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ABSTRACT 

This work presents a virtual prototyping design approach for a fast area-based 

image stitching algorithm. The structure of virtual hardware obtained from virtual 

prototyping corresponds to that of the conceptual algorithm; that is, the actual circuit 

components including the memory, logic gates, and arithmetic units are linked to the 

conceptual algorithm blocks. Using the proposed method, the overall structure, hardware 

size, and computation time of the actual hardware can be estimated at the early design 

stage. As a result, the virtual hardware facilitates the hardware implementation by 

eliminating trial design and redundant simulation steps to optimize the hardware 

performance. To verify the feasibility of the proposed method, the virtual hardware of an 

image stitching algorithm is realized, and the hardware size and the computation time are 

estimated. In addition, the image stitching algorithm uses binary image comparisons and 

image scaling, which can eliminate huge multipliers and adders in the actual hardware. 

Thus, the proposed algorithm can lead to reduced hardware size and faster computation 

time. Results show that, with a clock frequency of 250 MHz, the estimated computation 

time of the proposed virtual hardware is 0.877sec to stitch two 1280×1024 images, which 

is one-tenth of the time required by the software-based image stitching algorithm realized 

in MATLAB. The estimated size of the virtual hardware showed memory size of 66.4 

Mbits and gate count of 874 gates. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background and motivation 

Image stitching is a technique for combining multiple images into one single image 

captured from different cameras (sources) to generate a panoramic image. Image stitching 

can reduce redundant information in various sets of images, increase the image storage 

capability, and enable more effective views of the real world [1]. Due to the numerous 

advantages, image stitching is widely applicable for smart cars, 3D mapping, defense 

systems, and medical imaging [2] – [4]. However, due to the intensive computing, most of 

the image stitching hardware has been implemented with extremely high-cost servers or 

high-performance multi-GPU/DSP platforms which require enormous computing and 

power usage [5] – [8].  

On the other hand, the demands on customized image processing hardware that can 

perform more specific tasks are increasing due to emerging applications such as unmanned 

vehicles, remote sensing, and mobile computing, where the memory size, computational 

resources, and power are all limited [9]. That is, specific hardware implementation is 

needed when general purpose computers are not suitable due to constraints on speed, size, 

and energy consumption. However, while image stitching platforms can be easily 

implemented on general purpose computers, hardware implementation imposes many 
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challenges due to the contradiction between limited hardware resources and the 

requirements for high performance. As a result, it is still challenging to realize image 

stitching hardware for embedded real-time applications. Another difficulty that limits the 

hardware implementation is that parameters such as computation speed, power, and area 

cannot be estimated at the initial design stage. The performance estimation is only possible 

after the completion of the gate or transistor level implementation. Although there are open 

source hardware description languages such as VHDL that support general image 

processing algorithms, it is a time-consuming job to convert the VHDL code into the circuit 

level and run a series of simulations to figure out the hardware performance. To make 

matters worse, a series of simulations should be repeated several times to end up with an 

optimized hardware performance. Therefore, in order to extend the applicability of the 

hardware-based image stitching platforms, there is an urgent demand for finding new 

hardware friendly algorithms and new design approaches that can facilitate the hardware 

implementation. 

1.2. Contribution of the thesis 

1.2.1. Fast area-based image stitching algorithm 

In this work, an algorithm for fast area-based image stitching is proposed. This 

algorithm uses binary images rather than a RGB or grayscale images. The computation 

time of the proposed algorithm by using binary images is far less than the algorithm using 

grayscale images. In addition, the image size is reduced by image scaling to further reduce 

the computation time while retaining the information of the image. 
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1.2.2. Virtual prototyping of the proposed algorithm 

Furthermore, a virtual prototyping design approach is proposed for the fast area-

based image stitching algorithm. With the proposed approach, the overall structure, size, 

and computation speed of the actual hardware are estimated at the initial design stage. As 

a result, the optimized virtual hardware facilitates the hardware implementation by 

eliminating complex design and redundant simulation steps. The performance of the 

proposed virtual hardware is compared with that of the corresponding software-based 

image stitching algorithm. 

1.3. Organization of the thesis 

Chapter 2 reviews the literature on image stitching and hardware implementation 

approaches. Chapter 3 presents details in the proposed algorithm for fast area-based image 

stitching. Chapter 4 documents the virtual prototyping of the proposed area-based image 

stitching algorithm. Chapter 5 compares the computation time between the virtual 

hardware and the MATLAB simulations. Chapter 6 concludes and discusses future work. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter describes previous work on area-based image stitching, feature-based 

image stitching, and hardware implementation approaches, as well as other approaches that 

perform image stitching, their applications, and drawbacks.  

2.1. Area-based image stitching  

2.1.1. Pixel-by-pixel alignment 

To use area-based method, a suitable error metric must first be chosen to compare 

the images. Once this has been established, a suitable search technique must be devised. 

The simplest technique is to exhaustively try all possible alignments, that is, to do a full 

search. The main benefit of this technique is that it lessens the sum of absolute differences 

between overlying pixels. This method is scale variant and rotation variant. Pixel-based 

image stitching method optimally uses the information obtained from the image alignment. 

It measures the role of every picture element in the image. The main limitation of this 

technique is the limited range of convergence. Many approaches to compare two images 

in pixel-based approach are developed [10]-[14]. 
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Figure 2.1: Concept of pixel-based image matching. 

Figure 2.1 shows the concept of the pixel-based image matching scheme [15]. In 

order to find the best alignment between the two images, image-2 is shifted relative to 

image-1 by one pixel in the horizontal and vertical direction, and the average of least square 

difference for each overlapped region (shaded part) is obtained. That is 

Average of least square difference =
∑ [I1(xi,yj,) − I2(xi,yj)]

2
i,j

Number of Pixels
                                ( 2.1) 

where I1and I2 are the pixel value (luminance) of image-1 and image-2. As a result, the 

minimum Elss indicates the best matching alignment. The minimum overlap between the 

two images is found using this error metric.  

2.1.2. Correlation method 

Template matching is a basic and simple pattern matching technique in digital 

signal processing, particularly in digital image processing. Template matching is an 

operation to determine the similarity between two entities, a reference signal, and a target 

signal. 
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For some images, template matching uses a reference image (the template), which 

can be a part of a real image, or for some applications like pattern detection. The pattern is 

usually smaller than the image. The problem is to find if and where there is an occurrence 

(or at least a similar enough occurrence) of the template in the target image. 

