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Abstract

The Riemann integral is often introduced to undergraduate calculus students,

as its definition and related theorems are relatively straightforward to understand.

However, the Riemann integral is limited in its power to integrate a wide variety of

functions. This paper introduces an alternate definition of the integral, known as

the generalized Riemann integral. This version of the integral was introduced around

1960 by Ralph Henstock and Jaroslav Kurzweil, and its definition and theorems are

almost as simple as the traditional Riemann integral, yet its power to integrate

functions far surpasses Riemann’s integral. This paper includes an overview of the

most important theorems and definitions related to the generalized Riemann integral

and explains how it can be used to supplement, or even replace, the Riemann integral

in undergraduate calculus and analysis courses.
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Preface

The goal of this discussion of the generalized Riemann integral is to give a quite

recent and powerful definition of the integral which is almost as user-friendly as

the Riemann integral. The hope is that students and instructors of undergraduate

calculus and analysis courses can incorporate this particular definition of the integral

into their coursework. Many expositions of the generalized Riemann integral have

been given in the past 60 years (see [2] and [11]), but none of them have been written

at a level which suggests usage in elementary calculus courses. This introduction is

meant to clarify and bring to light the importance of this new definition of the

integral. The only prerequisite is a mild acquaintance with the definition and major

results of the Riemann integral. A knowledge of the derivative and differentiability

of functions will also prove useful. The definition of the Riemann integral will be

presented first, and then the exposition of the generalized Riemann integral will

begin. For our purposes, we will only be focusing on functions in the plane (R2),

defined on closed and non-infinite intervals. Formally, these are called compact

intervals, but I will instead use the term closed interval throughout this paper, as

this is a more familiar term from calculus. Thus, the intervals which we will consider

will have the form [a, b], where a, b ∈ R and where a < b. Functions defined on closed

intervals are the ones most commonly dealt with in elementary calculus. Readers

interested in integration on infinite intervals are referred to the concluding remarks

in Chapter 9 at the end of this paper or see [2]. Others interested in integration of

functions in Rn are referred to The Generalized Riemann Integral by McLeod [11].

In fact, few changes are needed when working with functions in Rn and McLeod

presents the whole theory of the generalized Riemann integral from a viewpoint of
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functions in Rn.

This paper is presented mainly in a theorem-proof format, but many examples are

given of the generalized Riemann integral at work. The hope is that these examples

illustrate the power of this definition of the integral and aid in understanding of the

theorems and the proofs.

A section of this paper is devoted specifically to instructors who wish to incor-

porate this new definition of the integral into their courses. This goal is that the

generalized Riemann integral can supplement, or even possibly replace, the tradi-

tional Riemann integral. However, the Riemann integral is still a solid starting point

for any calculus student, and can be used as a launching pad into different theories

of integration, including the one presented here.

Many of the ideas in this paper come from a book entitled A Modern Theory of

Integration by Robert G. Bartle [2]. He presents a fairly comprehensive treatment of

the generalized Riemann integral, and his intended audience is graduate or advanced

undergraduate students of mathematics. This paper will hopefully give an even

more user-friendly treatment of the integral than Bartle, but his book is still highly

recommended to anyone who wishes to study the generalized Riemann integral in

more depth. This paper also varies from Bartle’s work in the sense that the aim

of this paper is to give an introduction to students and especially instructors who

would like to see a fresh and powerful theory of integration, but without some of the

more advanced results which are not typically encountered until later mathematics

coursework.

As a final note, the theory of the integral presented here is known by a variety

of different names, such as the gauge integral, Henstock-Kurzweil integral, or simply

the integral. I use the terminology generalized Riemann integral in order to establish

its close connections with the Riemann integral. This name also seems to lend itself

well to incorporating this integral into existing mathematics curricula.
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Chapter 1

Historical Background of the

Integral

Ever since ancient times, people have been fascinated with finding the area in-

side certain figures. This tradition is largely credited to the Greeks, and especially

Archimedes (c. 287 BC-c. 212 BC), who used his mathematical ingenuity to approx-

imate the area of a circle and to find the area between a line and a parabola. He

relied on a geometric approach to solve his problem, now known as the method of

exhaustion, where he used polygons of known area to make approximations of the

unknown areas. For example, he first used hexagons and octagons to approximate

the area of a circle. He then used figures with successively more sides, such that

the area of the n-gon would approximate the area of circle more closely. Archimedes

used this same procedure (using triangles) to determine the area between a line and

a parabola [5]. This problem is still seen in calculus classes today, but is typically

solved by making use of more modern theories of the integral. Thus, Archimedes’

work with areas formed the foundation for the next two thousand years of calculus

history.

Calculus, in the modern sense of the term, formally has its beginnings with Isaac

Newton (1642-1727), who developed his idea of fluxions in the mid-1660s. These

fluxions are analogous to the modern notion of the derivative. In the realm of inte-
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gration, Newton was the first to formulate the “power rule” which is used widely in

elementary calculus courses. He also developed the rudiments of the algebra of inte-

grals, ideas which he set forth in his De analysi of 1669. From the title of his book,

we get the modern term “analysis”, which refers to the rigorous study of calculus

concepts. Rigor in mathematics is the idea that any ideas given are backed up with

formal proofs. In spite of Newton’s groundbreaking work however, his theorems typ-

ically lacked these formal proofs, and some of the results he claimed to be true were

later found to be false [4]. But even with the lack of rigor and formality in Newton’s

work, his ideas began a mathematical revolution which still continues today.

Gottfried Wilhelm Leibniz (1646-1716) was another father of modern calculus,

and he did his work in France at the same time as Newton. In fact, there was, and still

are, questions about whether Leibniz or Newton should be credited with founding

calculus. Today, it is accepted by most mathematicians that the two individuals

did their work independently, and did not plagiarize ideas from each other. Leibniz

gave mathematics the modern integral symbol
∫

and the differential symbol dx. He

called this differential an “infinitesimal,” which can be defined as an arbitrarily short

distance or as a subinterval which has arbitrarily short length. Although this idea of

the infinitesimal was the foundation for Leibniz’s work, he seemed unsure of exactly

how these infinitesimals behaved [4]. Some modern mathematicians still refer to

the differential as an infinitesimal, but since calculus has now become rigorous, the

infinitesimal now has a precise meaning and usage.

Leibniz followed the tradition of Archimedes by using polygons to approximate

the area under curves. Leibniz used infinitesimal rectangles to complete these ap-

proximations, a concept employed by later mathematicians, including Riemann and

Cauchy. An infinitesimal rectangle is a geometric figure which has an “infinitely

small” base length and height equal to the function value at a point in the infinitesi-

mal [4]. But similar to Newton, Leibniz’s contributions to calculus were not rigorous,

and he left some of his work unfinished. It would be the job of the future mathe-

maticians to fill in the holes that both Newton and Leibniz left.

Although Leibniz developed the integral symbol, we actually get the term “in-

tegral” from Jakob Bernoulli (1654-1705), who began using the term in the 1680s.
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In his time, the integral was used mainly to find the area under curves, in the way

of Newton and Leibniz. Rigor was finally introduced to calculus and the integral

beginning in the mid-18th century, when Jean-le-Rond d’Alembert (1717-1783) de-

veloped the notion of a “limit.” This idea of a limit would eventually give a precise

definition of Leibniz’s infinitesimals. However, this early idea of limit was not the

rigorous modern definition which is seen today, but was thought of as the value that

a continuous function seemed to approach as we chose values close to a particular

element of the function’s domain [4]. In a sense, this is the intuitive notion of a limit,

but it still needed a precise definition before it could be used to formalize calculus.

Augustin-Louis Cauchy (1789-1857) made numerous contributions to analysis,

mostly based upon continuous functions and the idea of limit as introduced by

d’Alembert. He even developed one of the first formulations of the Fundamental

Theorem of Calculus based off of the limit idea. Although some of his work still

lacked the rigor seen in modern analysis today, many of his results do have formal

proofs and can be found in most any analysis or calculus textbook today [4].

Much of the rigor that is seen in modern analysis today came about as a result

of new functions being introduced. These functions are sometimes referred to as

pathological functions, and they exposed some of the shortcomings of the definitions

and propositions that mathematicians were using up through the early 19th century.

Even the mathematician Henri Poincare (1854-1912) complained, “Before when one

would invent a new function it was to some practical end; today they are invented

to demonstrate the errors in the reasoning of our fathers...” [15].

Peter Gustav Lejeune Dirichlet (1805-1859) was one of the first to create a patho-

logical function that would set the stage for future advances in analysis. His function,

also known as the characteristic function of the rationals, is defined on [0, 1] as:

f(x) =

1 x ∈ Q

0 x /∈ Q

where Q represents the rational numbers. This function is discontinuous everywhere,

and Dirichlet mainly created it to see how the analysis definitions of the day could
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handle such a bizarre function. Georg Friedrich Bernhard Riemann (1826-1866) was

a student of Dirichlet, and he took it upon himself to determine the integrability of

such a function. What resulted from Riemann’s work was the modern and rigorous

definition of the integral which is still introduced in the vast majority of elementary

calculus and real analysis textbooks today. His definition of the integral will be

given later in this paper, and the Dirichlet function will be studied more in depth.

However, there was still one problem: Riemann’s integral could not evaluate the

area under Dirichlet’s function. Riemann concluded that trying to find the integral

of such a function was “nonsense” [4].

Since the time of Riemann, there have been many advances in the theory of

integration, and this paper will explore the basics of some of the those advances.

Other historical remarks will be given throughout this text. We will even find,

contrary to Riemann’s opinion, that the integral of Dirichlet’s function is far from

nonsense. We will now turn our attention to Riemann and his famous integral.
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Chapter 2

The Riemann Integral and The

Fundamental Theorem of Calculus

Riemann’s definition of the integral, as noted above, is regarded as the first one

which was truly rigorous, and it will be presented here since the definition of the

generalized Riemann integral follows directly from it. Riemann’s integral relies on

the ε-δ definition of the limit and was first introduced in 1854 [4]. Any instructor or

student who is familiar with the definition and results of Riemann’s integral, both

those given here and those commonly introduced in elementary calculus courses,

should be able to understand the new material in later chapters. We will begin with

a few prerequisites and then proceed with the definition.

Suppose that we have a function f , and we wish to integrate this function on

a closed interval I = [a, b]. We must first partition this interval I = [a, b] into

a collection of closed subintervals Ii, where I = I1 ∪ I2 ∪ ... ∪ In and where the

subintervals do not overlap (except at the endpoints). We will denote the partition

as

P = {I1, I2, I3, ..., In}

which is the set of all of the subintervals of I. Note that each Ii ⊆ I and can also be
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written as Ii = [xi−1, xi], for i = 1, 2, 3, ..., n where

a = x0 ≤ x1 ≤ ... ≤ xn−1 ≤ xn = b.

For each subinterval Ii in P , we can choose a point ti ∈ Ii which is known as

a tag, or an association point, which we simply call ti. A tag ti is a point in

the subinterval where xi−1 ≤ ti ≤ xi. Tags may be chosen arbitrarily in each of the

subintervals. The set of ordered pairs

Ṗ = {(I1, t1), (I2, t2), ..., (In, tn)} = {([xi−1, xi], ti) : i = 1, 2, 3, ..., n}

is called a tagged partition of the interval I. These tags may be chosen arbitrarily

and can be interior points of the subinterval or endpoints of the subinterval.

