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ABSTRACT

Understanding the mechanism of adhesion and friction in soft materials

is critical to the fields of transportation (tires, wiper blades, seals etc.), prosthet-

ics and soft robotics. Most surfaces are inherently rough and the interfacial area

between two contacting bodies depends largely on the material properties and sur-

face topography of the contacting bodies. Johnson, Kendall and Roberts (JKR)

derived an equilibrium energy balance for the behavior of smooth elastic spherical

bodies in adhesive contact that predicts a thermodynamic work of adhesion for

two surfaces in contact. The JKR equation gives a reversible work of adhesion

value during approach and retraction. However, viscoelastic dissipation, surface

roughness and chemical bonding result in different work of adhesion values for ap-

proach and retraction. This discrepancy is termed adhesion hysteresis. Roughness

is undermined as a cause of hysteresis in adhesion studies.

Recently, a continuum mechanics model has been developed that predicts

the work of adhesion on rough surfaces with known roughness in the form of power

spectral density (PSD) function. To test the above mentioned theoretical model,

we have conducted JKR experiments between highly cross-linked smooth poly-

dimethylsiloxane (PDMS) of four different elastic moduli and diamond surfaces of

four different crystal sizes and roughness. The rough diamond surfaces are char-

acterized for topography using stylus profilometry, atomic force microscopy and
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in-situ transmission electron microscopy combined to give a comprehensive PSD.

Results suggest that the observed work of adhesion during approach is equivalent

to energy required to stretch the PDMS network at the surface and in the bulk

to form the real rough contact area. However, in retraction work of adhesion

is found to be proportional to the ratio of excess energy spent in the loading-

unloading cycle and the true contact area obtained from topography indicating

conformal contact matching fracture mechanics behavior. Thus, the study resolves

adhesion hysteresis discrepancy on rough surfaces.

It is known that adhesion hysteresis increases interfacial friction on rough

surfaces. However, an experimentally proven quantitative model is still missing.

Previous studies on smooth surfaces have shown that shear stress increases with

velocity initially, reaching a maximum and then either plateaus out or decreases

depending upon the modulus of the sliding elastomer. We have performed shear

measurements with velocities ranging from nm/sec to cm/sec between PDMS elas-

tomers and diamond surfaces. Data suggests higher shear stresses at lower veloci-

ties for rough surfaces and thus a shift for the peak previously observed on smooth

surfaces. Additionally, there are states such as steady-state sliding, stick-slip and

detachment waves with increasing stress in the same order. These states are found

to occur at a critical stress and their onset is linearly proportional to the elastic

modulus of the sliding rubber. The stress predictions using existing theories do

not decouple adhesion and deformation energy losses during friction observed ex-

perimentally on rough surfaces and further investigation is required in order to

obtain a better friction model.
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CHAPTER I

INTRODUCTION

Polymers in the form of elastomers are used in a humungous quantity

as adhesives, seals, tires, dental prosthetics, stents, coatings etc. where they are

desirable since their mechanical properties can be tuned easily depending upon

the type of contact required. It is intuitive that in ambient conditions, how they

interact with a given surface is not governed by just the polymer surface composi-

tion but also their ability to flow and resist deformation i.e. their visco-elasticity.

It is this structure-property relationship that makes polymers behave differently

than other materials. Hence, it is very crucial to understand physical mechanisms

and relate them to macromolecular properties before we develop technologies to

manufacture and apply polymers.

Surface adhesive interactions are a consequence of attractive intermolecu-

lar forces and, for a flat surface, can be characterized using thermodynamic param-

eters such as surface energy and work of adhesion. However, surface topography

plays a very strong role in modifying the apparent work of adhesion between two

surfaces. For two hard materials in contact, peaks and valleys on a surface will

increase the average separation between the surfaces and thus reduce the overall

surface adhesion [25, 26]. For a soft material on a hard substrate, the effect of

surface roughness is more complex; a roughness-induced increase in real contact

area can increase the overall adhesion, but the strain required for the soft material
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to conform to the rough substrate causes an energy penalty that can reduce overall

adhesion[27]. At the same time, millions of years of evolution has enabled living

beings to adhere and climb difficult terrains with the help of soft pads[28]. De-

sign parameters such as hierarchical nanostructures and material properties such

as effective modulus have been optimized to overcome the problem of adhesive

contact on rough surfaces. Yet mimicking and taking advantage of bio-inspired

designs for their reversibility and adaptability on surfaces have limitations[29–33].

Recent progress in transfer printing technology, soft robotics and haptics have

shown requirement of theoretical basis and explanation for observed adhesion on

rough surfaces where nano-scale metrics matter the most[34–36].

Our understanding of adhesive contact between soft elastic materials was

elegantly resolved in a seminal paper in 1971, where Johnson, Kendall, and Roberts

(JKR) showed that the contact area under applied load is larger than predicted

by the classic Hertz model[37, 38]. However, the presence of surface roughness

significantly alters the contact behavior. As a rough contact is loaded, it obeys

the trends of the JKR model, but the measured apparent work of adhesion Wapp

is significantly lower than the intrinsic value Wint; the latter is a thermodynamic

parameter that depends on intermolecular interactions between the materials[4].

Upon retraction, adhesion hysteresis is observed on rough surfaces, where the

behavior deviates significantly from that of loading and from the JKR predictions.

If the JKR formalism is applied, one calculates a work of adhesion (for retraction)

that is much larger than Wint and may not have thermodynamic significance[14,

15, 39–41].
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Even though all practical surfaces are rough, quantifying the loss of ad-

hesion due to roughness has remained a challenge. Surface roughness exists over

many length scales, including down to the atomic scale, and is not easily measured

using conventional techniques (such as profilometry or atomic force microscopy)

nor described by conventional metrics (such as root-mean-square roughness or the

standard deviation of asperity heights)[42, 43]. Persson has developed a set of

continuum mechanics models to describe soft-material adhesion at rough contacts

as a function of the power spectral density (PSD)[13, 44, 45]. The PSD, C is a

mathematical tool for separating contributions to topography from different length

scales λ, and is commonly represented as a function of wavevector q=2π/λ. How-

ever, there is only limited experimental validation of these theories, due primarily

to the difficulty of characterizing the smallest-scale topography, which has been

shown to be critically important for contact and adhesion.

The understanding of adhesion hysteresis during retraction is even less

developed. The increase in adhesion energy upon retraction is often attributed

(sometimes without evidence) to velocity-dependent dissipation of energy due to

bulk viscoelasticity[23, 46, 47]. However, roughness-induced adhesion hystere-

sis is still observed even for systems that show no evidence of viscoelasticity on

smooth surfaces[48, 49]. Furthermore, it is not clear whether a meaningful work

of adhesion can be computed by applying equilibrium-based theoretical models

(such as JKR for smooth surfaces or Persson’s model for rough surfaces) to the

non-equilibrium separation behavior[50, 51]. In addition to roughness and vis-

coelasticity, adhesion hysteresis is also observed as a result of interfacial bonding

(for example, PDMS in contact with silica surfaces)[52, 53]. Thus, our current
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understanding of adhesion hysteresis is incomplete. In chapter 4, we investigate

the origins of energy loss in order to demonstrate the fundamental contribution of

surface roughness.

A major area of exploration with respect to application of continuum

mechanics is tribology dealing with sliding of surfaces against each other. Whether

the established laws related to friction are applicable universally or not remains a

debated topic [54, 55]. Rubber friction has been identified as a velocity-dependent

viscoelastic process with relaxation mechanisms including steady sliding, stick-slip

or detachment waves [56, 57]. Furthermore, it is known that adhesion hysteresis

increases interfacial friction on rough surfaces. Previous studies on smooth surfaces

have shown that shear stress increases with velocity initially, reaches a maximum,

and then either plateaus or decreases depending upon the modulus of the sliding

elastomer[23, 58]. However, an experimentally validated quantitative model that

incorporates surface roughness is still lacking.

In chapter 5, we have performed friction measurements with sliding ve-

locities ranging from nm/sec to m/sec between PDMS hemispheres and rough

surfaces using a home-built setup with a microscope simultaneously observing the

changes in contact area during sliding. All the three state transitions are seen

on rough surfaces where the onset of stick-slip and Schallamach waves is at far

lower velocities (5 orders lower) as compared to smooth surfaces. Thus, roughness

acts as a shear stress or adhesion promoter. Furthermore, predicting such stress

behavior might be an exercise for future work.
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CHAPTER II

BACKGROUND

In this chapter, a detailed overview of roughness, adhesion and friction will

provide the necessary foundation for the following chapters. Along with certain

terminologies and definitions most mathematical symbols used here would have

similar significance in the rest of the dissertation. The background should also

help in giving a historical perspective to the topic. The first definition concerned

is that of a surface or an interface, where the question of ”what exactly is a

surface?” has been intriguing and a topic of debate for centuries. In this study,

we would define surface as the superficial boundary of a bulk phase surrounded

by vacuum or air. An interface would be a common boundary of two surfaces in

direct contact. From the perspective of contact mechanics, contribution of bulk to

changes in adhesion, friction and wetting can be simply predicted by knowing the

material properties[56, 59, 60]. However, the surface contribution is much more

complicated and requires information of chemical bonding or heterogeneity for e.g.

through spectroscopy [61], inter-digitation or inter-diffusion and surface roughness

through microscopy or interferometry [14, 39]. Our focus in the following studies

is the effect of roughness or surface topography on interfacial phenomena.
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2.1 ROUGHNESS

For the development of scientific theories related to engineering, geo-

physics, biology, cavitation, catalysis and most other disciplines, the early stages

have always thought of ideal conditions neglecting a very crucial physical aspect

of surfaces in use, the inherent roughness [62, 63]. Since antiquity humans have

thought about roughness to understand the physical world. Many of the earlier

known civilizations have used friction and adhesion between rough surfaces to

grind food-grains, to carry stone blocks uphill and other mechanical works that

made life easier. Perhaps Leonardo da Vinci was the first scientist who made ob-

servations that surface roughness has an impact on how easy it is to slide different

objects and thus began the field of tribology [64]. At that time, microscopy was

in its nascent stage and the ability of human eyes is only about 50-60 µm resolu-

tion as far as length scales are concerned. Only in modern times with the advent

of electron microscopy and atomic force microscopy (AFM) have we been able to

measure asperities in length scales lower than few microns. Thus, what appears as

a smooth surface could be extremely rough at smaller length-scales. Thus, surface

metrology becomes crucial and today’s technological advancements enable one to

push limits of measuring topography from meters to Ångströms. Nonetheless, it

is important to first look at the developed methodologies that have been used to

quantify surface roughness using statistical variables.

2.1.1 SURFACE ROUGHNESS MEASUREMENT PARAMETERS

Essentially, there are two different ways surface roughness or topogra-

phy can be measured, through line profile or areal profile. Line profile is a one-
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dimensional scan that measures heights of asperities, while an areal profile is the

two-dimensional map of the entire surface. Thus, there are two different types of

roughness parameters obtained from the above techniques categorized according

to ISO and ASTM definitions. The most basic surface roughness parameter espe-

cially in metal finishing for quality check is the arithmetic average Ra also known

as centre line average la which is the absolute deviation from the mean reference

line as shown in Fig. 2.1 (’y’ is the deviation at position ’x’). The mathematical

and numerical definitions for Ra are:

Ra =
1

l

∫ l

0

|y(x)|dx, (2.1)

Ra =
1

n

n∑
i=1

|yi|, (2.2)

The most widely used and recognized parameter is the root-mean-square

(RMS) height that is defined as the standard deviation of the distribution of

heights of the surface asperities. Statistically, RMS height is more sensitive than

Ra to larger deviations from the mean and is calculated by the following expres-

sions:

hrms =

√
1

l

∫ l

0

y(x)2dx, (2.3)

hrms =

√√√√ 1

n

n∑
i=1

yi2, (2.4)

The mean line for RMS is the dividing line for the profile so that the sum

of the squares of the deviations of the profile heights is equal to zero. There are
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Figure 2.1: Definition of the arithmetic average height (Ra)[1].

other parameters which also deal with measuring the peaks and valleys such as

skewness and kurtosis along with autocorrelation function and correlation length

that are derived from height probability distribution functions. However, all the

single roughness parameters can lead to representation of whole of a surface with

one particular height or spacing and can lead to wrong interpretation based on

the statistical measure used.

A more complex parameter used in tribology, elastic contact and fatigue

crack initiation is the RMS Slope of the profile (∆q or ∇h) which is a combination

of both height or amplitude and spacing. It signifies the correlation between

asperity height and spacing (can also be thought of as amplitude and wavelength).

The mathematical (eq. 2.5) and numerical (eq. 2.6) relations used to calculate

RMS Slope are:
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∆q =

√
1

L

∫ L

0

(θ(x)− θ̇)2dx , θ̇ =
1

L

∫ L

0

θ(x)dx (2.5)

where θ(x) = | dy
dx
| is the value of slope at point (x, y).

∆q =

√√√√ 1

n− 1

n−1∑
i=1

(
δyi
δxi
− θm)2 , θm =

1

n− 1

n−1∑
i=1

(
yi − yi−1
xi − xi−1

) (2.6)

RMS Curvature is another hybrid parameter that measures the root-mean-

squared average of radii of curvature of the asperities.

2.1.2 POWER SPECTRAL DENSITY

Similar to roughness parameter, a Power Spectral Density (PSD) func-

tion is a mathematical depiction of a rough surface, however, a PSD divides a

surface into sine-waves of numerous wavelengths and amplitudes. Thus, it gives

information about the topography at multiple length-scales giving a complete un-

derstanding of a surface. The Fig. 2.2 below is an accurate exhibition of the power

of PSD function.

A surface roughness power spectrum or PSD, C(q) is mathematically writ-

ten as,

C(q) =
1

(2π)2

∫
d2x < h(x)h(0) > e−iq.x (2.7)

Here, x = (x, y) and z = h(x) is the substrate height measured from

the average surface plane, defined so that < h > = 0. The < ... > stands

for ensemble averaging, i.e., averaging over a collection of different spots on the

surface with identical statistical properties. The assumption is that the statistical

properties of the substrate are translationally invariant, so that the correlation
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A B

Figure 2.2: shows that scalar measurement of root-mean-square height is identical
for A. two superposed sine waves (hierarchical roughness) and B. a frozen capil-
lary wave (random roughness) however, their power spectral density functions are
different[2].

< h(x+ x0)h(x0) > does not depend on the choice of x0, but only on the in-plane

distance vector x. q is the wave vector where q = 2π/λ.

The RMS surface roughness parameters discussed earlier (2.1.1) can be

represented as moments of the PSD. For e.g., RMS height (hrms), slope (h’rms)

and curvature (h”rms) are the first, third and fifth moment :

hrms =

√
1

π

∫ q1

q0

qC(q)dq, (2.8)

h′rms =

√
1

π

∫ q1

q0

q3C(q)dq, (2.9)

h”rms =

√
1

π

∫ q1

q0

q5C(q)dq, (2.10)
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Romanesco Broccoli

A B

Figure 2.3: A. Koch Snowflake of dimension D=1.26 ; B. Romanesco Broccoli [3].

2.1.3 FRACTAL

Any random or chaotic process leads to some form of pattern and reg-

ularity which is very difficult to distinguish at first, for e.g. particles diffusing

through Brownian motion. Similarly, in nature, nucleation results from an in-

stability or defect and forms geometrical patterns that lead to shapes such as a

snow-flake from ice nucleation. A fractured surface is also a result of crack propa-

gation which was nucleated from a defect in the solid. Formation of what looked

like an irregular surface from fracture was known as ”fractal”, coined by Benoit

Mandelbrot at IBM Inc., who is responsible for the development of ”theory of

self-similarity and roughness”[65]. He defines fractal as a shape made up of ”parts

similar to the whole in someway”. This shows a feature of self-similarity or self-

affinity wherein shapes are recursive in different dimensions and magnifications

e.g. a Koch snow-flake or Romanesco Broccoli shown in Fig. 2.3b[3, 66].