The correlation approach uses the correlation coefficient as a measure of similarity 

between the reference and the sub-image at each location in the target image. The 

correlation output is maximum for locations where the template is most similar to the sub-

image. If t(x) is the spatial filter or reference, then the correlation at a point x0 is computed 

as  

                                                         𝐸𝐶𝐶(𝑥0) = ∑ 𝑓(𝑥𝑖)𝑡(𝑥𝑖 − 𝑥0)                                      (2.2) 

𝑖

 

where f(xi) is the input image and t(xi-x0) is the shifted version of the reference image. 

  If the input f(x) contains a shifted version t(x-x0) of the reference signal, the 

correlator exhibits a maximum value at x=x0. Therefore, maximum values occur for the 

location where the sub-image of f(x) perfectly matches the reference. If the input does not 

contain the reference t(x), the correlator output is low. 

2.1.3. Fourier-based alignment 

When the search range corresponds to a significant fraction of the larger image (as 

is the case in image stitching), a Fourier-based approach may be preferable. The Fast 

Fourier Transform algorithm can compute the transform of an N × M image in 

O(NM log (NM)) operations. This can be significantly faster than the O(N2M2) operations 

required to do a full search when the full range of image overlaps is considered. Another 
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useful property of the Fourier transform is that convolution in the spatial domain 

corresponds to multiplication in the Fourier domain.  

 

Figure 2.2  Cross-correlation using Fourier transform 

Correlation can be also done in the frequency domain as shown in Figure 2.2, as 

correlation is related to the product of image Fourier transforms by the convolution 

theorem. Thus, correlation is obtained by multiplying the image Fourier transform with the 

complex conjugate of the reference Fourier transform. Peak locations (high correlations, 

which correspond to matches) in the spatial domain are then obtained using the inverse 

Fourier transform. 
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2.2. Feature-based image stitching  

In the feature-based technique, all main feature points in an image pair are 

compared with those of every feature in another image by making use of local descriptors. 

For feature-based image stitching techniques, feature extraction, image registration, and 

image blending are the various stages followed. Feature-based methods are used by 

instituting equivalences between points, lines, edges, corners, or other shapes. The main 

advantages of the feature-based methods include invariance to the noisy image, scale 

invariance, translation invariance, and invariance to rotation transformations [16]-[17]. 

Finding the image features is called feature detection. A description of the region around 

the feature, called a feature description, can then be used to find the same feature in other 

images. Multiple images that include a common feature can be aligned for stitching or other 

purposes. 

2.2.1. Harris Corner Detector 

 One early attempt to find the corners was done by Harris and Stephens in their 

paper “A Combined Corner and Edge Detector” in 1988, so now it is called Harris Corner 

Detector. The Harris corner method is a mathematical operator that finds features in an 

image. It is simple to compute and fast [18]. This method is popular as it is rotation, scale 

and illumination variation independent. In Figure 2.3, even the little movement of the 

window produces a noticeable difference in the intensity. The blue window shows the flat 

surface, where any movement does not show any difference in the intensity. The green 

window shows the edge. For edge the movement in perpendicular direction to the edge is 

noticeable but the movement along the edge is not noticed. The yellow window shows a 
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corner. A small movement in any direction can be noticed. Therefore, a corner is said to be 

a good feature. The process of detecting the corner depends on calculating the sum of the 

squared differences between the image values in a given window and the corresponding 

image values in a shifted window [19], as 

                         𝐸(𝑢, 𝑣)  =  ∑ 𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2
𝑥,𝑦                    (2.3)       

 

Figure 2.3 Regions with extremely high variation 

 If a corner is present in the window, then the value of E in equation (2.3) tends to 

be large. The calculation of E is simplified by using a Taylor series expansion of I. The 

final equation after applying Taylor series, and ignoring the window function w(u,v), is  

                                         𝐸(𝑢, 𝑣)  ≈  ∑ 𝑢2𝐼𝑥
2  +  2𝑢𝑣𝐼𝑥𝐼𝑦 + 𝑣2𝐼𝑦

2
𝑥,𝑦                                      (2.4) 
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Writing the above equation into a matrix form  

                                        𝐸(𝑢, 𝑣) ≈ [𝑢 𝑣] (∑ [
𝐼𝑥

2 𝐼𝑥𝐼𝑦 

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]) [

𝑢
𝑣

]                                          (2.5) 

It was figured out that eigenvalues of the matrix can help to determine the type of feature 

seen in a window. For example one may consider the parameter R, defined for a given 

window as 

                                      𝑅 = 𝑑𝑒𝑡 𝑀 −  𝑘(𝑡𝑟𝑎𝑐𝑒 𝑀)2                                                     (2.6) 

where  det(M) = λ1λ2, trace(M) = λ1 + λ1 𝑎𝑛𝑑 𝑀 = [
𝐼𝑥

2 𝐼𝑥𝐼𝑦 

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]  

to decide whether the window has the corner or not. When |𝑅| is small, the window has a 

flat region. When R < 0, the window has the edge. When the R value is large, the window 

has the corner.    

2.2.2. SIFT method  

The Harris corner detector is rotation-invariant but not scale-invariant. The corner 

may not remain a corner if the image is scaled. To overcome this problem in Harris corner 

detector method, in 2004 D. Lowe came up with a new algorithm, Scale Invariant Feature 

Transform (SIFT) [20]-[21]. There are four steps contained in the SIFT algorithm.  

a. Scale-space extrema detection 

Scale-space filtering is used to detect the large corners since it is obvious that small 

corners are detected using same window. Laplacian of Gaussian (LoG) is found for the 
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image with different 𝜎 values. To compute the LoG, an image is blurred by convolving 

with Gaussian functions having different values of variance 𝜎. Then, second order 

derivatives (or Laplacian) of the image are calculated. But, calculating second order 

derivatives is computationally intensive, therefore Difference of Gaussian (DoG) is 

calculated. The DoG is an approximation of LoG.  The DoG is obtained by taking the 

difference between the Gaussian blurring of an image with two different 𝜎. Now the local 

maxima across the scale and space are found. It gives a list of (x,y, 𝜎) values which 

signifies there is a potential keypoint at (x,y) at 𝜎 value. Figure 2.4 shows the process of 

DoG in which it is done for different octaves of the image in Gaussian pyramid. 