Furthermore, we can define the norm or mesh of the partition P to be

||P || = max{x1 − x0, x2 − x1, ..., xn − xn−1}.

In other words, the norm of the partition is the length of the longest subinterval in

the partition of I. For our purposes, we define the length of a particular subinterval

[xi−1, xi] as xi−xi−1. Before proceeding any further, we will now present an example

of partitioning an interval to aid in understanding.

Example. Suppose we have a function defined on the closed interval [0, 1] and

we want to partition this interval into 5 subintervals. Let these subintervals be

[0, 1
3
], [1

3
, 1
2
], [1

2
, 3
4
], [3

4
, 7
8
], and [7

8
, 1]. So we write the partition as

P =
{[

0,
1

3

]
,
[1

3
,
1

2

]
,
[1

2
,
3

4

]
,
[3

4
,
7

8

]
,
[7

8
, 1
]}
.

Now we can choose tags for each subinterval. Let the tags be 1
6
, 4

9
, 3

5
, 13

16
, and 1,

respectively for each subinterval. We can then write the tagged partition as

Ṗ =
{([

0,
1

3

]
,
1

6

)
,
([1

3
,
1

2

]
,
4

9

)
,
([1

2
,
3

4

]
,
3

5

)
,
([3

4
,
7

8

]
,
13

16

)
,
([7

8
, 1
]
, 1
)}
.
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It is seen that each tag is either an interior point or an endpoint of its respective

subinterval. Lastly, the norm of this partition is 1
3

since the longest subinterval is

[0, 1
3
], which has length 1

3
− 0 = 1

3
.

We have one more definition and a brief lemma to present and we can then

define the Riemann integral. The following definition will be of great importance

throughout the remainder of the paper and the lemma will be of use to us later on

when we verify certain results.

Definition. Given a function f defined on [a, b], the Riemann sum is the term

n∑
i=1

f(ti)(xi − xi−1)

where [xi−1, xi] ⊆ [a, b], where ti is a tag in the subinterval [xi−1, xi] and where

xi − xi−1 is the length of the subinterval [xi−1, xi].

Right-Left Lemma. Suppose that Ṗ = {([xi−1, xi], ti) : i = 1, 2, 3, ..., n} is a tagged

partition and let the tag tk be an interior point of the subinterval [xk−1, xk] ∈ Ṗ . If

we create the tagged partition Ṗ ′ from Ṗ by adding a new partition point tk = ξ such

that

a = x0 ≤ · · · ≤ xk−1 < ξ < xk ≤ · · · ≤ xn = b

where the two new subintervals [xk−1, ξ] and [ξ, xk] both have tag ξ, then the Riemann

sum over the partition Ṗ will be equal to the Riemann sum over the partition Ṗ ′.

Proof. Suppose that the two new subintervals created are [xk−1, ξ] and [ξ, xk].

Hence, ξ is the right endpoint of the subinterval [xk−1, ξ] and the left endpoint of the

subinterval [ξ, xk]. Now we have that

f(tk)(xk − xk−1) = f(tk)(ξ − xk−1) + f(tk)(xk − ξ).

Since the equality holds, then these terms in the Riemann sums will be equal and

consequently the Riemann sum over the tagged partition Ṗ will be equal to the

Riemann sum over the tagged partition Ṗ ′. Since the Riemann sums are preserved

in creating the new tagged partition, we conclude that this procedure is valid. Q.E.D.
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The previous lemma allows us to split an existing subinterval into two new subin-

tervals such that the tag tk = ξ is a right endpoint of the one subinterval and a left

endpoint of the other subinterval. Furthermore, ξ = tk is the tag for both of the new

abutting subintervals.

All of the definitions and results given so far in this chapter have been leading

up to the definition of the Riemann integral and can be used to better understand

its definition.

Definition of the Riemann Integral. Let f be a function on an interval I = [a, b].

Suppose that there is a number R such that for each ε > 0, there is a δ > 0 such

that if Ṗ = {([xi−1, xi], ti) : i = 1, 2, 3, ..., n} is any tagged partition of [a, b] where

xi − xi−1 < δ for i = 1, 2, 3, ..., n, then∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)−R

∣∣∣∣∣ ≤ ε.

Then we write

R =

∫ b

a

f(x)dx

and say that R is the Riemann integral of f over the interval [a, b].

This definition might be unfamiliar to many undergraduate students of mathe-

matics, even though they might be adept at evaluating integrals using this definition.

What is occurring in this definition is that first we are given an ε which is a small

number greater than zero. We must find a constant δ such that when the lengths of

each subinterval in a partition of [a, b] are less than δ, then the absolute value of the

difference between the Riemann sum and the value of the integral is less than the

given ε. In other words, the ε forces us to choose a δ which will make the Riemann

sum and the integral arbitrarily close. This integral is commonly thought of as the

area under the curve, which is approximated with rectangles of height f(ti) and with

length xi−xi−1. Although looking at the integral as simply the area under a curve is

a narrow viewpoint due to its many other uses, it is a sufficient starting point for this

paper. Nevertheless, we see the importance of defining appropriate subintervals and

tags when working with the Riemann integral to ensure that the definition holds.
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This definition of the integral is the one typically encountered in elementary

calculus courses and the one most thoroughly studied by undergraduate students

in mathematics. It is quite useful for simple functions that the textbooks often

present. However, the limited power of this definition is seen quickly, specifically for

those functions in which an antiderivative cannot be found or where the function

is unbounded at a particular point in an interval. Even in elementary calculus, the

textbooks will sometimes present functions which are not Riemann integrable (see

[17], p. 227). For a simple example of this, consider the function

f(x) =

 1
x

0 < x ≤ 1

0 x = 0.

This function f is unbounded on [0, 1]. Thus, the limiting process used in the def-

inition of the Riemann integral is not applicable in this case if we try to compute∫ 1

0
f(x)dx. Hence, f is not Riemann integrable using the definition provided earlier

in this chapter. The typical way of handling this situation in calculus classes is to

extend the definition of the Riemann integral and make use of limits. However, it

would be convenient if the integral definition could handle such issues without an

extension.

Hence, we must ask ourselves whether there is an alternative way to integrate

such functions in which Riemann’s definition is not applicable. The answer to this

question is a resounding “yes” and is explained somewhat in the historical note below.

Historical Note. Around the turn of the twentieth century, Henri Lebesgue (1875-

1941) made note of the defects encountered in the definition of the Riemann integral

and he formulated a new definition, now known as the Lebesgue integral. Today,

this remains the most popular theory of integration among graduate students of

mathematics [4]. Lebesgue’s integral, however, relies on measure theory, which many

students struggle to understand and which is rather complex. Arnaud Denjoy (1884-

1974) and Oskar Perron (1880-1975) also created integrals around this time period

which solved the issues of the Riemann integral, but which were also significantly

more complex than the Riemann integral [9]. Beginning in the mid-twentieth century,
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two mathematicians named Ralph Henstock (1923-2007) and Jaroslav Kurzweil (b.

1926) independently sought to improve the technical complexities of the integrals

introduced by Lebesgue, Denjoy, and Perron [2]. What resulted was a method of

integration which was defined similarly to the Riemann integral, but which could

integrate a much wider class of functions. The remainder of this paper is devoted

to a discussion of the main idea related to the integral that Henstock and Kurzweil

defined, which we will call the generalized Riemann integral.

We now conclude this chapter with the main motivation for defining the gener-

alized Riemann integral: the Fundamental Theorem of Calculus. The Fundamental

Theorem related to the Riemann integral will be given below, without proof. The

Fundamental Theorem of Calculus for the generalized Riemann integral will be pre-

sented in a later chapter, and a proof will be given there.

Fundamental Theorem of Calculus. Suppose we have a function F which is

differentiable on I = [a, b]. If F ′ is Riemann integrable on I = [a, b], then∫ b

a

F ′(x)dx = F (b)− F (a).

Notice that one of the hypotheses of the theorem is that the function F ′ must be

Riemann integrable. Above, it was discussed that there are many functions which

are not Riemann integrable, so this theorem does not always hold. While this defect

in the Riemann integral is often overlooked in calculus courses, it is not long before

more advanced functions are introduced where their integrals cannot be evaluated

using Riemann’s method. The reason why we introduce the generalized Riemann

integral is because the Fundamental Theorem of Calculus will hold for all differen-

tiable functions, a very powerful result indeed. Furthermore, the new definition will

only be slightly more difficult than Riemann’s definition [2]. Thus, not only do we

get a powerful definition, but also one which is relatively easy as compared with

other theories of integration, such as Lebesgue, Denjoy, or Perron. Furthermore, all

Riemann integrable functions are generalized Riemann integrable. This result will

be explained in more detail in the next chapter. We will now move from Riemann’s

definition of the integral to the definition of the generalized Riemann integral given
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by Henstock and Kurzweil. This movement will only require one change to the def-

inition, and this change opens up a world of integrable functions which were not

previously accessible by using Riemann’s definition.
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Chapter 3

The Generalized Riemann Integral

and Gauges

First, let us take a look back at the definition of Riemann’s integral given in the

previous chapter. Notice that the conclusion of the definition holds only when the

length of each subinterval is less than a constant, which we called δ. In the definition

of the generalized Riemann integral, instead of requiring that each subinterval have

length less than the constant δ, we will require that each subinterval have length less

than a particular function value, which we will call δ(t) for our purposes. This func-

tion is directly tied to the tags that we choose in the subintervals of the partition,

hence the usage of t in the function δ(t). Under the Riemann integral, we would

typically define the partition of the interval first, and then choose the tags in corre-

spondence with the subintervals. However, under the generalized Riemann integral,

we will choose the tags first in relation to the function δ(t), which in turn allows us

to create a suitable partition in order to evaluate the integral [6]. We will call this

function a gauge. The usage of a gauge is the only difference between definitions of

the Riemann integral and the generalized Riemann integral, and it opens up a wider

class of function which are integrable since we are no longer restricted to constant

gauges.

Definition. If I = [a, b] ⊂ R, then a function δ : I −→ R is a gauge on I if δ(t) > 0
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for all t ∈ I. The interval [t− δ(t), t+ δ(t)] is known as the interval controlled by

the gauge. This interval controlled by the gauge is important in understanding a

concept known as δ-fineness, which will be explored below and which is key to being

able to use the definition of the generalized Riemann integral.

In determining the function δ(t), the only condition imposed on δ(t) is that it is

positive for all t ∈ I. However, not all of the gauges which we define will be useful,

but the gauge will still allow us to find what are known as δ-fine partitions of an

interval. Hence, given a gauge δ(t) on I, this gauge gives us a partition of I that is

δ-fine. This fact will be stated and proven later in this chapter as Cousin’s Lemma.

First, we define a δ-fine partition below.

Definition. A tagged partition is said to be δ-fine if [xi−1, xi] ⊆ [ti− δ(ti), ti+ δ(ti)]

for all i, where ti ∈ [xi−1, xi]. The figure below attempts to clarify the idea of what

δ-fine means in a geometric sense. Notice that in the figure, the subinterval [xi−1, xi]

is a subset of the interval controlled by the gauge.

ti − δ(ti) ti ti + δ(ti)xi−1 xi

Figure 1: A geometric representation of δ-fineness.

