embeddable fullerene that has a subgraph consisting of

two adjacent pentagons P1, P2, such that the two faces adjacent with both these pentagons

are hexagons and that one of these hexagons is also adjacent to two more hexagons, one of

them adjacent to P1, the other to P2.

Figure 5.5: Two pentagons path

Proof: Suppose by contradiction that we have such subgraph. Let H1, P1, P2, H2 be the

faces of the path, where P1, P2 are the two adjacent pentagons of the path. We call H3, H4

the hexagons adjacent to both P1, P2 (these are the faces above and below the two adjacent

pentagons). Let H1 be the face adjacent to both P1 and H4 and let H2 be the face adjacent

to P2 and H4. We consider the zones z1 through H3, P1, H4 and z2 through H3, P2, H4. We

can also consider the two zones z3 parallel to z1 and passing through H1 and z4 in a similar

way (parallel to z2 and passing through H2). Then in the intersection of four of the regions
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formed by these four zones we find one vertex from H3 and another from H4 though no path

between them exists in this intersection, contradiction.

In the next results we will use the following notations for the faces surrounding the cluster

of three pentagons. We denote by F1, ..., F6 the six degree two faces in clockwise order, by

A1, A2, A3 the three degree one faces also in clockwise order, such that A1 is adjacent to

F1, F6, A2 to F2, F3 and A3 to F4, F5. Consider G1 the face adjacent to F1, F2 that is not

part of the first layer surrounding the cluster of three pentagons and similarly, consider G2

adjacent to F3, F4 and G3 adjacent to F5, F6. Also let H1, ..., H6 be the hexagons in the first

layer, in clockwise order and such that H1 is adjacent to both F1, F2.

Lemma 5.4.3. Suppose all six degree two faces are pentagons. There exists exactly one

`1-embeddable fullerene that has this property. This fullerene has forty vertices and is drawn

below (Figure 5.6).

Figure 5.6: Embedding of F40(Td) into 1
2
H15

Proof: With the notations above, and by applying the lemma 5.4.2 to the subgraph formed

by H6, F1, F2, H2, H1, G1 we see that in order for the fullerene to be `1-embeddable we must

have that G1 is not a hexagon, i.e., G1 is a pentagon. With the same argument, G2, G3 are

also pentagons. Then it follows that A1, A2, A3 are hexagons, because otherwise the fullerene
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would have four pentagons cluster (e.g. A1, F1, F2, G1), contradiction. With these properties,

we see that the fullerene is completely constructed (all vertices have valency three). It has

40 vertices and its edge labeling is shown in Figure 5.6. It is known that this fullerene is

`1-embeddable.

Lemma 5.4.4. Suppose exactly five of the degree two faces are pentagons. There exists no

`1-embeddable fullerene in this case.

Proof: Consider F1, ..., F5 to be pentagons and F6 to be hexagon. By the same arguments

employed above, we have that G1, G2 are pentagons and that A1, A2, A3 are hexagons. Let v1

be the vertex of A1 that is not in any of the faces F6, H6, F1, G1 and let u1 be its third neigh-

bor (u1 not in A1). In a similar way, let v3 be the vertex of A3 that is not in F4, H4, F5, G2

and let u3 be its third neighbor. Then we see that u1 = v3 and u3 = v1, i.e., v1, v3 are

adjacent. Indeed, otherwise the path starting at u1, through v1 and the outer edges of

A1, G1, A2, G2, A3, ending with v3, u3, makes only left turns and its length is ≥ 7, contradic-

tion. At this moment all the vertices that are part of the faces considered until now have

valency three except one vertex of F6 (the one not in A1, H6, H5, F5). Denote it by w and

denote its third neighbor by t. Then consider the path starting at t, through w, making

only right turns, going (among other vertices) through v3, v1 and ending at t. This path has

length eight, contradiction.

