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ABSTRACT 

Adequate rebar-concrete bonding is crucial to ensure the reliable performance of reinforced 

concrete (RC) structures. Many factors (such as the concrete properties, concrete cover 

depth, transverse reinforcement, and the presence of corrosion) affect the bond behavior, 

and consequently the structural performance. This bond behavior is typically described by 

a bond stress-slip relationship, where there are two critical quantities: bond strength  ̶  the 

maximum shear stress that bond can withstand, and peak slip  ̶  the slippage at the interface 

when the bond strength is reached. It is understood that the bond deteriorates when 

corrosion is present and behaves differently under two distinct bond failure modes (i.e., 

splitting and pull-out). While many prior studies have focused on the influence of the 

aforementioned factors on the bond strength, the impact of the failure mode coupled with 

corrosion on the bond stress-slip relationship and structural performance have not been 

thoroughly investigated. This study is aimed to address this issue. 

In this study, first a probabilistic bond failure mode prediction model that considers 

various influencing factors including loading type and corrosion is developed in this study. 

This study uses the bond testing results of 132 beam-end specimens subjected to monotonic 

and cyclic loading and adopts classification methods to develop the prediction model, 

which is then used to evaluate the impact of bond behavior on the reliability of a RC beam 

with a lap splice. Then, multivariate nonlinear regression with all-possible subset model 
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selection and symbolic multi-gene regression are adopted for probabilistic model 

development for bond strength and peak slip under the two bond failure modes considering 

corrosion. In particular, a comprehensive bond dataset collected from bond tests on the 

beam and beam-end specimens in the literature and from the experimental testing 

conducted in this study, and a criterion to specify the bond failure mode is also proposed.   

Next, incorporating bond in the structural analysis is investigated. Since in reality, 

perfect bonding does not exist, especially in beam and column or column and footing 

connections, reinforcement slip occurs as a result of imperfect bonding. Reinforcement slip 

in the footing of a RC column can significantly influence the lateral displacement of the 

column, a critical structural response under lateral loads such as seismic loading. Many 

past researchers studied and developed models to capture the anchorage slip of rebar; 

however, a model that can reflect the actual bond-slip relationship (especially in the 

presence of corrosion) and yet be simple-to-use for structural analysis is not well 

developed. In this study, a new simple bar stress-slip macromodel is developed to predict 

reinforcement anchorage slip given a rebar stress. The proposed rebar anchorage slip model 

is derived by implementing a macromodel solution based on a simple bond stress 

distribution function that captures the bond stress distribution numerically obtained from a 

real bond-slip relationship. Available experimental bond stress-slip data collected from 

literature are used to optimize the model parameter in the proposed bond stress distribution 

function, which reflects the impact of the structural parameters on the rebar slippage such 

as concrete strength and corrosion level. The proposed rebar slip model is then incorporated 

into a fiber beam-column model for numerical analysis, and is further validated by 
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comparing flexural behavior of several RC columns (with and without corrosion) based on 

the numerical model with the experimental data. The results demonstrate the importance 

of incorporating rebar slippage and corrosion effect on bond. Using this fiber beam-column 

model, seismic performance of an example RC bridge column is evaluated, and one can 

conclude the rebar slip plays a critical role in the seismic evaluation. As the proposed rebar 

slip macromodel provides simple formulation and it is explicitly expressed with a model 

parameter that can be updated easily to incorporate new information, it is practical for 

application in the structural analysis.  
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CHAPTER I 

INTRODUCTION 

1.1. Research goal and objectives 

Civil infrastructure, which includes buildings, transportation network systems, 

energy systems, and water systems, is a critical functional component of any modern 

society. The American Society of Civil Engineers (Herrmann, 2015) report card indicates 

that our infrastructure is failing and that it would take an estimated $3.6 trillion to upgrade 

the existing aging infrastructure (Herrmann, 2015). Although aging itself is not a structural 

failure mechanism, it decreases the robustness and sustainability of the infrastructure 

against natural or man-made hazards. However, in engineering practice, the typical design 

of reinforced concrete (RC) structures does not consider aging deterioration and in the 

quantitative performance evaluation of aging RC structures subjected to extreme hazards, 

the deterioration in bond behavior at rebar-concrete interface is normally 

ignored/disregarded. This is in large part because i) there remains a significant knowledge 

gap on the effects of corrosion on bond behavior, particularly for cyclic behavior; and ii) 

there remains a lack of necessary tools/softwares for non-linear time history analysis 

incorporating a bond stress-slip constitutive relationship that considers corrosion effects. 

The goal of the proposed research is to advance and facilitate the implementation 

of the quantitative tools available for risk assessment and management of aging civil 
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infrastructure particularly when considering resilience and sustainability against 

extreme hazards. To address the aforementioned shortcomings in the quantitative risk 

management of aging reinforced concrete structures subjected to extreme hazards in terms 

of knowledge and implementation, one needs to fill the knowledge gap regarding the 

deterioration in bond behavior using a novel probabilistic approach, and to facilitate the 

implementation of the new knowledge obtained in the first objective into the structural 

design practice by enhancing and augmenting the available standards and into the structural 

numerical modeling under extreme hazards for the benefit of the research community. 

Accordingly, three objectives are proposed. Objective 1: to obtain bond behavior under 

various corrosion levels; Objective 2: to probabilistically model bond failure mode and 

bond strength and conduct structural analysis with the bond deterioration; and Objective 3: 

to probabilistically characterize bond behavior and implement the bond deterioration into 

numerical analysis. 

To achieve the stated objectives, three tasks are developed. Task 1: Beam 

specimens based on all possible influence factors will be designed and subjected to various 

corrosion levels for bond tests under monotonic and cyclic loading, which will provide a 

more complete understanding of corrosion mechanism on RC structures. Task 2: The bond 

failure mode and bond strength are then probabilistically predicted and implemented. In 

particular, probabilistic models are developed for the prediction of the bond failure mode 

and the bond strength (Task 2-1). Then a reliability-based life-cycle analysis is performed 

to RC beams considering bond behavior (Task 2-2). Task 3: The bond behavior obtained 

from Task 1 is probabilistically characterized and implemented. In this task, the bond 
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stress-slip constitutive law under cyclic loading is developed first (Task 3-1) and 

subsequently, the developed constitutive law will be implemented into the finite element 

modeling software OpenSees, providing a numerical simulation tool with the incorporation 

of corrosion effect for more accurate and realistic analysis of aging structures (Task 3-2), 

and finally the corrosion impact on reliability and fragility estimation of RC structures will 

be investigated (Task 3-3). 

1.2. Background and motivations 

The dangers are posed by aging infrastructure to our nation’s economic health are 

as great as those posed by the current financial crisis (Betti, 2010). Safety evaluation or 

prediction of critical infrastructure should be based on rigorous and quantitative models 

that can provide reliable measures of the remaining capacity and the reliability of the asset 

that accounts for deterioration due to aging. In particular, appropriate quantification of 

large uncertainties becomes crucial when assessing infrastructure’s environmental, social, 

economic and cost-benefit impacts. Stochastic modeling of the load and the capacity of 

infrastructure (including probabilistic aging models) is required. 

1.3.1. Corrosion effect 

Corrosion is a leading factor in the deterioration of RC infrastructure, and 

prevention and remediation of corrosion is costly. As one example, the annual direct cost 

of corrosion for highway bridges is estimated to be $13.6 billion. Corrosion of the steel 

reinforcement embedded in concrete is an electrochemical process, where the oxidation of 
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iron (rust) forms on the surface of the rebar, causing cracking near the rebar-concrete 

interface. Such cracking can become extensive, with rust accumulation that can be up to 

six times the original volume of the rebar (Liu & Weyers, 1999; Mehr et al., n.d.), and can 

cause the concrete to spall from the rebar. Corrosion can be particularly severe in areas 

with high humidity (e.g., close to the sea) or in the presence of saline water. As corrosion 

initiates cracking and spalling of the concrete cover and affects material properties and 

bond behavior between concrete and rebar, it could reduce structural stiffness and structural 

load carrying capacity and even change the ductile failure mode that the design intends to 

achieve to a brittle failure mode, increasing the risk of a catastrophic failure of a structure 

that occurs without warning (Al-Sulaimani et al., 1990; Bilcik & Holly, 2013; A. Castel et 

al., 2000; C. Fang et al., 2004). Furthermore, corrosion can be even more problematic when 

the corroded structure is subjected to cyclic loading (such as seismic loading). 

Experimental studies have been shown that under cyclic loads, the energy dissipation 

capacity and ductility of the structure decrease with the increase of the corrosion level (Di 

Carlo et al., 2017; A. Guo et al., 2015; Ma et al., 2012; Ou et al., 2012). 

To quantify the effect of corrosion, empirical models are typically used that are 

expressed in terms of a damage rate and an elapsed time since corrosion initiation. These 

empirical models are not mechanics-based and are heavily reliant on experimental data 

(Biondini et al., 2006; Corr et al., 2001). On the other hand, probabilistic corrosion models 

are developed from mechanics-based analysis combined with model assessment in which 

model parameters are calibrated empirically using measured data. Although not completely 

random in nature, the resulting probabilistic corrosion models are more reliable than the 
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empirical ones and can capture the dominant uncertainties within a certain range for a given 

application. In addition, because deterioration is stochastic in nature, using the probabilistic 

approach is more appropriate for capturing all the relevant uncertainties. 

1.3. Local bond stress-slip relationship 

Adequate bonding between rebar and concrete is the key to ensuring the reliable 

performance of RC structures. Bond behavior has been treated as a material property, and 

it is found empirically that many factors affect bond, including concrete cover, bar spacing, 

bar size, transverse reinforcement, bar geometry, concrete properties, steel stress and yield 

strength, bar surface condition, bar casting position, development and splice length, 

distance between spliced bars, and concrete consolidation  (Bond, 2003). To accurately 

evaluate structural performance, the bond constitutive law including monotonic and cyclic 

behavior should be developed. In particular, for structures under dynamic loading (such as 

seismic excitations), the bond cyclic behavior becomes essential for determining the 

absorbed hysteretic energy and fatigue damage (degradation in stiffness, strength, and 

pinching) as well as ductility capacity. 

In studying bond behavior, the majority of research has focused on developing the 

constitutive relation of bond stress-slip under monotonic loading. The general bond 

behavior is illustrated in Figure 1-1. For design and analysis purposes, analytical models 

are developed to describe such behavior. Back in 1957, Rehm (Rehm, 1957) developed the 

first bond law under monotonic loading using nonlinear regression. Later, Muguruma and 

Morita (MUGURUMA & MORITA, 1967) developed a model utilizing an exponential 
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function. Nilson (Tong et al., 2007) and Mirza and Houde (Mirza & Houde, 1978) fitted 

their experimental data using a high degree of polynomial regression. Other complicated 

mathematical expressions were subsequently developed (e.g., (Sung-nam Hong, 2008; 

Sungnam Hong & Park, 2012; Ikki & Kiyomiya, 1996; Shima et al., 1987b; Yang & Chen, 

1988)). Yet, bilinear models are well accepted due to their simplicity (e.g., three-segment 

model by Nilson (Nilson, 1972), five-segment model by Guo and Shi (Z.-H. Guo & Shi, 

2003), and a six-segment model by Tassios (Tassios, 1979). The CEB-FIB model (fib, 

2013) is one of the most popular models, and it considers pullout and splitting failure 

modes. However, in the CEB-FIB model, the transition from an unconfined condition to a 

fully confined condition is not clear at all. 

 

 

 

Figure 1.1 Illustration of general bond behavior under monotonic loading 

While cyclic bond behavior can be critical, very few models have been developed 

to characterize it. One of the most accepted hysteretic models is the one developed by 

Eligehausen et al. (Eligehausen et al., 1982) based on pullout tests under monotonic and 

cyclic loadings, and it uses the dissipated energy from each cycle to determine the reduced 
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monotonic envelope. However, pullout specimens are the least realistic, when compared 

with beam-end or beam specimen in terms of studying bond behavior, as the stress field 

within the specimen matches few cases in actual construction (ACI, 2003). 

1.4. Bond deterioration 

Since a bond provides the load path between the concrete and rebar, deterioration 

on the bond could significantly impact the integrity of RC structures. Most of studies on 

bond deterioration, however, have focused solely on bond strength. In this regard, 

researchers predict corroded bond strength by multiplying an empirical reduction factor by 

the bond strength of intact rebar, and the reduction factor is usually evaluated based on a 

regression analysis using the experimental results of corroded specimens (Bhargava et al., 

2007; Chung et al., 2004; Maaddawy & Topper, 2005; Jesus Rodriguez et al., 1994). The 

main shortcoming of such models is that the intact bond strength needs to be estimated 

first, whereas the model error in estimating the intact bond strength should also be 

considered. Instead of assessing the bond deterioration through intact bond strength, 

probabilistic predictive model of intact and corroded average bond strength as a function 

of the corrosion level and parameters that influence bond strength (such as concrete 

compressive strength, stirrups, development length, etc.) is developed based on a 

comprehensive database collected from the literature. This model considers uncertainties 

in structural properties, statistical uncertainties, and model error. 



 

23 

 

1.4.1. Deterioration on monotonic bond behavior 

Numerous studies have investigated the corrosion effect on bond experimentally 

under monotonic loading. Currently, there are two typical ways to consider corrosion on 

the bond behavior by assessing the effect on bond strength only (e.g., (Maaddawy & 

Topper, 2005)) or by evaluating bond strength and bond stiffness (e.g., (Lee et al., 2002)). 

In either case, the corrosion on the interface slip is ignored. For illustration purposes, Figure 

1.2 shows force–displacement of a RC beam with the consideration of bond behavior based 

on the CEB-FIB splitting failure model (fib, 2013). Three different values of slippage 

corresponding to the bond strength, s1, are used. The impact of s1 value on stiffness, 

strength, and ductility is significant as shown in Figure 1.2. Note that in the old version of 

CEB-FIB (fib, 2013), s1 is 0.6 mm for an un-confined condition and 1.0 mm for a well-

confined condition, and when the deterioration occurs on rebar, s1 should theoretically have 

a value in-between. Kivell et al. (Kivell et al., 2011) developed modification factors for 

stress and slip quantities. As the modification factors are dependent on corrosion levels 

only, they are not applicable for other structural members as the material and geometric 

quantities are different from the experimental specimens used in Kivell et al. (Kivell et al., 

2011). Hence, the monotonic bond constitutive law (both stress and slip) needs to be 

developed considering both corrosion effect and structural and geometric properties. 
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Figure 1.3 Force-displacement curves considering different slippage values 

1.4.2. Deterioration on cyclic bond behavior 

Cyclic bond behavior is critical to determine hysteretic energy dissipation of RC 

structures where reversals in the inelastic displacement cause increased damage and 

degradation of strength and stiffness in the structure. Therefore, the degradation on cyclic 

bond could result in significant changes in the structural performance. Filippou et al. 

(Filippou et al., 1983) found that a reduction in bond strength of as little as 15% may result 

in a 30% reduction in total energy dissipation of a beam column joint. In particular, the 

loss of bond can cause the penetration of yielding into the anchorage zone, degrading the 

available development length and reducing the anchorage capacity. 

However, regarding understanding the corrosion effect on the structural behavior 

under cyclic loading, the majority of the work has been focused on the cyclic behavior of 

corroded rebars (e.g. (Apostolopoulos, 2007; Hawileh et al., 2011; Kashani et al., 2013)), 

and some experimental studies can be found on the cyclic responses of structures with 
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corroded reinforcement (e.g(A. Guo et al., 2015; Ma et al., 2012; Meda et al., 2014; Ou et 

al., 2012)) only found in the past decade. Extremely limited studies have been performed 

on studying cyclic bond deterioration due to corrosion. Among those studies, Fang et al. 

(C. Fang et al., 2006; C. Q. Fang, 2006), Zhao et al. (Zhou, Lu, Xv, Dong, et al., 2015; 

Zhou, Lu, Xv, Zhou, et al., 2015), Kivell et al. (Kivell et al., 2011) conducted experimental 

studies on corrosion effect on bond-slip relation. In particular, Kivell et al. is the only study 

that developed analytical cyclic bond models considering corrosion. Nevertheless, there 

are major limitations in the models proposed by Kivell et al.: i) the models are developed 

based on pullout testing that is not suggested for use in studying the true bond response; ii) 

the modification factors used in the models only consider the confinement content and 

corrosion level, and these two factors are considered separately not interactively; iii) other 

key factors such as compressive strength and the ratio of cover depth to rebar diameter are 

not considered in model, limiting the application of the models and restraining the models 

to be updated by possible future experiments; and iv) the prevailing uncertainties, such as 

statistical uncertainties and model errors are not considered. 

In summary, to develop a reliable constitutive bond stress-slip relationship, a large 

database of test results of beam-end or beam specimens is needed. Therefore, all possible 

important factors (namely, the size of steel bars, the ratio of concrete cover to bar diameter, 

the concrete compressive strength, content of confining reinforcement, and type of 

confinement) and all relevant uncertainties should be incorporated in the constitutive law 

based on a probabilistic approach such that the probabilistic models can be easily updated 

whenever any future experimental data becomes available. 
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1.4.3. Structural Analysis Considering Deterioration on Bond 

Bond deterioration will have a great impact in the recently developed design and 

performance evaluation aspects that are dependent on the bond development. Although 

reliability assessment of corroded RC structures (particularly bridges) using probabilistic 

corrosion models has been the subject of numerous studies in the last decade (Akgül & 

Frangopol, 2003; Enright & Frangopol, 1998a, 1998b; Frangopol & Liu, 2007; 

Petcherdchoo et al., 2008; Stewart & Rosowsky, 1998), few studies have attempted to 

evaluate the structural performance of corroded RC bridges subject to extreme hazards 

(Alipour et al., 2011; Choe et al., 2008; Ghosh & Padgett, 2010; Simon et al., 2010). 

Among these studies, the corrosion deterioration on bond has been either ignored or 

assumed to be inconsequential for members with sufficient reinforcement confinement 

based on a study by Fang et al. (C. Fang et al., 2004). 

However, the findings by Fang et al. (C. Fang et al., 2004) were based on a very 

limited number of specimens tested under monotonic loading, considering a corrosion level 

only up to 6% and with no corrosion on the stirrups. Studies have shown that corrosion on 

stirrups should be considered on the bond strength degradation and the performance of the 

corroded structure (X. H. Wang & Liu, 2008), even though stirrups can control the bond 

deterioration up to a certain corrosion level (Valente, 2012). Bond deterioration can 

become a more serious issue for older structures that are not designed based on current 

seismic code provisions, which require high transverse steel ratios in columns. Moreover, 

under cyclic loadings, experimental results have demonstrated a large reduction in the bond 

capacity for corroded confined rebars (C. Fang et al., 2006; C. Q. Fang, 2006; Kivell et al., 
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2011; Lee et al., 2003). Lastly but most importantly, one of the reasons that the majority 

of structural analyses do not include corrosion on the cyclic bond is simply because no 

software is available for non-linear time histories analysis that incorporates the effect of 

corrosion on bond. Therefore, to incorporate the aging effect into resilience design or 

evaluate structural performance of corroded structures, in addition to the material 

properties, it is necessary to incorporate the corrosion effect on the bond behavior in the 

structural analysis. 

1.3. Dissertation Organization 

This dissertation is prepared in five chapters. In Chapter I, the introduction and 

research significance are elaborated. In  Chapter II,  a probabilistic prediction model for 

RC bond failure is developed based on  the experimental program performed in  this 

research. The  proposed model can be used to predict the probability  that a specimen, or 

even a structural member, could fail in pull-out or splitting bond failure. In chapter III, 

probabilistic models are developed for the two important bond behavior parameters that  

are the bond strength and peak slip. Extensive experimental testing results gathered from 

previous literature to develop a comprehensive model using nonlinear multivariable and 

genetic programming techniques. In chapter IV, a simple rebar slip model is developed 

using macromodel approach that can be implemented into finite element modeling of 

structures, such as columns and bridges. Lastly, Chapter V represents the summary and 

conclusions of this dissertation. 
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From this dissertation, one conference and one journal paper is published in ASCE 

Structures Congress and Journal of Engineering Structures (Elsevier) (A. Soraghi et al., 

2019; Ahmad Soraghi & Huang, 2021) based on the materials in Chapter II, one journal 

paper is under review in the Journal of Structures and Infrastructures Engineering (Taylor 

and Francis) based on the materials in Chapter III, and one Journal paper under review in 

the Journal of Engineering Structures (Elsevier) based on the materials in Chapter IV.
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CHAPTER II 

2. PROBABILISTIC PREDICTION MODEL FOR RC BOND FAILURE MODE 

Reinforced concrete (RC) is a widely used construction material for civil structures 

like bridges (Huang et al., 2010a), buildings (Zaker Esteghamati et al., 2018), and dams 

(Hariri-Ardebili & Saouma, 2016). As the bond between rebar and concrete (i.e., rebar–

concrete interaction) is meant to ensure the transformation of force between the rebar and 

concrete, bond behavior directly impacts the structure load-carrying capacity and failure 

mode. This bond is known to be influenced by many factors such as the concrete properties, 

transverse reinforcement, the ratio of concrete cover to rebar size, loading type, and rebar 

corrosion. Many researchers have studied how those influencing factors affect the bond 

strength, through which impact structural performance (Almusallam et al., 1996; Fu & 

Chung, 1997; M. H. Harajli, 2004; Hussain et al., 1995; Kivell et al., 2011; Sajedi & Huang, 

2015; A. Soraghi et al., 2019; Stanish et al., 1999; H. Wang, 2009). 

Another aspect of bond behavior that is also crucial for determining the 

performance of RC structures is the bond failure mode. Based on ACI [13], there are two 

distinguished bond failure mode: pull-out and splitting failure. Pull-out bond failure occurs 

when there is sufficient confinement and/or concrete cover to prevent concrete splitting 

and restrain crack growth, resulting in the shearing of concrete between ribs. Splitting 

failure occurs when confinement or cover is not provided adequately to achieve the 
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complete pull-out strength. In splitting failure, the deformation-bearing forces 

cause splitting that spreads through the sides of the member and makes the concrete to lose 

its bonding and cover. 

In contrast to bond strength, the bond failure mode has not been well studied, 

especially in the presence of corrosion and/or under cyclic loading. Both ACI (ACI, 2012) 

criteria and CEB (fib, 2013) use bar size, concrete cover, and confinement of transverse 

stirrups to determine the bond failure mode. Cucchiara et al. (Cucchiara et al., 2004) and 

Zandi Hanjari et al. (Hanjari et al., 2011) examined the impact of the existence of the 

stirrups on the failure mode. Kivell (Kivell et al., 2011) observed that specimens with high 

levels of corrosion (more than 12%) or under cyclic loading have more tendency to fail in 

pull-out. Soraghi and Huang (A. Soraghi et al., 2019) developed models for predicting the 

bond failure mode using logistic and lasso classification algorithms to consider various 

influence factors including the presence of transverse stirrups, cover to rebar diameter ratio, 

the level of corrosion, and the loading type. 

This study develops probabilistic prediction models of bond failure mode based on 

classification methods and examines the importance of bond failure mode prediction in the 

structure performance evaluation. The model development uses the results from a 

comprehensive experimental testing where various influencing factors are considered, 

including compressive strength of concrete, ratio of concrete cover to rebar diameter ratio, 

confinement of transverse stirrups, corrosion level, and loading type.  

In this paper, the bond tests conducted on a set of beam-end specimens are 

described first, next the probabilistic models based on various classification methods are 
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developed, and then the prediction accuracy of the models is compared. Lastly, a case study 

is presented using the developed bond failure mode prediction model to examine how the 

bond impacts the flexural performance of an RC beam with a lap splice under various 

corrosion levels based on the reliability analysis. 

2.1. Experimental program 

2.1.1. Specimen design and details 

A set of beam-end specimens are designed to investigate the intact and corroded 

rebar bond behavior under monotonic and cyclic loading. The design of the specimens are 

based on four parameters that found to be influencing bond behavior according to the 

findings of previous studies (e.g., (Mohamed H. Harajli et al., 2004; Maaddawy & Topper, 

2005; Sajedi & Huang, 2015; A. Soraghi et al., 2019)) and they are: concrete compressive 

strength (f′c), cover size to rebar diameter ratio (c/d), corrosion level (Q), and transverse 

rebar confinement that can be quantified by an index value, Ktr (Orangun et al., 1977), as 

shown below: 

,

4136.85

y tr tr
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
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(1.1) 

where fy,tr is the yield strength of transverse reinforcement (kN/m2), Atr is the 

transverse reinforcement area (m2), db is the diameter of intact rebar (m), and s is the 

spacing of the transverse reinforcement (m). The detailed specification for each specimen 

is provided in Tables A.1–A.3 in Appendix A. Table 2.1 summarizes the ranges of the 

design parameters. The specimens are classified into three groups (as shown in Table 2.1) 
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based on the three designated concrete compressive strength levels: 25 MPa, 35 MPa, and 

45 MPa (corresponding to measured averages of 27 MPa, 36 MPa, and 43 MPa, 

respectively, obtained in the cylinder tests). Each of the three groups consists of 44 beam-

end specimens; thus, 132 specimens are tested. The level of corrosion, Q, is the percentage 

of mass reduction of the reinforcement in the bonded region. Group 1 consists of 22 

corroded specimens with the designed Q ranging from 5% to 20% (corresponding to 

measured Q of 3.2% to 15.6% after load testing was completed) and 12 intact specimens 

(Q = 0%). Group 2 consists of 38 corroded specimens with the designed Q ranging from 

5% to 15% (corresponding to measured Q of 4.93% to 19.08% after testing was completed) 

and 6 intact specimens. Group 3 also consists of 38 corroded specimens with designed Q 

ranging from 5% to 15% (corresponding to measured Q of 3.74% to 16.85% after load 

testing was completed) and 6 intact specimens. 

Table 2.1 Summary of design parameters of testing specimens. 

G
ro

u
p
 f′c (MPa) 

No. of specimens 

(Imperial rebar size) 

No. of specimens 

(Loading type*) 

No. of 

intact 

specimens 

Corroded specimens 

w/ corrosion, Q (%) 

Targe

t 
Actual Target Actual 

1 25 27 
16 

(#5) 

16 

(#6) 
12 (#8) 18 (M) 26 (C) 

12 
5 ~ 20 3.2 ~ 15.6 

2 35 36 
16 

(#5) 

16 

(#6) 
12 (#8) 22 (M) 22 (C) 

6 
5 ~ 15 4.93 ~ 19.0 

3 45 43 
16 

(#5) 

16 

(#6) 
12 (#8) 22 (M) 22 (C) 

6 
5 ~ 15 3.74 ~ 16.8 
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Specimens in each group use three sizes of reinforcement bars: #5 bars (db = 15.875 

mm), #6 bars (db = 19.05 mm), and #8 bars (db = 25.4 mm). Among the 44 specimens in 

Group 1, 22 have transverse stirrups with Ktr values ranging from 3.68 to 5.89, and the 

remaining 22 specimens have no transverse stirrups (i.e., Ktr = 0). All specimens in Groups 

2 and 3 have transverse stirrups to increase the chance of pull-out failure, with Ktr values 

ranging from 7.3 to 11.7. For loading type, in Group 1, 18 of the specimens are tested under 

monotonic loading, while 26 specimens are tested under cyclic loading; in groups 2 and 3, 

22 specimens in each group have monotonic loading and the other 22 specimens have 

cyclic loading. 

Dimensions and reinforcement detailing for the designed beam-end specimens are 

shown in Figure 2.1 (a), and Figure 2.1 (b) shows an actual casted beam-end specimen. All 

specimens are 508 mm × 381 mm × 190.5 mm. All transverse, parallel, and longitudinal 

reinforcements are #3 rebar with a diameter of 76.2 mm. All the reinforcements are coated 

with epoxy to prevent corrosion except for the test bar. The test bar is covered by PVC 

pipes at the two ends within the concrete. The middle bonded region of the test bar that is 

not covered by PVC pipe has a bonded length, lb, as shown in Figure 2.1 (a), and lb = 88.9 

mm, 114.3 mm, and 152.4 mm are adopted for the specimens with rebar sizes of #5, #6, 

and #8, respectively. These bonded lengths are chosen to prevent rebar tensile yielding 

prior to bond failure, to ensure a relatively uniform distribution of bond stress (Sajedi & 

Huang, 2015), and prevent conical failure of the specimens (Darwin & Graham, 1993). The 

yield strength, Fy, and ultimate strength, Fu, of rebar are 420 MPa and 600 MPa, 

respectively, regardless of the rebar size. 
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(a) (b) 

Figure 2.1 Beam-end specimens: (a) schematic design and (b) as-casted beam-end 

specimen. 

To accelerate corrosion on the test bar, sodium chloride (NaCl) was added to the 

concrete before it was poured into the specimen molds. The amount of salt (NaCl) in the 

concrete is calculated based on 3.75% weight of cement as is suggested by previous 

researchers (Abosrra et al., 2011; Yalciner et al., 2012) to achieve accelerated corrosion. 

2.1.2. Corrosion process 

Accelerated corrosion is achieved by applying current to the test bar. The 

designed corrosion level can be calculated as: 

0

100%
b b
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l A


= 

 
 

(1.2) 

where ΔM (grams) is the change in mass of the rebar due to corrosion; γ = 7.86 gr/cm3 is 

the density of iron, lb is the corroded length (or bond length), and Ab0 refers to the intact 

cross-sectional area of rebar. With a desired level of Q, ΔM can be estimated based on 

Equation (1.2). Then the accelerated corrosion time, T, during which the current needs to 
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be applied can be calculated to achieve the desired corrosion level based on Faraday’s law 

(Ahmed et al., 2007): 

M Z F
T

A I

  
=

  

(1.3) 

where A = 56 grams referring to the atomic weight of iron; I is current (Amp); Z = 

2 is the valency number of ions of the substance, Fe, and F = 96500 (Ampsec), which is 

referred to as Faraday’s constant. 

After casting, the specimens are cured with sufficient humidity (ACI Committee 

308, 2001). In this study, all specimens are kept in the designed humidity tents 

(schematically shown in Figure 2.2 (a)) for curing as well as corroding. The corrosion setup 

(schematically shown in Figure 2.2 (b)) is designed to allow power supplies to be connected 

to the specimens to supply the required current for accelerating corrosion while keeping 

the specimens in the humidity tents. The corrosion setup uses a parallel circuit system 

where the rebar serves as the anode, while a stainless steel plate that was located underneath 

the specimen (mostly underneath the bonded region) acts as the cathode (C. Fang et al., 

2006). The parallel system allows specimen(s) to be removed without stopping the current 

that runs through the other specimens, and such a setup is necessary, as each specimen is 

designed for different corrosion levels and requires a different corrosion time. In addition, 

the parallel system allows the use of power supplies with lower voltage compared to a setup 

using a series circuit system. 
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(a) (b) 

Figure 2.2 Schematic view of (a) humidity tents and (b) corrosion setup. 

2.1.3. Test setup 

Monotonic and cyclic testing are performed to study the corrosion impact on bond 

behavior. Utilizing the testing frame that is securely mounted on a rigid floor in the testing 

lab, a vertical test setup is designed for this study based on ASTM A944-10 and a previous 

study by Bandelt and Billington (Bandelt & Billington, 2016) where the applied loading 

on beam-end specimens is in a vertical direction as well. Figure 2.3 (a) and (b) are a 

schematic of the setup that shows the boundary conditions and a 3D-rendering view of the 

setup, respectively. It should be noted that the roller/pin supports were provided at six 

locations, where three supports react (shown in solid arrows) when the rebar is under 

tension and the other three supports react (shown in dashed arrows) when the rebar is under 

compression, as shown in Figure 2.3 (a). Figure 2.3 (c) and (d) show the testing frame and 

the laboratory test setup, respectively. 
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(a) (b) 

  

(c) (d) 

Figure 2.3 (a) Boundary conditions of testing specimen; (b) 3D rendering view of test 

setup; (c) testing frame, (d) laboratory test setup. 

A 245-kN actuator is secured to the testing frame in a vertical position; a threaded 

rod is welded to the test bar and the specimen connects to the actuator through a special 

connection designed particularly for this test. Rebar slippage is measured according to 

ASTM standard A944-10 (ASTM A944-10, 2015) using linear variable differential 

transducers (LVDTs) at the free-end of the specimen. The LVDTs are mounted on the 

Free-end 

Force-end 

Actuator 

Specimen 
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bottom of the concrete as shown in Figure 2.3 (a) such that the slippage of the rebar relative 

to the bottom of the concrete could be measured. 

To accomplish the testing, it is necessary to first determine the loading procedure 

and loading rate. ASTM standard 944-10 (ASTM A944-10, 2015) specifies that a loading 

rate between 10% and 33% of the predicted rupture force be reached within one minute. 

However, this rate is too fast to allow recording the critical points during the failure 

process, particularly the point at which the rupture force occurs (i.e., the bond strength is 

achieved). Thus, the loading rate is recalculated in such a way that the rupture force will 

not occur in less than three minutes. Accordingly, all monotonic specimens are tested in 

displacement-control with a rate equal to 0.005 mm/sec (that is, 1.3 mm per 3 minutes). 

Figure 2.4 (a) shows an actuator force-displacement diagram under monotonic loading, 

where Fr is the rupture force and Δr is the displacement of the actuator at rupture. 

 

 
 

(a) (b) 

Figure 2.4 (a) Actuator force and displacement diagram under monotonic loading and 

(b) cyclic loading protocol. 

As ASTM standard 944-10 does not specify the cyclic loading procedure for bond 

testing, the procedure used in Kivell (Kivell et al., 2011) is adopted in this study. Figure 
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2.4 (b) shows the adopted cyclic loading protocol consists of three sets of cycles, where Fr 

and Δr are extracted from the corresponding monotonic curve (Figure 2.4 (a)). 