Note. Only a tagged partition can be δ-fine, so instead of saying δ-fine tagged

partition, we will merely refer to it as a δ-fine partition.

The purpose of defining this gauge on I and ensuring that there is a δ-fine par-

tition of I is to allow smaller subintervals in places where the original function is

changing rapidly and larger subintervals where the original function is changing

slowly [8]. This method is useful since when the function is changing slowly or

is nearly constant, the value of the Riemann sums will not change much even over

large subintervals. On the other hand, when the function is changing rapidly, cre-

ating smaller subintervals will allow us to compute the Riemann sums with greater
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accuracy. For example, consider again the function

f(x) =

 1
x

0 < x ≤ 1

0 x = 0.

Near x = 0, f approaches a vertical asymptote, and f is changing rapidly near this

value. Alternatively, as x becomes larger, values of f change more slowly. Thus, it

would be appropriate to define a gauge which would allow us to take small subinter-

vals near x = 0 and larger subintervals as x becomes greater.

We now have all of the necessary prerequisites for the definition of the generalized

Riemann integral. Its definition is given below.

Definition. The generalized Riemann integral is defined as follows: Let f be a

function on an interval I = [a, b]. Suppose that there is a number M such that for

each ε > 0, there is a gauge δ(t) > 0 such that if Ṗ = {([xi−1, xi], ti) : i = 1, 2, 3, ..., n}
is any tagged partition of [a, b] where [xi−1, xi] ⊆ [ti−δ(ti), ti+δ(ti)] for i = 1, 2, 3, ..., n

(i.e., Ṗ is δ-fine), then ∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)−M

∣∣∣∣∣ ≤ ε.

Then we write

M =

∫ b

a

f(x)dx

and say that M is the generalized Riemann integral of f over the interval [a, b].

As referenced above, this new approach renders the Riemann integral a specific

case of the generalized Riemann integral, specifically those instances where the gauge

is a constant (i.e., δ(t) = δ). In fact, every Riemann integrable function is also

generalized Riemann integrable [3]. This is precisely why we call this new theory of

integration the generalized Riemann integral. By using these non-constant gauges in

the new definition, functions which are not well-behaved can still be integrated by

choosing the proper gauge.

We must now pause for a moment to consider the gauge which we define on a
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compact interval. How do we know that there is a δ-fine partition of the interval for

a gauge that we construct? Could it possibly be that a particular gauge does not

have a δ-fine partition of an interval? Clearly a result that guarantees the existence

of a δ-fine partition would be useful since this is a crucial part of the definition of the

new integral. In fact, Pierre Cousin, in the late nineteenth century, developed and

proved a theorem which guarantees the existence of a δ-fine partition of an interval

given a gauge δ(t) on that interval. This is popularly known as Cousin’s Lemma,

and is given below in keeping with the terminology used in this paper. (The original

lemma was phrased slightly differently, but is still proved in a similar fashion. For a

more traditional phrasing, see [16], pp. 166-167.)

Cousin’s Lemma. If I = [a, b], a 6= b, is a compact interval in R and δ(t) is a gauge

on I, then there exists a δ-fine partition of I.

Proof. We will do a proof by contradiction and use repeated bisection of the interval.

First, we will suppose that I does not have a δ-fine partition. Now let c = 1
2
(a + b)

and bisect the interval I into [a, c] and [c, b]. Next, we claim that one of these

subintervals does not have a δ-fine partition. Since the union of two δ-fine partitions

is also δ-fine, one of the intervals above must not have a δ-fine partition, or else [a, b]

would have a δ-fine partition. Let I1 = [a, c] if this subinterval does not have a δ-fine

partition; otherwise, let I1 = [b, c]. Relabel I1 as [a1, b1], and let c1 = 1
2
(a1 + b1) and

bisect I1 into [a1, c1] and [c1, b1]. As before, one of these subintervals does not have

a δ-fine partition. Let I2 = [a1, c1] if it does not have a δ-fine partition; otherwise,

let I2 = [c1, b1]. Relabel I2 as [a2, b2] and bisect this subinterval in the same manner

as above. After repeated bisection, we will obtain an infinite sequence In of compact

subintervals of [a, b] which are nested, in the sense that

[a, b] = I ⊃ I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ In+1 ⊃ · · · .

According to our construction, none of these nested subintervals has a δ-fine partition.

The Nested Intervals Property implies that there is a unique number z which lies in

all of the subintervals In. From our definition of a gauge, we know that δ(z) > 0.

Now the length of the pth subinterval is (b − a)/2p. By the Archimedean Property,
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we know that there is a p ∈ N such that the length of the pth subinterval is less than

δ(z). Essentially, by taking p large enough, we can force the length of the subinterval

to be less than δ(z). As a result, we know that Ip ⊂ [z − δ(z), z + δ(z)]. But this is

precisely the definition of a δ-fine partition on the subinterval Ip. We have created

a (trivial) δ-fine partition of Ip and therefore, we have reached a contradiction since

we assumed that we could not create a δ-fine partition of Ip. So we conclude that for

every gauge δ(t) in I, there exists a δ-fine partition of I. Q.E.D.

(This proof is based on the proof that Bartle gives in A Modern Theory of Inte-

gration, see [2], pp. 11-12.)

Historical Note. Pierre Cousin formulated this lemma around 1895, so the exis-

tence of δ-fine partitions was well known by the time of Henstock and Kurzweil [1].

Thus, by the turn of the twentieth century, all of the necessary prerequisites were in

place for the development of the generalized Riemann integral. So it is interesting

to note that it took almost another 65 years before the generalized Riemann integral

was developed. In the meantime, Lebesgue, Perron, and Denjoy formulated their in-

tegrals, which were much more complex than the generalized Riemann integral. It is

still a wonder as to why the simple idea of the integral presented here was developed

relatively late in mathematical history [18].

We will begin our exploration of the generalized Riemann integral in the next

chapter by looking at several functions for which we can construct gauges and eval-

uate using the definition of the generalized Riemann integral. The first two of these

functions should be familiar to any sophomore level mathematics major, and are

also Riemann integrable. For the third example, we return to Dirichlet’s Function

and show that while it is not Riemann integrable, it is in fact generalized Riemann

integrable.
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Chapter 4

Examples

Example 1. First, we will look at an example of a function which is Riemann

integrable and use the definition of the generalized Riemann integral to construct a

gauge and show that the generalized Riemann integral of the function gives the same

value as the Riemann integral. Suppose f(x) = 2x on I = [a, b] with a < b.

From calculus, we can easily find the antiderivative of f , so we will introduce the

function F (x) = x2. Upon doing this, we can then write the Riemann sums of f over

the partition of [a, b] as telescoping sums. A telescoping sum is a series which has

a finite number of terms after some or most of the terms have been canceled. The

idea of telescoping sums will also be used in the proof of the Fundamental Theorem

of Calculus in Chapter 6.

We will also need to make use of the Mean Value Theorem for derivatives which

states that if F is continuous on [xi−1, xi] and differentiable on (xi−1, xi), then there

exists a ci ∈ (xi−1, xi) such that

F ′(ci) =
F (xi)− F (xi−1)

xi − xi−1
.

Geometrically speaking, the Mean Value Theorem asserts that given a secant line

with two endpoints on a curve, there exists at least one point on the curve between

those endpoints where the slope of the tangent line to the curve at that point is

equal to the slope of the secant line. We know that F ′(x) = f(x) = 2x. Thus, F
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is continuous everywhere and also differentiable everywhere, so the conclusion of the

Mean Value Theorem holds. Multiplying both sides of the conclusion of the theorem

by xi − xi−1 gives that

f(ci)(xi − xi−1) = F (xi)− F (xi−1).

Now f(ci) = 2ci, so

F (xi)− F (xi−1) = f(ci)(xi − xi−1) = 2ci(xi − xi−1), i = 1, 2, ..., n.

If we take the sum of the above expressions, we will obtain the telescoping sum

F (b)− F (a) = F (xn)− F (x0) =
n∑
i=1

[F (xi)− F (xi−1)] =
n∑
i=1

2ci(xi − xi−1).

If Ṗ = {([xi−1, xi], ti) : i = 1, 2, 3, ..., n} is a tagged partition of I = [a, b], then

F (b)− F (a)−
n∑
i=1

f(ti)(xi − xi−1) =
n∑
i=1

2ci(xi − xi−1)−
n∑
i=1

2ti(xi − xi−1)

=
n∑
i=1

2(ci − ti)(xi − xi−1).

If δ is a constant gauge on I = [a, b] and if Ṗ is δ-fine, then since ci, ti ∈ [xi−1, xi],

we have that |ci − ti| ≤ 2δ. Hence it follows that∣∣∣∣∣F (b)− F (a)−
n∑
i=1

f(ti)(xi − xi−1)

∣∣∣∣∣ ≤
n∑
i=1

2|ci − ti|(xi − xi−1)

≤
n∑
i=1

4δ(xi − xi−1) = 4δ(b− a).

If ε > 0 is given, then we should choose a constant gauge δ(t) = ε/4(b − a). Since
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the choice of ε is arbitrary, we can see that f is generalized Riemann integrable and∫ b

a

2xdx = b2 − a2.

Notice that from calculus and using the Riemann integral and the Fundamental

Theorem of Calculus, we have that∫ b

a

2xdx = x2
∣∣∣b
a

= b2 − a2

which agrees with the answer we obtained by using the generalized Riemann integral.

Example 2. For this example, we are going to take a look at a simple step function

which has one point of discontinuity. This step function is Riemann integrable, and

we will now show that it is also generalized Riemann integrable. Let I = [a, b], let

c ∈ (a, b), and let α, β ∈ R where α 6= β. Define the following function:

g(x) =

α a ≤ x < c

β c ≤ x ≤ b.

Notice that the function g is continuous at all points in [a, b] except at x = c.

Thus, we must focus our attention on this point of discontinuity. As a way of handling

this situation, we will first force c to be the tag of two abutting subintervals, which

each have length less than or equal to δ. As such, we can define the following gauge

which accomplishes this task:

δ(t) =

1
2
|t− c| t 6= c

δ t = c.

We can choose δ as needed, and below we will show the precise value for δ that

allows the function to be handled using the generalized Riemann integral. Let Ṗ =

{([xi−1, xi], ti) : i = 1, 2, 3, ..., n} be a δ-fine partition of I = [a, b] which we will

assume to be ordered in the sense that a = x0 < x1 < · · · < xn−1 < xn = b. Our
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choice of the gauge above forces c to be the tag of any subinterval within the partition

that contains c. Why is this the case? First, if t is the tag of the subinterval which

contains c and if t = c, then c is already the tag of that subinterval and we can

force the subinterval containing c to have arbitrarily small length by choosing the

proper value for δ in the gauge. This is advantageous since this subinterval is the

one which contains the discontinuity. Now suppose that t is the tag of a subinterval

which contains c, but where t 6= c. Now we find 1
2
|t− c| and we know that the length

of this subinterval containing both t and c must be less than |t − c| per the gauge.

