
STRUCTURE-BASED MULTIPLE RNA SEQUENCE ALIGNMENT AND
FINDING RNA MOTIFS

Michael Wayne Sarver

A Dissertation

Submitted to the Graduate College of Bowling Green
State University in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2006

Committee:

Craig Zirbel, Advisor

Robert Boughton,
Graduate Faculty Representative

Truc Nguyen

Gabor Szekely

John Chen

ii

ABSTRACT

Craig Zirbel, Advisor

With the advent of faster computers and the availability of RNA crystal structures we

can now use more information to align homologous RNA sequences. We can take a crystal

structure and construct a probabilistic model, based on a SCFG, of an RNA molecule. We

construct objects called nodes that modularize the model into small pieces that are more

manageable. Using this model we can take sequences that are similar to the sequence in the

3D crystal structure and look for the most probable way that the model could have generated

the sequence. Then we can get a detailed description of how each node of the model could

have generated the sequence. Using this information we can align sequences. Given a seed

alignment we give a procedure to construct a 3D structural alignment quickly. In addition

we show how the parameters from the model can be estimated. We also have the ability to

do motif swaps using objects called alternative nodes.

We have developed an algorithm to quickly search through RNA 3D structures to find

motifs. This is accomplished by taking a query motif with m bases and finding the center of

the heavy atoms for each base and then rotating it onto candidate motifs that have the same

number of bases. Then we measure how good a fit the candidate is to the query by using

a discrepancy that we define which involves the distance between bases and their relative

orientations. A simple inequality allows us to quickly identify candidates whose discrepancy

with the query motif will exceed a cutoff discrepancy. We use this to screen out the vast

majority quickly.

iii

To my grandmother and grandfather.

iv

ACKNOWLEDGMENTS

First and foremost I want to thank my wife, Amy, for always believing in me and pushing

me harder than anyone else. Without her I’m not sure I would have even gone to college.

I would like to thank Dr. Zirbel for his infinite patience and all the time he spent helping

me with various aspects of writing this dissertation. Asking Dr. Zirbel to be my advisor

was one of the smartest decisions I have ever made. I wish to thank the members of my

committee, Dr. Chen, Dr. Szekely, Dr. Nguyen, and Dr. Boughton for taking the time to

read and evaluate my dissertation. Finally, I would like to thank Nate Iverson for creating

the BGSU LATEX class.

v

Table of Contents

CHAPTER 1: Introduction 1

1.1 What is RNA? . 1

1.2 Isostericity . 3

1.3 What is an RNA multiple sequence alignment? 5

1.4 Why do alignments? . 7

1.4.1 Predict secondary structure . 7

1.4.2 Infer global 3D structure . 7

1.4.3 Phylogeny . 8

1.4.4 Predict 3D structure - motif swaps 8

1.4.5 Allows you to check your isostericity conjectures 9

1.5 Alignment procedures . 9

1.5.1 Hand alignment . 9

1.5.2 Progressive alignment . 9

1.5.3 Stochastic Context Free Grammars 10

1.5.4 Covariance Model . 11

1.6 Why do we want to do multiple alignments? 13

1.6.1 Why do alignments when there are already alignments available? . . 13

1.6.2 Why do 3D structural alignments? 13

CHAPTER 2: SCFG-MRF model for RNA sequences 14

vi

2.1 Nodes . 15

2.2 Initial Node . 18

2.3 Basepair Node . 19

2.3.1 Constructing the basepair model . 19

2.3.2 Summing over all possible values of (L,R) adds to 1 20

2.4 Junction Node . 22

2.5 Hairpin Node . 23

2.6 Parsing . 23

2.6.1 Parsing an Initial node . 25

2.6.2 Parsing a Basepair . 26

2.6.3 Parsing a junction . 27

2.6.4 Parsing with a Hairpin Node . 28

2.7 Cluster nodes and Markov random fields . 28

2.7.1 Constructing the Cluster Model . 30

2.7.2 Showing the Markov property through an example 32

2.7.3 Generating a cluster . 34

2.7.4 Parsing a subsequence using a cluster node 34

2.8 Junction Cluster . 35

2.8.1 Constructing Junction Cluster Model 35

2.8.2 Parsing a Jc-node . 36

2.9 Alternative . 36

2.9.1 Parsing an Alternative node . 38

2.9.2 Results . 38

2.10 Traceback . 40

2.11 Limits on what each node looks at . 41

CHAPTER 3: Parameter Estimation 45

3.1 The Likelihood Function for an Initial Node 45

vii

3.1.1 The MLE for λn and ρn . 46

3.1.2 The MLE for ξ and ζ . 48

3.2 The Likelihood Function for a Basepair . 49

3.2.1 The MLE for d . 50

3.2.2 The MLE for P . 50

3.2.3 MLE Using Partitions . 52

3.2.4 MLE Using Partitions across different interaction families 53

3.2.5 The MLE for λn and ρn . 55

3.2.6 The MLE’s for ξ and ζ . 55

3.3 The Likelihood Function for Basepairs in a Cluster Node 56

3.3.1 The MLE for P in a Cluster Node 56

3.4 MLE for a Jc-node . 58

3.5 Parameter estimates from data . 58

CHAPTER 4: Motif Searching 62

4.1 Our first approach . 63

4.2 Current way of finding pentahedra . 64

4.3 Maximum number of candidates . 67

4.4 The definition of discrepancy . 68

4.5 Permutation of bases . 69

4.5.1 Why do we need to permute the bases? 69

4.5.2 How do we permute the bases? . 69

4.6 Displaying Candidates . 70

CHAPTER 5: Selected Matlab Code 73

5.1 Matlab code for Cluster Nodes . 73

5.2 Matlab code for JunctionCluster Nodes . 76

5.3 Matlab code for parsing Alternatives . 78

viii

5.4 Matlab code for finding pentahedra . 80

5.5 Matlab code for permuting the bases . 81

BIBLIOGRAPHY 83

ix

List of Figures

1.1 23S Haloarcula Marismortui RNA Molecule 1

1.2 5S Haloarcula Marismortui RNA Molecule 2

1.3 5S secondary structure . 3

1.4 Basepairs [5] . 4

1.5 Interacting Edges and Glycosidic Bond Orientations from LSW paper [5] . . 5

1.6 Unaligned Sequences of archaeal 5S Haloarcula Marismortui 7

1.7 Seed alignment of archaeal 5S Haloarcula Marismortui 7

1.8 Secondary structure example for CM . 12

1.9 CM for the secondary structure given in Figure (1.8) 12

2.1 5S Haloarcula Marismortui secondary structure 15

2.2 3D annotation of the 5S RNA Haloarcula Marismortui 16

2.3 Example of a tree structure with nodes . 17

2.4 Randomly generated Sequences from an Initial Node 19

2.5 Randomly generated Sequences from a Basepair Node 22

2.6 Junction From 5S Haloarcula Marismortui 23

2.7 Hairpin from 5S Haloarcula Marismortui . 24

2.8 Kink-turn from 23S Haloarcula Marismortui 28

2.9 Renumbered Kink-turn from 23S Haloarcula Marismortui 32

2.10 Alternative Tree Structure . 37

2.11 Alignment of randomly generated sequences using an alternative node 39

x

2.12 Alignment of randomly generated sequences using an alternative node 39

2.13 Alignment of randomly generated sequences using an alternative node 40

2.14 Alignment of Archaeal and Bacterial Loop E 41

2.15 Maximum Probability Parse with no restrictions 42

2.16 Maximum Probability Parse with sequence length restriction 43

2.17 Maximum Probability Parse near seed alignment 43

3.1 Alignment of 5S RNA sequences using ad hoc parameters 60

3.2 Alignment of 5S RNA sequences using estimated parameters 61

4.1 Formation of 3 base triples . 65

4.2 Creating tetrahedra . 66

4.3 Creating pentahedra . 67

4.4 Display of candidates using FR3D . 71

4.5 Superimposed motifs . 72

xi

List of Tables

1.1 Isosteric families for cWW . 6

1.2 Isostericity Matrix for G-C cWW basepair 6

2.1 Seed Alignment . 44

3.1 Ad hoc Isostericity Matrix for cWW A-U,C-G basepairs 58

3.2 Data Matrix for cWW A-U,C-G basepairs 58

3.3 New Data Matrix for cWW A-U,C-G basepairs 59

4.1 Values of b for spheres of different radii from the 23S ribosomal RNA molecule. 68

1

CHAPTER 1

Introduction

1.1 What is RNA?

Figure 1.1: 23S RNA Molecule, from 1s72 crystal structure, part of the ribosome, which
manufactures proteins. Display created with Swiss-PdbViewer [3]

RNA is a single-stranded nucleic acid molecule involved in protein synthesis and many

2

Figure 1.2: 5S RNA Molecule, another part of the ribosome. Display created with Swiss-
PdbViewer [3]

other cellular functions. RNA is mostly made up of the four bases adenine, cytosine, guanine,

and uracil, denoted by A,C,G, and U respectively. RNA is similar to DNA. The bases A,C,

and G that are found in RNA are the same bases found in DNA. In DNA uracil is replaced by

thymine. From Figure (1.2) we can see that even though an RNA molecule is single-stranded

it can fold back onto itself and form interesting structures.

Protein synthesis by the ribosome depends crucially on the RNA molecule having the

specific shape shown here, which is held together by basepairs. The most common basepairs

are AU and CG (shown in figure (1.2)), but others also occur.

Figure (1.3) gives a 2D representation of what is displayed in Figure(1.2). The figure

shows the pattern of basepairs in the molecule. We will call the structure above loop A helix

3

1, to the right of loop A helix 2, and below loop A helix 3.

Figure 1.3: Secondary structure of the 5S ribosomal RNA Haloarcula Marismortui

1.2 Isostericity

Over the course of many generations, random mutations will occur in an RNA molecule.

Sometimes basepairs are replaced by different basepairs and the shape of the molecule or the

function of the molecule or both is unchanged. If the shape remains unchanged then there

must be something that the two basepairs have in common. In this case we say that the two

basepairs are isosteric to one another. That is, one basepair can be replaced by another and

it doesn’t change the shape of the molecule. If we have two basepairs that have roughly the

same C1’-C1’ distance and their glycosidic bonds have the same relative orientation then we

say that the two basepairs are isosteric.[5] The C1’ atoms are labeled as solid black dots in

Figure (1.4).

Basepairs can be classified into families. For each base there are three interacting edges.

In Figure (1.5) we can see these edges. They are called the Watson-Crick edge, Hoogsteen

4

Figure 1.4: Basepairs [5]

edge, and Sugar edge.

Referring to the right hand side of Figure (1.5) we see the orientation of the glycosidic

bonds indicated by the arrows. If both arrows are pointing to the same side then we call it

a cis basepair, otherwise we call it trans. Using the hierarchy that the Watson-Crick edges

are referred to first followed by Hoogsteen then Sugar, there are twelve different families.

Basepairs that belong to the same family (cWW,tWW,cWH,...) generally have glycosidic

bonds that have roughly the same orientation. But their C1’-C1’ distance can still be different

and therefore not all basepairs in a family are isosteric. Therefore, we make isostericity

matrices. An isostericity matrix is a 4× 4 matrix that, for each family, tells which basepairs

are isosteric to one another. Below is the table for a cWW interaction.

From Table (1.1) we can see that the canonical basepairs A-U, C-G, G-C, U-A are isosteric

to one another because they fall in isostericity family I1. Also note that the G-G position in

the matrix is blank. This is because there is no way for the Watson-Crick edge of guanine

nucleotides to form hydrogen bonds, due to electrostatic repulsion.

5

Figure 1.5: Interacting Edges and Glycosidic Bond Orientations from LSW paper [5]

Some basepairs we classify as being nearly isosteric. That is, their C1’-C1’ distances and

relative orientations of their glycosidic bonds are close but not close enough to be considered

isosteric. A further subclass are basepairs that are not close enough to be considered nearly

isosteric but they are still physically possible. These basepairs are called allowed. A basepair

that is physically impossible is called not allowed. Table 1.2 shows what basepairs are

isosteric, nearly isosteric, allowed, and not allowed, indicated by 2, 1, 0, and -3 respectively,

for a G-C Cis Watson-Crick basepair.

1.3 What is an RNA multiple sequence alignment?

The 3D structures we have shown and discussed are hard to produce. Much easier is to

determine the sequences of bases in a given RNA molecule for a given organism. Different

6

cWW A C G U
A I4 i2 I3 I1
C I2 I6 I1 I5
G I3 I1 i2
U I1 I5 I2 I6

Table 1.1: Isosteric families for cWW

cWW A C G U
A 0 1 0 2
C 1 0 2 0
G 0 2 -3 1
U 2 0 1 0

Table 1.2: Isostericity Matrix for G-C cWW basepair

molecules may play different roles in different organisms, but molecules which play the

same biological role in two organisms and which share similar 3D structures are said to be

homologous.

When analyzing RNA sequences we would like to know what are some of the common

features of the sequences and can we tell anything about the shape of the molecule. An RNA

multiple sequence alignment is when we take homologous sequences, RNA molecules that

are descended from a common ancestor, and we line up the columns to indicate which bases

play the same role in the molecule. In practice, since we don’t know the 3D structure of all

the sequences, we line them up in a way that either maximizes some score or probability.

A typical scoring system is one in which high positive scores will be given to alignments

when letters in two columns which we think represent a basepair match a pattern such as

A-U, U-A, C-G, or G-C. [7] If a sequence aligns well, has a high score or probability, to a

sequence for which we know something about the 3D structure, then we can infer that the

other sequence also has a similar 3D structure.

Figure (1.6) shows 10 unaligned sequences. From this figure it is hard to see if the

sequences are similar. Note that the sequences have different lengths; some molecules simply

have fewer bases than others. In Figure (1.7) we see the same 10 sequences but now they

are aligned. Now it is quite obvious that the sequences are very similar.

7

Figure 1.6: Unaligned Sequences of archaeal 5S Haloarcula Marismortui

This alignment, Figure (1.7), is mostly a matter of identifying where the difference in

the number of total bases occur. Here it is clear that most of the differences occur at the

beginning and the end of the sequences. This corresponds to differences in the length of

helix 1 in Figure (1.3).

Figure 1.7: Seed alignment of archaeal 5S Haloarcula Marismortui

1.4 Why do alignments?

1.4.1 Predict secondary structure

The original use of alignments was to use sequence data alone to predict secondary structures,

as in Figure (1.3), before any 3D structures were available. There are several techniques to

predict secondary structure. These include the Nussinov algorithm and the Zuker folding

algorithm [1]

1.4.2 Infer global 3D structure

We know what the 23S looks like since we have a crystal structure. If we have a homologous

sequence that aligns well to the 23S then we can infer that the 3D structure of the homologous

sequence is very similar to the 3D structure of 23S.