In the cyclic loading, the first set of cycles are force-controlled with a maximum 

force of 0.5Fr; the other two sets of cycles are displacement-controlled with maximum 

displacements of 1.0Δr and 1.5Δr, respectively. The first set is mainly used for weakening 

the bond, while the second and third sets of cycles are designed to break the bond and 

capture the behavior after exceeding the bond strength. For the force-controlled cycles, the 

loading rate is 10%Fr ~ 33%Fr per minute; for the displacement-controlled cycles, the 

displacement rate is 10%Δr ~ 33%Δr per minute. 

2.1.4. Experimental results and discussion 

After testing is complete, the monotonic and cyclic bond behaviors of all specimens 

are obtained. The work presented in this paper focuses on the prediction of the failure 

modes; the study on the other bond characteristics (e.g., bond strength) will be presented 

in future papers. Two distinct failure modes, pull-out and splitting failure are observed, and 

the failure modes for each specimen are summarized in Table A.1-A.3 in Appendix A, 

where failure mode “P” refers to the pull-out failure and “S” is the splitting failure. 

However, there were 12 specimens whose failure modes were not distinguishable due to 

various reasons (e.g., the actuator reached its force capacity before the bond failure 

occurred); these specimens are marked as “NA” in failure mode. Figure 2-5 shows the 

typical actuator force-displacement diagrams under monotonic or cyclic loading with 

splitting or pull-out failure modes. A common feature of splitting failure under either 



 

40 

 

monotonic or cyclic loading is the sudden drop in force when the specimen reaches its 

rupture force, followed by observing large surface and/or sides cracks on the specimen. 

 

 

 

  

(a) (b) (c) (d) 

Figure 2.5 Typical actuator force-displacement (a) under monotonic loading with pull-

out failure, (b) under monotonic loading with splitting failure, (c) under cyclic loading 

with pull-out failure, and (d) under cyclic loading with splitting failure. 

In addition, different crack patterns are observed for the two failure modes. Figure 

2.6 shows typical crack patterns for pull-out and splitting failure modes, and Figure 2.7 

presents a schematic view of crack patterns for each mode of failure. Generally, with 

splitting failure, not only the surface of the specimen is crushed, but at least one crack is 

initiated from the testing rebar as shown in Figure 2.7 (a). This is because such surface 

cracks are propagated from the radial splitting of the concrete due to the wedge action of 

the test bar ribs when the bond fails in splitting. However, with pull-out failure, the cracks 

do not initiate from the testing rebar (as shown in Figure 2.7 (b)), as there is sufficient 

confinement to restrain the concrete surrounding the rebar from splitting. Darwin and 

Graham (Darwin & Graham, 1993) also found that splitting failure (which was the only 

failure mode observed in their specimens) have some crack patterns based on the presence 

of transverse stirrups as well as on the cover size, which is consistent with the splitting 

mode cracking patterns observed in this study. Thus, identifying the cracking pattern could 

help to determine the failure mode. 
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(a) (b) 

Figure 2.6 A typical cracking pattern for (a) splitting failure mode and (b) pull-

out failure mode. 

 

      

(a) 

 

  
   

 

(b) 

Figure 2.7 Schematic view of crack patterns formed on the test specimens 

after failure: (a) splitting failure mode and (b) pull-out failure mode. 

2.2. Probabilistic prediction model for bond failure mode 

In this section, existing deterministic models for bond failure mode and various 

classification algorithms are reviewed. The logistic and lasso classification algorithms used 
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in the model development are described, and the performances of the various prediction 

models are compared based on the experimental data. 

2.2.1. Existing deterministic models 

In the literature, very few models are available for predicting RC bond failure 

modes. If let Y = 1 and Y = 0 represent pull-out and splitting bond failure, respectively, the 

prediction by CEB criteria can be written as (fib, 2013). 

max min min ,CEB

1

0

5

/ 2.0 & & 20mm& 2%

b

b b tr

Y
c d

c c c d d K
=




= =  =  

(2.4a) 

where cmax = max{cx,csi} and cmin = min{cx,cy,csi}, in which cx and cy are the concrete cover 

toward the horizontal and vertical edges, respectively, and csi is the half of the center-to-

center test bar spacing (if more than one test bar is implemented); Ktr,CEB = Atr/(nb·db·s), in 

which nb is the number of anchored test bars. However, it is obvious that conditions for 

splitting failure (i.e., cmax/cmin = 2.0, cmin = db and Ktr,CEB = 2%) are very strict, which makes 

these CEB criteria almost inapplicable. Thus, instead of using the CEB criteria literally, 

the “equal” sign in the expressions may be interpreted to be “no larger than”, and the logical 

operator between the expressions be interpreted to be “or”, rather than “and”. Also, for the 

cases that do not satisfy both pull-out and splitting conditions of the CEB criteria, the 

prediction can be treated as “unknown”. Thus, the CEB criteria is interpreted as follows in 

this study: 
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max min min ,CEB
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(2.4b) 

Meanwhile, ACI (ACI, 2003) uses the following criteria for the bond failure mode 

prediction: 

( )
( )

,ACI

,ACI

1 / 2.5

0 / 2.5

tr b

tr b

c K d
Y

c K d

 + 
= 

+   

(2.5) 

where Ktr,ACI = Atr·fy,tr/(1500·s·nb). 

The two prediction models shown above are deterministic based; thus, uncertainty 

is not considered. More importantly, these two models do not holistically consider all the 

parameters that might influence the bond failure mode, such as corrosion and loading types. 

2.2.2. Classification algorithms 

Supervised machine learning techniques (i.e. regression and classification) are 

extensively implemented in engineering purposes for response estimation. Whilst the 

regression algorithm is appropriate for continuous response prediction, the classification 

algorithm is suitable for categorical responses such as failure modes (Harrington, 2012). In 

this study, classification methods are used to develop probabilistic models based on all the 

influencing parameters. In the following, a brief description of the classification algorithms 

of logistic and lasso classification is described, and other classification algorithms adopted 

in this research is provided in Appendix B. 
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2.2.2.1. Logistic classification 

The logistic classification algorithm evaluates the relationship between 

independent variables and dependent variables (i.e., categorical response) using a logistic 

function. The binary response, Y, refers to the bond failure mode and is defined as the same 

as before: Y = 1 for pull-out and Y = 0 for splitting. The formulation for logistic 

classification to estimate the probability of pull-out failure is shown as: 
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(2.6) 

where x = {xi}, in which xi are the independent variables selected, m is the number 

of independent variables used, and β0 and {βi} are the coefficients for logistic classification 

that can be obtained using the maximum likelihood technique (Chang et al., 2019) through 

a likelihood function as: 

 

(2.7) 

where the subscript j refers to the jth observation data, 𝐱̃j = {1 x}T, and β = {β0 β1 β2 … 

βm}T. As Y is a binary variable, then P(Y = 0|x) = 1 – P (Y = 1|x). It should be noted that 

the deviance of the fitted model is proportional to –log[l(β)]; accordingly, by maximizing 

l(β) for the β evaluation, the deviance will be minimized. 
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2.2.2.2. Lasso classification 

While the lasso classification uses the same formulation (shown in Equation (2.6)) 

as the logistic algorithm, the way to evaluate the model parameters is different. Lasso 

classification requires a constraint on the coefficients in the maximum likelihood 

evaluation, which can be expressed as: 
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(2.8) 

where λ is a penalty factor also known as the constraint. Lasso classification stabilizes a 

system by applying a cost of the sum of absolute values of the coefficients. This is called 

sparse regularization to constrain over-fitting and is conducted using the lassoglm function 

in MATLAB by which the deviance will be minimized in order to estimate the model 

parameters in Equation (8). Lasso classification is a more desirable technique when 

working with a relatively small size of data, or when there is a correlation between 

independent variables (Tibshirani, 1996), and lasso’s strength is to reduce the fitted model 

deviance without substantially increasing the prediction bias. 

2.2.3. Model development 

2.2.3.1. Independent variables selected for the models 

From an engineering perspective, logistic and lasso classification are capable of 

providing explicit formulations. For this reason, both methods are used in developing the 

probabilistic model. Other methods, including the two deterministic models and other 
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classification algorithms (i.e., decision tree, discriminant analysis, K-nearest neighbors, 

Naïve-Bayes, random forest, and support vector machine) that are described in Appendix 

B, will be assessed in terms of their model prediction accuracy. 

Independent variables selected for the models 

To develop the failure mode prediction models based on Equation (2.6), a 

preliminary analysis needs to be performed first to select the potential variable xi. Next, a 

model selection procedure is used to delete the independent variables that are not 

contributing significantly to the model prediction. 

In this study, the variables showing the potential impacts on the failure mode (Y) 

are: f′c, c/d, Ktr, Q, and MC, where MC is a dummy variable defined as: 

1 monotonic loading

2 cyclic loading
MC


= 
  

(2.9) 

In addition, the linear interactions among these five variables are also examined via 

scatter plots. As an example, Figure 2.8 (a) and (b) show the scatter plots of Ktr and c/d 

versus the actual response y, respectively; and Figure 2.8 (c) shows the interaction term, 

Ktrc/d, versus y with a fitted logistic curve. These three plots in Figure 2.8 show that 

although the individual variables might not contribute to the failure mode prediction, their 

interaction might. Table 2.2 lists all the potential variables, xi, used in Equation (2.6) for 

the model development using logistic and lasso classification. 

Table 2.2 Potential variables used for model development. 

Term types xi 

Single variable f′c  c/d Ktr  Q  MC  

Interaction of 2 variables  Ktrc/d KtrQ Ktr·f′c KtrMC c/dQ 
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 c/dMC 

 

c/d·f′c 

 

QMC 

 

Q·f′c 

 

MC·f′c 

 

Interaction of 3 variables  

 

Ktrc/dQ KtrQMC Ktrc/dMC Ktr·c/d·f′c Ktr·Q·f′c 

Ktr·MC·f′c 

 

c/dQMC 

 

c/d·Q·f′c 

 

c/d·MC·f′c 

 

Q·MC·f′c 

 

Interaction of 4 variables  Ktrc/dQMC Ktr·c/d·Q·f′c Ktr·c/d·MC·f′c Ktr·Q·MC·f′c c/d·Q·MC·f′c 

Interaction of 5 variables  Ktr·c/d·Q·MC·f′c 

 

  
 

 

(a) (b) (c) 

Figure 2.8 Example of a scatter plot of failure mode for terms (a) c/d, (b) Ktr, and (c) 

logistic curve for their interaction term (Ktrc/d). 

2.2.3.2. Model prediction accuracy 

Different quantities are adopted to measure the performance of the developed 

models, such as the mean absolute error of prediction, MAE: 

1 1
ˆ| | | |

n n

i i ii i
y y e

MAE
n n

= =
−

= =
 

 

(2.10) 

where 
ˆ

iy
 is the prediction, yi is the true value, and n is the number of data points. Another 

way to measure prediction accuracy is the hit-or-miss approach. Using the prediction 

probability formula from Equation (6) and opting a threshold level of  (that is set to be 

50% in this study), then P(Y = 1|x)   indicates a pull-out failure and P(Y = 1|x) <  
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indicates a splitting failure. Accordingly, based on the correct or wrong prediction of the 

failure mode, there are four possible outcomes as shown in Table 2.3: true positive (TP) 

and true negative (TN) as the correct detections, and false positive (FP) and false negative 

(FN) as the false detections. Then the probability of correct detection, PCD, as a measure of 

model prediction accuracy, can be calculated using the number of TP tests (nTP), the 

number of TN tests (nTN), and the total number of tests (ntotal): 

TP TN
CD

total

n n
P

n

+
=

 
(2.11) 

Similar measurements can be used for pull-out and splitting failure mode, separately, as 

follows: 

,
TP TP

CD pull out

TP FP pull out

n n
P

n n n
−

−

= =
+

 
(2.12) 

and 

,
TN TN

CD splitting

TN FN splitting

n n
P

n n n
= =

+
 

(2.13) 

Table 2.3. Four possible prediction outcomes. 

Failure mode Predicted to be pull-out Predicted to be splitting 

Pull-out 

(Y = 1) 
 

True positive 

(TP) 
 

False negative 

(FN) 
 

Splitting 

(Y = 0) 

False positive 

(FP) 

True negative 

(TN) 
 

 

 



 

49 

 

2.2.3.3. Model selection 

When using all the 31 variables (listed in Table 2.2) in Equation (2.6), the model is 

considered as a full model with a model size of 31. For logistic classification, a model 

selection is performed to the full model to remove the variables with insignificant 

contributions to the model prediction. In particular, the all possible subset approach 

(Lindsey & Sheather, 2010) is adopted in which all potential combinations of xi are first 

formulated for every reduced model size (ranging from 1 to 30), which will result in more 

than two billion possible models. To keep the model practical, the maximum model size is 

capped at four (i.e., four variables in a model), which also greatly reduces the 

computational time. Accordingly, all subsets with model size of five and above are 

excluded. 

In addition, the models with any model parameters having p-values greater than 

10% and variance inflation factors (VIFs) greater than 10 are treated as invalid and are 

eliminated. Statistical measurements such as R-squared (R-sq), adjusted R-squared (Adj-R-

sq), and Akaike information criterion (AIC) are then used for each model size to evaluate 

the performance of models. 

Models with the highest R-sq and Adj-R-sq or the lowest AIC are the most favorable 

model for a specific model size. The most favorable models from each subset are then 

compared to determine the final model. It is noted that different statistical measurements 

(Adj-R-sq, R-sq, and AIC) may result in a different best model. 

The most desirable models for various model sizes are shown in Table 2.4. MAE 

and PCD are also calculated to compare the performance of those models. It can be observed 
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that the model with a model size of 4 has improved accuracy regarding R-sq and Adj-R-sq; 

the model with a model size of 3 has the same accuracy in terms of MAE and slightly 

improved accuracy regarding PCD. Thus, the smaller model size is preferred, and z in 

Equation (2.6) for logistic regression is written as: 

( ) ( ) ( )0 1 2 3/ /c cc d Q f c d Q MCz f    +  +  +  =
 

(2.14) 

The statistics of the model coefficients in Equation (2.14) are summarized in Table 2.5. 

Table 2.4. Statistics summary for the top three logistic classification models for each 

model size. 

Model size Independent variables R-sq (%) 
Adj-R-

sq (%) 
AIC MAE 

PCD 

(%) 

1 c/d·MC·f′c 21 20 13.4 0.48 66 

2 c/d·f′c MC·f′c   30 27 124.8 0.42 75 

3 c/d·Q c/d·f′ Q·MCf′c  32 30 123.3 0.33 79 

4 MC c/d·f’
c Ktr·Q·MC Q·MC·f’

c 35.2 32 122.5 0.33 78 

 

Table 2.5. Logistic model coefficients. 

Model coefficients 
β0 

(Intercept) 

β1 

(c/d·Q) 

β2 

(c/d·f’
c) 

β3 

(Q·MCf′c) 

Mean -3.46 -4.00 +0.031 0.65 

Standard deviation 
 

0.81 1.62 0.008 0.14 

Coefficient of 

variation 
-0.23 -0.40 0.25 0.21 

 

 

The method of cross-validation is used to train and validate the lasso model. Cross-

validation method divides train set into m folds (10 folds is used in this research), then the 

model parameters are evaluated through a subsequence manner for various penalty factor 

values (λ), meaning that in the sparse regularization the independent variables having a 

corresponding coefficient of zero are eliminated for a given penalty factor value. Hence 

there will be a subsequence of models having different model sizes associated with the 
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continuance of the penalty factor value. The model with the minimum average deviance 

plus one standard deviation is suggested to be the final model (Tibshirani, 1996), since this 

model will balance the prediction that is measured by deviance as opposed to false 

discovery. 

Since the method of cross-validation randomly divides data, there is a possibility 

that each analysis leads to a different result. Thus, the analyses are performed multiple 

times on the total dataset (100 times in this study). The variables selected at the end of each 

analysis that appear most frequently among all the repetition is the one selected as the final 

term. As the result of the multiple analyses conducted in this study, four terms appear most 

frequently: three terms (i.e., c/df′c, MCf′c, Q·MC·f′c) appear in all analyses, and one term 

(i.e., Ktr·c/d·f′c) appear in half of the analyses. However, when using all these four terms, 

the accuracy of the resulting model was found to be lower than that for a model using only 

three terms (i.e., c/df′c, MCf′c, Q·MC·f′c); thus, Ktr·c/d·f′c, is excluded. Accordingly, based 

on lasso classification, z in Equation (2.6) can be written as: 

( ) ( ) ( )0 1 2 3/ c c cc d f MC f Q M fz C     +  +  +  =
 

(2.15) 

The estimated model coefficients in Equation (2.15) are provided in Table 2.6. 

Table 2.6. Lasso model coefficients. 

Model coefficients 
β0 

(Intercept) 

β1 

(MCf′c) 

β2 

(c/d f′c) 

β3 

(Q·MC· f′c) 

Mean -4.5 0.049 0.014 0.0194 

Standard deviation 
 

0.26 0.003 0.001 0.019 

Coefficient of 

variation 
-0.06 0.06 0.08 0.97 
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2.2.4. Model comparison 

Using either logistic or lasso classification, both Equation (2.14) and Equation 

(2.15) suggest that four independent variables contribute to the failure mode prediction: f’c, 

c/d, Q, and MC. It is worthy to understand how these four variables contribute to the bond 

failure mode. Recall that splitting bond failure involves the radial splitting of the concrete 

cover by the wedge action of the bar ribs, while pull-out bond failure mainly involves the 

shearing of the bar against the surrounding concrete. As concrete compressive strength, f’c, 

is directly correlated to concrete tensile splitting resistance and shearing cracking 

resistance, it is not surprising that f’c is selected in the proposed formulation. Cover to rebar 

diameter ratio, c/d, was found in many previous literature as an important factor to affect 

failure mode (M. H. Harajli, 2009; Hongwei Lin, Zhao, Ozbolt, et al., 2019; Hongwei Lin, 

Zhao, Yang, et al., 2019; Y. F. Wu & Zhao, 2013), as it measures the confinement around 

the test bars that could help effectively prevent the splitting cracking in concrete.  

The impact of corrosion of rebar, Q, on the bond failure mode, on the other hand, 

changes the failure mode by changing the interactive effect of ribs and concrete. The 

produced layer of rust (i.e., steel oxidizes) within the gap between rebar and concrete could 

act as a lubricant and thus alter the failure mode, mostly from splitting to pull-out 

(Almusallam et al., 1996; Kivell et al., 2011). Lastly, the loading type of the specimen, 

monotonic and cyclic, MC, was also found to be a contributing factor in the response of 

the bond behavior. This is because the cycles in cyclic loading can weaken the bond on 

each cycle before rupture without causing extensive splitting cracks in concrete (M. H. 

Harajli, 2009), which leads to the bond failing in a pull-out fashion. 
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In addition, when comparing the selected terms in the logistic and lasso model 

formulations, it was found that they both include two terms (c/df′c and Q·MC·f′c) and have 

a negative intercept 0. Note that both models do not select any terms that include Ktr. This 

finding shows that within the ranges of Ktr considered in this study, the transverse stirrup 

does not influence the failure mode prediction. This is consistent with the findings from 

Lin et al. (Hongwei Lin, Zhao, Ožbolt, & Reinhardt, 2017). In addition, Soraghi and Huang 

(A. Soraghi et al., 2019) also found that the presence of a higher amount of transverse 

stirrups will not necessarily lead to pull-out failure. 

Figure 2.9 shows the comparison for the sensitivity of the two models to three 

parameters: Q, f′c, and c/d under monotonic or cyclic loading. For all three parameters, both 

models show the same trend: the model prediction for the model under cyclic loading is 

more sensitive to the x-axis quantity than the one under monotonic loading, which is in 

agreement with the finding of Kivell et al. (Kivell et al., 2011). In addition, Figure 2.9 

indicates that with an increase in Q, f′c, or c/d, the probability of the failure being pull-out 

increases; the result regarding corrosion is also consistent with the previous finding from 

Kivell et al. (Kivell et al., 2011). However, under cyclic loading, the lasso model is found 

to be more sensitive than the logistic model with respect to Q (Figure 2.9 (a)) and f′c (Figure 

2.9 (b)). Under monotonic loading, the logistic model is found to be more sensitive than 

the lasso model with respect to f′c (Figure 2.9 (b)) and c/d loading (Figure 2.9 (c)). 

  

 

 

Logistic
Lasso

Logistic
Lasso
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(a) (b) (c) 

Figure 2.9 Sensitivity comparison between logistic and lasso logistic models for (a) 

corrosion level, (b) concrete compressive strength, and (c) ratio of cover to rebar 

diameter. 

Figure 2.10 shows a comparison for the predicted probabilities for the specimens 

based on the developed logistic model (denoted as ‘o’) and the lasso model (denoted as 

‘*’). For probability prediction, if pull-out failure and splitting failure (shown in Figures. 

2.10 (a) and (b), respectively), the probability value of the y-axis is closer to one, yielding 

a better prediction. Overall, for most cases, the predictions from both models are fairly 

close, and both models provide better predictions for the splitting failure specimens. At 

lower corrosion levels (less than 10%), the prediction discrepancy between the predictions 

from the two models seems to be smaller, especially for the splitting failure mode. 

 

 
Logistic Lasso
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(a) (b) 

Figure 2.10 Prediction plot for (a) pull-out failure and (b) splitting failure. 

Next, the prediction performance of the probabilistic models based on logistic and 

lasso classification is compared with other methods of classification and the two 

deterministic models in terms of MAE, PCD, PCD,pull-out, and PCD,splitting. Note that to calculate 

PCD for the deterministic criteria of CEB (Equation (2.4)), Equation (2.11) does not 

consider the cases if the criteria indicate unknown. Thus, to calculate PCD, a 50% of correct 

detection (i.e. reflecting a random guess) is assigned for the unknown cases. The prediction 

accuracy comparison is summarized in Table 2.7. It can be seen that the deterministic 

models (i.e., CEB and ACI-318) have much lower PCD values and higher MAE values 

compared to the classification methods, indicating a poor prediction capability. On the 

other hand, the performance of all the classification methods is reasonably close. While the 

accuracies of the logistic and lasso models are not among the highest in terms of PCD,pull-
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out, they both perform fairly well in terms of PCD,splitting, and PCD. In addition, the lasso 

classification performs best in terms of MAE. 

Table 2.7. Predictive accuracy of various prediction methods. 

 
Prediction 

method 

PCD,pull-out 

(%) 

PCD,splitting 

(%) 

PCD 

(%) 
MAE 

Deterministic 

methods 

CEB (fib, 

2013) 
35 59 47 0.72 

ACI-318 (ACI 

Committee 

318, 2014) 

41 58 49 0.75 

 

Classification 

methods 

 

Logistic 

 

69 

 

84 

 

78 

 

0.34 

Lasso 65 90 80 0.31 

Decision Tree 81 90 85 0.35 

Discriminant 69 88 79 0.36 

k-nearest 56 91 63 0.4 

Naïve Bayes 77 76 76 0.38 

Random forest 94 75 80 0.33 

Support vector 

machine 
86 74 78 0.4 

 

As mentioned earlier, classification techniques other than logistic and lasso 

classification do not result in an explicit formulation. Thus, the logistic and lasso models 

are still preferred, considering their comparable performance to other classification 

techniques. In addition, as the lasso model shows better accuracy than the logistic model 

in terms of MAE and PCD, the model based on lasso classification is suggested to be used 

for the failure mode prediction. 
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2.3. Case study 

Corrosion of steel reinforcement is one of the main deterioration mechanisms in 

RC structure performance, as it changes the material properties and weakens the bonding 

between rebar and concrete. Such deterioration can lead to insufficient rebar development 

length and, thus, can alter the performance and failure mode of the structure (Almusallam 

et al., 1996; A. Castel et al., 2000; Champiri et al., 2012; Jesus Rodriguez et al., 1994). 

Since the investigation has shown that corrosion of rebar may change the bond failure mode 

as shown in the developed probabilistic models, it is worth attempting to evaluate the 

impact of corrosion on the structural performance. 

In the literature, four-point testing is typically adopted by researchers to study 

rebar-concrete bond behavior. In this study, an RC beam with a lap splice studied by Abdel-

Kareem et al. (Abdel-Kareem, 2014) is adopted to investigate how corrosion might impact 

the reliability of the beam flexural performance under a four-point lording through its 

impact on the bond failure mode. The geometry and reinforcement detailing of this beam 

are shown in Figure 2.11. The support-to-support length of the beam is 3000 mm. 

Transverse stirrups with 100 mm spacing and a diameter of 8 mm are provided along the 

beam to avoid shear failure. As shown in Figure 2.11, the lap-spliced rebar is distributed 

along with the constant moment region. The lap splice ls is calculated using ACI 318 (ACI 

Committee 318, 2014), resulting in ls = 542 mm. The related equations for calculating ls 

are provided in Appendix C. In addition, the concrete compressive strength, fc, is assumed 

to be 40 MPa. 
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Figure 2.11 Cross-section and longitudinal detailing of the beam (dimensions are in mm) 

(Abdel-Kareem, 2014). 

 

 

 

 

(a) (b) 

Figure 2.12 Adopted bond-slip curve based on CEB for (a) pull-out failure mode and 

(b) splitting failure mode (fib, 2013). 

In order to incorporate the stress-slip bond behavior, the nonlinear load-deflection 

behavior of the RC beams is obtained through an analytical procedure proposed by Sajedi 

and Huang (Sajedi & Huang, 2017). This analytical procedure can be applied to lap-spliced 

beams or beams without lap splice, taking into account the effects of corrosion on the 

diameter of the reinforcements, the yield strength of bars, and the stress-slip bond behavior 

at the rebar-concrete interface. This procedure utilizes the extension of steel reinforcement 

between flexural cracks that considers the bond-slip behavior at the rebar-concrete 
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interface to estimate the nonlinear force-displacement of RC beams. The detailed 

information about this procedure is summarized in Appendix D. Next, the analytical 

procedure is embedded in the first-order reliability analysis (FORM) to obtain the 

probability of failure. 

The bond behavior under pull-out or splitting failure used in the analytical 

procedure is based upon the stress-slip curve in the CEB code (fib, 2013), where bond 

stress, τ, between rebar and concrete is determined as a function of relative slippage, s, as 

illustrated in Figure 2.12, where τm is the maximum bond stress (i.e., bond strength) and s1 

is the slippage when τ = τm. It is worth to note that the prediction performance of the CEB 

criteria for bond failure mode is not very good at all as shown in Table 2.9, but the CEB 

bond stress-slip model formula has been widely accepted and validated by many previous 

literature ((Bamonte & Gambarova, 2007; Coronelli & Gambarova, 2004; H Lin et al., 

2017; K. Lundgren, 2005; Nakamura et al., 2006; Z. Wu et al., 2014; Y. Zhang et al., 

2020)), and this stress-slip formula shown in Figure 2.12 is consequently adopted in this 

research. 

To consider the effect of corrosion, the bond strength is calculated using a model 

previously developed by Sajedi and Huang (Sajedi & Huang, 2015), as shown in Equation 

(D.2) in Appendix D. Since Equation (D.2) is developed based on the specimens that failed 

in splitting failure modes, it can be used for assessing bond strength under splitting failure, 

τm,s, not for bond strength under pull-out failure, τm,p. By utilizing the ratio of the bond 

strength for pull-out failure (i.e., 8.0(f′c/20)0.25) to the bond strength for splitting failure 
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(i.e., 2.5f′c
0.5) as suggested by CEB (fib, 2013),  = 8.0(f′c/20)0.25/(2.5f′c

0.5), one can set τm,p 

= τm,s.  

2.3.1. Flexural behavior 

Four levels of corrosion are studied and compared: 0% (intact beam), 5%, 10%, 

and 15%. First, the flexural behaviors for the intact and corroded RC beams under four-

point loading are compared through deterministic analyses that consider the bond pull-out 

behavior and splitting behavior separately. Three criteria are used to stop the analysis as a 

flexural failure: the first criterion is when the ultimate bond stress, τu, becomes larger than 

the bond strength, τm (τu > τm); the second criterion is when the concrete reaches its 

allowable strain (i.e., εconcrete > 0.0038), at which point the concrete is considered to fail by 

crushing; and the third criterion is when the rebar stress reaches its ultimate tensile strength 

(fs > fu). Notice that the third failure criterion never occurred in the case study. Also, note 

that these failure scenarios (e.g., bond failure and concrete crushing) could occur before or 

after rebar yielding, and rebar yielding itself does not indicate a beam failure in this study. 

Figure 2.13 shows the force-displacement curves for the RC beams and Table 2.8 

summarizes the characteristics of the flexural behavior: modulus before yielding (E), 

yielding force (Fy), yielding displacement (Δy), rupture force (Fu), ultimate displacement 

(Δu), ductility (Δu/Δy), and hardening ratio (Fu/Fy). The results from both Figure 2.13 and 

Table 2.8 show that the structure performs differently when bond behaviors are in pull-out 

mode or splitting mode. Such a difference becomes more apparent when the corrosion level 

is increased. 
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Table 2.8. Beam flexural behavior comparison for different scenarios. 

Corrosion level, Q Bond behavior E Fy Δy Fu Δu µ = Δu/Δy Fu/Fy 

Intact beam 

 
Pull-out 

 
5.3 

 
71 

 
13.2 

 
92 

 
46.9 

 
3.5 

 
1.3 

Splitting 

 

4.4 

 

71 

 

15.1 

 

92 

 

60.8 

 

4.0 

 

1.3 

 

Q = 5% 

 

Pull-out 4.9 67 13.5 88 49.1 3.6 1.3 
Splitting 

 

3.8 

 

67 

 

17.6 

 

73 

 

25.7 

 

1.5 

 

1.1 

 

Q = 10% 

 

Pull-out 4.6 64 13.7 84 51.1 3.7 1.3 
Splitting 

 

3.6 

 

- 

 

17.4 

 

64 

 

- 

 

< 1 

 

- 

 

Q = 15% 

 

Pull-out 5 60 13.4 81 55.5 4.1 1.35 

Splitting 

 

3.78 

 

- 

 

17.7 

 

60 

 

- 

 

< 1 

 

- 

 

 

Table 2.9. Probability information of the basic random variables. 

Type 
Random 
variable 

Distribution 
(Mean*, std.) 

Importance measure 

(Q = 5%, D = 60 kN) 

Pull-out Splitting 

Geometrical db (mm) 
Normal (16, 0.32) (Lu 

et al., 1994) 
0.078 0.031 

 h (mm) 
Normal (250, 2.5) (Lu 

et al., 1994) 
-0.061 0.078 

 b (mm) 
Normal (160, 0.32) (Lu 
et al., 1994) 

0 0 

 Cx (mm) 
Normal (16, 1.92) 

(Sajedi et al., 2017) 
0 0 

 Ct (mm) 
Normal (16, 1.92) 

(Sajedi et al., 2017) 
0 0 

 Cb (mm) 
Normal (16, 1.92) 
(Sajedi et al., 2017) 

0 0 

 dst (mm) 
Normal (8, 0.16) (Lu et 

al., 1994) 
0 0 

     

Mechanical fy (MPa) 
Normal (440, 22) 

(Sajedi et al., 2017) 
0.121 0.156 

 fc (MPa) 
Normal (40, 7.2) (Sajedi 

et al., 2017) 
-0.729 -0.470 

 fy,st (MPa) 
Normal (280, 14) 
(Sajedi et al., 2017) 

0 0 
     

Model error σɛ Normal (0, 0.169) 
(Sajedi et al., 2017) 

-0.668 -0.861 

For the beams with the same level of Q except for Q = 15%, Fy is about the same 

regardless of the bond behavior. A beam with pull-out bond behavior will have a higher 

modulus, a higher ductility, and a higher hardening ratio as shown in Table 2.8. As 

expected, the performance of the beam with pull-out bond behavior is more desirable. In 

the flexural curves shown in Figure 2.13, the stiffness of the beam initially changes when 

the load reaches around 11 kN, and this change at the beginning of the curve is due to the 
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creation of initial cracks in the concrete considered in the analytical formulation. 

Furthermore, when the beam is under pull-out bond behavior, the flexural failure ends with 

concrete crushing; however, when the beam is under splitting bond behavior, the beam fails 

in bond except for the intact case. More importantly, for the beams with corrosion levels 

of 10% and 15% under splitting bond behavior, the bond failure occurs prior to yielding, 

which is a brittle failure, not a desirable type of failure. 

  
Figure 2.13 Comparison of pull-out and splitting failure for different levels of corrosion. 

