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ABSTRACT 

This dissertation aims to develop valid numerical approaches to investigate the 

micromechanics of ductile fracture process and predict the ductile material failure under 

various loading conditions.  

As the first portion of this work, a layered unit cell micromechanics model is 

proposed. This model consists of three void containing material units stacked in the 

direction normal to the localization plane. Localization takes place in the middle material 

unit while the two outer units undergo elastic recovery after failure occurs. Thus, a failure 

criterion is established as the material is considered failure when the macroscopic effective 

strain of the outer material units reaches the maximum value. Comparisons of the present 

model with several previous models suggest that the present model is not only easy to 

implement in finite element analysis but also more suitable to robustly determine the failure 

strain. A series of unit cell analyses are conducted for various macroscopic stress 

triaxialities and Lode parameters to investigate the dependency of failure strain on stress 

state. The analysis results also reveal the effect of the stress state on the deformed void 

shape within and near the localization band. Additionally, analyses are conducted to 

demonstrate the effect of the voids existing outside the localization band. 

Next, the unit cell model is utilized to investigate the effect of hydrogen on ductile 

fracture demonstrated by its influence on the process of void growth and coalescence. The 
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evolution of local stress and deformation states results in hydrogen redistribution in the 

material, which in turn changes the material’s flow property due to the hydrogen enhanced 

localized plasticity effect. The result shows that hydrogen reduces the ductility of the 

material by accelerating void growth and coalescence, and the effect of hydrogen on ductile 

fracture is strongly influenced by the stress state experienced by the material, as 

characterized by the stress triaxiality and the Lode parameter.  

The predicted material responses of three modified Gurson models are also 

investigated: GTN model, shear-modified-GTN model, and the shear-modified-GTN 

applied with anisotropic material model. A single material point test model equivalents to 

a computational cell of Gurson type models is utilized to demonstrate the effect of damage 

parameters and its evolution through the loading process when undergoing proportional 

stress loading. The shear-modified-GTN with anisotropic material model is implemented 

and calibrated using experimental data of commercially pure titanium, which exhibits 

complex plastic anisotropy and tension-compression asymmetry. The predicted results 

show good agreement with the experimental results obtained from various loading 

applications and specimen geometries. In addition, the predicted results also reveal the 

important effect of volumetric damage and shear damage under the influence of plastic 

anisotropy. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivations and Background 

Fracture is the phenomenon that an object separated into two or more pieces under 

stress. The understanding of fracture is partially intuitive for us as this phenomenon occurs 

everywhere naturally or have been utilized deliberately. Historically, human gain and apply 

knowledge of fracture when interacting with environment. For example, as early as 

Neolithic age, human have used moose antler to knap brittle flint to make sharp-edged 

stone tools, and in ancient Asia, metal workers have practiced co-fusion steel-making 

technique to create steel blades that are less prone to fracture upon impact. 

The scientific investigation of the mechanics and physics of fracture starts after the 

industrial revolution. In this period, massive types of new materials were introduced to the 

manufacture of products and understanding the material’s fracture limit is vital for 

successful product design. As science and technology advanced, structures also became 

more colossal and complex, and unwanted fracture were causing significantly more 

damage to our society in terms of human lives and properties compare to pre-industrial 

revolution times. 

Among all the building materials, metals were widely used to construct surface and 

air vehicles, buildings and structures. Other than the appreciated high strength-weight ratio 

of metal, another reason for the extensive application of metal is that upon failure, many 
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types of metal will deform plastically before fracture. This much-appreciated phenomenon 

can slow down the fracture process as a large amount of energy is absorbed by plastic 

deformation. Such that errors in the design process will less likely result in immediate 

catastrophic failure and allow more time to correct problems. This property of deforming 

plastically before the fracture is called ductility, we say material with this property exhibits 

ductile fracture in contrast to brittle fracture. 

Later, the accidents of Liberty ships of US during World War II made researchers 

aware certain ductile material could behave like brittle material under special 

circumstances, in this case, under low temperature. To prevent future disaster, intensive 

studies were promoted in the field of fracture mechanics. Since then, our understanding of 

how ductile material fails and our ability to prevent such failure has increased considerably. 

For example, as shown in Fig. 1.1, the frontal offset crash test of two automobiles built in 

1959 (right) and 2009 (left) from the same manufacturer shows the dramatic but expected 

difference of structural integrity from 50 years apart.  We will briefly review the 

development of fracture mechanics and damage mechanics in the following part. 

 

 

Figure 1.1. After the 40-mph frontal offset crash test involving two Chevrolets, the 2009 

Malibu's occupant compartment remained intact (left), while the one in the 1959 Bel Air 

(right) collapsed. 
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1.2 Fracture mechanics and damage model 

The hypothesis and investigation of fracture mechanics start with macroscopic 

approaches as a direct application of classical continuum mechanics and later shifted the 

focus to the concept of defect. The defect could be a presumed or existing crack on a 

structural, and by computing the crack extension by fatigue or the plastic energy release 

rate at the crack tip, the fracture phenomenon could be estimated under the assumption of 

the crack extending does not change local stress distribution. Although these 

phenomenological methods have proven useful to quantify life expectancy of structural 

components by applications in the aerospace area, the assumption of existing crack limited 

the prediction of crack initiation. 

Later a fundamental model developed by Gurson has allowed the arbitrary direction 

of crack growth, even without an initial crack, be predicted using numerical models. The 

Gurson ductile damage model is based on a micro-mechanics observation of ductile 

fracture, namely, the nucleation, growth, and coalescence of the void. The original Gurson 

model estimates the ductile damage based on yield potential for dilatant plasticity, using 

porosity of material (𝑓) as damage parameter, which obeys a growth law consistent with 

the mechanics of void growth under axisymmetric stress state. Upon the framework of 

Gurson model, the immediate modifications of this model such as GTN model, can 

consider more complex factors such as isotropic material hardening, void nucleation, and 

void coalescence. Later, other modifications such as GLD model has considered the effect 

of void shape, and some considered anisotropic matrix material. 

Despite its popularity and success, the above extensions of Gurson model are 

mainly based on solutions for voids subject to axisymmetric stressing and therefore ignores 
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the damage induced softening under shear dominated stressing. As experimental evidence 

from Bao and Wierzbicki (2004) has shown the softening under shear dominated stress 

state cannot be ignored, more recently modifications to the Gurson-type porous models 

including the work by Nahshon and Hutchinson (2008), Xue (2008), Zhou et al. (2014), 

Malcher et al. (2014), among others to consider shear-induced damage. These works 

introduced new shear damage related parameters to the GTN model based on experimental 

data on shear localization or void ligaments estimation under shear strain accumulation. 

 

1.3 Unit cell modeling 

While detailed and carefully designed experiments can provide many insights into 

the ductile fracture process, monitoring the stress state evolution on the microscale and 

obtaining reliable fracture strain remain as major obstacles. Micromechanical modeling 

provides a viable alternative. Finite element micromechanical analysis has proven to be 

extremely useful in guiding the development of improved ductile fracture models. 

In the damage models, the constitutive equations are describing the relations 

between stress and strain in a solid element and representing the homogenized behaviors 

of the microstructures in the element. In a finite element application, it may sound strange 

as a finite element is considered a mathematical entity to solve boundary value problems 

in continuum mechanics because this implies the element size is a material parameter. But 

if consider element as a representative volume element (RVE), a computational unit cell, 

it becomes physically meaningful. Based on this understanding, backed up by experimental 

evidence, the investigation of the effect of stress state on a micromechanics unit cell model 
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had been considering an effective method to reveal the microstructure related ductile 

mechanics and has provided essential insights for developing new damage models.  

As a long history of experiments and unit cell model result shows, the ductile 

fracture process in the metal is strongly influenced by the stress state subjected by the 

material. In these materials, voids nucleated at inclusions by de-cohesion of the particle-

matrix interface or by particle cracking (van Stone et al., 1985; Garrison and Moody, 1987). 

These voids then grow in size under high triaxial stress states and then coalescence by 

inter-void flow localization, leading to fracture initiation (Benzerga and Leblond, 2010). 

On the other hand, voids change little in volume but significant in orientation and shape 

under shear-dominated stress state and the material fails after strain localization into a 

narrow band (Tvergaard, 2008, 2009; Nielsen et al., 2012). 

Although the phenomenological ductile fracture process has been clearly shown in 

previous unit cell analysis, but the boundary condition is highly idealized and assumed 

uniform stress state and deformation across every material point, therefore does not reflect 

the multi-scale nature of the unit cell model and cannot be compared with macroscopic 

experiment as the reality of fracture tends to localize into one layer of material is conflict 

with unit cell boundary condition. The unit cell model in Chapter III is an approach to 

addressing this issue and hopefully will bring some attention to this problem.  
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1.4 Dissertation structure 

Different aspects of research objectives to be achieved through this dissertation are 

listed as the following: 

1) Develop a reliable failure criterion to determine the material failure strain of 

unit cell and study the effect of stress state on ductile fracture mechanics. 

Analyze the effect of voids existing outside the localization band to the fracture 

mechanics to comprehend ductile fracture on a multi-scale basis. 

2) Study the effect of hydrogen embrittlement on ductile material mechanics using 

a unit cell model. Determine the influence of hydrogen on the process of void 

growth and coalescence under various stress state. 

3) Investigate the damage evolution of various Gurson type model extensions 

including a shear modified model and a model accounting material anisotropy. 

Evaluate the capability of these models to differential volumetric damage and 

shear damage through a single material point analysis, as well as calibration and 

verification with experimental data. 

 

Here is a simple outline of the dissertation structure. 

Chapter I is a general introduction, it reviews the motivations and background of 

this research. 

Chapter II will introduce the stress invariants and its functions to specify stress state 

and discuss the elastic and plastic response of material prior considering fracture mechanics, 

specifically the plasticity response of J2 material and a tension-compression asymmetry 

anisotropic material. 
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Chapter III presents a unit cell model consists of three void containing material 

units to investigate its multi-scale nature, and to establish a more reliable failure criterion 

compare to previous studies. The analysis results obtained through this model will illustrate 

the effect of stress state on the ductile fracture process and on void shape deformation 

within and near the localization band. 

Chapter IV will utilize the unit cell model to study the effect of hydrogen 

embrittlement on reducing the ductility of material, specifically by accelerating void 

growth and coalescence. 

Chapter V is aiming to evaluate the damage evolution of several damage models, 

including GTN, Shear extended GTN and its application on anisotropic material. The 

evaluation is performed through a single material point analysis, focusing on the effect of 

stress state on volumetric damage and shear damage evolution, and anisotropic material 

response.  

Chapter VI continues the evaluation of anisotropic shear extended GTN model by 

calibration and verification of the model with experimental data. With consideration of 

both volumetric and shear damage, the ductile damage model is capable of describing an 

anisotropic tension/compression asymmetry material and its ductile fracture process. 

Chapter VII summarizes the main conclusions of this dissertation research and 

provides some pertinent recommendations for future studies. 
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CHAPTER II   

PLASTICITY MODELS AND THE EFFECT OF STRESS STATE 

 

2.1 Stress tensor and its invariants 

In continuum mechanics, the stress tensor is a convenient and concise way of 

expressing the stress state inside the material. While stress component values are depending 

on coordinate, the principal stress values are independent of the coordinate, and so is the 

invariants. Here we define 𝜎 as the stress tensor and 𝜎ଵ, 𝜎ଶ and 𝜎ଷ be the principal stress 

values, then the hydrostatic stress (mean stress) can be expressed as 

 𝜎 =
ଵ

ଷ
𝐼ଵ =

ଵ

ଷ
(𝜎ଵ + 𝜎ଶ + 𝜎ଷ)   (2.1) 

where I1 represents the first invariant of the stress. For general tensile stress state, I1 is a 

positive value while for the compression, I1 is negative. Let 𝜎
ᇱ be the stress deviator tensor 

and 𝜎ଵ
ᇱ, 𝜎ଶ

ᇱ   and 𝜎ଷ
ᇱ  be principal values of the deviatoric stress tensor, i.e. 

 𝜎
ᇱ = 𝜎 − 𝜎𝛿  (2.2) 

where 𝛿 represents the Kronecker delta. The first invariant of the deviatoric stress tensor 

is calculated by 𝜎
ᇱ , and the summation convention is adopted for repeated indices.  It is 

obvious that the first invariant of the deviatoric stress tensor is zero. The second and third 

invariants of the stress deviator tensor are defined as 
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𝐽ଶ =
1

2
𝜎

ᇱ 𝜎
ᇱ = −(𝜎ଵ

ᇱ𝜎ଶ
ᇱ + 𝜎ଶ

ᇱ𝜎ଷ
ᇱ + 𝜎ଷ

ᇱ𝜎ଵ
ᇱ) 

                                              =
1

6
[(𝜎ଵ − 𝜎ଶ)ଶ + (𝜎ଶ − 𝜎ଷ)ଶ + (𝜎ଷ − 𝜎ଵ)ଶ]                 (2.3) 

 𝐽ଷ = det൫𝜎
ᇱ ൯ =

ଵ

ଷ
𝜎

ᇱ 𝜎
ᇱ 𝜎

ᇱ = 𝜎ଵ
ᇱ𝜎ଶ

ᇱ𝜎ଷ
ᇱ    

The von Mises equivalent stress is related to the second invariant of stress deviator tensor 

as 

 𝜎 = ඥ3𝐽ଶ   (2.4)  

       

Figure 2.1  The stress state represented in  (a) principal stress space (b) the 𝜋 plane  

A principal stress state (σ1, σ2, σ3), can be mathematically represented by a vector  

𝑂𝑃ሬሬሬሬሬ⃗  in the principle stress coordinate system, with the three principal stresses as axes σ1, σ2, 

σ3, as shown in Fig. 2.1(a).  Consider a vector 𝑂𝑁ሬሬሬሬሬሬ⃗  passing through the origin and having 

equal angles with the coordinate axes. 𝑂𝑁ሬሬሬሬሬሬ⃗  is called the hydrostatic axis, where every point 

corresponds to 𝜎1= 𝜎2= 𝜎3. 

The plane passing through the origin and perpendicular to 𝑂𝑁ሬሬሬሬሬሬ⃗  is called the 𝜋 plane 

as shown in Fig. 2.1(b) and the hydrostatic stress is zero on this plane. Consider an arbitrary 
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stress state at point P with stress components 𝜎1, 𝜎2, and 𝜎3. The stress vector  𝑂𝑃ሬሬሬሬሬ⃗  can be 

decomposed into two components, the component 𝑟  parallel to 𝑂𝑁ሬሬሬሬሬሬ⃗  and the �⃗�  on the 

octahedral plane whose normal direction is along the vector 𝑂𝑁ሬሬሬሬሬሬ⃗  direction, then 

 𝑟 = √3 𝜎 =
ூభ

√ଷ
  (2.5) 

 𝜌 = ට
ଶ

ଷ
𝜎 = ඥ2𝐽ଶ    (2.6) 

where σ and σrepresent the hydrostatic stress (mean stress) and the equivalent stress, 

respectively. Consequently, the stress triaxiality ratio is 

 𝑇 =
ఙ

ఙ
=

√ଶ

ଷ



ఘ
   (2.7) 

Therefore, for a given stress triaxiality ratio T, there are infinite stress states, each 

corresponds to a point on the surface of a cone with 𝑂𝑁ሬሬሬሬሬሬ⃗   as the axis, Fig. 2.1(a). To 

distinguish these stress states having the same T (triaxiality ratio) value, we project their 

location to the 𝜋 plane as point P, Fig. 2.1(b), then differentiate each by a Lode angle 𝜃. 

There are many different variations on the definition of the Lode angle. In early work of 

Lode(1926), the Lode angle 𝜃 is defined as the angle measured counter-clockwise from the 

projection of the σ1 axis to a point on the π plane (constant hydrostatic stress), as shown 

in Fig. 2. 1(b). σ1, σ2, and σ3 are the projections of the principal stress axes on the π plane. 

Recently, Xue (2007) defined an alternative Lode angle, θ, relative to the shear meridian 

axis also shown in Fig. 2.1(b). The shear meridian axis (θ=30° or π/6) represents all states 

of stress that can be formed by combining a state of pure shear with a hydrostatic stress. 

There is also a tensile meridian axis (θ=0°) representing states of stress formed by 
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combining uniaxial tension with hydrostatic stress, and a compression meridian axis (θ=60° 

or π/3) formed by combining uniaxial compression with a hydrostatic stress. The two 

angles are related by 𝜃 = 𝜃 −
గ


. The Lode angle θ has following relation with the stress 

invariants 

 Cos(3𝜃) =
ଶయ

ଶ
య    (2.8) 

Barsoum and Faleskog (2007) used a Lode parameter to describe Lode angle dependence, 

and the following relationship between principal stress and Lode angle can be established 

 𝜇 =
ଶఙమିఙభିఙయ

ఙభିఙయ
= √3 tan൫𝜃 − ഏ

ల
൯    (2.9)  

Therefore, when von Mises equivalent stress (σ) is known, the stress triaxiality ratio (T) 

together with the Lode parameter (𝜇) can be used to specify the stress state. 

 

2.2 Isotropic material model 

Prior to investigating the damage mechanism of ductile material, the material’s 

elastic and plastic response needs to be accurately described. When the deformation caused 

by loading is reversible, the material is considered in the elastic range. For elastic isotropic 

continuum material, it’s elastic property can be described by Hooke’s law. In tensor form, 

the stress and strain relationship can be defined simply as: 

𝜎 = 3𝐾 ቀ
ଵ

ଷ
ε𝛿ቁ + 2𝐺 ቀε −

ଵ

ଷ
ε𝛿ቁ . (2.10) 
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where 𝜎 is the stress tensor, ε the strain tensor, 𝛿 is the Kronecker delata, K is the bulk 

modulus defined as 𝐾 =
ா

ଷ(ଵିଶ௩)
, and G is the shear modulus defined as 𝐺 =

ா

ଶ(ଵା௩)
, where 

E is the Young’s modulus and v is the Possion’s ratio. 

When the material does not return to its previous dimension when the load is 

removed, there is a permanent irreversible deformation and the material is considered 

deformed plastically. A plasticity model is then required to describe such a phenomenon. 

A complete plasticity model needs a yield criterion to determine the elastic limit, a flow 

rule to regulate the direction of plastic deformation, and a hardening law to describe the 

evolution of subsequent yield surface. A popular, simple and reasonably accurate 

continuum plasticity model is the Von Mises plasticity theory. For a material that obeys J2 

flow plasticity theory, it’s plasticity behavior is characterized by the Von Mises equivalent 

stress-strain curve. The equivalent stress-strain curve can be obtained from either a uniaxial 

tension test, a compression test or a pure torsion test. However, if the stress-strain curves 

obtained from those tests for a certain material are very different, the Mises plasticity 

theory is then considered insufficient to describe the plastic behavior of this material.  

 

2.3 Anisotropic plasticity model 

A typical type of material can not sufficiently describe by Von Mises plasticity 

theory is those has a hexagonal close-packed (HCP) crystal structure. Out of three common 

crystalline structures BCC, FCC and HCP, the HCP structure rarely have a sufficient 

number of slip systems for an arbitrary shape change and is the most likely to form 

deformation twins when strained. Both the effect of lack of slip system and crystal twinning 

can lead to a dramatic material strength differences in different directions of loading. 
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Historically, several typical anisotropic yield criteria with symmetric yield surface have 

been proposed to model anisotropic plasticity, including Hill (1948), Barlet (1989) have 

been evaluated using uniaxial and biaxial tension data, and considered been inadequate for 

considering tension/compression asymmetry by Andar et al. (2012) and Jia et, al. (2013). 

To account for both anisotropy and tension/compression asymmetry induced by twinning, 

several anisotropic criteria expressed in terms of the stress deviator was developed by 

Cazacu and Barlat (2004); Cazacu et al. (2006). Among those, Cazacu et al. (2006) is 

capable of describing such complex anisotropic matrix plasticity behavior. This model is 

based on a linear transformation of the deviatoric part of the Cauchy stress tensor, similar 

to previous studies by Barlat and coworkers (Barlat et al., 1991, 1997) and Lademo et al. 

(1999). The effective stress of this plasticity model is expressed as 

  𝜎(𝛴, 𝑘) = 𝜎ெ 

 𝜎 = 𝑚ඥ(|𝛴ଵ| − 𝑘𝛴ଵ)ଶ + (|𝛴ଶ| − 𝑘𝛴ଶ)ଶ + (|𝛴ଷ| − 𝑘𝛴ଷ)ଶ (2.11) 
 

with  𝑚 = ට
ଵ

(|ఏభ|ିఏభ)మା(|ఏమ|ିఏమ)మା(|ఏయ|ିఏయ)మ
 

 𝜃ଵ =
2

3
𝐿ଵଵ −

1

3
𝐿ଵଶ −

1

3
𝐿ଵଷ 

𝜃ଶ =
2

3
𝐿ଵଶ −

1

3
𝐿ଶଶ −

1

3
𝐿ଶଷ 

𝜃ଷ =
2

3
𝐿ଵଷ −

1

3
𝐿ଶଷ −

1

3
𝐿ଷଷ 

 

where 𝜎ெ is the uniaxial tensile yield strength along an axis of orthotropy, k is used to 

capture the material strength differential effect, m is defined so that Eq. (2.11) is identically 

satisfied for uniaxial tensile loading along this orthotropy axis, 𝛴  are the principal 

components of the transformed stress tensor and  𝛴 = 𝐿: 𝑲: 𝜎, σ is the Cauchy stress tensor, 

K is the 4th order deviatoric projection operator, and L is the 4th order tensor which satisfies 
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the major and minor symmetric and  the requirement of  invariance with respect to the 

orthotropy group. This linear transformation “weights” the different components of the 

stress tensor of the anisotropic material in order to account for the anisotropy of the material. 

The transformed tensor is called the “isotropic plasticity equivalent (IPE) deviatoric stress 

tensor” (Karafillis and Boyce, 1993) and is used as the argument in the yield function of 

Eq. (2.11). To ensure that it reduces to the fourth-order identity tensor for isotropic 

conditions, the following constraints are imposed: 

 𝐿ଵଵ + 𝐿ଵଶ + 𝐿ଵଷ = 1 
 𝐿ଵଶ + 𝐿ଶଶ + 𝐿ଶଷ = 1 (2.12) 
 𝐿ଵଷ + 𝐿ଶଷ + 𝐿ଷଷ = 1 

The additional constraints of Eq. (2.12) also ensure that the transformed stress tensor 𝛴 is 

deviatoric. 

 
When the material deforms plastically, the inelastic part of the deformation is 

defined by the flow rule  

 ɛ̇


=
ఒ̇డథ

డఀೕ
=

ఒ̇డథ

డఙ
𝐿𝐾   (2.13) 

where ɛ̇
  is the rate tensor plastic strain components and �̇�  is a positive scalar called the 

plastic multiplier. 