8

1.4.3 Phylogeny

If two sequences align well then this tells us something about the phylogeny, which is the

evolutionary link between the two organisms. There are algorithms available, such as UP-

GMA and Parsimony, that make phylogenetic trees[1]. These procedures create a measure

of distance between two aligned sequences. The smaller the distance, the more closely the

two sequences, and thus the organisms, are related. The requirement for these algorithms is

a good multiple alignment. Unfortunately, current multiple alignment procedures can only

parse helical regions with any accuracy. Therefore when creating a phylogenetic tree non-

helical regions have to be ignored since they are not aligned well. Our 3D structure-based

multiple alignment procedure can align non-helical as well as helical regions. It is reasonable

to assume that if we have a better alignment then we should be able to generate a more

accurate phylogenetic tree. We can also define a different distance than the one usually used

in Parsimony, based on isosteric substitutions. When isosteric substitutions are made in an

RNA molecule the shape and function of the molecule remains unchanged. Therefore, we

can set the distance between a pair and one isosteric to it as zero. We could also define

distances between pairs that were nearly isosteric or just allowed. All of this will lead to a

better understanding of phylogeny.

1.4.4 Predict 3D structure - motif swaps

Some RNA molecules have very similar structures. They just differ in a few locations. For

example, the bacterial and archaeal 5S have nearly the same 3D structure. In fact, if we

superimpose the two structures we see that they have nearly the same shape. The main

difference between the two is the loop E region. If we are given a sequence that is either

bacterial or archaeal then by parsing the sequence according to both bacterial and archaeal

models, we may be able to determine what type of sequence it is based on how the loop E

region was parsed.

Aligning sequences can help us predict 3D structure from sequence data alone. From

9

the RNA 3D structures we have available one can build a database of models for motifs,

collections of up to 20 bases. We can then align a sequence or portion of a sequence with an

unknown 3D structure using all the models in our database. The alignment that gives the

best score would then be our best guess as to what the true 3D structure of the sequence is.

1.4.5 Allows you to check your isostericity conjectures

We can align sequences based on our isostericity rules. If the alignment score is high and

there is diversity in the sequences we have reason to believe that our isostericity rules are true.

Once we create our alignments we can then re-estimate isostericity substitution parameters,

which tell the probabilities for making Isosteric, nearly Isosteric, allowed, and not allowed

substitutions. How to estimate isostericity parameters will be discussed in Chapter 3.

1.5 Alignment procedures

1.5.1 Hand alignment

Biologists have created a few multiple alignments by hand either by aligning the sequences

from scratch or modifying existing alignments. While these alignments are usually good they

take a very long time to produce and therefore it is impractical to do for large sequences or

when doing a multiple alignment on a large number of sequences.

1.5.2 Progressive alignment

A progressive alignment is a procedure that constructs a succession of pairwise alignments.

First, two sequences are aligned by a pairwise alignment procedure. Then, a third sequence

is aligned to the first alignment and so on until all the sequences have been aligned. The

problem with this procedure is that it is a heuristic procedure that depends on the order

that the sequences were aligned. It is important to align the sequences that are more closely

10

related first. The upside to this approach is that it is fast and the alignments are usually

not too bad. [2]

1.5.3 Stochastic Context Free Grammars

Stochastic Context Free Grammars (SCFG’s) are part of Chomsky’s hierarchy.[1] They con-

sist of a set of terminals and nonterminals as well as a set of production rules. Terminals are

usually denoted with lowercase letters and nonterminals with capital letters. For example,

let {S,W1,W2,W3} be the set of nonterminals and {a, c, g, u} be the set of terminals. Let

the production rules be given by

S → aW1g|cW1u

W1 → aW2u|cW2g|aW1g (1.1)

W2 → aW2u|cW2g|cW3g

W3 → uccg|ggga

The symbol | in (1.1) can be read as ”or”. Then the first production rule says that if we

start at S our first production is either aW1g or cW1u. Production rule 3 generates au or cg

basepairs. Assume that S goes to aW1g. Then from W1 we can get either aW2u or cW2g or

aW1g. let us pick cW2g. Then, so far we have

S → aW1g → acW2gg (1.2)

Now maybe W2 goes to cW2g. And then from W2 to cW3g. Finally we let W3 produce

ggga. Combining all this we get

S → aW1g → acW2gg → accW2ggg → acccW3gggg → acccgggagggg (1.3)

The above is an example of a context free grammar. To make it into a SCFG all we need

11

to do is to create probability distributions for the production rules. That is, for example, if

we take the first production rule in (1.1), we could say that S goes to aW1g with probability

pS1 and aW1g with probability pS2. Likewise we could set the probability that W1 produces

aW2u, cW2g, or aW1g as pw11, pw12, or pw13 respectively. Doing this gives a way to randomly

generate sequences. But we could also look at it from the other direction. We could have

a sequence that we want to know what was the most probable way the grammar generated

the sequence. This is called parsing. SCFGs can be used to model sequence variability for

RNA molecules because they can preferentially generate basepairs of a specified type.

1.5.4 Covariance Model

A covariance model (CM) is a SCFG that uses an annotated secondary structure, which is

obtained from a secondary structure prediction algorithm, to determine the production rules

for the grammar. The set of nonterminals are given by the letters S, P, L,R,B,E.[1]

The production rules are similar to the rules given by (1.1) and are defined as

S → W

P → aWb

L → aW (1.4)

R → Wa

B → SS

E → ε

Where W∈ {P,L,R,B,E} and a, b ∈ {A,C,G,U} and ε is the empty string.

The production rules are set in such a way as to mimic the secondary structure. For

example, if the secondary structure of a molecule is given by Figure (1.8) we can construct

a CM with the form given by Figure (1.9).

Then we can construct a CM that has the structure given by (Figure 1.9) to model the

12

Figure 1.8: Secondary structure example for CM

molecule.

Figure 1.9: CM for the secondary structure given in Figure (1.8)

What we do in chapter 2 is similar to a CM. The difference is that we use a 3D structure

to construct the model and therefore we have more information available and we introduce

new rewriting rules (cluster, alternative). This allows us to construct a more comprehensive

model.

13

1.6 Why do we want to do multiple alignments?

1.6.1 Why do alignments when there are already alignments avail-

able?

While the procedures described do a reasonable job of aligning sequences they have yet to

capture the intuition of the trained biologist. Most alignment procedures are based only on

sequence data and they use ad hoc parameters. The algorithms are designed to create as

many canonical basepairs as possible (helical regions). The problem with aligning sequences

this way is that helical regions only account for approximately 70% of the interacting base-

pairs. By just using sequence data we miss out on 30% of the information. It has been

shown that the non-helical regions are not aligned well.[6] In addition, there are problems

with the alignment of the helical regions also.[6] Clearly there is room for improvement here.

If we use more information we should get better alignments

1.6.2 Why do 3D structural alignments?

A 3D structure of a molecule gives us information that is not available from a set of sequences

alone. In addition to showing the locations of all the canonical basepairs the 3D structure

shows where all the insertions and non-canonical basepairs are. Using this extra information

we can make more elaborate models of RNA molecules. We can model situations where

bases are are involved in multiple interactions. Therefore, we can model the 30% of the

molecule that the other alignment procedures don’t take into account. This will give us a

more informed model and therefore a better multiple alignment of the helical as well as the

non-helical regions.

14

CHAPTER 2

SCFG-MRF model for RNA

sequences

Our research group has created a program that can analyze an RNA crystal structure and

then display a 2D representation that tells what bases are interacting and what type of

interaction it is. From this information we can create a model for the molecule. Our working

hypothesis is that closely-related organisms have molecules with similar 3D structure, with

minor evolutionary variations. More distantly-related molecules may differ more. We wish

to make a probabilistic model for sequence generation based on the 3D structure and use it

to understand (parse) sequences from other organisms, whether closely or distantly related.

A secondary structure is a 2D representation of an RNA molecule that shows where the

canonical basepairs are and which gives some idea of the shape of the molecule. Figure

(2.1) shows the secondary structure, inferred from multiple sequence alignments based only

on canonical basepairs, for the 5S ribosomal RNA of Haloarcula Marismortui. Solid lines

indicate canonical basepairs. Non-canonical basepairs occur in the regions marked B,C,and E

but are not shown in Figure (2.1). Figure (2.2) shows, in addition to the canonical basepairs,

the non-canonical basepairs that are present in the 5S RNA Haloarcula Marismortui. This

information is derived from the crystal structure given in Figure (1.2).

15

Figure 2.1: Secondary structure of the 5S ribosomal RNA Haloarcula Marismortui, as in-
ferred from sequence alignments.

The location of the 5’ is where the RNA starts and it ends at the 3’ side. This particular

molecule is 122 bases long. If we start where the 5’ and 3’ are and we move toward loop A

we can see that the molecule branches and forms other loops/helices.

2.1 Nodes

The model we are about to describe is an SCFG model. The non-terminals are called nodes

and we organize them into a tree. Also, MRF is explained in Section (2.7). In terms of

generation the nodes are capable of generating letters with some dependence structure. The

letters that the nodes generate will be independent from node to node. More complicated

dependence will be considered at a later date. The nodes that are used are determined

directly from the 3D structure, rather than being inferred from a sequence alignment.

There are seven different node types : (I)nitial, (B)asepair, (C)luster, (J)unction,

(Jc)unction Cluster, (A)lternative, and (H)airpin. The nodes will be described in detail later.

16

Figure 2.2: 3D annotation of the 5S RNA Haloarcula Marismortui [6]

Using these nodes connected in a tree we can model most situations, but not pseudoknots

[8] or other long-range interactions.

To model an RNA molecule we start by creating a tree structure to connect the nodes

which generate parts for the sequence. At the root of the tree will be an I-node and an

H-node will be at the end of every branch. In Figure (2.1), loops C and D are hairpins. The

rest of the tree is constructed in such a way that it generates basepairs and insertions in the

desired way.

The child nodes for a node n are all the nodes after n such that they are directly connected

to node n in the tree structure. We denote these nodes as cn. Most of the time cn is one

number. However, in some cases there is more than one child node, and then cn is a vector

that contains the numbers of all the child nodes, as we will explain below.

Example: Using nodes to generate a sequence.

Referring to Figure (2.3) we would like to see what kind of sequence that configura-

tion of nodes could generate. First, Node 1 could generate an A on the left and nothing

17

on the right. Then we can write N1 →AN2. Node 2 generates a G-C basepair. There-

fore, we have AN2 →AGN3C. It is possible that node 3 generates no letters. Then we get

AGN3C→AGN4C. The junction node tells us that we are now going to branch and form

other loops. In particular those loops will start at nodes 5 and 9. We can write this as

AGN4C→AGN5N9C. For nodes 5,6, and 7 assume they generate a U on the right, A-U

basepair, and a U-A basepair with an inserted G on the right respectively. This is written

as AGN5N9C→AGN6UN9C→ AGAN7UUN9C→ AGAUN8GAUUN9C. The hairpin node ,

node 8, now generates an GGGA to close the loop.

AGAUN8GAUUN9C→AGAUGGGAGAUUN9C.

Now starting with node 9 we repeat the process we did for the first 8 nodes. So if nodes

9,10,11,12,and 13 generate no letters, A-G basepair, CCA on the left and UG on the right, C-

G basepair, and UCCG respectively then, the sequence our model generated is AGAUGGGA-

GAUUACCACUCCGGUGGC.

Figure 2.3: Example of a tree structure with nodes

18

2.2 Initial Node

An Initial node (I-node) can generate unpaired bases to the left and right. Let L and R

denote the letters generated on the left and right respectively. Then L and R take values in

Ω = {e, A,C,G, U,AA,AC, . . .} where e is a null character. L and R are independent random

variables. In the generation phase, an I-node first generates the number of insertions to be

made on the left and right according to independent truncated Poisson distributions Λ and

R with parameters λ and ρ respectively. The distributions are truncated at a user-defined

value b, which could be ∞. Therefore,

Λ(k) =

cλ
λke−λ

k!
0 ≤ k ≤ b

0 otherwise
, R(k) =

cρ
ρke−ρ

k!
0 ≤ k ≤ b

0 otherwise
(2.1)

where cλ and cρ are constants such that
b∑

k=0

Λ(k) = 1 and
b∑

k=0

R(k) = 1.

The inserted letters on the left and right are generated independently with probability dis-

tributions ξ(·) and ζ(·). Now we can write down the joint distribution of (L,R) which is

given by

P((L,R) = (`, r)) =

Λ(|`|)R(|r|)
(∏|`|

j=1 ξ(`(j))
)(∏|r|

j=1 ζ(r(j))
)

|`|, |r| > 0

Λ(|`|)R(0)
(∏|`|

j=1 ξ(`(j))
)

|`| > 0, |r| = 0

Λ(0)R(|r|)
(∏|r|

j=1 ζ(r(j))
)

|`| = 0, |r| > 0

Λ(0)R(0) |`|, |r| = 0

(2.2)

If we set
∏|`|

j=1 ξ(`(j)) and
∏|r|

j=1 ζ(r(j)) equal to 1 if |`| = 0 or |r| = 0 respectively then (2.2)

can be written as

P((L,R) = (`, r)) = Λ(|`|)R(|r|)

 |`|∏
j=1

ξ(`(j))

 |r|∏
j=1

ζ(r(j))

 (2.3)

19

Figure (2.4) shows 10 sequences that were randomly generated using an initial node with

b = 10, ξ = [.15, .30, .40, .15], ζ = [.25, .50, .15, .10], λ = 2, and r = 3:

UGA... AA

G ... CCC

... C

C ... UCUC

AGU...GCCGAA

CC ... CGAAA

CU ... CUCGC

GC ... C

CA ...CAGAUC

C ... GCAU

Figure 2.4: Randomly generated Sequences from an Initial Node

2.3 Basepair Node

To simplify the situation we will not take into account basepair stacking interactions. That

is, we will assume that a basepair is generated independently of what basepairs are near it.

The model should be capable of generating basepairs along with insertions. There should

also be a possibility that no letters are generated. i.e. the basepair is deleted. The generation

probabilities for a basepair will be guided by isostericity. Therefore each basepair could have

its own substitution probabilities.

2.3.1 Constructing the basepair model

A basepair node can generate a pair, a pair with one or more insertions on each side, or

nothing. Like I-nodes we let L and R denote the letters generated on the left and right

respectively. Then L and R take values in Ω. For example, if L=’GA’ and R=’C’ then the

node generated a G − C basepair with an inserted A after the G. L and R are dependent

random variables that have the property that if either L or R takes the value e then both

are equal to e. Hence we have P(L = e and R 6= e) = P(L 6= e and R = e) = 0. The

20

first thing that needs to be determined is whether the node is deleted or not. Let d be the

probability that the node is deleted. If the node is deleted then L = e and R = e. If the

node is not deleted then it generates a basepair. Let P (σ, αβ) be a function that gives the

probability of generating the basepair (α, β) given the information σ about the 3D structure.