To avoid such brittle failure, one could increase the splice length as the value 

suggested by ACI 318 does not appear to be sufficient when corrosion is present (Sajedi et 

al., 2017) or design the beam so that the bond will exhibit in a pull-out behavior. To ensure 

pull-out bond behavior, one could utilize the proposed model shown in Equation (2.15) 

that is determined by four variables f’c, c/d, Q, and MC. In particular, one could determine 

the values of the two design parameters, f’c, and c/d, in order to ensure the desired 

probability level of achieving pull-out bond, with the consideration of the corrosion and 

loading scenarios that could happen in the service life. 
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2.3.2. Reliability analysis 

To evaluate the reliability of the beam flexural performance, the probability of 

failure is calculated as: 

( 0)f k

k

P P g= 

 

(2.16) 

where gk is the limit-state function corresponding to the failure mode k and the subscript k 

denotes the failure mode of the beam (1 for bond being pull-out and 2 for bond being 

splitting). The limit state function is defined by: 

( )k k rg C D= −x
 

(2.17) 

where Ck() refers to the capacity of the beam; xr is a random variable vector that includes 

all basic random variables such as material properties and geometric dimensions, and D is 

the force demand applied to the structure. Since bond behavior being pull-out or splitting 

are two mutually exclusive events, Equation (2.16) can be written as: 

( ) ( )

  ( )

1

2

( ) 0 | 1 1

( ) 0 | 0 0

f r

r

P P C D Y P Y

P C D Y P Y

= −  =  =  

+ −  =  =

x

x
 

(2.18) 

where P(Y = 1) and P(Y = 0) = 1  ̶  P(Y = 1) refer to the probability of the bond being a 

pull-out behavior or a splitting behavior, respectively, which can be calculated based on 

the developed model shown in Equation (2.6) and Equation (2.14). The capacity C(xr), 

which is the maximum force the beam can resist before flexural failure is obtained from 

the analytical procedure in Appendix D. Note that when the failure occurs, it does not 
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necessarily indicate bond failure. In practice, the reliability index, , is typically used as 

the performance measure, and its relationship with Pf is as follows: 

( )fP =  −
 

(2.19) 

The basic random variables, xr, are adopted based on the literature (Lu et al., 1994; 

Sajedi et al., 2017) and their probability information is provided in Table 2.9. Note that the 

model error, σɛ, in Table 2.9 refers to the model error in the bond strength model adopted 

from the literature (Sajedi & Huang, 2015) that is elaborated in Appendix D. 

The contribution of each random variable to the variability of the limit state 

function (Equation (2.17)) is also investigated based on the important measures of the 

random variables when considering 5% corrosion and a demand of 60 kN, and the results 

are shown in Table 2.9. A larger absolute value of importance measure indicates a greater 

contribution of the corresponding random variable on the variability of the limit state 

function. The detailed information of importance measures in reliability analysis can be 

found in related literature (Huang et al., 2015). Table 2.9 shows that for both cases (bond 

behaves in splitting and in pull-out), three variables, model error in bond strength, fy, and 

f’c (namely bond, concrete, and steel properties) dominates the contribution to the 

variability of the limit state function. 

Figure 2.14 shows the fragility curves conditioned on demand values with corrosion 

levels of 0% (intact beam), 5%, 10%, and 15%. For a given level of corrosion, the fragility 

curves show the differences in the structural performance due to different bond behaves in 

pull-out, splitting, or unknown (that is determined by the developed bond failure prediction 

model), and these differences become more apparent with the increase in corrosion. 
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(a) (b) 

 
 

 

(c) (d) 

Figure 2.14 Fragility curves under different corrosion levels: (a) Q = 0% (intact beam), (b) Q = 

5%, (c) Q = 10%, and (d) Q = 15%. 

For the bond failure modes at each considered probability, the fragility curve for 

unknown bond failure mode (shown as a dotted line) is between the fragility curves for the 

bond in pull-out behavior (shown as a solid line) and the bond in splitting behavior (shown 

as a dashed line), as expected. In particular, the fragility curve with the unknown bond is 

closer to the curve for splitting bond behavior when the corrosion level Q is low, but it 
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moves closer to the curve with pull-out bond behavior when Q increases. This is 

understandable, as the probability of being pull-out increases with the level of corrosion 

(as shown in Figure 2.14). 

While compares the four plots in Figure 2.14, the fragility curves with a given bond 

behavior shift to the left as Q increases. This shows the corrosion increases the probability 

of failure as expected. In particular, the fragility curves for splitting bond behavior are more 

distant from each other with the increase of Q. For example, at the lowest level of corrosion 

(Q = 5%) shown in Figure 2.14 (b), the fragility curve for splitting failure is significantly 

distant from the curve for the intact beam shown in Figure 2.14 (a). However, the fragility 

curves for pull-out bond behavior do not change dramatically with the change of Q. This 

indicates that corrosion has more impact on the performance of a structure with a splitting 

bond than the structure with a pull-out bond. It can also be seen that with the increase of 

the corrosion level, the fragility curves became steeper, indicating that the probability of 

failure becomes more sensitive to demand with more corrosion. 

Figure 2.15 (a) and (b) show the reliability index curves with respect to the level of 

corrosion Q by setting the demand D as a deterministic value of 60 kN and as a random 

variable with mean µD = 60 kN and COV = 0.15, respectively. The purpose of Figure 2.15 

is to examine how the bond behavior impacts the structural performance with a progressing 

deterioration; thus, the demand used in Figure 2.15 can be arbitrary. Moreover, the 

reliability index curve with the unknown bond failure mode is between the other two 

curves. The reliability index curve with splitting bond behavior is much lower than the one 

with pull-out bond behavior, and its rate of decrease is much greater. From Q = 0% to Q = 
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5%,  decreases from 3.3 to 1.8 in Figure 2.15 (a) and decreases from 3.1 to 2.1 in Figure 

2.15 (b). Consistent with the previous observations in Figures. 2.13 and 2.14, the result 

from both Figure 2.15 (a) and (b) indicates that the bond behavior plays a critical role in 

the time-dependent performance evolution, particularly when the specimen is exposed to a 

high level of corrosion. In addition, the prediction of the bond failure behavior is important, 

as it determines the actual structural performance. 

  
(a) (b) 

Figure 2.15 Reliability index curves under various corrosion levels conditioned on 

different bond behaviors under (a) D = 60 kN and (b) µD = 60 kN and COV = 0.15 
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CHAPTER III 

3. PROBABILISTIC MODELING OF RC BOND BEHAVIOR CONSIDERING 

FAILURE MODE AD CORROSION 

Bond behavior between the rebar and concrete plays a critical role in the structural 

performance of reinforced concrete (RC) structures in terms of load-carrying capacity, 

ductility, and failure mode. Previous researchers have shown that the bond at the rebar-

concrete interface is influenced by many factors such as concrete cover, rebar size, 

transverse reinforcement, concrete properties, rebar geometry, loading type, etc. (e.g., 

Alsiwat & Saatcioglu, 1992; Dolati & Mehrabi, 2021a; Harajli, 2009; Harajli et al., 2004; 

Murcia-Delso et al., 2013; Rahai & Abasi, 2018; Sabzi et al., 2020; Taslimi & 

Tehranizadeh, 2021). Moreover, such bond can be adversely affected by corrosion on the 

rebar, a leading deterioration mechanism for RC structures. The corrosion that initiates at 

the interface of the rebar and concrete not only deteriorates the material property of rebar 

and concrete and reduces the rebar diameter, but also generates corrosion products (i.e., 

rust) that cause a volumetric expansion around the rebar (Balafas & Burgoyne, 2011), 

resulting in cracking in concrete and weaken the bond between rebar and concrete. 

When there is sufficient concrete to prevent splitting and restrain crack growth in 

concrete, bond fails in shearing of the concrete between ribs, corresponding to a failure 

mode called pull-out failure; when there is insufficient confinement, the deformation-

bearing forces cause splitting cracks that spread through the sides of the RC member and 
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make the concrete to lose its bonding and cover, corresponding to a bond failure 

mode called splitting failure (ACI, 2012). The bond behavior is typically described using 

a bond stress-slip relationship. Figure 1 shows three bond stress-slip curves for different 

confinement levels (Hongwei Lin, Zhao, Ožbolt, & Hans-Wolf, 2017). As shown in Figure 

1, more confinement leads to a more ductile behavior and the bond fails in pull-out, while 

less confinement makes the curve descending part drop at a much faster rate (a brittle 

fashion) and the bond fails in a splitting. In other words, the bond behaves differently for 

each bond failure mode (Tarfan et al., 2019). 

 

Figure 3.1 Bond failure mode stress-slip curves for different levels of confinement 

(Hongwei Lin, Zhao, Ožbolt, & Hans-Wolf, 2017) 

Meanwhile, CEB (2013) provides two widely used models to describe the bond-

slip relationship for the two bond failure modes (i.e., pull-out and splitting failure modes), 

where bond stress, τ, is modeled as a function of relative slippage, s, as shown in Figure 

3.2. In particular, bond strength, τmax, (referring to the maximum stress that can be 

transferred through the rebar to concrete) and peak slip, s1, (referring to the slip 

corresponding to bond strength) are the two most determinative quantities in defining the 

ascending branch of the bond-slip curve, since reaching the bond strength represents the 

outset of the bond failure. However, no corrosion impact is considered in the CEB models. 

τ

max 

τ

f 
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Therefore, these two quantities τmax and s1 need to be re-evaluated considering corrosion 

for each bond failure mode. 

s1 = [τmax/(2.5f c)
0.5]2.5

τmax = 6.54(f c)
0.25(20/d)0.2[(cmin/d)0.33·(cmax/d)0.1+8Ktr ] 

 

s3 = clear distance of ribs

τmax = 2.5(f c)
0.5  

 

(a) splitting (b) pull-out 

Figure 3.2 Bond-slip model based on CEB ( 2013) 

The experimental testing to study bond is typically conducted through  pull-out test 

(e.g., Kivell et al., 2011), beam-end test (e.g., Darwin & Graham, 1993), and beam tests 

(e.g., M. Harajli et al., 2002) in laboratories. To study how rebar deterioration impacts bond 

behavior, accelerated corrosion is the typical practice to introduce the corrosion on rebar 

(Alsiwat & Saatcioglu, 1992; Lin et al., 2019). Using the experimental data, prediction 

models for bond behavior can be developed. Based on the literature review of the past 

studies on bond strength and peak split that is discussed in Section 2, there is a lack of well-

accepted prediction models for these two critical quantities considering bond failure mode 

and corrosion effect. In particular, the bond strength in pull-out has not been studied well 

previously. The goal of this study is to address this need. The proposed models are 

developed based on a comprehensive bond dataset collected from bond tests on the beam 

and beam-end specimens in the literature, and a criterion to specify the bond failure mode 

is also proposed.  Then, probabilistic models to predict the bond strength under pull-out 
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and splitting are developed based on multivariate nonlinear regression analysis with all-

possible subset model selection. These two models, without adopting any reduction factor, 

can predict either intact or corroded bond strength by treating corrosion level as a 

continuous parameter. Next, probabilistic models for the peak slip prediction are developed 

based on a genetic programming algorithm, due to the lack of pre-existing knowledge about 

the correlation between the peak slip and potential influencing factors. Lastly, the 

developed probabilistic models for bond strength and peak slip are compared with the 

existing prediction models and then implemented in structural analysis to evaluate the 

flexural behavior of RC beams. 

3.1. Background 

3.1.1. Bond Strength 

Note that the maximum bond strength τmax cannot be measured directly from 

testing; instead, the average bond strength τavg is usually calculated based on the maximum 

applied force divided by the concrete-rebar interface area. Given a distribution of the bond 

stress along with the rebar, one can calculate τmax using τavg. Some discussion on the 

distribution of bond stress can be found in the literature (Main, 1951; Thompson, 1966; 

Somayaji & Shah, 1981; Jiang et al., 1984). According to the suggestion by Thompson 

(1966), one could assume τmax = 1.5 τavg.  

In the past, researchers have examined the quantitative impact of various influential 

factors on τavg (Almusallam et al., 1996; Castel et al., 2016; Dolati & Mehrabi, 2021b; 
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Harajli et al., 2004; Kivell et al., 2015; Murcia-Delso et al., 2013; Murcia-Delso & Benson 

Shing, 2015; Shekarchi et al., 2019; Torre-Casanova et al., 2013; Wang, 2009). For 

example, Harajli et al. (2004) recognized that the amount of transverse rebar influences the 

ductility of bond behavior in non-corroded structures and bond strength. Wang (2009) 

found that the concrete cover to the main rebar diameter ratio contributes significantly to 

the bond strength when no confinement reinforcement is provided. Torre-Casanova et al. 

(2013) and Castel et al. (2016) developed a numerical model to incorporate the effects of 

stirrups confinement on rebar-concrete bond strength. In addition, studies also showed that 

the bond strength is a function of tensile strength or compressive concrete strength (Arnaud 

Castel et al., 2016; A. Soraghi et al., 2019; Torre-Casanova et al., 2013). Furthermore, 

many studies found corrosion on the rebar has a significant impact on the bond strength 

and consequently on the RC structure performance (Wang, 2009; Kivell et al., 2015; Sajedi 

& Huang, 2015). 

For bond strength prediction, the previous models can be categorized into two 

groups: empirical-based models that is developed using experimental data and mechanism-

based models. The mechanism-based approach is usually complicated and computationally 

intensive (Abasi et al., 2020). As an example, the corrosion effect modeling developed by 

Choi and Lee (2002) requires the value of confining pressure on the rebar due to corrosion, 

and finite element analyses are needed to determine such confining pressure. In addition, 

many of the numerical models require experimental data to obtain and/or update the model 

parameters (Abasi et al., 2021; Vu et al., 2016). On the other hand, empirical-based models 

(such as regression models), extract information directly from data and usually can be 
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easily implemented in practice and also in various probabilistic analyses (Amini et al., 

2021a, 2021b; Zamanian et al., 2020). However, the validation of such empirical models 

heavily depends on the ranges of variables in the training dataset for the model 

development; they cannot be directly applied when the variables are beyond the ranges in 

the training dataset. 

To account for the corrosion effect in the prediction, many past studies adopted 

empirical reduction factors over the bond strength of intact rebar, and the reduction factors 

were usually evaluated using a regression analysis with the experimental bond data of 

corroded specimens (Rodriguez et al., 1994; Maaddawy & Topper, 2005; Bhargava et al., 

2007; Kivell et al., 2015). However, this approach requires that the bond strength for the 

intact rebar must be first predicted. This means that there are two model errors involved in 

the prediction of bond strength of a corroded case, one model error is from the reduction 

factor model, and the other one is from the bond strength model for the corresponding  

intact case. To overcome such limitations, some researchers attempted to develop more 

comprehensive models that incorporate all structural parameters. For example, Prieto et al. 

(2016) developed an empirical model using multiple linear regression analyses that 

considers corroded and uncorroded specimens as one corrosion level parameter along with 

other important structural parameters. Similarly, Sajedi and Huang (2015) developed an 

empirical probabilistic model using multivariate nonlinear regression, which can directly 

predict bond strength given a corrosion level including the intact case. However, as the 

bond data used in the model development in Sajedi and Huang’s study are all identified as 



 

74 

 

splitting bond failure, their model will not be suitable for predicting bond strength in pull-

out. In addition, bond strength in the pull-out has not been studied well previously. 

3.1.2. Peak slip 

For peak slip prediction, while Murcia-Delso (2013) suggested that the estimation 

of s1 is better to be achieved by experimental testing, a practical solution is to use empirical 

formulas. Table 3.1 summarizes the findings of the literature for the prediction of peak slip 

s1 under splitting or pull-out. The first two studies (Feng et al., 2016; Kivell et al., 2015) 

proposed s1 to be a constant for either splitting or pull-out, suggesting that s1 is independent 

of other structural properties and corrosion; while other studies found that s1 is impacted 

by various parameters such as concrete strength, cover size, transverse confinement, and 

rib pattern. However, the findings from those studies are not consistent.  
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Table 3.1. Summary of existing studies for peak slip, s1. 

Bond 

failure 
mode 

Reference Influencing parameter Formulation of s1 

Either 

splitting 

or pull-

out 

Kivell et al. (2015) - s1(Q) = 0.3 mm 

Feng et al. (2016) - s1(Q) = 0.175 mm 

Splitting 

Guizani and Chaallal (2011) 
Transverse 

confinement 
s1 is proportionate transverse reinforcement confinement, 

Xu (1990) d s1 = 0.0368d 

Khalaf and Huang (2016) c/d s1 = 0.5 + 0.1c/d (for 1.0 < c/d < 5.0) 

Coccia et al. (2015) c, d ( )1 0.0035 0.2s c d= −  

CEB (2013) f'c, τmax,splitting 
( )

0.51

2.5
max,splitting

2.5 c

s
f

 
 =
 
 

 

Wu and Zhao (2013) 

Transverse 

confinement quantity, 

K (c/d, Ast, nd, d, sst) 
( ) ( )1 0.7315 5.176 0.33s K K= + + , / 33 st

d st

A
K c d

n d s
 = +    

 

Lin et al. (2017, 2019) 

sr, Q, a transverse 

confinement quantity, 

K’ (c/d, c, Ast, sst) 

( )( )1( 0) 0.12 1 85.8exp 1.4rs Q s K = = + − ,

/ 82.7 st

st

A
K c d

c s
  = +   

 

( ) ( ) ( )( )1( ) 5.89 0.12 216.84 1 1 85.8exp 1.4s Q Q Q K = + + + −    
 

Harajli et al. (2004) (τmax,splitting / τmax,pull-out) 

max,splitting max,pull-out
1 1, 0

max,pull-out max,splitting

τ
exp 3.3ln lnpull outs s s


 −

    
= +    

    
 

s0 = 0.15 mm for unconfined concrete, 

s0 = 0.4 mm for confined concrete with stirrups 

Pull-out 

CEB (2013) - s1 = 1.0 mm 

Alsiwat et al. (1992) f'c - 

Harajli et al. (2004) and Lin et al. 
(2019) 

sr s1 = 0.2sr 

Murcia-Delso et al. (2013) d s1 = 0.07d (for 36 mm < d < 57 mm) 

Zhao and Zhu (2018) d, sr s1 = 0.07442d – 0.00093d2 ≈ 0.1sr 

f’c: concrete compressive strength nd: number of the main bar 
sr: rib spacing sst: stirrups spacing 

d: main rebar diameter Q: corrosion level 

c: cover size  
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For s1 under splitting bond failure mode, the findings from various studies are quite 

different. While CEB (2013) indicated that s1 depends on f’c and τmax, some studies found 

that s1 is a linear function of c, d, or c/d (e.g., Coccia et al., 2015; Khalaf & Huang, 2016); 

some studies suggested that structural properties (such as sr and transverse confinement) 

should be included in the prediction (e.g., Guizani & Chaallal, 2011; Wu & Zhao, 2013). 

Harajli et al. (2004) on the other hand used the ratio of τmax,pull-out/τmax,splitting, and the peak 

slip in the pull-out to obtain the peak slip in splitting. 

For s1 under pull-out failure mode, while CEB (2013) suggests a constant value for 

s1, Alsiwat and Saatcioglu (1992) found that s1 is only influenced by f’c. Other four studies 

(Harajli et al., 2004; Lin et al., 2019; Murcia-Delso et al., 2013; Zhao & Zhu, 2018) all 

showed that s1 depends on rib spacing (sr) or rebar diameter (d) or both. 

Quantifying the impact of structural properties on s1 is not an easy task. For 

example, Wu and Zhao (2013) adopted a mathematical differential equation for the peak 

slip in an exponential form considering the combination confinement from cover and 

transverse stirrups through a trial and error process and then attempted to solve and 

determine the necessary coefficients through a regression analysis based on experimental 

data. A similar approach is adopted by Lin et al. (2019); but in Lin et al.’s study, the total 

confinement quantity is accounted using an exponential function form, which allows the 

bond failure mode to have a smooth transition from splitting to pull-out. 

Lastly, as shown in Table 3.1, very few researchers studied the impact of corrosion 

level on s1. Amongst the three studies shown in Table 3.1, Kivell et al. (2015) and Feng et 

al. (2016) concluded that there is no apparent corrosion impact on peak slip, while Lin et 
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al. (2017, 2019) developed an empirical relation of corrosion level Q and s1 based on a 

limited dataset. 

3.1.3. Failure mode identification 

When collecting the experimental data from the literature, one needs to identify if 

the bond data failed in pull-out or splitting. However, determining the bond failure mode 

on the experimental specimens can be challenging. 

As splitting bond failure is mostly due to the longitudinal splitting of the 

surrounding concrete of the main bar (Tang, 2007), many previous studies used the 

formation of the longitudinal cracking along the main rebar to determine the bond failure 

mode (e.g., Law & Molyneaux, 2017; Lin et al., 2017, 2019). For example, Lin et al. (2017) 

identified all 16 beam-end specimens failed in splitting as they observed the splitting of 

concrete along with the rebar in the anchorage zone on the top longitudinal side of the 

specimens (shown in Figure 3.3 (a)). In the study by Tang (2007) where the main bar was 

placed at the corners of the beam-end specimen as shown in Figure 3.3 (b), the formation 

of the longitudinal cracking on the lateral corner side of the specimen was used to 

determine the bond failure mode. Hanjari et al. (2011) also determined the bond failure 

mode based on the observed cracking patterns but on the lateral side of the specimens: 

Figure 3.4 (a) shows the pull-out failure where the cracks start along with the rebar and 

became parallel to the inclined side of the beam-end specimen, and Figure 3.4 (b) shows 

the splitting failure where the cracks are parallel to the rebar. 
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(a) (b) 

Figure 3.3 Longitudinal cracking observed by (a) Lin et al. (2017) and (b) Tang (2007). 

 

 

 

(a) (b) 

Figure 3.4 Different failure modes observed by Hanjari et al. (2011): (a) pull-out failure, 

(b) splitting failure 

 

However, Darwin and Graham (1993) detected splitting bond failure in all their 

studied specimens with large cover sizes or transverse stirrups without always observing 

longitudinal cracking: Figure 3.5 (a) shows a specimen without showing longitudinal 

cracking on the top side of the specimen, while Figure 3.5 (b) shows a specimen with severe 

longitudinal cracking. 

  

(a) (b) 
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Figure 3.5 Specimens fail in splitting (a) without longitudinal crack and (b) with 

longitudinal crack (Darwin & Graham, 1993) 

Soraghi et al. (2019) identified the cracking patterns on the perpendicular surface 

of the test bar in their beam-end specimens for the two failure modes; as shown in Figure 

3.6, the specimens with no cracking connected to the test bar failed in pull-out, and 

specimens with cracking connected to the test bar failed in splitting. 

      

(a) 

 

  

  

 

(b) 

Figure 3.6 Schematic view of crack patterns formed on the test specimens after failure 

under (a) splitting failure mode and (b) pull-out failure mode (Soraghi et al., 2019) 

In summary, previous studies relied mostly on the formation of cracking in order 

to specify the bond failure mode, however, as is discussed the next Section, bond failure 

mode should be better determined based on the behavior of the specimen upon failure. 

3.2. Experimental Data  

In this study, experimental data for corroded and intact rebar where bond fails either 

in pull-out or splitting are first collected from literature for the model development. 
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 3.2.1. Various types of bond test setups 

In the literature, there are three common test setups to study bond behavior: pull-

out test, beam-end test, and beam test. The pull-out test is the simplest, and most 

economical testing for bond study; it is useful to investigate factors that may impact bond. 

However, it cannot reflect the real stress state in flexural structural components, and the 

setup produces large resistance to splitting due to the friction stresses at the bearing end. 

Thus, the results from the pull-out test are not suitable for developing prediction models 

for bond. Beam tests are ideal, but it needs to overcome the challenges in the beam design 

such as avoiding failure modes other than bond failure (e.g., shear failure, concrete 

crushing, and yielding of bars) (Karin Lundgren et al., 2019). In contrast, beam-end tests 

are much simpler than beam tests and can simulate the stress state in the flexural members. 

Thus, since the bond behavior obtained from beam and beam-end tests are more realistic 

and reliable, only beam and beam-end testing data are collected and used for the model 

development in this study. Note that in this study, all the collected data with corrosion are 

obtained from experiments where the corrosion are generalized corrosion attained through 

an accelerated corrosion process.  

 3.2.2. Proposed criteria for bond failure mode  

As discussed in previous Section, there are different criteria to judge bond failure 

mode and it is necessary to have one consent criterion for consistency. Using a cracking 

pattern alone to determine the bond failure mode may not be reliable, particularly when the 
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corrosion-induced cracking is present. Interestingly, both studies by Kivell (2011) and 

Soraghi et al. (2019) showed that specimens with high corrosion levels tend to exhibit pull-

out bond behavior.  

Instead of relying on the cracking pattern, one can directly use the ductility 

observed in the recorded bond stress-slip curve to determine the bond failure mode. In a 

previous study by the authors (Ahmad Soraghi & Huang, 2021), 132 beam-end specimens 

with various levels of corrosion were tested to study bond behavior under either monotonic 

or cyclic loading, and Figure 3.7 shows the typical bond stress-slip curves for the pull-out 

and splitting bond failure. When comparing the pull-out cases shown in Figures 3.7 (a) and 

7(c) with the splitting cases shown in Figures 3.7 (b) and (d), it is found that splitting bond 

failure is mostly followed by a sudden jump in the amount of bond stress or slip, and/or the 

imbalance on the testing machine. The imbalance right after the jump usually occurs, an 

indication of the brittle failure and a sudden change in the bond. On contrary, the pull-out 

bond failure is gradual and continuous, and the bond stress-slip is ductile.  

It is worthy to note that typically the slip measured by LVDT (Linear Variable 

Differential Transformer) is recorded through a data acquisition system and the applied 

force to calculate the bond stress is recorded by an actuator. Consequently, the slip and 

force are not necessarily recorded simultaneously, and the time difference is in a split 

second, particularly when the splitting bond failure causes the sudden drop in the actuator 

force. Therefore, when splitting bond failure occurs, one may observe three different 

scenarios shown in Figure 3.7 (b): (1) if slip and force are recorded simultaneously, a 

sudden drop of stress is captured correctly, shown as the vertical solid line; (2) if force 
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recording is slightly delayed, a straight plateau can be observed, shown as the dashed line; 

and (3) if slip recording is slightly delayed, an inclined line can be observed, shown as the 

dotted line. Note that scenarios 2 and 3 could be deceiving, as the stress-slip diagrams seem 

to have a ductile behavior. Regardless of the three different looks of the stress-slip 

relationships in Figure 3.7 (b), these three scenarios all suggest that there is a sudden drop 

in force; thus, they all indicate splitting failure. Therefore, when using the recorded bond 

stress-slip relationship, attention needs to discern the three scenarios described here. Note 

that the sudden jump in slip described in scenarios 2 and 3 is also reported in Al-Sulaimani 

et al. (1990). 

    

(a) (b) (c) (d) 

Monotonic loading 

with pull-out bond 

failure 

Monotonic loading 

with splitting bond 

failure 

Cyclic loading with 

pull-out bond 

failure 

Cyclic loading with 

splitting bond 

failure 

Figure 3.7. Typical bond stress-slip behavior from the study by the authors (Soraghi et 

al., 2019). 

 

All the testing specimens (a total of 32) in Lin et al. (2019) and additional 9 

specimens in Lin et al. (2017) were identified as splitting bond failure based on the 

observation of longitudinal cracking. However, based on the proposed criteria, while all of 

the stress-slip curves show the ductile manner (indicating pull-out), some of them are 

actually splitting bond failure due to a detected imbalance or the sudden jump in slip shown 

Imbalance 

Sudden 

jump 
Imbalance 

Sudden 

jump 
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as a straight line (which is the Scenario 2 described above). Therefore, the failure modes 

of all the specimens are re-evaluated: among the 32 specimens in (Lin et al., 2019) that 

were identified as splitting bond failure originally, 19 of them are re-identified as pull-out. 

Figure 3.8 shows the corrected identification of the failure modes for eight of the 

specimens. Similarly, all the 9 specimens in Lin et al. (2017) are re-identified as pull-out 

based on the proposed criteria. 

 

Figure 3.8. Monotonic test results of Lin et al. (2019) with corrected failure mode 

identification 

 3.2.3. Data collection 

A total of 557 data points is extracted from the literature and the overview of those 

data is summarized in Table 3.2, in which about 20% fail in pull-out and the other 80% fail 

in splitting. The complete information of the dataset can be found in (Soaghi 2021). The 

corrosion degree is measured using percentage rebar mass loss Q (= Δm/m0 where Δm refers 

to mass reduction and m0 is initial mass), and it is considered as a continuous parameter (Q 

≥ 0). The collected dataset includes the database used by Sajedi & Huang (2015) for 
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developing a bond strength prediction model considering corrosion. Note that all the testing 

data report the bond strength, but not all of them report peak slip, as indicated in Table 3.2. 

As aforementioned, the size and ranges of the dataset are critical for developing 

empirical models (Esteghamati et al., 2020). Therefore, it is worth comparing the 

distribution of the dataset (a total of 240 data) used by Sajedi and Huang (2015) and the 

newly added dataset collected in this study. Note that since the dataset in Sajedi and Huang 

(2015) only includes splitting bond failure mode, only the splitting data in the newly added 

dataset (a total of 226 data) is used for the comparison. 

Figure 3.9 compares the histograms of four parameters in these two groups: 

corrosion level Q, cover to rebar diameter ratio, c/d, concrete compressive strength, f´c, and 

transverse confinement index, Ktr, which is also defined in Table 3.4. While the newly 

collected dataset provides similar coverage in terms of f´c and Ktr as the dataset used in 

Sajedi and Huang, the newly collected dataset provides a good complement for Q and c/d. 

For example, Figure 3.9 (a) shows that the majority of data in Sajedi and Huang covers Q 

< 5% with no coverage of Q > 15%, while newly added covers a wider range of Q. With 

the combination of the existing and newly added data, the whole dataset provides 

comprehensive ranges of key parameters for the model development. It is also worthy to 

note that empirical models are accurate mostly on the range that the models are developed, 

thus, the range is application is also imposed by the collected dataset. However, since the 

collected data are from a wide range of parameters, it is expected that the proposed model 

performs well in most of the cases yet can be easily updated when more data become 

available. 
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(a) (b) (c) (d) 

Figure 3.9. Histogram comparison of the existing dataset from Sajedi and Huang (2015) and 

the newly collected dataset 
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Table 3.2. Summary of the collected data for model development. 

 

Reference 

τavg in MPa 

(No. of specimens)  

s1 in mm 

(No. of specimens) c (mm) be (mm) d (mm) Rr
* f´c (MPa) ld Q (%) 

Pull-out Splitting Pull-out Splitting 

Used by 

Sajedi & 

Huang 

(2015) 

Darwin and Graham 

(1993) 

- 

(0) 

4.8~13.1 

(110) 

- 

(0) 

- 

(0) 
49.2~82.6 228.6~247.7 25.4 0.05~0.2 31.2~41.3 215.9, 304.4 0 

Bilal† (1995) 
- 

(0) 

4.3~8.8 

(56) 

- 

(0) 

- 

(0) 
25.4 228.6 20.6 0.08~0.2 22.4, 43.1 254 0 

Al-Sulaimani et al. 

 (1990) 

- 

(0) 

5.6~9.3 

(22) 

- 

(0) 

- 

(0) 
29 150 12 0.1* 40 144~300 0~4.5 

Cabrera and 

Ghoddoussi (1996) 

- 

(0) 

6.4~7.5 

(11) 

- 

(0) 

- 

(0) 
25 75 12 0.1* 47.9~64 190 0~7.8 

Rodriguez et al. 

(1994) 

- 

(0) 

3.8~5.4 

(12) 

- 

(0) 

- 

(0) 
15~40 150 16 0.12 53.6~86.2 130, 208 0~14.2 

Almusallam et al. 

(1996) 

- 

(0) 

3.1~18.5 

(14) 

- 

(0) 

- 

(0) 
63.5 190.5 12 0.1* 30 102 0~15.65 

Stanish et al. 

(1999) 

- 

(0) 

2.2~5.1 

(8) 

- 

(0) 

- 

(0) 
20 112.5 11.3 0.1* 36.4, 42.6 250 0~14.4 

Mangat and Elgarf 

(1999) 

- 

(0) 

4~10 

(7) 

- 

(0) 

0.01~0.36 

(7) 
19 57 10 0.1* 45 100 0~5 

 
Total 

- 

(0) 

2.2~18.5 

(240) 

- 

(0) 

0.01~0.36 

(7) 
15~82.6 57~247.7 10~25.4 0.05~0.2 22.4~86.2 100~304.4 0~15.65 
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Newly 

added 

data 

Soraghi and Huang 

(2021) 

2.9~18.7 

(48) 

3.6~10.8 

(84) 

0.1~2.5 

(48) 

0.02~0.7 

(84) 
24.4~101.6 190.5~304.8 15.87~25.4 0.2~0.5 27~43 88.9~203.2 0~25.8 

Harajli et al. (2004) 
- 

(0) 

3.2~9.9 

(8) 

- 

(0) 

0.03~0.7 

(8) 
18~50 150 16~32 0.2~0.3** 27.9, 32.9 80~160 0 

Lin et al. (2019a) 
- 

(0) 

4.5~9.5 

(16) 

- 

(0) 

0.1~0.8 

(16) 
25~70 75~210 20 0.1* 30 150 0 

Lin et al. (2019b) 
7~13 

(19) 

- 

(13) 

0.1~0.7 

(19) 

0.1~0.5 

(13) 
25, 35 150 20 0.1* 50 200 0~12.89 

Tang (2007) 
- 

(0) 

0.4~8.4 

(64) 

- 

(0) 

- 

(0) 
12~48 108~200 12, 16 0.1* 34~50.5 300 0~30.02 

Lin and Zhao 

(2016) 

- 

(0) 

3.2~9.6 

(36) 

- 

(0) 

- 

(0) 
40 150 20 0.1* 30 150 0~20.86 

Lin et al. (2017) 
12~17.7 

(9) 

- 

(0) 

0.2~0.9 

(9) 

- 

(0) 
35 150 20 0.1* 50 100 0~16 

Hanjari et al. (2011) 
2.3~8.1 

(15) 

- 

(5) 

0.04~0.4 

(15) 

0.02~0.7 

(5) 
30 135 20 0.1* 30 210 0~16.7 

 Total 
2.2~18.7 

(91) 

0.4~10.8 

(226) 

0.04~2.5 

(91) 

0.02~0.8 

(126) 
12~101.6 75~304.8 12~32 0.1~0.5 27~50.5 80~203.2 0~30.02 

* The value of Rr is assumed as is not reported in the corresponding reference. 