Lemma 5.4.5. Suppose exactly four of the degree two faces are pentagons. There exists no

`1-embeddable fullerene in any of the following possible cases:

a) two sets of adjacent degree two faces are pentagons;

b) one set of adjacent degree two faces are pentagons; the other two degree two faces that

are pentagons are not adjacent and the subgraph consisting of the cluster and the first two

layers surrounding it is asymmetric;

c) one set of adjacent degree two faces are pentagons; the other two degree two faces that

are pentagons are not adjacent and the subgraph consisting of the cluster and the first two

layers surrounding it is symmetric;
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Proof: a) Suppose F1, ..., F4 are pentagons and F5, F6 are hexagons. We then have that

G1, G2 are pentagons and that A1, A2, A3 are hexagons. Consider as in the previous proof

v1 the sixth vertex of A1 and v3 the sixth vertex of A3, v1, v3 being adjacent by the same

argument used in the previous lemma. Let w5 be the sixth vertex of F5 (i.e., not in any of

the labeled faces) and let t5 be its neighbor that does not lie in F5. Similarly, consider w6

in F6 and t6 its neighbor that is not in F6. Take the path starting at t5, w5 that makes only

right turns, going through v3, v1 and ending at t6. This path has length seven, contradiction.

b) Suppose F1, F2, F3, F5 are pentagons and F4, F6 are hexagons. We then have that G1

is a pentagon and that A1, A2 are hexagons (to prevent having a four pentagons cluster).

Let L1 be the face adjacent to A1, G1, A2. Then L1 is a hexagon since it is part of the first

layer surrounding the three pentagons cluster F1, F2, G1. Note also that G2 cannot be a

pentagon, otherwise we contradict lemma 5.4.2 (which we apply to the adjacent pentagons

F3, G2, using also the hexagons H2, L1, A2, F4). Thus G2 is a hexagon. Suppose A3 is a

pentagon. Then we must have that F5, A3 are part of a three pentagons cluster, and thus

G3 is a pentagon. Moreover, the faces surrounding this cluster must be hexagons. Drawing

these faces we see that in the graph obtained all vertices have valency three but the outer

face is a four cycle, i.e., the graph is not a fullerene. This shows that A3 must be a hexagon.

If G3 (adjacent to F5, F6, A3) is a pentagon then also the face F , which is adjacent to

A1, F6, G3, L1, is a pentagon (if it were a hexagon, we would get two adjacent pentagons

surrounded by too many hexagons, which we showed to be impossible in an `1 fullerene).

Then let v be the vertex of A3 that is not in any of the previously labeled faces and let u

be its neighbor with the same property. Also let w be the vertex of G2 that is not in any

other labeled faces and let t be its neighbor not lying in G2. The path starting with u, v

that makes only left turns and traces the outer edges of A3, G3, F, L1, G2 ending in w, t has

length seven, contradiction. Thus G3 must be a hexagon.

Now suppose the face F (adjacent to L1, A1, F6, G3) is a pentagon. Then the face adjacent

to F, L1, G3 must be a hexagon , otherwise we contradict lemma 5.4.2. This means that t
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is linked by an edge with the vertex x of G3, where x does not belong to either of the faces

A3, F5, F6, F . Let y be the third neighbor of t, x, y, t being in clockwise order. Then either

u, y are adjacent or they coincide. If they are adjacent, the path that starts with y, t, w, that

makes only left turns and ends at a neighbor of u (possibly y) has length ≥ 7, contradiction.

If y = u then depending on the location of the third neighbor of u (besides v, t) we obtain

contradictions via arguments with paths that make only left (or only right) turns. Thus F

must be a hexagon.

Now let S be the face adjacent to F, G3 (S is not part of the second layer of faces) and R

adjacent to S, F, L1. If both S, R are pentagons, we focus on the only two vertices that do

not have all three neighbors in the faces labeled (one such vertex belongs to S, the other one

is v). Using the third edges of these two vertices, we obtain a path that makes only right

turns and has length seven (say, by starting with u, v), contradiction. Thus S, R cannot be

both pentagons.

Suppose that S is a pentagon, R a hexagon. Let T be the face adjacent to R, S. Then T

cannot be pentagon because it would follow that R is such. Thus T is a hexagon. Consider

the vertex p of T that is adjacent to the edge between R, T and that does not belong to S.

Also consider the third edge of p (not belonging to the face R). Then the path starting with

this edge, making only left turns and ending at u has length seven, contradiction.