Let us consider a rough surface and represent it along number of positions

in a plane such that z = h(x, y) where ’z’ represents the height of asperities. Then
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Figure 2.4: PSD when surface is self-affine for q0 < q < q1 where, q0 and q1 are
the long-distance and short-distance roll-off wave-vectors respectively, that are
determined by the limits of measuring instrument. While the smallest possible
wave-vector qL depends upon the maximum lateral dimension of measurement.

a self-similar surface and a self-affine surface are analogous except for the fact that

a self-similar surface when magnified in any dimension appears the same. While

in case of self-affine surfaces the magnification factor along z-direction is different

from the in-pane magnification factor such that the Hurst exponent, H defines

the scaling/magnification factor λH along the z-direction for recovering the same

statistical properties. The values of H can lie between 0 and 1; when H=1, the

surface represents self-similarity. The PSD for such a surface can be derived as a

function of Hurst exponent, where:

C(q) = q−2(H+1) (2.11)

Thus, the power spectrum of a self-affine surface decreases as q−2(H+1)

with increasing wavevector perfectly represented as a decay plot in Fig. 2.4. The

Hurst exponent is related to the fractal dimension Df through the formula Df =

3 - H.
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2.2 SURFACE FORCES

When atoms interact with each other, the forces acting can be weaker or

stronger depending upon the physical nature. These interactive forces are mainly

electro-magnetic and gravitational and thus they interact over distances in space.

Depending upon the range of interactions they can be long range or short range.

An attractive interaction potential for the force between atoms can be written in a

general form of a power law as a function of inter-particle distance w(r) = −C/rn

where, r is their separation, C a constant, and n some integer. The strength of this

interaction potential and subsequently the force (F = −dw(r)/dr = −nC/rn+1)

largely depend upon the power law index n. Hence, gravitational, electrical and

magnetic field potentials where n = 1 are considered long range forces.

With his well known equation of state for real gases, van der Waals in

1873 was able to show that an added amount of pressure a/v2 exists between gas

molecules due to intermolecular forces and that results into deviation from ideal

gas law along with the volume change due to finite size of molecules b [67].

(P + a/V 2)(V − b) = RT (2.12)

Mie in 1903 proposed an interaction pair potential of the form :

w(r) = −A/rn +B/rm (2.13)

which for the first time included repulsive as well as attractive terms. A

Lennard-Jones potential for intermolecular forces is a special case for Mie potential

where n = 6 and m = 12 :

w(r) = −A/r6 +B/r12 (2.14)
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Figure 2.5: Typical van der Waals interaction energy (or potential) function w(r)
and force function F (r) between two atoms, which are related by F (r) = −dw/dr.
The plotted curves are for a Lennard-Jones potential with parameters A =
10−77J/m6 and B = 10−134J/m12 [4].

The attractive (negative) component is the van der Waals interaction po-

tential which dominates at large distances. The equilibrium separation is where

the force is zero and the energy is a minimum. Beyond the equilibrium separa-

tion as the bodies are pushed together the repulsive part starts to come into play.

The adhesion or ”pull-off” force is the point at which the two atoms or particles

separate spontaneously when pulled apart by a force Fmax, as shown in Fig. 2.5.

There are other stronger interactions which are not the focus of this thesis

work such as electrostatics or Coulombic and chemical bond interactions. They

are defined by different field potentials. With the advent of quantum electrody-

namics it was possible to understand the true nature of all the interactions through

first principles. It is difficult to understand the origin of interactions without a

clear understanding of how molecules as dipoles influence other dipoles and their
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polarizabilities. Such dipolar polarizabilities are responsible for the strength of

interactions and thus physically the constant in pair potentials can be calculated

to derive accurate interaction energy numbers. The constant for Van der Waal’s

interaction potential in eq. 2.13 is called as Hamaker’s constant.

2.2.1 HAMAKER’S CONSTANT

In the previous section, we derived expression for inter-atomic and inter-

particle interactions. Large surfaces require an integration of all the induced

dipoles on the surface to obtain accurate interaction energy. Fig. 2.6 describes

the energy and force between bodies of different geometries using the Hamaker’s

constant.

For two bodies (1 and 2) in a medium (3), the Lifshitz van der Waal’s

theory gives accurate predictions of Hamaker constant using properties such as

dielectric constants and refractive indices:

A123 ≈
3

4
kBT (

ε1 − ε3
ε1 + ε3

)(
ε2 − ε3
ε2 + ε3

)+
3hνe

8
√

2

(n2
1 − n2

3)(n
2
2 − n2

3)

(n2
1 + n2

3)
1/2(n2

2 + n2
3)

1/2[(n2
1 + n2

3)
1/2 + (n2

2 + n2
3)

1/2]

(2.15)

where, ε1, ε2, ε3 are the dielectric constants or relative permittivity and n1,

n2, n3 are the refractive indices. νe is the absorption frequency for the materials

in contact which is typically 4 x 1015/sec.

Thus, the work of adhesion or the interaction energy for two surfaces in a

medium is written as:

W = − A123

12πD2
0

(2.16)

where D0 is the minimum separation distance and this number varies from

interface to interface. A typical value is about 1.6 Å.
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Figure 2.6: Van der Waals interaction energy W and force F between macroscopic
bodies of different geometries in terms of their Hamaker Constant, A. Negative
F implies attraction (A positive); positive F means repulsion (A negative). The
Hamaker constant A is defined as A = πCρ1ρ2 where ρ1 and ρ2 are the number of
atoms per unit volume in the two bodies and C is the coefficient in the atom-atom
pair potential (top row) [4].
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Figure 2.7: Bulk and surface dipoles depicted to show cancellation of dipoles at
the interface of a gas (G) and a liquid (L)[5].

2.3 WORK OF ADHESION (THERMODYNAMICS)

In this section, the physical properties pertinent to the understanding and

analysis of experimental results are defined.

2.3.1 SURFACE TENSION AND SURFACE ENERGY

Matter interacts through surfaces and interfaces. Langmuir realized that

the intermolecular interactions across surfaces act through the outermost molec-

ular layers [68, 69]. At a given surface, the surface dipoles are more active as

compared to the bulk dipoles, where the net force is not cancelled out as shown

in the Fig. 2.7.

Thus, there is an excess force per unit length at the surface of the liquid,

known as surface tension, γ. It is this phenomena that enables formation of soap

bubbles and allows a water-strider to walk on the surface of a water body. Surface

tension and surface energy are related when work is done to extend the surface per

unit area at adiabatic conditions. For liquids, the two quantities are same(γl) since
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the extended surface brings new molecules from the bulk and the surface chemical

composition remains as is. In case of solids, the chemical potential changes when

surface is extended. Thus, the surface tension (γs) and surface energy for solids

are different.

An indirect method of measuring solid surface tension is by wetting the

surface with liquids of known surface tension and measuring the contact angle. A

linear relation between cosine of the contact angle with the surface tension gives a

generic plot known as Zisman plot. Zisman defined the point where this line meets

CosΘ = 1 as the critical surface tension γc. γc is a measure of the surface free

energy of solids but not equal to it unless the correction factor, for intermolecular

interactions is equal to unity [70–72]. However, it is a useful parameter that

characterizes surfaces and gives us an idea of how their free energy behaves.

2.3.2 INTERFACIAL TENSION AND WORK OF ADHESION

When two dissimilar surfaces interact in a medium, the total energy re-

quired to adhere them together is given by the Dupre equation :

W12 = γ1 + γ2 − γ12 (2.17)

Where, W12 is the reversible work of adhesion between the surfaces of

bodies 1 and 2, i.e. the separation energy is equal to adhesion energy. γ1 and γ2

are the surface energies of the two bodies respectively and γ12 is the interfacial

energy between them. The interfacial energy between two surfaces is governed

by the intermolecular forces acting between the two surfaces such as acid-base

interactions, van der Waals forces etc. If the two surfaces that are brought into

contact are identical, they will coalesce to form a homogeneous body. Then, the
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decrease in free energy is the work of cohesion (Wc) which is the reversible work

necessary to create two new surfaces,

(Wc)1 = 2γ1, (Wc)2 = 2γ2 (2.18)

Girifalco and Good reexamined the work of adhesion and developed an

interaction parameter, φ, which is the ratio of the work of adhesion of an interface

to the geometric mean of the individual works of cohesion[73–75],

φ =
(Wa)12

[(Wc)1(Wc)2]1/2
=
γ1 + γ2 − γ12

2(γ1γ2)1/2
(2.19)

Rearranging this equation in terms of interfacial energies,

γ12 = γ1 + γ2 − 2φ(γ1γ2)
1/2 (2.20)

That gives the Good-Girifalco equation for Work of Adhesion,

W12 = 2φ(γ1γ2)
1/2 (2.21)

If a complete picture of surface chemical composition is known, φ can

be calculated. In most cases, this is not feasible. Fowkes [76] gave a different

approach and suggested that surface tension can be decomposed into components

that show specific interactions,

γ1 = γd1 + γh1 + γp1 + γi1 + γe1 + ... (2.22)

2.3.3 STRAIN-DEPENDENCE OF SURFACE ENERGY

It was Gibbs in 1876 who realized that the surface tension and the

Helmholtz surface free energy of a solid surface are not the same. He verified
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for crystalline solids that the value of surface tension is different in different crys-

tal plane directions. A direct relation between surface tension and the change in

surface free energy was first given by Shuttleworth in 1950, where the Shuttleworth

equation is[77]:

Υij = γδij +
dγ

dεsij
(2.23)

Where, δij is the identity tensor and εsij is the surface strain tensor. Mea-

suring this surface stress or tension has been a great challenge for soft gels, elas-

tomers and thin films[78, 79]. Recently, Dufresne et al. and Dalnoki-Veress et al.

have been able to develop methodologies using contact mechanics at sub-micron

scale and contact angle measurements to show the exact nature of surface stresses

at different strains[80–83]. Dobrynin et. al. has shown the increase in surface

stress for an elastomer with different cross-linking densities as shown in the Fig.

2.8 [6].

2.4 CLASSICAL CONTACT/FRACTURE MECHANICS

Merriam-Webster dictionary defines mechanics as ”a branch of physical

science that deals with energy and forces and their effect on bodies”. Without go-

ing into the development of classical mechanics, we focus on mechanics of bodies in

contact. As per Newton’s laws, a physical body subjected to a force will overcome

inertia and undergo displacement relative to the environment to achieve certain

accelerated motion. Solids when touching each other in a direction perpendicular

to their surfaces, can undergo deformation, the study of this phenomena is the

field of contact mechanics. Heinrich Hertz in 1882, observed that glass spheres in
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Figure 2.8: (a) Dependence of the normalized surface stress on strain for large
deformations. (b) Universal dependence of the normalized surface stress on the
ratio λ/λmax. Inset: relative change of the normalized surface stress as a function
of the relative change of the bond energy. Eb(λ) is the bond energy in the film at
different deformation ratios, and Eb,0 is the bond energy in the undeformed film.
Data are shown for films of polymer networks with average numbers of cross-links
per chain ncr and initial film thicknesses h0: 6.25 and 60.3σ (purple circles); 10.42
and 59.6σ (blue triangles); 13.54 and 59.2σ (green left triangles); 16.67 and 58.9σ
(yellow right triangles) [6]
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contact showed a certain contact area and derived a relation for the contact radius

relating to the modulus of the two contact bodies, the applied normal load and

the geometry (or the radii) of lenses[37],

a3 =
RP

K
(2.24)

The Hertzian model works best for bodies having smooth surfaces and

highly rigid bulk with no surface forces acting. However, in case of soft mat-

ter where the deformation is large for small stresses, the observed contact area

is much larger than what is predicted using Hertzian model. At the same time,

there is a non-zero contact area even when the applied force is removed provided

the surfaces are clean and dry indicating strong adhesion. This was first discov-

ered independently by Johnson alone and further developed into a theory along

with Kendall and Roberts in 1971; famously abbreviated as the ”JKR” (Johnson-

Kendall-Roberts) model [38]. Assuming thermodynamic equilibrium, where the

contact area remains constant with respect to time, the total energy balance of

mechanical, elastic and surface energies gives a relation:

a3 =
R

K
[P + 3πWR +

√
6πWRP + (3πWR)2] (2.25)

Figure 2.9 shows the exact difference between the contact area predicted

by JKR with that predicted by Hertz.

The JKR model predicts a theoretical pull-off force found as a second

solution for the energy balance:

Fp =
3

2
πWR (2.26)
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Figure 2.9: The difference in contact area for Hertz (dashed line) and JKR (bold
line) show that only compressive stresses exist in an Hertzian contact while there
is compression at the center and tension at the contact line for JKR contact.

The JKR contact predicts that there are infinite tensile stresses at the

edge. However, the attractive forces between two surfaces must have finite range

based on a Lennard-Jones force law. The JKR theory is found to be best applicable

to solids with low elastic modulus and high radius of curvature [84]. The JKR

theory is challenged by another theory for solids with high modulus, the Derjaguin-

Muller-Toporov (DMT) theory. They argued that attractive forces between such

solids must be effective in a region just outside the contact area [85]. It was

later suggested that the two theories are actually two limiting cases of a general

deformation behavior[86]. The cross-over limits are discussed in details by Maugis

[84, 87].

2.4.1 Tabor Parameter

In 1977, Tabor argued that the assumptions of JKR theory are appropriate

for contact between sphere of radius R and a plane when [88]:
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µ =
1

ε

(
R(∆γ)2

E∗

)1/3

(2.27)

where, µ is the Tabor parameter, E* is the effective modulus, ε is a length

characterizing the range of interaction of the adhesive forces and ∆γ is the inter-

facial energy. It was later shown how with increasing Tabor parameter the contact

quasi-rigid behavior changes from DMT to JKR [89].

2.4.2 ADHESION HYSTERESIS

Any deviation or lag of a thermodynamic quantity is termed hysteresis.

Thus, any deviation in the reversible thermodynamic work of adhesion is called

adhesion hysteresis. In case of contact mechanics the difference in obtained areas

during loading and unloading indicates hysteretic behavior. In a JKR experiment,

the a3 v/s P (force) curve must be overlapping for approach and retraction. How-

ever, during hysteresis the curves do not overlap and the work of adhesion ’W’

or ’Wa’ or ’Wadh’ obtained for approach and retraction are different. Fig. 2.10

describes the difference in systems with or without adhesion hysteresis.

There are numerous instances where adhesion hysteresis is observed and

can be categorized into inter-penetration or diffusion of polymers at the surface,

chemical surface bonds formation, viscoelastic bulk energy dissipation or increased

interfacial area because of roughness. The resultant increased area gives larger

interfacial energy required to separate the surfaces which is thermodynamically

irreversible, as shown in Figure 2.11. Out of all reasons, roughness has been a less

explored subject for its influence on adhesion hysteresis.

Except for roughness, the science of adhesion and adhesion hysteresis in

terms of fracture mechanics which focuses only on the retraction or separation
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A B

Figure 2.10: Adhesion hysteresis compared for PDMS hemisphere in contact with
A. an alkylsilane and B. fluoroalkylsilane monolayer deposited on a flat mica
substrate, the solid lines are the fits using JKR model (eq. 2.25). The work of
adhesion obtained for loading and unloading are different for both PDMS-substrate
combinations, where in case of alkylsilane the difference is less and within error
bars, while the difference is significant for fluorosilane monolayer [7].

Figure 2.11: The increase in contact area due to irreversible processes
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of two joint surfaces has been extensively studied. There are two different ap-

proaches that have been proposed to understand fracture. One is the energy

balance approach which is some what similar to the discussion so far with respect

to thermodynamic work of adhesion. Griffith in 1921 suggested that there should

be sufficient energy available to form two new surfaces [90]. In other words, frac-

ture occurs only if the energy (strain energy release rate, G) is larger than the

critical energy necessary to extend a crack over a unit area. While, the other

approach deals with the stress field around a sharp crack, which should satisfy the

condition to overcome the intermolecular forces. Irwin developed regimes for this

stress field and termed it as stress intensity factor, K. Fracture only occurs when

K exceeds a critical value called fracture toughness [91]. Let us briefly consider

these two approaches.