** The value of rib spacing is reported, but not the rib height, thus a rib height of 2 mm is assumed. 
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3.3. Average bond strength and peak slip model development 

In this section, the probabilistic prediction models for average bond strength τavg 

and peak slip s1 are developed for the two bond failure modes with the comprehensive 

database collected. For τavg, the multivariate regression approach is used. For s1, the genetic 

programming technique is adopted, as the relationship between s1 and the influential factors 

is not well studied.  

To better understand how much accuracy a prediction model should have, first, one 

could examine the impact of the variations of τavg and s1 on the flexural behavior of an RC 

beam. In this study, the analytical procedure proposed by Sajedi and Huang (2017) is used 

to incorporate the stress–slip bond behavior (using maximum and minimum of τavg or s1 in 

the database) to obtain the nonlinear load-deflection behavior of an RC beam. The two RC 

beams (i.e., B4 with splitting bond failure and B6 with pull-out bond failure) studied by 

Abdel-Kareem et al. (2014) are adopted and the beam configuration is shown in Figure 

3.10. Table 3.3 provides the structural parameters of the two beams. 

 

Figure 3.10. Cross-section and longitudinal detailing of RC beams studied by Abdel-

Kareem et al. (2014) (dimensions are in mm) 
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Table 3.3. Details of experimental RC beams studied by Abdel-Kareem (2014) 

Specimen 

Bond 

failure 

mode 

Lap splice 

(mm) 

Stirrups 

spacing 

(mm) 

Concrete 

strength 

(MPa) 

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

B4 Splitting 420 150 58.7 440 551 

B5 Splitting 420 150 80.7 440 551 

B7 Splitting 320 150 104.3 440 551 

B6 Pull-out 420 150 102.5 440 551 

B8 Pull-out 320 125 99.6 440 551 

As shown in Figures 3.11 (a), (c), and (d), the variations in τavg for either bond 

failure mode and s1 for pull-out bond failure significantly alter the load-deflection behavior 

of the RC beam, while s1 for splitting bond failure does not result in a considerable 

difference (as shown in Figure 3.11 (b)). This result indicates that the prediction model of 

s1 in splitting can tolerate a large model error. In addition, the variations in τavg and s1 for 

pull-out result in different beam failure modes (beam fails in bond or concrete crush), beam 

stiffness, and load-carrying capacities (expect s1 for the pull-out), as shown in Figure 3.11. 

This indicates the accuracy of the prediction models of τavg for splitting or pull-out and s1 

for pull-out is critical for the structural performance evaluation. 

    

(a) B4 (splitting) (b) B4 (splitting) (c) B6 (pull-out) (d) B6 (pull-out) 

Figure 3.11. The impact of the variations in τavg and s1 on load-deflection of RC beams  
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3.3.1. Probabilistic model for average bond strength, τavg 

Note that the maximum bond strength τmax cannot be measured directly from 

testing; instead, the average bond strength τavg is usually calculated based on the maximum 

applied force divided by the concrete-rebar interface area. Given a distribution of the bond 

stress along with the rebar, one can calculate τmax using τavg. Some discussion on the 

distribution of bond stress can be found in the literature (Jiang et al., 1984; Main, 1951; 

Somayaji & Shah, 1981; Thompson, 1966). According to the suggestion by Thompson 

(1966), one could assume τmax = 1.5 τavg. 

3.3.1.1. Performance of Sajedi and Huang model 

In this subsection, the previous prediction model developed by Sajedi and Huang 

(2015) is used to check the model performance on the collected data from this study. 

Figures 3.12 (a)-(c) show the prediction of the Sajedi and Huang model (2015) compared 

with the experimental data used for their model development, the newly added 

experimental data with splitting bond failure, and the newly added experimental data with 

pull-out bond failure, respectively. In Figure 3.12, the solid line refers to the equality line, 

and the dashed lines refer to the ±1 standard deviation of model error. 

As expected, Sajedi and Huang’s model provides unbiased and good accuracy 

predictions for their database used for the model development, shown in Figure 3.12 (a). 

However, when applying this model to the newly added data either splitting or pull-out, 

this model loses its accuracy and unbiasedness, as shown in Figures 3.12 (b) and (c), 
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particularly for the corroded cases (shown in solid marks). Since Sajedi and Huang 

developed their model based on data with only splitting bond failure mode, it is not 

surprising that its prediction performance fails for the newly data with pull-out in Figure 

3.12 (c). On the other hand, Figure 3.9 shows the differences in the distributions of 

structural parameters in Sajedi and Huang’s database and the newly added data with 

splitting. Those distribution differences (particularly for corrosion level, Q) may be the 

reason that this model also fails to provide good predictions for the newly added data with 

splitting in Figure 3.12 (b). 

  
 

(a) Splitting data from Sajedi 

& Huang (Sajedi & Huang, 

2015) 

(b) Newly added splitting 

data 

(c) Newly added pull-out data 

Figure 3.12. Bond strength prediction, ln(τavg/√𝑓𝑐
′
), using Sajedi and Huang model (2015) vs. 

experimental value 

3.3.1.2. Proposed model development 

In this study, the proposed model formulation for predicting τavg adopts the 

multivariate regression model used in Sajedi and Huang (2015), which can be expressed 

as: 

A

P

A

P  

A

ctual 

P  
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0
( , ) ( , )

n

i ii
y z 

=
= +x Β β x  (3.1) 

where y is the predicted response that is τavg or a suitable transformation of τavg, 

zi(𝛃̃,x) is the ith explanatory function; x is the vector of independent variables; 𝛃̃ is the 

vector of unknown parameters in the explanatory functions; βi is the unknown model 

coefficient; B = {β, 𝛃̃, σ} is the vector of unknown model parameters, in which β = {β0, β1, 

…, βn}; and σε is the model error in which σ is the standard deviation of the model error 

and ε is a random variable that follows a normal distribution. The model uses assumptions 

of homoscedasticity and normality in the model error, which can be satisfied by a variance 

stabilizing transformation of the predicted response.  Thus, the prediction from the 

proposed model follows a normal distribution when point estimates are applied in the 

model parameter β. 

The explanatory functions, zi, adopted here are the ones that have shown correlation 

with the bond strength in the literature (Bhargava et al., 2007; Chung et al., 2004; Lee et 

al., 2002; Orangun et al., 1977; Wang, 2009), and their formulations and their impact 

captured are listed in Table 3.4. To capture the reduction in τavg due to the effect of 

corrosion, an exponential function of Q (i.e., exp(𝛽Q)) is multiplied to z1, z2, and z3, 

resulting in three additional explanatory functions: z5, z6, and z7. Note that exp(𝛽Q) is not 

multiplied to z4, since it is been shown that corrosion of rebar is independent of transverse 

confinement (Rodriguez et al., 1993). Note that the explanatory functions provided in Table 

3.4 are unitless. Two dummy variables that could potentially contribute to the model 

prediction are also examined: (1) dMC = 0 for specimens under monotonic loading and dMC 
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= 1 for specimens under cyclic loading, and (2) dS = 0 for specimens without the transverse 

rebar (i.e., Atr = 0) and dS = 1 when Atr > 0. The two dummy variables are incorporated into 

the model by adding interaction terms of dMC and dS with z1 to z7 as additional explanatory 

functions. When including all explanatory functions, the model is a full model. 

Table 3.4. Explanatory functions for multivariate nonlinear regression analysis. 

Explanatory function Impact captured Notation 

z0 = 1 Correction of constant bias c: clear concrete cover 

d: intact rebar diameter 

μ: friction coefficient1 

Rr: relative rib area (= rib height/rib spacing)2 

8 1dd l =  : reduction factor along development/splice length3 

ld: development or splice length4 

tr trK A s d=   

s: stirrups spacing 

Atr: cross-section area of stirrups5 

f’c: concrete compressive strength (MPa) 

fyt: yield strength of stirrups 

be: effective beam width 

Q: corrosion level in terms of percentage mass loss 

1
1

r

r

Rc
z

d R






+
=  

−

 Confinement effect due to cover (H. 

Wang, 2009) 

2
1

e r

r

b R
z

d R






+
=  

−

 Confinement effect due to effective width 

(H. Wang, 2009) 

3 dz d l=  Embedment effect (Orangun et al., 1977) 

4

1
tr yt

c

z K f
f

=  


 
Confinement effect due to the presence of 

transverse stirrups (Kemp & Wilhelm, 

1978) 

( )5 1 1expz z Q=    Corrosion 

( )6 2 2expz z Q=    Corrosion 

( )7 3 3expz z Q=    Corrosion 

1 Due to the unavailability in the literature μ is assumed to be 0.45 (Choi & Lee, 2002) 

2 Rr is assumed ed to be 0.1 based on (X. Wang & Liu, 2004) when it is not provided 

3,4 Development or splice can be substituted with the bond length 

5 Number of stirrups legs should be considered 

An all-possible subset model selection technique is then applied to the full models, 

where all the reduced models are evaluated using Akaike’s information criterion AIC and 

adjusted R-squared, Adj-R-sq. In each model size (that equals the number of explanatory 

functions), the model with the lowest AIC or highest Adj-R-sq is the best model for that 

model size. The best models from all model sizes are then compared with each other using 

AIC to determine the final model, which should have the best compromise between the 
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accuracy and complexity. Noted that before conducting the model selection, the 

explanatory functions with a high variance inflation factor, VIF, (i.e., VIF >5) are removed 

first to eliminate the presence of multicollinearity, which could lead to inaccurate 

evaluation of the model parameters. 

As the result of the model selection, the proposed models of bond strength in 

splitting and pull-out are obtained, as shown below, respectively: 

1

0 1 2 3

1
ln

1

avg tr ytQr

r dc c

A fRc d
e

d R l s df f


 

     



     +

= +     +  +   +        −        

 

 (3.2) 

1

0 1 2 3 4

1
ln

1 1

avg tr ytQ er r
s

r d rc c

A f bR Rc d
e d

d R l s d d Rf f


  

       
 


       + +

= +     +  +   +     +          −  −        

 

 (3.3) 

where both 𝜏𝑎𝑣𝑔 and √𝑓𝑐
′ in MPa in which f´c (MPa) is the compressive strength of 

concrete.  The estimated model parameters in Equations (3.2) and (3.3) are summarized in 

Table 3.5. For both models, the normality and homoscedasticity assumptions are checked 

using residual plots and Q-Q plots. When comparing Equations (3.2) and (3.3), they both 

selected the same three exploratory functions, and the pull-out model (shown in Equations 

(3.3)) includes an additional exploratory function (i.e., z2·ds). 
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Table 3.5. Model coefficients for pull-out and splitting bond strength model. 

Model Splitting Pull-out 

Coefficient Mean Standard deviation Mean 
Standard 

deviation 

β0 -0.955 0.07 -0.568 0.114 

β1 0.516 0.06 0.339 0.102 

𝛽̃1 -0.101 0.01 -0.067 0.028 

β2 5.565 0.02 3.629 0.064 

β3 0.037 0.05 0.033 0.094 

β4 - - 0.004 0.004 

σ 0.250 - 0.190 - 

Model 

formulation 

for splitting* 

1

0 1 2 3

1
ln

1

avg tr ytQr

r dc c

A fRc d
e

d R l s df f


 

     



     +

= +     +  +   +        −        

 

Model 

formulation 

for pull-out* 

1

0 1 2 3 4

1
ln

1 1

avg tr ytQ er r
s

r d rc c

A f bR Rc d
e d

d R l s d d Rf f


  

       
 


       + +

= +     +  +   +     +          −  −        

 

τavg, f’c, and fyt in MPa. c, d, ld, and s in mm. Atr in mm2. Q in %. μ, γ, and Rr are unitless 

Figure 3.13 shows the scatter plot of the prediction of 𝜏𝑎𝑣𝑔/√𝑓𝑐′ by the proposed 

model vs. the actual experimental data, where the solid line refers to the equality line, the 

dashed lines refer to the ±1 standard deviation of the model error, and the solid marks refer 

to the corroded cases. The data points on the three plots in Figures 3.13 (a)-(c) are scattered 

evenly around the equality line, and most of the data lie within the dashed lines, indicating 

that the predictions are unbiased with good accuracy. When comparing Figure 3.13 (a) with 

Figure 3.12 (a), one can see that the proposed model provides similar prediction 

performance as Sajedi and Huang’s model (2015) for the splitting bond failure data used 

in their study. While the data in Figure 3.13 (a) is slightly more scattered than Figure 3.12 

(a), as the proposed model is developed based on a larger dataset. In addition, when 

comparing Figures 3.13 (b) and (c) with Figures 3.12 (b) and (c), respectively, the proposed 

models show much better performance with much less bias and variance, particularly for 
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the corroded cases. These results show that the proposed models provide good predictions 

on the splitting bond failure data used previously in Sajedi and Huang (2015) and also 

newly added splitting and pull-out data. 

   

(a) Splitting data from 

Sajedi & Huang (Sajedi & 

Huang, 2015) 

(b) Newly added splitting 

data 

(c) Newly added pull-out 

data 

Figure 3.13. Bond strength prediction, ln(τavg/√𝑓𝑐
′
), using the proposed model vs. 

experimental value 

3.3.2. Probabilistic model for the bond peak slip s1 

As discussed in the Introduction, the findings from previous studies regarding 

influencing factors on s1 are not consistent. Due to the lack of pre-existing knowledge about 

the relationship between s1 and the potential influential factors, genetic programming (GP) 

is implemented in this study to develop the prediction formula directly from the data. GP 

is a machine learning technique that generates a population of random trees, also known as 

initial solutions, and each tree represents a gene. Then, the trees evolve and breed together 

to find the best-performing model (Gandomi & Atefi, 2020).  
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Recently, a symbolic multi-gene regression (SMGR) technique has been developed 

to decrease complexity and increase the accuracy and functionality of the evolution of the 

population of genes (Searson, 2015). In the process of SMGR, meaningful relationships 

from the data will be extracted in the form of symbolic equations that are “hidden” in the 

data. An example of symbolic multi-gene regression formulation is shown in Figure 3.14, 

where the prediction model consists of two genes (or trees), and each gene consists of either 

symbol (such as multiplication ‘×’, logarithm ‘log’, subtraction ‘-’, and square root ‘√’) or 

input variables (such as x1,…, xn). It should be noted that even though the model structure 

consists of nonlinear symbols such as ‘log’ or ‘√’, the overall formulation is a linear 

collection of trees. A general SMGR formulation can be written as: 

( ) ( )0

1

ˆ , , ,
m

j j

j

y G 
=

= + x β θ θ x  (3.4) 

where 𝑦̂ is the predicted response, x = [x1,…, xn] is the vector of input variables, β 

= [β0, β1, …] is the vector of coefficients, Gj(θ, x) is the jth gene outputs, and θ is the vector 

of unknown parameters for each gene. The optimal values of β are determined by 

minimizing the prediction error (e.g., root mean squared error, RMSE as defined in 

Equation (3.5)) over a training data set (Zamanian et al., 2020).  

2

1

ˆ
n

i i

i

y y

RMSE
n

=

−

=


 
(3.5) 

where 𝑦𝑖̂ and yi are the ith predicted and actual response values, respectively, and n 

is the number of data points. To measure the model performance, R-squared, R-sq can be 

used. In this study, the genetic programming toolbox for the identification of physical 
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systems (GPTIPS) developed by Dominic Searson (2015), an open-source toolbox in 

MATLAB software, is adopted to implement SMGR. 

x1 x3 -3 x1

log

[(x1-x3) + (2log(x2))]

x1

x3

[(-3/x1×x3)]

/

-3

-

+ × 

Gene 1

Gene complexity = 

1+1+1+1+3+3+7 = 17

Gene 2

Gene complexity = 

1+1+3+1+5 = 11

6+1=7

2+1=32+1=3

1 1 1 1

4+1=5

12+1=3

1 1

 

Expressional complexity = 17+11 = 28 

 

 

Figure 3.14. An example of the formulation of SMGR 

Table 3.6 shows the values of the setting parameters used in the GPTIPS in this 

study. Five input variables, x, are selected: c/d, f’c (MPa), ld (mm), Ktr, and exp(Q). It 

should be noted that, even though some literature (e.g., Harajli et al., 2004; Zhao & Zhu, 

2018) suggests that the parameter rib spacing sr has an impact on s1, it is not used as an 

input variable due to its unavailability in many of the collected testing data. It is expected 

that the proposed models could be improved if rib spacing information can be added as one 

the input variables to the GPTIPS. In Table 3.6, the function symbols are selected to keep 

the final model formulation simple from an engineering practice perspective. In addition, 

Gmax and Dmax refer to the maximum number of genes/trees, and the number of layers in 

the tree, respectively, and both determine the complexity and accuracy of the final model. 

However, selecting the appropriate values for Gmax and Dmax is not an easy task. Setting a 

higher value of Gmax or Dmax leads to more accurate, yet more complicated and possibly 

overfitted models. A high value of Gmax may create “horizontal bloating” and a high value 

𝑦̂ = 𝛽0 + 𝛽1[(x
1 
- x

3
) + (2log(x

2
))] + 𝛽2[(-3

 
/ x

1
) × x

3
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of Dmax may create “vertical bloating”. Accordingly, Gmax and Dmax are determined by a 

trial-and-error in this study, which is elaborated later. The values for other setting 

parameters in Table 3.6 are based on the suggestion from previous literature (Hii et al., 

2011; Searson et al., 2007, 2010, 2015). 

Table 3.6. GPTIPS run settings. 

Parameter Settings 

Input variables, x c/d, τavg/sqrt(f’c), ld/d, Ktr, exp(Q) 

Function symbols +, −, ×, ÷, √, (·)2, (·)3, −(·) 

Maximum allowable gene (Gmax) 3 or 4 

Maximum tree depth (Dmax) 3 or 4 

Number of generations 500 

Number of populations 10,000 

Crossover events 0.84 

Mutation events 0.14 

Direct reproduction 0.02 

Random constant range [-10 10] 

To determine suitable values of Gmax and Dmax, a preliminary evaluation is 

performed for all possible combinations of Gmax and Dmax ranging from 1 to 10, which 

generates 100 models. The models are then evaluated based on their accuracy (reflecting 

in R-sq) and complexity (reflecting in expressional complexity). A model with R-sq ≥ 0.6 

is considered to have acceptable accuracy. The expressional complexity is defined as the 

summation of node count and all its possible full sub-tree (Searson, 2015). Figure 3.14 

shows an example of the calculations of such complexity with two genes. As the result of 

the preliminary evaluation, it is found that when Gmax or Dmax is less than 3, the resulted 

models have very low accuracy, while when Gmax or Dmax is larger than 4, the resulted 

models are overly complicated. Thus, it is appropriate to use 3 or 4 for both Gmax and Dmax. 

Table 3.7 shows the model comparison resulted from the four possible combinations of 

Gmax and Dmax with the values of 3 or 4. 
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Table 3.7. Model accuracy and complexity for various combinations of Dmax and Gmax. 

  Gmax = 3 Gmax = 4 

  R-sq (%) Complexity R-sq (%) Complexity 

Splitting 
Dmax = 3 16.1 40 41.7 47 

Dmax = 4 22.0 85 50.3 133 

Pull-out 
Dmax = 3 40.1 30 62.1 40 

Dmax = 4 42.5 63 65.0 140 

 

As shown in Table 3.7, for the pull-out, the model resulted from the case where 

Gmax = 4 and Dmax = 3 has the least complexity and R-sq larger than 60%. Thus, this model 

is adopted as the final model for s1 in pull-out and its formulation is shown as: 

( ) ( ) ( )
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1
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c c

avg Qd
tr
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K e

d f

 
    


 

− −

−
−

 
= +  +   +   +   

  

  
+  −  +       

 

(

(3.6) 

The estimated coefficients in Equation (3.6) are shown in Table 3.8, and the model 

error σε (in which σ is the standard deviation of the model error and ε is a random variable) 

found to follow a normal distribution, which is checked by Q-Q plot. One can notice that 

this model uses all of the five input variables x, except c/d. This indicates that c/d does not 

contribute to the prediction of s1 in the pull-out, which is also shown in previous literature 

(Mohamed H. Harajli et al., 2004; Murcia-Delso & Benson Shing, 2015; Saatcioglu et al., 

1992; Taerwe & Matthys, 2013; W. Zhao & Zhu, 2018) in Table 3.1. 
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Table 3.8. Statistics of model coefficients for pull-out bond peak slip model. 

Coefficient Mean Standard deviation 

β0 -3.54 0.05 

β1 0.244 0.13 

β2 -0.631 0.07 

β3 2.52 0.11 

β4 -5.86 0.15 

β5 1.85 0.1 

σε -3.54 - 

Model 

formulation 

for pull-out 

( ) ( ) ( )
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K e

d f

 
    


 

− −

−
−

 
= +  +   +   +   

  

  
+  −  +       

* 

* τavg, f’c, and fyt in MPa. c, d, ld, and s in mm. Q in %.. 

However, for s1 in splitting, using SMGR fails to satisfy the R-sq criterion with 

reasonable complexity. As shown in Table 3.7, to achieve an R-sq of 49.1%, the complexity 

has reached a complexity of 133 (that is not a practical model). Based on the results in 

Figure 3.11, for structural performance evaluation purposes, the prediction of s1 in splitting 

is not as critical as s1 in the pull-out; thus, instead of using any model obtained from SMGR, 

a beta distribution is used to fit the s1 database with splitting bond failure. Beta distribution 

has the advantage of imposing a boundary condition and flexibility over its shape due to 

the employment of shape parameters. The probability density function (PDF) of s1 in 

splitting that follows a beta distribution is shown as and the coefficients are provided in 

Table 3.9: 

( )
( ) ( )

( )( )

1 2

1 2

1 1

1,min 1,max

1 1 2 1,min 1 1,max1

1 2 1,max 1,min

,
,

x s s x
f s s s s

s s

 

 
 

 

− −

+ +

− −
=  
 −

 (3.7) 

Figure 3.16 shows the scatter plots of the proposed model prediction of s1 vs. 

experiment data, where the solid line refers to the equality line and the dashed lines refer 
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to the ±1 standard deviation of the model error. In Figure 3.16, data points are evenly 

scattered within the dashed lines having most of the points inside, which is an indication 

of an unbiased prediction. Note that the prediction of s1 in splitting is generated from the 

PDF of s1, and Figure 3.16 (a) shows the realizations sampled from the PDF. While the 

±1σ band is wide in Figure 3.16 (a) because no variation is reduced in the database by 

fitting a distribution, the proposed model prediction removes the bias. When compared 

with other existing models in the next section, using beta distribution shows better 

prediction performance. 

Table 3.9. Model parameters for bond peak slip in splitting 

Coefficient Mean Standard deviation 

β1 1.08 0.17 

β2 2.85 0.48 

σε 0.20 - 

s1,min 0.01 - 

s1,max 0.86 - 

Model 

formulation* 
( )

( ) ( )

( )( )

1 2

1 2

1 1

1,min 1,max

1 1 2 1,min 1 1,max1

1 2 1,max 1,min

,
,

x s s x
f s s s s

s s

 

 
 

 

− −

+ +

− −
=  
 −

* 

* s1 in mm 
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Figure 3.15. Histogram and the fitted PDF for peak slip under splitting bond failure 
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(a) Splitting (b) Pull-out 

Figure 3.16. Scatter plot of developed s1 models (in mm) 

3.4. Model evaluation 

In this session, the performance of the developed models is assessed by 

comparing with existing models in the literature based on the experimental data and 

applying the bond-stress relationship using the developed models in the flexural behavior 

evaluation of RC beams.  

3.4.1. Prediction comparison of the proposed model with existing models 

In this section, the predictions obtained from the proposed models and selected 

existing models are evaluated against experimental data. Even though those data are 

among the ones used for the model development, they are not used for the validation of 

the proposed models but for a comparison purpose 
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3.4.1.1. Bond strength, τavg 

As mentioned before, to account for the corrosion impact, many existing prediction 

models for τavg are developed by applying a reduction factor to the intact bond strength, 

τavg,0. Table 3.10 shows the formula of the four selected existing models, and τavg,0 that is 

needed in the existing model is calculated based on the proposed models. These four 

models are used for both splitting and pull-out bond failure cases. In addition, only the 

corroded experimental data are used for this comparison. 

Table 3.10. Existing prediction models for bond strength. 

Reference Prediction model 

Bhargava 

et al. 

(2007) 

( )19.8 1.5

avg avg,0 avg,0

Q
e  
− −

=    

Chung et 

al. (2004) 

1.06

avg avg,0 avg,00.0159Q  −=    

Stanish et 

al. (1999) 
( )avg avg,0 1 3.5Q =  −  

Yuan et al. 

(2015) 
( )avg avg,0 1 10.544 1.586Q c d Q =  −  +    

Prieto et a. 

(2016) 
( ) ( )( ) ( ) ( )( )( )( ) ( ) ( )( )

0.0588.13 49.052 0.498 0.01622/3 2 2 21.25 1 / 1 exp 0.129 / 40 / 2 / 1 1 % 1 1avg c d c tr trf d d l f c d d K K Q
−

−  
 = + + − + + + + + −  

  

 

Figure 3.17 shows the prediction comparison of the normalized bond strength based 

on the proposed models and the existing models. Overall, all the four existing models result 

in a much bigger scatter than the proposed models for both splitting and pull-out, indicating 

the proposed models have better accuracy. Second, all the existing models underestimate 

the bond strength particularly for pull-out cases (shown in the right plots). Since the 

existing models only use Q and/or c/d to quantify the corrosion impact (as shown in Table 

3.10), the results infer that using only these two quantities subsequently is insufficient. 
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Figure 3.17. Comparison of bond strength predictions, ln(τavg/√𝑓𝑐
′
), using the proposed 

model and four existing prediction models for bond data with corrosion 

Table 3.11 further compares the prediction performance of the models in terms of 

R-sq and absolute error of prediction MSE that is defined as: 

( )
2

1
ˆ

n

i ii
y y

MSE
n

=
−

=


 (3.8) 

where 𝑦̂ and yi is the predicted and actual value of τavg/√𝑓𝑐′, respectively, and n is 

the number of data points. Table 3.11 shows that the proposed models have much higher 

R-sq values and much lower MSE values, indicating the proposed models are well-

performed, consistent with the finding in Figure 3.17. It can also be seen that the model 

developed by Prieto et al. (Prieto et al., 2016) has the second highest accuracy. 

Table 3.11. Comparison of proposed models and existing models for bond strength 

prediction. 

Prediction model 
R-sq (%) MSE 

Splitting Pull-out Splitting Pull-out 

Proposed model 75.5 79.0 0.22 0.15 

Bhargava et al. (2007) 26.6 8.7 0.77 0.95 

Chung et al. (2004) 18.8 15.3 0.91 1.15 

Stanish et al. (1999) 33.8 11.5 0.49 0.65 

Yuan et al. (1999) 30.7 24.2 0.51 0.56 

Prieto (2016) 61.2 44.6 0.31 0.24 

Prieto et al. 

Proposed model 
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The contributions of the key variables in the proposed models are examined via 

sensitivity analysis. Figure 3.18 shows the sensitivity plots of the τavg prediction using the 

proposed models (i.e., Equations (3.2) and (3.3)) in terms of five variables (i.e., Q, Ktr, f’c, 

c/d, d/ld), where the band refers to the ±1 standard deviation of the model error. All the 

cases shown in Figure 3.18 indicate that τavg in the pull-out, in general, is larger than τavg in 

splitting, which is consistent with CEB (2013). For both splitting and pull-out, all five 

variables show similar impacts on τavg: an increase in Q result in a decrease in τavg, and an 

increase in Ktr, f’c, c/d, or d/ld lead to an increase in τavg (consistent with previous findings 

(Jiang et al., 2018; Kivell et al., 2011; Yuan et al., 1999)). Also, the level of sensitivity is 

very similar between splitting and pull-out for Ktr, f’c, and c/d, while τavg in splitting is more 

sensitive to Q and d/ld. 

   

(a) (b) (c) 

    

 

(d) (e)  

Splitting 

Pull-out 
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Figure 3.18. Sensitivity to proposed bond strength (τavg) prediction: (a) corrosion level 

Q (b) confinement from transverse stirrups Ktr (c) concrete strength f’c (d) cover-to-

diameter ratio c/d and (e) embedment effect d/ld 

3.4.1.2. Peak slip s1 

The performance of the proposed models for s1 is also compared to nine selected 

existing models whose formulas are provided in Table 3.1. The scatter plots of the 

prediction vs. experimental data are shown in Figure 3.19. For both splitting and pull-out 

cases, the data points predicted by the proposed models are evenly distributed around the 

equality line, indicating the proposed models perform better in terms of prediction bias. In 

particular, the proposed model for the pull-out has much tighter scatter than the other 

models, indicating its better performance in terms of accuracy. 

It is noticed that the prediction points obtained from the existing models are shown 

in Figures 3.19 (a) and (c) form nearly one or multiple straight lines. This is because those 

models are developed based on limited variables: some of them are just constant (e.g., 

Kivell et al., 2015, Feng et al., 2018), and some are based on just one parameter (e.g., sr, d, 

or c/d). Thus, those models ignore the potential influence of many other variables and do 

not provide accurate predictions, which particularly true for the pull-out. In addition, as 

shown in Figure 3.19 (b), Wu and Zhao (2013) and Lin et al. (2017, 2019) provide better 

predictions compared to other existing models, this may be because their models involve 

more structural variables, such as transverse confinement quantity. 
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Feng et al. (2016) 
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Khalaf & Huang (2016) 
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Wu and Zhao (2013) 

Lin et al. (2019) 
 

Zhao and Zhu (2018) 

CEB (2013) 

Kivell et al. (2015) 

Feng et al. (2016) 

 

   

(a) Splitting (b) Splitting (c) Pull-out 

Figure 3.19. Comparison of the proposed models for s1 and existing models in the 

literature 

Table 3.12 shows the prediction comparison of the models in terms of R-sq and 

MSE. The MSE calculated here is based on the logarithm of s1 values. For the pull-out case, 

the proposed model has a much higher R-sq value and lower MSE value, indicating the 

proposed model surpasses the existing ones. For the splitting case, all the models have 

rather low R-sq values, while the proposed model has the highest R-sq and the lowest MSE 

values. Although the proposed model using beta distribution does not reduce the data 

variation, it removes the bias in the prediction, and with this alone it results in a better 

performance compared to the existing models. 
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Table 3.12. Comparison of proposed models and existing models for peak slip. 

Failure mode Prediction model R-sq (%) MSE  

Splitting 

Proposed model 8.15 1.00 

Kivell et al. (2015) <1 1.24 

Feng et al. (2016) <1 1.47 

Xu (1990) 1.53 1.61 

Khalaf and Huang (2016) 1.24 1.61 

Coccia et al. (2015) <1 1.08 

CEB (2013) 6.1 1.36 

Wu and Zhao (2013) 5.06 1.23 

Lin et al. (2019) 3.68 1.10 

Zhao and Zhu (2018) 1.78 1.79 

Pull-out 

Proposed model 65.22 0.20 

Kivell et al. (2015) 18.52 0.71 

Feng et al. (2016) 10.12 0.94 

CEB (2013) 5.06 1.72 

Zhao and Zhu (2018) 4.18 1.89 

3.4.1.3. Flexural behavior evaluation 

In this section, the proposed models for τavg and s1 are applied in the structural 

analysis of RC beams. Six beams studied by Abdel-Kareem et al. (2014) were adopted for 

this purpose, of which three have splitting failure and three have pull-out failure. The 

configuration is shown in Figure 3.10, and the structural properties (including lap splice 

length, stirrups spacing, and concrete compressive strength) are listed in Table 3.3. The 

analytical procedure proposed by Sajedi and Huang (2017) is used here to incorporate the 

CEB stress–slip bond model (shown in Figure 3.2) with τavg and s1 calculated using the 

proposed models to obtain the nonlinear load-deflection behavior of the RC beams. To 

consider the prediction variation, for each beam, τavg and s1 are predicted by the point 
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estimate and point estimate ±1 standard deviation of model error; thus, a total of 9 different 

combinations of τavg and s1 values are used for each beam.  

Figure 3.20 compares the load-deflection predictions based on the calculated τavg 

and s1 with the experimental results. For all the beams, the experimental curves are within 

the predicted flexural behavior, which indicates that the satisfactory prediction 

performance of the proposed models of τavg and s1 for either splitting and pull-out. 