 

Figure 2.4  Difference of Gaussian (DoG) [21] 

After finding the DoG the next step is to locate the local extrema over scale and 

space. Figure 2.5 shows the process of finding the local maxima/extrema. The symbol X 

in the middle scale is compared with the 8 neighboring pixels and also with the 9 pixels 
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in the next and previous scales. It is said to be local maximum if the value of X is greater 

than all the compared pixels, therefore it is a potential keypoint.  

 

Figure 2.5  Locating maxima [21] 

 

Some typical data can be given as a number of octaves = 4, the number of scale 

levels = 5, initial  𝜎 = 16 and scaling factor k = √2. 

b. Keypoint localization 

 After finding the potential keypoint reference, the Taylor series expansion is 

applied on scale-space to get more exact location of local maxima. If the intensity of this 

local maxima is less than threshold value, then the potential keypoint is rejected. 

 The DoG has higher response for edges, therefore edges also need to be removed. 

To do this, a 2×2 Hessian matrix (H) is used to calculate the principal curvature. So, the 

images go through two tests: the contrast test and the edge test. Therefore, any low-contrast 

and edge keypoints are eliminated. A few keypoints are rejected and thus, a lower number 

of keypoints are left to deal with.  
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c. Orientation assignment 

 To achieve invariance to image rotation, an orientation is allocated to each 

keypoint. To assign orientation, gradient directions and magnitudes are collected around 

each keypoint. An orientation histogram with 36 bins including 360 degrees is generated. 

The highest peak in the histogram is considered and any peak above 80% of it is also taken 

to calculate the orientation. This makes keypoints with the same location and scale but 

different directions. This contributes to stability of matching.  

d. Keypoint descriptor  

 After the orientation assignment, keypoint descriptor is created. A 16×16 

neighborhood around the keypoint is taken. It is divided into 16 4×4 blocks. Now for each 

sub-block, 8 bin orientation histogram is created; therefore a total of 128 bin values are 

available.  

 

Figure 2.6  16×16 window around the keypoint. This 16×16 window is broken 

into sixteen 4×4 windows [28]. 
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2.2.3. SURF (Speeded Up Robust Features) 

 The SIFT method discussed in the last section is comparatively slow, and a faster 

version is needed. The SURF method goes further and approximates LoG with box filter. 

Figure 2.7 shows a demonstration of such an approximation. Convolution with box filter 

can be easy with the help of integral images, which is done in parallel for different scales 

[22]-[24].  

 

Figure 2.7  Gaussian second derivatives and box filters [22] 

 For orientation assignment, wavelet responses are used by SURF in both horizontal 

and vertical directions. Gaussian weights are also applied to it. Figure 2.8 shows how they 

are plotted in the space. The leading orientation is approximated by calculating the sum of 

all responses within a sliding orientation window of 60 degrees angle. For many 

applications, rotation invariance is not required, therefore it is not essential to find this 

orientation, which speeds up the process. For this process, SURF provides a functionality 

known as U-SURF or Upright-SURF.  
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Figure 2.8  Wavelet responses in the horizontal and vertical directions [ 27] 

 

As it is said SURF uses wavelet responses in the horizontal and vertical direction 

for the feature description. A neighborhood of size 20s×20s is considered around the 

keypoint, where ‘s’ is the size. This is further divided into 4×4 sub-regions. As shown in 

Figure 2.9, for each sub-region horizontal and vertical wavelet responses are considered 

and vector is formed as  

                                               𝑣 = ∑ 𝑑𝑥,  ∑ 𝑑𝑦 ,  ∑ |𝑑𝑥|,  ∑ |𝑑𝑦|                                                   (2.7) 

 This vector provides the SURF feature descriptor with total 64 dimensions. If the 

dimension is low, the speed of computation and matching is high. Therefore, uniqueness 

of the feature is provided. For more uniqueness, SURF feature descriptor uses and extended 

128-dimension version. The sum of 𝑑𝑥 and |𝑑𝑥| are evaluated separately for 𝑑𝑦 < 0 and 

𝑑𝑦 ≥ 0, and same for y-direction. In this approach, the number of features are doubled, 

and it would not add much computation difficulty. 
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Figure 2.9  Structure breakdown of each feature’s neighborhood [24] 

 

Another significant development is the use of the sign of Laplacian for underlying 

feature point. It does not add computation cost because it is already computed during 

detection. The sign of Laplacian differentiates light blobs and dark blobs.  In matching 

phase, only features with same type of contrast are compared. Figure 2.10 shows this 

explanation. The minimal information allows for faster matching without reducing the 

descriptor’s performance.  

 

Figure 2.10  Features as light and dark blobs [27] 

 

Can do match 

 

Can do match 

 

No matching 
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 Therefore, SURF adds a lot of features to improve the speed in every step. It is three 

times faster than the SIFT algorithm. SURF is suitable at handling images with blurring 

and rotation, but not suitable at handling viewpoint change and illumination change. 

2.3. Hardware description 

The FPGA implementation of image registration algorithms is a difficult problem 

due to the limited sources of the hardware and the necessity for real-time processing speeds. 

In this section, as a hardware implementation example, the FPGA based I2A (image 

interpolation approach) algorithm, and the challenges of FPGA-based prototyping are 

discussed [25]. 

2.3.1. Example of hardware implementation 

For implementing a real-time optical flow sensor an image interpolation approach 

(I2A) is proposed. The application for this work is the development of a small and 

lightweight sensor suitable for use on a small unmanned flight vehicle and eliminating 

affine motion between two images. This can be done by using the translation information 

between two matching sub-regions of those two images. The translation information 

between the sub-regions is handled using the image interpolation algorithm.  

Figure 2.11 shows the FPGA implementation of the I2A algorithm. Data input is 

camera data or frames from the previous FPGA. Line and pixel FIFOs consists of external 

FIFOs, which are used to create the frames. Binary conversion converts 8-bit data into the 

binary data using the threshold from the adaptive thresholding block. SM (Saliency Model) 

performs AND, OR and NOT single bit logic operations. Accumulators perform addition 
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of each SM frame. Accumulator produces six parameters for each patch of maximum of 

64×64 sized images. MSD (Mie Scattering Diffusion) performs the optical flow based on 

the six parameters. The average block calculates the average of the optic flows in x and y 

directions. These averages of first FPGA which corresponds to Sx2, Sy2  in Figure 2.12 are 

used to control the external FIFOs in the second FPGA in connection mode. XOF and YOF 

of 8-bit width are sent to PC for post processing through RS232 [26].  