 Let (x, y, z) be the reference directions associated with the orthotropy. In the case 

of a sheet material, x, y, and z represent the rolling direction, the long transverse direction, 

and the normal direction (through-thickness direction), respectively. Relative to the 

orthotropy axes the transformed stress tensor 𝛴 (in vector form) can be expressed in terms 

of the Cauchy stress tensor according to 
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or 
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where 

𝜃ଵ  =
ଶ

ଷ
𝐿ଵଵ −

ଵ

ଷ
𝐿ଵଶ −

ଵ

ଷ
𝐿ଵଷ,  𝜙ଵ =

ଶ

ଷ
𝐿ଵଶ −

ଵ

ଷ
𝐿ଵଵ −

ଵ

ଷ
𝐿ଵଷ,   Ωଵ =

ଶ

ଷ
𝐿ଵଷ −

ଵ

ଷ
𝐿ଵଵ −

ଵ

ଷ
𝐿ଵଶ 

𝜃ଶ  =
ଶ

ଷ
𝐿ଵଶ −

ଵ

ଷ
𝐿ଶଶ −

ଵ

ଷ
𝐿ଶଷ,  𝜙ଶ =

ଶ

ଷ
𝐿ଶଶ −

ଵ

ଷ
𝐿ଵଶ −

ଵ

ଷ
𝐿ଶଷ,   Ωଶ =

ଶ

ଷ
𝐿ଶଷ −

ଵ

ଷ
𝐿ଵଶ −

ଵ

ଷ
𝐿ଶଶ  

𝜃ଷ  =
ଶ

ଷ
𝐿ଵଷ −

ଵ

ଷ
𝐿ଶଷ −

ଵ

ଷ
𝐿ଷଷ,  𝜙ଷ =

ଶ

ଷ
𝐿ଶଷ −

ଵ

ଷ
𝐿ଵଷ −

ଵ

ଷ
𝐿ଷଷ,   Ωଷ =

ଶ

ଷ
𝐿ଷଷ −

ଵ

ଷ
𝐿ଵଷ −

ଵ

ଷ
𝐿ଶଷ 

(2.16) 

 

It is easy to observe that the following relationships exist 

 Ωଵ = −(𝜃ଵ + 𝜙ଵ) 
  Ωଶ = −(𝜃ଶ + 𝜙ଶ)  (2.17) 
 Ωଷ = −(𝜃ଷ + 𝜙ଷ) 
 

Due to its complex nature, anisotropic material model such as above often requires 

the calibration of numerous material parameter through several sets of tension, 

compression, and torsion specimens. Though careful calibration, the anisotropic feature of 

material can then be described. For example, a set of anisotropic material parameters listed 

in Table2.1 is adopted from Stewart and Cazacu (2011) used to represent transversely 
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isotropic materials for which the matrix has a weaker in-plane yield strength than through-

thickness yield strength.  

Table 2.1 Adopted Anisotropy and strength differential coefficients 

k L11 L12 L13 L22 L23 L33 L44 L55 L66 

0 1.054 -0.129 0.075 1.054 0.075 0.85 0.775 1.0 1.0 

Figure 2.2 Plane stress yield locus comparison between Anisotropic and Von Mises 
Material 
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Fig. 2.2 shows the plane stress yield locus according to the above parameters. X is 

the in-plane direction with Z being the through-thickness direction. Compare to the Von 

Mises yield locus as shown by the dotted line, it’s obvious the yield stress of the anisotropic 

material is different between in-plane direction and normal direction and is different from 

Von Mises loci at stress states in between. The material parameter k here is set as 0, but if 

calibrated with negative or positive values, the material is expected to further show tension-

compression asymmetry. Furthermore, when calibration for real material, it’s often that the 

material hardening in various directions will not follow the hardening of uniaxial tensile 

loading at various stage of equivalent plastic strain. The material parameters can then be 

mapped between yield locus calibrated from different strain level to capture this complex 

behavior. An example of the calibration of this model further coupled with damage 

parameters including volumetric damage and shear damage will be given in Chapter VI.  
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CHAPTER III   

INVESTIGATION OF THE MICROMECHANICS OF DUCTILE DAMAGE MODEL 

THROUGH UNIT CELL MODEL 

 

3.1 Introduction 

The ductile fracture process in metals is strongly influenced by the stress state 

subjected by the material. In these materials, voids nucleated at inclusions and second-

phase particles by decohesion of the particle matrix interface or by particle cracking (van 

Stone et al., 1985; Garrison and Moody, 1987). Under high triaxial stress states, voids grow 

in size, followed by inter-void flow localization, leading to fracture initiation (Benzerga 

and Leblond, 2010). On the other hand, under shear-dominated loading, voids change little 

in size but significantly in shape and orientation, and the onset of material fracture takes 

place after strain localization in a narrow band (Tvergaard, 2008, 2009; Nielsen et al., 2012). 

There is a long history of experimental and modeling efforts to predict ductile 

fracture. The experimental work by Bridgman (1952) showed that the strain to failure 

increased significantly when the tensile test was carried out in a pressurized environment. 

Using notched tensile specimens, Hancock and Mackenzie (1976) and Hancock and Brown 

(1983) demonstrated that the strain to initiate ductile fracture decreases with the stress 

triaxiality. In the widely used Johnson-Cook fracture model (Johnson and Cook, 1985), the 

dependence of the failure strain on the stress triaxiality is described by an exponentially 

decaying function. More recently, Bao and Wierzbicki (2004), Barsoum and Faleskog 
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(2007), Gao et al. (2010) and Zhou et al. (2012) showed that the strain to failure not only 

depends on the stress triaxiality but also depends on the Lode parameter. 

Early micromechanical treatment of ductile fracture considered growth of isolated 

voids in solids (McClintock, 1968; Rice and Tracey, 1969). Gurson (1977) proposed a 

homogenized yield surface for void containing materials based on the maximum plastic 

work principle. The Gurson model, with further development by Tvergaard and Needleman 

(Tvergaard, 1981, 1982; Tvergaard and Needleman, 1984), has been widely used in 

modeling of ductile fracture. In the Gurson-Tvergaard-Needleman (GTN) model, damage 

evolution is completely due to the increase of void volume fraction, which is strongly 

influenced by the stress triaxiality, and the final void coalescence stage is approximated by 

artificially accelerating the void growth rate. More recent modifications to the Gurson-type 

porous material models include the work by Nahshon and Hutchinson (2008), Xue (2008), 

Zhou et al. (2014), Malcher et al. (2014), Zhai et al. (2016), among others to take into 

account shear-induced damage.  

Although experiments can reveal the macroscopics of ductile fracture process, 

monitoring the stress state evolution on the microscale and obtaining reliable fracture strain 

still remain challenging. Micromechanical finite element analysis, however, provides a 

viable alternative. Typically, detailed finite element analyses are conducted for an RMV, 

often referred to as the unit cell analysis, under various stress states to study the void growth 

and coalescence process. Koplik and Needleman (1988) conducted axisymmetric unit cell 

analyses to calibrate the micromechanical parameters in the GTN model and showed that 

the onset of void coalescence by internal necking can be identified by a shift of the 

deformation to a macroscopic uniaxial strain state. Faleskog et al. (1998) conducted a series 
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of unit cell analyses and showed that the q-parameters in the GTN model depend on the 

material flow properties. Kim et al. (2004) and Gao and Kim (2006) showed that the void 

growth and coalescence process and the resulting macroscopic behavior of the RMV are 

not only influenced by the stress triaxiality but also influenced by the Lode parameter. It is 

worth mentioning that in these analyses, only normal stress components were imposed on 

the unit cell and the deformed boundaries remained parallel to the undeformed boundaries. 

Barsoum and Faleskog (2007) proposed a unit cell model to simulate a thin-walled, double 

notched tube subjected to combined tension and torsion loading. Proportional stresses 

including a shear stress component were applied on the unit cell’s periodic boundaries. The 

failure criterion was based on the theoretical framework of plastic localization into a band 

by Rice (1977). Following the work by Needleman and Tvergaard (1992), the localization 

criterion was defined as when the ratio between the norm of the deformation gradient rates 

inside and outside the band, denoted as η, becomes sufficiently large. In their later work, 

Barsoum and Faleskog (2011) suggested that the critical η-value should be chosen as 10. 

However, they also stated that this criterion cannot be used as an indicator for material 

failure under high stress triaxialities when the Lode parameter is close to zero. Tvergaard 

(2008, 2009, 2012) conducted a series of plane strain analyses to study the behavior of 

cylindrical voids in a shear-field. Using the same unit cell model and failure criterion as 

Barsoum and Faleskog (2007, 2011), Dunand and Mohr (2014) conducted extensive 

numerical analyses to demonstrate that the macroscopic equivalent plastic strain for 

material failure after monotonic proportional loading decreases with stress triaxiality and 

is a convex, non-symmetric function of the Lode parameter. In Dunand and Mohr (2014), 

the critical η-value was chosen to be 5. The arbitrariness in selection of the critical η-value 
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is largely due to the difficulty in defining η at the unit cell level, which motivated a recent 

study by Wong and Guo (2015) to propose an energy-based method to establish the 

criterion for onset of void coalescence. The idea supporting this method comes from the 

observation that as failure by void coalescence takes place in a band, and material outside 

this band undergoes elastic loading. Elastic unloading is said to have occurred when the 

overall elastic work rate of the unit cell becomes negative and void coalescence happens 

when the ratio of the overall elastic and plastic work rates reaches a minimum. However, 

local unloading may cause the computed overall elastic work rate to become negative. 

Moreover, void coalescence is due to the competition between the reduction of the ligament 

between voids and the strain hardening of the ligament material. Since the elastic and 

plastic work rates of the ligament are included in computing the overall work rates, non-

negligible errors in failure prediction may occur for some cases.  

From the above literature review, a few points can be made about the unit cell 

analysis. Firstly, with an assumed periodic void distribution, a material unit can be modeled 

with detailed finite elements subjected to various stress states. The purpose of the unit cell 

analysis is to study the deformation and void behavior and to establish a failure criterion in 

terms of the homogenized, macroscopic quantities at the material unit level. Secondly, 

failure occurs in a localized band and material outside of this band undergoes elastic 

recovery. The change of deformation mode outside the localization band gives an 

indication of fracture initiation. Thirdly, if identical deformation is enforced for all material 

units, a localized failure band will not appear. In many of the previous studies, all material 

units were assumed to be the same and subjected to the same deformation, thus the unit 
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cell only included one material unit. Consequently, unrealistic predictions were made under 

certain conditions.  

In this chapter, a numerical model is proposed, in which the unit cell consists of a 

material unit, where fracture initiates, and two adjacent material units outside the 

localization band. A material failure criterion is established by detecting the occurrence of 

elastic unloading outside the localization band. Section 3.2 provides a detailed description 

of the proposed unit cell model, including how to impose the boundary conditions and how 

to establish the failure criterion. Section 3.3 presents and discusses numerical results under 

various scenarios. The effects of the stress state on void behavior and ductile fracture 

initiation are discussed. For comparison, analyses are also conducted using the methods 

proposed by Barsoum and Faleskog (2007, 2011) and Wong and Guo (2015). It is shown 

that the present model leads to improved predictions. Finally, some concluding remarks 

are made in Section 3.4.  

 

3.2 Problem formulation 

3.2.1 Characterization of the macroscopic stress state of the RMV 

Let Σij be the macroscopic Cauchy stress tensor and Sij be the stress deviator, Sij = 

Σij - Σmδij, where δij denotes the Kronecker Delta, Σm represents the mean stress, Σm = Σii/3, 

and the summation convention is adopted for repeated indices. The von Mises equivalent 

macroscopic stress is defined as 

Σ = ඥ3𝐽ଶ = ට
ଷ

ଶ
𝑆𝑆 . (3.1) 
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The stress triaxiality is defined as the ratio between mean stress and von Mises 

equivalent stress 

𝑇 =
ஊ

ஊ
. (3.2) 

The Lode parameter is used to distinguish different deviatoric stress states and is 

defined as  

𝜇 = √3 tan൫𝜃 − ഏ

ల
൯, (3.3) 

where θ denotes the Lode angle, with cos(3𝜃) =
ଶయ

ଶఙ
య  and 𝐽ଷ =

ௌೕௌೕೖௌೖ

ଷ
. 

 

3.2.2 Micromechanics of ductile fracture 

Fig. 3.1 illustrates the mechanisms of ductile fracture schematically. Voids nucleate 

from inclusions at a relatively low stress level and then grow to larger sizes under increased 

strain of the triaxial loading, or elongate/rotate under shear-dominated loading. Assuming 

a periodic distribution of voids, the material can be considered as comprised of a number 

of void-containing RMVs. However, the void growth or void-shearing behavior in all 

RMVs is not uniform. As strain continuingly increases, the void having larger initial size 

or under more favorable condition grows or deforms faster than others so that large plastic 

flow is localized around it, resulting in numerous micro-cavities being nucleated from the 

nearby particles. Eventually this void wins and the RMV fractures. Therefore, the fracture 

process is confined in a layer of RMVs. After the RMV fractures, other RMVs in adjacent 

layers undergo elastic recovery and do not rupture.  
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Figure 3.1. Schematic illustration of the ductile fracture by void growth followed by 

internal necking or by void shearing and strain localization 

 

3.2.3 A unit cell model 

The fracture mechanisms described above lead to a simple numerical approach to 

study the fracture process. Fig. 3.2 shows a piece of material containing three layers of 

material units subjected a set of normal and shear stress components. Because of periodic 

symmetry, a unit cell can be defined to include three material units, Fig. 3.3(a). Fig. 3.3(b) 

shows the dimensions of the material unit, 2𝐷 × 2𝐷 × 2𝐷 . The present unit cell is 

different from the ones used in many previous studies where a single material unit was 

considered. If the unit cell were to consist of a single material unit, it would imply that all 

material units are identical and experience the same deformation, and thus failure would 

not localize in one layer of material. Furthermore, using three material units in the unit cell 

enables a simple method to identify fracture initiation. When a material unit fractures, the 

High Triaxial Loading 

Shear-Dominated Loading 
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material units above and below it in adjacent layers undergo elastic unloading. By 

monitoring the stress-strain behavior of the adjacent material units above or below it, one 

can determine if fracture has taken place. Ductile fracture can be due to void growth and 

coalescence or localized plastic strain or the combined effect of them. Tekoğlu et al. (2015) 

analyzed the competition between these failure mechanisms. As will be shown in next 

section, the unit cell model and the method to determine the onset of fracture proposed in 

this study not only are easy to implement in finite element analysis but also offer many 

advantages comparing to previous models.  

 

Figure 3.2. The micromechanical model of a material comprised of layers of void 

containing material units subjected to macroscopic stress components 
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Figure 3.3. (a) A unit cell consisting of three void-containing material units, (b) a 

material unit 

 

To study the behavior of the unit cell under various stress states, the stresses 

imposed on the unit cell should include both normal and shear components. Here the 

applied stress consists of three normal stress components and a shear stress component, the 

same as in Barsoum and Faleskog (2007), Dunand and Mohr (2014), and Wong and Guo 

(2015). As will be shown in Section 3.3.1, depending on the stress state, localization can 

occur in different planes. For example, localization occurs in the layer of material units in 

the X1-X3 plane as 𝜇 = -1 or in the layer of material units in the X1-X2 plane as 𝜇 = 1. The 

(a) 

(b) 

𝑋ଷ 

𝑋ଶ 𝑋ଵ

2D0 
2D0 

2D0 
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three material units in the unit cell should be stacked in the direction normal to the 

localization plane to let localization take place in the middle material unit. 

Fig. 3.4 displays a typical ½-symmetric finite element mesh of the sandwiched unit 

cell shown in Fig. 3.3, where the three material units are stacked along the X2-direction. 

The initial dimensions of the half unit cell are then given by D1 = D0 along X1-axis, D2 = 

6D0 along X2-axis and D3 = 2D0 along X3-axis. Among the three material units, the middle 

one will experience localized failure while the other two will undergo elastic recovery. 

Each material unit contains a spherical void at its center. A slightly larger initial void is 

placed in the middle material unit to ensure localization occurs in this unit. Here the initial 

void radius is R1 = 0.2D0 in the middle material unit and R2 = 0.198D0 in the other two 

material units. This corresponds to an initial void volume fraction of 0.004188 in the 

middle material unit. Mesh difference between the middle material unit and the outside 

material units are carefully controlled as small as possible so that the mesh-introduced 

inhomogeneity is minimal. With this setup, the overall behavior of the three material units 

are virtually the same prior to the occurrence of localization in the middle unit, and the 

model captures the interaction among neighboring voids as well. The mesh consists of 

27,000 hybrid, 8-node hexahedral elements. 
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Figure 3.4. A typical finite element mesh for one half of the sandwiched unit cell 

 

3.2.4 Boundary condition 

Since the stress state is characterized by three normal components, Σ11, Σ22 and Σ33, 

and one shear component, Σ23, for proportional loading, the macroscopic deformation 

gradient will take the form of 

𝑭 = 

𝐹ଵଵ 0 0
0 𝐹ଶଶ 0
0 𝐹ଶଷ 𝐹ଷଷ

൩. (3.4) 

Periodic boundary conditions are imposed on the 𝑋ଶ = ±
మ

ଶ
 and  𝑋ଷ = ±

య

ଶ
  

surfaces. If the applied shear stress component is nonzero, these surfaces will not remain 

straight after deformation. Symmetry allows to model one half of the unit cell and the 

X1 

X3 

X2 
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symmetry condition is imposed on X1 = 0. On X1 = D1, homogenous conditions are applied, 

indicating surfaces normal to the X1 direction will remain planar and parallel because the 

shear loading is only applied on the X2-X3 plane. Four displacement measures δi (i = 1, 2, 

3, 4) are introduced to describe the boundary conditions as follows 

On 𝑋ଵ = 0 :   𝑢ଵ = 0, 

On 𝑋ଵ = 𝐷ଵ :   𝑢ଵ = 𝛿ଵ, 
(3.5) 

 

On 𝑋ଶ = ±
మ

ଶ
  : 𝑢ଵ ቀ𝑋ଵ,

మ

ଶ
, 𝑋ଷቁ = 𝑢ଵ ቀ𝑋ଵ, −

మ

ଶ
, 𝑋ଷቁ, 

  𝑢ଶ ቀ𝑋ଵ,
మ

ଶ
, 𝑋ଷቁ = 𝑢ଶ ቀ𝑋ଵ, −

మ

ଶ
, 𝑋ଷቁ +

మ

బ
𝛿ଶ, 

  𝑢ଷ ቀ𝑋ଵ,
మ

ଶ
, 𝑋ଷቁ = 𝑢ଷ ቀ𝑋ଵ, −

మ

ଶ
, 𝑋ଷቁ +

మ

బ
𝛿ସ, 

(3.6) 

On 𝑋ଷ = ±
య

ଶ
 : 𝑢ଵ ቀ𝑋ଵ, 𝑋ଶ,

య

ଶ
ቁ = 𝑢ଵ ቀ𝑋ଵ, 𝑋ଶ, −

య

ଶ
ቁ,  

                         𝑢ଶ ቀ𝑋ଵ, 𝑋ଶ,
య

ଶ
ቁ = 𝑢ଶ ቀ𝑋ଵ, 𝑋ଶ, −

య

ଶ
ቁ, 

𝑢ଷ ቀ𝑋ଵ, 𝑋ଶ,
య

ଶ
ቁ = 𝑢ଷ ቀ𝑋ଵ, 𝑋ଶ, −

య

ଶ
ቁ +

య

బ
𝛿ଷ. 

(3.7) 

 

3.2.5 Displacement-controlled loading 

To study the effect of stress state on the response of the unit cell, a proportional 

loading approach is applied such that the macroscopic stress triaxiality and Lode parameter 

of the unit cell remain constant during the entire loading history. This can be done by 

keeping the ratios between the applied macroscopic stress components constant 

𝜓ଵ =
ஊభభ

ஊమమ
,   𝜓ଶ =

ஊయయ

ஊమమ
 ,   𝜓ଷ =

ஊమయ

ஊమమ
. (3.8) 
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The finite element simulations are under displacement control. The approach 

proposed and described in Barsoum and Faleskog (2007) and Wong and Guo (2015) are 

used to apply the displacement-controlled loading. By taking the volume average of the 

local deformation gradient, the macroscopic deformation gradient can be given by the 

following expression 

𝑭ഥ =
ଵ

బ
∫ 𝒙⨂𝑵d𝑆ୗబ

 . (3.9) 

where V0 is the volume of the unit cell in the undeformed configuration, S0 is the outer 

surface with the outward normal N, and x denotes the current position of a point on the 

deformed surface. Utilizing the boundary conditions described by Eqs. (3.5-3.7), 𝑭ഥ can be 

expressed as  

𝑭ഥ =

⎣
⎢
⎢
⎢
⎡

బାఋభ

బ
0 0

0
బାఋమ

బ
0

0
ఋర

బ

బାఋయ

బ ⎦
⎥
⎥
⎥
⎤

. (3.10) 

Therefore, the velocity gradient can be expressed as 

𝑳 = 𝑭ഥ̇𝑭ഥିଵ =

⎣
⎢
⎢
⎢
⎢
⎡

ఋభ̇

బାఋభ
0 0

0
ఋమ̇

బାఋమ
0

0
ఋర̇

బାఋమ
−

ఋర

బାఋమ

ఋయ̇

బାఋయ

ఋయ̇

బାఋయ⎦
⎥
⎥
⎥
⎥
⎤

, (3.11) 

and the rate of deformation tensor can be calculated by 

𝑫 =
𝑳ା𝑳

ଶ
. (3.12) 

Consequently, the total work rate can be expressed as 

�̇� = 𝑉𝚺𝑫 = 𝐃 ் 𝚺, (3.13) 
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where V is the current volume of the unit cell including the void, vectors 𝐃  and  𝚺 are 

generalized displacement rate and generalized force vectors respectively, defined as 

𝜮 = ൦

𝑉𝛴ଵଵ

𝑉𝛴ଶଶ

𝑉𝛴ଷଷ

𝑉𝛴ଶଷ

൪      𝑫 = ൦

𝐷ଵଵ

𝐷ଶଶ

𝐷ଷଷ

2𝐷ଶଷ

൪ = 𝑸�̇�, (3.14) 

with 

𝑸 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

ଵ

బାఋభ
0 0 0

0
ଵ

బାఋమ
0 0

0 0
ଵ

బାఋయ
0

0 0 −
ఋర

(బାఋమ)(బାఋయ)

ଵ

బାఋమ⎦
⎥
⎥
⎥
⎥
⎥
⎤

. (3.15) 

Next, consider an orthogonal transformation 

𝚺 = 𝑪𝑷  and   𝐃 = 𝑪�̇� (3.16) 

such that P = (P1, 0, 0, 0)T. A 4 × 4 orthogonal matrix can be constructed as 

𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑎ଵ

𝑎ଶ

ඥ𝐴ଵଶ
൘

𝑎ଵ𝑎ଷ

ඥ𝐴ଵଶ𝐴ଵଶଷ
൘

𝑎ଵ𝑎ସ

ඥ𝐴ଵଶଷ𝐴ଵଶଷସ
൘

𝑎ଶ
−𝑎ଵ

ඥ𝐴ଵଶ
൘

𝑎ଶ𝑎ଷ

ඥ𝐴ଵଶ𝐴ଵଶଷ
൘

𝑎ଶ𝑎ସ

ඥ𝐴ଵଶଷ𝐴ଵଶଷସ
൘

𝑎ଷ 0
−𝐴ଵଶ

ඥ𝐴ଵଶ𝐴ଵଶଷ
൘

𝑎ଷ𝑎ସ

ඥ𝐴ଵଶଷ𝐴ଵଶଷସ
൘

𝑎ସ 0 0
−𝐴ଵଶଷ

ඥ𝐴ଵଶଷ𝐴ଵଶଷସ
൘

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , (3.17) 

where 

𝑎ଵ
ଶ + 𝑎ଶ

ଶ + ⋯ + 𝑎ସ
ଶ = 1, 

𝐴ଵ⋯ = 𝑎ଵ
ଶ + ⋯ + 𝑎

ଶ where 2 ≤ n ≤ 4. 
(3.18) 

Here, a 4 × 4 C matrix is needed and ai’s are defined as follows 

𝑎ଵ =
టభ

టబ
,   𝑎ଶ =

ଵ

టబ
,   𝑎ଷ =

టమ

టబ
,   𝑎ସ =

టయ

టబ
 , (3.19) 
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where 𝜓 = ට1 + 𝜓ଵ
ଶ + 𝜓ଶ

ଶ + 𝜓ଷ
ଶ. After the orthogonal transformation, the total work 

rate can be expressed as 

�̇� = �̇�𝑻𝑷, (3.20) 

meaning P and �̇� are work conjugate. From Eqs. (3.14-3.16), the values of δi used to 

describe the displacement boundary conditions are controlled by  

�̇� = 𝑸ିଵ𝑪�̇�. (3.21) 

By prescribing �̇�ଵand setting 𝑃ଶ = 𝑃ଷ = 𝑃ସ = 0, constant values of ψi’s can be maintained 

during the loading history. This procedure is implemented in ABAQUS (2013) by using 

the MPC user subroutine. 