If R is a pentagon and S is a hexagon, then T is a hexagon and the vertex of T and

S that does not belong to R must be adjacent to v. We get a contradiction by paths by

using the third edge of the only vertex of S that does not belong to a face that we already

considered. Thus both S, R must be hexagons.

Consider now V to be the face adjacent to A3, F4. Both cases : V a hexagon or a pentagon

end up with a contradiction by paths. In conclusion, the scenario in part (b) does not lead

to `1 fullerene.

c) Suppose F1, F2, F3, F6 are pentagons and F4, F5 are hexagons. We then have that G1 is

a pentagon and that A1, A2 are hexagons. Let L1 be the face adjacent to A1, G1, A2. Then,
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as proved for part (b), L1 is a hexagon and G2, G3 are hexagons. If A3 is a pentagon then we

have several cases to consider based on the type of the two faces adjacent to A3 that are not

already labeled or considered by us. If both of those are pentagons then the outer face must

also be a pentagon and we obtain a fullerene with a cluster of four pentagons, which case

is ruled out by our assumption that no cluster involving four or more pentagons is present

in the fullerenes of this subsection. If one of those faces is a pentagon and the other is a

hexagon, then using the sixth vertex of the face that is a hexagon, we obtain a path that

makes only right turns and that has length at least seven, contradiction. If both of those

faces are hexagons, then the outer face is a hexagon and thus we obtain a 3-cycle, which is

impossible in a fullerene.

Lemma 5.4.6. Suppose exactly three of the degree two faces are pentagons. The following

cases are possible:

a) two adjacent degree two faces are pentagons; say F1, F2 and F3 are pentagons, F4, F5, F6

are hexagons (same proof when besides F1, F2 any one of the other degree two faces is a

pentagon). There exists no `1-embeddable fullerene in this case.

b) among the degree two faces, pentagons and hexagons alternate (i.e., F1, F3, F5 are

pentagons, F2, F4, F6 are hexagons). In this case we can find an `1-embeddable fullerene with

44 vertices.

c) non-adjacent and non-alternating case, when say F1, F3, F6 are pentagons and F2, F4, F5

are hexagons. There exists no `1-embeddable fullerene in this case.

Proof: a) We have that G1 is a pentagon, A1, A2 are hexagons. Consider the zone z1

consisting of the edges between F4, H4, H5, H6, F1, F2, A2 (note that this zone doesn’t go

through H2 instead of A2 because if it would, the hexagonal face H4 will end up with

non-opposite edges sharing a digit of their labels, impossible). Similarly, consider z2 going

through F5, H4, H3, H2, F2, F1, A1. Also take z the zone through all of A3, F4, F3, A2, G1, A1,

F6, F5, A3. This is a zone because let’s say we start with the edge between A3, F5. Since

F5, F6, A1 are hexagons, the labels of the considered edge repeat on the edges between these
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faces. G1 being a pentagon, the label on the edge between A1, G1 will split - half of it will go

on the edge between G1, A2. This part of the label will then define the zone z. It will go on

the edge between A2, F3 and from there into F4, A3 (it cannot go from F3 into H3 because

then it will go P3, H5, F6 and thus the hexagonal face F6 will have non-opposite edges with

non-disjoint edge labels, impossible). Using these three zones we easily find three regions

such that their intersection contains precisely three vertices (two from A3, one from G1)

which lie in disconnected components, contradiction.

Figure 5.7: Embedding of F44(T ) into 1
2
H16

b) Suppose that at least two of the faces A1, A2, A3 are hexagons, specifically A1, A2 are

such. Then we obtain a contradiction by considering the zones z1, z2 (as in part (a)) that

intersect in the faces F2 and H4 and also the zone z3 through F5, F6, A1, G1 and z4 through

F4, F3, A2. Let L1 be the face adjacent to G1, F2, A2. Note that G1 is a hexagon, otherwise

together with F1, it should be part of a three pentagons cluster, impossible (since A1 is

supposed to be hexagonal). Given this observation, we see that z3 and z4 either coincide or

are different zones intersecting in the faces H1 and A3. In either case we can find two vertices

from F2 and two vertices from A3 that are disconnected but must also be part of a convex
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intersection of regions, contradiction. This proves that at most one of the faces A1, A2, A3 is

a hexagon.