 

Figure 2.11 Image interpolation algorithm (I2A) 

Now an image registration algorithm using binary images used I2A in it as shown 

in Figure 2.12. It is built on two FPGAs, in which each FPGA is programmed to run the 

I2A algorithm. The first FPGA is connected to an image sensor. The sensor captures the 

image and runs the image back to the FPGA. The first FPGA is used to implement the first 

iteration and second FPGA for second iteration. Sx1, Sy1, Sx2, Sy2 are inputs of two FPGAs. 

The four inputs are set to zero when operated individually. Sx1, Sy1 are still zero and Sx2, 

Sy2 are average optic flows calculated by first FPGA. These inputs are given through 

extFIFO control block. The extFIFO control block controls the extFIFO block delaying its 

input by one frame when Sx and Sy are zero. The adaptive threshold block calculates the 

threshold used to create binary images.  
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In the I2A block, data input is taken from the camera. There are line and pixel 

FIFOs used to create the reference frames. There is binary convertor that converts 8-bit 

data into binary data using the threshold from the block adaptive thresholding. And further 

a single bit logic operation AND, XOR, and NOT are performed. The accumulators 

compute six parameters for each patch (64×64 size). And next MSD computes the optic 

flow based on the six parameters XOF and YOF. Further average values are taken for these 

optic flows in x and y directions. These average values are used to control the external 

FIFO in the second FPGA. XOF and YOF are 8-bit width which are sent to PC for post-

processing thorough RS-232.  

 

Figure 2.12  The block diagram of multiple FPGA system. 
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2.3.2. Challenges for FPGA-based prototyping 

It is hard to estimate the hardware performance including computation time 

hardware size and power consumption in the early design stage. This can be figured out 

after the design optimization stage. The proposed virtual prototyping approach can solve 

this problem, since the hardware performance can be estimated at the early design stage. 
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CHAPTER III 

PROPOSED AREA-BASED FAST IMAGE STITCHING 

This chapter describes the proposed area-based image stitching algorithm using 

binary images (1-bit pixels), which can speed up the computation by simplifying the 

operations. The realization of pixel comparison between the two images can be realized 

with a simple logical operation instead of subtraction and addition.  

3.1. Algorithm  

Figure 3.1 shows the proposed area-based image stitching algorithm. First, two 

input images (24bit color) have an overlapping area. Conversion of a color image to a 

grayscale image requires more knowledge about the color image. A pixel color in an image 

is a combination of three colors Red, Green, and Blue (RGB). The RGB color values 

represent in three dimensions XYZ, and they are illustrated by the attributes of lightness, 

chroma, and hue. The quality of a color image depends on the color represented by the 

number of bits the digital device could support. The primary color image is represented by 

8 bits, the high color image is represented using 16 bits, the actual color image is 

represented by 24 bits, and the deep color image is represented by 32 bits. The number of 

bits determines the maximum number of different colors supported by the digital device. 

If each Red, Green, and Blue occupies 8 bits, then the combination of RGB occupies 24 

bit and supports 16,777,216 different colors. The 24 bit represents the color of a pixel in 
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the color image. Luminance using 8 bits represents the grayscale image. The luminance of 

a grayscale image pixel value ranges from 0 to 255. The conversion of a color image into 

a grayscale image is converting the RGB values (24 bits) into a grayscale value (8 bits). 

 

Figure 3.1   Area-based image stitching algorithm 

Furthermore, the grayscale (8 bit) image is converted into a binary image. The 

threshold level – usually the mid-level of the minimum and maximum pixel value and 

representing the pixel value with either 255 (pixel intensity higher than a threshold) or 0 

(pixel intensity less than a threshold), where 255 and 0 stands for the white and black level, 

leads to the binary image. Later, 255 is replaced with 1 to reduce the image data further. 

As shown in Figure 3.2, if the threshold is too low (th=20), it eliminates the blob-like 

objects (some boxes in the top left corner of the image). If the threshold is too high 

(th=200), a large number of essential information is eliminated (image information at the 

top of the image and the bottom of the image).   
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In this case, the mid-level value 128 is optimum for the threshold, since the binary 

image preserves the basic features of the original image. The dotted red boxes indicate the 

area of the image that is off-track or redundant data, where for threshold 20 some pixel 

data is removed in the dotted box and for threshold 200 some extra pixel data is added into 

top-left corner and some pixel data is missing at the bottom. The threshold level of 128 

retains all the information present in the original image. Also, by using binary images, the 

number of computations to compare every pixel of the two images can be significantly 

reduced, which enables a fast image stitching. 

 

Figure 3.2  Binary images with different threshold levels 
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Next, rescale the image to reduce the number of computations during the 

comparison function. In general, image compression addresses the problem of reducing the 

amount of data required to represent a digital image. The underlying basis of the reduction 

process is the removal of redundant data. The transformation is applied prior to storage or 

transmission of the image. At some time later, the compressed image is decompressed to 

reconstruct the original image. 

 A scaling factor K, which is an integer greater than 1, is used to rescale or compress 

the image. Different values, like K=2, 4, 8, 16, 32 are been experimented to observe the 

time taken stitch two images. The main advantage of image rescaling is, as the K value 

increases, the computation time decreases. Figure 3.3 shows the basic idea of image 

rescaling. A K×K size pixels are replaced with a single pixel. 

1 2 …. K 

2    

: 

: 
   

K    

 

Figure 3.3 Image rescaling 

When K=2, 2×2 pixels are replaced by 1 pixel. Figure 3.4 shows an example of 

image rescaling for K=2. Here 4 pixels are replaced by the most frequently occurring value. 

When the number of 1’s and the number of 0’s in the 2×2 pixels are equal as shown in 

leftmost 2×2 image the value 0 is considered as most occurring pixel. As shown in Figure 

3.5 a 4×4 size image is resized to 2×2 where K=2.  

1 

Scaling factor K 
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Figure 3.4 Image rescaling concept 

 

 

 

 

 

Figure 3.5  Image rescaling for K=2 

Figure 3.6 shows the results of a binary image for different K values. It is observed 

that when K value increases the image size is reduced. For K = 2 and K = 4 the computation 

time is higher than K = 8. For K = 16 the computation time is very less but the image data 

is missing due to high K value. Since 16×16 pixels are replaced by 1 pixel, more image 

information is lost, for which expected results are not achieved. Therefore K=8 is chosen 

as conclusive value. 