Since this subinterval contains t, then the subinterval would have to have length at

least |t − c| if it also contained c, but since the length is less than |t − c|, we know

that the subinterval cannot contain c. Hence, we have a contradiction and conclude

that t = c. In other words, c must be the tag of subinterval which contains c. Now

if we use the right-left lemma from Chapter 2, we can assume that c is the tag for

two abutting subintervals [xk−1, xk] and [xk, xk+1], where xk = c. Now g(ti) = α for

i = 1, 2, ..., k − 1, and thus the Riemann sum for the first k − 1 terms is

k−1∑
i=1

g(ti)(xi − xi−1) = α(xk−1 − a).

Furthermore, since g(ti) = β for i = k, ..., n, then the Riemann sum for the remaining

terms is
n∑
i=k

g(ti)(xi − xi−1) = β(b− xk−1).

From this, we know that

n∑
i=1

g(ti)(xi − xi−1) = α(xk−1 − a) + β(b− xk−1).

Since xk−1 − a = (c − a) − (c − xk−1) and b − xk−1 = (b − c) + (c − xk−1), we have

that
n∑
i=1

g(ti)(xi − xi−1) = α(c− a) + β(b− c) + (β − α)(c− xk−1).
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Since the partition of I = [a, b] is δ-fine, then c − δ ≤ xk−1 < c and thus 0 <

c− xk−1 ≤ δ and∣∣∣∣∣
n∑
i=1

g(ti)(xi − xi−1)− [α(c− a) + β(b− c)]

∣∣∣∣∣ ≤ |β − α|(c− xk−1)
≤ |β − α|δ.

Therefore, in our gauge, it will work to take δ(c) = ε/|β − α|. By doing so, we

conclude that g is generalized Riemann integrable on I = [a, b] and∫ b

a

g(x)dx = α(c− a) + β(b− c).

(This example is taken from A Modern Theory of Integration, pp. 26-27, see [2].)

To handle this function in undergraduate calculus classes, the integrand would

first need to be split since the function has a discontinuity and because there are two

function values over the interval [a, b]. This is easily accomplished and the evaluation

of the integral proceeds as follows:∫ b

a

g(x)dx =

∫ c

a

αdx+

∫ b

c

βdx = αx
∣∣∣c
a

+ βx
∣∣∣b
c

= α(c− a) + β(b− c).

This agrees with the answer we obtained using the generalized Riemann integral.

Example 3. Now, we will finally return to Dirichlet’s function, which was first

defined in Chapter 1. Recall that this function is not Riemann integrable but we

are about to show that it is generalized Riemann integrable. We here give a more

thorough explanation as to why the function is not Riemann integrable. Again, we

define Dirichlet’s function on [0, 1] as

h(x) =

1 x ∈ Q

0 x /∈ Q

We will show that Dirichlet’s function is not Riemann integrable by directly using
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the definition of the Riemann integral. Let ε = 1
2

and let δ > 0 be given. Now

let Ṗ = {([xi−1, xi], ti) : i = 1, 2, 3, ..., n} be any tagged partition of [0, 1] such that

xi − xi−1 < δ for i = 1, 2, 3, ..., n. Suppose the tags ti /∈ Q. Then h(ti) = 0 for

all ti, i = 1, 2, 3, ..., n, where n is the number of subintervals in the interval [0, 1].

According to the definition of the Riemann integral,∣∣∣∣∣
n∑
i=1

h(ti)(xi − xi−1)−R

∣∣∣∣∣ = |0−R| = | −R| = R < ε =
1

2

since h(ti) = 0. (Note that R is the value of the Riemann integral). Now suppose

the tags si ∈ Q. Then h(si) = 1 for all si, i = 1, 2, 3, ..., n, where n is the number of

subintervals in the interval [0, 1]. According to the definition of the Riemann integral,∣∣∣∣∣
n∑
i=1

h(si)(xi − xi−1)−R

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(xi − xi−1)−R

∣∣∣∣∣ = |1−R| < ε =
1

2

since h(si) = 1 and the sum of the collection of subintervals over the interval [0, 1]

is 1. Notice that in the first case when ti /∈ Q, we have that R < 1
2
. However, in

the second case where si ∈ Q, we have that |1− R| < 1
2

or that 1
2
< R < 3

2
. Clearly

this is a contradiction, and since we are able to choose our tags arbitrarily, if the

function is Riemann integrable, the choice of tags should not render this contradic-

tion. Therefore, we conclude that h(x) is not Riemann integrable. We will now show

that Dirichlet’s function is integrable using the generalized Riemann integral and has

value 0.

We know that the rationals are a countably infinite set, and hence we will begin by

enumerating the rationals in [0, 1] as {r1, r2, ...}. Now, we must construct an appro-

priate gauge so that the definition of the generalized Riemann integral is applicable.

Using the Riemann sums, we know that if we choose our tags ti to be irrational,

then h(ti) = 0 and this contributes 0 to the Riemann sum. Thus, for irrational tags,

we can choose any arbitrary value for the gauge without it affecting the Riemann

sum. In our case, we will choose 1 for ease of computation. However, we must be

cautious about choosing the gauge when our tags are rational, since the rationals do
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contribute to the Riemann sums. We must define a small interval around each ti and

determine the Riemann sum. Let ε > 0 be given and let the gauge be defined as

δ(ti) =

 ε
2j+1 ti = rj

1 ti /∈ Q.

Now let Ṗ = {([xi−1, xi], ti) : i = 1, 2, 3, ..., n} be any tagged partition such that

[xi−1, xi] ⊆ [ti− δ(ti), ti + δ(ti)] for all i (i.e., Ṗ is δ-fine). Then we need to show that∣∣∣∣∣
n∑
i=1

h(ti)(xi − xi−1)− 0

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

h(ti)(xi − xi−1)

∣∣∣∣∣ ≤ ε.

Now we can split this sum into the sum where the tags ti are rational (ti = rj) and

the sum where the tags ti are irrational. Thus,∣∣∣∣∣
n∑
i=1

h(ti)(xi − xi−1)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
ti=rj

h(ti)(xi − xi−1) +
∑
ti 6=rj

h(ti)(xi − xi−1)

∣∣∣∣∣
where

∑
ti=rj

h(ti)(xi − xi−1) is the Riemann sum over the subintervals which have

rational tags and where
∑

ti 6=rj h(ti)(xi−xi−1) is the Riemann sum over the subinter-

vals which have irrational tags. Now when ti is rational, h(ti) = 1 by the definition

of h and when ti is irrational, h(ti) = 0 by the definition of h. Hence, the summation

becomes ∣∣∣∣∣ ∑
ti=rj

(xi − xi−1)

∣∣∣∣∣.
This summation represents the sum of the lengths of those subintervals which have

rational tags. Now when ti is rational, then δ(ti) gives the value of ε
2j+1 . Hence the

length of the subinterval around this tag ti is less than or equal to 2 ε
2j+1 = ε

2j
since

ti is the midpoint of the interval. Now suppose that the tag ti is the tag for two

consecutive subintervals. If this is the case, then ti must the the right endpoint of one

of the subintervals and the left endpoint of the other subinterval since the subintervals

cannot overlap (except at the endpoints) by the definition of a partition. Since ti is
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an endpoint for both of these subintervals, then each subinterval has length at most
ε

2j+1 . Hence, the sum of the lengths of these two subintervals is less than or equal to

2 ε
2j+1 = ε

2j
. Therefore, in either case, any rational tag ti = rj contributes at most ε

2j

to the Riemann sum. Consequently,

∑
ti=rj

(xi − xi−1) ≤
∑
ti=rj

ε

2j
.

Furthermore, ∑
ti=rj

ε

2j
≤

∞∑
j=1

ε

2j
= ε.

Notice that this summation above is a geometric series with a first term a = ε
2

and

common ratio r = 1
2
. The sum of a geometric series, provided that −1 < r < 1 is

given by a
1−r . In this case, a

1−r = ε/2
1−1/2 = ε/2

1/2
= 2 ε

2
= ε. Hence we have shown that∣∣∣∣∣

n∑
i=1

h(ti)(xi − xi−1)− 0

∣∣∣∣∣ ≤ ε

as desired. Therefore, since we can choose ε arbitrarily, we conclude that Dirichlet’s

function is generalized Riemann integrable and that
∫ 1

0
h(x)dx = 0.
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Chapter 5

Basic Properties of the

Generalized Riemann Integral

In undergraduate calculus classes, students typically encounter many useful re-

sults of the Riemann integral which can be applied to evaluating the integral and

finding solutions to problems. Similar results are also found in the theory of the

generalized Riemann integral, and will be explored in this and the subsequent two

chapters. In this chapter, we will begin by proving the uniqueness of the generalized

Riemann integral. We will then proceed with proofs of the algebra of the generalized

Riemann integral, which includes the constant multiple and linearity theorems. The

aim of this chapter is not to give a comprehensive look into all of the properties of

the generalized Riemann integral. The results presented here should be the most

familiar ones from a calculus course and also prove to be the most useful. The inter-

ested reader is referred to Section 3 of A Modern Theory of Integration [2] for a more

comprehensive look at the basic properties of the generalized Riemann integral.

First, we will look at the uniqueness of the integral. Knowing that a value given

by the generalized Riemann integral is unique is important to both the computation

and the understanding of the integral. If we have a function f defined on [a, b] and

we evaluate the integral over this interval, then the integral of this function on that

particular interval can take no other value. For example, suppose that f(x) = x and
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we wish to compute the integral of this function on [0, 2]. The following theorem and

subsequent proof assures us that this integral cannot take values of say, both 2 and

2.5 or any other value. This result is a necessary starting point for further discussion

of the generalized Riemann integral.

Uniqueness Theorem. If there exists a number M which satisfies the definition of

the generalized Riemann integral, then this number is unique.

Proof. We will do a proof by contradiction and assume that there exists an M1 and

an M2 which both satisfy the definition of the generalized Riemann integral, and

where M1 6= M2. Let ε = 1
3
|M1−M2|. Since M1 satisfies the definition of the gener-

alized Riemann integral, then there exists a gauge δ1(t) such that if Ṗ is a δ1(t)-fine

partition of I, then
∣∣∑n

i=1 f(ti)(xi − xi−1)−M1

∣∣ ≤ ε. Similarly, since M2 satisfies

the definition of the generalized Riemann integral, then there exists a gauge δ2(t)

such that if Ṗ is a δ2(t)-fine partition of I, then
∣∣∑n

i=1 f(ti)(xi − xi−1)−M2

∣∣ ≤ ε.

Now let δ(t)=min{δ1(t), δ2(t)} so that δ(t) is a gauge on I. We can compute the min-

imum of δ1(t) and δ2(t) by using the equation min(δ1(t), δ2(t)) = δ1(t)+δ2(t)−|δ1(t)−δ2(t)|
2

.

Furthermore, let Ṗ be a δ(t)-fine partition of I. Because we let δ(t) equal the mini-

mum of δ1(t) and δ2(t), then we know that the tagged partition Ṗ is both δ1(t)-fine

and δ2(t)-fine. By the Triangle Inequality, we have

|M1−M2| ≤

∣∣∣∣∣M1−
n∑
i=1

f(ti)(xi − xi−1)

∣∣∣∣∣+
∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)−M2

∣∣∣∣∣ ≤ ε+ε < |M1−M2|.