2.4.2.1 Energy Balance Approach

A certain amount of energy is required to create a unit area of fracture

surface, δA. Therefore, the crack can only propagate if this amount of energy,

or more, is available. The source of this energy is work (w) done on the system

by external forces and the release of elastic energy (U) in the system due to the

relaxation of the stresses at the crack. The difference between the two sources is

the potential energy available for the fracture. The rate of change of this energy

difference in a lamina of thickness b with respect to crack extension δa (δA = b

δa) is the strain energy release rate,

G =
δ(w − U)

δA
(2.28)
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If P is the load acting on the system at the onset of crack propagation

and u is the displacement, δw = Pδu and for a linearly elastic material and small

displacement, U = 1
2
Pu, then,

GδA = PδP − 1

2
(Pδu+ uδP ) (2.29)

If the compliance of the system is given by C = u/P,

G =
P 2

2

δC

δA
(2.30)

The crack will only propagate when G is equal to or exceeds a critical

energy release rate, Gc, sometimes called the fracture surface energy. Naturally,

this condition is satisfied when P corresponds to the minimum amount of force that

can propagate the crack, Pc. Consequently, the criterion for fracture is represented

as,

G > Gc =
P 2
c

2

δC

δA
(2.31)

When the length of crack growth is much smaller than the size of the

whole system, the fracture process can be considered to be under fixed-growth or

constant load. Therefore, C can be measured or calculated as a function of A and

Pc can be measured at the onset of crack growth. Then, Gc can be unambiguously

obtained by using equation 2.29. This equation is also valid for cracks at or near an

interface as it is in adhesion processes. Most importantly, Gc may be related to Wa.

Since two new surfaces are formed during fracture, Gc should be converted into

surface free energy. However, the energy required for crack propagation was found

to be far greater than Wa. This is firstly because crack growth along interfaces (or
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in materials) often incorporates rupture of intrinsic bonds such as secondary (e.g.

van der Waals forces) and primary bonds (e.g. chemical bonds). This energy is the

intrinsic fracture energy, G0. Secondly, fracture often causes viscoelastic and/or

plastic deformation due to high strains. Therefore, realistically, in the presence of

energy dissipation,

Gc = G0 + ψ (2.32)

where ψ is the energy dissipated in viscoelastic and plastic deformations

at the crack tip. Through this parameter, the fracture energy becomes rate and

temperature dependent. Gent and Kinloch [92], Andrews and Kinloch [93, 94] as

well as Gent and Schultz [95] proposed that ψ depends on G0 as,

ψ = G0f(ȧ, T, ε) (2.33)

Thus, equation 2.31 becomes,

ψ = G0(1 + f(ȧ, T, ε)) (2.34)

also known as the Gent equation, where f is a function that depends on

crack growth rate (ȧ), temperature (T), and strain level (ε). This relationship is a

result of the fact that there can only be stress developed around the crack tip if the

region ahead of the crack tip is intact with intermolecular forces. When viscoelastic

and plastic energy losses are negligible, f(ȧ, T, ε) → 0 and the measured fracture

energy is a measure of G0. If only secondary bonds are effective at the interface,

the value of G0 should be equal to the value of Wa. The ψ function is found

to be heavily dependent on the chain networks entanglement, conformation, size
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and the all the factors that could influence the relaxation time. Gent and Petrich

observed that the crack growth rate or the rate of peel shows a single master curve

over a wide range of temperatures by means of Williams-Landel & Ferry (WLF)

frequency-temperature equivalence [96, 97].

2.4.2.2 Stress Intensity Factor Approach

An unperturbed system is held together by intermolecular forces. In such

a system crack can only propagate if the stresses at the crack tip are enough to

rupture these forces. The crack tip stresses shown in Fig. 2.12 can be calculated

using Irwin’s approach. it is assumed that the crack is uniformly stressed in a

homogeneous system, the strain is infinitesimal (r is much smaller than the overall

length of the crack) and the behavior of the material obeys Hooke’s Law (Linear

Elastic Fracture Mechanics) [98].

σyy =
KI

(2πr)1/2
cos(θ/2)[1 + sin(θ/2)sin(3θ/2)] (2.35)

σxx =
KI

(2πr)1/2
cos(θ/2)[1 + sin(θ/2)sin(3θ/2)] (2.36)

σxy =
KI

(2πr)1/2
cos(θ/2)[1 + sin(θ/2)sin(3θ/2)] (2.37)

where σij are the stress tensor components at the vicinity of the crack at

a point P described by the pola coordinates r and θ. The analysis here is for plane

stress where the out of plane stress σz = 0. K is the stress intensity factor which

depends upon the applied stress and the geometry the geometry of the crack and

the system. The subscript ’I’ refers to a mode I crack propagation.

Considering a crack embedded in a linear elastic material which extends

in the negative x-direction with its tip at x = 0, the crack may be stressed in three
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Figure 2.12: Stresses around a crack tip for a tensile type loading [8].

A B C

Figure 2.13: The three fracture modes A. Cleavage mode: model I, B. In-plane
shear mode: mode II, C. antiplane shear mode: mode III [9].

different modes as shown in Fig. 2.13 : (a) the cleavage (tensile-opening) mode

(mode I), (b) the in-plane shear mode (mode II) and (c) the antiplane shear mode

(mode III). The superposition of all the three modes describes the loading. The

fracture mode I is the most relevant to adhesion failure.

From eq 2.36 it is seen that the stresses are effective when P approaches

to the crack tip. Eventually, σ →∞ and becomes singular as r → 0. This means

that ahead of the crack tip a zone exits where the stresses exceed the plastic yield

stress level of the polymer. In general, this plastic zone is assumed to be small

enough not to disturb the elastic stress field. Only then it may be defined by the

elastic stresses. An important characteristic of the singularity mentioned above is
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Figure 2.14: Vicinity of a crack tip describing dissipated or plastic zone (Irwin’s
model)[10].

that the stress field local to the crack tip is similar for all loadings. The difference

is only apparent in the magnitude of K which makes this parameter the main

interest in the stress intensity factor approach. As a result, the level of K uniquely

defines the stress field around the crack. Thus, fracture occurs when K exceeds

a critical value. This leads to the criterion for crack propagation postulated by

Irwin (schematic in Fig. 2.14).

2.4.3 PRESSURE-SENSITIVE ADHESIVES (PSAs)

An adhesive with both viscous and elastic components that spreads onto

a surface based upon the applied pressure is known as a pressure-sensitive adhe-

sive (PSA). A pressure sensitive adhesive can react to both positive and negative

pressures and thus is usually reversible. A PSA is usually made up of a lightly

cross-linked polymer as shown in the figure 2.15 above.
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Figure 2.15: Schematic of a weakly cross-liked and entangle pressure-sensitive
adhesive and a crosslinked rubber [10]

Figure 2.16: A simplistic view of rough surfaces as assumed by Dahlquist for
developing PSAs

A scientist at 3M, Carl Dahlquist, described an empirical theory for de-

signing pressure sensitive adhesives, also known as ”the Dahlquist criterion of

tack” where, based upon the size of the asperities (curvature radius and height)

and the work of adhesion between adhesive surface and the rough surface, the

desired critical modulus for a particular adhesive can be calculated. For micron

size asperities and work of adhesion of about 50 mJ/m2, the number is around 0.3

MPa using the following empirical relation and Figure 2.16 [99],

Gc = W

√
R

h3
. (2.38)
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However, this empirical relation does not include the viscous effects which

are necessary for a PSA to work. Hence, assumptions of truly elastic systems can

be valid only through thermodynamic equilibrium models such as JKR.

2.4.4 ADHESION ON ROUGH SURFACES

A simple Hertzian or JKR model that works for smooth surfaces in contact

becomes difficult to test for a rough surface. As we have seen earlier that a rough

surface has asperity sizes of various different length scales; it becomes difficult to

incorporate surface topography directly into thermodynamic models to measure

true work of adhesion between surfaces. Adhesion between rough surfaces was

seen to be very critical for electrical conduction between linearly elastic metal

surfaces [100]. Researchers looked at the contact areas when stationary as well as

sliding [25], where it was found that the conductance of contacting metal surfaces

is pressure-dependent and the real contact area between them is extremely smaller

(1/10000 times) than the apparent area. In shear motion, where interfacial friction

comes into play, the deformation of soft materials affects the forces observed and

hence understanding contact mechanics first is crucial before moving to shear

geometry. In 1957, Archard was the first to measure adhesion on fractal surfaces

and he showed that area of real contact (Areal) is proportional to normal load (P),

Areal ∼P [26] for conforming elastic contact, extending the two Amontons’s laws

of friction where,

1. The shear force is proportional to applied normal load.

Fs ∝ P (2.39)

2. The coefficient of friction is independent of the apparent area of contact.
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µf 6= Aapp (2.40)

Following his study, there have been various research efforts that predicted

the area of real contact on a self-affine fractal surface as a function of normal load

proportional to a power law[42, 101, 102].

2.4.3.1 Multi-asperity Contact Models

Greenwood and Williamson studied the real area of contact between a

smooth elastic surface and a rough elastic surface. In the GW model, it is as-

sumed that the rough surface is represented by asperities with identical radius of

curvature, β , while their heights follow a Gaussian distribution as[42],

φ(z) =
1

hrms
e−z

2/2h2rms . (2.41)

By applying Hertzian theory for each contact asperity, the total contact

area, Ac, and total force, F0, can be obtained as:

Ac = πβN

∫ ∞
d

(z − d)φ(z)dz. (2.42)

Where N is the total number of asperities and total separation force, F0,

can be obtained as:

F0 =
3

2

√
βNEs

∫ ∞
d

(z − d)3/2φ(z)dz. (2.43)

1/Es = (1− ν21)/E1 + (1− ν22)/E2 is the effective elastic modulus. Multi-asperity

contact theory was initiated by this original GW model and was later refined by

Bush, Gibson and Thomas(BGT) [103] and recently by Carbone [104]. The Fig.
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Figure 2.17: Comparison of roughness models assumed in development of different
theories [11].

2.17 shows the difference for model surfaces between Hertz, GW and a randomly

rough surface.

The GW multi-asperity model discussed above is limited in that there are

no interactions between neighboring asperities. For pressures substantially greater

than the elastic modulus or roughness size, contact regions might physically get

close enough to form a larger domain. Furthermore, the distribution of the size

and shape of asperities depends on the measurement parameters i.e. bandwidth

sufficiency and multi-scale nature of rough surfaces. On one hand, if the roughness

profile is bandwidth limited, the sampling frequency must be sufficiently high to

completely resolve the profile. On the other hand, considering the broadband

multi-scale character of the profile is a more subtle issue. All these limitations are

even more severe for the contact of rough surfaces or compliant materials.
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ζ=10
ζ=100

ζ=1

Figure 2.18: depicts the contact on a self-affine surface where at each magnification
a different real area of contact can be imagined [12].

2.4.3.2 Persson’s Theory

Figure 2.18 depicts an accurate picture of contact between two rough sur-

faces at different magnifications. At the lowest magnification, ς = 1, it looks as

though there is complete contact for larger asperities. On increasing the magni-

fication, the roughness at smaller and smaller length scales is detected revealing

that the contact is taking place only at high asperities[12]. As a matter of fact, the

real contact area would vanish if there is no short distance cut-off[105]. Persson’s

theory of contact mechanics on rough surfaces focuses on including roughness on

all length scales [27].

Persson and Tosatti developed a theory for elastic soft surface in contact

with a randomly rough surface [13]. As shown in Fig. 2.19b, assume a uniform

stress σ acts within a circular area (radius R) of a semi-infinite body having elastic

modulus E. This results in a perpendicular displacement u by a distance which
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A B

Figure 2.19: A. shows the state of conformal contact between rubber continuum
and hard rough surface, B. shows deformation at a single asperity contact [13]

can be calculated using continuum mechanics, u/R ≈ σ/E. Thus, u ∼ (σ/E)R.

Thus, if h and λ represent perpendicular and parallel roughness length scales,

respectively, then if h/λ ≈ σ/E and the perpendicular stress will be sufficiently

large to deform the rubber to make conformal contact with the substrate. Let us

now look at the rubber-substrate adhesive interaction. When the rubber deforms

and fills out a surface cavity of the substrate, an elastic energy Uel ≈ Eλh2 will

be stored in the rubber. Now, if this elastic energy is smaller than the gain in

adhesion energy Uad ≈ −∆γλ2, where −∆γ is the local change of surface free

energy upon contact due to the rubber-substrate interaction, then (even in the

absence of the load FN the rubber will deform spontaneously to reach the valleys

between asperities. The condition Uel = −Uad gives h/λ ≈ (∆γ/Eλ)1/2. For

example, for very rough surfaces with h/λ ≈ 1, and with parameters typical of

rubber E=1 MPa and ∆γ = 3 meV/Å, the adhesion interaction will be able to

deform the rubber and completely fill out the cavities if λ < 0.1µm. For very

smooth surfaces h/λ ∼0.01 or smaller, so that the rubber will be able to follow

the surface roughness profile up to the length scale λ ∼1 mm or longer.

The qualitative argument discussed above assumes roughness on a single

length scale λ. But the surfaces or real solids have roughness on a wide distribution
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of length scales. Having said that, Persson further derived expressions for stored

deformation energy and the adhesion energy for a self-affine surface (described

in section 2.1.3). However, keeping thesis work in focus, where our generalized

assumption of a rough surface being randomly rough, without deriving adhesion

theory of self-affinity or self-similarity, works perfectly in practical experiments.

Hence, we will not discuss Persson’s qualitative argument further.

Persson also discusses a quantitative argument which is useful in every

sense for the following chapters. Here, a complete theory is developed based

upon the stored elastic energy and adhesive energy for a smooth elastic surface in

contact with a rough surface having known power spectral density function. As

seen in Fig. 2.19a, a rubber surface is in complete conformal contact with the

rough surface. Assuming that the conditions of conformal contact are met, let us

calculate the difference in free energy before the elastomer came into contact with

the surface and after complete contact is achieved. Let z=h(x) be the height of

the rough surface above a flat reference place such that < h >=0. Assume first

that the rubber is in direct contact with the substrate over the whole nominal

contact area. The surface adhesion energy is assumed proportional to the contact

area so that

Uad = −∆γ

∫
d2x[1 + (∇h(x))2]1/2 (2.44)

≈ −∆γ

[
A0 +

1

2

∫
d2x(∇h(x))2

]
(2.45)

where it is assumed that |∇h| �1(small slope approximation). Using, h(x) =∫
d2qh(q)eiq.x we get,
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∫
d2x(∇h(x))2 =

∫
d2x

∫
d2qd2q′(−q.q′) < h(q)h(q′) > ei(q+q

′).x

= (2π)2
∫
d2qq2 < h(q)h(−q) >

= A0

∫
d2qq2C(q)

(2.46)

where the surface roughness power spectrum is given as :

C(q) =
1

(2π)2

∫
d2x < h(x)h(0) > e−iq.x (2.47)

Thus, using eqs. 2.44. and 2.45:

Uad ≈ −A0∆γ

[
1 +

1

2

∫
d2qq2C(q)

]
(2.48)

We can now calculate the elastic energy stored in the deformation field in the

vicinity of the interface. Let uz(x) be the normal displacement field of the surface

of the elastic solid. We obtain,

Uel ≈ −
1

2

∫
d2x < uz(x)σz(x) >

= −(2π)2

2

∫
d2q < uz(q)σz(−q) >

(2.49)

From solid mechanics and Persson’s derivation [27], we know that,

uz(q) = Mzz(q)σz(q), (2.50)

where,

Mzz(q) = −2(1− ν2)
Eq

, (2.51)
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E being the elastic modulus and ν the Poisson’s ratio. If we assume that complete

contact occurs between the solids, then uz = h(x) and from Eqs. 2.47 and 2.49-

2.51,

Uel ≈ −
(2π)2

2

∫
d2q < uz(q)σz(−q) > [Mzz(−q)]−1

=
A0E

4(1− ν2)

∫
d2qqC(q)

(2.52)

Thus, the change in free energy when the rubber block is in contact with the rough

substrate is given by the sum of Eqs. 2.48 and 2.52,

Uel + Uad = −∆γeffA0, (2.53)

where,

∆γeff = ∆γ

[
1 + π

∫ q1

q0

dqq3C(q)− πE

2(1− ν2)∆γ

∫ q1

q0

dqq2C(q)

]
(2.54)

The above derivation is applicable for surfaces with arbitrary random roughness

which is the case for most of the natural surfaces. Persson and many others have

used the above general theory to solve complex contact mechanics problems both

in experiments and simulations, that we would be briefly discussing in following

section.