 

 

   

(a) B4 (Splitting) (b) B5 (Splitting) (c) B7 (Splitting) 

  

 

(d) B6 (Pull-out) (e) B8 (Pull-out) 
 

Figure 3.20. Comparison of predicted load-deflection of RC beams with experimental results 

from Abdel-Kareem (2014) 

  

Bond failure Concrete crush Experiment Predicted 

L
o

ad
 (

k
N

) 

Displacement (mm) Displacement (mm) Displacement (mm) 

L
o

ad
 (

k
N

) 

Displacement (mm) Displacement (mm) 



112 

 

CHAPTER IV 

4. SIMPLE REBAR ANCHORAGE SLIP MACROMODEL CONSIDERING 

CORROSION DETERIORATION EFFECT 

The total lateral deformation of a reinforced concrete (RC) structural member with 

fixed end(s) mainly consists of two components: the flexural deformation induced by the 

internal bending moment over the member length and the fixed-end rotation of the member 

induced by the slip of the longitudinal rebar. This slip reflects the accumulation of strain 

along the development length of reinforcement under tensile loading due to the gradual 

transfer of the rebar force to the surrounding concrete; and the strain causes rebar 

elongation, resulting in slip at the connection interface (W. H. Pan et al., 2018). Both 

numerical and experimental studies have showed that this rebar slip can significantly 

contributes to total displacement of the RC member and consequently, affecting the static 

and seismic response of the structural member (W.-H. Pan et al., 2017; Schoettler et al., 

2012; A. Soraghi et al., 2019; Ahmad Soraghi & Huang, 2021). Kherdmatgozar Dolati and 

Mehrabi ((Dolati & Mehrabi, 2021b, 2021a)) investigated the effect of debonding and bar 

slip in improving the seismic behavior and ductility of bar couplers in precast concrete 

members. Hence, in the structural analysis of RC members under either static or seismic 

loading, it is important to appropriately account for the slippage over the development 

length so that the lateral responses of the structural members can be accurately captured. 
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Among various approaches for calculating reinforcement slip along the 

development length under monotonic loading, micromodels and macromodels are often 

adopted. Micromodels use a bond stress-slip constitutive model to consider the rebar-

concrete interface and require finite discretization process to solve their governing 

equations, and thus need significant computational effort (Fédération Internationale du 

Béton, 2000; Filippou et al., 1983; Maekawa et al., 2003; Monti et al., 1997; Monti & 

Spacone, 2000; SHIMA et al., 1987; S Zamanian et al., 2020). On the other hand, 

macromodels use a bond stress distribution function along the development length, and 

subsequently obtain the slip response (usually expressed as rebar stress – slip curve) by 

implementing the relationships of four bond fields (i.e., distributions of bond stress, rebar 

stress, rebar strain, and rebar slip over the rebar development length) as shown in Figure 

4.1. From a computational perspective, macromodels are effective and practical, and the 

basis used directly reflects the strain penetration mechanism (Alsiwat & Saatcioglu, 1992; 

Lehman, 1998; Otani, 1973; W.-H. Pan et al., 2017; Taslimi & Tehranizadeh, 2021). 

Hence, macromodel is found to be preferred for engineering applications (W. H. Pan et al., 

2018). 
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Figure 4.1. Four bond distribution fields and their relationships in rebar anchorage 

region 

 

Sezen and Setzler (Sezen & Setzler, 2008) proposed a macromodel that assumes a 

uniform bond stress distribution along the development length to calculate the slip response 

of the rebar. However, this macromodel underestimate slip for smaller rebar stress values 

and reversed at higher rebar stress values; in addition, this macromodel is limited on 

prediction of the yield slip and particularly not good when the yielding strength is high, 

which could be an issue as in current engineering practice there is a tendency to use high-

yield-strength rebars ((W. H. Pan et al., 2018; Sezen & Setzler, 2008)). Pan et al. (W. H. 

Pan et al., 2018) attempted to solve the issues in the Sezen and Setzler model by adopting 

a “real” bond stress distribution (derived from the bond-slip relationship obtained from 

Shima et al. (Shima et al., 1987a)) so that the model could more accurately capture the 

shape of the slip response before rebar yielding and predict the yield slip associated with 

the rebar yielding. However, the procedure developed by Pan et al. required extensive 
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numerical calculations and approximations, resulted in a complex rebar stress-slip model 

and impossible to update if more information become available. In the study by Zhang et 

al. (Y. Zhang et al., 2020), a nonuniform bond stress distribution is assumed to calculate 

the slip value, but their model is only applicable for short development length, which is 

often not the situation in practice (J. Zhao & Sritharan, 2007). In addition, the framework 

developed in Zhang et al. (Y. Zhang et al., 2020) requires a post-processing procedure in 

order to calculate the end rotation of the member induced by the slip of the longitudinal 

rebar. Lastly, as the corrosion deteriorate the bond between rebar and concrete, it is 

important to account for the corrosion impact on the slip calculation (Y. Zhang et al., 2020), 

to which very little attention have been given in the macromodels developed so far. 

The proposed model utilized a simple function to approximate the “real” bond 

stress distribution to obtain the rebar stress-slip relationship through a macromodel 

approach. The model parameter is calibrated based on a set of experimental slip data with 

various levels of corrosion, rebar yield strength, and concrete compressive strength. The 

proposed model is then implemented into a conventional fiber beam-column model to 

simulate the lateral monotonic and cyclic behaviors of the corroded RC columns, which is 

compared with the experimental results. Lastly, the proposed model is implemented into a 

RC bridge column to investigate how the rebar slip impact seismic performance of the 

column based on static nonlinear analysis, probability of failure in terms of fragility curves, 

and time-history analysis. 
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4.1. Background 

The basis of a macromodel consists of three governing equations that determine the 

relationships among four bond distribution fields over the development length, l, as shown 

in Fig. 1. The four bond fields are: (1) bond stress between concrete and rebar interface, 

τ(x), (2) rebar stress, σ(x), (3) rebar strain, ε(x), and (4) slip of rebar relative to surrounding 

concrete, s(x). These four bond fields are variables along the rebar, which can be expressed 

as functions of the location of the point of interest, x (i.e., the distance from the unaffected 

end to the discussed point) and 0 ≤ x ≤ l. The three governing equations are: (1) the 

equilibrium of any given segment of rebar with a length of dx, (2) the constitutive rebar 

stress-strain relationship, and (3) the compatibility of rebar strain-slip deformation 

relationship, which are shown below: 

( ) ( ) ( )
0

4
4 or

x

D d x dx x u du
D

    = = 
 

(4.1) 

( ) ( )( )x x  =
 or 

( ) ( )( )x x  =
 (4.2) 

( ) ( )
0

or
x

ds dx s x u du = =   
(4.3) 

Using Eqs. (4.1)-( 4.3), the second order differential relationship between s and τ 

can be derived as: 

( )
2

2
4

d s d
D x

dx d





=  

 

(4.4) 

where dε/dσ can be obtained from the constitutive rebar stress-strain relationship. In the 

general framework of macromodel, Equation (4.4) is solved by assuming a specific bond 
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stress distribution function, τ(x), along the development length l, and considering the 

boundary conditions at the unaffected end (i.e., x = 0): τ(x = 0) = 0, σ(x = 0) = 0, ε(x = 0) = 

0, s(x = 0) = 0 for a long embedment length. Note that under the condition of long enough 

embedment length, the distribution of strain over l can be considered independent of the 

axial force magnitude, while l changes with the loading to satisfy equilibrium. Thus, for a 

given l and an assumed τ(x) function, one could obtain the other three bond distribution 

fields: σ(x), ε(x), and s(x) through Eqs. (4.1)-(4.3). 

Equation (4.3) shows that the slip S = s(x = l) at the fixed end of a RC member is 

the accumulation of strain over the whole development length, l. The slip S is more useful 

when it is written as a function of rebar stress at the fixed end, σb = σ(l), as σb can be easily 

calculated based on the axial loading at the fixed end, F, (that is, σb = F/A where A = cross-

section of the rebar). To do so, one needs to obtain l as a function of σb from Equation (4.1) 

and substitute it into Equation (4.3) by setting x = l. 

4.1.1. Conventional macromodel method 

Previous literature has simply assumed τ(x) to be a constant τM for the prior-to-

yielding region and another constant τ'M for the post-yield region (Maekawa et al., 2003; 

Sezen & Setzler, 2008; SHIMA et al., 1987), as shown in Figure 4.2. This assumption 

makes the sequential differentiation, integration, and inversion in Eqs. (4.1)-(4.3) to obtain 

S as a function of σb straight-forward and mathematically simple. In particular, the 

constants τM and τ'M have been assumed to be proportional to sqrt(f’c), where f’c is the 

concrete compressive strength (in MPa). Based on existing experimental results, the 
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following values (in MPa) have been used (Lehman, 1998; W. H. Pan et al., 2018; Sezen 

& Setzler, 2008): 

1.2

0.5

M c y

M c y

f

f

  


  

 = 
= 

 =   

(4.5) 

 

Figure 4.2. Bond stress distributions used in the conventional, Pan et al. (W. H. Pan et 

al., 2018), and proposed models 

 

Assuming a uniaxial rebar stress-strain constitutive model shown as original in 

Figure 4.3, in which the relationship for rebar stress-strain within the strain hardening range 

is considered to be parabolic, the constitutive relationship can be written as: 
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(4.6) 

where k0 = 1, and k1, k2, and k3 are factors used to specify the shape of the stress-

strain relationship and are suggested to be 4.23, 46.9, and 1.36, respectively, by the 

literature (Tao & Nie, 2015). Consequently, the relationship between S and σb can be 

derived from Eqs. (4.1)-(4.3) as: 
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(4.7) 

 

 

Figure 4.3. Uniaxial stress-strain constitutive model of rebar (σ – ε relationship). 
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4.1.2. Pan et al. method 

Pan et al. (W. H. Pan et al., 2018) pointed out assuming bond stress to be constant 

along the development length is oversimplified and does not accurately predict the 

anchorage slip prior to rebar yielding. In Pan et al. (W. H. Pan et al., 2018), they utilized 

the general macromodel framework but with an adoption of a much more realistic τ(x) 

obtained from a “real” bond-slip relationship τ(s). In particular, τ(s) used in Pan et al. (W. 

H. Pan et al., 2018) is developed based on a series of testing on rebar anchorage slip testing 

under the condition of long embedment length by Shima et al. (SHIMA et al., 1987), and 

is expressed as an exponential function shown below: 

( ) 1 exp

b

M

s
s a

D
 

   
= −          

(4.8) 

where τM is the maximum bond stress, a (=  ̶ 40) and b (= 0.6) are the model parameters 

whose values are calibrated by fitting the experimental data. In Equation (8), the bond 

stress τ gradually increases with the increase in s, until approaching the maximum bond 

stress τM. Pan et al. used Equation (8) to derive the bond stress distribution, τ(x), avoiding 

the oversimplification issue in the conventional method where a uniform distribution is 

assumed; thus, Pan et al. method is believed to have a more reliable prediction in rebar slip. 

Using Eqs. (4.4) and (4.8), a second-order differential equation that relates the 

development length x and slip s is established for elastic range as: 

( )
2

2

4d s D
s

dx E
= 

 
(4.9) 
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To solve Equation (4.9), it is converted into two first-order differential equations 

(and the details can be found in (OSU (Oregon State University), 1996; W. H. Pan et al., 

2018)). As a result, the relationship between the development length x, slip S, and bond-

slip τ(s) is expressed as: 

( ) ( )
0 0

0

1 1

8 8T

s s

z

ED ED
x dz dz

z u du
= = 

  

(4.10) 

where T(s) is the primitive function of τ(s). Pan et al. numerically solved τ(x) for a 

given range of values of x based on Eqs. (8) and (10). Consequently, the normalized bond 

stress distribution  (= τ/τm) is expressed as a function of the normalized development 

length ( )x x aD= where 8 ma E = which is plotted in Figure 4.4. Both bond stress and 

development length are normalized to the structural parameters (i.e., E, τM, and D) so the 

quantities become unitless for a general application. 

 

Figure 4.4. Normalized bond stress vs. normalized development length. 

To obtain the relationship between slip S (= s(l)) as a function of rebar stress σb (= 

σ(l)), it is necessary to write an explicit function to fit the numerical results shown in Figure 
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4.4. Pan et al. (W. H. Pan et al., 2018) adopted two explicit functions (a polynomial 

function and an exponential function) to fit the two parts of the curve in Figure 4.4 by 

setting the separation point on the curve 
0 0.26x = = . Then through Eqs. (4.1) – (4.3) with 

further fittings and approximations, Pan et al. obtain the relationship between S and σb, 

shown below: 
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(4.11b) 

where 2b b M E  = , a normalized rebar stress, ξ = (ε/εy)/(k2 ‒ k1), in which should 

be numerically calculated from the portion where σ > σy in Equation (4.6), Sy refers to the 

slip when σb = σy. The ultimate slip Su associated with the ultimate rebar stress k3σy or rebar 

strain k2εy can be calculated as: 

u y shS S S= +  (4.12) 

where Ssh is the total slip within strain-hardening range and can be calculated by 

setting ξ = 1 in Equation (4.11): 
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(4.13) 
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Apparently, obtaining Equation (4.11) involves curve fittings and approximation. 

This means if any modification needs to be made in Equation (4.8) (e.g., updating the 

model parameters a or b with more bond stress-slip data), the whole process of curve fitting 

and approximation must be redone. This shows that the Pan et al. approach (W. H. Pan et 

al., 2018) is not easy to incorporate new information. 

4.2. Proposed macromodel 

While deriving the rebar slip model based on a real bond-slip relationship is a good 

idea, from a structural analysis point of view, it is more important to obtain accurate slip 

prediction through a simple practical approach. Thus, in this study, instead of deriving τ(x) 

from the bond-slip relationship (as in Pan et al. method), a bilinear function with one 

unknown model parameter α is implemented to directly replace the   and x  curve 

(shown in Figure 4.4), which is expressed as: 

( )

1
for

for

M

M

x x
x

aD aD
x

x
x

aD

 




 


 = 

= 
 = 
  

(4.14) 

where the unknown parameter α can be assessed using the experimental results of 

the S and σb relationship. Using the bilinear function in Figure 4.4 provides explicit 

solutions to obtain the S and σb relationship; thus, it does not need any curve fitting and 

approximation as Pan et al. used, and it reduces computational complexity significantly. 

Using Equation (4.1), one can obtain the rebar stress σ(x) explicitly as: 
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By letting x = l and σb = σ(l) one can inverse Equation (4.15) and find l in 

terms of σb as: 
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(4.16) 

With the adopted steel constitutive law shown in Equation (4.6) and Equation 

(4.16), one can derive the explicit expression of the S and σb relationship, as shown below: 
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(

4.1

7) 

To consider the corrosion impact on the bond strength, a reduction factor R is 

introduced and the bond stress τM is set as: 
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(4.18) 

One can set R = 1 – 3.5Q (%) based on (Stanish et al., 1999) in which Q refers to 

corrosion mass percentage loss. The unknown parameter α is estimated by minimizing the 
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residual sum of squares where residual refers to the error between the predicted slip from 

Equation (4.17) and the actual slip from the experimental testing. In particular, a total of 

19 rebar stress–slip test results (σb and S relations) are collected from literature, and the 

properties of the 19 experiment specimens are summarized in Table 3.1. Among the 19 

specimens, 8 are corroded with corrosion levels varying from 1.3% to 10%. During the 

analysis, it is found the unknown parameter α is inversely proportional to cR f  ; thus α 

is set as a function of an unknown parameter β by: 

1

cR f



=

 
 

(4.19) 

As a result of the calibration, β is found to have a mean value of 0.5 and a standard 

deviation of 0.016. As shown in this session, the proposed model shown Equation (17) is 

an explicit macromodel solution without using curve fitting and other approximations, and 

the model is expressed explicitly as a function of model parameter α, meaning α is ready 

for updating when new experimental data becomes available. 

Table 4.1. Specimen properties for collected testing results for rebar stress – slip 

relationship 

Reference 
Specimen 

label 

Concrete 

strength, f’c 

(MPa) 

Rebar 

diameter, D 

(mm) 

Rebar yield 

stress, σy 

(GPa) 

Rebar elastic 

modulus, E 

(GPa) 

Corrosion, Q 

(%) 

Shima et al. 

(SHIMA et 

al., 1987) 

SD30 19.60 19.5 0.353 190 0.0 

SD50 19.60 19.5 0.610 190 0.0 

SD70 19.60 19.5 0.820 190 0.0 

Maekawa et 

al. (Maekawa 

et al., 2003) 

Maekawa11 22.40 19.5 0.265 190 0.0 

Maekawa12 22.40 25.4 0.270 190 0.0 

Maekawa13 22.40 30.7 0.75 190 0.0 

Maekawa21 22.40 25.4 0.144 190 0.0 

Maekawa22 27.20 25.4 0.266 190 0.0 

Maekawa23 50.00 25.4 0.325 190 0.0 

Ueda et al. 

(Ueda et al., 

1986) 

S64 28.75 25.4 0.172 200 0.0 

S101 19.92 31.8 0.520 200 0.0 
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Amleh 

(Amleh, 

2000) 

C5-5C 46.90 20.0 0.387 200 1.3 

Jin (Wei-liang 

& Zhao, 

2001) 

D8 17.70 12.0 0.285 200 1.7 

D11 17.70 12.0 0.213 200 8.7 

D13 17.70 12.0 0.142 200 10.0 

Zheng 

(Zheng, 2004) 

S-8 29.2 20.0 0.303 200 2.5 

S-11 27.2 20.0 0.240 200 4.8 

S-12 27.2 20.0 0.255 200 5.4 

S-18 29.4 20.0 0.240 200 7.2 

 

4.2.1. Bar slip comparison 

Figure 4.5 compares rebar stress-slip curves obtained from the 19 experimental 

specimens collected from the literature (shown in diamond marks) with the results obtained 

from three prediction models (i.e., proposed model shown in solid lines, conventional 

method shown in dash-dotted line, and Pan et al. method (W. H. Pan et al., 2018) shown in 

dashed line). For some specimens (i.e., three specimens from Shima et al. (SHIMA et al., 

1987): SD30, SD50, SD70, and two specimens from Ueda (Ueda et al., 1986): S64, S101), 

the predictions from all three models are similar and all match the experimental results 

well. However, for the rest of 14 specimens, the conventional model prediction is 

underestimated in slip and has the worst predictions compared with the other two models. 

This further confirms that assuming constant bond stress distribution is oversimplified, as 

suggested by Pan et al. (W. H. Pan et al., 2018). 

When comparing the proposed model and Pan et al. model, their predictions are 

nearly the same for the 12 specimens shown in the first three rows of plots in Figure 4.5. 

The rebars in these specimens either have intact rebar (i.e., Q = 0%) or very low corrosion 

(i.e., Q = 1.3% for specimen C5-5C). This indicates when there is no corrosion or slight 
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corrosion, the simplification adopted in the proposed model does not compromise 

accuracy. When examining the seven specimens in the last two rows of plots in Figure 4.5, 

the difference in the prediction curves from the proposed model and Pan et al. model 

becomes apparent. Overall, the solid curves calculated by the proposed model are closer to 

the experimental data. For Specimens D11 and S-12, the proposed model still provides 

better yielding point prediction than Pan et al. model. Note that these seven specimens 

shown in the last two rows of the plot all have corrosion in rebar with Q varying from 1.7% 

to 10%. This result shows that the proposed model performs better for corroded specimens. 

This is not surprising as corrosion is incorporated in the reduction factor, R, in the model 

parameter α and bond strength τM. 

In summary, one can conclude that the proposed model overperformed over the Pan 

et al. model, particularly when corrosion is present. In addition, the proposed model is more 

advantaged and preferred, as it is derived from explicit solutions by employing a simple 

bond stress distribution function over the development length, making the model more 

practical in engineering applications and ready for future updating when new experimental 

information becomes available. While the corrosion effect is incorporated through a 

reduction factor, a more sophisticated approach could be explored in the future to further 

improve the model prediction accuracy. 

  



 

128 

 

 

 
Proposed model Pan et al. Conventional  

   
 

 

   
 

   
 

   
 

   

 

Figure 4.5. Predicted and measured stress-slip relationship for the experimental data. 
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4.3. Application of bar slip macromodel into the structural analysis 

With the slip-rebar stress predicted from the proposed model, the uniaxial stress-

strain skeleton curve of rebar can be modified to incorporate the rebar anchorage slip 

following Pan et al. (W.-H. Pan et al., 2017), such that the slip effect can be incorporated 

in the structural analysis. In this study, an open-source computer software OpenSees (GL 

Fenves et al., 2004) is adopted for the numerical analysis. In particular, the modified rebar 

constitutive model is implemented into the conventional fiber beam-column element in 

OpenSees. With such implementation, this section further evaluates the prediction 

accuracy of the proposed rebar slip macromodel and also investigates the slip effect on the 

flexural behavior of several RC columns and the seismic performance of a RC bridge 

column.  

4.3.1. Modified rebar constitutive model 

The reinforcement slip effect is considered in the uniaxial stress-strain skeleton 

curve of the rebar by adding the slip to the rebar strain. That is, the modified strain, ε', is 

the summation of the original stain, ε, and the slip-induced strain, εslip:  

slip   = +
 

(4.20) 

Note that the inelastic deformation of RC members is mostly in the plastic hinge 

region; thus, a slip-induced rebar fiber strain εslip can be estimated by assuming the 

anchorage slip to be uniformly distributed over the plastic hinge length (as suggested by 

(Ueda et al., 1986)) as: 
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slip

slip

sl
 =

 

(4.21) 

where ls is the plastic hinge length of the member that can effectually simulate the 

nonlinear deformation of the member end and one can set ls = 0.25h, where h is the section 

height of the member, suggested by Bae and Bayrak (Bae & Bayrak, 2008).  

For the uniaxial rebar constitutive model shown in Equation (19), the modification 

can be obtained by setting k0 = k0', k1 = k1', and k2 = k2' in which  
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(4.24) 

where δy and δsh are the factors for the strain increments for the elastic and strain-

hardening range of rebar, respectively. The modified rebar uniaxial stress-strain skeleton 

curve is compared with the original one in Figure 4.3. 

4.3.2. Flexural behavior of RC columns 

Flexural behavior of a total of 11 RC column specimens from literature is used to 

here validate the accuracy of the proposed rebar slip model. The design parameters and 

material properties of these 11 columns are summarized in Table 3.2, where the corrosion 

level, Q, varies from 0% to 20%, and the axial load ratio (i.e., vertical to lateral load ratio), 
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n, ranges from 0.18 to 0.6. It should be noted that the stirrups in the column experiments 

by Goksu (Goksu, 2012) and Meda et al. (Meda et al., 2014) are protected from corrosion, 

and thus, only longitudinal rebar are corroded in these experiments. Figure 4.6 shows the 

reinforcement and cross-section detailing for the column specimens. These columns were 

all tested under constant axial loading and various lateral displacements (either monotonic 

or cyclic) after being subjected to accelerated corrosion for Q > 0. 

 

Figure 4.6. Geometry and configuration of the column specimens by (a) Goksu (Goksu, 

2012), (b) Meda et al. (Meda et al., 2014), and Zheng et al. (S Zheng, L Dong, H Zuo, 

Q Qin, W Liu, 2018) (in mm) 
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Table 4.2. Properties of the test columns 

Referen

ce 
Specimen 

Core concrete 

strength, 

f’c,core (MPa) 

Cover concrete 

strength, 

f’c,cover (MPa) 

Yield strength of 

longitudinal rebar, 

fy (MPa) 

Corrosion, 

Q (%) 

Loading 

type 

Goksu 

(Goksu, 

2012) 

NS-X0 30.8 25.5 460 0.0 M 

NS-X9 30.8 18.2 401 9.0 M 

NS-X16 30.8 14.7 218 16.0 M 

Zheng 

et al. 

(2018) 

C-1 27.8 22.8 353 3.7 M 

C-2 28.1 24.6 373 0.0 M 

C-3 27.6 20.1 340 6.2 M 

C-4 28.1 24.6 373 0.0 C 

C-5 27.9 24.4 360 2.4 C 

C-6 27.6 20.1 340 6.2 C 

Meda et 

al. 

(2014) 

UC 21.4 20.0 353 0.0 C 

CC 21.4 10.6 353 20.0 C 

 

 

 

Figure 4.7 shows the configuration of the OpenSees model of an RC column, where 

the displacement-based beam-column element with fiber section is used for modeling the 

cantilever column, and the modified fiber section is used between the two nodes that form 

the plastic hinge with length ls. Using beam-column elements is appropriate, as the columns 

selected here are slender, thus, the contribution of shear effects to the displacement at top 

of the RC column can be neglected (Sezen & Moehle, 2006). In the modified fiber section, 

the constitutive relation for reinforcing steel material is constructed based on the modified 

stress-strain relationship shown in Figure 4.3. The confined concrete model proposed by 

Mander et al. (Mander et al., n.d.) and Kent-Scott-Park (B.D. Scott et al., 1982) unconfined 

concrete model are used for the concrete core and cover fibers, respectively. In addition, 

Eqs. (A.1)-(A.4) in Appendix D are also implemented in the OpenSees model to account 

for corrosion effect on the rebar diameter, D, rebar yielding strength, σy, rebar ultimate 

strength, σu, and concrete compressive strength fc´, respectively.  
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Figure 4.7. Configuration of Opensees model of an RC column 

Monotonic behavior  

Figure 4.8 compares the lateral force-displacement curves of 6 RC columns under 

monotonic loading with the ones estimated using the OpenSees numerical models (with 

two modeling scenarios: considering rebar slip or not). Note that the corrosion effect on 

rebar size, rebar strength, and concrete strength is accounted for all OpenSees models. 

Apparently, the curves estimated by OpenSees models considering rebar slip (shown in 

dashed lines) are in a better agreement with the experimental results than the ones estimated 

by the OpenSees models without considering rebar slip (shown in dash-dotted lines). 

Without considering rebar slip leads to stiffer behavior as expected. This difference is more 

significant for the higher corroded specimens (i.e., Q = 9% in Figure 4.8 (b) and Q = 16% 
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in Figure 4.8 (c)) compared with the other four specimens. In addition, the OpenSees model 

considering rebar slip predicts better column strength.  

 

 
 

 

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.8. Measured and estimated lateral force-displacement response of the columns 

using OpenSees models 

 

In addition, Figure 4.8 (c) shows that the initial stiffness of the experiment is 

slightly lower than the OpenSees model considering rebar slip, which could be due to the 

existence of severe cracking caused by the high level of corrosion for this specimen (Q = 

16%). Other slight differences between the experimental data and the calculated response 

in Fig. 8 could be due to some other reasons, such as OpenSees models do not consider the 

corrosion in stirrups and shear degradation. Furthermore, Figures 4.8 (d)-(f) show the 

force-displacement responses of the three corroded experiments with a similar corrosion 

NS-X0 

Q = 0% 

NS-X9 

Q = 9% 

NS-X16 

Q = 16% 

C-1 

Q = 3.7% 
C-2 

Q = 3.8% 

C-3 

Q = 3.6% 
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level but with axial load ratios of 0.2, 0.4, and 0.6, respectively. It can be seen that, by 

increasing the axial load ratio, the actual peak lateral load capacity increases, and the 

degradation portion of the curve becomes steeper. For all three cases, the OpenSees models 

perform well both in ascending and descending portions of the curves.  

Table 3.3 shows the maximum shear strength Vmodel and the corresponding 

displacement, dmodel, estimated by the OpenSees models compared with the measured shear 

Vexperiment and measured displacement, dexperiment. It is obvious that the proposed model with 

the consideration of rebar slip has a much better performance to capture the base shear and 

displacement of the experiments; thus, considering rebar slip in the model is necessary. 

These observations from Figure 4.8 and Table 3.3 lead to the following 

conclusions: rebar slip needs to be considered in predicting flexural behavior of RC 

columns; the proposed rebar slip model is validated; and also the corrosion impact on the 

rebar slip cannot be ignored, which further shows the advantage of the proposed rebar slip 

model, as it accounts for the corrosion effect. 

 

Table 4.3. Calculated and actual capacity of the experiment columns tested under 

monotonic loading. 

Specimen 
Vexperiment 

(kN) 

Vmodel/Vexperiment 

(considering 

slip) 

Vmodel/Vexperiment 

(w/o considering 

slip) 

dexperiment 

(mm) 

dmodel/dexperiment 

(considering 

slip) 

dmodel/dexperiment 

(w/o considering 

slip) 

NS-X0 53.4 0.97 1.02 15 1.07 0.75 

NS-X9 43.9 1.03 1.11 19 0.84 0.69 

NS-X16 43.2 0.98 1.03 17 0.82 0.79 

C-1 49.1 1.01 1.01 15 0.73 0.64 

C-2 55.1 1.01 1.02 9 1.11 0.70 

C-3 54.1 1.02 1.05 10 0.90 0.78 
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Cyclic behavior  

Figure 4.9 compares the cyclic behavior of 5 experimental columns with the ones 

estimated from the OpenSees model (with two modeling scenarios: considering rebar slip 

or not). These five columns with various axial loads ratios include two without corrosion 

and three with corrosion (in particular, Specimen CC has Q = 20%). It can be seen that the 

cyclic curves obtained from OpenSees model considering slip overall performs well in 

detecting the shape of the hysteretic loop, the lateral load resistance, and the initial stiffness. 

Moreover, the gradual reduction in strength, stiffness, and pinching effects with increasing 

cycles are demonstrated reasonably well by the OpenSees model. It is evident that the 

OpenSees model that uses the proposed macromodel is applicable for uncorroded and 

corroded specimens. 

When comparing the results obtained the OpenSees model with and without slip, 

the differences in the cyclic behavior are noticeable and the ones based on the model with 

slip are closer to the experimental curves. Therefore, it can be concluded that the 

contribution of bar slip deformation to the lateral displacement of the member should be 

considered, and the proposed rebar slip macromodel that used in the OpenSees model 

provides accurate cyclic behavior of RC columns.  
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(a) (b) 

  

(c) (d) 

 

 

 

(e)  

Figure 4.9. Calculated and measured cyclic response of the columns tested by 

Zheng et al. (S Zheng, L Dong, H Zuo, Q Qin, W Liu, 2018) and Meda et al. 

(Meda et al., 2014) using the proposed model 

UC 

Q = 0% 

C-4 

Q = 0% 
C-5 
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Q = 20% 
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4.3.3. Seismic performance of a RC bridge column 

In this section, the OpenSees model with the implementation of the proposed rebar 

slip macromodel is used to investigate the impact of the rebar slip on the structural 

performance of a highway RC bridge with singe-column bent. In this study, an example 

bridge based on a typical construction in California used in (Huang et al., 2010b) is 

simulated in OpenSees. The configuration and the bridge design parameters are shown in 

Figure 4.10 and Table 3.4, respectively. Further details are referred to (Huang et al., 

2010b). 

L1 L2

Ds

Dc
Kabut

Ksoil

AA

A-A

 

Figure 4.10. Configuration of the example RC highway bridge with single-column bent 
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Table 4.4. Design parameters of the example bridge with one single-column bent 

Design Parameter Value 

Degree of skew, α 0o 

Span (the shorter one), L1 30.480 m 

Column height, Hc 6.706 m 

Column diameter–to–superstructure depth ratio, Dc 1.572 m 

Reinforcement nominal yield strength, fy 437.835 MPa 

Transverse reinforcement nominal yield strength, fyh  350.268 MPa 

Concrete nominal strength, f’c  35.027 MPa 

Longitudinal reinforcement ratio (column), ρl  3.59% 

Transverse reinforcement ratio (column), ρs 1.06% 

Additional bridge dead load, wt 45% self–weight 

Pile soil stiffness, Ksoil (USGS) C 

Abutment models, Kabut C 

Two–span ratio, L2/L1 1.25 

Column concrete cover 0.038 m 

 

In OpenSees, four scenarios are considered: two considering rebar slip in the 

column section by implementing the modified rebar fiber with Q = 0 and Q = 20%, 

respectively, and the other two without considering rebar slip in the column section with 

Q = 0 and Q = 20%, respectively. For each scenario, a nonlinear static pushover and time-

history analysis of three selected ground motions are conducted. 

The results of the pushover analysis are shown in Figure 4.11. By comparing the 

pushover curves of the scenarios with and without rebar slip for the same corrosion level, 

it can see that considering slip the bridge column stiffness becomes softer and the strength 

is much lower, as expected. Such difference becomes smaller for Q = 20%, as the corrosion 

impact on rebar size and material properties starts playing a role as well. The significant 

difference between the results based on the numerical models with and without considering 
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rebar slip in both Figure 4.11 indicates that the rebar slip needs to be considered to 

accurately reflect the structural performance.  

  

Figure 4.12. Pushover results for the bridge column under various cases based on 

corrosion and slip 

To study the rebar slip impact on seismic performance of the example RC bridge, 

OpenSees models are subjected to three selected seismic excitations through nonlinear 

time-history analysis. The details of the three ground motions are provided in Table 3.5. 

Table 4.5. Ground motion records used in the time-history analysis 

Earthquake name Year 
Record series 

number (RSN) 
Station Magnitude 

Northridge 1994 952 Beverly Hills 6.7 

Tabas  1978 143 Tabas 7.35 

Kobe 1995 1119 Takarazuka 6.9 

The displacement responses of the time-history analysis using OpenSees models 

with and without considering slip are compared in Figure 4.13, where the red solid line and 

the black dashed line refer to the response from the model with considering slip and without 

considering slip, respectively. Both positive and negative peak responses are pointed out.   

First, one can notice that the peaks for both models do not necessarily occur at the 

same time. For the same corrosion level, the responses of the model that considers slip 

(shown in red solid line) have larger peak values as expected (particularly true for Tabas 
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and Kobe earthquakes). This indicates the importance of incorporating slip effect in 

evaluating seismic behavior of a RC column. Moreover, when considering the slip, the 

peak responses of the model with Q = 20% are larger than the ones of the model with Q = 

0%. This shows that the presence of corrosion further softens the stiffness of the structure 

and it is another contribution to the displacement response. 
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(a) Northridge 

 

 

(b) Tabas 

 

 

(c) Kobe 
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Figure 4.13. Time-history response of three selected ground motions 

Furthermore, seismic deformation fragility is estimated for this RC bridge column, 

and is defined as the condition probability that the deformation response attains or exceeds 

a capacity level for given earthquake intensity (e.g., pseudo acceleration spectrum of the 

first period, Sa). As shown in previous studies  (e.g., (Dyanati et al., 2015)), the variability 

in the demand model error and model parameters dominates the limit state. Thus, for 

simplicity, the uncertainties in material and geometric properties are ignored. The 

deformation demand is adopted from Gardoni et al. (Gardoni et al., 2002) where the model 

error and statistics of the model parameters are provided. The capacity is calculated based 

on the yield displacement due to flexural as following: 

( )
31

3
y cf H YP = +  (4.24) 

where ϕy = curvature at yield, YP = depth of the yield penetration into the column 

base and is estimated as YP = 0.022fyD suggested by (Mander et al., n.d.). 