So we have that |M1 −M2| < |M1 −M2|, which is a contradiction, so the theorem

is proved. Q.E.D.

(This proof is based on the proof that Bartle gives in A Modern Theory of Inte-

gration, see [2], pp. 13-14.)

We now will discuss the algebra of the generalized Riemann integral. Perhaps not

surprisingly, the main properties of the generalized Riemann integral are the same

as for the Riemann integral. The proofs which are given here do differ slightly from

those for the Riemann integral, but should be somewhat familiar and rely mainly

on algebraic arguments. The first theorem assures us that the integral of a constant

multiplied by a function on [a, b] is equivalent to the constant multiplied by the
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integral of the function on [a, b].

Constant Multiple Theorem. If f is integrable on I = [a, b] and c ∈ R, then cf

is integrable on I = [a, b] and ∫ b

a

cf = c

∫ b

a

f.

Proof. If c = 0, then the result is trivial since
∫ b
a
cf = c

∫ b
a
f = 0. Therefore, suppose

that c 6= 0. Let M denote the generalized Riemann integral of f . Let ε > 0 be given.

Choose a gauge δ(t) on I = [a, b] such that if the partition Ṗ = {([xi−1, xi], ti) : i =

1, 2, ..., n} is δ(t)-fine, then∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)−M

∣∣∣∣∣ ≤ ε

|c|
.

Using the definition of the generalized Riemann integral, we have∣∣∣∣∣
n∑
i=1

cf(ti)(xi − xi−1)− cM

∣∣∣∣∣ =

∣∣∣∣∣c
n∑
i=1

f(ti)(xi − xi−1)− cM

∣∣∣∣∣
=

∣∣∣∣∣c
(

n∑
i=1

f(ti)(xi − xi−1)−M

)∣∣∣∣∣
= |c|

∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)−M

∣∣∣∣∣
≤ |c| · ε

|c|
= ε.

Thus, cf is generalized Riemann integrable with value cM . Q.E.D.

(This proof is based on the proof that Bartle gives in A Modern Theory of Inte-

gration, see [2], p. 42.)

The next theorem is used quite regularly in calculus and assures us that the

integral of a sum of two functions on [a, b] is equal to the sum of the integrals of each

of the functions on [a, b].

Linearity Theorem. If f and g are integrable on I = [a, b], then f + g is also
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integrable on I = [a, b] and ∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

Proof. Let A denote the generalized Riemann integral of f and let B denote the

generalized Riemann integral of g. Let ε > 0 be given. Choose two gauges δ1(t) on

I = [a, b] and δ2(t) on I = [a, b] such that if the partition Ṗ = {([xi−1, xi], ti) : i =

1, 2, ..., n} is δ1(t)-fine, then∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)− A

∣∣∣∣∣ ≤ 1

2
ε,

and if Ṗ = {([xi−1, xi], ti) : i = 1, 2, ..., n} is δ2(t)-fine, then∣∣∣∣∣
n∑
i=1

g(ti)(xi − xi−1)−B

∣∣∣∣∣ ≤ 1

2
ε.

Now let δ(t) = min{δ1(t), δ2(t)} so that if the partition Ṗ is δ(t)-fine, then it is both

δ1(t)-fine and δ2(t)-fine. Using the definition of the generalized Riemann integral,∣∣∣∣∣
n∑
i=1

(f + g)(ti)(xi − xi−1)− [A+B]

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)− A

+
n∑
i=1

g(ti)(xi − xi−1)−B

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)− A

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=1

g(ti)(xi − xi−1)−B

∣∣∣∣∣
≤ 1

2
ε+

1

2
ε = ε.

Thus, f + g is generalized Riemann integrable with value A+B. Q.E.D.
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(This proof is based on the proof that Bartle gives in A Modern Theory of Inte-

gration, see [2], p. 42.)

From the two theorems above, we now know that αf + βg is integrable on [a, b]

provided that f and g are both integrable on [a, b] and α, β ∈ R. Furthermore,∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g.

This result can be extended to linear combinations with more terms by the use of

induction. The proof of this fact will not be given here, but follows directly from the

proofs of the theorems given above. Now, we will provide an example of the utility

of the two above theorems.

Example. Suppose that f(x) = 6x on [1, 4] and let g(x) be Dirichlet’s function

as studied in Chapter 4. We will now define Dirichlet’s function on [1, 4] instead of

[0, 1], but its integral is still 0 as the same argument from Chapter 4 holds. Suppose

that we wish to find ∫ b

a

(f(x) + 5g(x))dx =

∫ 4

1

(6x+ 5g(x))dx.

Notice that this integral is quite cumbersome to evaluate if the results given above

were not applicable. But since they are, we can rewrite this integral as

3

∫ 4

1

2xdx+ 5

∫ 4

1

g(x)dx.

This integral can be evaluated rather easily as follows: From Chapter 4, we know

that
∫ b
a

2xdx = b2 − a2 and also that the integral of Dirichlet’s function is 0. Hence,

3

∫ 4

1

2xdx+ 5

∫ 4

1

g(x)dx = 3(42 − 12) + 5(0) = 3(15)− 0 = 45.

The next result which will be presented in this chapter is related to integrability

of a function on a subinterval of an interval. The popular result from undergraduate

calculus related to the Riemann integral is given below, but this time with a focus
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on the generalized Riemann integral. Essentially the following theorem states that

if a function is generalized Riemann integrable on an interval I = [a, b], then it is

integrable on both [a, c] and [c, b] where c ∈ (a, b). Furthermore, if a function is

integrable on [a, c] and [c, b], then it is integrable on [a, b] where c ∈ (a, b).

Additivity Theorem. Let f : [a, b] −→ R and let c ∈ (a, b). Then f is generalized

Riemann integrable on [a, b] if and only if its restrictions to [a, c] and [c, b] are both

generalized Riemann integrable. In this case, we have∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof. (⇐) Suppose that we restrict the function f to the interval [a, c]. We will call

this function f1 and this interval I1. Suppose that we then restrict the function f to

the interval [c, b]. We will call this function f2 and this interval I2. Now suppose that

the generalized Riemann integral of f1 on I1 is A1 and that the generalized Riemann

integral of f2 on I2 is A2. Thus, given ε > 0, there exists a gauge δ1 on I1 and a gauge

δ2 on I2 such that if Ṗ1 = {([xi−1, xi], ti) : i = 1, 2, 3, ...,m} is a δ1-fine partition of

I1 and if Ṗ2 = {([xj−1, xj], tj) : j = m+ 1, ..., n} is a δ2-fine partition of I2, then∣∣∣∣∣
m∑
i=1

f1(ti)(xi − xi−1)− A1

∣∣∣∣∣ < 1

2
ε and

∣∣∣∣∣
n∑

j=m+1

f2(tj)(xj − xj−1)− A2

∣∣∣∣∣ < 1

2
ε.

We now define a gauge on the interval I = [a, b] as follows:

δ(t) =


min{δ1(t), 12(c− t)} t ∈ [a, c)

min{δ1(c), δ2(c)} t = c

min{δ2(t), 12(t− c)} t ∈ (c, b].

Let Ṗ be a partition of I = [a, b] which is δ-fine. If this is the case, then the point

c must be a tag of at least one subinterval in Ṗ per the definition of the gauge just

given. Furthermore, we can force c to be the tag of two adjacent subintervals by the
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Right-Left Lemma in Chapter 2, thus making c a partition point of Ṗ . Let Ṗ1 be

the partition of I1 which consists of the partition points Ṗ ∩ I1, and let Ṗ2 be the

partition of I2 consisting of the partition points Ṗ ∩ I2. Hence,

n∑
k=1

f(tk)(xk − xk−1) =
m∑
i=1

f1(ti)(xi − xi−1) +
n∑

j=m+1

f2(tj)(xj − xj−1).

Since the partition Ṗ1 is δ1-fine, and the partition Ṗ2 is δ2-fine, we conclude that∣∣∣∣∣
n∑
k=1

f(tk)(xk − xk−1)− (A1 + A2)

∣∣∣∣∣ ≤
∣∣∣∣∣
m∑
i=1

f1(ti)(xi − xi−1)− A1

∣∣∣∣∣
+

∣∣∣∣∣
n∑

j=m+1

f2(tj)(xj − xj−1)− A2

∣∣∣∣∣
≤ 1

2
ε+

1

2
ε = ε.

Hence, f is integrable on I = [a, b].

(⇒) Conversely, suppose that f is integrable on I = [a, b] and for each ε > 0,

let η be a gauge which satisfies the Cauchy Criterion (see the end of this chapter

for the Cauchy Criterion.) As above, let f1 denote the restriction of f to I1. Let

η1 be the restriction of η to I1, and let Ṗ1 = {([xi−1, xi], ti) : i = 1, 2, 3, ..., n}
and Q̇1 = {([xj−1, xj], t̂j) : j = 1, 2, 3, ...,m} be partitions of I1 which are η1-fine.

We can extend the partition of I1 by adjoining partition points and tags from I2.

Hence, we can extend Ṗ1 and Q̇1 to partitions Ṗ = {([xi−1, xi], ti) : i = 1, 2, 3, ..., q}
and Q̇ = {([xj−1, xj], t̂j) : j = 1, 2, 3, ..., r} of I which are η-fine. Note that this

construction is possible by using the result of Cousin’s Lemma which assures us that

given a gauge δ(t) on an interval, there exists a δ-fine partition of that interval. If

we use the same partition points and tags in I2 for both Ṗ and Q̇, we can see that

n∑
i=1

f1(ti)(xi−xi−1)−
m∑
j=1

f1(t̂j)(xj−xj−1) =

q∑
i=1

f(ti)(xi−xi−1)−
r∑
j=1

f(t̂j)(xj−xj−1).
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Since both Ṗ and Q̇ are both η-fine, we can conclude that∣∣∣∣∣
n∑
i=1

f1(ti)(xi − xi−1)−
m∑
j=1

f1(t̂j)(xj − xj−1)

∣∣∣∣∣ ≤ ε.

Hence, by the Cauchy Criterion, we can see that the restriction of f to f1 on I1 is

integrable on I1. In the same manner as above, we can also show that the restriction

of f to f2 on I2 is integrable on I2. Hence, the equality of the theorem holds from

the given hypotheses. Q.E.D.

(This proof is based on the proof given in A Modern Theory of Integration, see

[2], pp. 44-45.)

We will now present a corollary to this Additivity Theorem which follows easily

from the result above. This corollary will be needed later in Chapter 7 when we

look at the Substitution Theorem related to the generalized Riemann integral. This

corollary assures us that if we know, for example, that f(x) = 2x is integrable on

[0, 10], then f(x) = 2x is also integrable on [3, 7] since [3, 7] ⊆ [0, 10].

Corollary to the Additivity Theorem. If a function f is generalized Riemann

integrable on an interval [a, b] and if [c, d] ⊆ [a, b], then the restriction of f to [c, d]

is integrable.

Proof. Since f is integrable on [a, b] and since c ∈ [a, b], then we know that the

restriction of the function f to [c, b] is integrable by the Additivity Theorem given

above. Now if d ∈ [c, b], we can apply the Additivity Theorem again to see that f is

integrable over the interval [c, d]. Q.E.D.

The final idea which will be presented in this chapter is one which is often en-

countered early on when exploring integration in a calculus class. The result is

presented here as a definition and is a useful tool when computing the integral of

certain functions.