As demonstrated by Wong and Guo (2015), different choices of ψi’s can result in 

the same values of T and 𝜇. To compare the results with Barsoum and Faleskog (2007, 

2011) and Wong and Guo (2015), this paper only presents the analyses for the ψ1 = ψ2 case.  

Let ρn = ψ1 = ψ2 and ρs = ψ3, T and 𝜇 can be expressed as 

𝑇 =
(ଵାଶ)∙௦(ஊమమ)

ଷඥ(ଵି)మାଷೞ
మ

,        𝜇 = −
(ଵି)∙௦(ఀమమ)

ඥଷ[(ଵି)మାସೞ
మ]

. (3.22) 

For given values of T and 𝜇, Barsoum and Faleskog (2007, 2011) showed that solutions of 

𝜌and 𝜌௦can be given as  

𝜌 =
ଷ்ඥଷାఓమାଶఓ

ଷ்ඥଷାఓమିସఓ
,       𝜌௦ =

ଷඥଵିఓమ

ଷ்ඥଷାఓమିସఓ
, (3.23) 

which are valid for 𝛴ଶଶ ≠ 0 and 𝑇 ≷
ସఓ

ଷඥଷାఓమ
. 
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The equations described above to prescribe the displacement-controlled loading are 

derived for the case where localization is to occur in the X1-X3 plane. Barsoum and Faleskog 

(2011) showed that, in general, localization may take place in a plane oriented at an angle 

𝜃 from the X1-X3 plane, which can be accounted for by rotating the Cartesian coordinate 

system by 𝜃 about the X1-axis. The stress components in the new coordinate system can be 

expressed in terms of the specified values of 𝜌and 𝜌௦ as 

 

ఀభభ
ᇲ

ఀమమ
ᇲ =

ఘ

ୱ୧୬మ ఏఘାୡ୭ୱమ ఏିଶୱ୧୬ఏୡ୭ୱఏఘೞ
, (3.24) 

ఀయయ
ᇲ

ఀమమ
ᇲ =

ୱ୧୬మ ఏାୡ୭ୱమ ఏఘାଶୱ୧୬ఏୡ୭ୱఏఘೞ

ୱ୧୬మ ఏఘାୡ୭ୱమ ఏିଶୱ୧୬ఏୡ୭ୱఏఘೞ
, (3.25) 

ఀమయ
ᇲ

ఀమమ
ᇲ =

ୱ୧୬ఏୡ୭ୱఏ(ఘିଵ)ାୡ୭ୱଶఏఘೞ

ୱ୧୬మ ఏఘାୡ୭ୱమ ఏିଶୱ୧୬ఏୡ୭ୱఏఘೞ
. (3.26) 

 

With this coordinate transformation, the equations described above can be used for cases 

where localization takes place in a plane oriented at an angle 𝜃 from the X1-X3 plane. 

It is worth noting that variation of the stress state is inevitable in actual fracture 

specimens or structural components. We refer to a number of recent studies regarding the 

effect of non-proportional loading path. For examples, Basu and Benzerga (2015) and 

Thomas et al. (2016) investigated the effect of different non-proportional loading paths on 

failure strain, while Papasidero et al. (2015) made efforts to determine the actual loading 

path of Bao and Wierzbicki’s well-known experiments (2004). It is possible to modify the 

displacement-controlled applied load to reflect the change of stress state provided the 

loading path is specified. 
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3.2.6 Macroscopic effective strain measure 

Eq. (3.9) can be used to evaluate the macroscopic deformation gradient of a material 

unit. Since the surface surrounding the material unit consists of six square faces, the total 

surface integral can be obtained by summing the six surface integrals on the six faces. For 

the material unit shown in Fig. 3.3(b), the integrals over faces 𝑋ଵ = ±𝐷 and 𝑋ଷ = ±𝐷 

can be easily evaluated using the boundary conditions imposed on these faces as described 

in Eqs. (3.5) and (3.7),  

ଵ

బ
∫ (𝒙±𝒙ష

)⨂𝑬𝟏d𝑆ଡ଼భୀబ
= 

బାఋభ

బ
0 0

0 0 0
0 0 0

, (3.27) 

ଵ

బ
∫ (𝒙±𝒙ష

)⨂𝑬𝟑d𝑆ଡ଼యୀబ
= 

0 0 0
0 0 0

0 0
బାఋయ

బ

, (3.28) 

where E1 and E3 are unit vectors in X1 and X3 directions respectively. Since one or both of 

the remaining faces, 𝑋ଶ = 𝑋ଶ
∗  and 𝑋ଶ = 𝑋ଶ

∗ − 2𝐷 , are inside the unit cell, Fig. 3.3(a), 

contributions from these two surface integrals should be evaluated by  

 

1

𝑉
න 𝒙⨂𝑬𝟐d𝑆

ଡ଼మୀమ
∗

−
1

𝑉
න 𝒙⨂𝑬𝟐d𝑆

ଡ଼మୀమ
∗ିଶబ

 

=
ଵ

బ
∫ ൭

0
2𝐷

0
൱ + 𝒖൩ ⨂𝑬𝟐d𝑆 −

ଡ଼మୀమ
∗

ଵ

బ
∫ ൭

0
2𝐷

0
൱ + 𝒖൩ ⨂𝑬𝟐d𝑆ଡ଼మୀమ

∗ିଶబ
 

= 

⎣
⎢
⎢
⎢
⎡
0 0 0

0
బାఋഥమ

బ
0

0
ఋഥర

బ
0⎦

⎥
⎥
⎥
⎤

, 

(3.29) 
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where E2 is the unit vector in X2-direction, 𝒖 is the displacement vectors on the evaluated 

surface respectively, 𝛿ଶ̅ = ∫ 𝑢ଶd𝑆ଡ଼మୀమ
∗ − ∫ 𝑢ଶd𝑆ଡ଼మୀమ

∗ିଶబ
 and 𝛿ସ̅ = ∫ 𝑢ଷd𝑆ଡ଼మୀమ

∗ −

∫ 𝑢ଷd𝑆ଡ଼మୀమ
∗ିଶబ

, 𝑋ଶ
∗ = 3𝐷 for the top material unit, and 𝑋ଶ

∗ = 𝐷 for the middle material 

unit. Because the model is symmetric about the X2-X3 plane, ∫ 𝑢ଵd𝑆ଡ଼మୀమ
∗ −

∫ 𝑢ଵd𝑆 = 0
ଡ଼మୀమ

∗ିଶబ
. Therefore, the macroscopic deformation gradient of a material unit 

is 

𝑭ഥ =

⎣
⎢
⎢
⎢
⎡

బାఋభ

బ
0 0

0
బାఋഥమ

బ
0

0
ఋഥర

బ

బାఋయ

బ ⎦
⎥
⎥
⎥
⎤

, (3.30) 

For non-singular deformation gradient F, polar decomposition can be performed  

𝑭 = 𝑹𝑼 = 𝑽𝑹, (3.31) 

where 𝑹 is an orthogonal rotation tensor, and 𝑼 and 𝑽 are symmetric stretch tensors. The 

left Cauchy-Green deformation tensor is defined as 

𝑩ିଵ = (𝑭ିଵ)்𝑭ିଵ = (𝑽ିଵ)்𝑽ିଵ = (𝑽ିଵ)ଶ. (3.32) 

The true strain can now be written in terms of V as 

      𝜺 = −
ଵ

ଶ
ln𝑩ିଵ = −

ଵ

ଶ
ln(𝑽ିଵ)ଶ = ln𝑽. (3.33) 

The stretch tensor V can be expressed in term of its eigenvalues and eigenvectors as 

𝑽 = ∑ 𝜆୧𝒏⨂𝒏
ଷ
ୀଵ , (3.34) 

where λi (i = 1, 2, 3) are eigenvalues of V and ni (i = 1, 2, 3) are corresponding eigenvectors. 

For a material unit, the macroscopic deformation gradient is given by Eq. (3.30), and the 

corresponding principal stretches are 
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𝜆ଵ =

ඨଶబ
మାఋഥమ

మ
ାఋయ

మାଶబ൫ఋഥమାఋయ൯ାఋഥర
మ

ାටቀ൫ఋഥమିఋయ൯
మ

ାఋഥర
మ

ቁቀ൫ଶబାఋഥమାఋయ൯
మ

ାఋഥర
మ

ቁ

√ଶబ
 , 

𝜆ଶ =
(బାఋభ)

బ
, 

𝜆ଷ =

ඨଶబ
మାఋഥమ

మ
ାఋయ

మାଶబ൫ఋഥమାఋయ൯ାఋഥర
మ

ିටቀ൫ఋഥమିఋయ൯
మ

ାఋഥర
మ

ቁቀ൫ଶబାఋഥమାఋయ൯
మ

ାఋഥర
మ

ቁ

√ଶబ
, 

(3.35) 

and therefore, the principal logarithmic strains are 

𝜀ଵ = ln𝜆ଵ, 

𝜀ଶ = ln𝜆ଶ, 

𝜀ଷ = ln𝜆ଷ. 

(3.36) 

Finally, the effective strain can be calculated as 

𝜀 = ට
ଶ

ଷ
((𝜀ଵ − 𝜀)ଶ + (𝜀ଶ − 𝜀)ଶ + (𝜀ଷ − 𝜀)ଶ), (3.37) 

where 𝜀 =
ఌభାఌమାఌయ

ଷ
. 

Similarly, the macroscopic effective strain of the whole unit cell can be calculated 

using the principal stretches given by Eq. (3.38), corresponding to the macroscopic 

deformation gradient of the unit cell defined by Eq. (3.10)  

𝜆ଵ =

ඨଶబ
మାఋమ

మାఋయ
మାଶబ(ఋమାఋయ)ାఋర

మାට൫(ఋమିఋయ)మାఋర
మ൯൫(ଶబାఋమାఋయ)మାఋర

మ൯

√ଶబ
 , 

         𝜆ଶ =
(బାఋభ)

బ
, 

𝜆ଷ =

ඨଶబ
మାఋమ

మାఋయ
మାଶబ(ఋమାఋయ)ାఋర

మିට൫(ఋమିఋయ)మାఋర
మ൯൫(ଶబାఋమାఋయ)మାఋర

మ൯

√ଶబ
. 

(3.38) 
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3.2.7 The material model 

The material chosen in this study obeys a power-law hardening, true stress-strain 

relation  

𝜎 = 𝐸𝜀             𝜀 ≤ 𝜀 , 

𝜎 = 𝜎 ቀ
ఌ

ఌబ
ቁ

ே

    𝜀 > 𝜀 . 
(3.39) 

where E represents the Young’s modulus, σ0 is the initial yield stress, 𝜀 is the initial yield 

strain and N is the strain hardening exponent. The material parameters are taken to be 𝜀 =

ఙబ

ா
= 0.002, 𝑣 = 0.3 (Poisson’s ratio), and 𝑁 = 0.1. 

 

3.3 Results and discussion 

In the sandwiched unit cell model described in section 3.2.3, the three material units 

are stacked in the direction normal to the localization plane, where localization is to take 

place in the middle unit. Therefore, one needs to assume a localization plane orientation 

before conducting unit cell analysis. However, the orientation of the localization plane is 

affected by the stress state subjected by the material. This is demonstrated first in this 

section by analyzing a block of material subjected to different stress states. The subsequent 

unit cell analyses consider two unit cell models for each stress state, one has three material 

units stacked along X2 direction and the other has three material units stacked along X3 

direction. The favored model under each applied stress state is selected as the one which 

leads to a lower localization strain.  
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3.3.1 Effect of stress state on the orientation of the localization plane 

To demonstrate the effect of the stress state on the orientation of the localization 

plane, consider a block of material consisting of 3 × 3 material units as shown in Fig. 3.5. 

The initial void in the material unit at the center is slightly larger than in other eight material 

units to trigger the onset of localization. The initial void volume fraction of the center 

material units is 0.004188. Periodic boundary conditions are imposed on the 𝑋ଶ = ±3𝐷 

and  𝑋ଷ = ±3𝐷  surfaces. Symmetry condition is imposed on X1 = 0 and homogeneous 

boundary condition is applied on 𝑋ଵ = 𝐷. Displacement-controlled loading is imposed on 

the model to ensure the ratios between the applied macroscopic stress components remain 

constant during the loading history. For the cases of 𝛴ଵଵ = 𝛴ଷଷ and specified T = 3 and 𝜇 

= -1, 0, 1, corresponding to generalized tension, generalized shear and generalized 

compression respectively, Fig. 3.6 shows the matrix plastic strain distribution after the 

analysis results have shown clearly visible evidence of strain localization, i.e., further strain 

accumulation localizes in a band. Since only the center void is slightly larger while the 

other voids have the same size, the resulted localization plane is not due to predefined 

perturbations. It is clear from Fig. 3.6 that for 𝜇 = -1, localization takes place in the row of 

material units in the X1-X3 plane and so as for 𝜇 = 0, but for 𝜇 = 1, localization takes place 

in the X1-X2 plane. It is also worth noting that failure in the 𝜇 = ±1 cases is due to void 

growth and internal necking while in the 𝜇 = 0 case is due to a combination of void growth 

and void shearing. 
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Figure 3.5. Finite element mesh of a block of material consisting of 3 × 3 material units 

 

 

Figure 3.6. Matrix plastic strain distribution for T = 3, and (a) 𝜇 = -1, (b) 𝜇 = 0, (c) 𝜇 = 1. 

 

For the sandwiched unit cell model described in Section 3.2, three material units 

are stacked in the direction normal to the plane where localization is to occur. However as 

shown in Fig. 3.6, the orientation of the localization plane is influenced by the stress state 

subjected by the material. Without knowing the orientation of the localization plane a priori, 

a series of unit cell analyses can be conducted by rotating the Cartesian coordinate system 

by different θ-angles about the X1-axis, Barsoum and Faleskog (2011). The θ-angle 

corresponding to the actual orientation of the localization plane would result in the 

X1 

X3 

X2 

𝜮𝟑𝟑 

𝜮𝟐𝟐 

𝜮𝟐𝟑 

𝜮𝟏𝟏 

(a)  (b)  (c)  

𝑋ଷ 
𝑋ଶ 
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predicted localization strain to be minimum. The process is straightforward but tedious and 

time-consuming. As the main objectives of the present paper are to introduce this new 

sandwiched unit cell model and to establish an easy-to-implement failure criterion, 

analyses to determine the orientation of the localization plane under different stress state 

will only be conducted for a few cases in section 3.3.6 as a discussion for error estimation. 

Elsewhere in this paper, a simple approach is adopted, where two unit cell models are 

considered for each stress state, one has three material units stacked along X2 direction and 

the other has them stacked along X3 direction. The second model is achieved by rotating 

the Cartesian coordinate system of the first model by π/2 about the X1-axis.  These two 

models correspond to the cases where localization occurs in the X1-X3 plane and X1-X2 plane 

respectively. The favored model under each applied stress state is selected as the one which 

leads to a lower localization strain. It is observed from a series of numerical simulations 

that for 𝜇 ≤ 0 the model with three material units stacked along X2 direction yields a lower 

localization strain while for 𝜇 > 0 the model with three material units stacked along X3 

direction yields a lower localization strain.  

 

3.3.2 Unit cell analysis  

For the sandwiched unit cell model, after localization occurs in the middle material 

unit (inside layer), the other two material units (outside layers) will soon experience elastic 

unloading. Therefore, the deformation of the unit cell quickly localizes toward the inside 

layer, which can be analyzed by examining the strain variation of the inside and outside 

layers respectively. Consider a case of T = 0.8 and 𝜇 = 0. Fig. 3.7 shows the evolution of 

the macroscopic effective strain of the inside layer and outside layer as the displacement-
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controlled loading increases. Before the onset of localization, the two curves coincide, 

suggesting the two material units are almost identical and experiencing the same 

deformation. The two curves start to deviate as localization initiates: the effective strain of 

the outside layer increases at a reduced rate comparing to the inside layer. As the 

deformation continues, the effective strain of the inside layer increases rapidly while the 

effective strain of the outside layer reaches a maximum and then decreases. The 

macroscopic effective strain decrease for the outside layer is the result of the elastic strain 

reduction due to unloading. Since the applied load is displacement-controlled, the 

unloading does not look dramatic in the effective strain vs. the applied load history curve. 

However, the inset in Fig. 3.7, with the scale of the ordinate magnified, clearly show the 

point when the macroscopic effective strain of the outside layer starts decreasing.  

 

 

Figure 3.7. Macroscopic effective strain vs. loading parameter curves for the inside and 

outside layers (T = 0.8, 𝜇 = 0). 
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To further understand the deformation and localization process experienced by the 

unit cell, the evolution processes of the macroscopic effective strain and effective stress of 

the inside layer, outside layer and whole unit cell for the case of T = 0.8 and 𝜇  = 0 are 

compared in Fig. 3.8. The effective stress is calculated using Eq. (3.1) with the macroscopic 

stress components computed as 

 Σ =
ଵ


∫ 𝜎 d𝑉,  (3.40) 

where σij represents the Cauchy stress output at element Gauss points and V is the volume 

of the material unit or the whole unit cell.  

Fig. 3.8(a) shows that after the onsite of localization, the overall effective strain of 

unit cell keeps increasing steadily, but the strain is quickly localized into the inside layer 

while the strain in the outside layer stops increasing. As the deformation of the inside layer 

continues, the ligament size reduces due to void growth and/or void shearing. When the 

effect of ligament reduction overtakes the effect of material strain hardening, the load 

carrying capacity of the inside layer decreases, and as a result, the effective stress of the 

inside layer, outside layer and the whole unit cell decreases, Fig. 3.8(b). This process can 

be more clearly illustrated by plotting the macroscopic effective stress vs. effective strain 

curves for the inside layer, outside layer and the whole unit cell, Figs 3.8(c-e). The elastic 

unloading of the outside layer shown in Fig. 3.8(e) can serve as an indicator for fracture. 

After this point, the inside layer quickly loses its load carrying capacity to sustain continued 

loading, and the unit cell fails by ductile fracture. 
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Figure 3.8. Evolution of the macroscopic effective strain and effective stress of the inside 

layer, outside layer and whole unit cell (T = 0.8, 𝜇 = 0): (a) effective strain vs. loading 

history, (b) effective stress vs. loading history, (c) effective stress vs. effective strain for 

the inside layer, (d) effective stress vs. effective strain for the whole unit cell, (e) 

effective stress vs. effective strain for the outside layer. 

 

Similar analyses can be done for the 𝜇 = -1 and 𝜇 = 1 cases and the results are 

shown in Fig. 3.9 and Fig. 3.10 respectively. In these cases, the applied stress triaxiality is 

T = 0.8.  

 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 3.9. Evolution of the macroscopic effective strain and effective stress of the inside 

layer, outside layer and whole unit cell (T = 0.8, 𝜇 = -1): (a) effective strain vs. loading 

history, (b) effective stress vs. loading history, (c) effective stress vs. effective strain for 

the inside layer, (d) effective stress vs. effective strain for the whole unit cell, (e) 

effective stress vs. effective strain for the outside layer. 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 3.10. Evolution of the macroscopic effective strain and effective stress of the 

inside layer, outside layer and whole unit cell (T = 0.8, 𝜇 = 1): (a) effective strain vs. 

loading history, (b) effective stress vs. loading history, (c) effective stress vs. effective 

strain for the inside layer, (d) effective stress vs. effective strain for the whole unit cell, 

(e) effective stress vs. effective strain for the outside layer. 

 

The above discussion suggests that the localization process can be divided into two 

stages. The first stage is from the point when the macroscopic effective strain of the outside 

layer deviates from the macroscopic effective strain of the inside layer to the point when 

the macroscopic effective strain of the outside layer reaches the maximum. From hereafter 

is the second stage, in which the outside layer undergoes elastic unloading while the 

(a) 

(b) 

(c) 

(d) 

(e) 
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deformation of the unit cell quickly localizes in the inside layer and the material loses the 

load carrying capacity shortly after.  

Consequently, a material failure criterion can be established as a result of the unit 

cell analysis: failure occurs when the macroscopic effective strain of the outside layer 

reaches the maximum. The material failure strain under a given stress state can then be 

defined as the macroscopic effective strain of the unit cell when the outside layers start to 

unload elastically. For the example of T = 0.8 and 𝜇 = 0, the first stage of localization starts 

at a macroscopic effective strain level of 0.4; the maximum value of the macroscopic 

effective strain of the outside layer is 0.55, and in the meantime the macroscopic effective 

strain of the inside layer is 0.64 and the macroscopic effective strain of the unit cell is 0.58, 

which is defined as the failure strain of the material at the prescribed stress state in this 

paper. 

Note that because of the multi-scale nature of the sandwiched unit cell model, 

although the overall loading at the unit cell level is proportionally imposed, the stress state 

at the length-scale of the material unit becomes non-proportional after the onset of 

localization. In the present study, the prescribed stress state is enforced on the unit cell 

level, e.g., the T and 𝜇  values remain constant at this length-scale through the whole 

loading history. But when examining the stress state for an individual material unit, e.g., 

the inside or outside material unit, as is shown in Fig. 3.11, the T and 𝜇 values deviate from 

the prescribed value after the onsite of localization. Due to the multi-scale nature of the 

model, the failure strain can be defined at different length scales, e.g., the inside layer, the 

outside layer, and the whole unit cell. For examples, when analyzing the effects of voids 

in the outside layers on the ductile fracture process, it is natural to examine their effect on 
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the failure strain of the inside layer; but when predicting failure strain for engineering 

applications, it is more relevant to define the failure strain at the unit cell level.  

Moreover, in an actual material, the large plastic deformation in the localization 

band will result in the nucleation of secondary micro voids in large numbers. Rapid growth 

and coalescence of these secondary voids will further soften the material, which in turn 

will intensify the localization process and accelerate material failure. This is, however, not 

taken into account here, and thus the post-localization process is not accurately modeled in 

the present study.  

 

3.3.3 Effect of the voids in the outside layers 

In several previous studies (Barsoum and Faleskog, 2007, 2011; Dunand and Mohr, 

2014; Wong and Guo, 2015), the unit cell has a similar overall geometry as the present 

model. But these previous models only included a single void located at the center of the 

unit cell while treating the material outside the localization plane as void free. However, 

voids do nucleate elsewhere and interact with each other. It is expected that the presence 

of the voids in the outside layers would have an influence on the void behavior in the inside 

layer. 