Then P (σ, ·) can be thought of as a 16 dimensional vector that gives the probability for all

16 possible pairwise combinations of A,C,G, U . Once we have a basepair we then generate

a random number of insertions on the left and right according to independent truncated

Poisson distributions, just like we did with I-nodes, with parameters λ and ρ. And, just

like I-nodes, the inserted letters on the left and right are generated independently with

probability distributions ξ(·) and ζ(·). Now we can write down the joint distribution of

(L,R) which is given by

P((L,R) = (`, r))

= d1{S1
n} +

[
(1− d)1{S2

n}
]
P (σ, `(1)r(1))Λ(|`|)R(|r|)

 |`|∏
j=2

ξ(`(j))

 |r|∏
j=2

ζ(r(j))

 (2.4)

Where S1
n is the set of all s, 1 ≤ s ≤ S, such that (`sn(1), rs

n(1)) = (e, e) and S2
n is the set of

all s, 1 ≤ s ≤ S, such that (`sn(1) 6= e and rs
n(1) 6= e).

2.3.2 Summing over all possible values of (L,R) adds to 1

We want to show that

S ≡
∑
`,r

(
d1{S1

n} +
[
(1− d)1{S2

n}
]
P (σ, `(1)r(1))Λ(|`|)R(|r|) |`|∏

j=2

ξ(`(j))

 |r|∏
j=2

ζ(r(j))

 (2.5)

21

equals 1. We can rewrite this as

S = d+ (1− d)
∑
`,r 6=e

P (σ, `(1)r(1))Λ(|`|)R(|r|)

 |`|∏
j=2

ξ(`(j))

 |r|∏
j=2

ζ(r(j))

= d+ (1− d)

 ∑
`(1),r(1) 6=e

P (σ, `(1)r(1))

∑
`′ 6=e

Λ(|`′|)

 |`′|∏
j=1

ξ(`′(j))

∑
r′ 6=e

R(|r′|)

 |r′|∏
j=1

ζ(r′(j))

where `′(k) = `(k + 1) and r′(k) = r(k + 1) for k ≥ 1. Then

S = d+ (1− d)
∑
`′ 6=e

Λ(|`′|)

 |`′|∏
j=1

ξ(`′(j))

∑
r′ 6=e

R(|r′|)

 |r′|∏
j=1

ζ(r′(j))

= d+ (1− d)

 b∑
k1=1

Λ(k1)

 ∑
`′ 6=e

|`′|=k1

 |`′|∏
j=1

ξ(`′(j))

 b∑

k2=1

R(k2)

 ∑
r′ 6=e

|r′|=k2

 |r′|∏
j=1

ζ(r′(j))

The probability for the insertions on the left is given by

∑
`′ 6=e

|`′|=k1

 |`′|∏
j=1

ξ(`′(j))

 =
∑
`′ 6=e

|`′|=k1

ξ(`′(1)) · · · ξ(`′(k1))

=

∑
`′(1)

ξ(`′(1))

 · · ·

∑
`′(k1)

ξ(`′(k1))

= 1 · · · 1 = 1

Similarly ∑
r′ 6=e

|r′|=k2

 |r′|∏
j=1

ζ(r′(j))

 = 1

22

therefore we have

S = d+ (1− d)

[
b∑

k1=1

Λ(k1)

][
b∑

k2=1

R(k2)

]

By the definition of Λ and R in (2.1) we know
∑b

k1=1 Λ(k1) = 1 and
∑b

k2=1 R(k2) = 1.

Hence,

S = d+ (1− d) = 1

Therefore, (2.4) is a distribution function.

Figure (2.5) shows 10 sequences that were randomly generated using a basepair node with

σ =AG Hoogsteen Sugar edge basepair, b = 10, ξ = [.15, .30, .40, .15], ζ = [.25, .50, .15, .10],

λ = 3, r = 2, d = .01 and P (σ, ·) = [0.1343, 0.1343, 0.0009, 0.0182, 0.1343, 0.1343, 0.0009, 0.0009, 0.1343, 0.0009, 0.0182, 0.0182,

0.1343, 0.1343, 0.0009, 0.0009]

CC ... A

ACGG ... CUG

AGUUGG ... A

CGG ... U

ACGG ... GAC

ACGA ... CUG

ACGAGCCC ... CG

C ... UCU

A ... CGA

UU ... G

Figure 2.5: Randomly generated Sequences from a Basepair Node

2.4 Junction Node

A junction is where an RNA molecule branches and forms other loops. See Figure (2.6)

The simplest kind of junction involves no interactions between these loops. With a junction

node there are no letters generated. The node tells where the next two or more nodes are

located. So if NJ0 is the junction node then it will point to the beginning of all the loops

NJ1NJ2 · · ·NJm where J0 < J1 < J2 < · · · < Jm.

23

Figure 2.6: Junction From 5S Haloarcula Marismortui

2.5 Hairpin Node

Hairpins are the bases that close a helix. See Figure (2.7). At this point the hairpins

generated by the model are very simplistic; one can specify that a hairpin match the pattern

GNRA, or that it have 3, 4, or 5 nucleotides, but uniformly distributed within these limits.

BGSU student Jesse Stombaugh of our group is currently doing research to better understand

hairpins. In the future we will incorporate Stombaugh’s findings into the model.

2.6 Parsing

Once we construct a model we would like to take homologous sequences and align them with

the model. This is called parsing. If we are parsing a sequence x of length L = |x| and we

have N nodes then we create a N ×L×L matrix mp that stores the maximum probability,

for each node n and subsequence that starts at i and ends at j, over all the ways that node

n and its children could have generated the subsequence of x that starts at i and ends at j.

24

Figure 2.7: Hairpin from 5S Haloarcula Marismortui

For example, mp(8, 13, 54) gives the maximum probability that node 8 and its subsequent

children would generate the sequence that started at 13 and ended at 54.

Notation: let x(i : j) be the subsequence of x that starts at i and ends at j.

Parsing is done by dynamic programming. To parse we start by looking at subsequences

of length one. For each i, 1 ≤ i ≤ L, we start with node n = N and work our way backwards

through the nodes. We determine all the possible ways that node n and its subsequent

children could have generated subsequence x(i : j) and then we calculate the probability for

each possibility. We store the maximum of these probabilities in the matrix mp. So we now

know the values of mp(n, i, i) for all n, i. Next we look at subsequences of length two. For

each n and i, i+ 1, 1 ≤ i < i+ 1 ≤ L, we again determine the different ways in which node

n and its children could have generated the sequence x(i : i+ 1). But now some of the work

has already been done. We are trying to calculate mp(n, i, i + 1). In general there are four

possibilities. First, node n could generate both letters in the subsequence. If this is the case

25

then if node n had children we would have to compute the maximum probability that its

children generated no letters. This probability will be zero since every hairpin generates at

least one letter, and every loop ends with a hairpin. Second, node n could have generated

x(i) and then asked its children how they would generate x(i + 1). Third, the roles could

be reversed and node n could have generated x(i+ 1) and then asked its children how they

would generate x(i). Finally, node n could generate nothing and ask its child node how it

and its children would generate x(i : i + 1). This last case illustrates why we have to start

from the last node in the tree and work our way back through the nodes. Once we have

determined which parse yielded the maximum probability we record how the subsequence

was parsed.

In general, to parse the subsequence x(i : j), 1 ≤ i ≤ j ≤ L, using node n, we have

already computed the maximum probability for all contiguous subsequences with length less

than j − i + 1 for all the nodes. We have also computed the maximum probability for all

contiguous subsequences with length j − i + 1 for all nodes k, k > n. Therefore we start

by determining all the possibilities in which node n and its children could have generated

x(i : j). Since we know how cn parsed all the subsequence, the problem is reduced to looking

at all the ways that node n could have generated the first few letters on the left and right

and then we ask how node cn and its children would generate the rest of the subsequence.

Again, once we have found the most probable way the model could have generated the

subsequence x(i : j) we record how the subsequence was parsed. Once we have parsed all

the subsequences we can then use the stored information to trace back through the nodes

and determine the most likely way the whole model generated the entire sequence. This

procedure will be discussed in Subsection (2.10). This algorithm is attributed to Cocke,

Younger, and Kasami. [4]

2.6.1 Parsing an Initial node

Parsing with an I-node is the same as parsing the insertions of a basepair. See below.

26

2.6.2 Parsing a Basepair

Given a subsequence x(i : j), we wish to determine for each node n, the value of mp(n, i, j).

Suppose that node n is a basepair and we want to calculate mp(n, i, j). There are many

ways in which node n and its children could have generated x(i : j). First, node n could be

deleted so the node looks to see how its child node would generate the subsequence from i

to j. Then the probability that node n would generate the subsequence in this way would

be given by the deletion probability dn for node n times the maximum probability that the

child of node n would generate the subsequence from i to j. So the probability would be

given by

P((L,R) = (e, e)) = dn ·mp(cn, i, j) (2.6)

If node n generated a basepair with no insertions then the probability would be given by

1−dn times the probability that the node generated (x(i), x(j)), which is P (σn, (x(i), x(j))),

times the probability for zero insertions on the left and right, (Λ(0) ·R(0)), times the maxi-

mum probability that the child node generated x(i+ 1 : j − 1). i.e.

P(node n would generate x(i : j) by a basepair (x(i), x(j)) with no insertions)

= (1− dn) · P (σn, (x(i)x(j))) ·mp(cn, i+ 1, j − 1) · Λ(0) ·R(0)

(2.7)

The basepair node could also generate the sequence as a basepair with an insertion on the

left. In this situation we would still have the probability that the basepair was not deleted

times the probability for the generation of the basepair (x(i), x(j)). Also, the right insertion

probability would be the same, R(0), but the left insertion probability would be Λ(1) times

the probability that the inserted base was x(i+1), which is given by ξ(x(i+1)). Now, since

there are two bases on the left and one on the right the child node would be responsible for

the generation of the bases from i + 2 to j − 1. Therefore we multiply by the maximum

probability that the child node could generate the subsequence from x(i + 2) to x(j − 1).

27

Hence,

P(node n would generate the basepair (x(i), x(j)) with an insertion on the left)

= (1− dn) · P (σn, (x(i)x(j))) ·mp(cn, i+ 2, j − 1) · Λ(1)ξ(x(i+ 1))R(0)

(2.8)

If we consider the possibility of one insertion on the right and none on the left then the

probability is given by

(1− dn) · P (σn, (x(i)x(j))) ·mp(cn, i+ 1, j − 2) · Λ(0)R(1)ζ(x(j − 1))

In general if the basepair node parses the sequence as a basepair with ` insertions on the left

and r insertions on the right the probability is given by

Φ(`, r) =(1− dn) · P (σn, (x(i)x(j))) ·mp(cn, i+ `+ 1, j − r − 1)

· Λ(`)

(∏̀
k=1

ξ(x(i+ k))

)
R(r)

(
r∏

k=1

ζ(x(j − k))

)
(2.9)

Now that we know the probabilities for all the possibilities we are interested in, we choose

the configuration that yields the highest probability. Therefore,

mp(n, i, j) = max

{
dn ·mp(cn, i, j), max

0≤`≤b
0≤r≤b

Φ(`, r)

}
, (2.10)

and we also note, for trace back, what the maximizer is.

2.6.3 Parsing a junction

Parsing a junction is easy. If the subsequence we wish to parse is x(i : j) then we need to

consider all the locations where the sequence could branch. That is, we want to find the

values of k1, k2, . . . , km (i ≤ k1 < k2 < · · · < km < j) that maximizes

mp(J1, i, k1) ·mp(J2, k1 + 1, k2) · · ·mp(Jm, km + 1, j).

28

2.6.4 Parsing with a Hairpin Node

Since the model for a hairpin is very simple, parsing a hairpin is very easy. A probability of 0

is given to all subsequences of length less than 2 or greater than 5. For GNRA, higher prob-

abilities are given to 4-letters sequences matching GNRA, lower for other 4-letter sequences,

0 for sequences of all other lengths.

2.7 Cluster nodes and Markov random fields

Bases are capable of making more complicated structures than just helices. An RNA molecule

can bend, fold back onto itself, bifurcate, or form a number of more complicated interac-

tions. These structures are often called motifs. An example of a group of bases forming a

complicated structure is a kink-turn, which connects two helices at a sharp angle. See Figure

(2.8).

Figure 2.8: Kink-turn from 23S Haloarcula Marismortui, courtesy of J. Stombaugh

The long equals sign indicates that there is a cWW interaction between a C and a G.

The circle is for Watson-Crick, square is for Hoogsteen, and the triangle is for Sugar edge.

See Figure (1.5). If both bases of a basepair are using the same edge to form the interaction

then we just use one circle, square, or triangle and not two with the exception of C-G cWW,

represented by double lines, and A-U cWW, represented by a single line (not shown here)[5].

29

An example of this are bases 77 and 100, which form a cWW interaction.

The bases on the left are GGGACC, on the right GGAUGGAAU reading from the 5’ to

3’ ends. The first and last are forming a basepair, also the second and second to last, but the

next several bases have a more complicated dependence. Presumably isosteric substitutions

could be made for some of the pairs. But some nucleotides, such as A80, are involved in

more than one basepair.

We need to construct a different tool to generate bases having more complicated depen-

dence. To model these situations, consider a base as a vertex and an interaction between two

bases as an edge. At each vertex we have a random variable that can generate an A,C,G,

or U. Some of the vertices have dependence between them. If there is an edge between

two vertices then the corresponding random variables cannot generate letters independently.

Thus, there is long range dependence between random variables that have a path between

their vertices. The letters at two vertices are independent if there is no path between their

corresponding vertices. Now we break up the graph into the largest subgraphs that are con-

nected graphs. Since we are not modeling stacking interactions, each connected graph will

be independent of the other connected graphs.

In the kink-turn, Figure (2.8), there are two connected graphs. Bases 79, 81, 93, and 98

form one graph and 80, 94, and 97 form another. Since the graphs are intertwined, base 80

is between 79 and 81 on the left, we will have to model these two connected graphs together.

Now we can define what a cluster is. A cluster is a group of connected graphs that are

intertwined together with inserted bases. In most cases a cluster will just be a connected

graph with inserted bases. Thinking of a cluster this way leads nicely to Markov Random

Fields (MRF’s). Let X1, . . . , Xk be random variables taking values in some finite set S, and

let G = (V,E) be a finite undirected graph where V = {1, . . . , k}. For v ∈ V let

∂{v} = {a ∈ V \v| there exists an edge between v and a} (2.11)

30

Then, the random variables are said to define a Markov random field if for any x ∈ SV ,

P(Xi = xi|Xj = xj, j ∈ V \i) = P(Xi = xi|Xj = xj, j ∈ ∂{i}) (2.12)

Another way of saying this is that the value at a current location only depends on the valuse

at other locations through the values that are near it.[10]

Referring to the kink-turn, Figure (2.8), suppose that we have a sequence that has this

same kink-turn. In addition, suppose that we know all the bases in the kink-turn except the

base in position 81. We know it is forming a cWW interaction with the base at location 93

and a tSS with the base at location 98. Notice that base 81 also has a long range dependence

with the base in position 79. We would like to know the probability that the unknown base

is an A,C,G, or U. Clearly the bases at 93 and 98 will play a big role in choice of base that

goes into 81. But, what about the base in position 79? If we didn’t know the value of the

base at 98 then it would have some effect on the value of 81 since it would affect the base

at 98. It is conceivable that the way 79 interacts with 98 would rotate 98 so that it can’t

make certain basepairs with 81. But in this model we deliberately ignore this possibility.