2.4.3.3 Previous Experiments and Simulation Results

In 1970s, After the development of JKR theory that sufficiently explained

the role of surface forces on contact between elastic solids, there were attempts to

bring soft materials in contact with rough surfaces to understand the influence of

roughness on adhesion. Hemispherical lenses of different types of rubber casted

from polished smooth molds were brought in contact with roughened Perspex
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Figure 2.20: Relative pull-off force for smooth rubber spheres in contact with a
flat Perspex surface as a function of the roughness of Perspex. Effects of modulus,
E, of the rubber: curve I, 2.4 x 106 N m−2; curve II, 6.8 x 105 N m−2; curve III,
2.2 x 105N m−2 [14].

(commercial polymethylmethacrylate (PMMA)). The roughness of Perspex and

the modulus of rubber were varied. However, these experiments had very little

control over surface chemistry and roughness measurements given the technological

developments during that time. Fuller and Tabor used three different moduli with

three different roughened Perspex surfaces such that the arithmetic average (Ra)

or center line average for the rough surfaces was different [14].

As it can be seen from the Fig. 2.20 that the pull-off forces between rub-

bers and perspex decreases with increasing roughness parameter and increasing

modulus. Fuller and Tabor also compared these results with rolling friction ex-

periments to show that the friction forces scale similarly to adhesion on rough

surfaces; which we will discuss in the next section. Following Fuller and Tabor’s

work, Briggs and Briscoe also performed similar experiments using surfaces with
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Figure 2.21: Relative adhesion energies calculated from pull-off for a smooth rub-
ber surface in contact with a Perspex surface as a function of the roughness, using
a crossed cylinder configuration. © RTV 602 (E = 487 kPa) ∆ Dow Corning
XF-13-523 (E = 63 kPa) [15].

even smaller average roughness and softer rubber on a cross-cylindrical setup.

They observed that the relative adhesion energy (calculated from the theoretical

pull-off obtained using JKR equation) was highest for an intermediate roughness

and softer rubber as seen in the Fig. 2.21 below [15, 106].

Briggs and Briscoe’s experiments were a proof that roughness can enhance

adhesion and can result in significant adhesion hysteresis and that sub-micron size

asperities can increase adhesion dramatically for soft rubber. As we have seen

earlier that single surface roughness parameters can be same for surfaces with

different topographies(section 2.1.1) it is not appropriate to make comparisons

to the observations of more recent studies where theory of surface roughness has

matured.
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For experiments on rough surfaces with known PSDs that apply Persson’s

theory, there have been multiple studies that show striking observations. Peres-

sadko et al. performed contact measurements between PDMS and sand-blasted

glass surfaces with known surface roughness (the AFM scans and resulting PSDs

are shown in Fig. 2.22 to show that the pull-off adhesion measurement is inde-

pendent of the effective surface area due to roughness (effective adhesion energy

from pull-off is compared in Fig. 2.23). The reasoning for the observation was

that since the hysteresis or pull-off adhesion is dependent on the stored elastic

energy and thus the third moment of PSD while the surface area depends on the

second moment of PSD, there is little influence due to surface area[50]. While

at first glance, this might be a correct interpretation for the measured adhesion

energy during pull-off, the deeper investigation was necessary to understand the

difference in predicted or approach work of adhesion versus the pull-off adhesion

energy.

JKR-like contact experiments between an AFM tip and rough elastic sub-

strates are also hysteretic in comparison to a smooth surface predictions as shown

in Kesari’s experiments in Fig. 2.24 wherein the force-displacement curves are not

exactly reversible for rough surfaces (Fig. 2.24 A and B). As a result, application

of JKR theory becomes difficult to extract work of adhesion. However, the ob-

servations of hysteresis loops for an ideal smooth surface and on a rough surface

stand as a proof of adhesion hysteresis solely as a consequence of roughness.

The authors further calculated the energy lost through integration of the

force-displacement curves for elastic surfaces with varying RMS roughness. As seen

in Fig. 2.25 B, the plot shows an optimum length scale of asperities that increases
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Figure 2.22: 50×50µm AFM scans of sand blasted glass surfaces along with their
Power Spectral Density functions.

Figure 2.23: The effective adhesion energy as a function of RMS roughness for
7 different rough glass surfaces. Blue curve is the theoretical predictions, green
curve (a) is experimental pull-off at 0.2 µm/sec and red curve (b) is at 2 µm/sec.
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A B

Figure 2.24: A. Schematic of Load versus Displacement (P-h) curve as per JKR
theory. The pull-in (i − > ii) and pull-off (iii − > iv) instabilities are marked with
the corresponding configurations. A complete contact cycle includes the loading
(red arrows) and unloading (blue arrows) phases. The size of the hysteresis loop
formed in the contact cycle due to the elastic instabilities denotes the hysteretic
energy loss ∆Ei. B. Experiment with rough surfaces showing a P-h curve with a
large hysteresis loop that is load- or depth-dependent[16].

adhesion. It is to be noted that the loss of energy also varies with normal loads

which is highlighted in Kesari’s work and is termed as Depth-Dependent Hysteresis

(DDH) [16, 107]. All the above experiments point to questions as to whether scalar

roughness parameters can be reliable to predict soft elastic adhesion. However, as

it is seen here there could be varied observations for similar experiments depending

upon the range of length scales chosen.

2.5 FRICTION

Friction is a response to shear between two surfaces and is measured by

the resisting force offered by the interface between the two surfaces sliding past

each other. During shear, there could be different processes such as toppling, wear,

lubrication or pure sliding depending upon the path taken for releasing the applied

energy. Thus, all these phenomena show non-conservation and energy dissipation

that happens during friction. Most of the applied energy eventually is transmitted
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A B

Figure 2.25: A. As the load or depth increases the energy lost due to hysteresis
for an AFM glass bead in contact with rough PDMS surface increases. B. Energy
lost plotted as a function of RMS roughness of the elastic half-space [16].

as heat. Before the advent of soft materials such as polymers and elastomers, most

of the metallic and mineral materials exhibited dry solid friction. The component

of friction that is desirable is the traction or grip during motion useful to land

vehicles for acceleration, deceleration and changing directions. Starting from Da

Vinci and Amontons, many findings on friction have been reported, some contra-

dictory and all incomplete. However, they have laid down the foundations for the

modern scientific studies in the field of tribology. More progress in the study of

friction depends on detailed characterization and molecular level understanding

of surfaces and interfaces. This led to the resurrection of the adhesion aspect of

friction that was first proposed by Desaguliers in 1734 [108]. Since the mechanical

interlocking approach was never able to explain friction completely, the adhesion

hypothesis was the best alternative. In 1929, Tomlinson elaborated on the molec-

ular adhesion approach and suggested that the normal load and the friction force

are linearly related to the number of interacting atoms but his attempts did not

produce any quantitative result [109]. Bowden and Tabor developed the adhe-

sion theory of friction and they recognized that two surfaces make contact only
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at peaks of asperities. Under very high stresses these points are subject to local

plastic deformations. If the real area of contact is A, the hardness of the softer

material is H, and the shear strength of the bond is S, then the average normal

pressure, P, and friction force, F, can simply be expressed by,

P = AH (2.55)

F = AS (2.56)

µ =
F

P
=
S

H
(2.57)

The simple empirical model (based on Coulombic friction [110]) fails to

explain experimental results since the theory neglects deformation and interactions

accounting only the adhesive part of friction. The shear strength of the interface is

a term used in calculation however, it is very difficult to measure independently. It

is shown to miscalculate the friction force in elastic materials by about a factor of

10 with no incorporation of contribution from surface roughness. At very smooth

surfaces, the friction is high due to large area of contact, whereas at very rough

surfaces the friction is high due to interlocking. The friction is at its minimum and

almost independent of roughness in the intermediate range[111]. Besides, plowing

(equivalent to abrasion and accumulation of debris) and electrical interactions are

two other major factors that contribute to friction. The former takes place when

a surface with sharp asperities of slope ’θ’ slides over a softer surface. These

asperities dig into the soft material producing grooves. The plowing term has

been considered by the adhesion theory by adding tanθ since it creates additional

resistance to sliding. tanθ may be large for rough surfaces such as sandpaper
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causing the plowing contribution to be large. However, tanθ usually has a value

around 0.05 and the plowing term is negligible. The electrical interactions are

effective when an electrical double layer exists at the interface. Sliding requires

the separation of opposite charges and thus causes an increase in the friction force.

There is no term in the adhesion theory to account for the electrical interactions

but it is believed to have an extremely small contribution. Though the tribology

community is convinced that there is adhesion at every interface between any

two surfaces, a complete theory cannot be developed unless the contribution of

adhesion is resolved.

An effective engineering solution to avoid complete contact between sur-

faces to reduce friction is lubrication. It is important to shed light on what happens

when lubricants are present at the interface since there is a lot to draw resemblance

with friction on rough surfaces. Essentially, a lubricant limits solid-solid contact

to reduce wear and friction wherein roughness can also limit contact between

solids with the lubricant replaced by air or vacuum. Many important studies at

the beginning of twentieth century among tribologists such as Mayo D. Hersey

and Richard Stribeck showed that the friction force in presence of lubricants is

non-linear function of applied normal load [112–114]. In simple terms, the friction

coefficient varies with different normal loads (P), velocities (v) and the viscosity(η)

of the lubricant used. There could be three different regimes based on the bound-

ary condition obtained using a dimensionless parameter known as the Hersey’s

number (= η ∗ v/P ). The plot of friction coefficient versus Hersey’s number is

known as the Stribeck curve as shown in the Fig. 2.26.
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Figure 2.26: Stribeck curve with three different regimes for friction with
lubrication[17, 18].

The above characteristics of the Stribeck curve highlight the non-linear

nature of friction and supports the hypotheses that friction is not solely Coulom-

bic in nature. One observation among non-linear effects, which is of practical

significance, is that of stick-slip behavior wherein the two surfaces overcome a

static friction and undergo slip instabilities repeatedly instead of steady sliding

in kinetic friction. These are the same instabilities that create the squeaking or

cracking sound through the metal hinges when you open the door. Notice that this

sound is only heard when the door opens at intermediate velocities and not when

you open it very quickly. Stick-slip behavior can be periodic (usually sawtooth

and oscillatory) and the philosophical debate that still exists is about the origin of

these instabilities. The geological phenomena known to create earthquakes is the

constant stick-slip that cascades between two tectonic plates[115]. The stick-slip

behavior can be observed with or without interfacial chemical bonds and elastic

deformation that happens during solid-solid contact[116]. If the elastic solid is

soft (in case of elastomers) or there is possibility of glassy or crystalline ordering
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of the interface (such as a hydrocarbon monolayer or grafted brushes), the elas-

tic deformation due to interfacial adhesion and chain extension along with state

transitions from solid-like to liquid-like can cause stick-slip[117, 118].

2.5.1 RUBBER FRICTION ON ROUGH SURFACES

In previous section, we understood some of the important characteristics

of friction for solid-solid contact especially stick-slip behavior which was also the

earlier discovery in tribology. There are many other instabilities that occur for soft

elastomers sliding on surfaces and in this section we will explain how roughness

plays its role. The simplest of all cases is when there is steady state sliding

between two bodies under dry conditions. But in reality this is observed only

at extremely low velocities for most sliding interfaces where distinction between

only static and kinetic regions can be made[119]. We discuss the most relevant

aspects without much exploration into the complete history of rubber friction. As

the velocity increases the elastic or viscoelastic deformation due to adhesion has

higher local stresses for the rubber. In general, it is found that if certain critical

stress matched the modulus of the rubber during sliding there would be a state

transition or occurrence of instabilities as a function of sliding velocity. A few

experimental examples are given below. Apart from coefficient of friction, the

other important measurable parameter using friction is the overall shear stress

observed. The observed trends are similar since stress is just the shear force

normalized with the total contact area (σs = Fs/A) and thus coefficient of friction

and stress are linearly proportional (σs = µP/A) [23, 119].

One of the pioneering experiments in friction of elastomers was done by

two eminent contemporaries, Grosch and Schallamach. Schallamach first measured
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Figure 2.27: Coefficient of friction as a function of load. Full lines are the theo-
retical predictions. The dotted line is experimental points for hard rubber [19].

friction for elastomer of three different moduli (soft, medium and hard) along

with load dependence experiments. As seen in Fig. 2.27 below, the frictional

force increases with modulus for all systems but at low loads the behavior of hard

rubber departs from the theoretical predictions. Schallamach avoided the modulus

dependency but tried to explain the behavior of the hard rubber with the contact

area dependency. Since contact is achieved by the asperities, at low loads only

the tallest asperities are in touch and the true area of contact is smaller than

the ideal case. The smaller asperities come gradually into contact as the load is

increased and the true area of contact eventually reaches the ideal case. According

to Schallamach, this should be most pronounced with the hard rubber.

Schallamach also investigated the effects of velocity and temperature on

rubber friction [120]. He observed that at a constant temperature frictional force
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increases with sliding velocity and at a constant velocity it decreases with an

increase in temperature. Schallamach concluded that such a behavior follows

Eyring’s theory of reaction rates. Therefore sliding of an interface is solely an

adhesion mechanism where formation and breakage of molecular bonds take place

in separate, thermally activated events. This sliding process is governed by an

activation energy that he found to have a value of 30 kcal/mole. Greenwood and

Tabor argued that some part of the energy must be dissipated for the deformation

of the elastomeric material [121]. However, Grosch is known to perform the most

systematic study [56]. He tested the friction of various rubbers with different

viscoelastic properties for temperature (-50C to 90C), velocity (µm/sec to cm/sec)

and roughness effects using a belt-driven system with flat rubber sheet surface in

contact with flat solid surface. Friction increased nonlinearly with velocity and

decreased with increasing temperature as seen in the Fig. 2.28 as an example for

natural rubber. This velocity and temperature dependence was transformed into a

master curve shown in Fig. 2.29 by using the superposition principle of Williams,

Landel, and Ferry [97]. According to the time temperature superposition principle,

for a polymer which is visco-elastic, rate and temperature are inter-changable i.e.

it has similar mechanical response at high rate and low temperature and vice versa

above its glass transition temperature (Tg). In polymer physics, glass transition is

point at which a rubbery viscoelastic polymer becomes frozen in chain mobility and

becomes amorphous usually at low temperatures. Grosch found the same amount

of characteristic shift factor (aT ) that reduces to a mastercurve for coefficient of

friction as obtained for the viscoelastic rubber for a range of velocities at different

temperatures. With the help of following equation, the reference temperature at 20
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Figure 2.28: Coefficient of friction as function of the sliding velocity at various
temperatures of the natural rubber on clean silicon carbide. Curves are shown in
two groups for clarity. The symbols denote different temperatures ranging from
-60C to 90C.