 

1 0 1 1 

0 1 1 0 

1 1 0 1 

1 0 1 1 

0 1 

1 1 
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Figure 3.6  Binary images for different K values 

3.2. One-dimensional image stitching  

Area-based image stitching can be performed in either one dimension or two 

dimensions. In the one-dimensional approach, one image is being shifted only in the 

horizontal or the vertical direction to compare the two images.  Figure 3.7 shows one-

dimensional comparing approaches of two images, where the overlapped areas are 

indicated by the dotted box. Figure 3.7 (a) shows an example of two images where the 

comparison of the overlapped area is performed in the horizontal direction and Figure 

3.7(b) shows an example of two images where the comparison of the overlapped area is in 

vertical direction.  
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(a) 

 

(b) 

Figure 3.7 Example of two images with overlapped areas. (a) The overlapped area in the 

horizontal direction, (b) Overlapped area in the vertical direction 
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Figure 3.8 shows an example of a one-dimensional approach, where a 3×3 binary 

image is considered for simplicity. In this example, image-2 is shifted horizontally and it 

can also shift vertically. During the first iteration, column-3 of image-1 and column-1 in 

the image-2 are compared. The colored pixels indicate the pixels being compared. The two 

pixels in the shaded area (each from image-1 and image-2) are compared, which is realized 

by the XOR operation. The comparison result is 0 when the two pixels match; otherwise, 

the result is 1. Next, the comparison results are all added up and divided by the number of 

pixels being compared for the 3 iterations. This value corresponds to the average of least 

square difference of each iteration, as mentioned in equation 2.1. It is observed that from 

Figure 3.5, the first iteration average of least square difference is 0. 

In the second and third iteration, 6 and 9 pixels (each from image-1 and image-2) 

are compared. The average of least square difference values of the second and third 

iteration are 0.66 and 0.55, respectively. After comparing all the pixels, the average of least 

square difference value for each iteration is again compared, where the iteration with the 

minimum average of least square difference value leads to the optimum overlap. Therefore, 

the first iteration leads to the optimum overlap. Figure 3.6 shows the one-dimensional 

image stitching results based on the optimum overlap. The overlapped area is highlighted 

in red color. Here the stitching is performed by removing the overlapped area from image-

2 (first column) and concatenate the two images.   
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Figure 3.8  One-dimensional image stitching example 

 

Figure 3.9  One-dimensional image stitching result 
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3.3. Two-dimensional image stitching  

For the one-dimensional image stitching, image-2 is shifted only in the horizontal or 

vertical direction to vary pixels overlapped area. However, in the two-dimensional image 

stitching, image-2 is shifted both in the horizontal and the vertical direction to find the 

optimum overlap. Figure 3.10 shows an example of two-dimensional image stitching.  The 

shaded area in the figure is the overlapped area of image-1 and image-2. 

 

Figure 3.10  Two-dimensional image stitching example 

The two-dimensional image stitching is more accurate than the one-dimensional 

case, though this leads to more complicated computations. The number of pixels compared 

is more compared to the one-dimensional image stitching approach since pixels are 

compared in one-to-one.   Figure 3.11 shows a two-dimensional image stitching algorithm 

example using two binary images, where the shaded pixels indicate the pixels being 

compared. Similar to the one-dimensional case, there is horizontal shift for 3 iterations. In 

horizontal shift 1 column-1 of image-2 is compared column-3 of image-1, in horizontal 

shift 2 column-1 and column-2 of image-1 are compared with column-2 and column-3 of 

image-2, and finally in horizontal shift 3 column-1 to column-3 of image-1 are compared 
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with column-1 to column-3 of image-2. In this way, the shaded area is compared using the 

vertical and horizontal shifts. 

The average of least square difference values for each area compared for horizontal 

shift 1 are 0, 1, 0.33, 0.5 and 1, for horizontal shift 2 the values are 1, 0, 0.66, 0.5 and 0 and 

for horizontal shift 3 the values are 0.33, 0.66, 0.44, 0.5 and 0.66. It is observed that the 

minimum average of least square difference values is ‘0’ in three places, which corresponds 

to the vertical shift 1 of horizontal shift 1, the vertical shift 2 of horizontal shift 2 and the 

vertical shift 5 of horizontal shift 2. However, the optimum overlapped area is the area with 

the maximum number of pixels that have been compared. Therefore, the vertical shift 2 of 

horizontal shift 2 shows the minimum average of the least square difference of pixel 

comparison among the other overlap cases. 
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Vertical shift 1 

 

 

Vertical shift 2 

 

 

 

 

Vertical Shift 3 

 

 

 

 

 

 

 

Vertical Shift 4 
 

 

            

 

 Vertical Shift 5 

 

                                                                                                                                  

                                        Horizontal Shift 1           Horizontal Shift 2               Horizontal Shift 3 

Figure 3.11 Two- dimensional image stitching example 
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As shown in Figure 3.9 an image stitching is performed for the one-dimensional 

image stitching. However, in the case of the two-dimensional image stitching, since the 

overlapped area is in two directions, as shown in Figure 3.10, it requires extra steps to stitch 

the two images. 

Figure 3.12 explains the stitching procedure after finding the overlapped area.  

Step 1: Replace the pixels in the overlapped area of image-2 with 0’s.  

Step 2: Add a row of 0’s below the overlapped area of image 2 and above the overlapped 

area of image 1. The rows with 0’s are used to be filled the blank area that is generated 

after combing the two images. Here the highlighted columns of image-1 and image-2 with 

green color are used for stitching two images. 

Step 3:  Circular shift the image 2 such that the overlapped columns in both the images are 

in parallel. And then add two images;  

The result of step 3 contains the overlapped area. The highlighted green colored 

columns are considered as the image data for stitching two images. The final stitching 

image is obtained by concatenating the highlighted green color of image-1from step 2, next 

from the resulting image data from step 3 and then from image-2 of step 2. Figure 3.13 

shows the two-dimensional image stitching result. 
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Figure 3.12   Two-dimensional image stitching procedure 

 

Figure 3.13  Final stitched image 
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CHAPTER IV 

VIRTUAL PROTOTYPE OF AREA-BASED IMAGE STITCHING ALGORITHM 

This chapter describes the virtual prototype of the area-based image stitching 

algorithm. A virtual hardware is implemented for the proposed area-based image stitching 

algorithm. Each component in the image stitching algorithm is converted into a 

corresponding hardware block. This approach allows estimating the structure and 

computation cost of the actual hardware. 