Isostericity generally means that glycosidic bond angles remain the same, so the base 98

would have the same orientation. which limits the effect 79 would have on 81.

2.7.1 Constructing the Cluster Model

A C-node can generate a wide range of possibilities. Just like with basepairs we let L and

R denote the letters that we generate on the left and right respectively. L and R again

take values in Ω. In this case L and R have a more complicated dependence structure

than the basepair case. For a basepair there is only one interacting pair, namely L(1) and

R(1). With a cluster there are multiple interactions and some bases will interact with more

than one base. For example, if |L| = 4 and |R| = 3 it is possible that the value of L(4)

interacts directly with the values of R(2) and L(1). (This will cause problems later when we

31

estimate parameters.) Again, just like basepairs, we let d be the probability that the node

is deleted. If the node is not deleted then it generates letters to the left and right. Let σ

be the information about the 3D structure. Then σ tells what kind of graph we have. The

joint probability of generating interacting bases is given by

P((L,R, U`, Ur) = (`, r, v`, vr)) =
1

Z

J∏
j=1

P (σ(j), γ(Ij1)γ(Ij2)) (2.13)

Where Z is chosen for normalization and γ is a list of bases, some from the left and some

from the right.

Generation of bases in a C-node is not easy. If there are m bases to be generated then

there are 4m possible realizations. This would be easy to generate if the bases were generated

independently. We would just generate m bases each having just 4 possibilities. Since bases

can form interactions with more than one base we have to generate all the bases that are

dependent at once. So, if there are q bases that are interacting then we have to generate all

q bases at once. There are 4q different possible outcomes for this generation. Generation is

easy once we know normalizing constant Z.

C-nodes handle insertions differently than B-nodes. With a B-node the insertions always

occur after the interacting basepair. With a C-node there is more than one interacting

basepair. Also the insertion might occur in between two different interacting bases and not

at the end. Because of this we don’t use a truncated Poisson distribution to add insertions.

Instead we create insertion matrices. An interaction matrix for the left IMl is a cl×il matrix

where cl is the number of ways in which the left can form interactions and il is the number

of bases on the left that are interacting with another base. Each row of IMl tells which

bases on the left are forming interactions and therefore we know which bases are inserted.

For example, if

IMl =

 1 2 3

1 3 4

 (2.14)

32

then there are two possibilities for the left hand side of the C-node. Either, the first three

bases on the left form interactions or the first, third, and fourth are forming interactions

and there is an inserted base in the second position. When generating we let U` and Ur be

random variables that determine which row of IMl and IMr are to be chosen respectively,

with distributions µ` and µr.

Let τ` and τr be the distributions for the inserted letters on the left and right respectively.

Let γ be the letters on the left combined with letters on the right. For example if L =’ACG’

and R =’CGU’ then γ =’ACGCGU’. Let J be the number of interactions and I be a J × 3

matrix that tells which bases are forming interactions and what type of interaction it is.

Then the distribution function is given by

P((L,R, U`, Ur) = (`, r, v`, vr))

=
1

Z

J∏
j=1

P (σ(j), γ(Ij1)γ(Ij2)) ·

[
µ`

∏
#ins

τ`

]
·

[
µr

∏
#ins

τr

]
(2.15)

2.7.2 Showing the Markov property through an example

Referring to Figure (2.8), renumber the interacting basepairs in the kink-turn. Starting at

79 and going clockwise to 98 renumber the bases as 1 to 7 respectively.

Figure 2.9: Renumbered Kink-turn from 23S Haloarcula Marismortui

33

There are 5 interaction in this cluster. Let,

I =

1 7 σ(1)

2 5 σ(2)

2 6 σ(3)

3 4 σ(4)

3 7 σ(5)

(2.16)

which indicates which bases are interacting.

P((L,R) = (`, r)) =
1

Z

J∏
j=1

P (σ(j), γ(Ij1)γ(Ij2)) (2.17)

We want to calculate

P(X3 = x3|Xj = xj, j 6= 3) (2.18)

Using the definition of conditional probability and the distribution function given by (2.15)

we get

=
1
Z
P (σ(1), x1x7) · P (σ(2), x2x5) · P (σ(3), x2x6) · P (σ(4), x3x4) · P (σ(5), x3x7)∑4

n=1
1
Z
P (σ(1), x1x7) · P (σ(2), x2x5) · P (σ(3), x2x6) · P (σ(4), αnx4) · P (σ(5), αnx7)

(2.19)

If we pull out the terms that don’t contain x3 then,

=
1
Z
P (σ(1), x1x7) · P (σ(2), x2x5) · P (σ(3), x2x6) · P (σ(4), x3x4) · P (σ(5), x3x7)

1
Z
P (σ(1), x1x7) · P (σ(2), x2x5) · P (σ(3), x2x6) ·

∑4
n=1 (P (σ(4), αnx4) · P (σ(5), αnx7))

(2.20)

Therefore,

=
1
Z
P (σ(4), x3x4) · P (σ(5), x3x7)

1
Z

∑4
n=1 (P (σ(4), αnx4) · P (σ(5), αnx7))

(2.21)

Rewriting gives us

= P(X3 = x3|X4 = x4, X7 = x7) = P(X3 = x3|Xj = xj, j ∈ ∂{3}) (2.22)

34

Hence we have the Markov property.

2.7.3 Generating a cluster

In order to generate a cluster we first have to find the normalizing constant Z in (2.15). To

do this we set

Z =
∑
`,r

J∏
j=1

P (σ(j), γ(Ij1)γ(Ij2)) (2.23)

During the normalization process we record all the values of
J∏

j=1

P (σ(j), γ(Ij1)γ(Ij2)) for all

possible values of ` and r. Next we enumerate the possibilities t1, . . . t4m and we generate

a number z between zero and one according to a uniform distribution. Finally, we find the

value of j such that

j−1∑
i=1

P(ti) < z ≤
j∑

i=1

P(ti). This gives us the bases that are interacting.

Next we have to determine if there are any insertions. Therefore we generate U` and Ur and

so IM`(U`, ·) and IMr(Ur, ·) tell where the interacting bases are located and hence where

the insertions are. Then, for each insertion on the left we determine which letter to use

according to τ`. For the right we use τr.

2.7.4 Parsing a subsequence using a cluster node

Generating a cluster is more difficult than parsing one. If we are given a subsequence x(i : j)

that we want to parse we first determine the probability that the node would have generated

no letters. This is the deletion probability for the node times the probability that the next

node and its children generated the sequence x(i : j). This probability is given by

P((L,R) = (e, e)) = dn ·mp(cn, i, j) (2.24)

Next we calculate the maximum probability the node and its children generated the

sequence if the node isn’t deleted. To accomplish this we loop through the left and right

35

insertion possibilities and determine the probabilities for each. Next we loop through the

interactions.At each stage we compute

Φ(`, r, v`, vr) = (1− dn)P[(L,R, U`, Ur) = (`, r, v`, vr)] ·mp(cn, a, b) (2.25)

Once all the possibilities for Equation (2.28) have been computed we then compute

mp(n, i, j) = max

{
dn ·mp(cn, i, j), max

`,r,v`,vr

Φ(`, r, v`, vr)

}
(2.26)

We also record the values that that gave us the maximum so we can use them later to

do the traceback. Refer to Section (5.1) for Matlab code for parsing a cluster node.

2.8 Junction Cluster

A Junction Cluster node (Jc-node) is a combination of a J-node and a C-node. We have the

same situation as a J-node in that the RNA molecule branches and forms other loops, but

now we consider interaction between these loops. And like a C-node, these interactions can

be modeled with a Markov Random Field. In addition to interaction between the left and

right we now have to consider interaction with bases in the center.

2.8.1 Constructing Junction Cluster Model

We again let L and R denote the letters on the left and right and let C represent the letters

in the center. Like L and R, C takes values in Ω. The generation of a Jc-node is done almost

the same way that a C-node is. The only difference is that Jc-nodes have letters in the center

and are therefore usually larger. The probability density of the Jc-node is almost identical

to that of the Cluster. See Equation (2.15). If we define Uc, µc, and τc for the center as we

did for the left and right as in Subsection (2.7.1), and γ as the combinations of the letter on

the left, center, and right then, the density for the Jc-node can we written as

36

P((L,C,R, U`, Uc, Ur) = (`, c, r, v`, vc, vr))

=
1

Z

J∏
j=1

P (σ(j), γ(I1
j)γ(I2

j)) ·

[
µ`

∏
#ins

τ`

]
·

[
µc

∏
#ins

τc

]
·

[
µr

∏
#ins

τr

]
(2.27)

2.8.2 Parsing a Jc-node

Parsing a Jc-node combines what is required to parse a C-node and a J-node. Like a C-Node,

we have to loop through the left, and right interaction possibilities. In addition we also need

to loop through the interaction possibilities for the center which takes into account where

the junction occurs. Similar to the C-node case, we evaluate

Φ(`, c, r, v`, vc, vr,m)

= P[(L,C,R, U`, Uc, Ur) = (`, c, r, v`, vc, vr)] ·mp(cn(1), a,m) ·mp(cn(2), d, b) (2.28)

And again we find

mp(n, i, j) = max
m

{
max

`,c,r,v`,vc,vr

Φ(`, c, r, v`, vc, vr,m)

}
(2.29)

and recode the arguments that resulted in the maximum. The matlab code for parsing a

Jc-node can be found in Section (5.2).

2.9 Alternative

When modeling a section of an RNA molecule we might be unsure what model is the most

appropriate so we make several plausible models. We would like to know which model is

the best. One way to do this would be to rotate all the sub-models we have into the large

model of the molecule and parse each separately and see which one gives the highest score.

Unfortunately this could take a long time, especially if the overall model is large or we are

37

parsing a large number of sequences. A better way to accomplish this task is to use alternative

nodes (A-node). In the large model of the RNA molecule we put all the sub-models inside

the large model. The A-node points to each of the sub-models and it picks the sub-model

that has the highest probability of generating the subsequence we are interested in. At the

generation stage, the A-node selects randomly between two or more generation mechanisms

with probability distribution η(·). So, if there are m different alternatives we let k1, . . . , km

be the starting location of the alternatives. Then the probability that the alternative node

would pick node kv is given by η(v).

We write the alternatives one after another. Therefore, the first alternative will contain

the nodes k1, k1 + 1, k1 + 2, · · · , k2 − 1. And the second alternative will contain the nodes

k2, k2 + 1, k2 + 2, · · · , k3 − 1. If the last alternative contains the nodes km, km + 1, km +

2, · · · , km+1− 1 then the nodes k2− 1, k3− 1, . . . , km+1− 1 will all point to km+1. See Figure

(2.10).

Figure 2.10: The figure on the left shows the structure of a model with an alternative node.
The figure on the right shows how a model with an alternative node can be displayed as a
tree structure.

38

2.9.1 Parsing an Alternative node

Assume the subsequence we want to parse starts at i and ends at j and that all the nodes

after node k0 have been parsed. Then to parse the alternative node at k0 we choose the

alternative α such that α is the alternative that maximizes ηk0(a)mp(ka, i, j), 1 ≤ a ≤ m.

Therefore

α =
argmax

1 ≤ a ≤ m
[ηk0(a)mp(ka, i, j)] (2.30)

and

mp(ka, i, j) = ηk0(α)mp(kα, i, j) (2.31)

2.9.2 Results

Figure (2.11) shows an alignment of sequences that were generated using an alterative node

with three alternatives, affecting columns 17 to 34. Node 16 was the alternative node. The

models are identical except at six basepair nodes. We used an alternative node to try and

determine which sequence came from which model. The first model generated the first five

sequences and nodes 17 to 22 were canonical cWW basepairs. The second model generated

the next five sequences and its alternative nodes were six AG tHS basepairs, in nodes 23 to

28. The third model generated the last five sequences and its alternative nodes were six AA

tWH, nodes 29 to 35. From node 36 onward, the models are the same. The parser was able

to correctly determine which alternative generated the sequence. The pluses in the figure

mark alternatives that were not chosen.

Figure (2.12) shows essentially the same setup as in Figure (2.11) except that the alterna-

tives are have more commonalities. The first five sequences of Figure (2.12) were generated

the same way that the first five sequences of Figure (2.11) were generated. The second five

sequences contain an alternative that consists of four nodes that generate from an AG tHS

and two nodes that generate basepairs isosteric to canonical basepairs. The third alternative

consists of four nodes that generate basepairs isosteric to tWH and two canonical basepair

39

Figure 2.11: Alignment of randomly generated sequences using an alternative node

nodes. Nodes 1 to 15 and 35 to 49 are canonical cWW and node 50 is a GNRA hairpin.

From (2.12) we can see that the parser was able to choose the correct alternative most of

the time. Since the alternatives are small and very similar to one another, we would expect

that some sequences would be mislabeled.

Figure 2.12: Alignment of randomly generated sequences using an alternative node

A slightly easier case than the one laid out in Figure (2.12) is when the alternatives are

of different length. In Figure (2.13) we display 15 sequences where the first 5 sequences were

generated with an alternative that contained 5 cWW basepairs. The second 5 consisted of 4

tWH and 2 cWW basepairs. And the last 5 were generated from 5 tWH and 2 cWW. The

parser in this case was able to correctly determine which sequence was generated from which

alternative.

Figure (2.14) shows the alignment of archaeal and bacterial 5S Loop E using an alternative

node. The first 20 sequences are archaea and sequences 21 through 40 are bacterial. With

our model the parser was able to determine which sequences were archaeal and which were

40

Figure 2.13: Alignment of randomly generated sequences using an alternative node

bacterial.

2.10 Traceback

After a sequence has been parsed we need to work our way back through the nodes to see

what nodes are responsible for generating which part of the sequence. When parsing with

each node we stored information about how the node parsed. Starting with node one we

ask it how it parsed the sequence. Node one tells us how many bases to the left and right it

would have generated. So if node one would have generated two bases on the left and one

on the right we then move to node two and ask it how it would have parsed the sequence

starting at three and going to L1 − 1.

When tracing back through a cluster node we again need to know what bases would be

generated on the left and the right, but we also need to know which bases were not part of

the connected graph and therefore are bulged bases.

When tracing back with a junction we find the location where the junction node said the

sequence split and then we ask its children how they would generate the two subsequences.

With alternative nodes we choose the alternative that yielded the highest probability of

being generated and label that entire alternative as active and all the other alternatives as

inactive. When we go to display the alignment we will know which alternative to display.

When we get to a hairpin we note that it must generate whatever portion of the sequence

41

Figure 2.14: Alignment of Archaeal and Bacterial Loop E

that remains, and the we stop the traceback for that chain.