To investigate this issue, two unit cell models are analyzed here. The first one is 

the proposed model consisting of three void-containing material units, referred to as VPO 

hereafter. The second one also consists of three material units but only the middle unit 

contains a void at its center, referred to as VAO hereafter. The same boundary conditions 

and displacement-controlled macroscopic loading are imposed on the two models. 
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Fig. 3.11 compares the evolution of the macroscopic stress triaxiality and Lode 

parameter of the inside layer and outside layer during the loading history. Here the applied 

T = 1.2 and 𝜇 = 0.5. In Figs. 3.11(a) and (b), where the proposed unit cell model is used, T 

and 𝜇 remain the same for the inside and outside layers and maintain the applied values 

until localization takes place. In Figs. 3.11(c) and (d), where the outside layer is void free, 

T and 𝜇 for neither layer equal to the applied values: T for the outside (inside) layer is less 

(greater) than the applied value while 𝜇 for the outside (inside) layer is greater (less) than 

the applied value. Furthermore, T and 𝜇 do not maintain constant values for each layer:  T 

for the outside (inside) layer decreases (increases), while 𝜇 for the outside (inside) layer 

increases (decreases), as loading continues. 

Fig. 3.12 compares the T and 𝜇  vs. macroscopic effective strain curves for the 

inside layer between the two models. As can be seen from Fig. 3.12(a), the absence of voids 

in the outside layers raises the stress triaxiality imposed on the inside layer. Consequently, 

void growth in the inside layer becomes faster, making failure to occur earlier. For the 

applied T = 1.2 and 𝜇 = 0.5, the proposed unit cell model predicts a failure strain for the 

inside layer as 0.48, while the model without voids in the outside layers predicts a failure 

strain of 0.37. 
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Figure 3.11. Evolution of the macroscopic stress triaxiality and Lode parameter of the 

inside layer and outside layer during the loading history: (a) stress triaxiality, the 

proposed unit cell model; (b) Lode parameter, the proposed unit cell model; (c) stress 

triaxiality, the model without voids in the outside layers; (d) Lode parameter, the model 

without voids in the outside layers 

 

 

（a） （b） 

（c） （d） 
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Figure 3.12. Comparison of the macroscopic stress state of the inside layer between the 

two unit cell models: (a) stress triaxiality vs. effective strain, (b) Lode parameter vs. 

effective strain 

 

Fig. 3.13 shows the predicted failure strain for the inside layer using the two unit 

cell models under various applied T and 𝜇 values, where the solid lines represent the results 

from the proposed model while the dashed lines represent the results from the model 

without voids in the outside layers. In general, the proposed model predicts a higher value 

of failure strain than the model without voids in the outside layers, except for when 𝜇 is 

around 0. When 𝜇 ≈ 0, the two models predict the same value of failure strain. This is 

further illustrated in Fig. 3.14, where the case of T = 0.8 and 𝜇  = 0 is taken into 

consideration. As explained in the previous section, the failure strain in this section is 

defined at the inside layer level. Although the maximum effective strain of the outside layer 

is different in the two unit cell models, the corresponding effective strain values of the 

inside layer are almost the same. 

 

（a） （b） 
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Figure 3.13. Predicted failure strain of the inside layer using two unit cell models under 

various applied T and 𝜇 values 

 

 

  

Figure 3.14. Comparison of the macroscopic effective strain vs. loading parameter 

curves for the inside and outside layers between the two unit cell models (T = 0.8, 𝜇 = 0). 
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For the case of T = 0.8 and  𝜇 = 0, Fig. 3.15 compares the macroscopic stress-strain 

responses between the proposed model and the model without voids in the outside layers. 

As shown in Fig. 3.15(a), the VAO model has a slightly higher stress-strain curve for the 

outside layer, but elastic unloading occurs earlier than the VPO model. Consequently, as 

shown in Fig. 3.15(b), almost the same amount of overall constraint is imposed on the 

inside layer. This is evident from Fig. 3.16, where the macroscopic stress triaxiality vs. 

effective strain and Lode parameter vs. effective strain curves for the inside layer are 

displayed. The inside layer in the VPO model and the VAO model experience almost the 

same stress triaxiality and Lode parameter. Therefore, the predicted failure strain shows 

little difference. 

 

 

Figure 3.15. Comparison of the macroscopic stress-strain responses between the 

proposed model and the model without voids in the outside layers for the case of T = 0.8 

and 𝜇 = 0. 

 

(a) (b) 
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Figure 3.16. Comparison of the macroscopic stress triaxiality and Lode parameter of the 

inside layer between the proposed model and the model without voids in the outside 

layers for the case of T = 0.8 and 𝜇 = 0. 

 

Nahshon and Hutchinson (2008) also noticed the effect of the voids outside the 

localization band. Our analyses confirm that voids in the outside layer do affect the stress 

state and void behavior in the inside layer in general, except for when 𝜇 ≈ 0. To account 

for this effect, the unit cell model consisting of three void-containing material units is 

adopted in this study.  

 

3.3.4  Comparison with localization criteria adopted in previous studies 

3.3.4.1 The method based on the localization criterion of Rice-Needleman-Tvergaard 

Needleman and Tvergaard (1992) introduced an often-used localization criterion 

based on the theoretical framework of plastic localization into a band by Rice (1977). Using 

this criterion, Barsoum and Faleskog (2007) presented a numerical approach to predict 

ductile failure by comparing the norm of the deformation gradient rates inside and outside 

the band,  
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 𝜂 = ቛ�̇�ഥቛ ቛ�̇�ഥ୭ቛൗ → ∞, (3.41) 

where �̇�ഥ and �̇�ഥ୭ represent the macroscopic deformation gradient rates inside and outside 

the band of localized deformation respectively. This method has been adopted in several 

recent studies, such as Barsoum and Faleskog (2011) and Dunand and Mohr (2014), with 

different critical η-values used to set the failure criterion. For the analyses performed in 

this section, the macroscopic deformation gradient rates inside and outside the localization 

band will be computed by taking the volume average of the deformation gradient rates 

obtained in the inside layer and outside layer respectively.   

Barsoum and Faleskog (2011) commented that this method cannot be applied to 

high triaxiality cases when the Lode parameter is close to zero. In these cases, it was 

observed that the η-value display a spike as soon as plasticity sets in. Here this problem is 

examined by considering the applied stress state of T = 2 and 𝜇 = 0. For comparison, the 

two unit cell models described in the previous section, one including voids in the outside 

layers and the other ignoring voids in the outside layers, are employed in the finite element 

analyses. Fig. 3.17 compares the curves of the computed η vs. macroscopic effective strain 

of the inside layer obtained from the two models. In the small deformation region the result 

obtained from the VAO model does show a spike. However, the result obtained from the 

VPO model does not display such spike. 
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Figure 3.17. The computed η vs. macroscopic effective strain of the inside layer obtained 

from the two models (T = 2, 𝜇 = 0) 

 

The spike in the η vs. macroscopic effective strain curve is due to the ignorance of 

voids in the outside layers. Since the outside layer is void free, once plasticity sets in, the 

deformation will be concentrated around the void in the inside layer, resulting a quick 

increase of η. However, this localized deformation around the void does not propagate 

rapidly to form a localization band to cause material failure. As can be seen in Fig. 3.17, η 

drops immediately after the spike, then increases monotonically, and becomes unstable at 

a much later stage of loading. 

The choice of critical η-value would have a large influence on the predicted failure 

strain. Theoretically, η should goes to infinity. But practically different critical values of η 

have been suggested in previous studies. From the results presented in Fig. 3.17, the choice 

of a critical η-value of 2, 5 and 10 would predict a failure strain for the inside layer of 

0.0017, 0.0023, and 0.06 respectively using the VAO model, and 0.071, 0.078 and 0.08 

respectively using the VPO model. 
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However, as indicated in Fig. 3.18, the ambiguity of choosing different critical η-

values can be avoided by using the failure criterion proposed in this study, i.e., failure 

occurs when the macroscopic effective strain of the outside layer reaches the maximum. 

From Fig. 3.18, the predicted failure strain is 0.097 and 0.103 using the VPO and VAO 

models respectively. 

 

  

Figure 3.18. Macroscopic effective strain vs. loading parameter curves for the 

inside and outside layers (T = 2, 𝜇 = 0). 

 

3.3.4.2 The energy-based criterion by Wong and Guo 

Wong and Guo (2015) recently proposed an energy-based method to predict the 

onset of void coalescence by comparing the elastic energy and plastic energy during the 

loading history. The overall elastic and plastic work rates of the unit cell are calculated as 

 𝑊
̇ = ∫ 𝜎: 𝑑


d𝑉   and   𝑊

̇ = ∫ 𝜎: 𝑑


d𝑉 , (3.42) 
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where 𝜎 is the local Cauchy stress tensor, and 𝑑 and 𝑑 are the elastic and plastic parts of 

the rate of deformation tensor respectively. This method identifies the state of elastic 

unloading as when 
ௐ̇

 ௐ̇
 changes from positive to negative. Since  𝑊

̇  remains positive or 

zero as it is related to plastic deformation, the sign change of 
ௐ̇

 ௐ̇
  is caused by 𝑊

̇ . The 

onset of void coalescence is said to occur when 
ௐ̇

 ௐ̇
  reaches a minimum. 

In the analyses presented below, the applied load on the sandwiched unit cell is 

characterized by T = 2, and 𝜇 = -1, 0 and 1 respectively. Figs 3.19 to 3.20 present the 

numerical results, where the effective strain of the inside layer is used as the abscissa of all 

plots, the green “+” symbol corresponds to the strain value, Ee, when 
ௐ̇

 ௐ̇
 becomes negative, 

the black “×” symbol corresponds to the strain value, Ec, when 
ௐ̇

 ௐ̇
  reaches the minimum, 

the black “○” symbol corresponds to the strain value, Eη, when the η-value reaches 10, and 

the red “■” symbol corresponds to the strain value, Ef, the failure strain for the inside layer 

determined by the criterion proposed in this paper. Subfigures (a) show the effective stress-

strain curves of the inside layer. Subfigures (b) show the plots of the effective strain of the 

outside layer vs. the effective strain of the inside layer. Subfigures (c) show the evolution 

of 
ௐ̇

 ௐ̇
 of the inside layer, the outside layer, and the whole unit cell respectively. Subfigures 

(d) shows the evolution of the elastic and plastic work rates, 𝑊
̇ and 𝑊̇ normalized by 

minimum 𝑊
̇  magnitude, for the outside layer. 

Fig. 3.19 shows that for 𝜇 = -1, Ee occurs shortly after the effective stress of the 

inside layer reaches the maximum, and Eη, Ec, and Ef values determined by the three 

methods are the same. Fig. 3.20 shows that for L = 0, Eη and Ee are same and are slightly 
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less than Ef , but Ec can only be reached at a much later loading stage. Fig. 3.21 shows that 

for 𝜇  = 1, Ee occurs shortly after the effective stress of the inside layer reaches the 

maximum, while Eη and Ef are the same and are slightly less than Ec. These results suggest 

that using the proposed sandwiched unit cell model with η > 10, the failure criterion put 

forth by Barsoum and Faleskog (2007) can be considered equivalent to the failure criterion 

proposed in this paper. 

 

 

Figure 3.19. Numerical results for T = 2 and 𝜇 = -1: (a) the effective stress-strain curve 

of the inside layer, (b) the effective strain of the outside layer vs. the effective strain of 

the inside layer, (c) evolution of 
ௐ̇

 ௐ̇
 of the inside layer, the outside layer, and the whole 

unit cell, (d) evolution of 𝑊
̇ and 𝑊̇ for the outside layer. 

(a) (b) 

(c) (d) 
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Figure 3.20. Numerical results for T = 2 and 𝜇 = 0: (a) the effective stress-strain curve of 

the inside layer, (b) the effective strain of the outside layer vs. the effective strain of the 

inside layer, (c) evolution of 
ௐ̇

 ௐ̇
 of the inside layer, the outside layer, and the whole unit 

cell, (d) evolution of 𝑊
̇ and 𝑊̇ for the outside layer. 

 

 

(a) (b) 

(c) (d) 
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Figure 3.21. Numerical results for T = 2 and 𝜇 = 1: (a) the effective stress-strain curve of 

the inside layer, (b) the effective strain of the outside layer vs. the effective strain of the 

inside layer, (c) evolution of 
ௐ̇

 ௐ̇
 of the inside layer, the outside layer, and the whole unit 

cell, (d) evolution of 𝑊
̇ and 𝑊̇ for the outside layer. 

 

Now the attention is turned to the energy-based method. During the void growth 

process, the material in the vicinity of the void will experience elastic unloading while the 

material away from the void may still be under elastic-plastic loading. The elastic work 

rate of the material unit includes contributions from the vicinity of the void as well as the 

region away from the voids. When the negative contribution from the vicinity of the void 

overtakes the positive contribution from the region away from the void, the total 𝑊
̇  

becomes negative. However, this does not mean that macroscopically the material unit is 

under elastic unloading. Figs 3.19-3.21 clearly demonstrate this, where Ef is always greater 

than Ee, especially for the 𝜇 = ±1 cases.  

(a) (b) 

(c) (d) 
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From subfigures (c) it can be seen that 
ௐ̇

 ௐ̇
 of the inside layer and that of the outside 

layer are the same in the early loading stage. As the effective strain of the inside layer 

approaches to Ef, the 
ௐ̇

 ௐ̇
 curves for the inside layer and outside layer start to deviate. When 

the effective strain of the inside layer is equal to Ef, 𝑊̇ for the outside layer goes to zero 

thus 
ௐ̇

 ௐ̇
 goes to -∞ for all three cases, and for the 𝜇 = ±1 cases, 

ௐ̇

 ௐ̇
 for the inside layer as 

well as for the whole unit cell reaches the minimum values. For the 𝜇  = 0 case, the 

minimum of the overall 
ௐ̇

 ௐ̇
 occurs much later than Ef, therefore, Wong and Guo’s void 

coalescence criterion (Wong and Guo, 2015) predicts a much larger failure strain than the 

model proposed in this paper does. 

 

3.3.5 The effect of stress state on ductile fracture  

3.3.5.1 Failure strain as a function of stress triaxiality and Lode parameter 

In this section, the sandwiched unit cell model and the failure criterion proposed in 

this study are applied to analyze the effect of stress state on ductile fracture. Here the failure 

strain is defined as the overall effective strain of the unit cell model at the instant when the 

effective strain of the outside layer reaches the maximum. Various values of stress 

triaxiality, from 0.4 to 3, and Lode parameter, from -1 to 1, are imposed on the unit cell. 

Finite element analysis results indicate that cases with low triaxiality and high Lode 

parameter may encounter void surface contact due to limited void growth. Since void 

surface contact is not taken into account in the present study, these cases are omitted. 

Discussions regarding void surface contact modeling and void collapse behavior were 
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reported in a number of previous studies (Tvergaard, 2008; Tvergaard, 2009; Nielsen et al., 

2012; Liu et al., 2016). Fig. 3.22 shows the predicted failure strain as a function of the 

stress triaxiality and Lode parameter based on the cases analyzed. For a given Lode 

parameter, the failure strain can be approximated as an exponentially decaying function of 

the stress triaxiality. For a given stress triaxiality, the failure strain changes little around 𝜇 

= 0, but increases as 𝜇 approaches -1 and 1, Fig. 3.23. Note that the minimum failure strain 

is not necessary at 𝜇 = 0. For example, the minimum failure strain occurs at 𝜇 ≈ -0.3 when 

T > 0.8. Fig. 3.23 also suggests that the effect of the Lode parameter is more pronounced 

when the stress triaxiality is low. Fig. 3.24 shows the deformed void shape in the inside 

layer when failure strain is reached under various stress states, where the numbers in the 

figure indicate the corresponding strain values. Similar results were reported in previous 

studies (Barsoum and Faleskog, 2011; Tvergaard, 2012; Dunand and Mohr, 2014). 

 

 

 

Figure 3.22. Failure strain as a function of the stress triaxiality and Lode parameter. 
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Figure 3.23. Variation of the failure strain with the Lode parameter 

T= 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 2.0, 3.0 
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Figure 3.24. Deformed void shape in the inside layer under various stress states (T = 0.8, 

1, 1.2, and 𝜇 = -1, -0.5, 0, 0.5, 1) 

 

 

L
od

e 
pa

ra
m

et
er

 

Triaxiality 

0.516 

0.641 

0.501 

0.640 

1.190 1.768 

0.917 

0.636 

0.760 

0.991 

0.863 

0.480 

0.379 

0.347 

0.478 



 

65 
 

3.3.5.2 Material failure due to void shearing 

Since the pioneer works of McClintock (1968) and Rice and Tracey (1969), a 

significant amount of research has been directed toward void growth modeling while 

modeling material failure due to void shearing has received less attention. The proposed 

unit cell model allows for analyzing material failure under low triaxiality, shear-dominated 

stress states. Fig. 3.25 shows the void shearing/rotation and shear band formation process 

for the T = 0.5 and 𝜇 = 0 case. Here for illustration purpose, several unit cells are pieced 

together side-by-side. Figs. 3.25(a)-(c) show the deformed void shape and the plastic strain 

distribution at three stages, before the onset of localization, after the onset of localization, 

and when the plastic strain in the ligament becomes very large, respectively. Before 

localization, voids are stretched and rotated uniformly in the material. As the deformation 

continues, voids in the inside layer elongate and rotate more than voids in the outside layers, 

leading to localization. Eventually, the elongated voids in the inside layer become almost 

parallel to the localization plane as the ligament between neighboring voids is significantly 

reduced. After failure occurs, voids in the inside layer feature a needle-like spindle shape, 

thin and sharp at both ends and slightly expanded in the middle, while voids in the outside 

layer stop deforming. 
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Figure 3.25. Deformed void shape and plastic strain distribution at three stages: (a) 

before the onset of localization, (b) after the onset of localization, (c) when the plastic 

strain in the ligament reaches ~3. Several unit cells are pieced together side-by-side for 

illustration purpose. The imposed stress state is governed by T = 0.5 and 𝜇 = 0. 

 

As the stress triaxiality increases, voids in the outside layer stretch and rotate less 

while voids in the inside layer have a more tendency to expand. Figs. 3.26(a-c) show the 

deformed void shape as the plastic strain in the ligament reaches ~3 as T increases from 

0.5 to and 1. For all three cases, 𝜇 = 0. 

    

 

Figure 3.26. Deformed void shape for (a) T = 0.5, (b) T = 0.8, and (c) T = 1 cases. For all 

three cases, 𝜇 = 0. 

 

 

 

(a) (b) (c) 

(a) (b) (c) 
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3.3.6 The effect of the orientation of the localization plane  

In the unit cell model presented above, the orientation of the localization plan is 

predefined. However, the orientation of the localization plane is influenced by the stress 

state subjected by the material. Barsoum and Faleskog (2011) studied the effect of the stress 

state and defined the orientation of the localization plane as the one which leads to a 

minimum failure strain at the given stress triaxiality and Lode parameter. Their results 

suggest that the Lode parameter has a strong effect on the orientation of the localization 

plane while the effect of the stress triaxiality is insignificant. Here we consider T = 1 with 

varying L values and follow the approach of Barsoum and Faleskog (2011). By varying the 

incline angle of the assumed localization plane, θ, different values of failure strain can be 

obtained for a given pair of T and 𝜇 values. Fig. 3.27 shows the failure strain vs. θ curves 

for different stress states. The red “●” on each curve represents the critical orientation, θc, 

which has the minimum failure strain. Clearly there are two sets of critical incline angles 

for the stress states considered, shown as the solid lines in Fig. 3.28. The dashed line in Fig. 

3.28 represents a reference angle corresponding to the principal stress directions. For the 

stress state shown in Fig. 3.2, the X1-direction is always a principal stress direction. This 

θ-angle is measured by rotating the X2-X3 plane so that the two coordinate axes align with 

the two principal directions. Clearly the two solid lines are symmetric about the dashed 

line, corresponding to opposite shear directions. 
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Figure 3.27. Failure strain vs. the inclination angle of the localization plane for different 

𝜇 values with T = 1. 

 

Figure 3.28. The inclination angle of the localization plane vs. Lode parameter. The 

critical inclination angle at each Lode parameter value is marked as solid circle. 
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In the unit cell analyses presented in previous sections, two unit cell models are 

considered for each stress state, one has three material units stacked along X2 direction and 

the other has three material units stacked along X3 direction. These two orientations are 

illustrated in Fig. 3.28 as dash-dotted lines. Fig. 3.28 shows that the difference between the 

determined critical orientation and the assumed localization orientation in the previous unit 

cell analyses is about 30º for the 𝜇 = ±1 cases, where the difference is negligible when the 

Lode parameter is between -0.6 and 0.4. Since the main objectives of the present study are 

to introduce the three material unit, sandwiched unit cell model and to establish an easy-

to-implement failure criterion, detailed analysis to determine the orientation of the 

localization plane at each stress state is not carried out. This will be considered in future 

studies.  

 

3.4 Concluding Remarks 

A unit cell model consisting of three void-containing material units is proposed to 

study ductile fracture by void coalescence and strain localization. The three material units 

are stacked in the direction normal to the plane where localization is set to take place. The 

boundary conditions are prescribed such that the macroscopic stress triaxiality and Lode 

parameter of the unit cell remain constant during the loading history. As deformation 

continues, localization takes place in the middle material unit, resulting in the material 

losing load carrying capacity. In the meantime, the other two material units undergo elastic 

recovering. Therefore, failure is said to have occurred once elastic unloading happens to 

the outside material units. With the sandwiched unit cell model, this failure criterion is very 

easy to implement in finite element analysis.  
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Analyses are conducted to study the effect of voids outside the localization band. It 

is found that for most cases voids in the outside layer do affect the stress state and void 

behavior in the inside layer and therefore should be accounted for in the unit cell model. 

Comparisons of present model with previous models are also conducted. The analysis 

results suggest that the criterion proposed by Barsoum and Faleskog (2007) can be 

considered equivalent to the failure criterion proposed in this paper if the proposed 

sandwiched unit cell model is adopted with η > 10. For T = 2, the energy-based method of 

Wong and Guo (2015) predicts similar failure strain at 𝜇 = ±1, but a much larger failure 

strain at 𝜇 = 0. In addition, the effect of the stress state on the orientation of the localization 

plane is investigated by considering T = 1 with varying 𝜇 values following the approach of 

Barsoum and Faleskog (2011). 

A series of unit cell analyses are conducted for various macroscopic stress 

triaxialities and Lode parameters. The analysis results confirm that for a fixed Lode 

parameter, the failure strain decreases exponentially with the stress triaxiality and for a 

given stress triaxiality, it increases as 𝜇 approaches -1 and 1. It is found that the effect of 

the Lode parameter is more pronounced when the stress triaxiality is low. The analysis 

results also reveal the effect of the stress state on the deformed void shape within and near 

the localization band. In particular, under shear dominated conditions, voids tend to 

elongate and rotate, resulting in spindle-shaped voids aligning towards the direction of the 

localization plane.  
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CHAPTER IV  

INVESTIGATION OF THE EFFECT OF HYDROGEN ON DUCTILE FRACTURE 

THROUGH AN UNIT CELL MODEL 

 

4.1  Introduction 

From the last chapter, we learned that the stress state identified by different Lode 

parameter and stress triaxiality can lead to various fracture mode and fracture strain for 

ductile material. In this chapter, we are going to investigate how the ductile process will be 

affected when the matrix material undergoes plastic softening introduced by hydrogen 

diffused in metal.  