4.1. Concept of virtual prototyping   

The basic concept of the proposed virtual prototyping is converting the image 

stitching concept or algorithm into an actual hardware that consists of the memory, logic, 

or arithmetic unit. Also, this approach allows estimating the structure and computation cost 

of the actual hardware.  

Figure 4.1 shows the concept of the proposed virtual prototyping, which is applied 

to an area-based image stitching algorithm, where Figure 4.1 (a) shows the conceptual 

representation of the algorithm. Image 1 and image 2 are taken to perform the comparison. 

Images are shifted in such a way that each pixel is compared with others. In the process of 

finding the overlap, the higher number of pixels or the maximum area with a minimum 

average of least square differences is considered as an optimum overlapped area. After 

selecting the best overlap in the images, the stitching process is performed.   
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Figure 4.1 (b) shows the resulting virtual hardware obtained through virtual 

prototyping. The virtual hardware is equivalent to the area-based image stitching algorithm 

which performs the same operation. However, the conceptual blocks are replaced with 

actual circuit components such as the memory, logic gates, and arithmetic unit. As a result, 

from the virtual hardware, the size and computation time of the actual hardware can be 

estimated. The virtual prototyping approach facilitates the hardware design of image 

processing circuits by enabling performance estimation at the early design stage. 

 

Figure 4.1  Concept of virtual prototyping (a) Area-based mage stitching algorithm (b) 

Virtual hardware. 
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4.2. Virtual hardware implementation 

A virtual hardware platform is designed for the proposed area-based image stitching 

algorithm shown in Figure 3.1. Figure 4.2 shows the virtual hardware where there is a one-

to-one correspondence between the area-based image stitching algorithm in Figure 3.1 and 

Figure 4.2. This figure is explained from top to bottom and is related to each block in Figure 

3.1. Subsections in section 4.2 refers both Figure 4.2 and Figure 3.1 for better 

understanding. 

 

Figure 4.2  Virtual hardware of area-based image stitching platform 
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Memory-1 is used to store the image-1 data throughout the process in the algorithm. 

Similarly, memory-2 is used to store image-2 data. The final stitched image data is stored 

in memory-3. Memory-1 and memory-2 are indicated in pink color. Also, memory-3 is 

indicated in yellow color at the bottom left corner. Writing and reading for memory-1 and 

memory2 are performed simultaneously. 8 different controls (control-1 to control-8) are 

used to read and write the image data.  

Control-1 block is used to write the grayscale image data (0 to 255) into memory-

1 and memory-2. Since the size of the image is M-by-N, it takes M×N cycles to write the 

grayscale data into the memories. It takes 1 clock cycle for one-pixel data to be written in 

the memory. The grayscale image converted from RGB is used in the virtual hardware.  

4.2.1. Converting grayscale image into binary image   

Control-2 block is used to read the grayscale image data from memory-1 and 

memory-2 to convert the grayscale image data into binary data (1 or 0), for which it takes 

M×N cycles. It takes each pixel and compare with the threshold to generate a binary output.  

 A comparator is used to compare each grayscale pixel in the image-1 and image-2 

with 128. Figure 4.3 shows the virtual hardware of converting a grayscale image into a 

binary image.  If the value of the grayscale image data is less than 128, the output of the 

comparator is 0, if the value of the grayscale image data is higher than 128, the output of 

the comparator is 1. A combinational logic is used to compare the grayscale data with the 

threshold 128.  

Control-3 block which is represented as the green color, is used to write the 

converted binary data into the memory-1 and memory-2 in Figure 4.2. Writing the binary 
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data into the memories is realized in a pipelining process, that is, one grayscale pixel data 

is read by control-2 in 1st clock cycle, then converted and then written into the respective 

memory in 2nd clock cycle. Now 2nd grayscale pixel data is read by control-2 in the 2nd 

clock cycle and then converted and then 2nd binary pixel data is written into respective 

memory in 3rd clock cycle and so forth.  It takes only 3 clock cycles to read convert and 

write the first two-pixel data into the memories. Therefore, it requires 2((M×N)+1) cycles 

to complete the binary image conversion. 

  

Figure 4.3 Virtual hardware for grayscale to binary conversion 

4.2.2. Image size rescaling  

Figure 4.4 shows the virtual hardware to scale the binary image with scaling factor 

K (2, 4, 8, 16). To rescale the image, an XOR gate, two counters, and a comparator are 

used. Since K=8 is being fixed by the proposed algorithm it needs to count a maximum of 

8 (1000), therefore MOD-4 counters are used in this virtual hardware, thus 4 flipflops are 

needed. The counter is reset after processing K×K data.  The rescaling mentioned in virtual 

hardware is obtained from rescaling algorithm mentioned in the Figure 3.1. From the 

memory of size M×N, the size K×K (2×2 or 4×4 or 8×8) binary pixel data is read, and each 

bit is compared with 1 using the XOR gate. If the XOR gate output is 1 counter 1 is 
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incremented by 1 and if the XOR gate output is 0 counter 2 is incremented by 1. Following, 

the total number of 1’s, and 0’s are compared using a comparator. The K×K pixel data is 

replaced with the highest occurrence of data (1 or 0) in the memory 1 and 2.  In this manner, 

the M×N image is mapped to M/K×N/K image. 

Here M×N clock cycles are required to read the image data for processing K-by-K 

data. One clock cycle to generate the rescaled data and another clock cycle to write the 

rescaled data into memories. For example, if K = 8 it takes 64 cycles to read the binary data 

from memory 1 and 2 using control 4. It takes 1 cycle to rescale the data (65 cycles for 

now), and one cycle to write the rescaled data into the memories 1 and 2 using control 5. 

Next, consider reading another K×K which corresponds to, 64 pixels from 66th cycles. So, 

it took 66 cycles to write 1 rescaled data into the memory. And next 64 bits are read from 

memory 1 and 2 using control 4 so it took 130 cycles and cycles for writing. So, it consumes 

131 clock cycles. Therefore, it is expected to take (M×N)+(M/K×M/K) +1 cycles to 

complete the rescaling operation.  

 

Figure 4.4 Virtual hardware to rescale the binary image 
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4.2.3. Two-dimensional pixel comparison   

After rescaling the binary images, the two rescaled images are compared to find the 

optimum overlap between the two images. Each pixel in the image 1 is compared with each 

pixel in the image 2. The virtual hardware performs a 2-dimensional pixel comparison 

based on the proposed algorithm.  