Definition. If a function f is generalized Riemann integrable on an interval [a, b],

and α, β ∈ [a, b], α < β, we define the following:∫ α

β

f = −
∫ β

α

f and

∫ α

α

f = 0.
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We conclude this chapter with an example which illustrates these two definitions

and also the Additivity Theorem. We will use the function f(x) = 2x, as studied in

Chapter 4.

Example. Suppose that we wish to integrate f(x) = 2x over the interval [0, 20].

From the result in Chapter 4, we know that f is generalized Riemann integrable on

any interval [a, b] and hence integrable on [0, 20]. Suppose further that we choose

c = 10 and wish to compute the integral of f over the intervals [0, 10] and [10, 20].

The result given by the additivity theorem assures us that f is integrable on both

[0, 10] and [10, 20] and also that∫ 20

0

2xdx =

∫ 10

0

2xdx+

∫ 20

10

2xdx = (102 − 02) + (202 − 102) = 100 + 300 = 400.

Notice that ∫ 20

0

2xdx = 202 − 02 = 400,

and hence the solutions agree.

Now suppose that we wish to evaluate∫ 2

5

f(x)dx =

∫ 2

5

2xdx and

∫ 3

3

2xdx.

The definition above gives that∫ 2

5

2xdx = −
∫ 5

2

2xdx = −(52 − 22) = −21 and

∫ 3

3

2xdx = 0.

As noted above, the proof for the Additivity Theorem given earlier in this chapter

relies on the Cauchy Criterion. The Cauchy Criterion can essentially be seen as an

alternative definition of the generalized Riemann integral, and can be useful in certain

cases. A formal proof is required to show that the definitions are in fact equivalent,

but will be omitted here for the sake of readability. For a proof, the interested reader

is referred to A Modern Theory of Integration [2], pp. 43-44. The Cauchy Criterion

is given below.
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Cauchy Criterion. A function f : I −→ R is generalized Riemann integrable if

and only if for any ε > 0 there exists a gauge η on I such that if Ṗ = {([xi−1, xi], ti) :

i = 1, 2, 3, ..., n} and Q̇ = {([xj−1, xj], t̂j) : j = 1, 2, 3, ...,m} are any partitions which

are η-fine, then ∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)−
m∑
j=1

f(t̂j)(xj − xj−1)

∣∣∣∣∣ ≤ ε.

In the next chapter, we turn our attention to perhaps one of the most widely used

theorems in undergraduate calculus classes: the Fundamental Theorem of Calculus.

This theorem allows us to easily compute the integral of many functions without

having to use the definition of the integral.
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Chapter 6

The Fundamental Theorem of

Calculus

Chapter 2 showed the issues that arise with the Fundamental Theorem of Calculus

when we are working under the hypotheses of the definition of the Riemann integral.

In the generalized Riemann integral, many of these restrictive hypotheses are removed

and the Fundamental Theorem of Calculus holds in a much stronger sense. In fact,

the proof of the Fundamental Theorem of Calculus based on the generalized Riemann

integral is easier than the proof of the Fundamental Theorem of Calculus based on

the Riemann integral [15]. Before we prove the Fundamental Theorem of Calculus as

related to the generalized Riemann integral, we will first prove one lemma, known as

the Straddle Lemma. Whereas the Mean Value Theorem is a useful tool in proving

the Fundamental Theorem of Calculus related to the Riemann integral [17], the

Straddle Lemma given below will be the tool that we use to prove the Fundamental

Theorem of Calculus in relation to the generalized Riemann integral. This lemma is

directly related to the definition of the derivative. Geometrically speaking, we begin

with a function F defined on a closed interval [a, b] and a point t ∈ [a, b] where F

is differentiable at t. We then choose two points, u, v ∈ [a, b] which “straddle” t

and establish the inequality given below, hence the name “Straddle” Lemma. In an

intuitive sense, the result states that if the points u and v straddle the point t, then
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the slope of the chord between the points (u, F (u)) and (v, F (v)) is close to the slope

of the tangent line at (t, F (t)), see [14].

Straddle Lemma. Let F : [a, b] −→ R be differentiable at a point t ∈ [a, b]. Then

for each ε > 0 there is a δ(t) > 0 such that if u, v ∈ [a, b] satisfy

t− δ(t) ≤ u ≤ t ≤ v ≤ t+ δ(t),

then

|F (v)− F (u)− F ′(t)(v − u)| ≤ ε(v − u).

Proof. Since F is differentiable at t, then given ε > 0 there exists δ(t) > 0 such

that if 0 < |z − t| ≤ δ(t), z ∈ [a, b], then∣∣∣∣∣F (z)− F (t)

z − t
− F ′(t)

∣∣∣∣∣ ≤ ε.

It then follows, after multiplying by |z − t|, that

|F (z)− F (t)− F ′(t)(z − t)| ≤ ε|z − t|

for all z ∈ [a, b] such that |z − t| ≤ δ(t). Now we choose u ≤ t and v ≥ t such

that t − δ(t) ≤ u ≤ t ≤ v ≤ t + δ(t) in order to satisfy the inequality given in the

hypothesis of the lemma. From this it follows that v− t ≥ 0 and t− u ≥ 0. Now we

add and subtract the term F (t)− F ′(t)t, which gives

|F (v)− F (u)− F ′(t)(v − u)|

=
∣∣∣[F (v)− F (t)− F ′(t)(v − t)]− [F (u)− F (t)− F ′(t)(u− t)]

∣∣∣
≤
∣∣∣F (v)− F (t)− F ′(t)(v − t)

∣∣∣+
∣∣∣F (u)− F (t)− F ′(t)(u− t)

∣∣∣
≤ ε(v − t) + ε(t− u) = ε(v − u).

Thus, the conclusion of the lemma is proved. Q.E.D.

36



(This proof is based on the one given in A Modern Theory of Integration, see [2],

pp. 57-58.)

With the important result of the Straddle Lemma at our disposal, we are now

ready to prove the Fundamental Theorem of Calculus. If we take a moment to look

back at the Fundamental Theorem of Calculus as related to the Riemann integral (in

Chapter 2), we stated that the conclusion only holds if the function F ′ is Riemann

integrable. We went on to explain how there are many functions which are not Rie-

mann integrable (Dirichlet’s function being one of them). As a result, the Riemann

integral is lacking in its power to integrate functions [12]. The Fundamental Theorem

of Calculus given below is the one specifically for the generalized Riemann integral.

Notice that the restrictive hypothesis of the function F ′ being Riemann integrable

is removed. Hence, the theorem holds in a much stronger sense [13]. For the proof,

the only tools we will need are the Straddle Lemma given above, the definition of

the derivative, and the Triangle Inequality. The proof is remarkably straightforward

and is easier than the proof for Riemann’s integral.

The Fundamental Theorem of Calculus. If F : [a, b] −→ R is differentiable

on [a, b] such that the derivative of F is f , then f is generalized Riemann integrable

over [a, b] and ∫ b

a

f = F (b)− F (a).

(See [14], p. 646).

Proof. Let ε > 0 be given. For t ∈ [a, b], let δ(t) > 0 be the value guaranteed

by the Straddle Lemma for the given ε
b−a . Suppose that Ṗ = {([xi−1, xi], ti) : i =

1, 2, 3, ..., n} is a δ-fine partition of [a, b]. Since xi−1 and xi straddle the tag ti, then

by the Straddle Lemma,

|F (xi)− F (xi−1)− f(ti)(xi − xi−1)| ≤
ε

b− a
(xi − xi−1).

Now in order for the conclusion of the theorem to hold, we must estimate the quantity∑n
i=1 f(ti)(xi−xi−1) in relation to the quantity F (b)−F (a). To accomplish this, we

will use the expression F (b) − F (a) −
∑n

i=1 f(ti)(xi − xi−1). We will also make use
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of the telescoping sum F (b)− F (a) =
∑n

i=1[F (xi)− F (xi−1)]. From this, we obtain

F (b)− F (a)−
n∑
i=1

f(ti)(xi − xi−1) =
n∑
i=1

[
F (xi)− F (xi−1)− f(ti)(xi − xi−1)

]
.

We can then use the Triangle Inequality to obtain the following:∣∣∣∣∣F (b)− F (a)−
n∑
i=1

f(ti)(xi − xi−1)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

[
F (xi)− F (xi−1)− f(ti)(xi − xi−1)

]∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣F (xi)− F (xi−1)− f(ti)(xi − xi−1)

∣∣∣∣∣
≤

n∑
i=1

ε

b− a
(xi − xi−1) =

ε

b− a
(b− a) = ε.

Notice that the last inequality above was obtained by making use of the result given

by the Straddle Lemma. Since the choice of ε > 0 is arbitrary, we can conclude that

f is generalized Riemann integrable and has value equal to F (b)− F (a). Q.E.D.

(This proof is based on the one given in A Modern Theory of Integration, see [2],

pp. 58-59.)

We will now present another version of the Fundamental Theorem of Calculus

which will be useful for two of the proofs in the next chapter. This version of the

theorem will not be proven here, but its proof is rather similar to the one just

seen for the Fundamental Theorem of Calculus. Furthermore, the following theorem

relies on the idea of a c-primitive. Essentially, a primitive can be thought of as an

antiderivative. The precise definition of a c-primitive is given below.

Definition. Let I = [a, b] and let F, f : I −→ R. We say that F is a c-primitive

of f on I = [a, b] if F is continuous on I = [a, b] and the set C of points in I = [a, b]

where either F ′(x) does not exist or where F ′(x) does not equal f(x) is countable.

Fundamental Theorem of Calculus Version 2. If f : [a, b] −→ R has a c-
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primitive F on [a, b], then f is generalized Riemann integrable and∫ b

a

f = F (b)− F (a).

A Note About Differentiablity. When looking at the Fundamental Theorem of

Calculus and the integrability of a function using the generalized Riemann integral,

the only hypothesis imposed on the function is that it is differentiable on an interval

[a, b]. What do we mean when we say that a function is differentiable? The definition

of the derivative is as follows: Let f be defined on an interval I = [a, b] and let x0 ∈ I.
The derivative of f at x0, denoted by f ′(x0) is given as

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
,

provided that the limit exists or is infinite. If f ′(x0) is finite, then we say that

f is differentiable at x0. If f is differentiable at every point of the set I = [a, b],

then we say that f is differentiable on I = [a, b] (see [16], p. 272.) This notion of

differentiability is the one used above in the Fundamental Theorem of Calculus.

Example 1. Notice that in Chapter 4, we spent considerable time finding the

generalized Riemann integral of f(x) = 2x since we only could rely directly on the

definition of the integral. Now with the Fundamental Theorem of Calculus at our

disposal, evaluating the integral of f(x) = 2x is almost trivial. From Chapter 4, we

know that an antiderivative of f(x) = 2x is F (x) = x2. Hence, by the Fundamental

Theorem of Calculus,
∫ b
a

2xdx = b2 − a2. As such, we can see the usefulness of the

Fundamental Theorem of Calculus, especially in relation to evaluating integrals.