C is shifted from a standard temperature which is a characteristic of the elastomer

and found to be 50 C higher than its glass transition temperature Ts = Tg + 50:

log10aT =
−8.86(T − Ts)
101.5 + T − Ts

. (2.58)

As it can be seen that the friction on smooth silicon carbide shows a peak

at an intermediate velocity before which it increases monotonically. Grosch also

performed friction on wavy glass and dusted silicon carbide, here coefficient of

friction exhibits a peak shown in Fig. 2.29B. When the smooth surface is dusted

with magnesia powder to prevent contact, the friction remains almost constant

indicating that friction on smooth surfaces is due to interfacial adhesion. While

the friction at lower velocities is higher on rough dusted surface as compared to

the smooth surface, Grosch argued that this higher shear force is due to higher

deformation energy required to conform to increased area. The deformation en-

ergy loss is absent or minimal on smooth surface. Grosch’s results showed that
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A B

Figure 2.29: A. The mastercurve of all the curves superposed from Fig. 2.28 using
time-temperature superposition principle to give coefficient of friction for natural
rubber B. Master curves for the coefficient of friction of natural rubber on the
three surfaces, - - - wavy glass, —– clean silicon carbide, - . - . - dusted silicon
carbide; all curves referred to 20 C

both adhesion and deformation contributes to friction. This adhesion component

correlates well with the loss component of the rubber and thus the relaxations

at the interface during sliding are related to the segmental energy dissipation of

the polymer chain (see Fig. 2.30). The ratio of the velocity at the maximum

friction to the frequency at the maximum viscoelastic loss is 7 nm. This length

scale represents the distance of the molecular jumps during sliding.

Grosch mentioned the possibility of frictional heating at high velocity but

Schallamach showed that a single master curve can still be obtained by taking

the true surface temperature into account [122]. A very interesting finding in

Grosch’s study is the frictional behavior at low velocities. In this region, consider-

ing viscoelasticity, friction is expected to fall to very small values while it actually

becomes almost independent of velocity and temperature.

Following Grosch’s observations, Schallamach refined his theory to correct

for the insufficient explanations regarding the monotonic dependence of dynamic

friction on velocity [122]. However, he maintained his view that friction is caused
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Figure 2.30: Master curves of the coefficient of friction of rubbers B, C, D and E
on glass referred to their respective Tg temperature. Below: Loss modulus curves
E” as function of frequency for the four rubbers referred to their respective Ts
temperatures. Velocity and frequency have been displaced with respect to each
other by log10λ = 6.2., - . - . - B styrene butadiene; —— C acrylonitrile butadiene;
- - - D butyl rubber, - . - . - E natural rubber
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purely by molecular adhesion on smooth surfaces. He proposed a general equation

for friction that involves the number and average life of bonds as well as the average

time between the breakage and reformation of a bond. This molecular stochastic

model was further refined by Chernyak and Leonov wherein the total time chain

spend in stretching, debonding and reattaching result into overall stress behavior.

All these time scales would depend upon the length and density of the chain as

well as velocity of chain pull-out [58]. The Chernyak-Leonov model is discussed

in chapter 5 with more relevance.

When Schallamach conducted experiments at very high velocities between

rubber lenses and smooth surfaces, he observed prominent instabilities traveling

through the contact area. These detachment waves move from front of the contact

area to the back at a higher velocity than the sliding velocity of rubber (observe

Fig. 2.31). The observed contact displacement and thus nominal stress is con-

siderably reduced which is contrary to expectations of monotonically increasing

friction with velocity. This shows that the Schallamach waves occurrences are a

stress relaxation mechanism beyond a critical strain or extension ratio [123]. Lat-

eral observations clearly show air pockets traveling as waves through the rubber

sliding over the surface [124]. Thus, detachment waves reduce the contact area

at the interface. Some of the recent studies have found resemblance of Schalla-

mach waves to patterned structures or wrinkling formed due to residual stresses

observed in elastic thin films [125, 126]. There have been no systematic study for

Schallamach waves on rough surfaces.
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Figure 2.31: Contact between natural rubber and perspex track, v=0.23 c/s. Sin-
gle frame of a film of the contact between perspex and a butyl sphere sliding over
it at 0.043 c/s.

Thus, it is now clear why the laws of solid friction have little relevance to

rubber friction, since for rubber friction the coefficient of friction or shear stresses

depend on normal load, roughness, velocities and temperature.

2.5.1.1 Persson’s Theory of Rubber Friction

The discussion in section 2.4.3.2 was for stationary surfaces in contact.

In case of sliding, we need to take into account the elastic modulus as a function

of perturbing frequency, E(ω), where ′E ′ is a complex quantity and ω = v/λ

where v is the sliding velocity and λ is the wavelength of oscillation. According

to Persson’s rubber friction theory, the imaginary part is related to the internal

friction of the rubber or energy dissipation. The mechanism is not well established

but empirically is derived by Bhowmick et al. as[127],

∆E = πγ20E”(ω). (2.59)
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A B

Figure 2.32: A cosine roughness profile with the wave vector A along, and B
perpendicular to the sliding direction. Only in case A will the surface roughness
generate time-dependent (fluctuating) deformations of the rubber block.

Where γ0 is the strain and E” is the loss modulus. Persson’s equation for shear

stress during rubber friction in ref. [27] is also based on similar dissipated energy

concept. He writes,

∆E = σfA0vt0. (2.60)

Here, σf denotes the frictional shear stress for the time period t0, A0 being the

surface area. The velocity of sliding ′v′ can be written as a derivative of displace-

ment field. Without mentioning all the details, the shear stress as a function of

roughness looks as follows,

σ =
1

2

∫
dqq3C(q)CosφIm

E(qvCosφ)

1− ν2
. (2.61)

Where, C(q) is the power spectral density of rough surface, q= 2π/λ is the

wave vector. Where ν is the Poisson’s ratio, Im E is the loss modulus obtained from

bulk measurements and φ is the angle at which the roughness profile is oriented

from the sliding direction, as shown in the Fig.2.32. So far the equation is valid
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Figure 2.33: The kinetic friction coefficient as a function of the logarithm of the
sliding velocity. The solid and dashed curves are with and without flash temper-
ature effects, respectively.

for most randomly rough surfaces. However, Persson further derived complete

expression for self-affine surfaces where he equated the real area of contact as a

function of the roughness and complex elastic modulus of the rubber. The impact

of heat generation/flash temperature on friction clearly indicate that the effect

is dominant at extremely high velocities( above ∼m/sec), which is not the scope

of this thesis for the experiments performed are below the predicted velocities

[128]. Furthermore, Persson’s Theory has been explicitly applied to experiments

assuming surfaces to be self-affine [129, 130].

2.5.1.1 Rubber Friction Experiments with Roughness

Rubber friction is more complicated than the non-adhesive term derived in

eq. 2.61. It is influenced by two decoupled phenomena just as in case of adhesion,

the adhesive term and the hysteresis/deformation term,

µshear = µadhesion + µdeformation (2.62)
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Figure 2.34: The kinetic friction coefficient for rubber sliding on a carborundum
surface under different conditions [20]. Experimental results for a rubber block
sliding on dry clean ∼dashed line, dusted ∼dashed?dotted, and wet ∼solid line
carborundum stone surfaces.

Surfaces under friction such as tire treads are usually contaminated and

change the roughness profile of the surface such that the small and big asperities of

the size of contaminants particles are no more rigid. Further reducing the effective

contact area and thus adhesion. Similarly, oil and other liquid contaminants would

create interfacial patches. It is well known that the tire traction is much higher

on a dry road surface after a heavy rainfall. Grosch’s experiments in the example

shown in Fig. 2.34 demonstrate the nature of friction forces. The figure also show

results for wet surfaces with an added ∼5% detergent. It has been shown that

polar substances like soaps prevent direct contact between track and rubber; this

explain why the friction is slightly lower for the wet 5% detergent case, compared

to the wet, clean carborundum surface.
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Figure 2.35: Extended correlations of hysteresis and adhesion friction under wet
and dry conditions for carbon black filled Solution-Styrene Butadiene Rubber on
rough granite [21].

In Fig. 2.35, the simulation and experimental results for sliding of a

carbon-black filled rubber over a rough granite surface as a function of velocities

are compared from ref. [21]. It is quite evident that when the surface is wet

with detergent containing water, there is no plateau as compared to dry friction

which has a plateau over a wide range of velocities. Instead there is a single peak

observed for wet surface at higher velocity. The adhesion component contributes to

friction in dry conditions at low sliding velocities while the deformation/hysteresis

component is a major component at higher velocities.

2.5.1.2 Tire Traction

Although there are no direct experiments related to tire materials in the

following chapters, the physics of rubber friction is invariably applied to tire be-
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Figure 2.36: Time record of the deceleration of a car in a locked wheel braking
experiment.

havior on road surfaces and all the concepts discussed so far in the background

are relevant to tire mechanics. Furthermore, some of the theoretical and exper-

imental developments in understanding tire behavior can help draw parallels to

how elastomer bulk properties relate to interfacial adhesion and friction.

Since in the previous section we discussed observations from Grosch and

Schallamach for rubber friction coefficient with varying velocities, let us first dis-

cuss some of the concepts they related from rubber friction to tire mechanics [131].

The friction coefficient in Fig. 2.29 as a function of velocities can be imagined as

friction forces occuring during deceleration after application of brakes. The brak-

ing force rises with time, passes through a maximum and remains constant that

is constant sliding. All these dynamic changes are a result of change in contact

area whose origins are still not known for both dry and wet surfaces. It can be

hypothesized that the contact area is full of Schallamach waves or in stick-slip

regime during sliding which causes all the poor traction with road surfaces.
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The above introductions to fundamental concepts of rubber friction would

be useful in much of chapter 5 of this thesis.
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CHAPTER III

EXPERIMENTAL

3.1 WATER CONTACT ANGLE

For any contact experiment the first and foremost important criterion is

a check of surface energy. Water being of higher surface tension (72 mJ/m2), the

contact angle formed between water and the surface can give an indication if the

surface is ’hydrophilic’ or ’hydrophobic’. In the context of adhesion and surface

roughness, there are many aspects of contact angle that we would not deal with in

this thesis however, as described in the section in background, the Young-Dupre

equation can be used to extract the surface energy of the solid surface. Thus,

we have used water contact angle to confirm the theoretical surface energies of

the surfaces used in our experiments. A Drop Shape Analyzer (DSA) goniometer

from Kruss was used for measuring contact angle and contact angle hysteresis.

For static measurement, a 5 µL water droplet was formed on the surface and con-

tact angle was measured through obtained images after 5 seconds of equilibration

time. Advancing and receding measurements are done with the lowest possible

volumetric speed using the goniometer i.e. 1µL/min. The difference in advancing

and receding contact angles is known as contact angle hysteresis (CAH).
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3.2 FABRICATION OF SELF-ASSEMBLED MONOLAYERS

For the preparation of octadecyltrichlorosilane (OTS) (Gelest Inc.) mono-

layer on a silicon wafer obtained from Silicon Inc., the wafers were treated with

piranha solution (3:7 ratio of 30% Hydrogen Peroxide: Sulfuric Acid (concen-

trated)). Silicon wafers are cleaned with an ample amount of water before use.

The wafers are blown dry with nitrogen and plasma-treated before dipping in 1

wt.% OTS solution in toluene under nitrogen purge for 8 hours. The method de-

scribed is similar to procedures from Defante et. al. and Tyrode et. al [132, 133].

The static water contact angle obtained was 110 ± 2 with negligible contact-

angle hysteresis. The fluorinated dishes used in making PDMS lenses described

below, were prepared by growing a monolayer of heptadecafluoro 1,1,2,2 tetrahy-

drodecatrichlorosilane (Gelest Inc.) on clean base-bath-treated borosilicate glass

petri-dishes. Fluorination results into a static contact angle of 120 and the surface

energy reported is about 7 mJ/m2 that is lower than the surface energy of PDMS

(about 22 mJ/m2) [134, 135]. It is because of this difference in surface energy that

a PDMS liquid or curing solution forms a contact angle on the fluorinated surface

making it easier to cure as a hemispherical lens cap. The procedure is adopted

from Vorvolakos et. al and Yurdumakan et. al [23, 52].

3.3 FABRICATION OF ROUGH DIAMOND SURFACES

Nanodiamond films (Advanced Diamond Technologies, Romeoville, IL)

were deposited using a tungsten hot-filament chemical vapor deposition (HFCVD)

system with parameters as described by Zeng et. al [136]. An H-rich gas mixture

was used, with the chamber pressure of 5 Torr and a substrate temperature of
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750C. The ratio of boron to carbon was maintained at 0.3 at%, to achieve high

conductivity in the final film. The CH4-to-H2 ratio is modified (as described

by Auciello et al. [137]) to tune the grain size: achieving microcrystalline dia-

mond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond

(UNCD). All films were grown to a thickness of 2 microns. Chemical-mechanical

planarization was performed on an undoped UNCD film to create the polished

UNCD samples. Previous surface analysis of synthetically grown diamond sur-

faces have shown similar surface composition regardless of grain size [138–140].

3.4 FABRICATION OF SOFT ELASTIC POLYDIMETHYLSILOXANE

(PDMS)

The smooth, soft elastic hemispheres were composed of cross-linked

PDMS. To achieve systematic variation in modulus, we have used simple network

theory, where changing the crosslinking molecular weight changes the cross-linking

density and subsequently elastic modulus[22, 23],

E ∼ ρRT

Mc

, (3.1)

where E is the elastic modulus, ρ is the density of the polymer, R is the gas

constant, T is the temperature in Kelvin and Mc is the cross-linked molec-

ular weight. The curing system consisted of materials obtained from Gelest

Inc., vinyl-terminated PDMS of different molecular weights Mw (DMS V-05

(Mw=800 gm/mol), V-21 (Mw=9000 gm/mol), V-31 (Mw=28000 gm/mol) and

V-41 (Mw=62700 gm/mol)), tetrakis-dimethylsiloxysilane (SIT 7278.0) as tetra-

functional cross-linker, platinum carbonyl cyclo-vinyl methyl siloxane complex
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(SIP 6829.2) as catalyst, 1,3,5,7-tetravinyl-1,3,5,7-tetramethyl cyclo-tetra silox-

ane (SIT 7900.0) as inhibitor. The vinyl-to-hydride molar ratio of 4.385 was

maintained for all the samples avoiding excess cross-linker evaporation to min-

imize adhesion hysteresis from unreacted side chains as reported by Perutz et

al.[24]. The catalyst was added as 0.1% of the total batch. An additional reaction

inhibitor was added to the DMS V-05 batch to avoid early cross-linking (5 times

the catalyst amount). Hemispherical lenses were cast on the bottom of fluorinated

glass dishes using a needle and a syringe. Since PDMS mixture has a higher sur-

face energy than fluorinated surface, the drops form a contact angle on the surface

giving a shape of a hemispherical lens. They were cured at 60 C for 3 days in a

heating oven and Soxhlet-extracted using toluene at 124 C for 24 hours. After 12

hours of drying in open air the hemispheres were dried under vacuum at 120 C

overnight. The sol fraction for all of the batches was found to be less than 5%.

With similar synthesis procedure, we also casted about 1 mm thick PDMS sheets

to test any change in surface energy as a consequence of varying elastic modulus.

The water contact angle on these sheets was found to be very similar about 97 -

100, showing no practical change in surface energy.

3.5 DYNAMIC MECHANICAL ANALYSIS OF CROSS-LINKED PDMS

The bulk viscoelasticity analysis at different frequencies and tempera-

tures were performed using a TA Instruments RSA Dynamic Mechanical Analyzer

(DMA) over a range of temperatures ranging from -130C to 180C with 5C interval

each and frequencies of 0.1 Hz to 100 Hz. For DMA measurements, about 1mm

thick PDMS sheets were cast from the same mixture used for making lenses and
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PDMS mixture

Fluorinated bottom

PDMS cured at 60∘C for 3 days

Tetrakis(dimethylsiloxy)silane Vinyl terminated poly(dimethylsiloxane)

Figure 3.1: Casting procedure for elastic PDMS lenses inspired by works in refs.
[22–24].

were Soxhlet extracted to remove unreacted PDMS and create networks similar in

bulk to the lenses(as discussed in previous section). With the known dimensions of

length, breadth and height before and after the application of various frequencies,

the stress- strain curves and thus the storage, loss. complex modulus and other

mechanical properties were easily obtained in tension fixture.