Hydrogen has an atomic structure of one proton and a single electron and is, in its 

natural state, a diatomic molecular gas, H2. The di-atomic hydrogen molecule is too large 

to enter the surface of a solid metal, unless dissociated into single atoms by electrochemical 

or chemisorption process. Nevertheless, molecular hydrogen gas can also readily enter a 

molten metal surface, often added accidentally as water contained in fluxes, mold dressings, 

and alloying additions, dissociating into the mono-atomic form on dissolution, and 

remaining as a mono-atomic solute on solidification. After dissolved in metal, hydrogen 

remains either at normal interstitial lattice (NILS) and is relatively mobile at ambient 

temperature or trapped into trapping sites such as dislocations that are readily available in 

the crystal or newly generated by plastic straining. When it is so trapped in dislocations, 

one of the observations is that the hydrogen atom will enhance the slip of dislocations by 
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reducing the barriers to dislocation motion as shown in Vlasov and Zaznoba (1999), and 

San Marchi et al. (2008) or reduces dislocation-dislocation interactions which facilitates 

planar slip and increase pile-up phenomena that leads to damage initiation as shown in 

Chateau et al. (2002). As per dislocation theory of plastic deformation, we consider the 

plastic deformation of metal as a homogenized representation of slip of dislocations 

(defects in crystal) occurs at atom-level. Therefore, mechanisms enhance the slip of 

dislocations will limit the ductility of material via the onset of extensive localized plasticity. 

This effect is called hydrogen enhanced localized plasticity (HELP) and can be modeled 

according to Birnbaum and Sofronis (1994). 

 A prerequisite to model the HELP effect is the accurate modeling of hydrogen 

transportation. Hydrogen transport in material has been found strongly influenced by the 

hydrostatic stress gradient and the plastic strain as shown in Johnson et al. (1958) and 

Troiano (1960). Thus the hydrogen transport equation is fully coupled with the elastic-

plastic deformation. Sofronis and McMeeking (1989) proposed a hydrogen transport model 

which coupled diffusion with hydrostatic stress and plastic strain. Oh et al. (2010) 

implemented this coupled hydrogen transport model in the commercial finite element 

program ABAQUS via a user subroutine. A similar approach will be applied in this chapter 

to implement the hydrogen transportation.  

Previous studies have discussed the effect of HELP through various approaches. 

Through detail and carefully performed experiments, Maier (1995) studied the effects of 

low activity hydrogen in a low alloy spheroidized steel and found that locally accumulated 

hydrogen can assist both void nucleation and void growth. To understand the effect of 

HELP under specific stress state, Liang et al. (2008) demonstrated that large amounts of 
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hydrogen trapped by dislocations have a strong effect on void coalescence through an 

axisymmetric unit cell containing a spherical void subject under different triaxiality values. 

Recently, Huang et al. (2018) has performed unit cell analysis considered the effect of Lode 

parameter and 3D shear deformation and has shown Lode parameter also has a significant 

influence on the ductile fracture in terms of void shape evolution and failure strain variation. 

However, the previous studies either omitted strain rate term in hydrogen diffusion 

equation such as Sofronis and McMeeking (1989) and Liang et al. (2008) or included the 

strain rate term, but the specifics of loading speed and steady state are not clearly discussed 

when applying to dimensionless unit cell model such as Huang et al. (2018). As the 

hydrogen diffusion requires low enough loading speed to reach steady state of hydrogen 

distribution between trapping site and NILS as shown in Taha and Sofronis (2001), and 

with unit cell assumption as dimensionless micromechanics model, the loading speed 

required to reach steady state in a micromechanics model, if not omitted in hydrogen 

diffusion governor equation, should not be determined arbitrarily. Therefore, in this chapter, 

we will first determine the loading speed to reach a steady state of hydrogen distribution, 

and then conduct a series of analysis using a unit cell model subject to stress states 

determined by various triaxiality and Lode parameter to investigate the effect of hydrogen 

on ductile fracture by its influence on the process of void growth and coalescence.  

 

4.2 Hydrogen transportation 

Dissolved in metal, hydrogen remains either at normal interstitial lattice or trapped 

into reversible trapping sites such as pre-exist or newly generated dislocations.  Therefore, 

the total hydrogen concentration can be expressed as 
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 𝐶 = 𝐶ே + 𝐶் = 𝛽𝜃ே𝑁ே + 𝛼𝜃்𝑁் 
 

(4.1) 

where:  

CN  is the hydrogen concentration at NILS,  

CT is the hydrogen concentration at the trapping site,  

α is the number of sites per trap,  

β is the number of NILS per solvent atom,  

θN is occupancy of NILS,  

θT is occupancy of the trapping sites,  

NN is the number of solvent atoms per unit lattice volume,  

NT is trap density.  

The two populations are assumed to be in equilibrium and the relationship between 

θN and θT can be described as in Oriani (1970) 

 ఏ

ଵିఏ
=

ఏಿ

ଵିఏಿ
exp ቀ

ௐಳ

ோ
ቁ  (4.2) 

where: 

WB is the binding energy of the trapping sites,  

R is gas constant,  

Θ is the absolute temperature.  

 

The governing equation for hydrogen transport detailed in Oh et al. (2009) is 

written as  

 ಿା(ଵିఏ)

ಿ

డ

డ௧
− ∇(𝐷ே∇𝐶ே) + ∇ ቀ

ಿಿಹ

𝑅Θ
∇𝜎ቁ + 𝜃்

ௗே

ௗఌು

డఌು

డ௧
= 0  (4.3) 

where: 

DL is the hydrogen diffusion constant through NILS,  
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VH is the partial molar volume of hydrogen,  

σm is mean stress,  

εp is plastic strain,  

డఌ

డ௧
 is the plastic strain rate.  

Oh et al. (2010) provided a relation between trap density and plastic strain   

 log(𝑁்) = 23.26 − 2.33 exp൫−5.5𝜀൯ (4.4) 

The total deformation rate consists of an elastic part, De, a plastic part, Dp and a 

part due to hydrogen-induced lattice deformation, Dh. The hydrogen-induced deformation 

rate can be expressed as Peisl (1978)    

 
𝐷

 =
𝑑

𝑑𝑡
ቊln ቈ1 +

(𝑐 − 𝑐)∆𝑣

3Ω
ቋ δ  

 
(4.5) 

where: 

c is the current total hydrogen concentration, 

c0 is initial hydrogen concentration,  

Ω is the mean atomic volume of the host metal atom,  

VH is the partial molar volume of hydrogen in solution, 

∆υ = VH/NA,  

NA is the Avogadro’s constant.  

Previous studies of Birnbaum and Sofronis (1994) and Tabata and Birnbaum(1983) 

showed that the dissolved hydrogen in iron increases the mobility of dislocation, causing 

the local yield stress to decrease with the increase in hydrogen concentration. Liang et al. 

(2003) proposed a phenomenological model to describe the hydrogen effect on the local 

yield stress: 
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where: 

σ0(c) is the initial yield stress in the presence of hydrogen,  

E is Young’s modulus, and ξ is a softening parameter.  

In the above equations, ε0 = σ0/E with σ0= σ0(0) representing the initial yield in the absence 

of hydrogen and ησ0 is the lowest possible value of the yield stress with η varying between 

0 and 1, considering that in reality hydrogen cannot cause the yield stress to vanish. 

The above models were implemented in ABAQUS via user subroutines UMATHT 

and UMAT. Although ABAQUS does not provide a user interface for solving the coupled 

hydrogen transport equation, it does provide a built-in program for heat transfer analysis 

and allows the user to define the thermal behavior of the material for transient heat transfer 

analysis. The analogous structure of the Fourier’s equation of thermal conduction and the 

hydrogen transport equation makes it possible to implement the hydrogen diffusion model 

in ABAQUS, where a UMATHT subroutine is used to match variables of the governing 

equations for heat transfer analysis with those for hydrogen diffusion.  

4.3 Unit cell model 

Experimental evidence over several decades had demonstrated that highly localized 

ductile rupture process is the trigger of hydrogen-induced fracture. Specifically, Tabata and 

Birnbaum (1983) revealed that the hydrogen-enhanced ductile fracture process involves 

microvoid nucleation, growth and coalescence when observe the behavior of pre-existed 
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crack, Robertson, and Birnbaum (1986) find hydrogen assisted localization shear band 

presents in the process of void/crack formation in the metal nickel, and Hänninen et al. 

(1993) reported similar phenomenon in various types of steel. These experiments implicit 

or explicitly reported that hydrogen intensifies the ductile fracture process by softening of 

a particular region at the microstructure scale. As shown in the previous chapter, ductile 

fracture process without the effect of hydrogen is heavily affected by the stress state applied 

upon representative microstructure of material. Therefore, to consider effect of stress state, 

studies such as Liang et al. (2007), Ahn et al. (2007) naturally tried to address this issue 

through unit cell model analysis, because even in carefully designed experiments, the stress 

state on a local scale is very hard to control and monitor. With carefully prepared numerical 

model and detailed analysis, the unit cell studies above revealed the effect of HELP under 

various stress states differentiated by stress triaxiality. However, as demonstrated by Kim 

et al. (2004) and Bai and Wierzbicki (2008), the micromechanics of ductile fracture process 

is not only influenced by the stress triaxiality but also by the Lode parameter, and showing 

by Luo and Gao (2018), a three-layered unit cell model can further correct the previously 

ignored influence of deformation differential between localized material layer and its 

adjunct layer. In this section, for the sake of completeness, we will briefly introduce the 

three-layered unit cell model, which is capable of examining the effect of stress state 

characterized by both triaxiality and lode parameter from a multi-scale perspective when 

investigating the effect of hydrogen-enhanced localized plasticity. 

4.3.1 Unit cell model formulation 

Here a uniform distribution of spherical voids is considered and the ratio between 

the void diameter and the void spacing is taken as 0.2, resulting in an initial void volume 
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fraction of f0 = 0.004189. To simulate flow localization into a band and consider the 

different deformation process experienced by the material inside and outside the band, Luo 

and Gao (2018) proposed a unit cell model consists three layers of material units. This unit 

cell model is capable of robustly determine the material failure strain and easy to 

implement in finite element analysis compare to previous models. Fig. 4.1 shows a typical 

½-symmetric finite element mesh of this unit cell model with an initial size of D0×6D0×D0 

containing three centered, spherical voids. Here the initial void radius is R1 = 0.2D0 in the 

middle material unit and R2 = 0.198D0 in the other two material units. Mesh difference 

between the middle material unit and the outside material units are carefully controlled as 

small as possible so that the mesh-introduced inhomogeneity is minimal. The mesh consists 

of 27,000 hybrid, 8-node thermally coupled hexahedral elements. 

 To study the behavior of the unit cell under various stress states, the stresses 

imposed on the unit cell should include both normal and shear components. Here the 

applied stress consists of three normal stress components and a shear stress component, the 

same as in Barsoum and Faleskog (2007), Dunand and Mohr (2014), Wong and Guo (2015), 

and Luo and Gao (2018). Fig. 4.2 illustrates the stress state imposed on the unit cell. 

Let Σij be the macroscopic Cauchy stress tensor and Sij be the stress deviator, Sij = Σij - Σmδij, 

where δij denotes the Kronecker delta, Σm represents the mean stress, Σm = Σii/3, and the 

summation convention is adopted for repeated indices. The von Mises equivalent stress is 

defined as 

 
Σ = ඥ3𝐽ଶ = ට

ଷ

ଶ
𝑆𝑆 . (4.8) 

The stress triaxiality is defined as the ratio between the mean stress and the von Mises 

equivalent stress, T = Σm / Σe, and the Lode parameter is defined as  
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 𝜇 = √3 tan൫𝜃 − ഏ

ల
൯, (4.9) 

where:  

𝜃 denotes the Lode angle, with cos(3𝜑) =
ଶయ

ଶఙ
య  and 𝐽ଷ =

ௌೕௌೕೖௌೖ

ଷ
. 

The in-air material properties used in this study obeys a power-law hardening true stress-

strain relation: 

 𝜎 = 𝐸𝜀             𝜀 ≤ 𝜀 , 

𝜎 = 𝜎 ቀ
ఌ

ఌబ
ቁ

ே

    𝜀 > 𝜀 . 
(4.10) 

where 𝜎 represents the yield stress in air of 400 MPa, E representing Young’s modulus in 

air of 200 GPa, υ is the Poisson’s ratio of 0.3, and the power-law straining hardening 

exponent n = 0.1. As mentioned in section 4.2, the following parameters are adopted from 

Sofronis and McMeeking (1989). The hydrogen lattice diffusion coefficient DL = 1.27×10-

2mm2/s. The molar volume of iron VM = 7.116×103mm3/mol and the lattice site density is 

NN = NA / VM = 8.46×1019 solvent lattice atoms/mm3. The number of interstitial lattice sites 

per solvent atom, β, is equal to 6 for BCC materials and number of sites per trap, α, is 

assumed to be 1 as mentioned by Hirth (1980). The partial molar volume of hydrogen in 

solid solution VH = 2.0×103 mm3/mol. The initial hydrogen distribution in the material is 

assumed to be uniform with CL = C0 = 2.084×1021atoms/m3.  
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The displacement boundary conditions on the outer surfaces of the unit cell are prescribed 

such that the macroscopic stress triaxiality and Lode parameter of the unit cell are kept 

constant during the entire deformation history. This is realized by using the method 

described in Luo and Gao (2018). By varying the boundary conditions, different stress state 

can be imposed on the unit cell and the material failure criterion in terms of failure strain 

as a function of stress triaxiality and Lode parameter can be obtained. 

 

4.3.2 Material failure criterion  

Localization of plastic deformation within a narrow band is an important precursor to 

ductile fracture. Luo and Gao (2018) presented a numerical approach for determining the 

material failure criterion based on the response of material outside the localization layer. 

Ductile fracture (void coalescence) occurs when the effective strain of outside layer no 

longer increases, and the further accumulated plastic strain only localize into the 

localization layer. To apply this failure criterion, the measurement of effective strain is 

required to be carefully defined. 

Figure 4.1. A typical ½-symmetric 
finite element mesh of the unit cell 

Figure 4.2. The stress state 
imposed on the unit cell 

𝜮𝟐𝟑 

𝜮𝟑𝟑 

𝜮𝟏𝟏 

𝜮𝟐𝟐 

𝑿𝟐 

𝑿𝟑 

𝑿𝟏 



 

81 
 

With the approach proposed and described in Luo and Gao (2018) used to apply the 

displacement-controlled loading, the finite element simulations are under displacement 

control. By taking the volume average of the local deformation gradient, the macroscopic 

deformation gradient can be given by the following expression 

 𝑭ഥ =
ଵ

బ
∫ 𝒙⨂𝑵d𝑆ୗబ

 . (4.11) 

where V0 is the volume of the unit cell in the undeformed configuration, S0 is the outer 

surface with the outward normal N, and x denotes the current position of a point on the 

deformed surface. Utilizing the boundary conditions described in Luo and Gao (2018), 𝑭ഥ 

can be expressed as  

 

𝑭ഥ =

⎣
⎢
⎢
⎢
⎡

బାఋభ

బ
0 0

0
బାఋమ

బ
0

0
ఋర

బ

బାఋయ

బ ⎦
⎥
⎥
⎥
⎤

. (4.12) 

while the macroscopic deformation gradient of a material unit is 

 

 

𝑭ഥ =

⎣
⎢
⎢
⎢
⎡

బାఋభ

బ
0 0

0
బାఋഥమ

బ
0

0
ఋഥర

బ

బାఋయ

బ ⎦
⎥
⎥
⎥
⎤

, (4.13) 

Where the displacement measures δi is adopted from overall unit cell boundary conditions 

and 𝛿ଶ̅ = ∫ 𝑢ଶd𝑆ଡ଼మୀమ
∗ − ∫ 𝑢ଶd𝑆ଡ଼మୀమ

∗ିଶబ
 and 𝛿ସ̅ = ∫ 𝑢ଷd𝑆ଡ଼మୀమ

∗ − ∫ 𝑢ଷd𝑆ଡ଼మୀమ
∗ିଶబ

 

are displacement measures for individual material unit, in which 𝑋ଶ
∗ = 3𝐷  for the top 

material unit, and 𝑋ଶ
∗ = 𝐷 for the middle material unit. 

For non-singular deformation gradient F, polar decomposition can be performed  
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 𝑭 = 𝑹𝑼 = 𝑽𝑹, (4.14) 

where 𝑹 is an orthogonal rotation tensor, and 𝑼 and 𝑽 are symmetric stretch tensors. The 

left Cauchy-Green deformation tensor is defined as 

 𝑩ିଵ = (𝑭ିଵ)்𝑭ିଵ = (𝑽ିଵ)்𝑽ିଵ = (𝑽ିଵ)ଶ. (4.15) 

The true strain can now be written in terms of V as 

𝜺 = −
ଵ

ଶ
ln𝑩ିଵ = −

ଵ

ଶ
ln(𝑽ିଵ)ଶ = ln𝑽. (4.16) 

The stretch tensor V can be expressed in term of its eigenvalues and eigenvectors as 

 𝑽 = ∑ 𝜆୧𝒏⨂𝒏
ଷ
ୀଵ , (4.17) 

where λi (i = 1, 2, 3) are eigenvalues of V and ni (i = 1, 2, 3) are corresponding eigenvectors. 

 

For a material unit, the macroscopic deformation gradient is given by Eq. (4.13), and the 

corresponding principal stretches are 

 

𝜆ଵ =

ඨଶబ
మାఋഥమ

మ
ାఋయ

మାଶబ൫ఋഥమାఋయ൯ାఋഥర
మ

ାටቀ൫ఋഥమିఋయ൯
మ

ାఋഥర
మ

ቁቀ൫ଶబାఋഥమାఋయ൯
మ

ାఋഥర
మ

ቁ

√ଶబ
 , 

𝜆ଶ =
(బାఋభ)

బ
, 

𝜆ଷ =

ඨଶబ
మାఋഥమ

మ
ାఋయ

మାଶబ൫ఋഥమାఋయ൯ାఋഥర
మ

ିටቀ൫ఋഥమିఋయ൯
మ

ାఋഥర
మ

ቁቀ൫ଶబାఋഥమାఋయ൯
మ

ାఋഥర
మ

ቁ

√ଶబ
, 

(4.18) 

and therefore, the principal logarithmic strains are 

 𝜀ଵ = ln𝜆ଵ, 

𝜀ଶ = ln𝜆ଶ, 

𝜀ଷ = ln𝜆ଷ. 

(4.19) 

Finally, the effective strain can be calculated as 
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𝜀 = ට

ଶ

ଷ
((𝜀ଵ − 𝜀)ଶ + (𝜀ଶ − 𝜀)ଶ + (𝜀ଷ − 𝜀)ଶ), (4.20) 

where 𝜀 =
(ఌభାఌమାఌయ)

ଷ
. 

Similarly, the macroscopic effective strain of the whole unit cell can be calculated using 

the principal stretches given by Eq. (4.21), corresponding to the macroscopic deformation 

gradient of the unit cell defined by Eq. (4.12)  

𝜆ଵ =

ඨଶబ
మାఋమ

మାఋయ
మାଶబ(ఋమାఋయ)ାఋర

మାට൫(ఋమିఋయ)మାఋర
మ൯൫(ଶబାఋమାఋయ)మାఋర

మ൯

√ଶబ
 , 

𝜆ଶ =
(బାఋభ)

బ
, 

𝜆ଷ =

ඨଶబ
మାఋమ

మାఋయ
మାଶబ(ఋమାఋయ)ାఋర

మିට൫(ఋమିఋయ)మାఋర
మ൯൫(ଶబାఋమାఋయ)మାఋర

మ൯

√ଶబ
. 

(4.21) 

With effective strain measure on the unit cell and individual material unit carefully defined, 

the material failure strain of the unit cell indicated by the moment when outside material 

unit reaches its maximum strain value can be easily applied.  

 

4.4 HELP effect under different loading speed 

The hydrogen diffusion in metal is not instantaneously and hydrogen requires time 

to propagation. If the loading speed is fast, the trap generation is ahead of hydrogen 

diffusion, therefore the effect of HELP may only partially apply due to the lower than 

saturate concentration of hydrogen in the trapping site. However, if the loading speed is 

slow such that the hydrogen distribution reaches a steady state, the effect of HELP can 

reach its maximum. In this part, we will investigate the effect of loading speed on HELP 

through unit cell model. 



 

84 
 

Here we define the loading speed as the effective strain per diffusion time at the 

instant of determined material failure by the criterion introduced in the last part. Loading 

speed A, B, C, D, E, and F is each faster by one magnitude with A the slowest and F the 

fastest. Here we take the response of unit cell model undergoing the stress state of T=1 and 

µ=0 with different loading speed as an example. Fig. 4.3 is the curves of macroscopic 

stress-strain response of the overall unit cell model, and Fig 4.4 shows the void growth 

curve under different loading speed. Here f0 represents the initial void volume fraction, f 

represents the current void volume fraction. All the curves in both Fig. 4.3 and Fig. 4.4 are 

cut off at material failure strain. As shown in Fig. 4.3 and Fig. 4.4, as the loading speed 

decrease, the failure strain and effective stress will decrease but will converge at a low 

enough loading speed, in this case, speed B. This indicates when the loading speed is lower 

than speed B, the diffusion time is long enough to saturate the trapping site, therefore 

considered a steady state. In the following chapter, the loading speed is carefully controlled 

lower than steady state loading speed and the results will only reflect the effect of HELP 

when diffusion time is long enough to saturate the trapping site. Furthermore, the stress-

strain curve of cases with HELP is uniformly lower than the case without HELP for a 

certain value, that’s due to the softening effect of initial hydrogen concentration. 
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Figure 4.3. Stress-strain curve variation with different loading speed for the case undergo 

stress state of T=1.0, µ=0.0 

 

Figure 4.4. Void growth curve variation with different loading speed for the case 

undergo stress state of T=1.0, µ=0.0 



 

86 
 

4.5 HELP effect under different stress triaxialities 

In the following, the HELP effect is systematically analyzed under various stress 

states. First, the Lode parameter is kept constant and different stress triaxialities are 

considered. It is well-known that the void growth rate is strongly influenced by the stress 

triaxiality as shown in Hancock and Mackenzie (1976) and Hancock and Brown (1983). 

Fig. 4.5 compares the void growth curve between cases with the effect of HELP and cases 

without, the curves are again cutoff at failure strain. Here letter “h” in the legends 

corresponds to the results with the HELP effect included. The considered stress triaxiality 

varies from T = 0.6 to T = 1.2 while the Lode parameter is kept as µ = 0. As shown in Fig. 

4.5, with or without HELP effect, in the considered triaxiality range, the higher stress 

triaxiality always results in higher void growth rate, and void growth accelerates as 

deformation increases. Comparing cases with and without the HELP in Fig. 4.5, the cases 

with HELP effect shows a higher void growth rate than the cases without HELP. 

Furthermore, void growth is significantly accelerated by the HELP effect for the high stress 

triaxiality case while the HELP effect on the void growth rate is less pronounced for the 

low stress triaxiality case.  
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Figure 4.5. Curves of normalized void volume fraction vs. macroscopic effective strain 

of the unit cell model with and without HELP as the stress triaxiality varies from T = 0.6 

to T = 1.2 while the Lode parameter is kept as µ = 0. 