 As shown in Figure 4.2 control-6 is used to read the required image data from 

memory 1 and memory 2. The image data is compared as explained in chapter 3 section 

3.3. The image data from memory 1 and memory 2 is read in a format which corresponds 

to, the shaded part read from the memories as shown in Figure 3.11. Comparing the pixels 

in hardware is realized by a combinational logic with XOR gate, adder, and divider. Area 

or pixel data read for each iteration from memory 1 and memory 2 are compared with the 

XOR gate, and the results are summed using an adder. Next, a divider is used to divide the 

final sum (pixel comparison result) by the number of comparisons performed. Figure 4.5 

shows an example of reading the rescaled image data from the corresponding address of 

memory 1 and memory 2 to perform the comparison between two images. In this iteration, 

only the shaded pixels in image 1 and image 2 are read and used to compare the difference.  
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Figure 4.5 Example of reading rescaled data from the memories for pixel comparison 

4.2.4. Optimum overlap detector 

Figure 4.6 shows the logic for the optimum overlap detector. After reading the 

required image pixel data, each pixel is compared using an XOR gate. If four pixels are 

compared four XOR gate outputs are added using an ADDER. Further, the sum is divided 

by the number of pixels being compared using a DIVIDER. Next a comparator is used to 

find the optimum overlap. One input of the comparator is connected to the divider output, 
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where another input is initially set to 2. The first comparison is only 1 pixel (either 1 or 0), 

as explained in chapter 3 section 3.3. it is observed from Figure 3.11, in vertical shift 1 and 

horizontal shift 1. So, the first compared average is either 1 or 0. Next, comparator output 

is given to the optimum overlap detector.  

The divider output is compared with the other input of the comparator. One input 

of the comparator is divider output and another input is initially 2. Since the divider output 

of the first cycle is  0 or 1 it is compared with number 2 and the second input is updated 

with the divider output value.  If the divider output is smaller than the second input the 

present divider output is given as feedback to the second input of the comparator. If the 

divider output is greater than the second input (previous divider output), no operation is 

performed. If the divider output is equal to the second input (previous divider value), the 

number of comparisons is stored in temporary register.  Furthermore, the maximum 

number of comparisons is used to decide the position of the optimum overlapped area.  

 

Figure 4.6 Optimum overlap detector 
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After finding the overlapped area in two images it’s time to stitching two images. 

Figure 4.7 shows the outline of the stitching procedure. As shown in Figure 4.2, the control-

7 block is used to read the grayscale image data to perform the stitching operation. Since 

the binary image is not clear for the naked eye, grayscale image data is used instead of 

binary data to stitch two images. The grayscale image data is stored in memory 1 and 

memory 2 from address 1 to M×N. Optimum overlap detector is given as input to the 

stitching algorithm to get the optimum overlap. After stitching control 8 block is used, 

which represents the control to write the stitched data into memory 3.  

The stitched image size is increased depending on the size of the overlap between 

the two images. If the overlapped area is small the stitched image is big. If the overlapped 

area is big the stitched image is small. The size of memory 3 is considered based on the 

smallest overlapped area between the two images. If the overlapped area is only 1 pixel the 

number of pixels of the stitched image is (2M-1) × (2N-1). Therefore, it takes (2M-1) × 

(2N-1) cycles to write the stitched M×N image data into the memory 3. 

 

Figure 4.7 Stitching two images using grayscale pixel data. 
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CHAPTER V 

IMAGE STITCHING RESULTS AND COMPUTATIONAL COST 

5.1. Two-dimensional image stitching results  

Figure 5.1 shows the result of two-dimensional area-based image stitching based on the 

proposed algorithm obtained using MATLAB. The two grayscale input images of a 

laboratory are shown in Figure 5.1(a), and the stitched images for scaling factor K=1, K=8 

and K=16 are shown in Figure 5.1 (b), (c) and (d). Using the scaling factor K=1 is like 

applying the image stitching algorithm without image rescaling. It is observed that the 

stitching operation is implemented precisely, and there is no disruption near the overlapped 

area in the stitched image for K=1. However, the MATLAB computation time for K=1 

took 1489.34 seconds. To reduce the computation time, the rescaling factor K is increased 

to 8. It is observed that there is no difference between Figure 5.1 (b) and 5.1(c), the 

overlapped area is the same for both the images.  Similarly, Figure 5.2 the college campus 

photo is used as input images. The stitched images for scaling factor K=1, K=8 and K=16 

are shown in Figure 5.2 (b), (c) and (d). The output image is the same for K=1 and K=8, 

shown in Figure 5.2 (b) and (c), whereas, Figure 5.2 (d) shows the distorted output for 

K=16.   

It took 8.2 seconds in MATLAB to execute the image stitching algorithm. Further 

scaling factor K is increased to 16; it is observed in Figure 5.1 (d) that there is some 
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distortion, the overlapped area is not accurate. The algorithm took 3.3 seconds in 

MATLAB. The final stitched images are incorrect for K=16 because 16×16 data is replaced 

with 1 or 0 during rescaling. Therefore, more image data is lost. The purpose of this 

algorithm is to perform fast area-based image stitching. Therefore, the scaling factor K=8 

is considered, which is not losing the image information and size of the image is reduced, 

and therefore, the computation cost is also reduced when compared to K=4 or 2. After 

stitching the leftover area is filled with 0 values to make it a complete image (left bottom 

and right top corners). 

 

Figure 5.1 Image stitching result of lab photo (a) Input images of  size 1280×1024 (b) 

Output image for K=1 (c) Output image for K=8 (d) Output image for K=16 



47 
 

 

Fig 5.2 Image stitching result of college campus photo (a) input images of size 

1280×1024 (b) output image for K=1 (c) output image for K=8 (d) output image for 

K=16 
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5.2. Computation time  

The computation time of virtual hardware can be calculated from the number of 

cycles taken to perform the image stitching operation that is shown in Figure 5.1 and Figure 

5.2. However, to end up with a general expression, a M×N image is used to find the 

computation time.  