3.6 SURFACE TOPOGRAPHY CHARACTERIZATION

All of the work in this section related to roughness characterization and

analysis is credited to Abhijeet Gujrati from Dr. Tevis Jacobs’s lab at University

of Pittsburgh, while the derivation for expression to calculate topographical area

is credited to Dr. Lars Pastewka from University of Freiberg, Germany.
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3.6.1 LARGE-SCALE TOPOGRAPHY CHARACTERIZATION: STYLUS

PROFILOMETRY

The largest scales of topography were measured using one-dimensional

line scans with a stylus profilometer (Alpha Step IQ, KLA Tencor, Milpitas, CA)

with a 5-µm diamond tip. Data were collected at a scanning speed of 10 µm/s,

with data points every 100 nm. A total of 8 measurements were taken on each

substrate, with 2 measurements each at scan sizes of 0.5, 1, 2, 5 mm. These

measurements were taken at random orientations of the sample and did not show

meaningful variations with direction. A parabolic correction was applied to all

measurements which removed the tilt of the sample and the bowing artifact from

the stylus tool. In two sessions (for the UNCD and polished UNCD), the larger

scan sizes exhibited consistent non-parabolic trends due to instrument artifacts. In

these cases, this was corrected by performing reference scans on polished silicon

wafers and subtracting the averaged profiles from the reference measurements.

Representative scans of stylus profilometry for all four materials are shown in Fig.

3.2 below.

3.6.2 MID-SCALE TOPOGRAPHY CHARACTERIZATION: ATOMIC

FORCE MICROSCOPY

The substrates were measured using an atomic force microscope (AFM)

(Dimension V, Bruker, Billerica, MA) in tapping mode with diamond-like carbon-

coated probes (Tap DLC300, Mikromasch, Watsonville, CA). For all substrates,

square measurements were taken with the following lateral sizes: 3 scans each at

100 nm, 500 nm, and 5 µm; 1 scan each at 250 nm and 1 µm. The scanning speed

was maintained at 1 µm/s for all scans. Each scan had 512 lines, with 512 data
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Figure 3.2: Stylus profilometry of the polished UNCD (A), UNCD (B), NCD (C)
and MCD (D).
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points per line, corresponding to pixel sizes in the range of 0.2 to 98 nm. The values

of free-air amplitude and amplitude ratio were kept in the range of 37 to 49 nm and

0.15 to 0.3, respectively. While AFM provides a two-dimensional map of surface

topography, the data were analyzed as a series of line scans, both to facilitate

direct comparison with other techniques and to avoid apparent anisotropy due

to instrument drift. Representative scans of atomic force microscopy for all four

materials are shown in the Fig. 3.3 below.

3.6.3 SMALL-SCALE TOPOGRAPHY CHARACTERIZATION: TRANSMIS-

SION ELECTRON MICROSCOPY

Topography was measured on scales from microns to Angstroms following

the approach developed in Ref. [141]. For the UNCD, NCD, and MCD, the

”wedge deposition technique” was used, whereas for polished UNCD, the ”surface-

preserving cross-section technique” was used [141]. Briefly, the wedge deposition

technique involves depositing the film of interest, in the same batch, on both flat

silicon wafers (used for adhesion testing) and on standardized TEM-transparent

silicon wedge samples (for TEM imaging). The surface-preserving cross-sectioning

technique is similar to conventional techniques for extraction of a TEM cross-

section from a bulk sample (using grinding, polishing, dimple-grinding, and ion

etching); however, modifications to the ion etching step ensure that the original

surface topography is unmodified from its original state. The samples were imaged

using a TEM (JEOL JEM 2100F, Tokyo, Japan) operated at 200 keV. The images

were taken with a 2000x2000-pixel camera using magnification levels from 5000x

to 600,000x.
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The nanoscale surface contours were extracted from the TEM images us-

ing custom Matlab scripts that create a digitized line profile based on a series of

points selected by the user. The TEM images obtained were first rotated to make

the surface horizontal and then the outer-most boundary was traced. While the

vast majority of the measured surface were well-behaved functions (i.e., there was

a single value of height (y-axis) for each horizontal position (x-axis), there were

some cases where two adjacent points were captured with identical or decreas-

ing horizontal position, the latter point was removed. In just 12 out of the 210

measurements, there were small portions of the profile that were reentrant. This

character is not necessarily physically meaningful as it depends on the rotation

of the TEM image during image analysis. Because the mathematical analyses

require well-behaved functions, these regions were excluded from analysis.

3.6.4 COMBINATION OF ALL MEASUREMENTS INTO COMPLETE,

MULTI-SCALE PSD CURVES

The combined PSD describing a surface is computed as the arithmetic

average of all of the individual PSDs. For the tip-based measurement techniques,

the tip-radius artifacts [142, 143] were eliminated using the criterion described in

Eq. 2 of Ref. [2]. PSD data for wavevectors above this cutoff were eliminated

as unreliable. For every topography measurement, the power spectral density was

computed using the conventions described in Refs. [2, 142]. The line scans from

stylus profilometry, atomic force microscopy, and transmission electron microscopy

all yield descriptions of the height h(x) over lateral position x. The Fourier trans-

form of the surface topography is given by,
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h̃(q) =

∫ L

0

h(x)e−iqxdx. (3.2)

The PSD is computed as the square of the amplitude of h̃(q); i.e.,

C(q) = L−1|h̃(q)|2. (3.3)

Since all collected data was analyzed as 1D line scans, then the computed PSDs

were of the form of C1D, using the nomenclature of Ref. [2]. All topography mea-

surements in the present investigation are analyzed as 1D line-scans, and therefore

the 1D PSD is presented in Fig. 3.3. However, the calculations proposed by Pers-

son and Tosatti (and their modifications) employ a two-dimensional isotropic PSD.

Under the assumption of isotropic roughness, the 2D PSD can be calculated from

the 1D PSD, as described in Ref. [2]. For this, we use Eq. A.28 of Ref. [2]:

Ciso(q) ≈ π

q
√

1− ( q
qs

)2
C1D(q), (3.4)

where qs is the short wavelength cut-off, in this case defined by the minimum

wavelength at which roughness is measured (4 A). This form of the 2D PSD is

shown in Fig. 3.4 and is used in the calculations for stored elastic energy and true

surface area.

3.6.5 CALCULATION OF SCALAR ROUGHNESS PARAMETERS

The power spectral density can be integrated (as described in Refs. [2,

142]) to compute scalar descriptions of the surface: the root-mean-square height

hrms, RMS slope hrms, and RMS curvature hrms. The value of these parameters

will depend on the scale over which they are measured [142]; including all scales

of topography yields the values shown in the table below,
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Figure 3.3: Power spectral densities of the four surfaces, with indication of the
specific regimes of applicability of each technique. The present figure uses line
style (solid, dashed, dotted) to indicate the specific bandwidth over which different
techniques were applied. Because of the nature of tip artifacts, the minimum size
from stylus and AFM data differ between surfaces.

Figure 3.4: 2D power spectral densities, after conversion from the 1D values
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Table 3.1: Roughness parameters (2D) of the nanodiamond substrates
Parameter Polished UNCD UNCD NCD MCD

RMS Height (nm) 4.6±0.8 23.4±1.3 121.7±13.4 126.6±8.2
RMS Slope 0.39±0.04 1.46±0.36 1.15±0.13 1.07±0.13

RMS Curvature (nm−1) 1.13±0.23 3.37±0.69 3.19±1.15 2.83±0.81

3.6.6 DERIVING AN EXPRESSION FOR THE INCREASE IN SURFACE

AREA DUE TO ROUGHNESS FOR LARGE SLOPES

Prior work (e.g. Ref. [13]) has derived expressions for Atrue/Aapp in the

limit of small slopes. Here, we derive an expression for Atrue/Aapp that works

for arbitrary values of slope h
′
rms. The derivation follows along the arguments

given in the Supplementary Material of Ref. [142]. For a full two-dimensional

topography map h(x,y), the surface area Atrue is straightforwardly obtained from

an expression analogous to the arc length of a function:

Atrue =

∫
Aapp

√
1 + |∇h|2dxdy = Aapp

√
1 + (

∂h

∂x
)2 + (

∂h

∂y
)2dxdy. (3.5)

For small slopes |∇h|, the square-root can be expanded into a Taylor Series and

truncated above quadratic order. This gives the well-known expression [13]:

Atrue =

∫
Aapp

(1 +
1

2
|∇h|2)dxdy = Aapp(1 +

1

2
h

′

rms), (3.6)

with

h
′

rms =

∫
Aapp

|∇h|2dxdy. (3.7)

In order to arrive at an expression valid for large h
′
rms, we now transform the

integral over the surface area into an integral over slopes. We first define the slope

distribution function,
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Φ(Sx, Sy) =
1

Aapp

∫
Aapp

δ(Sx −
∂h(x, y)

∂x
)δ(Sy −

∂h(x, y)

∂y
)dxdy, (3.8)

where δx is the Dirac delta function. Note that using the slope distribution func-

tion, we can express the integral over any function ’f ’ that depends on just slopes

as

∫
Aapp

f(
∂h

∂x
,
∂h

∂y
)dxdy = Aapp

∫
Φ(Sx, Sy)f(Sx, Sy)dSxdSy. (3.9)

We can hence re-express Eq. 3.5 as:

Atrue
Aapp

=

∫
Φ(Sx, Sy)

√
1 + S2

x + S2
ydSxdSy. (3.10)

We now make the assumption that our surfaces are isotropic and Gaussian. The

slope distribution function is then given by

Φ(Sx, Sy) =
1

πh′
rms

exp(−
S2
x + S2

y

h′
rms

), (3.11)

with (see also Eq. 3.7)

h
′

rms =

∫
Aapp

|∇h|2dxdy =

∫
Φ(Sx, Sy)(S

2
x + S2

y)dSxdSy. (3.12)

Evaluating Eq. 3.8 using this slope distribution function yields,

Atrue
Aapp

=
2

h′
rms

∫ ∞
0

exp(− S2

h′2
rms

)
√

1 + S2SdS = 1 +
1

2
h

′2
rmsg(h

′

rms), (3.13)

with

g(h
′

rms) =
√
πexp(

1

h′2
rms

)erfc(
1

h′
rms

)/h
′

rms. (3.14)

76



0 1 2 3 4 5

506 slRSe h ′rms

0.2

0.4

0.6

0.8

1.0

La
rg

e 
sl

RS
e 

cR
rr

ec
tLR

n 
g(
h
′ rm
s)

A

10
−2

10
−1

10
0

10
1

506 slRSe h ′rms

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

In
cr

ea
se

 Ln
 a

re
a 
A
tr
ue
/A
ap
p
−
1

B
H=0.3
H=0.8

A B

Figure 3.5: Plot of the correction g(h
′
rms) to the small-slope approximation. For

values of g(h
′
rms) ≈1 the small slope approximation is valid (A) Validation of Eq.

3.13 using computer-generated self-affine surfaces with varying RMS slope h
′
rms

and Hurst exponents H (B) The solid line shows the analytic result given by Eq.
3.13.

Note that the left-hand side of Eq. 3.13 is essentially Eq. B1 from Ref. [13]. The

function g(h
′
rms) can be regarded a correction to the small slope approximation

Eq. 3.11. It has the property g(h
′
rms)→1 as h

′
rms → 0 and hence we recover Eq.

3.11 from Eq. 3.18 in the small slope limit. Fig. 3.5 shows the function g up to

slope of 5. Note that for slope of order unity, g(1)≈0.76 and hence the small slope

approximation Eq. 3.6 would overestimate the area by 30%.

In order to numerically test the validity of Eq. 3.13, we have created a

range of synthetic self-affine surfaces with 4096 x 4096 points and Hurst exponent

H = 0.3 and 0.8 using a Fourier filtering algorithm [2, 144]. We then computed

the true surface area by numerical integration of Eq. 3.5. Figure 3.5B shows that

the analytic expression Eq. 3.13 describes the synthetic surfaces excellently up to

slopes of the order 10.
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Figure 3.6: A. The comparison of static and advancing and receding angles for the
smooth OTS coated silicon wafer and nanodiamond surfaces. As the roughness
increases there is a decrease in static angle while the difference in advancing and
receding is increased. B. shows the difference plotted as contact angle hysteresis
(CAH) as a function of RMS slope for the surfaces.

3.7 CONTACT ANGLE AND CONTACT ANGLE HYSTERESIS OF NAN-

ODIAMOND

Fig. 3.6A depicts the static, advancing and receding contact angles for the

rough four diamond surfaces in comparison with smooth OTS-coated silicon wafer.

It is seen clearly that the smooth OTS and polished UNCD have a higher static

contact angle as well as smaller hysteresis. While in case of surfaces with higher

roughness namely UNCD, NCD and MCD there is a decrease in static contact

angle and larger hysteresis. Given the chemical composition of diamond surfaces

is similar, the observed contact angle and CAH is a result of surface roughness.

For now these results show that the liquid water might form Wenzel state over the

surface. In Fig. 3.6B, where we plot the hysteresis with RMS slope, we see that as

the slope increases the CAH increases. However, it is not a linear dependence. The

following results corroborate well with the adhesion results and further discussions

in Chapter 4.
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3.8 ADHESION MEASUREMENTS USING JKR-BASED SETUP

The contact experiment for each hemisphere-substrate combination was

carried out using the setup shown in Fig. 3.7 where simultaneous force and contact

area measurement were taken during loading and unloading. Optically transparent

PDMS hemispheres of 2-3 mm diameter and height greater than 700 µm were

used to avoid substrate effects from the hemisphere’s sample mount [145, 146].

The maximum load applied for every measurement was 1 mN and the cycle was

completed with a constant velocity of 60 nm/sec.

3.8.1 CONTACT EXPERIMENT ANALYSIS: EXTRACTING VALUES OF

WORK OF ADHESION

To extract the apparent work of adhesion, the loading data is fit to the

JKR equation. Since the contact radius, applied force, and radius of the lens R are

known, then the apparent work of adhesion and elastic modulus can be computed.

3.8.2 TESTING PDMS FOR ADHESION HYSTERESIS

Before measuring work of adhesion on the rough nanodiamond substrates,

the PDMS hemispheres were tested for inherent hysteresis against a low surface-

energy OTS monolayer-coated smooth silicon-wafer surface. The work of adhesion

values obtained for loading and unloading fits are listed in table 3.2 showing com-

parable values and low hysteresis. This OTS reference testing was repeated before

and after the measurements on the nanodiamond substrates to rule out any per-

manent changes in the cross-linked structure of PDMS due to testing. The elastic

moduli are calculated using the Poisson’s ratio for elastomers as 0.5, and the values

are comparable to Ref. [23].
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Figure 3.7: Schematic of the JKR apparatus.
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Table 3.2: PDMS-OTS contact with JKR Analysis for four different moduli
M. wt. Elastic Modulus W(Loading) W(Unloading) Hysteresis

(gm/mol) (MPa) (mJ/m2) (mJ/m2) (mJ/m2)

800 10.0±0.9 51.0±4.8 56.4±1.8 3.4±6.2
9000 1.9±0.1 38.8±2.9 52.2±1.3 13.36±1.6
28000 1.0±0.0 36.8±0.8 52.5±4.8 15.7±4.4
62700 0.7±0.0 39.6±1.2 59.3±1.0 19.6±1.9

3.9 FRICTION MEASUREMENTS USING CANTILEVER SETUP

We have used two different diamond rough surfaces and four different elas-

tic moduli for friction measurements. The friction measurements were done using

velocities in the range nm/sec to m/sec using a nano-stepper motor (NewFocus)

and a Servo Motor (Moog Animatics SM). With help of threads of different sizes

attached to the motors we were able to cover the whole range of sliding velocities

(Fig. 3.8). A normal load of 5mN was used throughout the measurement by a

displacement-control motor. With the help of cantilever springs on which a PDMS

lens is attached we could measure the shear force and with the corresponding ob-

served, focused contact area through high speed camera on a microscope (Photron

FASTCAM SA-04 camera attached to Olympus microscope), we can obtain the

shear stress where σ=F/A. The contact areas were analyzed using an edge detec-

tion function in MATLAB with certain modification in the code to incorporate

calibration and image contrast.
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CHAPTER IV

LINKING ENERGY LOSS IN SOFT ADHESION TO SURFACE ROUGHNESS

To understand the dependence of adhesion on roughness, we performed

in situ measurements of the load-dependent contact of sixteen different combina-

tions of soft spheres and rough substrates. We have chosen PDMS as our elastomer

and synthetically grown hydrogen-terminated diamond for hard rough surfaces be-

cause both have low surface energies. The choice of these two surfaces eliminates

the possibility of adhesion hysteresis as a result of specific bonding [52, 53]. We

used a recently developed approach to characterize the surface topography of four

different nanodiamond substrates across eight orders of magnitude of size scale,

including down to the Ångström-scale. More than 50 individual topography mea-

surements were made for each substrate using transmission electron microscopy,

atomic force microscopy, and stylus profilometry. Results were combined to create

a single power spectral density for each surface that comprises a comprehensive

description of topography at all scales. The PDMS hemispheres were loaded under

displacement control to a maximum load of 1 mN before unloading to separation.