 

Fig. 4.6 concludes the failure strain of cases with and without HELP for the above 

stress triaxiality range. The filled dots representing failure strain determined for cases with 

the effect of HELP while the circle dots representing those without. The results suggest 

that HELP has little influence on the failure strain when the stress triaxiality is low but has 

a more significant effect on the failure strain when the stress triaxiality is higher. For µ = 

0 and in the range of stress triaxiality of T = 0.6, 0.7,0.8,0.9,1.0,1.1, and 1.2, failure strain 

reduction by the effect of HELP is 96.5%,95.6%,94.3%,85.7%, 84.6% and 77.0%, 

respectively. As shown in Fig. 4.6, it is found that generally, the higher the void growth 

rate is, the more significant the HELP effect is on the ductility of the material. 
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Figure 4.6. Variation of the failure strain with stress triaxiality with and without HELP. 

 

The contours of specific distribution of key values such as Von Mises stress, plastic 

strain, and hydrogen concentration can help us explain the influence of stress triaxiality on 

HELP effect in detail. Two cases with the same Lode parameter, µ = 0, but different stress 

triaxialities, T = 0.6 and T = 1.2, are compared. Fig. 4.7 and Fig. 4.8 shows the case of 

stress triaxiality T = 0.6 and Fig. 4.9 and Fig. 4.10 shows the case of stress triaxiality T = 

1.2. Figs. 4.7 and 4.9 are the contours of von Mises stress, plastic strain and trapping 

hydrogen concentration when the macroscopic effective strain of the middle material unit 

is equal to 0.5 for T=0.6 and 0.165 for T=1.2. Fig. 4.8 and Fig.4.10 show the contour of 

plastic strain when the macroscopic effective strain of overall unit cell model is equal to 

0.72 for T=0.6 and 0.2 for T=1.2.  

Undergoing the loading of stress state T=0.6 without the HELP effect, the plastic 

strain is observed localizing into a band with a thickness comparable to the size of the void 

and more concentrate near the void, Fig. 4.7(a). The higher plastic strain causes more 
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hydrogen trapped into this area, Fig. 4.7(c). With the HELP effect the plastic strain 

localization and hydrogen trapping become more significant, Fig. 4.7(b) and Fig. 4.7 (d). 

The phenomenon of trapped hydrogen accumulating in the area of high plastic strain is also 

reported in the work by Taha and Sofronis (2001). The higher concentration of trapped 

hydrogen in the area near the void surface, Fig. 4.7(d), in turn works with the HELP effect 

resulting in more pronounced material softening (low Mises stress) in this region as shown 

in Fig. 4.7(f). Consequently, the void growth is accelerated, and the material failure strain 

is reduced. However, the softening effect brought by HELP is limited under lower 

triaxiality and therefore under a same macroscopic effective strain shortly before material 

failure, the unit cell model considered HELP and the one does not only show minor 

difference in terms of plastic strain and deformation as shown in Fig. 4.8.  
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Figure 4.7. Contours of plastic strain (SDV13), trapping hydrogen concentration 

(SDV26) and von Mises stress when the macroscopic effective strain of the inside layer 

material unit is equal to 0.5 for the case of low stress triaxiality (T = 0.6) and Lode 

parameter µ=0: (a) plastic strain without HELP effect, (b) plastic strain with HELP effect, 

(c) trapping hydrogen concentration without HELP effect, (d) trapping hydrogen 

concentration with HELP effect, (e) von Mises stress without HELP effect, (f) von Mises 

stress with HELP effect. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.8. Contours of the plastic strain for the case of stress triaxiality T = 0.6 and 

Lode parameter µ = 0.0 at same macroscopic effective strain value of 0.7: (a) plastic 

strain without HELP effect, (b) plastic strain with HELP effect 

 

The results of plastic strain localization and hydrogen trapping into a band are 

similar but much more significantly concentrated to the area near the void surface for the 

stress triaxiality T = 1.2 case, Figs. 4.9(a-d). The significantly higher concentration of 

trapped hydrogen in the area near the void surface works with the HELP effect and 

resulting in dramatic material softening in this region, Fig. 4.9(f). Consequently, the void 

growth is greatly accelerated, and the material failure strain is reduced significantly. As a 

result, as shown in Fig. 4.10, under a same macroscopic effective strain of 0.2 the HELP 

case is showing strain localization into the middle layer and will then lead to material 

failure, while the case without HELP is still showing nearly uniform strain accumulation 

between outside and inside layer material because the load carrying capacity of the middle 

layer material did not reduce by HELP. The effect of HELP is therefore more significant 

when the stress triaxiality is higher compare T=0.6 and T=1.2 cases.  

(a) (b) 
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Figure 4.9. Contours of plastic strain, trapping hydrogen concentration  and von Mises 

stress when the macroscopic effective strain of the inside layer material unit is equal to 

0.164 for the case of low stress triaxiality (T = 1.2) and Lode parameter µ=0: (a) plastic 

strain without HELP effect, (b) plastic strain with HELP effect, (c) trapping hydrogen 

concentration without HELP effect, (d) trapping hydrogen concentration with HELP 

effect, (e) von Mises stress without HELP effect, (f) von Mises stress with HELP effect. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.10. Contours of the plastic strain for the case of stress triaxiality T = 1.2 and 

Lode parameter µ = 0.0 at same macroscopic effective strain value of 0.2: (a) plastic 

strain without HELP effect, (b) plastic strain with HELP effect 

 

4.6 HELP effect under different Lode parameters 

In this section, the stress triaxiality is kept at T = 1.0 and different Lode parameters 

of from µ = -1 to µ = 0.63 are considered. Fig. 4.11 compares the void growth curve 

between cases with the effect of HELP and cases without, the curves are again cutoff at 

failure strain. The plotted curves of µ =0, µ =0.5 and µ =0.63 with triaxiality kept as T = 

1.0 showing that a higher void growth rate is more pronounced in with HELP cases than 

the cases without HELP. Furthermore, void growth is significantly accelerated by the 

HELP effect for the µ =0 case while the HELP effect on the void growth rate is less 

(a) (b) 
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pronounced for cases with µ values towards 0.63. Although the cases of µ = -1 to µ =0 is 

omitted in this figure to avoid curve overlapping, but a similar trend of void growth rate 

higher at 0 and lower towards -1 is also observed.  

Fig. 4.12 shows the failure strain determined varying with different Lode parameter. 

The filled dots representing failure strain determined for cases with the effect of HELP 

while the circle dots representing those without. Similar with the HELP effect on void 

growth rate, the effect of HELP on failure strain reduction is most pronounced around L=0 

and become less significant towards µ = 0.63  and µ = -1. For T = 1.0 and in the range of 

Lode parameter of µ = -1, -0.63, -0.3,0,0.3, 0.5, and 0.63, failure strain reduction by the 

effect of HELP is 96.4%,95.5%,89.0%,85.7%, 94.7%,98.6% and 99.0%, respectively. 

 

 

 

Figure 4.11. Curves of normalized void volume fraction vs. macroscopic effective strain 

of the unit cell model with and without HELP as the Lode parameter varies from µ=0.0 to 

µ=0.63 while the Lode parameter is kept as T=1.0. 
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Figure 4.12. Variation of the failure strain with Lode parameter with and without HELP. 

 

Two cases with the same stress triaxiality T=1.0 but different Lode parameters, µ 

= 0.0 and µ = 0.63, are compared. Fig. 4.13 and Fig. 4.14 are regarding the case of Lode 

parameter µ = 0.0 and Fig. 4.15 and Fig. 4.16 are regarding the case of µ = 0.63. Figs. 4.13 

and 4.15 are the contours of von Mises stress, plastic strain and trapping hydrogen 

concentration when the macroscopic effective strain of the middle material unit is equal to 

0.215 for µ = 0.0 and 0.53 for µ = 0.63. Fig. 4.14 and Fig. 4.16 are the contours of plastic 

strain when the macroscopic effective strain of overall unit cell model is equal to 0.31 for 

µ = 0.0 and 0.675 for µ = 0.63.  

The T=1.0 and µ = 0.0 case is comparable with T=1.2, µ = 0.0 case. The higher 

plastic strain localization in the area near the void surface attracts a higher concentration 

of trapped hydrogen, and with the HELP effect resulting in more pronounced material 
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softening in this region. Consequently, at the same macroscopic effective strain of 0.31, 

the with HELP case exhibits larger void and more intense plastic strain localization 

compare to the without HELP case as shown in Fig. 4.14. As shown in Fig. 4.15, the 

softening effect brought by HELP is limited in case T=1.0 and µ = 0.63 and only occurs at 

a very small portion of void surface. Therefore, under a same macroscopic effective strain 

of 0.675 shortly before material failure, the unit cell model with and without HELP only 

showed minor difference in terms of plastic strain and deformation as shown in Fig. 4.16.  
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Figure 4.13. Contours of plastic strain, trapping hydrogen concentration  and von Mises 

stress when the macroscopic effective strain of the inside layer material unit is equal to 

0.215 for the case of triaxiality T = 1.0 and Lode parameter µ=0.0: (a) plastic strain 

without HELP effect, (b) plastic strain with HELP effect, (c) trapping hydrogen 

concentration without HELP effect, (d) trapping hydrogen concentration with HELP 

effect, (e) von Mises stress without HELP effect, (f) von Mises stress with HELP effect. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.14. Contours of the plastic strain for the case of stress triaxiality T = 1.0 and 

Lode parameter µ = 0.0 at same macroscopic effective strain value of 0.31: (a) plastic 

strain without HELP effect, (b) plastic strain with HELP effect 

 

 

 

 

 

 

(a) (b) 
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Figure 4.15. Contours of plastic strain, trapping hydrogen concentration  and von Mises 

stress when the macroscopic effective strain of the inside layer material unit is equal to 

0.53 for the case of triaxiality T = 1.0 and Lode parameter µ=0.63: (a) plastic strain 

without HELP effect, (b) plastic strain with HELP effect, (c) trapping hydrogen 

concentration without HELP effect, (d) trapping hydrogen concentration with HELP 

effect, (e) von Mises stress without HELP effect, (f) von Mises stress with HELP effect. 

(a) (b) 

(c) (d) 

(e) 
(f) 
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Figure 4.16. Contours of the plastic strain for the case of stress triaxiality T = 1.0 and 

Lode parameter µ = 0.63 at same macroscopic effective strain value of 0.675: (a) plastic 

strain without HELP effect, (b) plastic strain with HELP effect 

 

4.7 Discussion 

From the results present in last two parts, we found that the effect of HELP on 

failure strain is more pronounced when the void growth process is accelerated by HELP 

despite the void size at material failure. For example, for a similar material failure void 

size, the more void growth is accelerated, the more failure strain reduction is observed in 

T=1.2,1.0 and 0.8 cases with µ=0. Also, with very different material failure void size 

between T=0.6, µ=0 and T=1.0,µ=0.63, because the void growth rate in both cases are 

insignificantly accelerated, the reduction on failure strain are both minimums compared 

with other cases in their group.  And the cases with higher void growth rate such as T=1.2, 

µ=0, and T=1.0,µ=0, all exhibit more pronounced trapped hydrogen concentration and 

highly localized strain on the void surface are compare to their peers as shown in Figs. 4.7, 

(a) (b) 
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4.9, 4.13, 4.15. The hydrostatic stress gradient and plastic strain are two factors that affect 

trapped hydrogen concentration, the former rises hydrogen concentration in the NILS and 

the latter generates new trapping sites for hydrogen to fill. To investigate the effect of those 

two factors, we plot the hydrostatic stress, plastic strain and total hydrogen concentration 

contour of without HELP cases in Fig. 4.17. All the contours are captured at inside layer 

material units at a strain of 0.2, and Figs. 4.17(a-c), (d-f), and (g-i), are the invariant I1=3× 

hydrostatic stress, plastic strain, and total hydrogen concentration contour for case T=0.6,  

µ=0, T=1.0, µ=0.63, and T=1.0, µ=0. 

 

 

Figure. 4.17. The I1 invariant, plastic strain, and total hydrogen concentration contours 

for stress states of T=0.6, µ=0: (a-c), T=1.0, µ=0.63: (d-f), and T=1.0, µ=0.0: (g-i). 
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As shown in Fig. 4.17, across the evaluated stress triaxialities and Lode parameters, 

the plastic strain distributions on the material unit always has more influence on the 

distribution of total hydrogen concentration compare to hydrostatic stress, especially at the 

area around the surface of voids. This phenomenon shows that in the studied cases, the 

effect of hydrostatic stress on rising hydrogen concentration by attracting hydrogen to 

NILS is less than the effect of plastic strain on rising hydrogen concentration achieved by 

generating new trapping sites. 

Therefore, based on micromechanical evidence from the above-performed unit cell 

analysis, we can conclude that the effect of HELP is mainly depending on the plastic strain 

distribution within the representative material volume. Specifically, the region of adjunct 

to void surface is of most interest, with more plastic strain localizing into this area, the void 

growth process will be more intense under the effect of HELP. And the failure strain 

reduction by HELP is mainly achieved through accelerating the void growth process. 

 

4.8 Conclusion remarks 

Hydrogen effect on material ductility is studied by incorporating the hydrogen 

diffusion process and the induced HELP effect into a finite element program. A series of 

finite element analyses of a representative material volume subjected to various stress 

states were carried out under certain loading speed that ensures the hydrogen distribution 

reaches steady state. The evolution of local stress and deformation states result in hydrogen 

redistribution in the material, which in turn changes the material’s flow property. In general, 

the HELP effect promotes material failure by accelerating the void growth process. 

Furthermore, the HELP effect on ductile fracture is mainly influenced by local plastic strain 
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distribution, which determined by stress state, as characterized by the triaxiality and Lode 

parameter. The following briefly summarizes the findings of this study:  

1. The loading speed of unit cell with initially evenly distributed hydrogen 

concentration will affect the ductility reduction intensity of HELP. Lower loading 

speed will accelerate the void growth process and reduce more failure strain until a 

low enough speed is reached. Lower than this certain speed, the failure strain will 

not be further reduced, and the hydrogen distribution is considered reaching a 

steady state.  

2. The localized plastic strain generates new trapping sites and trapping more 

hydrogen in the localized area. HELP effect will soften this area and leads to further 

localization of plastic strain and hydrogen concentration. 

3.  From the analysis results obtained in this study, the effect of hydrostatic stress on 

rising hydrogen concentration is concluded weaker than the effect of plastic strain 

localization, which effectively increases local hydrogen concentration by 

generating new trapping sites. 

4. Under stress state of higher triaxiality and near 0 Lode parameter, the plastic strain 

will be more localized into the region of near void surface, such that enables HELP 

to significantly accelerate the void growth process and causing pronounced 

reduction in ductility. The effect of hydrogen on void growth accelerating and 

failure strain reduction will gradually diminish at lower stress triaxiality and Lode 

parameter increases or becomes more negative as the plastic strain localization is 

weaker at the area near void surface.  
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CHAPTER V   

INVESTIGATION OF DUCTILE DAMAGE MODEL THROUGH SINGLE 

MATERIAL POINT TEST 

 

5.1 Introduction 

The unit cell model presented in the last two chapters represents a material volume 

on the micromechanics scale. The ductile fracture process is investigated by analyzing the 

overall material response of a material point constructed by matrix material containing an 

explicit spherical void. Another approach to simulate a material point is to use a 

homogenized computational cell with implicit void volume friction. Gurson type ductile 

damage models are among the most popular method to describing the stress-strain 

relationship and damage evaluation with a computational cell at the similar scale of unit 

cell model and can be applied to much larger scale by using the computational cell as an 

element in FEA mesh. With a finite number of elements, ductile damage model can be 

applied to FEA mesh representing an arbitrary structure of interest, such the stress-strain 

evaluation and failure analysis can be performed at structure level. With knowledge gained 

from unit cell model, we can have a more detailed understanding of how ductile damage 

can be described and what is the effect of stress state on the failure of ductile material. In 

this chapter, we will discuss several Gurson type ductile damage models and the damage 

parameters they utilized. The evolution of these damage parameters will be calculated with 

damage models implemented in single material point model. 
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5.2 Ductile damage models 

Ductile fracture is usually attributed to a process of void nucleation, growth and 

coalescence under triaxial stress state (McClintock, 1968; Rice and Tracey, 1969; Van 

Stone et al., 1985; Garrison Jr. and Moody, 1987) and a process due to shear localization 

when the stress triaxiality becomes low (Rice, 1976; Yamamoto, 1978; Mear and 

Hutchinson, 1985; Barsoum and Faleskog, 2007; Mohr and Marcadet, 2015). GTN model 

is one of the most widely used micromechanical models for ductile fracture when 

considering the void nucleation, growth, and coalescence process. The yield function of 

the GTN model takes the following form 

 
Φ = ൬

𝜎

𝜎ெ
൰

ଶ

+ 2𝑞ଵ𝑓cosh ൬
𝑞ଶ

2

𝜎

𝜎ெ
൰ − (1 + 𝑞ଵ𝑓ଶ) = 0 

 
(5.1) 

where f is the current void volume fraction, 𝜎 is the macroscopic effective stress, 𝜎 is 

the hydrostatic stress, and 𝜎ெ  is the current yield stress of the matrix material. The 

adjustment parameters q1 and q2 were introduced by Tvergaard (1981, 1982) to improve 

model predictions. The evolution of the void volume fraction is given by  

 𝑓̇ = 𝑓̇௪௧ + 𝑓̇௨௧   (5.2) 

where 𝑓̇௪௧  and 𝑓̇௨௧  represent the growth and nucleation of the voids. 

Evaluation of the void growth rate is based on the bulk material incompressibility under 

plastic deformation 

 𝑓̇௪௧ = (1 − 𝑓)𝜀̇
  (5.3) 

Where 𝜀̇
  represents the first invariant of the plastic strain rate tensor, which 

defines the rate of volume change. Void nucleation can be stress or strain controlled. A 
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commonly used strain controlled void nucleation law follows a normal distribution in a 

statistical way as suggested by Chu and Needleman (1980) 

𝑓̇௨௧ = 𝐴ே𝜀ெ̇
  ,      𝐴ே =



ௌ√ଶగ
exp ቈ−

ଵ

ଶ
൬

ఌಾ


ିఌ

ௌ
൰

ଶ

               (5.4) 

where 𝜀ெ
  represents the matrix plastic strain, Sn and 𝜀 are the standard deviation 

and the mean value of the distribution of the plastic strain, and fn is the total void volume 

fraction that can be nucleated. Parameters fn, 𝜀 and Sn can be treated as material constants. 

The effect of rapid void coalescence after the onset of localization is taken into 

account by replacing f in Eq. (5.1) with an effective porosity f* defined by the following 

bilinear function (Tvergaard and Needleman, 1984)   

 𝑓∗ = ቐ

𝑓                                for  𝑓 ≤ 𝑓

𝑓 +

భ

భ
ି

ି
(𝑓 − 𝑓)             for  𝑓 ≤ 𝑓 ≤ 𝑓      

       (5.5) 

where fc is the critical void volume fraction at which void coalescence begins and 

the material softening is accelerated thereafter. As f reaches ff , the material loses all stress 

carrying capacity. 

GTN model is capable of describing the volumetric damage caused by the 

nucleation and growth of voids in the matrix material. However, under shear dominated 

loading, the quantitative relationship between void size and failure strain cannot be firmly 

established since shear localization can occur with or without the existence of voids. To 

consider the process of shear localization, recently Xue (2008) and Nahshon and 

Hutchinson (2008) proposed similar modifications to the original GTN model to 

incorporate the shear-induced damage. In these modifications, the void volume fraction 

that appears in Eq. (5.1) is replaced by a general damage parameter containing 

contributions of both volumetric damage and shear damage while the form of the GTN 
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yield function is retained. Nahshon and Hutchinson (2008) claimed that f is no longer 

directly tied to the plastic volume change but rather should be regarded as a damage 

parameter and introduced an additional term in the evolution equation of f to account for 

shear damage. Xue (2008) directly introduced a new damage parameter, D, which contains 

both void damage and shear-induced damage, and substituted the q1f term in Eq. (5.1) with 

D. Zhou et al. (2014) discussed the drawbacks of using a unified single damage parameter 

in the GTN yield function and suggested that two damage parameters, the volumetric 

damage (f) and the shear damage (Ds), should be included in the modified GTN model. 

This is done by combining the damage mechanics concept of Lemaitre with the GTN void 

growth model. When the total damage (q1f + Ds) becomes unity, the material loses its load 

carrying capacity completely. It is shown that this new model is not only capable of 

predicting damage and fracture under low (even negative) triaxiality conditions but also 

suppresses spurious damage that has been shown to develop in earlier modifications of the 

GTN model for moderate to high triaxiality regimes (Zhou et al., 2014). This model takes 

the form of 

Φ = ቀ
ఙ

ఙಾ
ቁ

ଶ

+ 2𝑞ଵ𝑓cosh ቀ
మ

ଶ

ఙೖೖ

ఙಾ
ቁ − [1 + (𝑞ଵ𝑓 + 𝐷௦)ଶ − 2𝐷௦] = 0            (5.6) 

where f represents the void volume fraction (volumetric damage), which grows due 

to the hydrostatic tension and the evolution equation for f is the same as in the original 

GTN model as described in Eqs. (5.2-5.5); Ds represents the shear damage, which 

accumulates under the deviatoric stress state. This modified model degenerates to the GTN 

model when shear damage does not exist.  

In establishing the shear damage evolution law, Xue (2008), Nahshon and 

Hutchinson (2008) as well as Zhou et al. (2014) all derived the evolution of shear damage 
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under the pure shear or simple shear state and then extended it to other stress states by 

introducing a Lode angle dependent function. The shear damage law of Nahshon and 

Hutchinson (2008) assumes linear dependence on the porosity and the effective strain 

increment. Xue (2008) developed his shear damage law based on the change of the void 

ligament of a unit cell model under simple shear deformation. Zhou et al. (2014) assumed 

that shear damage is not directly linked to the void volume fraction and regarded it as an 

accumulation of plastic deformation.  

From the unit cell analysis in chapter III and IV, we do observe that the failure 

strain is strongly related with the plastic strain locally but not macroscopically, so here we 

use the damage evolution law proposed by Xue (2008) to describe the shear damage 

mechanism. This evolution law is expressed as  

  �̇�௦ =  𝑞ଷ𝑓ర𝑔(𝜃)𝜀ெ


𝜀ெ̇
   (5.7) 

with  

 𝑔(𝜃) = ቀ1 −
|ఏಽ|

గ
ቁ  (5.8) 

Here shear damage is considered as a weighted integration of the equivalent plastic 

strain increment. According to Xue (2008), 𝑞ସ should be taken as 1/2 for 2D problems and 

1/3 for 3D problems. The 𝑞ଷ term is an adjustable parameter to scale the growth rate of the 

shear damage. This shear extended GTN ductile damage model can be described by Eq. 

(5.6), with Ds adopted from Eq.(5.7). 

In the current form of shear extended GTN model, the matrix material obeys the 

isotropic J2 flow plasticity theory, where 𝜎 is the von Mises equivalent stress. But as we 

mentioned in Chapter II, the plasticity response is not always isotropic for real material. 