Suppose A1, A3 are pentagons and A2 is a hexagon. Then G1, G3 are pentagons and

G2 is a hexagon, L1 is a hexagon (being on the first layer of faces surrounding the cluster

F1, G1, A1). Similarly, the face R adjacent to L1, G1, A1 is a hexagon. Then the vertices v, u

must be adjacent, where v is the vertex that belongs to L1 but not to R,G1, F2, A2 and it

is adjacent with a vertex of R; u is the vertex of F4 that does not belong to any other face

on the first or second layer of faces. We obtain a contradiction by paths by using the third

edges of the sixth vertices of L1 and A2.

The last subcase remaining is when all three of A1, A2, A3 are pentagons. Then G1, G2, G3

are pentagons and the vertices v1 (of G1), v2 (of G2) and v3 (of G3) must be in the neigh-

borhood of a vertex v, otherwise we obtain contradiction by paths. The graph obtained is

a complete fullerene and we see that it is `1-embeddable by using appropriate edge labels.

This fullerene has 44 vertices.

c) Suppose A1 is a pentagon. Then at least one of G1, G3 must be a pentagon (other-

wise, if both are hexagons, we contradict lemma 5.4.2 when trying to find an `1-embeddable

fullerene). Both G1, G3 cannot be pentagons because in that case we obtain a five pen-

tagons cluster, which contradicts the assumption of this subsection. Thus one of G1, G3 is

a pentagon, the other a hexagon. Assume G1 is the pentagon. Then looking at the cluster

A1, F1, G1 we see that not all faces on the first layer surrounding this cluster are hexagons

(F6 is a pentagon), contradiction. Thus G1 must be a hexagon, G3 a pentagon. Then the

cluster A1, F6, G3 has the pentagon F1 on the first layer, contradiction.

This discussion shows that the face A1 must be a hexagon in order to stand a chance

of finding an `1-embeddable fullerene. This implies G1 is a hexagon. Now suppose A2 is a

pentagon. Thus G2 is a pentagon. As was have done in part (b), we can construct zones

z1, z2 and zones z3, z4 such that we obtain a contradiction (note that by the Lemma 6.7,

the labeling of the cluster of pentagons A2, F3, G2 allows the existence of z4). With this
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argument we see that A2 must be a hexagon. Once again we consider the four zones and

obtain a contradiction as above.

Lemma 5.4.7. Suppose exactly two of the degree two faces are pentagons. There exists no

`1-embeddable fullerene in any of the following possible cases:

a) two adjacent degree two faces are pentagons (say F1, F2, all other degree two faces

being hexagons);

b) nonadjacent case (say F1, F3 are pentagons and F2, F4, F5, F6 are hexagons);

Proof: a) In this case, G1 is a pentagon and A1, A2 are hexagons. As in the previous

lemma, consider the zone z1 containing the edges between F4, H4, H5, H6, F1, F2, A2 (note

that this zone doesn’t go through H2 instead of A2 because if it would, the hexagonal face H4

would end up with non-opposite edges sharing a digit of their labels, impossible). Similarly,

consider z2 containing the edges in between the faces F5, H4, H3, H2, F2, F1, A1. Also consider

the zone through F5, F6, A1, G1, A2, F3, F4 (except G1, all of these faces are hexagons and

thus such zone exists). Let v be the vertex common to the faces G1, F1, F2, let u be the vertex

common to F5, H4, A3 and w the vertex common to F4, H4, A3. Then the disconnected set

v, u, w is the intersection of three of the regions determined by the three zones considered,

contradiction with the convexity of such intersection.

b) We consider zones z1, z2 as for part (a) and zones z3, z4 as in the proof of the previous

lemma. We readily obtain a contradiction by intersecting four of the regions obtained. Thus

no `1-embeddable fullerene exists in this case.

Lemma 5.4.8. Suppose exactly one of the degree two faces is a pentagon. There exists no

`1-embeddable fullerene in this case.