Figure 4.13 (a) and (b) show the deformation fragility curves of the bridge column 

with Q = 0 and Q = 20%, respectively. Regardless of the corrosion level, considering slip 

greatly reduce the probability of failure for a given Sa. This is particularly apparent for 0.5g 

< Sa < 1.25g. This is expected as considering slip provides more ductility to the column. 

The impact of slip is significant in the seismic performance evaluation. 
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Q = 0% Q = 20% 

Figure 4.14. Seismic deformation fragilities of the bridge column 

4.4. Deterioration on cyclic bond behavior 

Cyclic bond behavior is critical to determine hysteretic energy dissipation of RC 

structures where reversals in the inelastic displacement cause increased damage and 

degradation of strength and stiffness in the structure. Therefore, the degradation on cyclic 

bond could result in significant changes in the structural performance. Filippou et al. 

(Filippou et al., 1983) found that a reduction in bond strength of as little as 15% may result 

in a 30% reduction in total energy dissipation of a beam column joint. In particular, the 

loss of bond can cause the penetration of yielding into the anchorage zone, degrading the 

available development length and reducing the anchorage capacity. 

However, regarding understanding the corrosion effect on the structural behavior 

under cyclic loading, the majority of the previous work has been focused on the cyclic 

behavior of corroded rebars themselves (e.g. (Apostolopoulos, 2007; Hawileh et al., 2011; 
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Kashani et al., 2013)), and some experimental studies can be found on the cyclic responses 

of RC structures with corroded reinforcement (e.g. (A. Guo et al., 2015; Ma et al., 2012; 

Meda et al., 2014; Ou et al., 2012)) only found in the past decade. Extremely limited studies 

have been performed on studying cyclic bond deterioration due to corrosion. Among those 

studies, Fang et al. (C. Fang et al., 2006; C. Q. Fang, 2006), Zhao et al. (Zhou, Lu, Xv, 

Dong, et al., 2015; Zhou, Lu, Xv, Zhou, et al., 2015), Kivell et al. (Kivell et al., 2011) 

conducted experimental testing to study on corrosion effect on bond-slip relation. In 

particular, Kivell et al. (ref.) is the only study that developed analytical cyclic bond models 

considering corrosion. Nevertheless, there are major limitations in the models proposed by 

Kivell et al. (ref.): i) the models are developed based on pullout testing that is not suggested 

for use in the prediction modeling of the bond response; ii) the modification factors used 

in the models only consider the confinement content and corrosion level, and these two 

factors are studied separately not interactively; iii) other key factors such as compressive 

strength and the ratio of cover depth to rebar diameter are not considered in model, limiting 

the application of the models and restraining the models to be updated by possible future 

experiments; and iv) the prevailing uncertainties, such as statistical uncertainties and model 

errors are not considered. 

In summary, to develop a reliable constitutive bond stress-slip relationship, a large 

database of test results of beam-end or beam specimens is needed. Therefore, all possible 

important factors (namely, the size of steel bars, the ratio of concrete cover to bar diameter, 

the concrete compressive strength, content of confining reinforcement, and type of 

confinement) and all relevant uncertainties should be incorporated in the bond constitutive 
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law based on a probabilistic approach such that the probabilistic models can be easily 

updated whenever any future experimental data becomes available. 

4.4.1. Probabilistic development of bond stress-slip constitutive law considering 

corrosion effect 

The idea of developing the proposed probabilistic bond stress-slip constitutive law 

is to modify the available formulation by probabilistically re-assessing the bond model 

parameters.  

4.4.1.1. Bond behavior under cyclic loading 

Similar to monotonic behavior, extensively discussed in Chapter III, several researchers 

developed bond behavior models under cyclic loading. The general cyclic bond model that 

has been used for many years is developed by Eligehausen et al. (Eligehausen et al., 1982) 

for uncorroded bars as shown in Figure 4.17. 

 

Figure 4.17 General schematic of proposed cyclic bond model 

Kivell et al. (Kivell et al., 2015) studied the effects of corrosion on cyclic bond 

behavior based on pull-out test results of corroded specimens, where they adopt the general 
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model of Eligehausen et al. (Eligehausen et al., 1982), modify the maximum bond strength 

as a function of corrosion level and accordingly, cyclic bond stresses are modified. In 

particular, the maximum bond strength is calculated based on the multiplication of a factor 

that is a function of corrosion level and the uncorroded bond strength; thus, it requires the 

result of the uncorroded specimen to be able to predict the bond strength of corroded 

specimen. Furthermore, no relationship is found for the slip corresponding to bond 

strength, s1, as well as s2, and s3 to incorporate corrosion and to modify the whole cyclic 

behavior. It is also noted that in the experiment design of Kivell et al.’s work, the only 

design variable is the level of corrosion, and other parameters found to be critical to affect 

the cyclic behavior have been kept constant, such as rebar diameter, concrete compressive 

strength, cover size, confinement, etc. Recently, Lin et al. (H Lin et al., 2017) in a study on 

bond behavior of corroded steel bar, however under repeated loading (fatigue loading), 

showed that peak slippage, s1 (or su) can be a function of corrosion level. However, not 

enough explanation is provided and the need for a further study is suggested for modeling 

the peak slippage. 

4.4.2. Preliminary findings 

Some preliminary studies are performed to identify the relation of key bond 

parameters with the number of cycles and as well as structural parameters. Figure 4.18 

shows the important parameters that found to be impacted by the cyclic behavior (Kivell 

et al., 2011) that are τmax, τs, and Smax. τmax refers to the maximum stress generated in each 

cycle, τs refers to the remaining frictional stress at the end of each cycle, and Smax refers to 
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the maximum slip achieved at the end of each cycle. Figure 4.18 (a) and (b) shows the 

schematic and a typical cyclic behavior, respectively. 

  

(a) (b) 

Figure 4.18. (a) Schematic and (b) a typical cyclic behavior 

 

The relationship between three parameters, τmax, τs, and Smax are compared with 

number of cycles and the structural parameters in order to explore possible model 

development for the cyclic bond-slip behavior. In particularly, the following five scatter 

plots are made: 

• τmax vs. number of cycles 

• τs vs. number of cycles 

• Smax vs. number of cycles 

• τmax /Smax vs. Q, f’c, D, C, C/d 

• τmax /Smax vs. Q×f’c, etc. 

It’s worthy to note that in the scatted plots, only the first cycle of each set of cycles is 

used. They are Cycles #1, #4 and #7 as shown in the blue line in Figure 4.19. 

max 
max 
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Figure 4.19. Cycles number 1, 4, and 7 used for the comparison purposes 

4.4.2.1. Preliminary observations 

Based on the argument presented in the previous section, Figures 4.20 - 4.22 are 

generated. Figures 4.20 - 4.22 provides potential relationship between τmax, τs, and Smax with 

the number of cycles, structural parameters and structural parameter’s interactions, 

respectively. Note that in Figures 4.20 - 4.22 the parameters τmax, τs, and Smax for the vertical 

axes are normalized to their predicted values, based on the monotonic models, as discussed 

in Chapter III.  
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Figure 4.20. Scatter plots of τmax, τs, and Smax vs. the number of cycles. 
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Figure 4.21. Scatter plots of τmax, τf, and Smax (normalized to the predicted values from 

monotonic models) vs. the structural parameters. 
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Figure 4.22. Scatter plots of τmax, τf, and Smax (normalized to the predicted values from 

monotonic models) vs. structural parameter interactions. 

 

Figure 20 shows the relationship between the normalized τmax, τs, and Smax and the 

number of cycles. The following observations can be made: 

• The parameter τmax and τs (as shown in Figure 4.20 (a) and (b), respectively) is 

reduced due to the cyclic loading. 

• The reduction in τmax and τs (as shown in Figure 4.20 (a) and (b), respectively) is 

more significant in the first and second set of cycles, while this reduction becomes 

less in the last set of cycles for most of cases. 

• The amount of slip that is achieved in each set of cycles increases (as shown in 

Figure 4.20 (c)). 

• The increased slip in Figure 4.20 (c) is sometimes more significant in first sets of 

cycles, and sometimes greater in last set of cycles. 
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Figure 4.21 and 4.22 show the relations ship of τmax (or τmax / τmax,predicted) normalized to 

Smax (Smax / Smax,predicted) versus some structural parameters such as corrosion level Q, 

concrete strength f’c, rebar diameter D cover C, and C/d ratio and versus the interactions of 

the structural parameters. No strong trend is observed from the plots. It is suggested that 

more analysis are needed to find a relationship between bond behavior parameters, such as 

τmax and Smax with structural parameters in order to describe the whole cyclic behavior.
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CHAPTER V 

5. SUMMARY AND CONCLUSIONS 

Sufficient bonding of rebar to concrete is crucial to ensure the reliable performance 

of RC structures, particularly in the corroded structures. Whilst much research has 

investigated the bond strength, the impact of the bond failure mode (i.e. pull-out or 

splitting) coupled with corrosion on bond behavior and structural performance has been 

given little attention. This bond behavior between the rebar and concrete plays a crucial 

role in the structural performance of RC structures particularly in the presence of corrosion 

deterioration on the rebar. Such bond behavior varies based on structural properties as well 

as bond failure modes. For a better RC structural evaluation, the two critical parameters to 

model the bond behavior, average bond strength (τavg) and peak slip (s1), need to be 

predicted accurately for each bond failure mode with consideration of corrosion. 

Regarding the bond failure mode, by taking advantage of machine learning 

classifications, a probabilistic model was developed to estimate the bond failure mode. 

specifically, logistic and lasso classification techniques are found to be suitable for 

engineering practice, as they provide explicit formulations. The developed model is based 

on the results of bond tests for 132 beam-end specimens with various influencing 

parameters such as concrete compressive strength, rebar diameter size, cover size, 

corrosion level, and loading type (i.e., monotonic or cyclic). To evaluate if the bond 
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behavior under corrosion affects the performance of a structure, the flexural 

performance of an RC beam with a lap splice under various levels of corrosion is evaluated 

by conducting a reliability analysis.  

For bond strength, the multivariate nonlinear regression approach is adopted using 

explanatory functions consist of structural parameters that are showed correlation with 

bond strength in the literature, corrosion level, as well as the loading type of the structure 

(i.e., monotonic or cyclic loading). The final formulations of the prediction models for 

bond strength under splitting and pull-out bond failure are then obtained using all-possible 

subset model selection. For peak slip, a symbolic multi-gene regression technique 

(SMGR), genetic programming (GP) approach, is adopted to find a meaningful relationship 

between the influencing parameters and the peak slip, where the inputs are the parameters 

identified in the literature that affects peak slip. Considering a good trade-off between 

model complexity and accuracy, an optimum model is chosen among the produced models 

for peak slip in the pull-out, while SMGR fails to generate a practical model for s1 in the 

splitting. Consequently, a beta distribution is used for peak slip in splitting to remove the 

prediction bias. It is also worthy to note that the proposed models are empirical; thus, the 

application of those models are suitable for the cases with the variables that are within the 

ranges of the training dataset. However, since the collected data are comprehensive and 

cover a wide range of variables, it is expected that the proposed models would perform 

well in most of the cases, and yet can be easily updated when more data become available. 

To capture the rebar anchorage slip, this study develops a simple bar stress-slip 

macromodel, where it uses a bilinear function to describe the bond stress distribution and 
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its model parameter is calibrated based on experimental bond stress-slip data. The proposed 

rebar slip model is then used to modify the rebar stress-strain constitutive law in order to 

incorporate slip in the structural analysis. In particular, a fiber beam-column element model 

that uses the modified rebar constitutive relations in OpenSees is applied to model RC 

columns to investigate the slip effect on the flexural behavior and seismic behavior of the 

RC columns. The proposed model has advantages over previously developed models as it 

is a simple model without compromising accuracy, expressed explicitly that considers 

structural properties such as concrete strength and corrosion level and can be updated easily 

when new experimental data becomes available that makes the proposed model more 

practical in engineering applications.  

The main findings of this study are summarized as follows: 

• Machine learning approaches such as logistic and lasso classification techniques 

provide probabilistic predictions of categorical variables such as the bond failure mode, 

and they provide explicit and easy-to-implement formulations for engineering practice. 

• Both logistic and lasso classification methods have similar prediction performances: 

much better than the deterministic approaches and not worse than most of the other 

classification methods; however, lasso classification is found to be more accurate. 

• The parameters that influence the bond failure mode prediction are concrete 

compressive strength, cover to the rebar diameter ratio, corrosion level, and loading 

type (cyclic or monotonic). 

• Based on the developed probabilistic prediction models, the amount of transverse 

stirrup does not influence the bond failure mode. 
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• At the structural level, the flexural performance of the beam in the case study shows 

the dependence on the bond behavior, and more so at higher levels of corrosion. In 

addition, for high levels of corrosion where the beams exhibit splitting bond behavior, 

the beam fails brittlely (that is failure occurs prior to rebar yielding), which is not a 

desirable type of structural failure. 

• The case study also shows that bond behavior has a great impact on the structural 

reliability index curves, and more so as the level of corrosion increases. Thus, the 

prediction of the bond failure mode is critical for time-dependent reliability-based 

analysis. 

• A bond failure criterion based on the bond stress-slip relationship is proposed, and it is 

more reliable to specify the bond failure mode compared with the criteria that are based 

on cracking patterns, particularly when corrosion-induced cracking is present. 

• Multivariate nonlinear regression analysis with model selection is a simple approach to 

develop accurate, unbiased, and practical models between the structural parameters 

(e.g., corrosion level, stirrups effect, loading type) and the response (i.e. bond strength), 

when the correlation between these parameters and the response is known. 

• Due to the lack of pre-existing knowledge about the relationship between the bond-slip 

and the influential factors, SMGR helps extract meaningful relationships directly from 

data in the form of symbolic equations. 

• Even though the prediction model for s1 in splitting is developed simply by fitting a 

beta distribution on the data, this model provides sufficient accuracy for its application, 

as the impact of s1 in splitting on the structural performance is found to be insignificant.  
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• The comparison result shows that the proposed models for both τavg and s1 outperform 

the existing models based on the experimental data collected from the literature.  

• Lastly, the proposed probabilistic models are successfully implemented into structural 

analysis and can predict the flexural behavior of RC beams well overall. 

• The proposed model employs a bilinear bond stress distribution provides explicit 

solutions for slip and does not sacrifice slip prediction accuracy. 

• When comparing with the experimental rebar stress-slip curves, the proposed 

macromodel overperforms over the Pan et al. model particular for corroded specimens. 

• The proposed macromodel considers structural properties such as concrete strength, 

rebar yield stress, rebar diameter, and corrosion level, and the model parameter is 

explicitly expressed in the formula, which makes the future updating possible and easy.  

• Comparing the force-displacement responses of the RC column numerical models with 

considering slip matches the experimental results very well, it further validates the 

proposed slip model used in the numerical model.  

• Comparing the force-displacement responses of the numerical models with and without 

considering slip for various RC columns under monotonic and cyclic loading shows 

that the importance of incorporating rebar anchorage slip in the structural analysis.  

• In the numerical analysis of an example RC bridge column, the results of pushover 

analysis, time-history analysis under seismic excitations, and seismic fragilities all 

demonstrate that the impact of slip play a significant role in the seismic performance 

evaluation. 
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• The results also show the impact of considering corrosion effect on slip prediction and 

on material properties.
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APPENDIX A 

DESIGNED SPECIMEN SPECIFICATION 

Table A.1. Specimen specifications (group 1). 

G
ro

u
p
 

No. 

Rebar 

diameter

, db 

[mm] 

Loading 

type* 

f'c  

[MPa] 

Bond 

length, lb 

[mm] 

Cover, c 

[mm] 
c/d Ktr 

Qtarget 

(%) 

Qactual 

(%) 
Failure Mode** 

G
ro

u
p

 1
 

1 15.875 M 43 88.9 50.8 3.20 0.00 0% 0.0% S 

2 63.5 4.00 0.00 10% 4.9% P 

3 76.2 4.80 0.00 20% 7.6% S 

4 50.8 3.20 5.89 0% 0.0% P 

5 63.5 4.00 5.89 10% 5.3% P 

6 76.2 4.80 5.89 20% 9.9% P 
 

7 
 

C 50.8 
 

3.20 
 

0.00 
 

0% 
 

0.0% 
 

S 

8 25.4 1.60 0.00 5% 10.3% P 

9 63.5 4.00 0.00 10% 11.0% P 

10 38.1 2.40 0.00 15% 10.1% P 

11 76.2 4.80 0.00 20% 12.0% P 

12 50.8 3.20 5.89 0% 0.0% P 

13 25.4 1.60 5.89 5% 7.9% NA 

14 63.5 4.00 5.89 10% 4.3% P 

15 38.1 2.40 5.89 15% 8.2% S 

16 76.2 4.80 5.89 20% 11.3% P 

17 19.05 M 114.3 38.1 2.00 0.00 0% 0.0% S 

18 25.4 1.33 0.00 10% 3.6% S 

19 50.8 2.67 0.00 20% 15.6% P 

20 38.1 2.00 4.91 0% 0.0% P 

21 25.4 1.33 4.91 10% 3.2% S 

22 50.8 2.67 4.91 20% 7.1% S 

23 C 38.1 2.00 0.00 0% 0.0% S 

24 63.5 3.33 0.00 5% 8.5% NA 

25 25.4 1.33 0.00 10% 7.6% P 

26 76.2 4.00 0.00 15% 9.9% S 

27 50.8 2.67 0.00 20% 13.4% P 

28 38.1 2.00 4.91 0% 0.0% P 

29 63.5 3.33 4.91 5% 8.6% P 

30 25.4 1.33 4.91 10% 6.9% S 

31 76.2 4.00 4.91 15% 7.7% P 

32 50.8 2.67 4.91 20% 11.0% P 

33 25.4 M 203.2 63.5 2.50 0.00 0% 0.0% S 

34 50.8 2.00 0.00 10% 4.3% S 

35 38.1 1.50 0.00 20% 10.2% S 

36 63.5 2.50 3.68 0% 0.0% S 

37 50.8 2.00 3.68 10% 7.7% S 

38 38.1 1.50 3.68 20% 11.9% P 

39 C 63.5 2.50 3.68 0% 0.0% S 

40 50.8 2.00 0.00 10% 5.2% NA 

 

41 

    

38.1 1.50 0.00 20% 13.1% NA 

42 63.5 2.50 3.68 0% 0.0% NA 

43 50.8 2.00 3.68 10% 5.7% P 

44 38.1 1.50 3.68 20% 13.7% P 
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Table A.2. Specimen specifications (group 2). 

G
ro

u
p
 

No. 

Rebar 

diameter, 

db 

[mm] 

Loading 

type* 

f'c  

[MPa] 

Bond 

length, 

lb 

[mm] 

Cover, c 

[mm] 
c/d Ktr 

Qtarget 

(%) 

Qactual 

(%) 
Failure Mode** 

G
ro

u
p

 2
 

1 15.875 M 36 88.9 25.4 1.60 11.73 5% 13.1% P 

2 38.1 2.40 11.73 0% 0.0% P 

3 38.1 2.40 11.73 10% 16.3% S 

4 50.8 3.20 11.73 10% 14.9% P 

5 50.8 3.20 11.73 15% 18.4% S 

6 63.5 4.00 11.73 5% 13.0% S 

7 63.5 4.00 11.73 15% 15.9% S 

8 76.2 4.80 11.73 15% 18.8% P 

9 C 25.4 1.60 11.73 5% 16.3% P 

10 38.1 2.40 11.73 0% 0.0% S 

11 38.1 2.40 11.73 10% 15.7% S 

12 50.8 3.20 11.73 10% 15.4% S 

13 50.8 3.20 11.73 15% 17.2% P 

14 63.5 4.00 11.73 5% 19.1% P 

15 63.5 4.00 11.73 15% 16.5% S 

16 76.2 4.80 11.73 15% 15.6% S 

17 19.05 M 114.3 25.4 1.33 9.78 5% 6.3% P 

18 38.1 2.00 9.78 0% 0.0% P 

19 38.1 2.00 9.78 10% 11.2% P 

20 50.8 2.67 9.78 10% 12.6% P 

21 50.8 2.67 9.78 15% 25.8% S 

22 63.5 3.33 9.78 5% 7.1% P 

23 63.5 3.33 9.78 15% 10.5% S 

24 76.2 4.00 9.78 15% 10.8% P 

25 C 25.4 1.33 9.78 5% 6.5% S 

26 38.1 2.00 9.78 0% 0.0% S 

27 38.1 2.00 9.78 10% 13.3% S 

28 50.8 2.67 9.78 10% 12.8% S 

29 50.8 2.67 9.78 15% 10.3% S 

30 63.5 3.33 9.78 5% 5.4% S 

31 63.5 3.33 9.78 15% 12.1% S 

32 76.2 4.00 9.78 15% 11.4% S 

33 25.4 M 152.4 76.2 3.00 7.33 5% 6.0% P 

34 76.2 3.00 7.33 0% 0.0% P 

35 88.9 3.50 7.33 5% 10.7% P 

36 88.9 3.50 7.33 10% 7.4% S 

37 101.6 4.00 7.33 5% 4.9% P 

38 101.6 4.00 7.33 10% 7.7% S 

39 C 76.2 3.00 7.33 5% 5.7% S 

40 76.2 3.00 7.33 0% 0.0% NA 

41 88.9 3.50 7.33 5% 5.1% S 

42 88.9 3.50 7.33 10% 7.5% NA 

43 101.6 4.00 7.33 5% 5.4% NA 

44 101.6 4.00 7.33 10% 8.1% S 
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Table A.3. Specimen specifications (group 3). 

G
ro

u
p
 

No. 

Rebar 

diameter, 

db 

[mm] 

Loading 

type* 

f'c  

[MPa] 

Bond 

length, 

lb 

[mm] 

Cover, c 

[mm] 
c/d Ktr 

Qtarget 

(%) 

Qactual 

(%) 
Failure Mode** 

G
ro

u
p

 3
 

1 15.875 M 27 88.9 25.4 1.60 11.73 5% 7.9% P 

2 38.1 2.40 11.73 0% 0.0% P 

3 38.1 2.40 11.73 10% 10.3% S 

4 50.8 3.20 11.73 10% 11.2% S 

5 50.8 3.20 11.73 15% 6.5% P 

6 63.5 4.00 11.73 5% 4.8% S 

7 63.5 4.00 11.73 15% 4.0% P 

8 76.2 4.80 11.73 15% 7.8% S 

9 C 25.4 1.60 11.73 5% 6.2% P 

10 38.1 2.40 11.73 0% 0.0% P 

11 38.1 2.40 11.73 10% 7.7% P 

12 50.8 3.20 11.73 10% 9.8% NA 

13 50.8 3.20 11.73 15% 9.1% P 

14 63.5 4.00 11.73 5% 3.4% P 

15 63.5 4.00 11.73 15% 11.9% NA 

16 76.2 4.80 11.73 15% 16.9% P 

17 19.05 M 114.3 25.4 1.33 9.78 5% 5.2% P 

18 38.1 2.00 9.78 0% 0.0% P 

19 38.1 2.00 9.78 10% 6.2% S 

20 50.8 2.67 9.78 10% 7.1% NA 

21 50.8 2.67 9.78 15% 9.0% P 

22 63.5 3.33 9.78 5% 5.4% P 

23 63.5 3.33 9.78 15% 9.5% P 

24 76.2 4.00 9.78 15% 7.2% P 

25 25.4 1.33 9.78 5% 6.1% S 

26 C 38.1 2.00 9.78 0% 0.0% NA 

27 38.1 2.00 9.78 10% 6.8% P 

28 50.8 2.67 9.78 10% 6.6% S 

29 50.8 2.67 9.78 15% 5.8% P 

30 63.5 3.33 9.78 5% 8.0% S 

31 63.5 3.33 9.78 15% 8.2% S 

32 76.2 4.00 9.78 15% 8.3% S 

33 25.4 M 152.4 76.2 3.00 7.33 5% 5.0% S 

34 76.2 3.00 7.33 0% 0.0% P 

35 88.9 3.50 7.33 5% 3.7% S 

36 88.9 3.50 7.33 10% 7.4% S 

37 101.6 4.00 7.33 5% 4.7% P 

38 101.6 4.00 7.33 10% 6.7% S 

39 

C 

76.2 3.00 7.33 5% 4.7% P 

40 76.2 3.00 7.33 0% 0.0% P 

41 88.9 3.50 7.33 5% 4.6% P 

42 88.9 3.50 7.33 10% 5.9% P 

43 101.6 4.00 7.33 5% 5.6% P 

44 101.6 4.00 7.33 10% 5.8% P 

* M (monotonic), and C (cyclic) 

** P (pull-out), S (splitting), and NA (not assigned) 
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APPENDIX B 

CLASSIFICATION ALGORITHMS 

Decision tree 

A decision tree is a decision support, non-parametric method that uses a tree-like 

model constructed from the training data and includes a sequence of yes/no questions to 

classify all observations. Hence, the response is predicted using the tree graph. The 

decision tree consists of nodes and branches in which the nodes belong to the test condition 

and the branches represent the outcome of the test. By following the nodes and branches 

of the tree, a decision can be made (Karbassi et al., 2014). 

Discriminant analysis 

In discriminant classification, different classes are assumed to generate data 

following various Gaussian distributions (FISHER, 1936). Linear discriminant analysis 

(LDA) and quadratic discriminant analysis (QDA) are two types of discriminant analysis. 

In LDA Bayes theorem is used to predict the probabilities of the output category, k, into 

the kth category given the input vector of x that can be written as: 
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(B.1) 

where πk is the prior probability (in this study πk = 0.5) and fk(x) refers to the density 

function of x. In this study, fk(x) is considered to have a joint normal or Gaussian 
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distribution, and πk is the prior probability of an observation belonging to the kth class. 

QDA is similar to LDA in that it assigns inputs to the kth category, but QDA considers 

each category as having a unique covariance matrix. Accordingly, classes in LDA have a 

linear boundary and quadratic boundary in QDA. This study adopts QDA for the class 

boundary due to its better prediction accuracy (Friedman, 1989). 

K-nearest neighbors classification 

K-nearest neighbors (KNN) classification is a non-parametric classification method 

(James et al., 2013). Having a test observation of y0 and K as a positive integer, the KNN 

determines K observations in the training data nearest to y0 that are denoted as N0. It then 

predicts the conditional probability for class k as the fraction of data points in N0 as follows: 
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(B.2) 

where I() refers to the indicator variable. The main drawback of using the KNN method is 

that the chosen value of K is sensitive to the prediction performance. To deal with this 

issue, the approach of cross-validation is adopted in this study for different values of K, 

and the best model is selected. 

Naïve Bayes classification 

Naïve Bayes classification uses the Bayes theorem for classifying data by assigning 

an observation to a class when the probability belongs to that observation is larger than 

50%. By assuming that the input vector x is independent for a given class, k, the probability 

of an observation pertains to that class can be formulated as (James et al., 2013): 
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Random forest 

A random forest includes a group of decision trees in a way that each tree predictor 

produces a response based on a set of input variables (J. Zhang et al., 2019). A random 

forest creates many learning models (i.e., decision trees) that increase the classification 

accuracy. This process, also known as bagging, works by averaging noisy and unbiased 

models to create a model with low variance. The prediction of each observation is obtained 

from average of all decision trees and can be formulated using the following equation: 
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where B is the number of decision trees and fb is the decision tree prediction. 

Support vector machine 

A support vector machine (SVM) is a simple classifier generalization known as a 

maximal margin classifier for categorization (James et al., 2013). This model builds a 

hyper-plane (e.g. a linear or polynomial equation of x) that has the maximum distance 

from the nearest point of each category based on the training data. SVM is a non-

probabilistic classification that constructs a classifier as follows: 
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in which N is the number of training data, αi is a positive real factor, and b is a real constant. 

The parameter Ψ(·) is a defined function: for a linear SVM, Ψ(x,xi) = xi
Tx and for a 
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polynomial SVM, Ψ(x,xi) = (xi
Tx + 1)d, in which d is an a priori value specified by the user. 

This study adopted a polynomial SVM to achieve the best accuracy. 
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APPENDIX C 

LAP SPLICE LENGTH 

The designed lap splice length for the adopted beam from Abdel-Kareem (Abdel-

Kareem, 2014) is from ACI 318-11 design code provisions (ACI Committee 318, 2014), 

in which ld can be calculated as: 
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(C.1) 

 

where Ψt, Ψe, and Ψs are modification coefficients to consider the location of reinforcement 

effects, coating, and size of reinforcement, respectively; λ is an aggregate concrete factor, 

and c is the smaller of the distance from the half of center-to-center spacing of the 

developed bars and the distance from the nearest concrete surface to the center of the rebar 

(units are based on SI units). Ktr is the calculated based on: 

10.34
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(C.2) 

 

where n is the number of rebars developed within the splitting plane. For the calculation of 

ld in Equation C.1, the values for the modification factors are Ψt = Ψe = Ψs = λ = 1.0. Note 

that to obtain the minimum splice length, ld can be replaced with ls (Sajedi & Huang, 2017). 
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APPENDIX D 

ANALYTICAL PROCEDURE 

As mentioned in Equation (2.18), it is necessary to calculate the capacity of the 

structure. The following procedure is used to obtain the capacity, C(xr). In this process, the 

beam is modeled as a series of elements having the length of crack sizes. The RC beam is 

assumed to be purely under a constant bending moment. The beam is assumed to have a 

single crack at its midpoint and, as the bending moments increase, the crack expands 

toward the supports. The rebar-concrete bonding transfers some portion of the tensile 

forces created by the bending moment and, thus, reduces the steel elongation and strain 

within each element, allowing the deflection and rotation be lowered. The midspan 

deflection, Δ, can be calculated as (El Maaddawy et al., 2005): 
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(D.1) 

where n is the number of cracks, ei is the elongation of each individual crack, d is 

the height of the center of the tensile rebar to the top of the concrete section, and c is the 

difference between the height of the top of the section and the top of the crack in a crack 

element, as shown in Figure D.1. 

This procedure uses compatibility and equilibrium requirements, and interested 

readers could refer to the authors’ other publications (El Maaddawy et al., 2005; Sajedi & 

Huang, 2017) for further details. The probabilistic model developed by Sajedi & Huang 
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(Sajedi & Huang, 2015) is implemented to estimate the average bond strength, τm, 

that is a function of corrosion for intact and corroded specimens as: 
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(D.2) 

 

where the predicted coefficients are: θ0 = −0.90, θ1 = 0.48, θ2 = 0.12, θ3 = 0.024, 𝜃̃1 = −0.08, 

and 𝜃̃2 = −0.148; µ = 0.45 (Choi & Lee, 2002) is the rebar friction coefficient; Rr = 0.1 (X. 

Wang & Liu, 2004) is the relative lug area of the intact bar; be is the effective beam width 

(mm) (3c ≤ be ≤ 9c); γ = [8·db0/(ld or ls)]
0.5 (≤ 1) is a reduction factor to long development 

length (ld) or splice length (ls); Ast is the area of two legs of the transverse reinforcement in 

the cross-section (mm2); s = transverse reinforcement spacing (mm); and σε is the model 

error where σ = 0.169 and ε = standard normal random variable (Sajedi & Huang, 2015). 