Stewart and Cazacu (2011) have extended GTN model to account for the plastic anisotropy 

and tension-compression asymmetry exhibited by the matrix material. To further consider 
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the effect of shear damage, as shown by Zhai et al.(2016), a macroscopic yield criterion for 

anisotropic material based on the above shear extended GTN model can then be expressed 

as  

Φ = ൬
𝜎

𝜎ெ
൰

ଶ

+ 2𝑞ଵ𝑓cosh ൬
𝑞ଶ

ℎ

𝜎

𝜎ெ
൰ − [1 + (𝑞ଵ𝑓 + 𝐷௦)ଶ − 2𝐷௦] = 0 

𝑓̇ = 𝑓̇௪௧ + 𝑓̇௨௧   ; 𝑓̇௪௧ = (1 − 𝑓)𝜀̇


    ; 𝑓̇௨௧ = 𝐴ே𝜀ெ̇


; 

 

 𝐴ே =


ௌ√ଶగ
exp ቈ−

ଵ

ଶ
൬

ఌಾ


ିఌ

ௌ
൰

ଶ

; 

 

  �̇�௦ =  𝑞ଷ(𝑓∗)ర𝑔(𝜃)𝜀ெ


𝜀ெ̇


    ;  𝑔(𝜃) = ቀ1 −
|ఏಽ|

గ
ቁ ; (5.9) 

 
 𝐷 = 𝑞ଵ𝑓∗ + 𝐷௦ ; 
 

𝑓∗ = ൝
𝑓                                for  𝐷 ≤ 𝑞ଵ𝑓

𝑓 +
ଵ/భି

ି
(𝑓 − 𝑓)             for  𝑞ଵ𝑓 ≤ 𝐷 ≤ 𝑞ଵ𝑓        

where ℎ  is a material parameter depending on the anisotropy coefficients as well 

as the strength differential coefficient and 𝜎 is defined by Eq. (2.11).  

In this model, two damage parameters, accounting for the void damage and the 

shear damage respectively, are coupled in the yield function and the flow potential. The 

material is assumed void free initially and nucleation of voids follows a strain-controlled 

criterion suggested by Chu and Needleman (1980). The majority of void nucleation takes 

place when the matrix plastic strain reaches the range 𝜀 ± 𝑆. After void nucleation, the 

evolution of void volume fraction is described by the void growth rate, which is evaluated 

based on the bulk material incompressibility under plastic deformation. Therefore, the void 

growth rate is driven by the plastic deformation and the stress triaxiality. Because the 

matrix material is plastically anisotropic and asymmetric with respect to tension and 
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compression, the void growth rate is influenced by the anisotropy coefficients as well as 

the strength differential coefficient. The shear damage is considered as a weighted 

integration of the equivalent plastic strain increment. The evolution of the shear damage is 

driven by the matrix plastic strain and plastic strain rate and is also a function of the void 

volume fraction and Lode angle. 

By enforcing equality between the rates of macroscopic plastic work and the matrix 

plastic dissipation, the matrix yield stress 𝜎ெ, and the matrix plastic strain rate  ɛ̇ெ
 , are 

coupled through 

 ቀ1 −


భ
ቁ 𝜎ெɛ̇ெ


=  𝜎ɛ̇


  (5.10) 

where the matrix material follows a prescribed hardening function 𝜎ெ൫𝜀ெ


൯ . 

 

5.3 Single material point test 

To illustrate the predicted material response of the different damage models 

discussed above, a series of numerical tests was conducted, and the results were compared 

among GTN model, Shear modified GTN model, and the shear modified GTN model 

applied to anisotropic material. The single material point test will generate the effective 

stress-plastic strain response with proportional stress loading history. Focused on 

illustrating the evolution of volumetric and shear damage, void nucleation is omitted for 

the sake of clarity.  In the following content, we will illustrate the implement of single 

material point calculation using the shear extended GTN model applied to anisotropic 

material, the model is defined by Eq. (5.9), because other above-mentioned models can be 

easily degraded from it. With L set to identity matrix and k=0, the model degrades to the 
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isotropic shear extended GTN model, with further degrading of set q3 and q4 to 0, the shear 

damage is eliminated, and the model then becomes GTN model. 

In the numerical examples presented in this section, the isotropic matrix material 

was assumed to follow the J2 flow plasticity theory and obey a power-law hardening, which 

coincides with the uniaxial tensile hardening curve in the rolling direction of anisotropic 

material.  

𝜎 = 𝐸𝜀             𝜀 ≤ 𝜀 , 

𝜎 = 𝜎 ቀ
ఌ

ఌబ
ቁ

ே

    𝜀 > 𝜀 . 
(5.11) 

where E represents the Young’s modulus, σ0 is the initial yield stress, 𝜀 is the initial yield 

strain and N is the strain hardening exponent. The material parameters are taken to be 𝜀 =

ఙబ

ா
= 0.002, 𝑣 = 0.3 (Poisson’s ratio), and 𝑁 = 0.1. 

The anisotropic material parameters are chosen as Table2.1 representing a 

transversely isotropic material for which the matrix has a weaker in-plane yield strength 

than through-thickness yield strength 

The damage parameters, if applicable to the model, are listed in Table5.1 with no 

consideration of void nucleation. 

Table 5.1. Model parameters for damage models 

𝑞ଵ 𝑞ଶ 𝑞ଷ 𝑞ସ 𝑓 𝑓 𝑓 
1.5 1.0 2.25 1/3 0.005 0.1 0.25 

 

The stress tensor 𝜎  can be represented by a proportionality factor 𝜎 multiplied 

with a constant tensor 𝑅. Consider only three principal stress components, then 𝜎ଵ = 𝜎ଵଵ, 

𝜎ଶ = 𝜎ଶଶ and 𝜎ଷ = 𝜎ଷଷ are the principal stress values,  𝜎ଵ
ᇱ = 𝜎ଵଵ

ᇱ , 𝜎ଶ
ᇱ = 𝜎ଶଶ

ᇱ   and 𝜎ଷ
ᇱ = 𝜎ଷଷ

ᇱ  
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are the principal values of the deviatoric stress tensor defined by 𝜎
ᇱ = 𝜎 − 𝜎𝛿, where 

𝜎 =
ఙೖೖ

ଷ
 is the mean stress. The anisotropic plasticity model has an effective stress of 

𝜎 = ට
(|ఙෝభ|ିఙෝభ)మା(|ఙෝమ|ିఙෝమ)మା(|ఙෝయ|ିఙෝయ)మ

(|ఏభ|ିఏభ)మା(|ఏమ|ିఏమ)మା(|ఏయ|ିఏయ)మ
, where 𝝈ෝ = 𝑳: 𝝈ᇱ . Note that the concept of 

triaxiality and Lode parameter does not automatically apply on the anisotropic material 

model because the term of effective stress in the definition of triaxiality, T =
ఙ

ఙ
 ,is 

calculated as Von Mises plasticity. Although a similar concept of triaxiality factor of T =

ఙ

ఙಲ
 sometimes is defined for the anisotropic model, but in this chapter, we only use T and 

µ value based on the isotropic material model.  

Due to the softening effect introduced by the damage factors in the model, use 𝜎 as 

the loading parameter is impractical. A more feasible approach would be to find plastic 

multiplier 𝜆 and apply it incrementally to compute 𝜎 and the internal variables 𝜀ெ
 , 𝑓,and 

𝐷௦ at each step accordingly.  

A consistency condition can be expressed as 

Φ̇ =
డ

డఙೕ
�̇� +

డ

డఙಾ

డఙಾ

డఌಾ
 𝜀ெ̇


+

డ

డ∗

డ∗

డ
𝑓̇ +

డ

డೞ
�̇�௦  (5.12) 

Substitute 𝜀ெ
 , 𝑓,and 𝐷௦ as functions of �̇�: 

�̇� =
ଵ

ு

డ

డఙೕ
�̇�     (5.13) 

H is the hardening modulus 

𝐻 = − ൬
డ

డఙಾ

డఙಾ

డఌಾ


డఌಾ


డఒ
+

డ

డ∗

డ∗

డ

డ

డఒ
+

డ

డೞ

డೞ

డఒ
൰   (5.14) 
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for the considered model, 
డఙಾ

డఌಾ
  is the tangent modulus of matrix material in uniaxial tensile 

direction along rolling direction, and other terms can be calculated as: 

డ

డఙಾ
= −2

ఙಲ
మ

ఙಾ
య

− 3
భమ∗ఙ

ఙಾ
మ

sinh (
ଷమఙ

ఙಾ
)  

డఌಾ


డఒ
=

ೕೕ

(ଵି భ⁄ )ఙಾ
, 𝑛 =

డ

డఙೕ
  

డ

డ∗
=  2𝑞ଵ cosh ቀ

ଷమఙ

ఙಾ
ቁ − 2𝑞ଵ(𝑞ଶ𝑓∗ + 𝐷௦)  

డ∗

డ
= ൝

1 for 𝑓 ≤ 𝑓
ଵ భ⁄ ି

ି
for 𝑓 ≤ 𝑓 ≤ 𝑓

  

డ

డఒ
= (1 − 𝑓)𝑛  

డ

డೞ
= 2 − 2(𝑞ଵ𝑓∗ + 𝐷௦))  

డೞ

డఒ
= 𝑞ଷ(𝑓∗)ర𝑔(𝜃)𝜀ெ

 డఌಾ


డఒ
  

For stress state of components with fixed ratio, Eq. (5.13) can be written as Eq. (5.15) and 

the increment of 𝜎 is obtained as Eq. (5.16). 

�̇� =
ఙ̇

ு

డ

డఙೕ
𝑅     (5.15) 

𝜎̇ =
ுఒ̇

ങಅ

ങೕ
ோೕ

     (5.16) 

We use MATLAB to solve Eq. (5.16) numerically using a forward Euler integration 

scheme. �̇� is chosen to be small enough that the solution was converged. Initial value of 𝜎, 

corresponding to the onset of plastic deformation were solved from the yield function Φ in 

Eq. (5.9). 
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5.4 Results and discussion 

5.4.1 Uniaxial loading 

Fig. 5.1 and Fig. 5.2 are the comparison of the Von Mises effective stress versus 

effective plastic strain curves and the void growth rates among three models. The black 

solid curve, red dashed curve, and blue single dotted curve represent the uniaxial tensile 

results predicted by GTN model, shear modified GTN model, and the shear modified GTN 

model applied to anisotropic material along rolling direction. Additionally, the green solid 

curve is the material response of no damage matrix material, which plotted as a reference.  

As shown by Fig. 5.1, for uniaxial tensile loading, corresponding to T=0.33 and 

µ=-1 for isotropic material, there is no difference between predicted results from GTN and 

GTN-Shear model as there is no shear damage generated under this loading condition. The 

softening of materials is solely caused by the same amount of volumetric damage for those 

two models under uniaxial tensile loading as shown by Fig. 5.2. The predicted anisotropic 

material response of uniaxial tensile loading along rolling direction however showed some 

deviation from the isotropic results under the influence of ℎ, which reflected the effect of 

anisotropy on damage evolution. Because the anisotropic material considered here is 

overall stronger than the isotropic material, the applied h value decreases the void growth 

rate for anisotropic material, resulting a larger failure strain. Despite the anisotropic 

material response in rolling direction is softened from the same damage free matrix 

material hardening curve, the strain-stress and the void growth rate curves of anisotropic 

material are significantly different from the isotropic cases, showing that the modified 

parameters for anisotropic material in ductile damage model do have some effect on 

damage evolution.  
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Figure 5.1. Comparison of the Von Mises effective stress versus effective plastic strain 

response between the GTN model, GTN-Shear model, and GTN-Shear model with 

anisotropic material under uniaxial tensile loading. 

 

Figure 5.2. Comparison of the effective void growth rates predicted by the GTN model, 

GTN-Shear model, and GTN-Shear model with anisotropic material under uniaxial 

tensile loading. 
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The stress triaxiality and Lode parameter considered in this study can only apply to 

isotropic material obeying Von Mises plasticity or the plasticity response of uniaxial 

loading along rolling direction of the anisotropic material. Therefore, the comparison of 

results with the same T or µ value is only feasible for isotropic material model. And the 

predicted results are compared separately as two groups, namely isotropic and anisotropic 

groups. The results of damage models based on isotropic material are focused on 

illustrating the evolution of volumetric and shear damage parameters under different T and 

µ, while results from the anisotropic material will be focusing on the difference of material 

response between different loading directions.  

 

5.4.2 Evolution of volumetric and shear damage 

As illustrated in the above uniaxial loading case, under generalized tensile loading, 

both GTN and GTN-Shear damage model predicted the same result because GTN-Shear 

model is predicting no shear damage Ds under this stress state. 

Under generalized shear loading condition, corresponding to a 𝜃 value of 0, i.e. µ 

of 0, the predicted results nevertheless showed some discrepancy. As shown in Fig. 5.3, 

when the triaxiality is low, at 0.7, the predicted stress-strain curve of GTN-Shear model is 

much lower than the GTN model, and the predicted material failure indicated by the sudden 

drop of stress-strain curve is at much smaller effective strain for GTN-Shear model. The 

additional softening of material and reduction on failure strain on top of GTN model is 

caused by the accounted shear damage as hinted by Fig. 5.4. The additional shear damage 

softened the material while f* is the same value at an earlier stage in both models, and the 

shear damage contributed in critical void volume fraction of void coalescence and resulting 
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an earlier coalescence shown by the earlier sudden rise of f* value in GTN-Shear model. 

As triaxiality raise to 1.0 and 1.3, the difference between stress-strain results predicted by 

GTN model and shear extended GTN model become less significant. As shown in Fig. 5.5, 

the decreased difference between two models is because the volumetric damage, i.e. 

effective void friction f*, becomes dominant in GTN-Shear model, and the shear damage 

no longer plays a greater role in damage mechanics. Note the shear damage is still 

increasing with triaxiality, and that is due to its correlation with the void volume friction f , 

which is larger at higher triaxiality. The phenomenon of volumetric damage domination at 

higher triaxiality is consistent with the observation in unit cell analysis that the void size is 

larger at the point of material failure when the triaxiality is higher. 

 

Figure 5.3. Comparison of the predicted Von Mises effective stress versus effective 

plastic strain response between GTN and GTN-Shear model under different triaxiality of 

0.7,1.0 and 1.3 when Lode parameter kept as 0. 
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Figure 5.4. Comparison of the effective void growth rates predicted by GTN and GTN-

Shear model under different triaxiality of 0.7,1.0 and 1.3 when Lode parameter kept as 0. 

 

 

Figure 5.5. Comparison of the effective void growth rates and the shear damage 

evolution predicted by GTN-Shear model under different triaxiality of 0.7,1.0 and 1.3 

when Lode parameter kept as 0. 
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The shear damage predicted by GTN-Shear model is not only affected by volume 

friction but also depending on the Lode parameter as calculated by Eq.(5.6). As shown by 

Fig. 5.6, under a certain triaxiality, the predicted shear damage is highest at Lode parameter 

µ=0 and become gradually lower when Lode parameter moves toward-1 or 1. It’s worth 

mention that the demonstrated shear damage counter from Xue (2008) did not differential 

the damage evolution between positive and negative Lode parameter values, while the unit 

cell model suggests that the failure strain is not symmetric about 0 Lode parameter, and 

this difference might worth investigation and probably should be accounted in future 

studies. 

 

 

Figure 5.6. Comparison of the shear damage evolution predicted by GTN-Shear model 

under different Lode parameter of 0, ±0.2, ±0.4, ±0.6, ±0.8 when triaxiality kept as 0.7. 
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5.4.3 Response of an anisotropic material 

The GTN-Shear damage model is modified and applied to the anisotropic plasticity 

material discussed in section 2.3. By modify equivalent stress and therefore yield condition, 

plus accounting volumetric and shear damage evolution affected by anisotropy, this model 

can capture the ductile damage process of an orthotropic material with tension-compression 

strength differential. In this section, we will be focus on the anisotropic stress-strain 

response and damage evolution of this model, other complex factors of this model will be 

demonstrated in the next chapter by the calibration and verification of this model with 

experimental data. 

 

Figure 5.7. Normal-rolling plane stress yield locus for void-free material (black line) and 

the initial yield points predicted by GTN-Shear model with anisotropic material for 

uniaxial tensile loading along directions of 0, 15, 30, 45, 60, 75, 90 degrees from rolling 

direction to normal direction. 
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Fig. 5.7 shows the initial yielding points predicted by GTN-Shear model with 

anisotropic material for uniaxial loading along directions of 0, 15, 30, 45, 60, 75, 90 degrees 

from rolling direction to normal direction. The points are marked by stress components 

ratio of 𝜎ଵଵ/𝜎ଵ
்  and 𝜎ଷଷ/𝜎ଵ

்  , with  𝜎ଵଵ  and 𝜎ଷଷ  respect to the material coordinate. 

Because of the identical principal stress components ratio, the effective stress 

ratio(ඥ𝜎ଵଵ
ଶ + 𝜎ଷଷ

ଶ) versus effective strain curve shown in Fig. 5.8 are proportional and 

reflecting the proportional hardening evolution law and proportional damage evolution 

among those loading cases along different uniaxial loading directions.   

 

 

Figure 5.8. Comparison of effective stress ratio versus effective plastic strain results 

predicted by GTN-Shear model with anisotropic material for uniaxial tensile loading 

along directions of 0, 15, 30, 45, 60, 75, 90 degrees from rolling direction to normal 

direction. 
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Fig. 5.9 shows the initial yield points predicted by GTN-Shear model with 

anisotropic material for shear loading in normal-rolling plane and rolling-transverse plane. 

The points are again marked by stress components ratio of the shear plane. From effective 

stress ratio versus effective strain curve shown in Fig. 5.10, now we notice that the curves 

are not proportional alike uniaxial tensile loading, this is mainly because the shear damage 

in the model is not factored by yield stress or the stress components over the rolling 

direction yield stress, therefore passively reflected the strength differential along different 

directions.  

 

 

Figure 5.9. Normal-rolling and rolling-transverse plane stress yield locus for void-free 

material (black line) and the initial yield points predicted by GTN-Shear model with 

anisotropic material for shear loading in normal-rolling plane and rolling-transverse 

plane. 
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Figure 5.10. The effective stress ratio versus effective plastic strain response predicted 

by GTN-Shear model with anisotropic material for shear loading in normal-rolling plane 

and rolling-transverse plane. 

From the damage evolution of anisotropic material through single material point 

model, we can see the damage parameters are still treated as ad-hoc parameter due to the 

complex nature of the anisotropic material and didn’t quite evolved from its carefully 

formed isotropic definition. Still, this damage parameter setup is already capable of 

describing complex ductile damage process accounting shear and volumetric damage as 

shown in the following chapter. Together with the anisotropic model extending its potential 

to capture incrementally evolved yield locus at various effective plastic strain levels and 

tension-compression strength differential.  
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CHAPTER VI   

APPLICATION OF THE DUCTILE DAMAGE MODEL TO PREDICT THE 

RESPONSE OF A COMMERCIALLY PURE TITANIUM  

 

6.1 Introduction 

We have learned from the unit cell models that the volumetric damage alone, a 

damage factor closely affected by the intensity of stress triaxiality, is insufficient to 

describe the material damage process. At least other damage factors affected by the Lode 

parameter, such as shear damage, should be also considered when modeling ductile damage. 

In last chapter, we have reviewed the shear considering GTN damage model, and discussed 

briefly on its application on anisotropic material. In this chapter, we will further 

demonstrate the capacity of this model through a complex process of calibration and 

verification with commercially pure titanium test data, and detail the evolution of the 

damage parameters and the effect of anisotropy of matrix material.  

The commercially pure titanium (CP-Ti) considered in this study has a hexagonal 

closed packed (hcp) crystal structure at room temperature and is known to display plastic 

anisotropy and have a strong strength differential in tension and compression. It is 

generally agreed that the strong strength differential is associated with the activation of 

twinning (Chun et al., 2005; Salem et al., 2003; Hosford et al., 1973). 



 

125 
 

To consider damage evolution in anisotropic material such as CP-Ti, we use the 

GTN-Shear model with anisotropic material from the last chapter, combined from Stewart 

and Cazacu (2011) and Zhou et al. (2014), to describe ductile damage evolution in CP-Ti. 

 

6.2 Specimens and material properties 

The CP-Ti considered in this study was purchased in the form of 12.7mm thick hot-

rolled plate, and all specimens were machined from this plate.  

The test matrix included uniaxial tensile specimens and compressive specimens in 

the rolling (RD), transverse (TD) and normal through thickness (ND) directions, tensile 

notched round bars, grooved plane strain specimens, and thin wall torsion specimens in the 

RD and TD. Thin wall specimens were subjected to pure torsion and combined tension-

torsion loading. Sketches of selected specimens are shown in Fig. 6. 1., detailed description 

can be found in Zhai et al. (2016). 

 

 

Figure 6.1. Sketches of a smooth round bar, a notched round bar, a compression 

specimen, a torsion tension specimen, and a flat grooved plane strain specimen. 
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6.2.1 Matrix material calibration 

Among the experiments conducted, the uniaxial tensile and compressive data in RD, 

TD, and ND, the in-plane tensile data along the 45° direction, the pure torsion data with 

the axis of the specimen along RD and TD are used for calibrating the matrix plasticity 

model, and the round tensile specimen and the pure torsion specimen in TD are used for 

the ductile damage model calibration. Other specimens, including the notched round tensile 

specimens, the flat grooved plane strain tensile specimens and the tension-torsion 

specimens are used for model validation.  

The engineering stress-strain curves and true stress vs. true plastic strain curves 

obtained from the uniaxial tension and the uniaxial compression tests in the RD, TD, and 

ND are shown in Figs. 6.2-6.4.  

 

 

Figure 6.2.  Stress-strain curves in tension and compression along the in-plane rolling 

direction (RD): (a) the engineering stress-strain curve; (b) the true stress vs. true plastic 

strain curve. 
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Figure 6.3.  Stress-strain curves in tension and compression along the in-plane transverse 

direction (TD): (a) the engineering stress-strain curve; (b) the true stress vs. true plastic 

strain curve. 

 

Figure 6.4.  Stress-strain curves in tension and compression along the normal direction 

(ND): (a) the engineering stress-strain curve; (b) the true stress vs. true plastic strain 

curve. 

 

The different stress-strain curve obtained from various directions confirm that the 

material is anisotropic and displays tension-compression asymmetry. Furthermore, the 

extent of plastic anisotropy and strength differential response evolves as the plastic 

deformation increases. In Figs. 6.2-6.4, the symbols, for which the numerical values are 

listed in Table 6.1, indicate the data point used in the optimization process to calculate the 

linear transformation matrix L and the strength differential coefficient k. 
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Table 6.1. Stress-strain data in rolling, transverse and normal directions at 
different plastic strain levels 

 
 
Plastic 
Strain 

True stress (MPa) 
Uniaxial 

Tension in 
Rolling 

Direction 

Uniaxial 
Compression 

in Rolling 
Direction 

Uniaxial 
Tension in 
Transverse 
Direction 

Uniaxial 
Compression 

in 
Transverse 
Direction 

Uniaxial 
Tension in 

Normal 
Direction 

Uniaxial 
Compression 

in Normal 
Direction 

0.01 405.07 365.65 445.04 451.71 444.99 451.98 
0.05 487.76 461.73 515.96 548.27 523.38 561.92 
0.1 530.59 538.25 550.00 609.23 573.94 623.87 

0.15 555.62 619.20 568.64 660.00 598.09 672.11 
0.2 579.71 704.65 591.62 709.26 617.11 717.44 

0.25 603.92 779.38 616.64 758.32 632.69 763.12 
0.3 628.28 831.93 642.09 804.44 647.22 803.43 

 

The anisotropy and strength differential coefficients, L and k, involved in the matrix 

plasticity model is determined by minimizing the error function given by Eq. (6.1).  