2.11 Limits on what each node looks at

By going through all subsequences i, j (1 ≤ i < j ≤ L) and nodes n = 1, . . . , N , we are

guaranteed to find the maximum probability parse, but the operation count is of order L3

and therefore for long sequences this could take a long time to compute. Figure (2.15)

illustrates the large number of calculations that are done for node 26. Since the number of

nodes is proportional to the length of the sequence and 1 ≤ i, j ≤ L the complexity of the

algorithm is O(L3).

One way to speed up this process is to restrict the length of subsequence that a node

looks at. For example, by how the nodes are defined it is impossible for a hairpin node to

42

Figure 2.15: Shows the probability that node 26 and its children generated the sequence
x(i : j) for 1 ≤ i, j ≤ L. The black dot indicates the location of the highest probability.

generate no bases or more than h bases. So it does not make sense to ask how a hairpin

node would generate a subsequence with length greater than h since this probability would be

zero. For a basepair the situation is similar but a little more complicated. A B-node always

has nodes after it that are responsible for generating some part of the sequence. Therefore

we don’t just put an upper bound on the length of the subsequence that the B-node could

generate, we also restrict the minimum length of the subsequence. By doing this though we

are not guaranteed to find the maximum probability parse. However, if we are generous in

the minimum and maximum length of the subsequence to be parsed for each node, with a

high degree of certainty, we will obtain the same maximum probability parse that we get

from looking at all contiguous subsequences. The advantage of parsing with this restriction

is that the process is now of order L2. See Figure (2.16). The number of calculations is

roughly L times the maxlength-minlength which is constant and therefore doesn’t depend

on L.

But we can do even better than this. If we begin with a reasonably good alignment and

seek only to improve it by 3D structure information we can restrict the values of i, j we

consider for each node. Since the input alignment is close to the optimal alignment we only

need to adjust the position of the bases slightly when producing the optimal alignment from a

seed alignment. By shifting each base to the left or right, if needed, by a few positions we can

43

Figure 2.16: Maximum Probability when restricting the minimum and maximum sequence
length.

obtain the same optimal alignment that we get when we consider all possible values of i, j.

Since we made the model based on the 3D structure we know which nodes are responsible

for generating each part of the sequence. Therefore we can restrict which values of i and j

we consider. From figure (2.17) we can see that the vast majority of the subsequences are

not considered. And since the size of the box does not depend on the length of the sequence

to be parsed, the operation count is of order L.

Figure 2.17: Maximum probability when restricting to the bases near the seed alignment

In the seed alignment let the first sequence be the sequence from the 3D structure. In the

definition of the nodes we specify which bases from the 3D structure each node is responsible

for. Let Sk be the kth sequence without gaps. So, Sk is a string comprised of the letters

44

A,C,G, and U. Next, let Sg
k be the kth sequence from the seed alignment. Then Sg

k is the

same as Sk except that it contains gaps. From there we find a mapping ψ from the index in

S1 to the column number in Sg
1 . Next we let φ be the identity map from the column number

of Sg
1 to the column number of Sg

k for all k. Finally we create a function θk from the column

number of Sg
k to the index number of Sk where if Sg

k(a) is a letter then θk(a) is the position

of the letter Sg
k(a) in Sk. If Sg

k(a) is not a letter then let b be the closest number to a such

that Sg
k(a) is a letter. If there are two possible values of b then we will choose the smallest.

Then πk = θk ◦ φk ◦ ψ is a mapping from indices of S1 to indices of Sk. For example, if we

are given the seed alignment in Table (2.1) then π2({1, 2, 3, 4, 5, 6}) = {1, 2, 4, 5, 6, 6}

Sg
1 = A C - - G A - C G
Sg

2 = A G - C U A - - C

Table 2.1: Seed Alignment

Since the seed alignments aren’t perfect and also there is some variability in the sequences

we set a variable δ that restricts how many bases to the left and right of the node to consider.

This variable limits the values of i and j that we use to parse each sequence. Then instead of

looking at all the possible values of i, j we use our function π and δ to create a list of i, j values

that we will consider. For each node we already know what bases they would generate so we

take those values and apply π to them. For example, if Node 10 is likely to be responsible

for the bases 14,15 and 110 in S1 then node 10 is responsible for bases πk(14), πk(15), and

πk(110) in Sk. If we set δ = 10 then the i values that node 5 will consider for sequence k are

πk(14)− 10 to πk(15) + 10 and the j values will be πk(110)− 10 to πk(110) + 10. Even with

a small δ we can obtain the same parse as we did when we considered all possible values of

i, j. This procedure dramatically decreases the time required to parse a sequence since the

process is only of order L.

45

CHAPTER 3

Parameter Estimation

The model we have constructed has many parameters, insertion length, base distribution,

base substitution probabilities, interaction probabilities in cluster nodes, hairpin type. If

we had sequences generated from the model, still aligned so we knew what nodes generated

what letters, we could estimate parameters, that is what we presume here.

3.1 The Likelihood Function for an Initial Node

Fix an initial node n. We take a random sample of size S from our model which includes S

sequences, with full alignment information. Let `sn and rs
n be the letters for sequence s that

were generated at node n on the left and right respectively. Then the likelihood function is

given by

L(θ|x) =
S∏

s=1

Λn(|`sn|)Rn(|rs
n|)

 |`s
n|∏

j=1

ξ(`sn(j))

 |rs
n|∏

j=1

ζ(rs
n(j))

 (3.1)

and the log likelihood is given by

log(L(θ|x)) =
S∑

s=1

log(Λn(|`sn|)) + log(Rn(|rs
n|)) +

|`s
n|∑

j=1

log(ξ(`sn(j))) +

|rs
n|∑

j=1

log(ζ(rs
n(j)))

(3.2)

46

3.1.1 The MLE for λn and ρn

Recall that the normalizing constant for Λn is:

cλn =

(
b∑

k=0

λk
ne

−λn

k!

)−1

(3.3)

Then cλn = (f(λn))−1 where f(λn) =
∑b

k=0
λk

ne−λn

k!
and its derivative with respect to λn is

given by

∂cλn

∂λn

= −1(f(λn))−2f ′(λn) = −1(cλn)2f ′(λn). (3.4)

If we take the derivative of f(λn) with respect to λn we get

∂

∂λn

f(λn) =
b∑

k=0

kλk−1
n e−λn − λk

ne
−λn

k!
=

b∑
k=1

λk−1
n e−λn

(k − 1)!
−

b∑
k=0

λk
ne

−λn

k!

=
b−1∑
k=0

λk
ne

−λn

k!
−

b∑
k=0

λk
ne

−λn

k!
= cλn −

λb
ne

−λn

b!
− cλn = −λ

b
ne

−λn

b!

(3.5)

We can now find the MLE for λn by taking the derivative of the log likelihood function and

setting it to zero.

∂

∂λn

(log(L(θ|x))) =
∂

∂λn

S∑
s=1

log(Λn(|`sn|))

=
∂

∂λn

S∑
s=1

[log(cλn) + |`sn| log(λn)− λn − log(|`sn|!)]

=
S∑

s=1

[
−c2λn

λb
ne−λn

b!

cλn

+
|`sn|
λn

− 1

]
= −cλnS

λb
ne

−λn

b!
+

∑S
s=1 |`

s
n|

λn

− S = 0 (3.6)

This is a transcendental equation. However, if the cutoff b is much larger than λn then

−cλnS
λb

ne
−λn

b!
≈ 0 (3.7)

47

So λn is approximately the solution of

∑S
s=1 |`sn|
λn

− S = 0 (3.8)

solving for λn we get

λ̂n =

S∑
s=1

|`sn|

S
(3.9)

Which is the average number of insertions on the left. As a practical matter, this means

we should choose b much larger than the average number of insertions. The value b = 10 is

sufficient for most purposes. One should note that the MLE in this case might not be unique

and that further analysis on the MLE need to be done. Now we need to verify that this is

indeed a maximum. Therefore we take the second derivative.

∂2

∂λ2
n

(log(L(θ|x))) = −S
b!

[
cλn

(
−λb

ne
−λn + bλb−1

n e−λn
)

+ c2λn
λb

ne
−λnλb

ne
−λn/b!

]
= −S

b!
cλnλ

b−1
n e−λ

[
−λn + b+ cλnλ

b+1
n e−λ/b!

]
+

S∑
s=1

[
−|`sn|
λ2

n

] (3.10)

If we have λn < b then
∂2

∂λ2
n

(log(L(θ|x))) < 0. Therefore we have a maximum. Similarly for

ρn we get

ρ̂n =

S∑
s=1

|rs
n|

S
(3.11)

Which is the average number of insertions on the right.

48

3.1.2 The MLE for ξ and ζ

Since we use the same insertion parameters for I and B nodes we let IB = {n|n is a I-node or an B-node}.

Then,

∂

∂ξ(α)
(log(L(θ|x))) =

S∑
s=1

∑
n∈IB

|`s
n|∑

j=1

[
1

ξ(`sn(j))
1{`s

n(j)=α}

]
=

S∑
s=1

∑
n∈IB

∑
j|`s

n(j)=α

1

ξ(α)
(3.12)

=
1

ξ(α)

S∑
s=1

∑
n∈IB

∑
j|`s

n(j)=α

1 =
1

ξ(α)
M ξ

α where M ξ
α =

S∑
s=1

∑
n∈IB

∑
j|`s

n(j)=α

1 (3.13)

Since we want to maximize log(L(θ|x)) with respect to ξ under the constraint∑
γ∈{A,C,G,U}

ξ(γ) = 1 we can use Lagrange multipliers. Let f = log(L(θ|x))) and

g =
∑

γ∈{A,C,G,U} ξ(γ)− 1. We have already determined that
∂f

∂ξ(α)
=

1

ξ(α)
M ξ

α. Taking the

partial derivative with respect to ξ(α) of g yields

∂g

∂ξ(α)
= 1 (3.14)

from (3.13) and (3.14) we get

1

ξ(α)
M ξ

α = λ (3.15)

for all α. Therefore,

1

ξ(α)
M ξ

α = λ =
1

ξ(γ)
M ξ

γ (3.16)

Solving for ξ(γ) we get

ξ(γ) = ξ(α)
M ξ

γ

M ξ
α

(3.17)

Then, summing over γ ∈ {A,C,G, U} we get

1 =
∑

γ∈{A,C,G,U}

ξ(γ) =
∑

γ∈{A,C,G,U}

ξ(α)
M ξ

γ

M ξ
α

= ξ(α)

∑
γ∈{A,C,G,U}

M ξ
γ

M ξ
α

(3.18)

49

Therefore our estimate for ξ is

ξ̂(α) =
M ξ

α

M ξ
(3.19)

where M ξ =
∑

γ∈{A,C,G,U}M
ξ
γ . The estimate ξ̂(α) is the the ratio of times we observe a

base of type α on the left over the total number of bases that were inserted on the left.

A similar argument gives us

ζ̂(α) =
M ζ

α

M ζ
(3.20)

3.2 The Likelihood Function for a Basepair

Fix a basepair n. We take a random sample of size S from our model. Recall that S1
n

is the set of all s, 1 ≤ s ≤ S, such that (`sn(1), rs
n(1)) = (e, e)) and S2

n is the set of all

s, 1 ≤ s ≤ S, such that (`sn(1) 6= e and rs
n(1) 6= e). There are no other possibilities, so

S1
n

⋃
S2

n = {1, 2, . . . , S}

The likelihood function for node n is given by

L(θ|x) =
S∏

s=1

[
dn1{s∈S1

n} +
[
(1− dn)1{s∈S2

n}
]
P (σn, `

s
n(1)rs

n(1))Λ(|`sn| − 1)R(|rs
n| − 1) |`s

n|∏
j=2

ξ(`sn(j))

 |rs
n|∏

j=2

ζ(rs
n(j))

 (3.21)

Since S1
n

⋂
S2

n = ∅, (3.21) can be written as

L(θ|x) =
∏
s∈S1

n

dn ·
∏
s∈S2

n

[(1− dn)]P (σn, `
s
n(1)rs

n(1))Λ(|`sn| − 1)R(|rs
n| − 1)

·

 |`s
n|∏

j=2

ξ(`sn(j))

 |rs
n|∏

j=2

ζ(rs
n(j))

 (3.22)

50

Then the log likelihood is given by

log(L(θ|x)) =
∑
s∈S1

n

log(dn) +
∑
s∈S2

n

[
log(1− dn) + log(P (σn, `

s
n(1)rs

n(1)))

+ log(Λ(|`sn| − 1)) + log(R(|rs
n| − 1)) +

|`s
n|∑

j=2

log(ξ(`sn(j))) +

|rs|∑
j=2

log(ζ(rs(j)))

 (3.23)

3.2.1 The MLE for d

To find the MLE for the deletion parameter dn we first need to take the partial derivative

of the log likelihood function, equation (3.23), with respect to dn and set it equal to zero.

∂

∂dn

(log(L(θ|x))) =
∑
s∈S1

n

1

dn

+
∑
s∈S2

n

−1

1− dn

=
|S1

n|
dn

+
−|S2

n|
1− dn

= 0 (3.24)

Then solving for dn we get

d̂n =
|S1

n|
|S1

n|+ |S2
n|

=
|S1

n|
S
, (3.25)

which is the fraction of sequences for which node n is deleted. To verify that (3.25) corre-

sponds to a maximum we look at the second derivative. The second derivative is given by

∂2

∂d2
n

(log(L(θ|x))) =
∑
s∈S1

n

−1

d2
n

+
∑
s∈S2

n

−1

(1− dn)2
(3.26)

Since equation (3.26) is always less than zero we indeed have a maximum.

3.2.2 The MLE for P

Recall that P (σ, ·) is a 16-element vector of substitution probabilities corresponding to an

observed basepair of type σ in the 3D structure. P (σ,AU) for example is the probability

that we have an AU baspair of type σ. All of these probabilities need to be estimated. If

the number of different observed basepair types σ is large, there may not be enough data to

51

estimate all the parameters. We my use the same value of σ for several nodes. Some of the

16 numbers in P (σ, ·) may also be equal.

Let U = {z ∈ R16|z ≥ 0,
16∑
i=1

zi = 1} and fix a basepair type σ∗. We wish to find the

value of P (σ∗, ·) ∈ U that maximizes L(θ|x). We start by taking the partial derivative of

log(L(θ|x)) with respect to P (σ∗, αβ).

∂

∂P (σ∗, αβ)
(log(L(θ|x))) =

∑
s∈S2

n
n:σn=σ∗

1

P (σn, `Sn(1)rs
n(1))

· 1{(`s
n(1)rs

n(1))=(αβ)}

=
∑

(`s
n(1)rs

n(1))=(αβ)
n:σn=σ

1

P (σ∗, αβ)
=

1

P (σ∗, αβ)
·Mσ∗

αβ

(3.27)

Where Mσ∗

αβ =
∑

(`s
n(1)rs

n(1))=(αβ)
n:σn=σ∗

1, which is the number of times we observe (αβ) in σ∗-type

basepairs, no matter where they occur in the structure. Now, using Lagrange multipliers

with f = log(L(θ|x)) and g =
∑

(γδ) P (σ∗, γδ) − 1 the equation Df = λDg, using equation

(3.27) and the fact that ∂g
∂P (σ∗,αβ)

= 1, becomes
1

P (σ∗, αβ)
·Mσ∗

αβ = λ for all αβ. Therefore.