Real-time measurements were made of contact radius, load, and displacement.

The apparent work of adhesion during approach Wapp is extracted by us-

ing the JKR model to fit the measured contact radius a as a function of applied

load. This yields a different value of apparent work of adhesion for each of the

sixteen contacts. The surface chemistry of the PDMS and the nanodiamond is ex-
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Figure 4.1: The contact radius data for the PDMS hemispheres on the OTS
surface show low hysteresis between loading (empty symbols) and unloading (filled
symbols). The dashed lines indicate JKR model fits for loading and solid lines
indicate the JKR model fits for unloading.
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Figure 4.2: Comprehensive topography characterization for four rough nanodi-
amond surfaces. The surface topography was measured using a multi-resolution
approach that combines transmission electron microscopy (rightmost region of the
curves), atomic force microscopy (intermediate region), and stylus profilometry
(leftmost region). The nanodiamond surfaces are designated using the following
nomenclature: ultrananocrystalline diamond (UNCD) is shown in red; nanocrys-
talline diamond (NCD) in black; microcrystalline diamond (MCD) in green, and
a polished form of UNCD (polished UNCD) in blue. AFM images (of 5-micron
lateral size) are shown in the left inset; TEM images are shown in the right in-
set. More than 50 measurements for each surface are combined using the power
spectral density, which reveals the contribution to overall roughness from different
length scales (wavelengths). These comprehensive descriptions of surface topog-
raphy enable the determination of true surface area and stored mechanical energy
due to the topography, which are necessary to understand adhesion.
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consider the change in area of the soft material, which is represented schematically
by including the intermediate state (middle).

pected to be similar in all cases, therefore all contacts should have approximately

the same value of Wint. Before testing the hemispheres with rough surfaces, they

were tested against a smooth silicon wafer coated with a low-surface energy oc-

tadecyltrichlorosilane (OTS) monolayer to verify that there is negligible adhesion

hysteresis due to viscoelasticity (Fig. 4.1). To analyze the dependence of Wapp on

modulus and multi-scale surface topography, we use a model of conformal contact,

based on Persson and Tosatti. Those authors postulated that the product of Wapp

and Aapp (the apparent or projected area) is given by a balance of adhesive energy

and stored elastic energy Uel:

WappAapp = WintAtrue − Uel, (4.1)

with Wint=γ1+γ2-γ12, where γ1 and γ2 are the surface energies of the soft and hard

surfaces, respectively, and γ12 is the interfacial energy between them. The term

Atrue is the true surface area of the rough hard surface. However, Eq. 4.1 makes
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Figure 4.5: Adhesion measurements during approach and retraction. Loading and
adhesion tests were performed with ultra-smooth PDMS hemispheres of varying
stiffness from 0.7 to 10 MPa. Representative curves from one material (with
E=1.9 MPa) are presented in this figure. The load-dependent contact radius (A)
was measured using in situ optical microscopy. The apparent work of adhesion
upon approach Wapp was extracted by fitting the loading data (hollow points)
using the JKR model (dashed lines). The force-displacement curves (B) were used
to calculate the energy loss Eloss during contact by performing a closed-circuit
integral (inset). Both approach and retraction experiments were conducted at a
very low speed, 60 nm/s.
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two important assumptions that must be addressed: it neglects the change in area

of the soft elastomer surface from Aapp to Atrue upon contact; and it assumes

that the surface energy of the soft material is independent of strain. These two

assumptions can be corrected by modifying the energy balance to explicitly include

the work done in increasing the surface area of the elastomer.

The Persson-Tosatti energy balance implicitly implies that the area of

the PDMS surface does not change. While this may be valid for small-slope

surfaces, in the more general case the area will increase from Aapp to Atrue, as

shown schematically in Fig. 4.4.

To go from the initial state (Fig. 4.4A) to the intermediate state (Fig.

4.4B), there is an energy change from U1 to U2. The PDMS is stretched and its

surface energy changes depending upon the applied strain, which can be repre-

sented as a function of the area:

U1−2 =

∫ Atrue

Aapp

γ1(A)dA+ Uel. (4.2)

Then, the energy to go from the intermediate state U2 to the final state U3 (Fig.

4.4C), there is an energy change of:

U2−3 = (γ1s2 − γ1s − γ2)Atrue. (4.3)

The total work to go from the initial state to the final state is equal to ∆U1−2 +

∆U2−3:

∆U1−3 =

∫ Atrue

Aapp

γ1(A)dA+ Uel + (γ1s2 − γ1s − γ2)Atrue. (4.4)
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This is the total energy change equal to −AappWapp. Finally, we can re-write the

total energy balance as:

WappAapp = W ∗
intAtrue +

∫ Atrue

Aapp

γ1s(A)dA− Uel, (4.5)

where, W ∗
int = γ1s + γ2 - γ1s2, where γ1s is the surface energy of the stretched

elastomer. If we now make the assumption that the surface energy of the soft

elastomer is not a strong function of strain [6], then W ∗
int=Wint and we can

simplify the energy balance, and rearrange it to explicitly show Wapp as a function

of two roughness-dependent terms,Atrue/Aapp and Uel/Aapp:

Wapp = W ∗
int

Atrue
Aapp

− γ1(
Atrue
Aapp

− 1)γ1s −
Uel
Aapp

. (4.6)

The stored elastic strain energy can be calculated from the power spectral density

using the approach of Persson and Tosatti [13]:

Uel
Aapp

=
E∗

8π

∫ ∞
0

q2Ciso(q)dq, (4.7)

where Ciso is the radial average of the two-dimensional power spectral density.

For calculating the power spectral density, we follow the conventions used in Ref.

[2]. Ciso is calculated from the one-dimensional PSD (Fig. 4.2) as described in

Chapter 3. Finally, we derived an equation for the roughness-dependent increase

in surface area, which works for arbitrary values of root-mean-square surface slope

h’rms :

Atrue
Aapp

= 1 +

√
π

2
h′rmsexp(

1

h′2rms
)erfc(

1

h′rms
), (4.8)
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with h’rms calculated from the PSD as (h′rms)
2 = 1

2π

∫∞
0
q3Ciso(q)dq. For gener-

ality, all integrals were performed over the entire range of size scales over which

topography was measured; if the range of wavevectors is instead cut off at the

contact size (c.a. 100 microns), the extracted results are identical (within 0.1%).

Taken together, Eqs. 4.6 to 4.8 demonstrate the predicted dependence of Wapp on

material properties (E, µ) and topography Ciso.

The model for Wapp (Eq. 4.6) is applied to the measured data as shown

in Fig. 4.7A using γ1 = 25 ± 5 mJ/m2 [135, 147]. The minimum physically

reasonable value of Wapp is set to zero; predicted values below zero (for 10 MPa

PDMS on NCD and MCD) imply that the surfaces will not perfectly conform. The

best correlation between the experimentally measured work of adhesion and the

predictions of Eq. 4.6 was obtained using the intrinsic work of adhesion of 37.0 ±

3.7 mJ/m2 (R2 = 0.67). The explicit accounting for the change in area of the soft

surface led to improved model predictions; if we do not account for this change

(calculations shown in Chapter 3) the best fit to the measured data is significantly

poorer (R2 = 0.28) as shown in Fig. 4.6. The scatter in the experimental values

as compared to the model could be a result of spot to spot variation because of

larger asperities present on the diamond surface.

The retraction portion of contact differs sharply from approach (as shown

in Fig. 4.3), and the JKR model does not provide an adequate fit to the unloading

data. Despite the poor fit, the JKR model can be used to extract a value for work

of adhesion upon retraction, either by applying it only to the pull-off point, or

by applying it to the several (c.a. 6) points before pull-off. Doing so (Table 4.1)

yields work of adhesion values in the range of 20 to 160 mJ/m2. However, there is
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Figure 4.6: The experimental measurements of Wapp can be compared against the
unmodified Persson-Tosatti model, which does not account for the change in area
of the soft elastomer.
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Figure 4.7: Comparison of work of adhesion and energy loss with the proposed
model of conformal contact. Experimental measurements of apparent work of
adhesion during approach (A) are well-fit using the balance of adhesive and elastic
energy described in the Eqs. 4.6 to 4.8; here the solid line represents y = x. In
panel B, the energy loss is plotted as a function of true contact area (Eq. 4.8).
The solid line is a linear fit to the data and has a slope of 46.1 ± 7.8 mJ/m2 (R2

= 0.8).
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little consistency between these values and there is no connection to the intrinsic

value of work of adhesion determined from the approach data.

Table 4.1: Comparison of different work of adhesion values for nanodiamond sub-
strates

Work of Adhesion upon Approach (in mJ/m2)
Substrate 0.7MPa 1.0MPa 1.9MPa 10.0MPa
Polished UNCD 41.4±0.9 41.9±11 45.5±1.9 59.6±1.8
UNCD 38.8±2.81 42.2±4.7 40.28±3.3 23.15±5.5
NCD 21.7±0.6 19.6±0.9 17.5±2.15 8.37±1.12
MCD 23.5±2.0 25.0±3.4 17.6±0.8 4.1±1.46

Work of Adhesion from Pull-off using Eq. 2.26 (in mJ/m2)
Polished UNCD 74.7±2.6 88.0±2.3 83.0±2.0 102.0±1.0
UNCD 153.0±2.5 147.6±17.1 131.7±1.0 94.4±1.3
NCD 118.3±5.1 142.0±5.8 100.9±10.7 17.2±4.7
MCD 120.0±8.2 145.0±7.3 116.0±3.4 21.4±5.0

Work of Adhesion upon retraction using Eq. 2.25 (in mJ/m2)
Polished UNCD 72.7±2.2 95.2±6.8 80.7±1.7 94.4±1.4
UNCD 131.7±1.7 143.9±16.3 128.4±0.0 88.2±1.2
NCD 116.2±5.8 144.0±2.3 97.8±11.5 13.8±5.7
MCD 118.7±8.7 142.5±7.4 113.4±3.7 19.0±5.2

Instead, we analyze the total energy loss during contact and separation.

This quantity is computed as the integral under the loading and unloading curve,

as shown in the inset in Fig. 4.5. The in-situ measurements of contact size yield

the apparent area of contact during testing; to determine the true area of contact,

we must multiply by the roughness-induced increase in true surface area (Eq. 4.9).

We now plot the energy loss Eloss versus the true area of contact Atrue at maximum

preload. Figure 4.7B shows a linear correlation:

Eloss = WintAtrue. (4.9)

with a best-fit intrinsic work of adhesion of 46.2 ± 7.7 mJ/m2. This value is in

good agreement with the intrinsic work of adhesion for PDMS-diamond extracted

from approach, lending further confidence that the experiment is indeed measur-
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ing the fundamental molecular interactions, rather than an apparent property that

may be governed by experimental parameters. These results in Fig. 4 provide a

simple physical mechanism to explain both the lower work of adhesion during

approach and the adhesion hysteresis upon retraction. During approach, the ap-

parent work of adhesion is reduced from Wint by the energy required to deform the

soft material to achieve conformal contact. This reduction can be quantitatively

calculated using comprehensive, multi-scale measurements of topography (Eqs.

4.6 to 4.8). Furthermore, the energy loss during contact and separation matches

with the product of Wint and the true contact area Atrue at the maximum preload.

Surface heterogeneities are known to pin the contact edge such that the retraction

process depins the surface in instantaneous jumps over small localized microscopic

regions[148]. We show that Griffith’s argument can be applied: these jumps occur

once the elastic energy available is equal to the interface energy, and all elastic

energy is dissipated in the creation of new surface[90].

The results show significant adhesion hysteresis in the absence of viscoelas-

tic dissipation, and therefore demonstrate a fundamental origin of irreversible en-

ergy loss in soft materials that arises due to the roughness-induced increase in

surface area and Griffith-like separation of the contact. The above results demon-

strate how elastic materials behave on rigid rough surfaces. We think the above

study provides helpful insights into designing reversible adhesives without the use

of external stimulus such as electrical conductance or heat.
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CHAPTER V

SHEAR BEHAVIOR OF ELASTOMER SLIDING ON ROUGH SURFACES

5.1 Introduction

With the ubiquitous use of soft elastic matter in daily human life, the

nature of soft-hard interface becomes crucial in various mechanical elements such

as wiper blades, tires, gaskets, footwear and adhesive tapes [11, 149, 150]. It is

also crucial to understand the wall-slippage of rubber and dense polymers during

processing and nowadays during additive manufacturing which can lead to severe

material losses [151]. Additionally, there exist knowledge gaps in applying current

principles of friction to soft robotics and sensing technologies where feedback due

to shear forces and adhesion is effective only when substantial real interfacial con-

tact exists [36]. Most surfaces we come across have hierarchical fractal roughness

resulting in complicated interfacial friction responses, thus making it imperative to

perform systematic experiments followed by comparison with theoretical models

for friction on rough surfaces[152].

Pioneering work of Grosch on rubber friction have shown that during

sliding the friction forces increase with velocity to reach a maximum and then

decrease [56]. Grosch’s major contribution lies in being able to draw a master curve

for friction time-temperature superposition as theorized by William, Landell and

Ferry (WLF) [97], that has been discussed extensively in the background chapter

of this thesis. As a result of adhesion and stretching, the surface chains can

96



attach and detach from surfaces. The kinetics depends largely on molecular weight

and consequently on the deformation behavior of rubber network. The bonding-

debonding follows a reaction rate and thus Arrhenius theory of certain activation

energy having a rate constant similar to shift factor in the WLF theory.Chernyak

and Leonov theorized this stochastic bond formation and breaking as a probability

distribution function that depends upon the network chain density and the chain

length (ability to stretch the network) [58].

τ = Σ0

∫∞
0
φ( r(t)

δ
)p(V, t)dt

V [< t >b + < t >f ]
. (5.1)

For eq. 5.1, Σ0 is the areal density of chain network ends, φ( r(t)
δ

) is the stored

deformation energy in the network and p(V,t) is the transition probability of

the different attachment points between the network-chain ends and the surface.

While, it is inversely proportional to the mean distance travelled by the chain as a

product of velocity of sliding V, residence time or the time chain ends are bonded

at the adhesive interface < t >b and the free time when they are not bonded

< t >f . The model suggests that the observed shear stress is proportional to the

work done in stretching the polymer network so as to detach from the interface.

Thus, a quantitative molecular model for frictional adhesive sliding is established.