Proof: Suppose F1 is a pentagon, F2, ..., F6 being hexagons.

If A1 is a pentagon then A1, F1 must be part of a cluster of three pentagons and thus G1

is a pentagon. Moreover, the face L1 (adjacent to G1, F2) is a hexagon, since it is in the first

layer of faces around the cluster. Consider the zone z1 through A2, F2, F1, H6, H5, H4, F4, z2
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through G1, F2, H2, H3, H4, F5. Further consider the zones z3 through A3, F5, F6, A1, G1, L1

and z4 through L1, A2, F3, F4, A3. Then one vertex from F2 and two vertices from H4 will be

in the disconnected intersection of four regions determined by the four zones, contradiction.

Thus A1 cannot be a pentagon, so it must be a hexagon. Then G1 must be a hexagon

and using the same argument with zones, we get a contradiction.

Lemma 5.4.9. Suppose none of the degree two faces is a pentagon. There exists no `1-

embeddable fullerene in this case.

Proof: Same argument with the four zones can be applied, leading to a contradiction.

Proposition 5.4.10. There exists exactly two `1-embeddable fullerenes (with 40 and 44

vertices, respectively) such that at least one three pentagons cluster is present but no larger

cluster of pentagons exists.

Proof: Putting together the results of this subsection, we see that this proposition holds

true.
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CHAPTER 6

ADJACENT PENTAGONS: NO

CLUSTER CASE

6.1 Subpaths of pentagons

In this chapter we assume that the fullerenes have no cluster of three or more pentagons,

i.e., no three pentagons are such that each is adjacent with the other two pentagons. We

have seen in the previous chapter that in an `1-embeddable fullerene there cannot exist two

adjacent pentagons surrounded by four hexagons appropriately situated with respect to the

two pentagons. In particular, this can be reformulated as: there does not exist a path of

faces consisting of a hexagon followed by two pentagons, followed by a hexagon such that

these four faces are all adjacent to a face (hexagon) of the fullerene. In the next lemmas we

explore the cases of similar paths involving three, four or more pentagons, i.e., cases when

the path of faces (counting also the hexagons at the beginning and at the end of the path)

is longer than four.

Lemma 6.1.1. There exists no `1-embeddable fullerene that has a subgraph consisting of a

simple path of faces H1, P1, P2, P3, H2, such that H1, H2 are hexagons, P1, P2, P3 are pen-

tagons and all these five faces are adjacent to one face of the fullerene.
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Figure 6.1: Three pentagons path

Proof: Let H3 be the face adjacent to P1, P2 (above them), H4 the face adjacent to P2, P3

(above them and adjacent to H3) and H5 the face adjacent to all three pentagons (below the

pentagons) and to H1, H2. Since the fullerenes in this subsection are assumed to have no

cluster of three or more pentagons, we deduce that H3, H4, H5 are all hexagons. Let also F1

be the face adjacent to H1, P1, H3 and, symmetrically, F2 be the face adjacent to H4, P3, H2.

Then F1 is a pentagon, otherwise we apply the second lemma of the previous subsection to

the pentagons P1, P2 together with the faces F1, H4, H3, H5 and obtain a non-embeddable

fullerene. In the same manner, F2 is a pentagon. Let F3 be the face adjacent to F1, H1. Then

F3 is a pentagon, by the same argument applied to the path F3, F1, P1, H5. Let F5 be the face

adjacent to F1, H3. Then F5 is a hexagon, otherwise F3, F1, F5 is a cluster of three pentagons.

Further, let F7 be the face adjacent to F3, F5. Then F7 is a pentagon, otherwise we consider

the subgraph including the faces H3, F1, F3, F7. Finally, let F9 be the face adjacent to F7

but not to F5. Then F9 is also a pentagon, otherwise consider H1, F3, F7, F9. Let F11 be

the face adjacent to F9, F7, F5. We must have that F11 is a hexagon, otherwise we get a

three pentagons cluster. In the same manner, F13 (the face adjacent to F9, F7, F3, H1) is a

hexagon. With similar arguments we can label the right side of the picture and obtain the

faces F4, F6, F8, F10, F12, F14 such that F4, F8, F10 are pentagons, the other being hexagons.
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The only two vertices that do not have valency three are in F9 and F10, respectively. Unless

these vertices are linked by an edge we obtain a path that makes only right turns and that

has length ≥ 7. Thus we must have that there exists an edge between these two vertices and

we obtain a fullerene on 48 vertices, which by [DGS] is not `1-embeddable.