1

P (σ∗, αβ)
·Mσ∗

αβ = λ =
1

P (σ∗, γδ)
·Mσ∗

γ,δ (3.28)

then, solving for P (σ∗, γδ) we get

P (σ∗, γδ) = P (σ∗, αβ) ·
Mσ∗

γ,δ

Mσ∗
αβ

(3.29)

Since
∑

(γ,δ) P (σ∗, γδ) = 1 we have

∑
(γ,δ)

P (σ∗, γδ) =
∑
(γ,δ)

P (σ∗, αβ) ·
Mσ∗

γ,δ

Mσ∗
αβ

= 1 (3.30)

therefore ∑
(γ,δ)M

σ∗

γ,δ

Mσ∗
αβ

P (σ∗, αβ) = 1 (3.31)

52

and our estimate for P is

P̂ (σ∗, αβ) =
Mσ∗

αβ∑
(γ,δ)M

σ∗
γ,δ

=
Mσ∗

αβ

Mσ∗
(3.32)

where Mσ∗ =
∑

(γ,δ)M
σ∗

γ,δ. Here
Mσ∗

αβ

Mσ∗ is the number of times that pair αβ is observed where

a σ∗ basepair is present, divided by the number of basepairs of the type σ∗ that are not

deleted.

3.2.3 MLE Using Partitions

Now suppose that some of the 16 parameters in P (σ∗, αβ) are the same. Let I1, I2, . . . , Ik

be a partition of the 16 possible basepair types. Then P (σ∗, αβ) has the same value for all

αβ ∈ Ii. We will write P (σ∗, Ii) for this common probability. Then the MLE for P (σ∗, Ii)

can be obtained as follows.

∂

∂P (σ∗, Ii)
(log(L(θ|x))) =

∑
s∈S2

n
n:σn=σ∗

1

P (σn, `sn(1)rs
n(1))

· 1{(`s
n(1)rs

n(1))∈Ii}

=
∑

(`s
n(1)rs

n(1))∈Ii

1

P (σ∗, Ii)
=

1

P (σ∗, Ii)

∑
(`s

n(1)rs
n(1))∈Ii

1 =
1

P (σ∗, Ii)
·Mσ∗

Ii

(3.33)

Where Mσ∗

Ii
=

∑
(`s

n(1)rs
n(1))∈Ii

1 is the number of times we observe a pair in set Ii. As above we

use Lagrange multipliers with f = log(L(θ|x)) and g =
∑k

`=1 |I`|P (σ∗, I`)− 1 to obtain

1

P (σ∗, Ii)
·Mσ∗

Ii
= |Ii|λ (3.34)

and therefore

1

P (σ∗, Ii)
·
Mσ∗

Ii

|Ii|
=

1

P (σ∗, Ij)
·
Mσ∗

Ij

|Ij|
for 1 ≤ j ≤ k (3.35)

53

Solving for |Ij|P (σn, Ij) and summing over the possible basepair values we get

1 =
k∑

j=1

|Ij|P (σ∗, Ij) =
k∑

j=1

|Ii|P (σ∗, Ii) ·
Mσ∗

Ij

Mσ∗
Ii

(3.36)

Hence,

P̂ (σ∗, Ii) =
Mσ∗

Ii∑k
j=1 |Ii|Mσ∗

Ij

=
Mσ∗

Ii

|Ii|Mσ∗
, (3.37)

which is the fraction of the number of times pair αβ, where αβ ∈ Ii, is observed where a

σ∗ basepair is, over the number of basepairs of the type σ∗ that are not deleted times the

number of elements in Ii. This spreads the probability equally among the elements of Ii.

3.2.4 MLE Using Partitions across different interaction families

Finally, we can imagine that some of the parameters might be the same between different

values of σ∗. For example, we can partition the 16 into isosteric families, and use 4 parameters

for the basepairs that are isosteric, nearly isosteric, allowed, and not allowed. For each type

σ∗i , let I i
g, q = 1, 2, . . . , k, partition the set {AA,Ac, . . . , UU}

Assume that

P (σ∗1, I
1
q) = P (σ∗2, I

2
q) = · · · = P (σ∗v , I

v
q) (3.38)

for 1 ≤ q ≤ k. Once again using Lagrange multipliers with f = log(L(θ|x))) and

g =
∑v

d=1

[∑k
`=1 |Id

` |P (σ∗d, I
d
`)− 1

]
, let πd

m = P (σ∗d, I
d
m). Then, since π1

m = πd
m for all d,

∂f

∂π1
m

=
v∑

d=1

∑
(`s

n(1)rs
n(1))∈Id

m

1

πd
m

=
v∑

d=1

1

πd
m

∑
(`s

n(1)rs
n(1))∈Id

m

1

=
v∑

d=1

1

πd
m

M
σ∗d
Id
m

(3.39)

54

Now turning our attention to g we obtain

∂g

∂π1
m

=
v∑

d=1

∑
γδ

1{γδ∈Id
m} =

v∑
d=1

|Id
m| = Im. (3.40)

where Im =
v∑

d=1

|Id
m|. Combining (3.39) and the result from (3.40) we get

v∑
d=1

1

πd
m · Im

M
σ∗d
Id
m

= λ. Therefore,

v∑
d=1

1

πd
m · Im

M
σ∗d
Id
m

= λ =
v∑

d=1

1

πd
n · In

M
σ∗d
Id
n

(3.41)

By our assumption in (3.38) equation (3.41) can be written as

1

π1
m

v∑
d=1

·InM
σ∗d
Id
m

= λ =
1

πt
n

v∑
d=1

·ImM
σ∗d
Id
n

(3.42)

solving for πt
n and multiplying both sides by |I t

n|we have

|I t
n|πt

n = |I t
n|π1

m

Im
∑v

d=1M
σ∗d
Id
n

In
∑v

d=1M
σ∗d
Id
m

(3.43)

Summing over the values of n and t

v =
v∑

t=1

k∑
n=1

|I t
n|πt

n =
v∑

t=1

k∑
n=1

|I t
n|π1

m

Im
∑v

d=1M
σ∗d
Id
n

In
∑v

d=1M
σ∗d
Id
m

(3.44)

Solving for π1
m we get

π̂1
m =

v
∑v

d=1M
σ∗d
Id
m

Im
∑v

t=1

∑k
n=1

(
|It

n|
In

∑v
d=1M

σ∗d
Id
n

)

=
v
∑v

d=1M
σ∗d
Id
m

Im
∑k

n=1

(Pv
t=1 |It

n|
In

∑v
d=1M

σ∗d
Id
n

) =
v
∑v

d=1M
σ∗d
Id
m

Im
∑k

n=1

∑v
d=1M

σ∗d
Id
n

(3.45)

55

Notice that if there is only one σ∗ (i.e., v = 1) then (3.45) reduces to (3.37) and if v = 1 and

|I1
m| = 1 then (3.45) reduces to (3.32).

3.2.5 The MLE for λn and ρn

If we let `
′s
n (k) = `sn(k + 1) for k ≥ 1 then the likelihood function (3.23) with just the

information about insertions can be written as

log(L(θ|x)) =
S∑

s=1

log(Λ(|`′sn |)) + log(R(|r′sn |)) +

|`′sn |∑
j=1

log(ξ(`
′s
n (j))) +

|r′sn |∑
j=1

log(ζ(r
′s
n (j))) (3.46)

This has the same form as (3.2). So from equation (3.9) we get

λ̂n ≈

∑
s∈S2

n

|`′sn |

|S2
n|

(3.47)

therefore,

λ̂n ≈

∑
s∈S2

n

(|`sn| − 1)

|S2
n|

(3.48)

A similar argument gives us

ρ̂n =

∑
s∈S2

n

(|rs
n| − 1)

|S2
n|

(3.49)

3.2.6 The MLE’s for ξ and ζ

The MLE’s for ξ and ζ

The MLE’s for ξ and ζ are the same as those obtained in (3.19) and (3.20).

56

3.3 The Likelihood Function for Basepairs in a Cluster

Node

Then the likelihood function is given by

L(θ|x) =
S∏

s=1

1

Z

J∏
j=1

P (σn(j), γs
n(I1

j)γs
n(I2

j)) · us
n

∏
#ins

τ · vs
n

∏
#ins

ω (3.50)

where Z =
∑

a

J∏
j=1

P (σn(j), a(I1
j)a(I2

j)) and a is the combination of the left and right letters.

Then the log likelihood is given by

log(L(θ|x)) =
S∑

s=1

J∑
j=1

log
(
P (σn(j), (γs

n(I1
j), γs

n(I2
j)))

)
− S log(Z)

+ log(us
n) +

∑
#ins

log(τ) + log(vs
n) +

∑
#ins

log(ω) (3.51)

3.3.1 The MLE for P in a Cluster Node

Now we take the partial derivative with respect to P (σ∗, αβ) and we get

∂

∂P (σ∗, αβ)
log(L(θ|x)) =

S∑
s=1

J∑
j=1

1{σn=σ∗,(γs
n(I1

j)γs
n(I2

j))=(αβ)}

−S
∑

a

∏J
j=1 P (σn(j), a(I1

j)a(I2
j))
∑J

j=1 1{σn=σ∗,(a(I1
j)a(I2

j))=(αβ)}∑
b

∏J
j=1 P (σn(j), b(I1

j)b(I2
j))

(3.52)

If we let

H(γn) =
S∑

s=1

J∑
j=1

1{σn=σ∗,(γs
n(I1

j)γs
n(I2

j))=(αβ)} (3.53)

then equation (3.52) becomes

∂

∂P (σ∗, αβ)
log(L(θ|x)) = H(γn)−

∑
a

H(a)

∏J
j=1 P (σn(j), a(I1

j)a(I2
j))∑

b

∏J
j=1 P (σn(j), b(I1

j)b(I2
j))

(3.54)

57

If we let

Π(γn) =
1

Z

J∏
j=1

P (σn(j), γn(I1
j)γn(I2

j)) (3.55)

Then equation (3.54) can be written as

∂

∂P (σ∗, αβ)
log(L(θ|x)) = H(γn)−

∑
a

H(a)Π(a) = H(γn)− E(H), (3.56)

Where E(H) is the expected value of H under the distribution Π . We set this equal to zero.

Therefore we want to find the value of ϕ such that

H(γn) = E(H) (3.57)

This has no closed form solution since it is of the form

Kαβ

∑
ebixi =

∑
Dαβe

aixi (3.58)

and we need to solve for b.

Taking the partial derivatives with respect to all possible values gives us a system of

nonlinear equations. It is necessary to use a numerical technique such as steepest decent to

solve this system of non-linear equations. Hence, it is equivalent to find the minimum value

of ∑
αβ

(
Kαβ

∑
ebixi −

∑
Dαβe

aixi

)2

(3.59)

For an initial approximation to the true solution we can use the MLE that we obtained for

basepairs. See equations (3.32), (3.37), and (3.45).

58

3.4 MLE for a Jc-node

Let IMc be the interaction matrix for the center bases. For Jc-nodes we let γ be the combi-

nation of the letter on the left, center and right. The distribution function for a Jc-node is

very similar to (2.15) and is given by

P ((L,C,R) = (`, c, r)) =
1

Z

J∏
j=1

P (σ(j), γ(I1
j)γ(I2

j)) · u
∏
#ins

τ · v
∏
#ins

ω · ε
∏
#ins

ε (3.60)

Again, as is the case for C-nodes, the MLE for P is a solution to a system on nonlinear

equations given by (3.59)

3.5 Parameter estimates from data

Using ad hoc parameters we make alignments of sequences. See Figure (3.1). From this

alignment we use equation (3.37) to estimate the parameters for the cWW family. Table

(3.2) shows the new parameters that we estimated. Using these new parameters we re-align

the sequences. See Figure (3.2). Table (3.3) shows the parameters obtained from our new

alignment

cWW A C G U
A 0.0211 0.0573 0.0211 0.1556
C 0.0573 0.0211 0.1556 0.0211
G 0.0211 0.1556 0.0010 0.0573
U 0.1556 0.0211 0.0573 0.0211

Table 3.1: Ad hoc Isostericity Matrix for cWW A-U,C-G basepairs

cWW A C G U
A 0.0032 0.0377 0.0032 0.2059
C 0.0377 0.0032 0.2059 0.0032
G 0.0032 0.2059 0.0037 0.0377
U 0.2059 0.0032 0.0377 0.0032

Table 3.2: Data Matrix for cWW A-U,C-G basepairs

59

cWW A C G U
A 0.0025 0.0367 0.0025 0.2080
C 0.0367 0.0025 0.2080 0.0025
G 0.0025 0.2080 0.0037 0.0367
U 0.2080 0.0025 0.0367 0.0025

Table 3.3: New Data Matrix for cWW A-U,C-G basepairs

60

Figure 3.1: Alignment of 5S RNA sequences using ad hoc parameters given by Table (3.1)

61

Figure 3.2: Alignment of 5S RNA sequences using estimated parameters given by Table (3.2)

62

CHAPTER 4

Motif Searching

Recall in Chapter 1, we have a crystal structure with many nucleotides. In it, there are

repeated structures such as helices and kink-turns. Helices are common and well understood,

but kink-turns are not. Once you find one, how can you find others that are geometrically

similar?

Our problem is that we are given a geometric object in 3-space that consists of m points

that we want to find other objects of similar shape but with arbitrary location and orientation

in 3D space. Let (x1, . . . , xm) be the coordinates in 3-space of all m points. Let Dij =

‖xi − xj‖ be the pairwise distance matrix. Then, Dij gives the Euclidean distance between

xi and xj in Angstroms. In our first approach to the problem we set cutoffs/tolerances for

the distances between two points. We considered two points (α, β) to match (xi, xj) if the

distance between α and β is within Dij ± T . We defined pairwise screening matrices Ai,j as

Ai,j(α, β) =

‖α− β‖ if Dij − T ≤ ‖α− β‖ ≤ Dij + T

0 otherwise
(4.1)

We want to find all (α1, . . . , αm) such that Ai,j(αi, αj) > 0 for all 1 ≤ i < j ≤ m. These

are sets of points whose mutual distances fall within tolerance T of the mutual distances of

x1, . . . , xm.