 

  

(a) (b) 

Figure. D.1 (a) Typical cracked beam under flexural loading (Maaddawy & Topper, 

2005), and (b) typical crack element (El Maaddawy et al., 2005). 
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APPENDIX E 

CORROSIN EFFECT ON MATERIAL PROPERTIES 

Researches have shown that the formation of steel rust as a result of the corrosion 

would result in rebar section reduction, volumetric expansion, and a strong reduction in the 

concrete and rebar material (Coronelli & Gambarova, 2004). It is also found that the 

reduction in ductility and strength is significantly greater than the reduction in cross-section 

area (Imperatore et al., 2017; Ou et al., 2016). Thus, in the numerical analysis of a corroded 

RC structure, the strength of rebar and concrete (either core or cover) materials needs to be 

modified. Based on (Imperatore et al., 2017; Xiaoming et al., 2012), thus, the rebar yielding 

strength σy rebar ultimate strength σu and core or cover concrete compressive strength fc´ 

can be calculated as follows: 

intact1 0.01D Q D= −   (E.1) 

( ) ,intact1 1.435y yQ = −   (E.2) 

( ) ,intact1 1.253u uQ = −   (E.3) 
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where σy and σu are the yield and ultimate strength of corroded rebar, respectively. D and 

Dc are the intact and corroded rebar diameter, respectively, b0 is the circumference of the 
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cross-section, and εco is the strain at the peak compressive stress (Cape, 1999; Fédération 

Internationale du Béton, 2000; Molina et al., 1993) and can be calculated as εco = 2fc´/E 

(Figure 4.7).
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APPENDIX F 

COLLECTED DATA FOR BOND STRENGTHA AND PEAK SLIP MODEL DEVELOPMENT 

# Q (%) c 

(mm) 

d 

(mm) 

Rr 

(mm2) 

be 

(mm) 

f'c 

(Mpa) 

Atr 

(mm2) 

fyt 

(Mpa) 

s 

(mm) 

lb 

[mm] 

ln(τ/sqrt(f'c)) MC FM Group s1 

1 0.0 50.8 15.875 0.075 190.5 43 0 414 76.2 88.9 0.84 0 0 Batch 1 NA 

2 4.9 63.5 15.875 0.075 190.5 43 0 414 76.2 88.9 -0.04 0 1 Batch 1 0.18 

3 7.6 76.2 15.875 0.075 228.6 43 0 414 76.2 88.9 0.07 0 0 Batch 1 NA 

4 0.0 50.8 15.875 0.075 190.5 43 258 414 76.2 88.9 1.06 0 1 Batch 1 2.02 

5 5.3 63.5 15.875 0.075 190.5 43 258 414 76.2 88.9 0.97 0 1 Batch 1 4.59 

6 9.9 76.2 15.875 0.075 228.6 43 258 414 76.2 88.9 0.83 0 1 Batch 1 0.14 

7 0.0 50.8 15.875 0.075 190.5 43 0 414 76.2 88.9 0.87 1 0 Batch 1 NA 

8 10.3 25.4 15.875 0.075 190.5 43 0 414 76.2 88.9 -0.23 1 1 Batch 1 0.87 

9 11.0 63.5 15.875 0.075 190.5 43 0 414 76.2 88.9 0.67 1 1 Batch 1 0.97 

10 10.1 38.1 15.875 0.075 190.5 43 0 414 76.2 88.9 0.00 1 1 Batch 1 0.33 

11 12.0 76.2 15.875 0.075 228.6 43 0 414 76.2 88.9 0.14 1 1 Batch 1 0.15 

12 0.0 50.8 15.875 0.075 190.5 43 258 414 76.2 88.9 0.98 1 0 Batch 1 NA 

13 7.9 25.4 15.875 0.075 190.5 43 258 414 76.2 88.9 0.71 1 FALSE Batch 1 NA 

14 4.3 63.5 15.875 0.075 190.5 43 258 414 76.2 88.9 1.03 1 0 Batch 1 NA 

15 8.2 38.1 15.875 0.075 190.5 43 258 414 76.2 88.9 0.91 1 0 Batch 1 NA 

16 11.3 76.2 15.875 0.075 228.6 43 258 414 76.2 88.9 0.87 1 1 Batch 1 0.13 

17 0.0 38.1 19.05 0.075 190.5 43 0 414 76.2 114.3 0.63 0 0 Batch 1 NA 

18 3.6 25.4 19.05 0.075 190.5 43 0 414 76.2 114.3 -0.60 0 0 Batch 1 NA 
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19 15.6 50.8 19.05 0.075 190.5 43 0 414 76.2 114.3 -2.21 0 1 Batch 1 0.76 

20 0.0 38.1 19.05 0.075 190.5 43 258 414 76.2 114.3 0.81 0 FALSE Batch 1 NA 

21 3.2 25.4 19.05 0.075 190.5 43 258 414 76.2 114.3 0.50 0 0 Batch 1 NA 

22 7.1 50.8 19.05 0.075 190.5 43 258 414 76.2 114.3 0.53 0 FALSE Batch 1 NA 

23 0.0 38.1 19.05 0.075 190.5 43 0 414 76.2 114.3 0.45 1 0 Batch 1 NA 

24 8.5 63.5 19.05 0.075 190.5 43 0 414 76.2 114.3 -0.58 1 FALSE Batch 1 NA 

25 7.6 25.4 19.05 0.075 190.5 43 0 414 76.2 114.3 -0.23 1 1 Batch 1 1.06 

26 9.9 76.2 19.05 0.075 228.6 43 0 414 76.2 114.3 0.38 1 0 Batch 1 NA 

27 13.4 50.8 19.05 0.075 190.5 43 0 414 76.2 114.3 -0.51 1 1 Batch 1 0.12 

28 0.0 38.1 19.05 0.075 190.5 43 258 414 76.2 114.3 1.13 1 0 Batch 1 NA 

29 8.6 63.5 19.05 0.075 190.5 43 258 414 76.2 114.3 1.03 1 0 Batch 1 NA 

30 6.9 25.4 19.05 0.075 190.5 43 258 414 76.2 114.3 0.53 1 1 Batch 1 0.41 

31 7.7 76.2 19.05 0.075 228.6 43 258 414 76.2 114.3 0.79 1 1 Batch 1 0.36 

32 11.0 50.8 19.05 0.075 190.5 43 258 414 76.2 114.3 1.01 1 1 Batch 1 0.17 

33 0.0 63.5 25.4 0.075 190.5 43 0 414 76.2 203.2 0.63 0 0 Batch 1 NA 

34 4.3 50.8 25.4 0.075 190.5 43 0 414 76.2 203.2 -0.39 0 0 Batch 1 NA 

35 10.2 38.1 25.4 0.075 190.5 43 0 414 76.2 203.2 -0.47 0 0 Batch 1 NA 

36 0.0 63.5 25.4 0.075 190.5 43 258 414 76.2 203.2 0.61 0 0 Batch 1 NA 

37 7.7 50.8 25.4 0.075 190.5 43 258 414 76.2 203.2 -0.26 0 0 Batch 1 NA 

38 11.9 38.1 25.4 0.075 190.5 43 258 414 76.2 203.2 -0.82 0 1 Batch 1 0.09 

39 0.0 63.5 25.4 0.075 190.5 43 0 414 76.2 203.2 0.65 1 0 Batch 1 NA 

40 5.2 50.8 25.4 0.075 190.5 43 0 414 76.2 203.2 0.43 1 FALSE Batch 1 NA 

41 13.1 38.1 25.4 0.075 190.5 43 0 414 76.2 203.2 0.02 1 FALSE Batch 1 NA 

42 0.0 63.5 25.4 0.075 190.5 43 258 414 76.2 203.2 0.83 1 FALSE Batch 1 NA 

43 5.7 50.8 25.4 0.075 190.5 43 258 414 76.2 203.2 0.30 1 1 Batch 1 0.5 

44 13.7 38.1 25.4 0.075 190.5 43 258 414 76.2 203.2 -0.16 1 FALSE Batch 1 NA 

45 13.1 25.4 15.875 0.075 190.5 36 142 414 38.1 88.9 1.00 0 0 Batch 2 NA 

46 0.0 38.1 15.875 0.075 190.5 36 142 414 38.1 88.9 1.01 0 1 Batch 2 0.39 

47 16.3 38.1 15.875 0.075 190.5 36 142 414 50.8 88.9 0.98 0 0 Batch 2 NA 

48 14.9 50.8 15.875 0.075 190.5 36 142 414 63.5 88.9 1.13 0 0 Batch 2 NA 

49 18.4 50.8 15.875 0.075 190.5 36 142 414 76.2 88.9 0.80 0 0 Batch 2 NA 
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50 13.0 63.5 15.875 0.075 190.5 36 142 414 76.2 88.9 1.07 0 0 Batch 2 NA 

51 15.9 63.5 15.875 0.075 190.5 36 142 414 76.2 88.9 0.92 0 1 Batch 2 0.34 

52 18.8 76.2 15.875 0.075 228.6 36 142 414 76.2 88.9 1.04 0 1 Batch 2 0.1 

53 16.3 25.4 15.875 0.075 190.5 36 142 414 38.1 88.9 0.70 1 1 Batch 2 0.17 

54 0.0 38.1 15.875 0.075 190.5 36 142 414 38.1 88.9 1.13 1 0 Batch 2 NA 

55 15.7 38.1 15.875 0.075 190.5 36 142 414 50.8 88.9 0.98 1 0 Batch 2 NA 

56 15.4 50.8 15.875 0.075 190.5 36 142 414 63.5 88.9 1.04 1 0 Batch 2 NA 

57 17.2 50.8 15.875 0.075 190.5 36 142 414 76.2 88.9 0.87 1 1 Batch 2 0.71 

58 19.1 63.5 15.875 0.075 190.5 36 142 414 76.2 88.9 0.99 1 1 Batch 2 0.42 

59 16.5 63.5 15.875 0.075 190.5 36 142 414 76.2 88.9 0.93 1 0 Batch 2 NA 

60 15.6 76.2 15.875 0.075 228.6 36 142 414 76.2 88.9 1.00 1 0 Batch 2 NA 

61 6.3 25.4 19.05 0.075 190.5 36 142 414 38.1 114.3 0.72 0 1 Batch 2 0.3 

62 0.0 38.1 19.05 0.075 190.5 36 142 414 38.1 114.3 0.83 0 FALSE Batch 2 NA 

63 11.2 38.1 19.05 0.075 190.5 36 142 414 38.1 114.3 0.85 0 0 Batch 2 NA 

64 12.6 50.8 19.05 0.075 190.5 36 142 414 50.8 114.3 0.71 0 0 Batch 2 NA 

65 25.8 50.8 19.05 0.075 190.5 36 142 414 50.8 114.3 0.86 0 0 Batch 2 NA 

66 7.1 63.5 19.05 0.075 190.5 36 142 414 63.5 114.3 0.98 0 1 Batch 2 0.45 

67 10.5 63.5 19.05 0.075 190.5 36 142 414 76.2 114.3 0.84 0 0 Batch 2 NA 

68 10.8 76.2 19.05 0.075 228.6 36 142 414 76.2 114.3 0.85 0 1 Batch 2 0.18 

69 6.5 25.4 19.05 0.075 190.5 36 142 414 38.1 114.3 0.93 1 0 Batch 2 NA 

70 0.0 38.1 19.05 0.075 190.5 36 142 414 38.1 114.3 0.79 1 0 Batch 2 NA 

71 13.3 38.1 19.05 0.075 190.5 36 142 414 38.1 114.3 1.03 1 0 Batch 2 NA 

72 12.8 50.8 19.05 0.075 190.5 36 142 414 50.8 114.3 0.94 1 0 Batch 2 NA 

73 10.3 50.8 19.05 0.075 190.5 36 142 414 50.8 114.3 0.67 1 0 Batch 2 NA 

74 5.4 63.5 19.05 0.075 190.5 36 142 414 63.5 114.3 0.80 1 0 Batch 2 NA 

75 12.1 63.5 19.05 0.075 190.5 36 142 414 63.5 114.3 1.02 1 0 Batch 2 NA 

76 11.4 76.2 19.05 0.075 228.6 36 142 414 76.2 114.3 0.88 1 0 Batch 2 NA 

77 6.0 76.2 25.4 0.075 228.6 36 142 414 38.1 152.4 1.09 0 0 Batch 2 NA 

78 0.0 76.2 25.4 0.075 228.6 36 142 414 38.1 152.4 1.02 0 1 Batch 2 0.15 

79 10.7 88.9 25.4 0.075 266.7 36 142 414 38.1 152.4 1.19 0 0 Batch 2 NA 

80 7.4 88.9 25.4 0.075 266.7 36 142 414 50.8 152.4 0.99 0 0 Batch 2 NA 
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81 4.9 101.6 25.4 0.075 304.8 36 142 414 50.8 152.4 1.12 0 1 Batch 2 1 

82 7.7 101.6 25.4 0.075 304.8 36 142 414 38.1 152.4 1.19 0 0 Batch 2 NA 

83 5.7 76.2 25.4 0.075 228.6 36 142 414 38.1 152.4 1.03 1 0 Batch 2 NA 

84 0.0 76.2 25.4 0.075 228.6 36 142 414 38.1 152.4 1.09 1 FALSE Batch 2 NA 

85 5.1 88.9 25.4 0.075 266.7 36 142 414 38.1 152.4 1.14 1 0 Batch 2 NA 

86 7.5 88.9 25.4 0.075 266.7 36 142 414 50.8 152.4 1.08 1 0 Batch 2 NA 

87 5.4 101.6 25.4 0.075 304.8 36 142 414 50.8 152.4 1.10 1 FALSE Batch 2 NA 

88 8.1 101.6 25.4 0.075 304.8 36 142 414 38.1 152.4 1.11 1 0 Batch 2 NA 

89 7.9 25.4 15.875 0.075 190.5 27 142 414 38.1 88.9 0.85 0 1 Batch 3 0.25 

90 0.0 38.1 15.875 0.075 190.5 27 142 414 38.1 88.9 1.05 0 1 Batch 3 0.22 

91 10.3 38.1 15.875 0.075 190.5 27 142 414 38.1 88.9 1.14 0 0 Batch 3 NA 

92 11.2 50.8 15.875 0.075 190.5 27 142 414 38.1 88.9 1.02 0 0 Batch 3 NA 

93 6.5 50.8 15.875 0.075 190.5 27 142 414 38.1 88.9 1.23 0 1 Batch 3 0.12 

94 4.8 63.5 15.875 0.075 190.5 27 142 414 38.1 88.9 1.22 0 0 Batch 3 NA 

95 4.0 63.5 15.875 0.075 190.5 27 142 414 38.1 88.9 1.37 0 1 Batch 3 0.17 

96 7.8 76.2 15.875 0.075 228.6 27 142 414 38.1 88.9 1.20 0 0 Batch 3 NA 

97 6.2 25.4 15.875 0.075 190.5 27 142 414 38.1 88.9 #NUM! 1 FALSE Batch 3 NA 

98 0.0 38.1 15.875 0.075 190.5 27 142 414 38.1 88.9 1.04 1 1 Batch 3 0.17 

99 7.7 38.1 15.875 0.075 190.5 27 142 414 38.1 88.9 1.28 1 1 Batch 3 0.14 

100 9.8 50.8 15.875 0.075 190.5 27 142 414 38.1 88.9 #NUM! 1 1 Batch 3 0.19 

101 9.1 50.8 15.875 0.075 190.5 27 142 414 38.1 88.9 1.15 1 1 Batch 3 0.09 

102 3.4 63.5 15.875 0.075 190.5 27 142 414 38.1 88.9 1.28 1 1 Batch 3 0.04 

103 11.9 63.5 15.875 0.075 190.5 27 142 414 38.1 88.9 1.43 1 0 Batch 3 NA 

104 16.9 76.2 15.875 0.075 228.6 27 142 414 38.1 88.9 1.02 1 FALSE Batch 3 NA 

105 5.2 25.4 19.05 0.075 190.5 27 142 414 38.1 114.3 0.63 0 1 Batch 3 0.06 

106 0.0 38.1 19.05 0.075 190.5 27 142 414 38.1 114.3 0.87 0 1 Batch 3 0.08 

107 6.2 38.1 19.05 0.075 190.5 27 142 414 38.1 114.3 1.10 0 0 Batch 3 NA 

108 7.1 50.8 19.05 0.075 190.5 27 142 414 38.1 114.3 0.97 0 1 Batch 3 0.9 

109 9.0 50.8 19.05 0.075 190.5 27 142 414 38.1 114.3 0.88 0 1 Batch 3 0.5 

110 5.4 63.5 19.05 0.075 190.5 27 142 414 38.1 114.3 0.99 0 FALSE Batch 3 NA 

111 9.5 63.5 19.05 0.075 190.5 27 142 414 38.1 114.3 1.11 0 1 Batch 3 0.17 
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112 7.2 76.2 19.05 0.075 228.6 27 142 414 38.1 114.3 0.98 0 1 Batch 3 0.39 

113 6.1 25.4 19.05 0.075 190.5 27 142 414 38.1 114.3 0.79 0 1 Batch 3 0.57 

114 0.0 38.1 19.05 0.075 190.5 27 142 414 38.1 114.3 0.81 1 FALSE Batch 3 NA 

115 6.8 38.1 19.05 0.075 190.5 27 142 414 38.1 114.3 1.12 1 0 Batch 3 NA 

116 6.6 50.8 19.05 0.075 190.5 27 142 414 38.1 114.3 1.25 1 0 Batch 3 NA 

117 5.8 50.8 19.05 0.075 190.5 27 142 414 38.1 114.3 0.56 1 1 Batch 3 0.34 

118 8.0 63.5 19.05 0.075 190.5 27 142 414 38.1 114.3 1.05 1 0 Batch 3 NA 

119 8.2 63.5 19.05 0.075 190.5 27 142 414 38.1 114.3 1.22 1 0 Batch 3 NA 

120 8.3 76.2 19.05 0.075 228.6 27 142 414 38.1 114.3 1.15 1 0 Batch 3 NA 

121 5.0 76.2 25.4 0.075 228.6 27 142 414 38.1 152.4 0.99 0 0 Batch 3 NA 

122 0.0 76.2 25.4 0.075 228.6 27 142 414 38.1 152.4 0.96 0 1 Batch 3 0.47 

123 3.7 88.9 25.4 0.075 266.7 27 142 414 38.1 152.4 1.04 0 0 Batch 3 NA 

124 7.4 88.9 25.4 0.075 266.7 27 142 414 38.1 152.4 0.96 0 0 Batch 3 NA 

125 4.7 101.6 25.4 0.075 304.8 27 142 414 38.1 152.4 1.04 0 1 Batch 3 0.07 

126 6.7 101.6 25.4 0.075 304.8 27 142 414 38.1 152.4 0.92 0 0 Batch 3 NA 

127 4.7 76.2 25.4 0.075 228.6 27 142 414 38.1 152.4 1.01 1 0 Batch 3 NA 

128 0.0 76.2 25.4 0.075 228.6 27 142 414 38.1 152.4 1.04 1 0 Batch 3 NA 

129 4.6 88.9 25.4 0.075 266.7 27 142 414 38.1 152.4 1.03 1 0 Batch 3 NA 

130 5.9 88.9 25.4 0.075 266.7 27 142 414 38.1 152.4 1.05 1 0 Batch 3 NA 

131 5.6 101.6 25.4 0.075 304.8 27 142 414 38.1 152.4 1.12 1 0 Batch 3 NA 

132 5.8 101.6 25.4 0.075 304.8 27 142 414 38.1 152.4 0.55 1 1 Batch 3 0.45 

133 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.06 0 0 Bilal NA 

134 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.06 0 0 Bilal NA 

135 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.08 0 0 Bilal NA 

136 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.12 0 0 Bilal NA 

137 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.15 0 0 Bilal NA 

138 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.10 0 0 Bilal NA 

139 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.06 0 0 Bilal NA 

140 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.06 0 0 Bilal NA 

141 0 25.4 20.6 0.2 228.6 22 0 1 1 254 0.02 0 0 Bilal NA 

142 0 25.4 20.6 0.2 228.6 22 0 1 1 254 0.02 0 0 Bilal NA 
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143 0 25.4 20.6 0.17 228.6 22 0 1 1 254 0.03 0 0 Bilal NA 

144 0 25.4 20.6 0.15 228.6 22 0 1 1 254 0.17 0 0 Bilal NA 

145 0 25.4 20.6 0.15 228.6 22 0 1 1 254 0.17 0 0 Bilal NA 

146 0 25.4 20.6 0.13 228.6 22 0 1 1 254 0.09 0 0 Bilal NA 

147 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.06 0 0 Bilal NA 

148 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.08 0 0 Bilal NA 

149 0 25.4 20.6 0.08 228.6 22 0 1 1 254 -0.03 0 0 Bilal NA 

150 0 25.4 20.6 0.08 228.6 22 0 1 1 254 -0.08 0 0 Bilal NA 

151 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.13 0 0 Bilal NA 

152 0 25.4 20.6 0.12 228.6 22 0 1 1 254 0.01 0 0 Bilal NA 

153 0 25.4 20.6 0.16 228.6 22 0 1 1 254 0.20 0 0 Bilal NA 

154 0 25.4 20.6 0.16 228.6 22 0 1 1 254 0.10 0 0 Bilal NA 

155 0 25.4 20.6 0.2 228.6 22 0 1 1 254 0.10 0 0 Bilal NA 

156 0 25.4 20.6 0.2 228.6 22 0 1 1 254 0.13 0 0 Bilal NA 

157 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.11 0 0 Bilal NA 

158 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.10 0 0 Bilal NA 

159 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.12 0 0 Bilal NA 

160 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.21 0 0 Bilal NA 

161 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.22 0 0 Bilal NA 

162 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.15 0 0 Bilal NA 

163 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.14 0 0 Bilal NA 

164 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.12 0 0 Bilal NA 

165 0 25.4 20.6 0.2 228.6 43 0 1 1 254 0.08 0 0 Bilal NA 

166 0 25.4 20.6 0.2 228.6 43 0 1 1 254 0.03 0 0 Bilal NA 

167 0 25.4 20.6 0.17 228.6 43 0 1 1 254 0.13 0 0 Bilal NA 

168 0 25.4 20.6 0.15 228.6 43 0 1 1 254 0.29 0 0 Bilal NA 

169 0 25.4 20.6 0.15 228.6 43 0 1 1 254 0.28 0 0 Bilal NA 

170 0 25.4 20.6 0.13 228.6 43 0 1 1 254 0.14 0 0 Bilal NA 

171 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.19 0 0 Bilal NA 

172 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.07 0 0 Bilal NA 

173 0 25.4 20.6 0.08 228.6 43 0 1 1 254 0.12 0 0 Bilal NA 
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174 0 25.4 20.6 0.08 228.6 43 0 1 1 254 0.04 0 0 Bilal NA 

175 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.15 0 0 Bilal NA 

176 0 25.4 20.6 0.12 228.6 43 0 1 1 254 0.17 0 0 Bilal NA 

177 0 25.4 20.6 0.16 228.6 43 0 1 1 254 0.23 0 0 Bilal NA 

178 0 25.4 20.6 0.16 228.6 43 0 1 1 254 0.29 0 0 Bilal NA 

179 0 25.4 20.6 0.2 228.6 43 0 1 1 254 -0.01 0 0 Bilal NA 

180 0 25.4 20.6 0.2 228.6 43 0 1 1 254 0.08 0 0 Bilal NA 

181 0 25.4 20.6 0.15 228.6 22 0 1 1 254 0.12 0 0 Bilal NA 

182 0 25.4 20.6 0.15 228.6 22 0 1 1 254 0.15 0 0 Bilal NA 

183 0 25.4 20.6 0.2 228.6 22 0 1 1 254 0.31 0 0 Bilal NA 

184 0 25.4 20.6 0.2 228.6 22 0 1 1 254 0.32 0 0 Bilal NA 

185 0 25.4 20.6 0.15 228.6 22 0 1 1 254 0.27 0 0 Bilal NA 

186 0 25.4 20.6 0.15 228.6 22 0 1 1 254 0.22 0 0 Bilal NA 

187 0 25.4 20.6 0.2 228.6 22 0 1 1 254 0.34 0 0 Bilal NA 

188 0 25.4 20.6 0.2 228.6 22 0 1 1 254 0.33 0 0 Bilal NA 

189 0 53.975 25.4 0.2 228.6 31 0 1 1 304.4 -0.01 0 0 Darwin NA 

190 0 53.975 25.4 0.2 228.6 32 0 1 1 304.4 0.01 0 0 Darwin NA 

191 0 52.3875 25.4 0.2 228.6 32 0 1 1 304.4 -0.03 0 0 Darwin NA 

192 0 52.3875 25.4 0.1 228.6 32 0 1 1 304.4 0.06 0 0 Darwin NA 

193 0 53.975 25.4 0.1 228.6 32 0 1 1 304.4 0.14 0 0 Darwin NA 

194 0 53.975 25.4 0.1 228.6 31 0 1 1 304.4 0.02 0 0 Darwin NA 

195 0 53.975 25.4 0.05 228.6 32 0 1 1 304.4 0.00 0 0 Darwin NA 

196 0 55.5625 25.4 0.05 228.6 32 0 1 1 304.4 -0.05 0 0 Darwin NA 

197 0 55.5625 25.4 0.05 228.6 31 0 1 1 304.4 0.06 0 0 Darwin NA 

198 0 60.325 25.4 0.2 228.6 32 0 1 1 304.4 0.03 0 0 Darwin NA 

199 0 53.975 25.4 0.2 228.6 31 0 1 1 304.4 -0.14 0 0 Darwin NA 

200 0 53.975 25.4 0.2 228.6 32 0 1 1 304.4 0.06 0 0 Darwin NA 

201 0 50.8 25.4 0.1 228.6 32 0 1 1 304.4 0.06 0 0 Darwin NA 

202 0 53.975 25.4 0.1 228.6 31 0 1 1 304.4 0.01 0 0 Darwin NA 

203 0 57.15 25.4 0.1 228.6 32 0 1 1 304.4 -0.13 0 0 Darwin NA 

204 0 50.8 25.4 0.05 228.6 32 0 1 1 304.4 0.05 0 0 Darwin NA 
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205 0 52.3875 25.4 0.05 228.6 31 0 1 1 304.4 0.05 0 0 Darwin NA 

206 0 52.3875 25.4 0.05 228.6 32 0 1 1 304.4 -0.05 0 0 Darwin NA 

207 0 52.3875 25.4 0.2 228.6 31 0 1 1 304.4 0.06 0 0 Darwin NA 

208 0 52.3875 25.4 0.2 228.6 32 0 1 1 304.4 0.01 0 0 Darwin NA 

209 0 55.5625 25.4 0.2 228.6 31 0 1 1 304.4 -0.01 0 0 Darwin NA 

210 0 49.2125 25.4 0.1 228.6 31 0 1 1 304.4 0.02 0 0 Darwin NA 

211 0 49.2125 25.4 0.1 228.6 32 0 1 1 304.4 0.02 0 0 Darwin NA 

212 0 52.3875 25.4 0.1 228.6 32 0 1 1 304.4 0.02 0 0 Darwin NA 

213 0 53.975 25.4 0.05 228.6 32 0 1 1 304.4 0.08 0 0 Darwin NA 

214 0 55.5625 25.4 0.05 228.6 32 0 1 1 304.4 -0.06 0 0 Darwin NA 

215 0 53.975 25.4 0.05 228.6 32 0 1 1 304.4 -0.14 0 0 Darwin NA 

216 0 57.15 25.4 0.07 228.6 31 0 1 1 304.4 0.03 0 0 Darwin NA 

217 0 55.5625 25.4 0.07 228.6 32 0 1 1 304.4 0.00 0 0 Darwin NA 

218 0 50.8 25.4 0.07 228.6 32 0 1 1 304.4 -0.01 0 0 Darwin NA 

219 0 53.975 25.4 0.07 228.6 31 0 1 1 304.4 -0.07 0 0 Darwin NA 

220 0 52.3875 25.4 0.07 228.6 32 0 1 1 304.4 -0.01 0 0 Darwin NA 

221 0 52.3875 25.4 0.07 228.6 32 0 1 1 304.4 0.01 0 0 Darwin NA 

222 0 52.3875 25.4 0.2 228.6 32 0 1 1 304.4 0.08 0 0 Darwin NA 

223 0 53.975 25.4 0.1 228.6 32 0 1 1 304.4 0.07 0 0 Darwin NA 

224 0 57.15 25.4 0.05 228.6 32 0 1 1 304.4 0.07 0 0 Darwin NA 

225 0 50.8 25.4 0.2 228.6 32 0 1 1 304.4 0.08 0 0 Darwin NA 

226 0 53.975 25.4 0.1 228.6 32 0 1 1 304.4 0.06 0 0 Darwin NA 

227 0 53.975 25.4 0.05 228.6 32 0 1 1 304.4 0.02 0 0 Darwin NA 

228 0 50.8 25.4 0.2 228.6 32 0 1 1 304.4 0.07 0 0 Darwin NA 

229 0 55.5625 25.4 0.1 228.6 32 0 1 1 304.4 0.11 0 0 Darwin NA 

230 0 53.975 25.4 0.05 228.6 32 0 1 1 304.4 0.05 0 0 Darwin NA 

231 0 53.975 25.4 0.07 228.6 32 0 1 1 304.4 -0.01 0 0 Darwin NA 

232 0 50.8 25.4 0.07 228.6 32 0 1 1 304.4 -0.08 0 0 Darwin NA 

233 0 76.2 25.4 0.2 228.6 41 0 1 1 215.9 0.71 0 0 Darwin NA 

234 0 82.55 25.4 0.2 247.65 35 0 1 1 215.9 0.69 0 0 Darwin NA 

235 0 79.375 25.4 0.1 238.125 41 0 1 1 215.9 0.70 0 0 Darwin NA 
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236 0 82.55 25.4 0.1 247.65 35 0 1 1 215.9 0.62 0 0 Darwin NA 

237 0 76.2 25.4 0.05 228.6 41 0 1 1 215.9 0.59 0 0 Darwin NA 

238 0 76.2 25.4 0.05 228.6 35 0 1 1 215.9 0.62 0 0 Darwin NA 

239 0 76.2 25.4 0.2 228.6 41 0 1 1 215.9 0.70 0 0 Darwin NA 

240 0 76.2 25.4 0.1 228.6 41 0 1 1 215.9 0.67 0 0 Darwin NA 

241 0 77.7875 25.4 0.05 233.3625 41 0 1 1 215.9 0.57 0 0 Darwin NA 

242 0 76.2 25.4 0.2 228.6 41 0 1 1 215.9 0.62 0 0 Darwin NA 

243 0 77.7875 25.4 0.2 233.3625 35 0 1 1 215.9 0.73 0 0 Darwin NA 

244 0 76.2 25.4 0.2 228.6 35 0 1 1 215.9 0.76 0 0 Darwin NA 

245 0 79.375 25.4 0.1 238.125 41 0 1 1 215.9 0.64 0 0 Darwin NA 

246 0 79.375 25.4 0.1 238.125 35 0 1 1 215.9 0.69 0 0 Darwin NA 

247 0 79.375 25.4 0.1 238.125 35 0 1 1 215.9 0.41 0 0 Darwin NA 

248 0 77.7875 25.4 0.05 233.3625 41 0 1 1 215.9 0.49 0 0 Darwin NA 

249 0 77.7875 25.4 0.05 233.3625 35 0 1 1 215.9 0.61 0 0 Darwin NA 

250 0 79.375 25.4 0.05 238.125 35 0 1 1 215.9 0.44 0 0 Darwin NA 

251 0 76.2 25.4 0.07 228.6 41 0 1 1 215.9 0.48 0 0 Darwin NA 

252 0 76.2 25.4 0.07 228.6 35 0 1 1 215.9 0.56 0 0 Darwin NA 

253 0 79.375 25.4 0.07 238.125 41 0 1 1 215.9 0.49 0 0 Darwin NA 

254 0 79.375 25.4 0.07 238.125 35 0 1 1 215.9 0.54 0 0 Darwin NA 

255 0 53.975 25.4 0.2 228.6 32 142.5115 533 76.2 304.4 0.35 0 0 Darwin NA 

256 0 53.975 25.4 0.2 228.6 33 142.5115 533 76.2 304.4 0.42 0 0 Darwin NA 

257 0 52.3875 25.4 0.2 228.6 31 142.5115 533 76.2 304.4 0.36 0 0 Darwin NA 

258 0 53.975 25.4 0.1 228.6 32 142.5115 533 76.2 304.4 0.30 0 0 Darwin NA 

259 0 49.2125 25.4 0.1 228.6 33 142.5115 533 76.2 304.4 0.32 0 0 Darwin NA 

260 0 49.2125 25.4 0.1 228.6 31 142.5115 533 76.2 304.4 0.28 0 0 Darwin NA 

261 0 52.3875 25.4 0.05 228.6 32 142.5115 533 76.2 304.4 0.12 0 0 Darwin NA 

262 0 58.7375 25.4 0.05 228.6 33 142.5115 533 76.2 304.4 0.20 0 0 Darwin NA 

263 0 55.5625 25.4 0.05 228.6 31 142.5115 533 76.2 304.4 0.29 0 0 Darwin NA 

264 0 57.15 25.4 0.2 228.6 33 142.5115 533 76.2 304.4 0.34 0 0 Darwin NA 

265 0 55.5625 25.4 0.2 228.6 31 142.5115 533 76.2 304.4 0.44 0 0 Darwin NA 

266 0 50.8 25.4 0.2 228.6 32 142.5115 533 76.2 304.4 0.42 0 0 Darwin NA 
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267 0 53.975 25.4 0.1 228.6 33 142.5115 533 76.2 304.4 0.32 0 0 Darwin NA 

268 0 55.5625 25.4 0.1 228.6 31 142.5115 533 76.2 304.4 0.34 0 0 Darwin NA 

269 0 50.8 25.4 0.1 228.6 32 142.5115 533 76.2 304.4 0.25 0 0 Darwin NA 

270 0 52.3875 25.4 0.05 228.6 33 142.5115 533 76.2 304.4 0.19 0 0 Darwin NA 

271 0 52.3875 25.4 0.05 228.6 31 142.5115 533 76.2 304.4 0.24 0 0 Darwin NA 

272 0 52.3875 25.4 0.05 228.6 32 142.5115 533 76.2 304.4 0.20 0 0 Darwin NA 

273 0 50.8 25.4 0.2 228.6 31 142.5115 533 76.2 304.4 0.34 0 0 Darwin NA 

274 0 49.2125 25.4 0.2 228.6 32 142.5115 533 76.2 304.4 0.40 0 0 Darwin NA 

275 0 52.3875 25.4 0.2 228.6 33 142.5115 533 76.2 304.4 0.41 0 0 Darwin NA 

276 0 50.8 25.4 0.1 228.6 31 142.5115 533 76.2 304.4 0.18 0 0 Darwin NA 

277 0 53.975 25.4 0.1 228.6 32 142.5115 533 76.2 304.4 0.30 0 0 Darwin NA 

278 0 53.975 25.4 0.1 228.6 33 142.5115 533 76.2 304.4 0.39 0 0 Darwin NA 

279 0 49.2125 25.4 0.05 228.6 31 142.5115 533 76.2 304.4 0.17 0 0 Darwin NA 

280 0 50.8 25.4 0.05 228.6 32 142.5115 533 76.2 304.4 0.07 0 0 Darwin NA 

281 0 52.3875 25.4 0.05 228.6 33 142.5115 533 76.2 304.4 -0.10 0 0 Darwin NA 

282 0 52.3875 25.4 0.07 228.6 32 142.5115 533 76.2 304.4 0.18 0 0 Darwin NA 

283 0 55.5625 25.4 0.07 228.6 33 142.5115 533 76.2 304.4 0.27 0 0 Darwin NA 

284 0 57.15 25.4 0.07 228.6 31 142.5115 533 76.2 304.4 0.14 0 0 Darwin NA 

285 0 53.975 25.4 0.07 228.6 32 142.5115 533 76.2 304.4 0.12 0 0 Darwin NA 

286 0 49.2125 25.4 0.07 228.6 33 142.5115 533 76.2 304.4 0.21 0 0 Darwin NA 

287 0 52.3875 25.4 0.07 228.6 31 142.5115 533 76.2 304.4 0.09 0 0 Darwin NA 

288 0 55.5625 25.4 0.2 228.6 33 142.5115 533 76.2 304.4 0.45 0 0 Darwin NA 

289 0 52.3875 25.4 0.1 228.6 33 142.5115 533 76.2 304.4 0.38 0 0 Darwin NA 

290 0 52.3875 25.4 0.05 228.6 33 142.5115 533 76.2 304.4 0.26 0 0 Darwin NA 

291 0 53.975 25.4 0.2 228.6 33 142.5115 533 76.2 304.4 0.37 0 0 Darwin NA 

292 0 55.5625 25.4 0.1 228.6 33 142.5115 533 76.2 304.4 0.42 0 0 Darwin NA 

293 0 50.8 25.4 0.05 228.6 33 142.5115 533 76.2 304.4 0.26 0 0 Darwin NA 

294 0 50.8 25.4 0.2 228.6 33 142.5115 533 76.2 304.4 0.41 0 0 Darwin NA 

295 0 50.8 25.4 0.1 228.6 33 142.5115 533 76.2 304.4 0.41 0 0 Darwin NA 

296 0 55.5625 25.4 0.05 228.6 33 142.5115 533 76.2 304.4 0.29 0 0 Darwin NA 

297 0 53.975 25.4 0.07 228.6 33 142.5115 533 76.2 304.4 0.25 0 0 Darwin NA 
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298 0 52.3875 25.4 0.07 228.6 33 142.5115 533 76.2 304.4 0.20 0 0 Darwin NA 