Example 2. For this example, we will present a series of functions which are not

Riemann integrable but which are generalized Riemann integrable. A brief expla-

nation will be given related to their integrability, but the results will not be shown

formally. Some of these functions are ones which might be encountered in a cal-

culus class. Establishing the integrability of these functions relies heavily on the

Fundamental Theorem of Calculus as given in this chapter.
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(a) First, consider the function

f(x) =

 1√
x

0 < x ≤ 1

0 x = 0.

This function is unbounded on [0, 1] and hence is not Riemann integrable. Now we

see that F (x) = 2
√
x for 0 ≤ x ≤ 1 and hence F (x) is continuous on [0, 1]. Now

F ′(x) = 1√
x

for 0 < x ≤ 1; however, F ′(0) does not exist. Therefore, F ′(x) = f(x)

except when x = 0. On account of this and because f is not Riemann integrable,

the Fundamental Theorem of Calculus is not applicable. However, given ε > 0 and

t ∈ (0, 1], we can define a gauge δ(t) > 0 such that the conclusion of the Straddle

Lemma (as given above) holds and such that δ(0) = ε2

4
. This gauge allows us to

handle the unboundedness of the function. As a result, the Fundamental Theorem

of Calculus Version 2 for the generalized Riemann integral as given above will hold

and we find that the value of this integral is 2. For further explanation, see [2], pp.

59-60.

(b) The second function we will consider is

g(x) =

x
∣∣ cos(π

x
)
∣∣ 0 < x ≤ 1

0 x = 0.

This function is continuous on [0, 1]; however, it is not differentiable at every point

in [0, 1] on account of the absolute value. As a result, g is not Riemann integrable.

But the set of points where g is not differentiable is countable. Hence g(x) is the c-

primitive for the function g′(x) and thus g′(x) will be generalized Riemann integrable

and the Fundamental Theorem of Calculus Version 2 for the generalized Riemann

integral will hold as explained previously in this chapter. For further discussion, see

[2], pp. 69-70.
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(c) The third function which we will consider is

h(x) =

x2 sin( 1
x2

) 0 < x ≤ 1

0 x = 0.

The derivative h′(x) of this function is defined at all points in [0, 1]; however this

derivative is unbounded and hence is not Riemann integrable on [0, 1]. However, since

the derivative exists at every point in [0, 1], this derivative will be integrable using

the generalized Riemann integral, and using the Fundamental Theorem of Calculus

given above, we can find that
∫ 1

0
h′(x)dx = sin 1. For further explanation, see [7].

(d) The last example which we will consider in this chapter is related to Dirichlet’s

function. Consider

q(x) =


q x = p

q
, p
q
∈ [0, 1], p

q
6= 0, p

q
in lowest terms

0 x is irrational in [0, 1]

0 x = 0.

This function is not continuous at any point of [0, 1] and is also unbounded on any

subinterval of [0, 1]. Therefore, q is not Riemann integrable. However, we can show

that this function is generalized Riemann integrable. First, we enumerate the nonzero

rationals in [0, 1] as {rk = pk
qk

: k ∈ N}. Then, given ε > 0, we can define the gauge

δ(ti) =

ε/qk2k+1 ti = rk

1 ti = 0 or ti is irrational.

We then proceed with a similar argument to what was used to integrate Dirichlet’s

function in Example 3 of Chapter 4. For further discussion, see [2], pp. 29-30.

In a typical undergraduate calculus class, there are two different parts of the

Fundamental Theorem of Calculus which are typically presented: the one given here

and the part related to the differentiation of indefinite integrals. We will not present

this second part of the Fundamental Theorem as it is beyond the scope of this paper.
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Although this second part is not given, much can be accomplished with just the first

part of the theorem as presented here.
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Chapter 7

Applications from Calculus

In this chapter, we will finish our discussion of useful results seen in calculus

courses as they are applied to the generalized Riemann integral. We take a look at

proofs of integration by parts and the substitution theorems. Upon completion of

this chapter, all of the results of the Riemann integral seen in elementary calculus

textbooks will have been presented, but with the focus on the generalized Riemann

integral.

We will now look at integration by parts, which is a useful result related to

evaluating integrals. Two different versions of integration by parts will be given here.

The first is rather straightforward, while the second one requires slightly different

hypotheses which leads to a different proof.

Integration by Parts Theorem I. Let two functions, F and G, be differentiable

on I = [a, b]. Then F ′G is generalized Riemann integrable if and only if FG′ is

generalized Riemann integrable. If this be the case, then∫ b

a

F ′G = FG
∣∣∣b
a
−
∫ b

a

FG′.

Proof. Since F and G are both differentiable on I = [a, b], the Product Rule

from calculus asserts that (FG)′ exists on I = [a, b] and that (FG)′ = FG′ + F ′G.

Also since F and G are both differentiable on I = [a, b], the Fundamental The-
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orem of Calculus given in the previous chapter holds and implies that (FG)′ is

generalized Riemann integrable on I = [a, b]. Since (FG)′ is generalized Riemann

integrable, it follows from the Product Rule given above that F ′G is generalized

Riemann integrable if and only if FG′ is also generalized Riemann integrable. From

the equation (FG)′ = FG′ + F ′G, we can subtract FG′ from both sides to obtain

(FG)′ − FG′ = F ′G. Now we integrate both sides to obtain

FG
∣∣∣b
a
−
∫ b

a

FG′ =

∫ b

a

F ′G

and the theorem is proved. Q.E.D.

The second theorem related to integration by parts is only slightly more com-

plicated and relies on the concept of the c-primitive as introduced in the previous

chapter. Furthermore, the second version of the Fundamental Theorem of Calculus

will be utilized.

Integration by Parts Theorem II. If two functions f and g are generalized Rie-

mann integrable and have c-primitives F and G on an interval I = [a, b], then

Fg + fG has a c-primitive FG which is generalized Riemann integrable, and∫ b

a

(Fg + fG) = FG
∣∣∣b
a
.

Furthermore, Fg is generalized Riemann integrable if and only if fG is generalized

Riemann integrable, in which case∫ b

a

Fg = FG
∣∣∣b
a
−
∫ b

a

fG.

Proof. Since f and g have c-primitives on I = [a, b], by the definition above, we

know that F and G are continuous on I = [a, b] and that there exist countable sets

Cf and Cg of I = [a, b] such that F ′(x) = f(x) for x ∈ I − Cf and G′(x) = g(x)

for x ∈ I − Cg. Let C = Cf ∪ Cg, so that C is a countable set (the union of two
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countable sets is countable.) The Product Rule from calculus implies that

(FG)′(x) = F (x)G′(x) + F ′(x)G(x) = F (x)g(x) + f(x)G(x)

for x ∈ I − C so that FG is a c-primitive for Fg + fG. The Fundamental Theorem

of Calculus Version 2 given in the previous chapter asserts that Fg + fG = (FG)′

is generalized Riemann integrable and has integral FG
∣∣∣b
a
. Thus, the first part of the

theorem is proved. Also, from the linearity theorem given in Chapter 5, we have

that Fg is generalized Riemann integrable if and only if fG is generalized Riemann

integrable. Hence, we can write the first equation given in the theorem as∫ b

a

Fg +

∫ b

a

fG = FG
∣∣∣b
a
.

Subtracting
∫ b
a
fG from both sides gives that

∫ b

a

Fg = FG
∣∣∣b
a
−
∫ b

a

fG

and the second part of the theorem is proved. Q.E.D.

(Both of the preceding proofs are based upon the ones given in A Modern Theory

of Integration, see [2], pp. 67, 187-188.)

We will now turn our attention to the substitution theorem which is a common

tool in undergraduate calculus classes. In fact, there are many different versions

of the substitution theorem which are useful, but our attention in this chapter will

be focused upon the one most commonly utilized when studying integration in a

calculus class. We will begin with an example to set the stage for the substitution

theorem.

Example. Suppose that we wish to evaluate the following integral∫ 5

0

3x2dx

2 + x3
.

Notice that this integral cannot be evaluated directly using an elementary anti-
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derivative, but we can still evaluate it rather easily. First, let u = 2 + x3, and then

if we take the derivative of u with respect to x, we have that du
dx

= 3x2 and hence

du = 3x2dx. Then our integral becomes∫ 127

2

du

u
.

Using the Fundamental Theorem of Calculus and the antiderivative, we have that∫ 5

0

3x2dx

2 + x3
=

∫ 127

2

du

u
= ln|u|

∣∣∣127
2

= ln(127)− ln(2) = ln(63.5).

Utilizing this example, the substitution theorem takes the general form∫ b

a

f(g(x))· g′(x)dx =

∫ g(b)

g(a)

f(u)du.

This theorem will now be formalized, and a proof will be given. Note that both

the theorem and proof rely on the concept of the c-primitive which was introduced

previously in this chapter.

Substitution Theorem. Let I = [a, b] and J = [c, d] and suppose that:

(i) f : J −→ R has a c-primitive F on J ,

(ii) g : I −→ R has a c-primitive G on I where G(I) ⊆ J ,

(iii) G is a countable-to-one mapping of I into J .

Then (f ◦ G)· g is generalized Riemann integrable and f is generalized Riemann

integrable. Moreover, ∫ b

a

(f ◦G)· g =
(
F ◦G

)∣∣∣b
a

=

∫ G(b)

G(a)

f.

Proof. By hypothesis (i) and the definition of c-primitive, F is continuous on J

and there exists a countable set C ⊂ J such that F ′(u) = f(u) for all u ∈ J − C.
By hypothesis (ii) and the definition of c-primitive, G is continuous on I and there

exists a countable set D ⊂ I such that G′(x) = g(x) for all x ∈ I − D. Therefore
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F ◦G is continuous on I since the composition of continuous functions is continuous.

Hypothesis (iii) implies that G−1(C) is a countable set in I, so E = D ∪ G−1(C) is

a countable set in I. The Chain Rule implies that

(F ◦G)′(x) = F ′(G(x))·G′(x) = (f ◦G)(x)· g(x)

for all x ∈ I − E. Hence, F ◦ G is a c-primitive of (f ◦ G)· g, such that (f ◦ G)· g
is generalized Riemann integrable on I by the Fundamental Theorem of Calculus

Version 2 given in the previous chapter and∫ b

a

(f ◦G)· g = (F ◦G)
∣∣∣b
a

= F (G(b))− F (G(a)).

From hypothesis (i), we know that f is generalized Riemann integrable on J by the

Fundamental Theorem of Calculus Version 2. From hypothesis (ii), we know that

G(I) is a closed interval in J . The Corollary to the Additivity Theorem (see Chapter

5) implies that f is integrable on G(I) and also on the closed interval with endpoints

G(a), G(b).

If G(a) ≤ G(b), then the Fundamental Theorem of Calculus Version 2 applied to

the interval [G(a), G(b)] implies that∫ G(b)

G(a)

f = F
∣∣∣G(b)

G(a)
= F (G(b))− F (G(a)).

If G(b) < G(a), then we apply the Fundamental Theorem of Calculus Version 2 to

the interval [G(b), G(a)] to obtain∫ G(b)

G(a)

f = −
∫ G(a)

G(b)

f = −F
∣∣∣G(a)

G(b)
= F (G(b))− F (G(a)).

Hence the conclusion of the theorem holds. Q.E.D.

(This proof is based on the one given in A Modern Theory of Integration, see [2],

pp. 210-211.)