63

4.1 Our first approach

To construct candidates, we start by first constructing triangles. Let

I1,2 = {(α1, α2)|A1,2(α1, α2) > 0}. (4.2)

Then I1,2 is a k × 2 matrix that contains all the candidates for the sub-motif consist-

ing of the first two bases. Next, for each row of I1,2 we find the set of all α3 such that

A1,3(I1,2(v, 1), α3) > 0 and A2,3(I1,2(v, 2), α3) > 0. This gives us

I1,2,3 = {(α1, α2, α3)|A1,2(α1, α2) > 0, A1,3(α1, α3) > 0, A2,3(α2, α3) > 0} (4.3)

which is a matrix that contains all the candidate sub-motifs consisting of the first three

bases. We then do the same procedure to obtain sub-motif candidates of the first two bases

and the nth base. This gives us the sets

I1,2,n = {(α1, α2, αn)|A1,2(α1, α2) > 0, A1,n(α1, αn) > 0, A2,3(α2, αn) > 0} (4.4)

Next, we want to make four base sub-candidates. To do this, we take I1,2,3 and I1,2,4 and

for each row in I1,2,3 we take the first two entries in the row and see if we can find the same

pair in the first two entries of some row of I1,2,4. Assume that the first two entries in row

v1 of I1,2,3 are the same as the first two entries in row v2 of I1,2,4. We would then check to

see if the distance between I1,2,3(v1, 3) and I1,2,4(v2, 3) are within the appropriate tolerances.

That is, we check to see that A3,4(I1,2,3(v1, 3), I1,2,4(v2, 3)) > 0. If the distance is within the

tolerance than we have a four base sub-candidate, namely (I1,2,3(v1, :), I1,2,4(v2, 3)). We then

construct a list of these sub-candidates.

I1,2,3,4 = {(α1, α2, α3, α4)|Ai,j(αi, αj) > 0, 1 ≤ i < j ≤ 4} (4.5)

64

For a concrete example let

I1,2,3 =

2 4 8

2 5 8

3 6 10

3 7 12

(4.6)

I1,2,4 =

2 3 15

2 4 17

3 5 17

4 9 19

(4.7)

Then looking at the first row of I1,2,3 we get (2,4,8). Next we look to see if (2,4) appears as

the first two numbers in any row of I1,2,4. We have a match with row two. The second row

of I1,2,4 is (2,4,17). Now, if A3,4(8, 17) > 0 then one of our four-base sub-candidates is given

by (2,4,8,17).

Once we have fully constructed I1,2,3,4 then we combine it with I1,2,5 in the same fashion

as before. We again check for matches with the first two entries of each row and if there is

a match we then need to check to see if the new candidate falls within the tolerances. In

this case we need to check two tolerances, the one between positions 3,5 and 4,5. If both

distances are within tolerances than we add it to I1,2,3,4,5. We continue this procedure until

all triangles have been combined and we have constructed

I1,2,...,m = {(α1, α2, . . . , αm)|Ai,j(αi, αj) > 0, 1 ≤ i < j ≤ m} (4.8)

4.2 Current way of finding pentahedra

Here we describe the current way of finding pentahedra. Matlab code can be found in section

5.4. As before we have a geometric object in 3-space that consists of five points, and we

want to find other objects of similar shape. In other words, we want to find all (α1, . . . , αm)

65

such that Ai,j(αi, αj) > 0 for all 1 ≤ i < j ≤ 5, where Ai,j is given by equation(4.1).

We now find all the nonzero entries in A1,3 and A2,3 that share a common pair from

I1,2. See equation (4.2). That is, for each n, 1 ≤ n ≤ N1 = |I12(·, 1)|, we want to find all

the values α such that A1,3(I1,2(n, 1), α) and A2,3(I1,2(n, 2), α) are nonzero. We do the same

thing for A1,4, A2,4 and A1,5, A2,5. Let

km
n = {α|A1,m(I1,2(n, 1), α), A2,m(I1,2(n, 2), α) > 0}, n ∈ {1, . . . , N1}, m ∈ {3, 4, 5} (4.9)

be the set of all α such that the distance between α and the points in I1,2(n, :) are within

tolerances and therefore forms triangles.

Figure 4.1: Formation of 3 base triples

We have now essentially created three triangles. See figure (4.1). We now want to

combine the triangles formed by A1,2, A1,3, A2,3 and A1,2, A1,4, A2,4. To do this we look at

all the nonzero values of A3,4 restricted to the sets k3
n and k4

n. This will give us a set of

tetrahedra formed from the bases 1,2,3 and 4. See figure (4.2). Therefore, we set

I3,4 = {(α, β)|A3,4(α, β) > 0, α ∈ k3
n, β ∈ k4

n} (4.10)

66

and N2 = |I3,4(·, 1)|.

Figure 4.2: Creating tetrahedra

Finally, we want to finish creating our pentahedra. Therefore, we need to find all the α

such that α ∈ k5
n. This restricts the number of possible candidates for the fifth position to

ones that satisfy the tolerance requirements to be paired with one and two. Now we need

to restrict α to the ones that fit with positions three and four. To do this we need to look

at A3,5 and A4,5. Equation (4.10) gives us all the candidates for positions three and four

that we need to consider so we only need to look at α that satisfy A3,5(I3,4(p, 1), α) > 0 and

A4,5(I3,4(p, 2), α) > 0 for p ∈ {1, 2, 3, . . . , N2}. Therefore we let

rn,p = {α|A3,5(I3,4(p, 1), k5
n(α)) > 0 and A4,5(I3,4(p, 2), k5

n(α)) > 0} (4.11)

Then for q ∈ {1, 2, 3, . . . , |rn,p|}, if the set rn,p is nonempty then the candidates are given by

[I1,2(n, 1) I1,2(n, 2) I3,4(p, 1) I3,4(p, 2) rn,p(q)] (4.12)

67

Figure 4.3: Creating pentahedra

4.3 Maximum number of candidates

We would like to have an upper bound for the number of candidate motifs so we can give an

upper bound on the execution time of the search program. If the query motif has m bases

then clearly nm is an upper bound for the number of candidates, where n is the number of

bases in the RNA molecule. This bound is clearly very far from the true number of plausible

candidates because it includes many candidates whose nucleotides are physically much too

far apart to be interacting. Assume there is a minimum distance between nucleotides. Then

imagine constructing a sphere that is large enough to encase the query motif. Since we are

assuming that there is a minimum distance between bases there are only so many bases that

could fit in the sphere. Let b be the maximum number of bases that can fit in the sphere.

Now, let’s see how many candidate motifs we can find in this sphere. The number of ways to

pick m objects from b is b(b− 1) · · · (b−m+ 1). Now, this sphere could be centered on any

of the n bases in the molecule. Therefore our bound for the number of candidates is given

by n · b(b− 1) · · · (b−m+ 1) or roughly n · bm. This tells us that the number of candidates

only grows linearly in the length n of the molecule.

Table (4.1) gives the value of b for spheres of different radii from the 23S ribosomal RNA

68

molecule.

Angstroms Max Average

5Å 4 2.0
10Å 16 8.8
15Å 35 20.3
20Å 80 39.8
25Å 146 73.2
30Å 214 121.4
35Å 330 182.9

Table 4.1: Values of b for spheres of different radii from the 23S ribosomal RNA molecule.

4.4 The definition of discrepancy

In order to know if our candidates are a ”good match” to the query motif we need a measure

of how ”close” the two motifs are. To do this we define a discrepancy that takes into account

the positions of the bases and their relative orientations.

Let m be the number of bases in the query motif. We then define bi and ci to be the

geometric center of the heavy base atoms of the query and candidate respectively. We define

the fitting error L as

L2 = min
R

min
t

m∑
i=1

wi‖bi −R(ci − t)‖2 (4.13)

where t is the translation vector, R is a 3× 3 rotation matrix, and wi are weights, which are

usually 1, such that wi > 0 and
m∑

i=1

wi = m. L gives us a measure of how close the bases are

in 3-space.

Now we need to take into account the relative orientations of the bases. Let Mi and Ni

be the rotation matrices that take a base in standard orientation to the orientation of base i

in the query and candidate respectively. Once the candidate is rotated onto the query motif

by R, the rotation matrix MiN
−1
i R−1 tells how to rotate base i of the candidate onto base

i of the query motif We can then define αi as the angle of rotation for the rotation matrix

69

MiN
−1
i R−1. Then the orientation error A is

A =

√√√√ m∑
i=1

v2
i α

2
i (4.14)

where the vi are weights that can be adjusted to make the discrepancy more sensitive to the

orientation of particular bases. Finally we can define the discrepancy between two motifs as

D =
1

m

√
L2 + A2 (4.15)

4.5 Permutation of bases

4.5.1 Why do we need to permute the bases?

In the algorithm used to find the motifs that are similar to a given query motif, the length

of the main outside loop is determined by the number of nonzero entries in the matrix A1,2.

If we could make the outside loop shorter we would expect that the search time would be

shorter.

4.5.2 How do we permute the bases?

Let n be the number of nucleotides in the query motif. Let Ai,j be the pairwise screening

distance matrix between bases i and j. Let |Ai,j| be the number of nonzero entries in Ai,j.

We then set I = [1 2 3 · · · n] which is the current order of the bases.

Let `1 and `2 be such that |A`1,`2| = min
i,j∈{1,2,...,n}

|Ai,j|. Next, we switch the positions of 1

and 2 with `1 and `2 respectively. Therefore, I becomes

I =

[
`1 `2 3 4 5 · · · `1 − 1 1 `1 + 1 · · · `2 − 1 2 `2 + 1 · · · n

]
(4.16)

Next, we repeat this process except we look for the minimum of |Ai,j| where i, j 6= `1 and

70

i, j 6= `2. Let `3 and `4 be such that |A`3,`4| = min
i,j∈{1,2,...,n}\{`1,`2}

|Ai,j|. Then I can be written

as

I =

[
`1 `2 `3 `4 5 6 · · · n

]
(4.17)

We continue to find the minimum of |Ai,j| over smaller and smaller sets until all the bases

positions have been permuted. The new order of the bases is given by

I =

[
`1 `2 `3 `4 `5 `6 · · · `n

]
(4.18)

In the case when the length of the query motif is three or four nucleotides long then this

permutation is optimal in the sense that the search time is minimized with respect to our

algorithm. To see this note that the search algorithm for the three and four nucleotide case

only has two loops in the code, one outer loop whose length is determined by the number of

nonzero entries in A1,2 and an inner loop. Since the order of the bases has no effect on the

candidates found, the code inside the inner loop is called the same number of times no matter

what permutation is used. Therefore, the only loop that contributes to the computation time

is the outer loop. Hence, we want to minimize the length of the outer loop.

4.6 Displaying Candidates

We have written a program to display the candidates in a nice way. It is available with FR3D

[9], at rna.bgsu.edu/FR3D. It displays the query motif in one window and the candidate in

another. There is a small GUI that allows you to select from several options. See the far left

of Figure (4.4). Besides displaying the nucleotides, the plot of the query motif displays at

the top of the view window the bases that were used and the file which the bases came from.

For the candidate motif, in addition to the same information that is displayed for the query

motif, the plot number and the total number of candidates are displayed in the lower left

hand corner of the view window along with the discrepancy between the current candidate

rna.bgsu.edu/FR3D

71

and the query motif.

Figure 4.4: Display of candidates using FR3D

By using the Next plot and Previous plot buttons we can cycle through the list of can-

didates.

The Align Plots button determines the current viewing parameters of the query motif

and changes the viewing parameters of the candidate motif to match. This is one way to see

the similarities and differences between the two motifs.

The Add plot button opens a new graph window for displaying candidates. By clicking

on a graph window we make the current graph active. Then when we press the next or

previous plot button only the current graph window will cycle through the candidates. Also,

using the align plots button will align all the plots to the query motif no matter how many

plots you have displayed.

The Larger Neighborhood button lets us see the candidate motif along with some of the

bases that are close to the motif. This is useful if you are searching for a larger motif but

you are only using a small number of bases in the search. When the candidates are initially

displayed you only see the bases that you searched for. With this option we can essentially

zoom out and see the rest of the motif that we didn’t include in our search parameters.

The Restore original button returns the candidate to its original display.

The Toggle sugar button allows you to either show the motif with the sugars attached or

72

not. This gives a nice view of the nucleotides unobstructed by the sugars.

The Toggle Superimpose button uses the current candidate and the query motif and it

displays the two motifs superimposed onto one another. See Figure (4.5).

Figure 4.5: Superimposed motifs

The Write current button writes a text file of the bases from the current candidate, its

discrepancy, and the PDB file in which the candidate came from. It then displays on the

window that the current candidate has been written to a file. If you view other candidates

and then come back to the one you had written the display window will display that the

current candidate had been written to a file.

73

CHAPTER 5

Selected Matlab Code

5.1 Matlab code for Cluster Nodes

In the following code i is the start of the subsequence to be parsed and j is the end of the

subsequence. Node is our model of the RNA molecule and n is the current node that is being

considered.

case ’Cluster’

nextnum = Node(n).nextnode; % number of next node

% if the next node is an alternative node then we look to see what is the

% node that the alternative chose to be the next node.

if strcmp(Node(nextnum).type,’Alternative’)

nextnum=Node(nextnum).nextnode(P(nextnum,1).Alt(i,j));

end %

next = Node(nextnum); % next node in the tree

maxmat = []; % to store max values for insertions

% ------------------------------------ Compute probabilities if we delete

for c = 1:next.numstates, % loop through states of next node

tc = P(nextnum,c).transcode(i,j); % code for transition prob

74

% max probability for children

maxmat(1,c) = P(nextnum,c).mp(i,j) + next.lP(1,tc);

end % end for c

[mp,cs] = max(maxmat); % find the max prob child state

P(n,1).mp(i,j) = mp; % store the maximum probability

P(n,1).next(i,j) = cs; % child state of next node

P(n,1).sub(i,j) = i; % start of subsequence for next node

P(n,1).sub(j,i) = j; % end of subsequence for next node

% ------------------------------------ End Computing probabilities if we delete

mp = -Inf; % Set max probability to - infinity

NL = length(Node(n).Left(1,:)); % number of bases on the left

NR = length(Node(n).Right(1,:)); % number of bases on the right

aa = i; % Initialize variable

bb = j; % Initialize variable

cs = 1; % Initialize variable

lli = 1; % Initialize variable

rri = 1; % Initialize variable

for li = 1:length(Node(n).Left(:,1)), % left interaction possibilities

a = i + Node(n).Left(li,NL); % first element for child

for ri = 1:length(Node(n).Right(:,1)), % right interaction possibilities

b = j - Node(n).Right(ri,1); % last element for child

if a <= b, % room for child too

lc = Code(i - 1 + Node(n).Left(li,:)); % codes of bases on the left

rc = Code(j + 1 - Node(n).Right(ri,:)); % codes of bases on the right

co = [lc rc]; % codes of all bases to consider

if max(co) < 5, % letters include . for "hairpin"

S = Node(n).LLIP(li) + Node(n).LRIP(ri);% total score of interactions

75

for k = 1:length(Node(n).IBases(:,1)), % loop through interactions

S = S+Node(n).Score(co(Node(n).IBases(k,1)),co(Node(n).IBases(k,2)),k);

end % end for k

for c = 1:next.numstates, % loop through states of next node

tc = P(nextnum,c).transcode(a,b); % code for transition prob

maxmat(c) = P(nextnum,c).mp(a,b) + next.lPIns(tc);