299 0 29 12 0.1 150 40 56.548 450 50 144 0.06 0 0 Alsulaimani NA 

300 0.11 29 12 0.1 150 40 56.548 450 50 144 0.24 0 0 Alsulaimani NA 

301 0.38 29 12 0.1 150 40 56.548 450 50 144 0.38 0 0 Alsulaimani NA 

302 0.55 29 12 0.1 150 40 56.548 450 50 144 0.39 0 0 Alsulaimani NA 

303 0.59 29 12 0.1 150 40 56.548 450 50 144 0.32 0 0 Alsulaimani NA 

304 1.25 29 12 0.1 150 40 56.548 450 50 144 0.29 0 0 Alsulaimani NA 

305 1.86 29 12 0.1 150 40 56.548 450 50 144 0.21 0 0 Alsulaimani NA 

306 2.11 29 12 0.1 150 40 56.548 450 50 144 0.11 0 0 Alsulaimani NA 

307 2.41 29 12 0.1 150 40 56.548 450 50 144 0.22 0 0 Alsulaimani NA 

308 3.05 29 12 0.1 150 40 56.548 450 50 144 0.17 0 0 Alsulaimani NA 

309 3.73 29 12 0.1 150 40 56.548 450 50 144 0.17 0 0 Alsulaimani NA 

310 4.5 29 12 0.1 150 40 56.548 450 50 144 0.11 0 0 Alsulaimani NA 

311 0.17 29 12 0.1 150 40 56.548 450 50 300 -0.07 0 0 Alsulaimani NA 

312 0.72 29 12 0.1 150 40 56.548 450 50 300 -0.07 0 0 Alsulaimani NA 

313 1.5 29 12 0.1 150 40 56.548 450 50 300 -0.08 0 0 Alsulaimani NA 

314 1.75 29 12 0.1 150 40 56.548 450 50 300 -0.07 0 0 Alsulaimani NA 

315 1.86 29 12 0.1 150 40 56.548 450 50 300 -0.09 0 0 Alsulaimani NA 

316 1.96 29 12 0.1 150 40 56.548 450 50 300 -0.10 0 0 Alsulaimani NA 

317 2.75 29 12 0.1 150 40 56.548 450 50 300 -0.14 0 0 Alsulaimani NA 

318 3.75 29 12 0.1 150 40 56.548 450 50 300 -0.18 0 0 Alsulaimani NA 

319 3.89 29 12 0.1 150 40 56.548 450 50 300 -0.17 0 0 Alsulaimani NA 

320 4.1 29 12 0.1 150 40 56.548 450 50 300 -0.18 0 0 Alsulaimani NA 

321 0 63.5 12 0.1 190.5 30 0 1 1 102 1.06 0 0 Almusallam NA 

322 2.04 63.5 12 0.1 190.5 30 0 1 1 102 1.10 0 0 Almusallam NA 

323 2.51 63.5 12 0.1 190.5 30 0 1 1 102 1.10 0 0 Almusallam NA 

324 2.69 63.5 12 0.1 190.5 30 0 1 1 102 1.19 0 0 Almusallam NA 

325 3.6 63.5 12 0.1 190.5 30 0 1 1 102 1.22 0 0 Almusallam NA 

326 4 63.5 12 0.1 190.5 30 0 1 1 102 1.16 0 0 Almusallam NA 

327 4.78 63.5 12 0.1 190.5 30 0 1 1 102 1.10 0 0 Almusallam NA 

328 5.09 63.5 12 0.1 190.5 30 0 1 1 102 0.91 0 0 Almusallam NA 
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329 5.79 63.5 12 0.1 190.5 30 0 1 1 102 0.68 0 0 Almusallam NA 

330 7 63.5 12 0.1 190.5 30 0 1 1 102 -0.09 0 0 Almusallam NA 

331 7.8 63.5 12 0.1 190.5 30 0 1 1 102 -0.19 0 0 Almusallam NA 

332 12.1 63.5 12 0.1 190.5 30 0 1 1 102 -0.46 0 0 Almusallam NA 

333 15.65 63.5 12 0.1 190.5 30 0 1 1 102 -0.56 0 0 Almusallam NA 

334 0 25 12 0.1 75 49 100.48 460 40 190 0.02 0 0 Cabrera NA 

335 0.3 25 12 0.1 75 49 100.48 460 40 190 0.07 0 0 Cabrera NA 

336 0.5 25 12 0.1 75 48 100.48 460 40 190 0.08 0 0 Cabrera NA 

337 1.04 25 12 0.1 75 54 100.48 460 40 190 -0.02 0 0 Cabrera NA 

338 1.34 25 12 0.1 75 52 100.48 460 40 190 -0.02 0 0 Cabrera NA 

339 3.6 25 12 0.1 75 59 100.48 460 40 190 -0.08 0 0 Cabrera NA 

340 4.3 25 12 0.1 75 59 100.48 460 40 190 -0.19 0 0 Cabrera NA 

341 5.1 25 12 0.1 75 60 100.48 460 40 190 -0.09 0 0 Cabrera NA 

342 5.8 25 12 0.1 75 62 100.48 460 40 190 -0.06 0 0 Cabrera NA 

343 6.34 25 12 0.1 75 62 100.48 460 40 190 -0.06 0 0 Cabrera NA 

344 7.8 25 12 0.1 75 64 100.48 460 40 190 -0.08 0 0 Cabrera NA 

345 0 19 10 0.1 57 45 0 1 1 100 0.18 0 0 Mangat NA 

346 0.3 19 10 0.1 57 45 0 1 1 100 0.24 0 0 Mangat NA 

347 0.4 19 10 0.1 57 45 0 1 1 100 0.40 0 0 Mangat NA 

348 0.5 19 10 0.1 57 45 0 1 1 100 0.11 0 0 Mangat NA 

349 1.0 19 10 0.1 57 45 0 1 1 100 -0.06 0 0 Mangat NA 

350 2.0 19 10 0.1 57 45 0 1 1 100 -0.27 0 0 Mangat NA 

351 5.0 19 10 0.1 57 45 0 1 1 100 -0.51 0 0 Mangat NA 

352 0 20 11.3 0.1 112.5 36 0 1 1 250 -0.19 0 0 Stanish NA 

353 0.409836066 20 11.3 0.1 112.5 43 0 1 1 250 -0.25 0 0 Stanish NA 

354 5.905365127 20 11.3 0.1 112.5 43 0 1 1 250 -0.99 0 0 Stanish NA 

355 12.85394933 20 11.3 0.1 112.5 43 0 1 1 250 -0.70 0 0 Stanish NA 

356 7.581967213 20 11.3 0.1 112.5 36 0 1 1 250 -0.65 0 0 Stanish NA 

357 8.90461997 20 11.3 0.1 112.5 36 0 1 1 250 -0.36 0 0 Stanish NA 

358 10.30178838 20 11.3 0.1 112.5 36 0 1 1 250 -0.47 0 0 Stanish NA 
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359 14.38152012 20 11.3 0.1 112.5 36 0 1 1 250 -0.99 0 0 Stanish NA 

360 0 24 16 0.12 150 54 100.48 590 70 208 -0.32 0 0 Rodriguez NA 

361 2.902153846 24 16 0.12 150 59 56.52 590 100 208 -0.41 0 0 Rodriguez NA 

362 3.015384615 24 16 0.12 150 54 100.48 590 70 208 -0.31 0 0 Rodriguez NA 

363 3.074461538 24 16 0.12 150 59 56.52 590 100 208 -0.49 0 0 Rodriguez NA 

364 3.192615385 24 16 0.12 150 54 100.48 590 70 208 -0.46 0 0 Rodriguez NA 

365 5.383384615 24 16 0.12 150 54 100.48 590 70 208 -0.43 0 0 Rodriguez NA 

366 6.424615385 24 16 0.12 150 54 100.48 590 70 208 -0.51 0 0 Rodriguez NA 

367 6.683076923 24 16 0.12 150 65 56.56 590 100 208 -0.56 0 0 Rodriguez NA 

368 8.196923077 24 16 0.12 150 59 56.52 590 100 208 -0.70 0 0 Rodriguez NA 

369 8.647384615 24 16 0.12 150 59 56.52 590 100 208 -0.65 0 0 Rodriguez NA 

370 13.7 15 10 0.12 150 86 56.56 590 100 130 -0.77 0 0 Rodriguez NA 

371 14.2 15 10 0.12 150 86 56.56 590 100 130 -0.67 0 0 Rodriguez NA 

372 0 21.5 16 0.1 150 40.7 56.5 420 40 80 0.12 0 0 Harajli NA 

373 0 34 16 0.1 150 40.7 56.5 420 40 80 0.29 0 0 Harajli NA 

374 0 34 16 0.1 150 43.2 157.1 420 40 80 0.41 0 0 Harajli NA 

375 0 17.5 20 0.1 150 42.7 56.5 420 50 100 -0.11 0 0 Harajli NA 

376 0 30 20 0.1 150 39 56.5 420 50 100 0.10 0 0 Harajli NA 

377 0 30 20 0.1 150 43.2 157.1 420 50 100 0.18 0 0 Harajli NA 

378 0 50 25 0.1 150 42.7 56.5 420 62.5 125 0.33 0 0 Harajli NA 

379 0 25 25 0.1 150 40.7 56.5 420 62.5 125 -0.09 0 0 Harajli NA 

380 0 43 32 0.1 150 39 56.5 420 80 160 -0.26 0 0 Harajli NA 

381 0 18 32 0.1 150 39 56.5 420 80 160 -0.45 0 0 Harajli NA 

382 0 21.5 16 0.3 150 40.7 56.5 420 40 80 0.09 0 0 Harajli NA 

383 0 34 16 0.3 150 40.7 56.5 420 40 80 0.29 0 0 Harajli NA 

384 0 17.5 20 0.3 150 42.7 56.5 420 50 100 -0.20 0 0 Harajli NA 

385 0 30 20 0.3 150 39 56.5 420 50 100 0.04 0 0 Harajli NA 

386 0 50 25 0.2 150 42.7 56.5 420 62.5 125 0.16 0 0 Harajli NA 

387 0 25 25 0.2 150 40.7 56.5 420 62.5 125 -0.34 0 0 Harajli NA 

388 0 43 32 0.2 150 39 56.5 420 80 160 -0.20 0 0 Harajli NA 
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389 0 18 32 0.2 150 39 56.5 420 80 160 -0.65 0 0 Harajli NA 

390 0 25 20 0.05 150 33 0.0 378 1 150 -0.24 0 0 Lin 2019a NA 

391 0 25 20 0.05 150 33 100.5 378 150 150 -0.22 0 0 Lin 2019a NA 

392 0 25 20 0.05 150 33 100.5 378 100 150 -0.12 0 0 Lin 2019a NA 

393 0 25 20 0.05 150 33 100.5 378 70 150 -0.04 0 0 Lin 2019a NA 

394 0 35 20 0.05 150 33 0.0 378 1 150 -0.18 0 0 Lin 2019a NA 

395 0 35 20 0.05 150 33 100.5 378 150 150 -0.14 0 0 Lin 2019a NA 

396 0 35 20 0.05 150 33 100.5 378 100 150 -0.10 0 0 Lin 2019a NA 

397 0 35 20 0.05 150 33 100.5 378 70 150 0.12 0 0 Lin 2019a NA 

398 0 45 20 0.05 150 33 0.0 378 1 150 -0.14 0 0 Lin 2019a NA 

399 0 45 20 0.05 150 33 100.5 378 150 150 -0.09 0 0 Lin 2019a NA 

400 0 45 20 0.05 150 33 100.5 378 100 150 0.20 0 0 Lin 2019a NA 

401 0 45 20 0.05 150 33 100.5 378 70 150 0.12 0 0 Lin 2019a NA 

402 0 70 20 0.05 150 33 0.0 378 1 150 0.45 0 0 Lin 2019a NA 

403 0 70 20 0.05 150 33 100.5 378 150 150 0.12 0 0 Lin 2019a NA 

404 0 70 20 0.05 150 33 100.5 378 100 150 0.45 0 0 Lin 2019a NA 

405 0 70 20 0.05 150 33 100.5 378 70 150 0.50 0 0 Lin 2019a NA 

406 0 25 20 0.2 150 50 100.5 378 100 200 0.50 0 0 Lin 2019c NA 

407 0 25 20 0.2 150 50 100.5 378 100 200 0.49 0 1 Lin 2019c 0.15 

408 0 25 20 0.2 150 50 100.5 378 100 200 0.50 0 1 Lin 2019c 0.15 

409 1.77 25 20 0.2 150 50 100.5 378 100 200 0.40 0 0 Lin 2019c NA 

410 5.34 25 20 0.2 150 50 100.5 378 100 200 0.29 0 0 Lin 2019c NA 

411 2.03 25 20 0.2 150 50 100.5 378 100 200 0.41 0 0 Lin 2019c NA 

412 7.53 25 20 0.2 150 50 100.5 378 100 200 0.01 0 1 Lin 2019c 0.13 

413 8.84 25 20 0.2 150 50 100.5 378 100 200 0.02 0 1 Lin 2019c 0.23 

414 0 25 20 0.2 150 50 100.5 378 50 200 0.41 0 1 Lin 2019c 0.15 

415 0 25 20 0.2 150 50 100.5 378 50 200 0.40 0 1 Lin 2019c 0.76 

416 0 25 20 0.2 150 50 100.5 378 50 200 0.36 0 1 Lin 2019c 0.23 

417 0.1 25 20 0.2 150 50 100.5 378 50 200 0.40 0 1 Lin 2019c 0.14 

418 1.82 25 20 0.2 150 50 100.5 378 50 200 0.36 0 1 Lin 2019c 0.2 
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419 1.3 25 20 0.2 150 50 100.5 378 50 200 0.37 0 1 Lin 2019c 0.25 

420 2.97 25 20 0.2 150 50 100.5 378 50 200 0.17 0 0 Lin 2019c NA 

421 5.58 25 20 0.2 150 50 100.5 378 50 200 0.00 0 1 Lin 2019c 1.06 

422 0 35 20 0.2 150 50 100.5 378 100 200 0.68 0 0 Lin 2019c NA 

423 0 35 20 0.2 150 50 100.5 378 100 200 0.56 0 0 Lin 2019c NA 

424 0 35 20 0.2 150 50 100.5 378 100 200 0.61 0 0 Lin 2019c NA 

425 1.15 35 20 0.2 150 50 100.5 378 100 200 0.54 0 0 Lin 2019c NA 

426 2.81 35 20 0.2 150 50 100.5 378 100 200 0.29 0 1 Lin 2019c 0.41 

427 3.86 35 20 0.2 150 50 100.5 378 100 200 0.41 0 1 Lin 2019c 0.36 

428 1.43 35 20 0.2 150 50 100.5 378 100 200 0.26 0 1 Lin 2019c 0.17 

429 12.89 35 20 0.2 150 50 100.5 378 100 200 -0.13 0 0 Lin 2019c NA 

430 0 35 20 0.2 150 50 100.5 378 50 200 0.52 0 1 Lin 2019c 0.19 

431 0 35 20 0.2 150 50 100.5 378 50 200 0.52 0 1 Lin 2019c 0.09 

432 0 35 20 0.2 150 50 100.5 378 50 200 0.62 0 1 Lin 2019c 0.04 

433 1.4 35 20 0.2 150 50 100.5 378 50 200 0.55 0 1 Lin 2019c 0.09 

434 1 35 20 0.2 150 50 100.5 378 50 200 0.54 0 1 Lin 2019c 0.09 

435 0.89 35 20 0.2 150 50 100.5 378 50 200 0.50 0 0 Lin 2019c NA 

436 1.82 35 20 0.2 150 50 100.5 378 50 200 0.42 0 0 Lin 2019c NA 

437 2.54 35 20 0.2 150 50 100.5 378 50 200 0.43 0 - Lin 2019c NA 

438 0.52 12 12 0.2 108 36.5 0 0 1 300 -0.67 0 0 Tang & Law 

2007 

NA 

439 0.42 12 12 0.2 108 36.5 0 0 1 300 -0.55 0 0 Tang & Law 

2007 

NA 

440 1.47 12 12 0.2 108 36.5 0 0 1 300 -0.41 0 0 Tang & Law 

2007 

NA 

441 1.25 12 12 0.2 108 36.5 0 0 1 300 -0.51 0 0 Tang & Law 

2007 

NA 

442 1.35 12 12 0.2 108 36.5 0 0 1 300 -0.61 0 0 Tang & Law 

2007 

NA 

443 1.33 12 12 0.2 108 36.5 0 0 1 300 -0.46 0 0 Tang & Law 

2007 

NA 

444 36.95 12 12 0.2 108 36.5 0 0 1 300 -1.43 0 0 Tang & Law 

2007 

NA 

445 18.22 12 12 0.2 108 36.5 0 0 1 300 -0.92 0 0 Tang & Law 

2007 

NA 

446 26.72 12 12 0.2 108 36.5 0 0 1 300 -1.90 0 0 Tang & Law 

2007 

NA 

447 19.1 12 12 0.2 108 36.5 0 0 1 300 -1.48 0 0 Tang & Law 

2007 

NA 
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448 0.33 12 12 0.2 108 36.5 0 0 1 300 -0.51 0 0 Tang & Law 

2007 

NA 

449 0.46 12 12 0.2 108 36.5 0 0 1 300 -0.55 0 0 Tang & Law 

2007 

NA 

450 1.29 12 12 0.2 108 36.5 0 0 1 300 -0.34 0 0 Tang & Law 

2007 

NA 

451 1.52 12 12 0.2 108 36.5 0 0 1 300 -0.66 0 0 Tang & Law 

2007 

NA 

452 1.19 12 12 0.2 108 36.5 0 0 1 300 -0.57 0 0 Tang & Law 

2007 

NA 

453 1.07 12 12 0.2 108 36.5 0 0 1 300 -0.71 0 0 Tang & Law 

2007 

NA 

454 24.27 12 12 0.2 108 36.5 0 0 1 300 -0.87 0 0 Tang & Law 

2007 

NA 

455 16.39 12 12 0.2 108 36.5 0 0 1 300 -1.10 0 0 Tang & Law 

2007 

NA 

456 16.7 12 12 0.2 108 36.5 0 0 1 300 -1.28 0 0 Tang & Law 

2007 

NA 

457 28.74 12 12 0.2 108 36.5 0 0 1 300 -1.24 0 0 Tang & Law 

2007 

NA 

458 0.41 36 12 0.2 200 38 0 0 1 300 0.31 0 0 Tang & Law 

2007 

NA 

459 2.95 36 12 0.2 200 38 0 0 1 300 0.12 0 0 Tang & Law 

2007 

NA 

460 2.53 36 12 0.2 200 38 0 0 1 300 0.10 0 0 Tang & Law 

2007 

NA 

461 11.96 36 12 0.2 200 38 0 0 1 300 -0.58 0 0 Tang & Law 

2007 

NA 

462 11.17 36 12 0.2 200 34 0 0 1 300 -0.71 0 0 Tang & Law 

2007 

NA 

463 6.88 36 12 0.2 200 34 0 0 1 300 -2.46 0 0 Tang & Law 

2007 

NA 

464 0.39 36 12 0.2 200 38 0 0 1 300 0.30 0 0 Tang & Law 

2007 

NA 

465 2.73 36 12 0.2 200 38 0 0 1 300 -0.18 0 0 Tang & Law 

2007 

NA 

466 2.4 36 12 0.2 200 38 0 0 1 300 0.03 0 0 Tang & Law 

2007 

NA 

467 10.31 36 12 0.2 200 38 0 0 1 300 -0.24 0 0 Tang & Law 

2007 

NA 

468 10.42 36 12 0.2 200 38 0 0 1 300 -0.47 0 0 Tang & Law 

2007 

NA 

469 8.93 36 12 0.2 200 34 0 0 1 300 -1.13 0 0 Tang & Law 

2007 

NA 

470 9.31 36 12 0.2 200 34 0 0 1 300 -0.86 0 0 Tang & Law 

2007 

NA 

471 0.44 16 16 0.2 144 37.5 0 0 1 300 -0.73 0 0 Tang & Law 

2007 

NA 

472 0.37 16 16 0.2 144 37.5 0 0 1 300 -1.24 0 0 Tang & Law 

2007 

NA 

473 1.01 16 16 0.2 144 37.5 0 0 1 300 -0.61 0 0 Tang & Law 

2007 

NA 

474 0.83 16 16 0.2 144 37.5 0 0 1 300 -0.66 0 0 Tang & Law 

2007 

NA 

475 4.38 16 16 0.2 144 37.5 0 0 1 300 -0.91 0 0 Tang & Law 

2007 

NA 

476 4.04 16 16 0.2 144 37.5 0 0 1 300 -1.45 0 0 Tang & Law 

2007 

NA 
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477 7.07 16 16 0.2 144 37.5 0 0 1 300 -1.43 0 0 Tang & Law 

2007 

NA 

478 5.68 16 16 0.2 144 37.5 0 0 1 300 -1.03 0 0 Tang & Law 

2007 

NA 

479 0.39 16 16 0.2 144 37.5 0 0 1 300 -0.64 0 0 Tang & Law 

2007 

NA 

480 0.32 16 16 0.2 144 37.5 0 0 1 300 -0.68 0 0 Tang & Law 

2007 

NA 

481 0.94 16 16 0.2 144 37.5 0 0 1 300 -0.87 0 0 Tang & Law 

2007 

NA 

482 1.13 16 16 0.2 144 37.5 0 0 1 300 -0.61 0 0 Tang & Law 

2007 

NA 

483 3.51 16 16 0.2 144 37.5 0 0 1 300 -0.81 0 0 Tang & Law 

2007 

NA 

484 4.1 16 16 0.2 144 37.5 0 0 1 300 -0.87 0 0 Tang & Law 

2007 

NA 

485 3.15 16 16 0.2 144 37.5 0 0 1 300 -1.41 0 0 Tang & Law 

2007 

NA 

486 3.58 16 16 0.2 144 37.5 0 0 1 300 -1.37 0 0 Tang & Law 

2007 

NA 

487 5.4 16 16 0.2 144 37.5 0 0 1 300 -0.97 0 0 Tang & Law 

2007 

NA 

488 5.62 16 16 0.2 144 37.5 0 0 1 300 -1.04 0 0 Tang & Law 

2007 

NA 

489 30.02 48 16 0.2 200 38 0 0 1 300 -0.67 0 0 Tang & Law 

2007 

NA 

490 18.49 48 16 0.2 200 38 0 0 1 300 -0.55 0 0 Tang & Law 

2007 

NA 

491 N/A 48 16 0.2 200 38 0 0 1 300 0.27 0 0 Tang & Law 

2007 

NA 

492 0.58 48 16 0.2 200 38 0 0 1 300 0.21 0 0 Tang & Law 

2007 

NA 

493 2.24 48 16 0.2 200 38 0 0 1 300 0.11 0 0 Tang & Law 

2007 

NA 

494 2.69 48 16 0.2 200 38 0 0 1 300 -0.30 0 0 Tang & Law 

2007 

NA 

495 10.8 48 16 0.2 200 38 0 0 1 300 -0.87 0 0 Tang & Law 

2007 

NA 

496 21.94 48 16 0.2 200 38 0 0 1 300 -0.91 0 0 Tang & Law 

2007 

NA 

497 3.46 48 16 0.2 200 38 0 0 1 300 -0.23 0 0 Tang & Law 

2007 

NA 

498 N/A 48 16 0.2 200 38 0 0 1 300 0.20 0 0 Tang & Law 

2007 

NA 

499 0.47 48 16 0.2 200 38 0 0 1 300 0.24 0 0 Tang & Law 

2007 

NA 

500 2.65 48 16 0.2 200 38 0 0 1 300 -0.08 0 0 Tang & Law 

2007 

NA 

501 4.66 48 16 0.2 200 38 0 0 1 300 -0.29 0 0 Tang & Law 

2007 

NA 

502 0 40 20 0.2 150 30 57 318 150 150 0.45 0 0 Lin & Zhao 

2016 

NA 

503 0 40 20 0.2 150 30 57 318 150 150 0.34 0 0 Lin & Zhao 

2016 

NA 

504 4.52 40 20 0.2 150 30 57 318 150 150 0.12 0 0 Lin & Zhao 

2016 

NA 
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505 8 40 20 0.2 150 30 57 318 150 150 -0.09 0 0 Lin & Zhao 

2016 

NA 

506 7.64 40 20 0.2 150 30 57 318 150 150 -0.23 0 0 Lin & Zhao 

2016 

NA 

507 4.3 40 20 0.2 150 30 57 318 150 150 0.08 0 0 Lin & Zhao 

2016 

NA 

508 13.6 40 20 0.2 150 30 57 318 150 150 -0.46 0 0 Lin & Zhao 

2016 

NA 

509 12.31 40 20 0.2 150 30 57 318 150 150 0.01 0 0 Lin & Zhao 

2016 

NA 

510 17.24 40 20 0.2 150 30 57 318 150 150 -0.52 0 0 Lin & Zhao 

2016 

NA 

511 11.06 40 20 0.2 150 30 57 318 150 150 -0.26 0 0 Lin & Zhao 

2016 

NA 

512 16.11 40 20 0.2 150 30 57 318 150 150 -0.21 0 0 Lin & Zhao 

2016 

NA 

513 20.86 40 20 0.2 150 30 57 318 150 150 -0.53 0 0 Lin & Zhao 

2016 

NA 

514 0 40 20 0.2 150 30 57 318 100 150 0.41 0 0 Lin & Zhao 

2016 

NA 

515 0 40 20 0.2 150 30 57 318 100 150 0.41 0 0 Lin & Zhao 

2016 

NA 

516 2.04 40 20 0.2 150 30 57 318 100 150 0.00 0 0 Lin & Zhao 

2016 

NA 

517 2.75 40 20 0.2 150 30 57 318 100 150 0.22 0 0 Lin & Zhao 

2016 

NA 

518 4.52 40 20 0.2 150 30 57 318 100 150 0.28 0 0 Lin & Zhao 

2016 

NA 

519 2.71 40 20 0.2 150 30 57 318 100 150 0.18 0 0 Lin & Zhao 

2016 

NA 

520 6.69 40 20 0.2 150 30 57 318 100 150 0.13 0 0 Lin & Zhao 

2016 

NA 

521 8.19 40 20 0.2 150 30 57 318 100 150 -0.26 0 0 Lin & Zhao 

2016 

NA 

522 16.77 40 20 0.2 150 30 57 318 100 150 0.00 0 0 Lin & Zhao 

2016 

NA 

523 13.67 40 20 0.2 150 30 57 318 100 150 0.57 0 0 Lin & Zhao 

2016 

NA 

524 16.1 40 20 0.2 150 30 57 318 100 150 0.11 0 0 Lin & Zhao 

2016 

NA 

525 15.47 40 20 0.2 150 30 57 318 100 150 0.14 0 0 Lin & Zhao 

2016 

NA 

526 0 40 20 0.2 150 30 57 318 70 150 0.43 0 0 Lin & Zhao 

2016 

NA 

527 0 40 20 0.2 150 30 57 318 70 150 0.47 0 0 Lin & Zhao 

2016 

NA 

528 1.01 40 20 0.2 150 30 57 318 70 150 0.02 0 0 Lin & Zhao 

2016 

NA 

529 2.24 40 20 0.2 150 30 57 318 70 150 0.15 0 0 Lin & Zhao 

2016 

NA 

530 3.86 40 20 0.2 150 30 57 318 70 150 0.23 0 0 Lin & Zhao 

2016 

NA 

531 4.06 40 20 0.2 150 30 57 318 70 150 0.32 0 0 Lin & Zhao 

2016 

NA 

532 9.43 40 20 0.2 150 30 57 318 70 150 0.43 0 0 Lin & Zhao 

2016 

NA 

533 7.31 40 20 0.2 150 30 57 318 70 150 0.07 0 0 Lin & Zhao 

2016 

NA 



 

228 

 

534 9.14 40 20 0.2 150 30 57 318 70 150 0.04 0 0 Lin & Zhao 

2016 

NA 

535 9.94 40 20 0.2 150 30 57 318 70 150 -0.01 0 0 Lin & Zhao 

2016 

NA 

536 16.33 40 20 0.2 150 30 57 318 70 150 -0.27 0 0 Lin & Zhao 

2016 

NA 

537 14.35 40 20 0.2 150 30 57 318 70 150 -0.22 0 0 Lin & Zhao 

2016 

NA 

538 0 35 20 0.2 150 50 100.5 378 50 100 0.92 0 1 Lin 2017a 0.33 

539 0 35 20 0.2 150 50 100.5 378 50 100 0.92 0 1 Lin 2017a 0.15 

540 0 35 20 0.2 150 50 100.5 378 50 100 0.83 0 1 Lin 2017a 0.15 

541 2 35 20 0.2 150 50 100.5 378 50 100 0.85 0 1 Lin 2017a 0.3 

542 4 35 20 0.2 150 50 100.5 378 50 100 0.46 0 1 Lin 2017a 0.13 

543 7 35 20 0.2 150 50 100.5 378 50 100 0.52 0 1 Lin 2017a 1 

544 10 35 20 0.2 150 50 100.5 378 50 100 0.53 0 1 Lin 2017a 0.13 

545 13 35 20 0.2 150 50 100.5 378 50 100 0.65 0 1 Lin 2017a 0.23 

546 16 35 20 0.2 150 50 100.5 378 50 100 0.53 0 1 Lin 2017a 0.15 

547 0 30 20 0.2 270 30 0 0 1 210 -0.15 0 1 Hanjari 2011 0.76 

548 0 30 20 0.2 270 30 0 0 1 210 -0.11 0 1 Hanjari 2011 0.23 

549 0 30 20 0.2 270 30 0 0 1 210 0.20 0 1 Hanjari 2011 0.14 

550 0 30 20 0.2 270 30 100.531 510 1 210 0.35 0 1 Hanjari 2011 0.2 

551 0 30 20 0.2 270 30 100.531 510 40 210 0.18 0 1 Hanjari 2011 0.25 

552 0 30 20 0.2 270 30 100.531 510 40 210 0.39 0 1 Hanjari 2011 0.22 

553 3.5 30 20 0.2 270 30 100.531 510 40 210 -0.06 0 1 Hanjari 2011 1.06 

554 0.2 30 20 0.2 270 30 100.531 510 40 210 0.17 0 1 Hanjari 2011 0.15 

555 0.7 30 20 0.2 270 30 100.531 510 40 210 0.23 0 1 Hanjari 2011 0.12 

556 7.3 30 20 0.2 270 30 0 0 1 210 -0.87 0 1 Hanjari 2011 0.13 

557 8.9 30 20 0.2 270 30 0 0 1 210 -0.60 0 0 Hanjari 2011 NA 

558 4.5 30 20 0.2 270 30 0 0 1 210 0.13 0 1 Hanjari 2011 0.41 

559 12.4 30 20 0.2 270 30 100.531 510 40 210 0.13 0 0 Hanjari 2011 NA 

560 7.7 30 20 0.2 270 30 100.531 510 40 210 0.06 0 0 Hanjari 2011 NA 

561 9,8 (*) 30 20 0.2 270 30 100.531 510 40 210 0.25 0 1 Hanjari 2011 0.14 

562 15,5 (*) 30 20 0.2 270 30 100.531 510 40 210 0.08 0 1 Hanjari 2011 0.19 
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563 14.8 30 20 0.2 270 30 100.531 510 40 210 0.23 0 1 Hanjari 2011 0.09 

564 15.7 30 20 0.2 270 30 100.531 510 40 210 0.26 0 0 Hanjari 2011 NA 

565 9.2 30 20 0.2 270 30 100.531 510 40 210 0.09 0 0 Hanjari 2011 NA 

566 16.7 30 20 0.2 270 30 100.531 510 40 210 0.34 0 1 Hanjari 2011 0.09 
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