While adhesive steady sliding is extensively studied, the observation of

other transition states at higher velocities remain less explored. The transition

from steady state sliding to stick-slip at higher velocities, which can be periodic or

chaotic, is often attributed to competition between adhesion hysteresis and stress

relaxation. However, very little theoretical background, that explains the origin

of stick-slip dynamics, exists till date [153–155].
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At very high velocities there is an occurrence of air pockets in the contact

region as a result of very low relaxation time and adhesion for the rubber at the

interface[124]. These air pockets generated at particular frequency move from the

front of the contact region to the rear end creating wave-like patterns first ob-

served by Schallamach [57]. Thus, depending on energy dissipation mechanism at

different velocities there could be different states of the frictional interface [156]. It

has been shown before that during friction there could be discrete contact regions

for asperities even when complete contact was established in normal adhesion,

especially in case one of them is rough. Thus, there could be two separate compo-

nents for friction, especially for cross-linked elastomers, as a result of interfacial

adhesion and deformation [157–159]. The equation can be written as:

Fshear = Fadhesion + Fdeformation. (5.2)

The above relation assumes that there is little or no contribution to friction force

from wear and tear that occurs at the sliding rubber interface (which does not

represent reality and might significantly contribute to shear forces). Shear adhe-

sion would depend upon the real area of contact and the interfacial strength which

could be similar to eq. 5.1 where,

Fshear = Areal × τ + Fdeformation. (5.3)

Elastomer friction on rough surfaces is one of the most relevant and less explored

subjects. After the understanding that friction is a response to shear motion in

combination with adhesive forces and normal load, there have been theoretical

studies that point to the effect of roughness on friction [26, 42]. Grosch in his
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independent study of rubber sliding on a surface with magnesia particles spread

showed that maximum shear stresses were reached at much lower velocities as

compared to smooth surfaces. However, these experiments had free particles that

were stuck to the rubber surface instead of a stationary rough substrate. Persson

has performed a series of systematic studies that predict coefficient of friction on

rough surfaces having a known surface roughness power spectrum or power spectral

density (PSD) [27]. A PSD function is a mathematical tool to represent surface

roughness that is defined as the Fourier transform of the height autocorrelation

function of the waves having different wavelengths and amplitudes. Thus, we

have seen from earlier chapters that with the help of PSD, surfaces can have well-

defined roughness. Taking advantage of this known roughness system there could

be accurate measurement of friction response with controlled surface chemistry

and bulk properties.

Rewriting eq. 5.3 in terms of shear stresses we get,

Fshear
Aapp

= AreaRatio× τ +
P

Aapp
. (5.4)

Here, P
Aapp

is the stress corresponding to deformation as a result of applied load

which is non-adhesive. Now the deformation shear stress for non-adhesive contact

can be substituted from eq. 21 derived by Persson in ref. [27] and section 2.5.1.1,

σ = AreaRatio× τ +
1

2

∫
dqq3C(q)Im

E(qv)

1− ν2
. (5.5)

5.2 Experimental

To test the above model, we have measured friction between elastomeric

lenses of different moduli with rough diamond surfaces with the corresponding
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observation of the dynamic changes in interfacial area of contact. We observe a

rate and state transition for shear stresses and contact area over velocities ranging

from nm/sec to m/sec with elastomer modulus ranging from 0.7 MPa to 1.9 MPa.

The roughness of the diamond surfaces is varied by changing the power spectral

density functions as described in Chapter 4. We have also compared our data to

Persson’s predicted equation with the knowledge of surface roughness of nanodia-

mond and viscoelasticity of rubber material. The method for measuring friction is

described in Chapter 3 with complete details. Before testing the elastomer lenses

on rough surfaces, friction was performed on a smooth Octadecyltrichlorosilane

(OTS) monolayer deposited on a silicon wafer surface. This would not only serve

as a control for comparison with rough surfaces but also verify the molecular pro-

cesses that happen during sliding of an elastomer (eq. 1) experimentally shown

by Vorvolakos el al. previously [23].

5.3 Results

As shown in Fig. 5.1, the shear stress increases with velocity reaches a

maximum and then either plateaus out or decreases. Stress is higher for higher

modulus or lower cross-linked molecular weight. The observed maxima for the

stress after fitting a Gaussian curve comes out to be close to a particular velocity

independent of the modulus. There is observation of state processes during sliding

where at low velocities there is steady-state sliding ( µm/sec), at intermediate

velocity we see stick-slip ( 100 µm/sec) and at high velocities ( mm/sec) we see

Schallamach waves, as evident from Fig. 5.2. Thus, both rate and state process

are verified on smooth surfaces. In their work, Vorvolakos et al. were able to
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Figure 5.1: Real shear stress observed by averaging the maxima obtained from
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are the Gaussian fitting functions to the shear stress curves as a function of ve-
locity, similar to eq. 1 showing maxima at a particular velocity independent of
elastic modulus. However, as the modulus increases the shear stress increases
proportionally.
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on OTS surface at three different velocities showing three different states of steady
state sliding (2.6 mm/sec), periodic stick-slip (0.17 mm/sec) and Schallamach wave
behavior (3 µm/sec).

observe stick-slip on low energy smooth surfaces, but it is for the first time that

detachment waves are observed for such surfaces at very high velocities. This

reiterates the predictions of Ludema et. al and Savkoor et. al where in as the

sliding happens at higher velocities the energy stored as deformation is reduced

and there is loss in contact area.

On rough surfaces, the observed trends with respect to states are similar

but the onset is earlier as compared to smooth surfaces (see Fig. 5.3). The most

striking observation for friction on rough surfaces is that the maximum shear

stresses are large at low velocities and smaller at higher velocities as compared

to smooth surfaces, where the difference between stresses on Polished UNCD and

UNCD become dominant at higher velocities. Thus, the observation of Gaussian

function with one single peak in case of a smooth surface is not applicable on
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Figure 5.3: Depicts the three states through the contact area images captured
before and after sliding on a rough UNCD surface wherein the detachment wave is
visible in C. The different contact area changes during sliding along with the stress
variations (through colors) are depicted qualitatively in the side view schematics
drawn on the right-hand-side. The stresses increase according to the order of
colors- blue, green, yellow, orange, red.

rough surfaces because of the added contact area and the elastic deformation.

Fig. 5.4A shows the comparison of 0.7 MPa PDMS lens sliding on smooth OTS

surface and rough diamond surfaces. Similar trend is observed for 1 MPa and 1.9

MPa PDMS shown in Fig. 5.4B and C. The different states are clearly notified

for corresponding velocities illustrating the stresses and velocities at which state

transitions occur.

A major finding from the onset stresses for different moduli is that the

critical shear stress necessary for the occurance of different states scales with the

modulus of the sliding elastomer (Fig. 5.5). This shows that deformation energy

due to applied shear stresses changes resulting into frictional states. There was

no such correlation obtained for critical stress as a function of velocity.
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To predict shear stress using eq. 5.5, the non-adhesive deformation com-

ponent depends upon frequencies of vibration for the rubber network at the rough

interface. These can be obtained by multiplying the roughness frequency ′q′ in

space to the velocity ′v′ of sliding. These frequencies ′qv′ in a range correspond

to the loss modulus of the rubber material from a standard Dynamic Mechan-

ical Analysis (DMA) curve. To make such predictions we need to measure the

bulk viscoelasticity of the elastomer at different frequencies and since the range of

frequencies of vibration is large we needed to measure modulus at different tem-

peratures and superpose them according to the time-temperature superposition

(TTS) principle using the Williams-Landell-Ferry (WLF) model [97]. Tempera-

ture sweep plots in Fig. 5.6 and the TTS plots in Fig. 5.7 show the measured

dynamic mechanical behavior of 1 mm thick elastic sheets made with similar cross-
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linking chemistry as the lenses used in friction experiments. It is evident from the

plot that the complex elastic modulus is not affected significantly by the loss

modulus at lower frequencies which correspond to the ambient temperature con-

ditions where the storage or complex moduli for the elastic materials are constant.

We have labelled the three elastic materials according to the complex or storage

moduli at room temperature that is 0.7, 1 and 1.9 MPa.

Fig. 5.8 A and B are the comparison for Polished UNCD and UNCD

surface using predictions of eq. 5.5. The predictions do not match the observed

shear stress on rough surfaces. This show that our understanding of shear behavior

as a function of velocity is still missing a crucial component. We can discuss

qualitatively what are the missing parameters in the theory. It is quite possible

that the deformation term might play a significant role at even lower velocities

especially on rough surfaces which is not captured by the deformation term in

its current form. The plots show that the equation predicts higher shear stress

at higher velocities for rough surfaces assuming the adhesive term (first term)

encompasses the whole conformal contact, which is not the case as we know that

Schallamach waves are air pockets that create detachment fronts. Moreover, at

higher velocities there is significant amount of reduction in real contact area not

captured by a microscopic video under visible light. Thus, a friction model will be

complete only if it incorporates all the different state behaviors and the physics of

their occurrence or nucleation.
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Figure 5.6: DMA temperature sweep plots for the 0.7 (A), 1 (B) and 1.9 MPa
(C) PDMS sheets showing complex elastic,storage and loss moduli. The range of
temperatures (-130 to 130 C) translates to the range of frequencies required for
friction model.
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5.4 Discussion

Let us discuss the states of friction observed in the above cases. The sim-

plest is the steady state behavior where in the sliding is purely based on Amontons’

laws of friction. In stick-slip behavior, the contact area decreases as the force in-

creases to reach a critical stress, followed by a decrease in stress and an increase

in contact area; this behavior repeats over time. As the sliding velocity increases

the elastic material at the interface begins to buckle followed by the buckle prop-

agating through the interface; simultaneously the system is also exhibiting the

stick-slip behavior that is seen at lower velocities. As the sliding velocity is in-

creased even more, the critical bulk stress to initiate a Schallamach wave decreases

to zero. The maximum stress occurs before the critical bulk stress to propagate a

Schallamach wave is zero. Once the critical bulk stress to propagate a Schallamach

wave reaches zero the observed stress to slide the elastic body decreases.

These observations suggest the following: at low velocities the bulk and

interface experience the same stress (i.e. energy is uniformly distributed within

the body), and at some critical stress the interface must buckle as the interfacial

strength is not capable of sustaining the stress, this allows the system to spend

elastic energy to increase the sliding velocity, or decrease the energy required to

slide (i.e. a Schallamach wave is a way for the system to convert elastic energy

into kinetic energy); as the sliding velocity increases the stress and energy within

the system becomes more localized to the interface, such that the interface and

bulk are under different amounts of stress (this suggests that there is an energy

diffusion rate from the interface to the bulk); at some critical velocity the energy

is completely localized to the interface and Schallamach waves propagate at zero
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bulk stress and the force required to slide begins to decrease. The open question

then is how does the material and interface properties control this behavior?

We can see that the critical stress to propagate a Schallamach wave is

independent of the surface roughness, however the critical sliding velocity is a

function of roughness. From this we know that it takes more energy to slide and

conform to a rough surface than to slide and conform to a smooth surface. The

interesting observation though is that once Schallamach waves begin to propagate

the stress to slide plateaus until some much faster velocity. This is analogous to

the ”spurt” phase during extrusion, where many extrusion velocities are possible

with a single applied stress. We observe that as the sliding speed increases during

the plateau phase the rate of generation and velocity of the Schallamach waves

increases. This suggests that as the applied power increases up to some critical

amount Schallamach waves are completely capable of spending that additional

energy otherwise one would observe an increase in the required force to slide.

However, after some critical sliding velocity Schallamach waves are unable to ac-

commodate the increased sliding velocity such that we observe a larger energy to

slide. To accommodate the additional energy input per second during this phase

the energy begins to become localized, where a critical amount of localization

is achieved after the maximum stress corresponding to Schallamach waves being

generated at zero bulk stress. This energy localization causes a decrease in the

observed sliding force and coefficient of friction.

We observe for the smooth surface there is a gaussian like curve that

represents the maximum stress as a function of sliding velocity. The increase

in stress is due to increased energy dissipation within the bulk of the material.
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Since the bulk material must deform to slide, and the rate of deformation must

increase as sliding speed increases, less energy elastic energy is converted into

kinetic energy. Once a critical stress is achieved Schallamach waves are generated

and an inflection point occurs in the stress vs velocity curve signifying the system

is becoming more efficient at converting elastic energy into kinetic energy. As the

sliding velocity increases the energy (as in the rough surfaces) begins to localize to

the interface; as in the rough surfaces the bulk stress to propagate a Schallamach

wave approaches zero after the maximum. The detachment waves are physically

similar to a dimple that could be caused in an elastomer brought in contact at very

high velocity in the presence of liquid. Depending on the thickness of the elastomer

the formation of dimple could vary, observed by Frechette et. al [160]. This might

be one of the reasons why Vorvolakos et. al did not observe detachment waves

since they were using PDMS thin films transferred onto a lens of higher modulus

avoiding elastic deformation.

5.5 Summary

In the presence of adhesion and deformation of rubber during friction

we obtain three transitory states for the contact area namely static, stick-slip and

elastic instability (Schallamach waves). These states are the shear stress relaxation

mechanisms that only occur in rubber materials as a result of bulk deformation.

However, this dependence is not solely because of the adhesion of the rubber with

the surface but also the hysteresis or deformation of the material. On surfaces

which have roughness at many length scales, the occurrence of Schallamach waves

is at far lower velocities than on smooth surfaces showing early nucleation of
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waves due to the added roughness and very short relaxation time available for the

deformed material to maintain contact during sliding.
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CHAPTER VI

CONCLUSIONS

The above dissertation work is a step towards intriguing questions in the

field of contact mechanics which might be incomplete but have been able to provide

certain clues for solving the puzzle that has existed for decades. It was mere

coincidence that at this point of time the scientific and technological capabilities

enabled us to design experiments and verify adhesion and friction models.

For adhesion, the JKR model was a useful methodology to calculate work

of adhesion between surfaces for a given range of elastic modulus. However, it

failed to incorporate the effect of surface roughness. We have made an attempt

to predict the apparent work of adhesion on rough surfaces using the apparent

contact area obtained for an applied load using JKR formalism and then relate it

to real work of adhesion for known surface roughness. With the help of controlled

surface chemistry and roughness we have seen that adhesion of soft materials

depends upon the change in surface energy as a result of applied strain. Most

importantly, intimate contact is achieved as a result of this modified work of

adhesion. Persson’s theory helps in predicting the apparent work of adhesion

on rough surfaces. All the energy lost as adhesion hysteresis during pull-off is

proportional to the total intimate contact area formed, that satisfies the Griffith’s

criterion from fracture mechanics. The model that we propose is still incomplete

since it has not unified the energy balance proposed by JKR theory for both

114



loading and unloading incorporating roughness. This will be complete only when

similar JKR experiments are performed with change in normal loads and velocities

in air as well as liquid environments, that pose numerous experimental challenges.

Changes in work of adhesion and Griffith’s energy loss as a result of application

of normal loads and higher velocities need to be verified with the awareness of

boundary conditions of linear elasticity and non-equilibrium effects.

In the shear experiments, we wanted to relate adhesion hysteresis to fric-

tion observed on rough surfaces and incorporate molecular theory of rubber friction

and Persson’s theory of non-adhesive friction that calculates deformation energy

due to roughness, into one single theory. However, we had surprising observations

for amount of stress observed on rough and smooth surfaces. The onset of states

happen at a critical stress values for a particular elastic modulus independent

of roughness. In addition, we concluded that the stresses on rough surfaces are

higher at lower velocities and lower at higher velocities as compared to smooth

surfaces. A qualitative reason for this observation is the deformation energy or

hysteresis which at lower velocities is higher for rough surfaces and decreases with

increasing velocity. The interplay of contact area and deformation causes adhesion

to vary with velocities and thus friction. However, it is not easy to quantify this

velocity and roughness dependent shear stresses and further mathematical rigor

is necessary. A true breakthrough in understanding rubber adhesion and friction

is possible if we are able to probe the true contact area formed on rough sur-

faces. There are different spectroscopic and fluorescence techniques that enable

this active area of research but not without individual limitations. Viscoelasticity,

wear and material losses are some of the unknown bulk changes that are constantly
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happening during contact and deformation. There are hardly any characterization

tools that focus solely on understanding such phenomena.

The above experiments have shown that there are many open questions

in the field of contact mechanics. Investigations so far are not sufficient to un-

derstand the relation between adhesion and friction and how roughness can affect

these properties which are relevant to many modern technologies. At the same

time, thermodynamic laws should have been universally applicable to adhesion

hysteresis, contact angle hysteresis and friction. There exists clearly differences

and linkages in all these interfacial phenomena at various levels through the ob-

servations above.
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