% prob with this specific insertion

% no interaction between this motif

% and the next node

end % end if c

[y,mc] = max(maxmat); % max probability for child

S = S + y; % total score for pairwise interactions

if S > mp, % Is new max higher

mp = S; % Set max probability

cs = mc; % child state of next node

aa = a; % start of subsequence for next node

bb = b; % end of subsequence for next node

lli = li; % which interaction pattern to use for the left

rri = ri; % which interaction pattern to use for the right

end % end if S > mp,

end % end if max(co) < 5,

end % end if a <= b,

end % end for ri

end % end for li

P(n,2).mp(i,j) = mp; % store the maximum probability

P(n,2).next(i,j) = cs; % child state of next node

P(n,2).sub(i,j) = aa; % start of subsequence for next node

76

P(n,2).sub(j,i) = bb; % end of subsequence for next node

P(n,2).mp(j,i) = lli; % which interaction pattern to use for the left

P(n,2).next(j,i) = rri; % which interaction pattern to use for the right

5.2 Matlab code for JunctionCluster Nodes

The inputs for this program are the same as the Cluster Node. See section (5.1).

case ’JunctionCluster’

nextnum = Node(n).nextnode; % Number of next node

next1 = Node(nextnum(1)); % Next node in the tree, left side of junction

next2 = Node(nextnum(2)); % Next node in the tree, right side of junction

maxmat = []; % To store max values for insertions

mp = -Inf; % Set max probability to -infinity

NL = length(Node(n).Left(1,:)); % Number of bases on the left

NR = length(Node(n).Right(1,:)); % Number of bases on the right

NM = length(Node(n).Middle(1,:)); % Number of bases on the middle

aa = i; % Initialize variable

bb = j; % Initialize variable

cs = 1; % Initialize variable

lli = 1; % Initialize variable

rri = 1; % Initialize variable

cc = i+1; % Initialize variable

mmi = 1; % Initialize variable

nml1=Node(n).minl(1); % Fix the minimum value of m

nml2=Node(n).minl(2); % Fix the maximum value of m

mm = i+nml1; % Initialize mm

for li = 1:length(Node(n).Left(:,1)), % Left interaction possibilities

77

a = i + Node(n).Left(li,NL); % First element for child 1

for ri = 1:length(Node(n).Right(:,1)), % Right interaction possibilities

b = j - Node(n).Right(ri,1); % Last element for child 2

for m=(i+nml1):(j-nml2), % Bifurcation location; last for child 1

for mi = 1:length(Node(n).Middle(:,1)),% Middle interaction possibilities

c = m + Node(n).Middle(mi,NM); % first element for child 2

if a <= m-1 & c<=b, % Make sure order is correct

% Max probability for children

maxprob= P(nextnum(1),1).mp(a,m-1) + P(nextnum(2),1).mp(c,b);

lc = Code(i - 1 + Node(n).Left(li,:)); % Codes of interacting bases

% on the left

mc = Code(m - 1 + Node(n).Middle(mi,:)); % Codes of bases on the middle

rc = Code(j + 1 - Node(n).Right(ri,:)); % Codes of bases on the right

co = [lc mc rc]; % Codes of all bases to consider

if max(co) < 5, % Letters include . for "hairpin"

% Insertion probabilities

S = Node(n).LLIP(li) + Node(n).LMIP(mi) + Node(n).LRIP(ri);

for k = 1:length(Node(n).IBases(:,1)), % Loop through interactions

% total score or pairwise interactions

S = S+Node(n).Score(co(Node(n).IBases(k,1)),co(Node(n).IBases(k,2)),k);

end % end for k

S = S + maxprob; % Maximum Probability

if S > mp, % Is New max higher

mp = S; % Set Max probability

aa = a; % start of subsequence for 1st next node

mm = m-1; % end of subsequence for 1nd next node

cc = c; % start of subsequence for 2nd next node

78

bb = b; % end of subsequence for 2nd next node

lli = li; % Which interaction pattern to use for left

rri = ri; % Which interaction pattern to use for right

mmi = mi; % Which interaction pattern to use for middle

end % end if S > mp,

end % end if max(co) < 5,

end % end if a <= m-1 & c<=b,

end % end mi

end % end for m

end % end for ri

end % end for li

P(n,1).next(i,j) = 0; % child state of next node

P(n,1).next(j,i) = 0; % child state of next node

P(n,1).sub(i,j) = aa; % start of subsequence for 1st next node

P(n,1).sub(j,i) = bb; % end of subsequence for 2nd next node

P(n,1).mp(i,j) = mp; % store the maximum probability

P(n,1).mp(j,i) = lli; % Which interaction pattern to use for left

P(n,1).rmi(i,j) = rri; % Which interaction pattern to use for right

P(n,1).rmi(j,i) = mmi; % Which interaction pattern to use for middle

P(n,1).sub2(i,j) = cc; % start of subsequence for 2nd next node

P(n,1).sub2(j,i) = mm; % end of subsequence for 1nd next node

5.3 Matlab code for parsing Alternatives

case ’Alternative’

nextnode = Node(n).nextnode; % List of start nodes for each alternative

numAlt=length(nextnode); % Number of alternatives

79

AltToUse=1; % Initialize choice of alternative

mp=-inf; % initialize maximum probability

state=1; % initialize state

for c=1:numAlt % Loop through alternatives

switch Node(nextnode(c)).type, % Check to see if the next node

case {’Basepair’,’Cluster’} % is a basepair or a Cluster

ss=2; % if it is there are 2 states to consider

otherwise % if not

ss=1; % there is only one

end % end for c

for s=1:ss % loop through the states for the next node

m=P(nextnode(c),s).mp(i,j); % Use the prior distribution on alternatives

if m>mp % if new max is larger

mp=m; % set new max probability

AltToUse=c; % Alternative to use

state=s; % Sate node is in

end % end if m>mp

end % end for s

end % end for c

P(n,1).mp(i,j) = mp; % store the maximum probability

P(n,1).next(i,j) = state; % store state of next node

P(n,1).sub(i,j) = i; % start of subsequence for next node

P(n,1).sub(j,i) = j; % end of subsequence for next node

P(n,1).Alt(i,j) = AltToUse; % which Alternative to use

80

5.4 Matlab code for finding pentahedra

We want A(i, j) > 0, B(i, k) > 0, C(j, k) > 0, D(i,m) > 0, E(j,m) > 0, F (k,m) > 0,

G(i, r) > 0, H(j, r) > 0, I(k, r) > 0, J(m, r) > 0.

function [TList,count]=Case5(Cutoff,TList,count,A,B,C,D,E,F,G,H,I,J)

[i,j]=find(A); % Find non-zeros of A

for n=1:length(i), % Loop through pairs

in = i(n); % Fix nucleotide corresponding to 1

jn = j(n); % Fix nucleotide corresponding to 2

k = find(B(in,:) .* C(jn,:)); % Find first triangle

m = find(D(in,:) .* E(jn,:)); % Find second triangle

[kk,mm] = find(F(k,m)); % Form tetrahedra

r = find(G(in,:) .* H(jn,:)); % Find third triangle

for p = 1:length(kk), % Loop through Tetrahedra

kkkp = k(kk(p)); % Fix nucleotide corresponding to 3

mmmp = m(mm(p)); % Fix nucleotide corresponding to 4

SSkm= A(in,jn) + B(in,kkkp) + C(jn,kkkp) + D(in,mmmp) + E(jn,mmmp)...

+ F(kkkp,mmmp); % Calculate partial matching score

if SSkm<Cutoff(4) % verify we haven’t exceeded cutoff

rr=find(I(kkkp,r) .* J(mmmp,r)); % Find fifth base

for q = 1:length(rr), % Loop through Pentahedra

rrrq=r(rr(q)); % Fix nucleotide corresponding to 5

SSrs = SSkm + G(in,rrrq)+H(jn,rrrq)+I(kkkp,rrrq)+J(mmmp,rrrq);

if SSrs<Cutoff(5) % verify we haven’t exceeded cutoff

count = count + 1; % Candidate found, add to count

TList(count,:) = [in jn kkkp mmmp rrrq]; % add to list of candidates

end % end if SSrs<Cutoff(5)

81

end % end for q

end % end if SSkm<Cutoff(4)

end % end for p

end % end for n

5.5 Matlab code for permuting the bases

we let

PS =

0 A′
2,1 A′

3,1 · · · A′
m,1

A2,1 0 A′
3,2 · · · A′

m,2

A3,1 A3,2 0
...

...
...

. . . A′
m,m−1

Am,1 Am,2 · · · Am,m−1 0

(5.1)

LEN =

|A2,1| 2 1

|A3,1| 3 1

|A3,2| 3 2

...
...

...

|Am,m−1| m m− 1

(5.2)

Here all the Ai,j are L× L pairwise screening matrices.

function [PS,Perm]=sFindPermutation(PS,LEN);

n=length(PS); % determine how many bases; PS is mxm block matrix

Loc=1; % which base we are considering now

i=1:n; % Identify permutation

while Loc+1<n % Continue if we haven’t permuted all the bases

[a,b]=sortrows(LEN,1); % Sort by the number of non-zero entries

[LEN,i]=MakeMinFirst(LEN,b,i,Loc); % Permute two bases

Loc=Loc+2; % Two bases have been permuted, increment by two

82

end % end while Loc+1<n

PS=PS(i,i); % Permute the bases

Perm=i; % Save the permutation

%---

function [LEN,i]=MakeMinFirst(LEN,b,i,Loc)

k=find(i==LEN(b(1),2)); % Find the position of the ith number

t=i(Loc); %|

i(Loc)=LEN(b(1),2); %|-Switch first number

i(k)=t; %|

k=find(i==LEN(b(1),3)); % Find the position of the ith number

t=i(Loc+1); %|

i(Loc+1)=LEN(b(1),3); %|-Switch second number

i(k)=t; %|

% remove rows of LEN that a permutation

% has been determined for

c=find(LEN(:,2)~=LEN(b(1),3) & LEN(:,2)~=LEN(b(1),2)

& LEN(:,3)~=LEN(b(1),3) & LEN(:,3)~=LEN(b(1),2));

LEN=LEN(c,:); % return the bases that still need permuted

83

BIBLIOGRAPHY

[1] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cam-

bridge, 2003.

[2] Alexander Isaev. Introduction to mathematical methods in bioinformatics. Universitext.

Springer-Verlag, Berlin, 2004.

[3] D.J. Klein, P.B. Moore, and T.A. Steitz. The roles of ribosomal proteins in the structure,

assembly and evolution of the large ribosomal subunit. Journal of Molecular Biology,

2004. PDB ID: 1s72.

[4] K. Lari and S.J. Young. The estimation of stochastic context-free grammars using the

inside-outside algorithm. Computer Speach and Language, 1990.

[5] N. Leontis, J. Stombaugh, and E. Westhof. The non-watson-crick base pairs and their

associated isostericity matrices. Nucleic Acids Research, 2002.

[6] A. Mokdad. Developing tools for RNA structural allignment. PhD thesis, Bowling Green

State University, 2006.

[7] D. Mount. Bioinformatics. Cold Spring Harbor Laboratory Press, 2001.

[8] E. Rivas and S. Eddy. The language of rna: A formal grammar that includes pseudo-

knots. Bioinformatics, 2000.

84

[9] M. Sarver, C. Zirbel, J. Stombaugh, A. Mokdad, and N. Leontis. Fr3d: Finding local

and composite recurrent structural motifs in rna 3d structures. to appear in Journal of

Mathematical Biology.

[10] Gerhard Winkler. Image analysis, random fields and Markov chain Monte Carlo meth-

ods, volume 27 of Applications of Mathematics (New York). Springer-Verlag, Berlin,

second edition, 2003. A mathematical introduction, With 1 CD-ROM (Windows), Sto-

chastic Modelling and Applied Probability.

	Structure-based multiple RNA sequence alignment and finding RNA motifs
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	CHAPTER 1: Introduction
	1.1 What is RNA?
	1.2 Isostericity
	1.3 What is an RNA multiple sequence alignment?
	1.4 Why do alignments?
	1.4.1 Predict secondary structure
	1.4.2 Infer global 3D structure
	1.4.3 Phylogeny
	1.4.4 Predict 3D structure - motif swaps
	1.4.5 Allows you to check your isostericity conjectures

	1.5 Alignment procedures
	1.5.1 Hand alignment
	1.5.2 Progressive alignment
	1.5.3 Stochastic Context Free Grammars
	1.5.4 Covariance Model

	1.6 Why do we want to do multiple alignments?
	1.6.1 Why do alignments when there are already alignments available?
	1.6.2 Why do 3D structural alignments?

	CHAPTER 2: SCFG-MRF model for RNA sequences
	2.1 Nodes
	2.2 Initial Node
	2.3 Basepair Node
	2.3.1 Constructing the basepair model
	2.3.2 Summing over all possible values of (L,R) adds to 1

	2.4 Junction Node
	2.5 Hairpin Node
	2.6 Parsing
	2.6.1 Parsing an Initial node
	2.6.2 Parsing a Basepair
	2.6.3 Parsing a junction
	2.6.4 Parsing with a Hairpin Node

	2.7 Cluster nodes and Markov random fields
	2.7.1 Constructing the Cluster Model
	2.7.2 Showing the Markov property through an example
	2.7.3 Generating a cluster
	2.7.4 Parsing a subsequence using a cluster node

	2.8 Junction Cluster
	2.8.1 Constructing Junction Cluster Model
	2.8.2 Parsing a Jc-node

	2.9 Alternative
	2.9.1 Parsing an Alternative node
	2.9.2 Results

	2.10 Traceback
	2.11 Limits on what each node looks at

	CHAPTER 3: Parameter Estimation
	3.1 The Likelihood Function for an Initial Node
	3.1.1 The MLE for n and n
	3.1.2 The MLE for and

	3.2 The Likelihood Function for a Basepair
	3.2.1 The MLE for d
	3.2.2 The MLE for P
	3.2.3 MLE Using Partitions
	3.2.4 MLE Using Partitions across different interaction families
	3.2.5 The MLE for n and n
	3.2.6 The MLE's for and

	3.3 The Likelihood Function for Basepairs in a Cluster Node
	3.3.1 The MLE for P in a Cluster Node

	3.4 MLE for a Jc-node
	3.5 Parameter estimates from data

	CHAPTER 4: Motif Searching
	4.1 Our first approach
	4.2 Current way of finding pentahedra
	4.3 Maximum number of candidates
	4.4 The definition of discrepancy
	4.5 Permutation of bases
	4.5.1 Why do we need to permute the bases?
	4.5.2 How do we permute the bases?

	4.6 Displaying Candidates

	CHAPTER 5: Selected Matlab Code
	5.1 Matlab code for Cluster Nodes
	5.2 Matlab code for JunctionCluster Nodes
	5.3 Matlab code for parsing Alternatives
	5.4 Matlab code for finding pentahedra
	5.5 Matlab code for permuting the bases

	BIBLIOGRAPHY