Lemma 6.1.2. There exists no `1-embeddable fullerene that has a subgraph consisting of a

simple path of faces H1, P1, P2, P3, P4, H2, such that H1, H2 are hexagons, P1, P2, P3, P4 are

pentagons and all these six faces are adjacent to one face of the fullerene.

Figure 6.2: Four pentagons path

Proof: Let H3 be the face adjacent to P1, P2; H4 the face adjacent to P2, P3; H5 the face

adjacent to P3, P4; H6 the face adjacent to all of H1, P1, P2, P3, P4, H2. Then H3, H4, H5, H6

are all hexagons (otherwise a cluster of three or more pentagons is formed). Also let F1 be

the face adjacent to H1, P1, H3. Then F1 is a pentagon, otherwise F1, P1, P2, H4 is a path

of faces that was discarded in one of the previous lemmas. Similarly, consider the face F3

adjacent to F1, H3. Then F3 must also be a pentagon. Furthermore, let F5 be adjacent to

H1, F1, F3. Then using the path of faces H6, P1, F1, F5 we see that F5 is also a pentagon. We

thus obtain a cluster of three pentagons (F1, F3, F5), contradiction.

Lemma 6.1.3. There exists no `1-embeddable fullerene that has a subgraph consisting of
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a cycle of faces H1, P1, P2, P3, P4, P5, H1, such that H1 is a hexagon, P1, P2, P3, P4, P5 are

pentagons and all these six faces are adjacent to one face of the fullerene.

Figure 6.3: Five pentagons path

Proof: Let H3 be adjacent to P1, P2, H4 be adjacent to P2, P3, H5 be adjacent to P3, P4 and

H6 be adjacent to all of P4, P5. Also let H7 be the face adjacent to all of P1, P2, P3, P4, P5 and

to H1. Then H3, H4, H5, H6, H7 are all hexagons. Consider F1 adjacent to H1, P1, H3, which

must be a pentagon (otherwise we contradict one of the previous lemmas). Similarly, F3,

which is adjacent to F1, H3, must be a pentagon. Symmetrically, we consider F2 adjacent

to H6, P5, H1 and F2 adjacent to H6, F2. Both of these are pentagons. Then the face F5

adjacent to H1, F1, F2, F3, F4 has to be a hexagon (having six different vertices). This leads

to the existence of the path of faces H7, P5, F2, F5 which starts at a hexagon, goes through

two pentagons and ends at a hexagon, contradiction.

Lemma 6.1.4. There exists no `1-embeddable fullerene that has a subgraph consisting of a

cycle of six pentagons P1, P2, P3, P4, P5, P6 (no three or more pentagons cluster), such that

all these pentagons are adjacent to one face of the fullerene.

Proof: Let the cycle of pentagons be labeled P1, P2, P3, P4, P5, P6. These are all adjacent

with (surround) a hexagonal face H. Since no cluster of three pentagons exist, it follows that
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Figure 6.4: Six pentagons path

the subgraph formed by these seven faces is surrounded by a layer of hexagons. Then we can

consider two of these hexagons together with two of the pentagons (say P1, P2) such that we

obtain a path of faces starting at a hexagon, going through two pentagons and ending at a

hexagon, contradiction with the lemma in the previous subsection.

Proposition 6.1.5. There exists no `1-embeddable fullerene with adjacent pentagons and

such that no cluster of three or more pentagons is present.

Proof: Consider two adjacent pentagons. They may or may not be adjacent with other

pentagons but in any case, they form one of the paths of faces considered in the previous

lemmas. Each of these paths though cannot exist as subgraph of an `1-embeddable fullerene

(as we have shown for each such path), which proves this proposition.
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