Accessing memory-1 and memory-2 can be performed simultaneously. Thus it 

takes M×N cycles to write the grayscale image data into the memories, to read the grayscale 

image data from the memories to convert into binary data, reading the grayscale data 

(M×N), converting grayscale data to binary data and writing the binary data (+1) into the 

memories can be realized using pipelining. It takes M×N+1 cycles to read and write the 

converted binary data into the memories. Reading K×K binary data bits to rescale the 

binary image also takes M×N cycles. Again, write the rescaled bit into the memory using 

pipelining. Writing the rescaled data also takes M×N+1 cycle. 

The number of cycles to read the binary data from the two images to perform the 

comparison (XOR operation, addition, and division) is given by                                      

                                                

M2

K
×

N

K
×(

N

K
+1)

2
                                                     (5.1) 

After comparison and finding the optimum overlap, to stitch the images, read the 

grayscale image, which takes M×N cycles.  To write the final stitched image data it 

requires (2M-1)×(2N-1) cycles.  This equation gives the worst-case scenario of the 

overlapped area (when the overlapped area is only one pixel).  By adding the number of 
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cycles for each operation, the total number of cycles required to perform image stitching is 

given    

                 4 × (𝑀 × 𝑁) + 2 +
𝑀2

𝐾
+

𝑁

𝐾
+(

𝑁

𝐾
+1)

2
+ ((2𝑀 − 1) × (2𝑁 − 1))                       (5.2) 

Figure 5.3 shows the number of cycles required for each operation for stitching 

1280×1024 (M=1280, N=1024) sized image for  K=8.  

 

Figure 5.3 The number of cycles required for each operation stitch two 1280×1024 

Images with K=8. 

The actual size and computation time of the area-based image stitching hardware 

can be estimated from the virtual hardware. Table 1 shows the estimated computation time 

of the area-based image stitching hardware compared with the software algorithm realized 

using MATLAB. The computation time of the virtual hardware is obtained by using 

equation 2 with different clock frequencies (250MHz, 500MHz, 750MHz, and 1GHz) and 
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image scaling factor K (2, 4, 8, and 16). The computation time decreases as the clock 

frequencies and scaling factor K increases. However, increasing K has the risk of losing 

the useful information contained in the image; this can lead to poor stitching results. 

Based on the simulation results, K=8 still gives good stitching quality with 

relatively fast computation time. With K=8 and clock frequency of 250 MHz, the 

computation time of the virtual hardware shows 0.887 Sec which is one-tenth the time 

required by MATLAB  

Table 5. 1 The computation time of MATLAB and virtual hardware platform for stitching 

two 1280×1024 images. 

K value 

MATLAB 

(sec) 

Vitrual hardware 

(Sec) 

Clock Frequency 

250 MHz 500 MHz 750 MHz 1GHz 

2 599.06 215.2 107.6 71.736 53.802 

4 51.77 13.516 6.758 4.503 3.379 

8 8.2 0.887 0.443 0.295 0.221 

16 3.351 0.0951 0.047 0.0317 0.0239 
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5.3. Hardware Size 

Three memory blocks are used in the virtual hardware, where memory-1 is used for 

image 1 data and memory-2 is used for image 2 data storage. As discussed in section 4.2 

and shown in Figure 4.2, the maximum size of the two memories is (2× (M×N)) + (M/K× 

N/K). For having considered M=1280 and N=1024, the size of memory-1 and memory 2 

is nearly 12 megabits. Memory-3 is used to store the stitched image data. It is estimated 

that the maximum size is up to 5.3 MB for the worst-case overlapped images (overlap in 

only one pixel) stitched image.  

Control 1 to control 8 in Figure 4.2 in chapter 4 are used to write and read the image 

data to perform the required operation. For example, control-1 is used to write the grayscale 

image data into the memories. To write the data into the memory the counter is used to 

count the address and write the corresponding image data into the memory. Therefore, it 

takes 1280×1042 = 131720 (21bits) cycles to write the image data. It takes 21 flipflops to 

count up to 131720. Assuming each flip-flop requires 4 gates it is concluded that control-

1 takes 84 gates to perform the write operation.  

Similarly, the number of gates for control-2, control-3, control-4 takes 84 gates. 

Control-5 is used to write the rescaled image data with size (M/K × N/K). Thus, it takes 60 

gates. Control-6 is used to read the image data to perform the comparison operation 

(
𝑀2

𝐾
+

𝑁

𝐾
+(

𝑁

𝐾
+1)

2
) cycles it requires 124 gates. Control-7 is used to read the grayscale data, 

therefore it takes 84 gates and finally, control-8 is used to write the stitched image data 

with the size of (2M-1) × (2N-1), it takes 92 gates. The number of gates used in the virtual 
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hardware is shown in table 5.2. Thus, the total gate count of the virtual hardware is 

estimated to be 874. 

Table 5. 2 Gate count of virtual hardware 

Block  

Number of Gate/ 

Memory size 

Control 1 84 

Control 2 84 

Control 3 84 

Control 4 84 

Control 5 60 

Control 6 124 

Control 7 84 

Control 8 92 

Comparators  90 

Counters 64 

XOR gates 24 

Memory 1 12 Mbits 

Memory 2 12 Mbits 

Memory 3 5.3 MB 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

A virtual prototyping design approach for a fast area-based image stitching 

algorithm is proposed. The virtual hardware obtained from virtual prototyping is equivalent 

to the conceptual algorithm, thus actual circuit components including the memory, logic 

gates, and arithmetic units are linked to the conceptual blocks in the proposed algorithm. 

Using the proposed method, the overall structure, hardware size, and computation time of 

the actual hardware are estimated. In addition, the image stitching algorithm using binary 

image comparisons and image scaling eliminates the need for the huge multipliers and 

adders in the virtual hardware. Thus, the proposed algorithm leads to reduced hardware 

size and faster computation time. Results show, assuming the clock frequency of 250 MHz, 

the estimated computation time for the proposed virtual hardware to stitch two 1280×1024 

images was 0.877 sec, which is one-tenth the time required by the software-based image 

stitching algorithm realized in MATLAB. The estimated size of the virtual hardware was 

memory size of 66.4 Mbits and gate count of 874 gates. 
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6.2. Future work  

This design has demonstrated that the area-based image stitching can decrease the 

time taken to stitch two images and the computation cost is reduced in virtual hardware. 

There are a few verifications and optimization that can be done in the future: 

• The virtual hardware can be further implemented on actual hardware. The 

TRDB_D5M Kit provides everything that needs to develop a camera on the Altera 

DE2_115 board. 

• Research can be conducted on virtual hardware to estimate the power consumption. 
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