The last major idea which will be explored in this paper is related to the incor-
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poration of this new definition of the integral into existing calculus curricula. This is

no easy task and many considerations must be made before a change can take place.

The next chapter will explore these considerations and will give tips to instructors

in relation to the use of the generalized Riemann integral in calculus classes.
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Chapter 8

A Guide for Instructors

The aim of this chapter is to explain how the generalized Riemann integral can

fit into a calculus or analysis curriculum. Although the goal of the entire paper

is to present a theory which can be understood by both students and instructors

alike, this particular section of the paper will explain the curriculum of presenting

the integral and how it can satisfy different learning objectives. Many authors who

have presented the generalized Riemann integral have suggested that the Riemann

integral should be disposed of altogether and replaced by the generalized Riemann

integral. However, since the definitions of both integrals are so similar, it would most

likely be best to present the Riemann integral first and then explain how it can be

generalized. Indeed, many topics in mathematics proceed in this manner. Logically,

a solid introduction to the traditional Riemann integral can easily flow into the basics

related to the generalized Riemann integral. The hope is that students will come

away with a better understanding of the theory of integration as a whole, both at a

specific and at a general level.

For those instructors who are teaching an elementary calculus course either at the

high school or the college level, the generalized Riemann integral can be placed in the

sequence directly after the Riemann integral is taught. However, the way in which

the definition of the Riemann integral is taught differs from author to author. Many

calculus textbook present the limit definition of the Riemann integral as follows: Let
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f be a function which is defined on a closed interval [a, b]. If

lim
||P ||→0

n∑
i=1

f(x̄i)∆xi

exists, then we say that f is integrable on [a, b] and that this limit is equal to the

definite integral of f from a to b written as∫ b

a

f(x)dx.

(This definition is taken from Calculus, see [17], p. 226.) In this definition, P

represents the partition of the interval [a, b], and we refer to ||P || as the norm or

mesh of the partition. Now ||P || is the length of the longest subinterval in the

partition P. Furthermore, ∆xi is the length of the ith subinterval in the partition P.

Lastly, x̄i is called a sample point (or tag as we refer to it) in the interval [xi−1, xi].

Hence, in this definition, we are taking the sum of the areas of the rectangles under

a curve where the height of the rectangle is given by f(x̄i) and the length of the

rectangle is given by xi − xi−1. We then evaluate the limit as the length of the

longest subinterval in P approaches 0. If this limit exists, we say that this limit is

equal to the definite integral of f on [a, b].

This definition as given here is equivalent to the definition of the Riemann integral

as presented in Chapter 2, but there are notational differences which might hinder

a proper segue into the generalized Riemann integral. First, we prefer to write the

definition using the ε-δ definition of the limit, rather than using the explicit limit

notation. By introducing the Riemann integral using the ε-δ definition, students

will not be burdened by having to learn a new notation as instruction progresses.

Students are typically introduced to the ε-δ definition of the limit early on in a

calculus course, so this should pose little difficulty. In fact, this is a good review of

limits and will allow the students to see a direct application of the limit definition.

Also, we can replace x̄i with ti, which are the tags in the subintervals of the partition.

Lastly, we can denote ∆xi as (xi − xi−1), which is just the length of one of the
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Figure 8.1: Partitioning an interval when using the Riemann integral. Note that we
use x̄i (or ti) instead of ξk to represent the tags in a subinterval [10].

subintervals in the partition. Upon implementing these notational changes, we then

have a definition of the Riemann integral which is the same, notationally, as the one

given above in Chapter 2. It is recommended that this definition of the Riemann

integral be presented to the students, rather than the one commonly encountered in

calculus textbooks. Furthermore, Chapter 2 of this paper provides a simple example

of how an interval can be partitioned, which is a useful instructional tool that can

be incorporated in class, especially when the Riemann integral is first introduced. A

graph, such as the one shown above in Figure 8.1, can also be used when explaining

interval partitioning.

Many students upon encountering the definition of the integral for the first time

are unaware of the technicalities which are present. Hence, instructors should spend

the time to acquaint the students with the ε-δ definition and the process of computing

an integral. Examples 1 and 2 from Chapter 4 can be used as examples of integral

computation, or any other easily integrable function can also be used. If these issues

are resolved early on, then the students will be better able to access the results of

the generalized Riemann integral.

51



As we continue past Chapter 2 of this paper, there is an increased emphasis on

theorems and proofs. We now discuss how these results may be used in calculus

curricula. The proof of Cousin’s Lemma in Chapter 3 is relatively straightforward

and could be introduced to any student of mathematics who understands bisection

of an interval. In fact, this proof lends itself well to a diagram and can be a good

introduction to proof by contradiction. While many of the other proofs in this paper

rely on subtle arguments that may be beyond the scope of some students, the proof of

Cousin’s Lemma is relatively elementary and is a good instructional tool for teachers

of mathematics.

During instruction, and especially in mathematics instruction, examples are im-

portant tools that teachers can use in order to expose students to bigger-picture and

more general results. Chapter 4 will be useful for these purposes since it presents

several examples related to the computation of generalized Riemann integrals. These

examples can become quite tedious and cumbersome, but rely mainly on inequalities

and algebraic arguments. Also, the first two of these examples can be computed

using the traditional Riemann integral and thus can provide a good segue into the

generalized Riemann integral. There are also examples spread throughout the other

chapters which are continuations of examples first introduced in Chapter 4. The

hope is that by returning to these same examples the readers will better understand

how the different parts of the theory fit together and how the theorems introduced

have a useful and practical application. These examples will prove to be valuable to

mathematics students.

Almost all of the theorems given throughout the paper are relatively easy to

understand, and it is recommended that all of them be introduced to the students.

Probably the most advanced result is the substitution theorem which is given at the

end of Chapter 7. Some of the assumptions rely on c-primitives and countable-to-

one mappings; ideas which will probably be foreign to most calculus and analysis

students. Hence, this theorem and subsequent proof may be omitted, and more

emphasis can be placed on the other results. While examples are not given for all of

the theorems, instructors familiar with the results based on Riemann’s integral can

incorporate examples into their instruction. These examples can be found in any
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calculus textbook, such as [17].

Not all of the proofs presented here are suitable for undergraduate calculus classes.

While some rely on basic algebra, others contain subtle arguments which might be

better deferred until more instruction has been given. A simple, yet instructive proof

that can be introduced to students is the proof of the constant multiple theorem

as given in Chapter 5. The proof relies on a ε-δ argument and simple algebraic

manipulation which students should be able to grasp. In relation to the nature of

content in mathematics, many undergraduate calculus classes are mainly focused on

calculation, rather than on theory and proofs. Most functions encountered in these

courses are Riemann integrable and hence would be computationally identical if we

used the generalized Riemann integral instead. However, some instructors may wish

to introduce functions which are not Riemann integrable and explain the generalized

Riemann integral. In these cases, the results of this paper can be useful.

For those who are instructors of undergraduate analysis courses, the generalized

Riemann integral would be recommended material to present, especially when look-

ing at pathological functions which are not Riemann integrable. Dirichlet’s Function,

which is presented in Chapter 4, would be a good example to show to the students.

Not only will it introduce them to a pathological function which is not Riemann

integrable, but it will also show them the power of the generalized Riemann integral.

Most of the proofs are all accessible to the students, with the possible exception of

the proof of the substitution theorem in Chapter 7. Most of the proofs will give

the students good practice in writing ε-δ arguments, a concept repeatedly seen in

analysis. The proof of the Straddle Lemma and even the Fundamental Theorem of

Calculus from Chapter 6 could be left as exercises for the students. Perhaps the

proof of the linearity theorem from Chapter 5 could also be left as an exercise, pro-

vided that the students understand the basic structure of the proof of the constant

multiple theorem. The following outlines provide a possible course sequence, with

regards to calculus and analysis. The items listed are the recommended ideas to

present to the students, and instructors are encouraged to use their own discretion

when developing their curricula.
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Calculus:

• Chapters 1-3.

• Chapter 4. Focus on Example 3 and its explanation. For Examples 1 and 2,

computation can be done using solely the Riemann integral.

• Chapter 5. Present all theorems, definitions, and examples. Proofs of the

constant multiple theorem and linearity theorem can be incorporated. Other

proofs can be omitted.

• Chapter 6. The straddle lemma, the proofs, and the note about differentia-

bility can be omitted.

• Chapter 7. The substitution theorem and all proofs can be omitted. This

chapter provides a good review of integration by parts.

Analysis:

• Chapters 1-3.

• Chapter 4. Focus on Example 3 and its explanation. For Examples 1 and 2,

computation can be done using solely the Riemann integral.

• Chapter 5. Proof of the additivity theorem can be omitted.

• Chapter 6.

• Chapter 7. Proof of the substitution theorem can be omitted. This is a good

review of substitution and integration by parts.
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Chapter 9

Concluding Remarks

The material which has been presented in this paper is but a brief overview of the

main ideas related to the generalized Riemann integral. This material should suffice

for anyone who is interested in a new theory of the integral, but who does not wish

to read a long exposition of all of the properties. This material also suffices for use in

undergraduate calculus and analysis courses where a fresh look at integration might

be useful and needed. For anyone interested in pursuing the generalized Riemann

integral more in-depth, the books and articles (specifically [2], [9], [11], and [13]) in

the references section at the end of this paper give a fairly comprehensive treatment

of most aspects of the theory. The main ideas have been presented here in this paper

as an introduction, but there is much more that can be learned from further study.

One of the ideas which has not been presented in this paper which is tradition-

ally introduced in undergraduate calculus courses is the concept of the indefinite

integral. Essentially, the indefinite integral is of the form
∫
f(x)dx and hence does

not contain upper or lower limits. This type of integration is concerned with finding

an antiderivative, rather than computing the area under a function on an interval

[a, b], which we have focused on. The reason the indefinite integral is absent here is

because it relies on the development of a theory of primitives (antiderivatives) before

we can use the definition of the generalized Riemann integral. As such, the indefinite

integral is a more complex idea which is beyond the scope of this paper.

Later on in calculus courses, students encounter improper integrals. One such
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type of improper integral concerns functions defined on infinite intervals, rendering

infinite limits of integration. Riemann’s definition is often extended and improper

integrals can be computed using the following procedure:∫ ∞
a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx and

∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a

f(x)dx.

The generalized Riemann integral is able to handle these improper integrals without

a change or extension to the definition. First, we must present a definition and then

we will proceed with a discussion of the results related to this definition.

Definition. The extended real number system is the set R, where R = R ∪
{−∞,∞} consisting of all of the real numbers with −∞ and∞ adjoined. We do not

consider −∞ and ∞ to be real numbers, however given a function f , we will define

f(∞) = 0 and f(−∞) = 0.

In using this extended real number system, we can replace the interval [a, b] with

the interval [a,∞] in the definition of the generalized Riemann integral in Chapter

3, and the definition will still be valid. Most of the proofs given in this paper require

slight modification when dealing with intervals of the type [a,∞], and interested

readers are referred to [2], pp.263-264, to see the details of these modifications.

The hope is that students and instructors alike benefit from a highly powerful yet

relatively simple definition of the integral as presented here. Although the popularity

of this new integral pales in comparison to other integral definitions, perhaps the

future will shed more light on the generalized Riemann integral.
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