𝐸𝑟𝑟𝑜𝑟(𝑳, 𝑘) = ∑ 𝑤 ቀ
ఙഀ



ఙబ
 − 1ቁ

ଶ

 + ∑ 𝑤 ቀ
ఙഀ



ఙబ
 − 1ቁ

ଶ

 + ∑ 𝑤 ቀ
ఙഓ

ఙబ
 − 1ቁ

ଶ

 + ∑ 𝑤 ൬
ഀ

ഀ
ೣ − 1൰

ଶ

   (6.1) 

where i represents the number of experimental tensile yield stress, j represents the number 

of experimental compressive yield stress, k represents the number of experimental shear 

yield stress, wi, wj and wk are the weighting factors given to the respective experimental 

values, r is the Lankford coefficient, 𝜎
் is the experimental tensile yield stress along the 

rolling direction and the theoretical values 𝜎ఈ
்  and 𝜎ఈ

  are calculated through the 

equations given in Zhai et al.(2016) . MATLAB programs are written to compute the error 

function and find optimal sets of anisotropic coefficients. The MATLAB built-in 

minimization function “fminsearch” are used for finding the error function minimums. 
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Using the tensile and compressive flow stress data in RD, TD, and ND, the in-plane 

tensile flow stress data along the 45° direction, the pure torsion data with the axis of the 

specimen along RD and TD, and the r-values obtained in the uniaxial tensile test along RD, 

the anisotropy coefficients L and k are calibrated, and the parameters are listed in Table 

6.2. The experimental data indicate that there is distortion of the yield surface even for the 

simplest monotonic loading paths. As a result, the anisotropy coefficients vary with the 

plastic strain.  

 

Table 6.2. Calibrated anisotropy and strength differential coefficients 
 

𝜀 k L11 L12 L13 L22 L23 L33 L44 L55 L66 

0.01 -0.0167 0.9997 -0.0017 0.0020 0.0655 0.9362 0.0618 1.0525 0.7544 1.0250 

0.05 -0.0850 1.0556 -0.0314 -0.0242 1.0030 0.0284 0.9957 1.1517 0.8924 1.1436 

0.1 -0.1528 0.9790 -0.0013 0.0224 0.9539 0.0475 0.9302 1.0362 0.8087 1.0350 

0.15 -0.2329 1.0359 -0.0342 -0.0018 1.0185 0.0157 0.9861 1.1191 0.9590 1.1919 

0.2 -0.3254 0.9515 0.0118 0.0367 0.9390 0.0492 0.9141 0.9737 0.8644 1.1677 

0.25 -0.4510 1.0152 -0.0155 0.0003 0.9999 0.0156 0.9841 1.0613 0.9924 1.5451 

0.3 -0.5226 1.0078 -0.0075 -0.0003 0.9933 0.0142 0.9861 1.0386 0.9983 1.7473 

      
 

Fig. 6.5 plots the predicted yield loci given by Eq. (2.11) in comparison with the 

experimental data at different strain levels, where the open circles represent the RD tensile 

flow stress data, the solid circles represent the RD compressive flow stress data, the open 

triangles represent the TD tensile flow stress data, the solid triangle represent the TD 

compressive flow stress data, the open diamonds represent the ND tensile flow stress data, 

and the solid diamonds represent the ND compressive flow stress data. It is shown that the 

criterion describes well the asymmetry and anisotropy in yielding. Furthermore, the yield 

loci change shape as the plastic strain increases, reflecting the material’s texture evolution. 
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Figure 6.5. The evolution of the yield loci with accumulated plastic strain 

 

6.2.2 Calibration of the ductile damage model 

In Eq. (5.9), parameters q1 and q2 were introduced by Tvergaard (1981, 1982) to 

the original Gurson model to improve model predictions. Here the values suggested by 

Tvergaard (1981, 1982) are adopted, i.e., q1 = 1.5, q2 = 1. The ductile damage model 

calibration follows a two-step strategy as shown in Zhai et al. (2016). For specimens that 

the onset of fracture was dominated by the void damage mechanism, e.g., the round tensile 

specimens, the calibration of void related parameters are conducted. The shear damage 

parameters are calibrated using the test data, which fracture was dominated by shear 

damage, e.g., the pure torsion specimen.   

           Predicted yield loci 

          
           RD  

          
            TD 

          
           ND 

       
           Tension 

       
           Compression 
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Table 6.3 lists the calibrated damage model parameters. The B-notched, D-notched, 

E-notched round bar, the flat grooved plane strain tensile specimen and tension-torsion 

specimen are simulated using the calibrated model parameters and the numerical results 

are compared with the experimental data in section 6.3. All the specimens are modeled in 

three dimensions because the material is anisotropic. 

Table 6.3. Calibrated damage model parameters 

nf  
cf  

3q  

0.002 0.035 1.6 
 

6.3 Comparison between the numerical and the experimental results  

This section shows the comparisons between the model predictions and the 

experimental data. In the numerical simulations, the tensile stress-strain curve obtained 

from the smooth round specimen in the rolling direction is used together with the calibrated 

model parameters listed in Tables 6.2 and 6.3.   

6.3.1 Finite element models of specimens 

In the finite element analyses, three-dimensional, 8-node brick elements with 

reduced integration (C3D8R) are used for all specimens, the element size is 63.5μm 

×63.5μm × 63.5μm in sensitive regions where failure may occur. Fig. 6.6 shows typical 

finite element meshes of the notched round tensile specimen, the plane strain tensile 

specimen, and the torsion specimen. 
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Figure 6.6. Typical finite element meshes of the notched round tensile specimen, 

the plane strain tensile specimen and the torsion specimen 

 

6.3.2 Load vs. displacement and torque vs. twist angle response 

Figs. 6.7(a-b) compare the computed load vs. displacement curves of the smooth 

round tensile specimens in RD and TD with the experimental data while Fig. 6.7 (c) 

compares the computed load vs. displacement curve of the miniature tensile specimen in 

ND with the experimental data. Figs. 6.7(d-f) compares the load vs. displacement response 

between the numerical simulations and the experimental data for the compression 

specimens in the RD, TD, and ND. There was no failure observed in compression 

specimens before the experiments were stopped. In these figures, the thicker lines (in red) 

represent the simulation results and the thinner lines (in black) represent the corresponding 

experimental data. Fig. 6.8 compares the computed torque vs. twist angle responses of the 

pure torsion specimens with the experimental data. Since all these specimens are used to 

identify the anisotropic and strength differential coefficients of the plasticity model, the 
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predicted mechanical responses of these specimens agree very well with the experimental 

measurements.  

 

Figure 6.7. Comparisons between the numerical predictions and the experimental data 

for the tension specimens: (a) smooth round bar in rolling direction; (b) smooth round bar 

in transverse direction; (c) tensile bar in normal direction, and compression specimens: 

(d) rolling direction; (e) transverse direction; (f) normal direction. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 



 

134 
 

 

Figure 6.8.  Comparisons of the computed torque vs. twist angle response with 

the experimental data for the pure torsion specimen (“R” refers to the rolling direction 

and “T” refers to the transverse direction) 

 

To validate the calibrated model, the notched round tensile specimens, the flat 

grooved plane strain tensile specimens and the tension-torsion specimens were analyzed. 

Fig. 6.9 compares the computed load vs. displacement responses with the experimental 

data for the notched round tensile specimens having different notch radii. The comparisons 

are made in both rolling and transverse directions. The load-displacement discrepancy is 

partially due to material hardening and plastic anisotropic effects without explicitly 

considering the different values of stress triaxiality. Generally, the model can accurately 

predict the load-displacement responses of these specimens.  

(a) (b) 
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Figure 6.9.  Comparisons of the computed force vs. displacement responses with 

the experimental data for the notched round tensile specimens in rolling and transverse 

directions:  (a) Specimen D (notch radius = 0.762mm); (b) Specimen B (notch radius = 

1.524mm); (c) Specimen E (notch radius = 3.81mm)  

(a) 

(c) 

(b) 
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Fig. 6.10 compares the computed load vs. displacement responses with the 

experimental data for the flat grooved plane strain tensile specimens having different 

groove radii. The comparisons are made in both rolling and transverse directions. The 

predicted load and displacement curves are higher than the experimental results especially 

along the rolling directions. One likely reason of this error is the overprediction of 

compressional yield tress in ND direction. According to Fig. 6.5, the yield loci for plastic 

strain larger than 0.1 falls outside the corresponding experimental points, this means the 

model will predicts a higher compression yield stress value in ND direction than 

experiment value. And during the tensile loading, plane strain specimens are experiencing 

the most compression in ND direction among all tested specimens. 

In general, the model is reasonably capable of predicting the load-displacement 

responses of these specimens. The failure predictions of the round notched specimens show 

better agreement with experimental observations than the flat grooved specimens.  
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Figure 6.10.  Comparisons of the computed force vs. displacement responses with 

the experimental data of plane strain tensile specimens in rolling and transverse 

directions:  (a) Specimen G (groove radius = 5.08mm); (b) Specimen H (groove radius = 

16.256mm) 

 

(a) 

 (b) 
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Figs. 6.11-6.14 provide the comparisons of the axial force vs. axial displacement 

and torque vs. twist angle responses between the numerical simulations and the 

experimental data for the tension-torsion specimens with various applied tensile 

displacement/twist angle ratios. These displacement/angle (mm/radian) ratios are listed in 

Table 6.4. Different applied tensile displacement/twist angle ratio leads to different stress 

states experienced by the specimen (Graham et al., 2012). Model predictions agreed very 

well with experiments. Specimens with lower tensile displacement/twist angle ratios tend 

to show a sharp decrease in axial force in the plastic region. This is possibility because the 

material exhibits the so-called Swift effect, i.e., the material elongates naturally under 

torsional loading. Because of the displacement-controlled loading of the experiment, when 

the applied tensile displacement is less than the natural elongation of the specimen, a 

compressive force will be resulted on the specimen. 

 

Table 6.4. Ratio of the applied tensile displacement over the applied twist angle 

used in the tension-torsion test 

 

Specimens 

Rotation axis along the 
rolling direction 

L9 L8 L7, L10 L6, L11 

Rotation axis along the 
transverse direction 

T5 ,T11 T10  T9, T6 T8, T1 

Tensile displacement/twist angle 
(mm/radian) 

0.10668 0.2794 0.5334 1.1684 
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Figure 6.11. Comparisons between the numerical predictions and the experimental data 

for the tension-torsion specimen (tensile displacement/twist angel (mm/radian) = 1.1684) 

in rolling direction: (a) torque vs. twist angle; (b) axial force vs. axial displacement, and 

transverse direction: (c) torque vs. twist angle; (d) axial force vs. axial displacement. 

 

 

(b) (a) 

(c)   (d) 
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Figure 6.12. Comparisons between the numerical predictions and the experimental data 

for the tension-torsion specimen (tensile displacement/twist angel (mm/radian) = 0.5334) 

in rolling direction: (a) torque vs. twist angle; (b) axial force vs. axial displacement, and 

transverse direction: (c) torque vs. twist angle; (d) axial force vs. axial displacement 

(a)   (b) 

(c)       (d) 
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Figure 6.13. Comparisons between the numerical predictions and the experimental data 

for the tension-torsion specimen (tensile displacement/twist angle (mm/radian) = 0.2794) 

in rolling direction: (a) torque vs. twist angle; (b) axial force vs. axial displacement, and 

transverse direction: (c) torque vs. twist angle; (d) axial force vs. axial displacement 

(a)  (b) 

(c)  (d) 
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Figure 6.14. Comparisons between the numerical predictions and the experimental data 

for the tension-torsion specimen (tensile displacement/twist angel (mm/radian) = 

0.10688) in rolling direction: (a) torque vs. twist angle; (b) axial force vs. axial 

displacement, and transverse direction: (c) torque vs. twist angle; (d) axial force vs. axial 

displacement 

 

(a) 
(b) 

(c) 
      (d) 
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6.3.3  Prediction of fracture initiation and propagation 

Fig. 6.15 shows the contour plots of the G-grooved plane strain specimen (groove 

radius is 5.08 mm) in RD. Both the stress triaxiality and the total damage have higher 

values in a region at the specimen center, shown in Figs. 6.15 (a-b). Figs. 6.15 (a-b) are the 

center section view of the specimen. Consequently, fracture initiates at the center of the 

specimen and propagates to the sides of the specimen, Fig. 6.15 (c). This figure is a front 

view of the specimen. Fig. 6.15 (d) shows the photo of a fractured specimen which verifies 

the simulation result shown in Fig. 6.15 (c). 

 

Figure 6.15. Crack initiation and growth in the flat grooved plane strain tensile 

specimens (groove radius is 5.08 mm) in the rolling direction: (a) contour plot of 

triaxiality before fracture initiation; (b) contour plot of total damage before fracture 

initiation; (c) final fracture; (d) photo of a fractured specimen. 

 

Fig. 6.16 shows the fracture initiation and propagation process in the pure torsion 

specimen with the axis along TD. The maximum plastic strain occurs in the transition 

region due to strain concentration, and as a result, the shear damage is highest in the 

(a) (b) (c) (d) 
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transition region. The model predicts fracture initiates in the transition region and 

propagates circumferentially, Fig. 6.16 (c), which agrees with the experimental observation, 

Fig. 6.16 (d).  

 

 

Figure 6.16. Crack initiation and growth in the pure torsion specimen (specimen axis is 

along the transverse direction): (a) equivalent plastic strain contour; (b) shear damage 

contour; (c) final fracture; (d) photo of the fractured specimen. 

 

Fig. 6.17 shows the fracture initiation and propagation process in a tension-torsion 

specimen with a small tension-torsion ratio. Here the specimen axis is along TD and the 

applied tensile displacement/twist angle (mm/radian) ratio is 0.10688. Similar to the pure 

torsion specimen, fracture initiates at the transition region where the plastic strain is the 

highest and propagates circumferentially.  

As the applied tension-torsion ratio changes, the stress state experienced by the 

material changes, which affects the ductile damage evolution process. Fig. 6.18 shows the 

fracture initiation and propagation process in a tension-torsion specimen with a larger 

applied tension-torsion ratio. Here the specimen axis is along TD and the applied tensile 

displacement/twist angle (mm/radian) ratio is 1.1684. The contour plots of equivalent 

(a) (b) (c) (d) 
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plastic strain, shear damage, porosity and total damage are shown in Figs. 6.18(a-d). In this 

case, fracture initiates at the outer equator in the middle of specimen gauge section and 

propagates circumferentially, Fig. 6.18 (e), which agrees with the experimental observation, 

Fig. 6.18 (f). Also a similar conical phenomenon in gage section was observed from both 

the simulation and experiment test result. 

 

Figure 6.17. Crack initiation and growth in the tension-torsion specimen (specimen axis 

is along the transverse direction; applied tensile displacement/twist angel ratio is 0.10688 

mm/radian): (a) equivalent plastic strain contour; (b) shear damage contour; (c) final 

fracture; (d) photo of the fractured specimen. 

(a) (b) (c) (d) 
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Figure 6.18. Crack initiation and growth in the tension-torsion specimen (specimen axis 

is along the transverse direction; applied tensile displacement/twist angel ratio is 1.1684 

mm/radian): (a) equivalent plastic strain contour; (b) shear damage contour; (c) porosity; 

(d) total damage; (e) final fracture; (f) photo of the fractured specimen. 

 

(a) (b) (c) 

(d) (e) (f) 
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The change of fracture initiation locations reflects the damage evolution process in 

the specimen, which contains two contributions, void damage and shear damage. Figs. 

6.19-6.21 show the damage evolution in the element where fracture initiated in the pure 

torsion specimen, the tension-torsion specimen (applied tensile displacement/twist angel 

ratio = 1.1684 mm/radian), and the B-notch specimen. In the pure torsion specimen, void 

nucleates at a plastic strain value around 0.22 but does not grow as plastic deformation 

increased. Therefore, the total damage is solely due to shear damage accumulation. In the 

tension-torsion specimen, both void growth and shear deformation contribute to the total 

damage. In the B-notch specimen, the total damage is almost entirely due to void growth. 

The model is able to capture the effect of stress state and the change of fracture mechanism. 

 

 

Figure 6.19. Pure torsion specimen in transverse direction: (a) damage evolution in a 

critical element in the transition region; (b) specimen torque vs. twist angle response and 

damage evolution in the critical element. 

 

 

 

 

(a) (b) 
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Figure 6.20. Tension-torsion specimen in transverse direction (the ratio of tensile 

displacement vs. twist angel = 1.1684 mm/radian): (a) damage evolution in the element at 

the outer equator of the specimen; (b) specimen torque vs. twist angle response and 

damage evolution in the critical element; (c) specimen axial force vs. axial displacement 

response and damage evolution in the critical element 

 

Figure 6.21. B-notch tensile specimen in transverse direction: (a) damage evolution in 

the center element; (b) specimen load-displacement response and damage evolution in the 

critical element 

(b) 

(a)  

(c) 

(a) (b) 
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6.4 Concluding remarks 

In this chapter, the shear-modified GTN model applied to anisotropic material is 

applied to describe the ductile fracture process in commercially pure titanium.  

Uniaxial tension and compression tests were conducted at different orientations to 

quantify the plastic behavior of the material. It’s found that not only the material exhibits 

strong plastic anisotropy and tension-compression asymmetry, but the extent of plastic 

anisotropy and strength differential response also evolves as the plastic deformation 

increases. Experiments of notched round specimens, grooved plane strain specimens, pure 

torsion specimens and tension-torsion specimens were conducted to consider the effect of 

stress state on ductile damage evolution. With carefully calibrated material parameters, the 

shear-modified GTN model applied with anisotropic material can accurately capture the 

responses of above specimens in terms of load-displacement or torque-twist angle curves 

and the fracture initiation locations.  
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORKS 

 

7.1 Conclusions 

In this dissertation, the micromechanics of ductile fracture process has been 

investigated from many perspectives. The conclusion from the study is summarized as 

following:  

1.) A unit cell model consists of three void-containing material units is proposed 

based on the observation that plastic flow is localized in a band when ductile fracture occurs. 

Three material units are stacked in the direction normal to the localization plane, with the 

help of periodic boundary conditions and slightly void size differential, the localization can 

then take place in the middle material unit. This unit cell model allows material failure 

point to be unambiguously captured by the unloading of outside material units due to the 

loss of loading carrying capacity of the middle material unit. This failure criterion is very 

easy to implement in finite element analysis and proven to be robust for determining failure 

strain compare to previous models proposed by Barsoum and Faleskog (2007) and Wong 

and Guo (2015). Boundary conditions of this unit cell model are prescribed such that the 

macroscopic stress can be kept proportionally during the loading history, therefore a 

constant triaxiality and Lode parameter can be prescribed.  

A series of unit cell analyses are conducted for various macroscopic stress 

triaxialities and Lode parameters. The analysis results confirm that for a fixed Lode 
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parameter, the failure strain decreases exponentially with the stress triaxiality and for a 

given stress triaxiality, it increases as L approaches -1 and 1. It is found that the effect of 

the Lode parameter is more pronounced when the stress triaxiality is low. The effect of the 

stress state on the orientation of the localization plane is investigated by considering T = 1 

with varying L values following the approach of Barsoum and Faleskog (2011).  

Additionally, analyses are conducted to study the effect of voids outside the 

localization band. It is found that for most cases voids in the outside layer do affect the 

stress state and void behavior in the inside layer and therefore should be accounted for in 

the unit cell model. The analysis results also reveal the effect of the stress state on the 

deformed void shape within and near the localization band. In particular, under shear 

dominated conditions, voids tend to elongate and rotate, resulting in spindle-shaped voids 

aligning towards the direction of the localization plane.  

2). Hydrogen effect on material ductility is studied by incorporating the hydrogen 

diffusion process and the induced HELP effect into a unit cell model. A series of finite 

element analysis subjected to various stress states are carried out under certain loading 

speed. It’s found that the loading speed of unit cell with initially evenly distributed 

hydrogen concentration will affect the ductility reduction intensity of HELP. Lower 

loading speed will accelerate the void growth process and reduce more failure strain until 

a low enough speed is reached. Lower than this certain speed, the failure strain will not be 

further reduced, and the hydrogen distribution is considered reaching a steady state. The 

analyses are then all conducted at a steady state loading speed for comparison on the same 

basis. 



 

152 
 

The analyses results reveal that the higher local stress and large deformation in the 

material will attract more hydrogen by generates new trapping sites, and higher hydrogen 

concentration in turn softens the material and leads to further localization of plastic strain 

and hydrogen concentration. The material softening effect of HELP is observed to be more 

effective on reducing material ductility when the hydrogen concentration site is at the 

region near the void surface, because softening in this region will significantly accelerate 

the void growth process. It’s concluded from the analyses that that under stress state of 

higher triaxiality and near 0 Lode parameter, HELP will cause pronounced reduction in 

ductility because the plastic strain will be more localized into the region of near void 

surface under this stress state. Accordingly, the effect of hydrogen on ductile reduction will 

gradually diminish at lower stress triaxiality and Lode parameter increases or becomes 

more negative as the plastic strain localization is weaker at the area near the void surface.  

3). Applied on isotropic material, the damage model of GTN and shear extended 

GTN model is carefully evaluated through a single material point test. It’s shown that under 

uniaxial loading, both models predict identical result as there is no shear damage under this 

loading condition. But under general shear loading, the predicted result is much different 

because the shear caused damage is accounted in the shear extended GTN model. In the 

shear extended GTN model, the shear damage is more pronounced when the triaxiality is 

lower and the Lode parameter is close to 0. The shear damage will decrease as the Lode 

parameter value increase or becomes more negative and will increase when triaxiality 

becomes higher. But as the increase of shear damage for higher triaxiality is at a lower rate 

compared to the increase of volumetric damage, such that the volumetric damage will still 

become more dominant as the triaxiality is higher despite the increased shear damage.  
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When applied to an anisotropic material, the damage parameters in shear extended 

GTN model are influenced by the anisotropy of material, but still considered as ad-hoc 

parameters as they did not deviate much in terms of damage evolution from its carefully 

formed isotropic definition. However, this damage parameter setup nevertheless can 

describe complex ductile damage process accounting shear and volumetric damage when 

calibrated with experimental data. Together with the anisotropic plasticity calibrated for 

different stages of effective strain, the anisotropic damage model is capable of capture 

complex ductile fracture behaviors of various specimens under various loading condition 

covering a wide range of stress states. 

 

7.2 Future works 

The unit cell model supporting a simple and robust failure criterion was developed, 

but the matrix material of this model is currently narrowed to only isotropic and 

disregarded the effect of secondary void nucleation. With further implementation of 

anisotropic matrix material, this unit cell model could be used for quantifying the evolution 

of ductile damage affected by material anisotropy. With the consideration of void 

nucleation, a more realistic macroscopic material response can be obtained. 

The unit cell model proposed in this dissertation is at the microscopic scale, 

experiments at this scale is rare and incomplete when the model was under development. 

Recently, research featuring micro-tension and micro shear experiments with very precise 

stress state control starts to emerge, such as Gorji and Mohr (2017), as well as in-situ 

tomography observations of these experiments done by Roth et al. (2018). The unit cell 

model can be calibrated and be compared against these newly generated experimental data 
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to further examine the assumptions and limitations of this model and the criterion. Much 

is expected to be learned during this process. 

The effect of the stress state on the orientation of the localization plane considered 

in Chapter III following the approach of Barsoum and Faleskog (2011) did not consider 

the void topology change along different orientations of the localization plane. For example, 

when the orientation of the localization plane changed from 0 degree to 45 degrees, the 

voids on the localization plane is in fact also changed. If the distance between the voids 

along localization plane of 0 degree is l, then the distance between voids along localization 

plane of 45 degrees is now changed to √2𝑙. If a method to account for this void topology 

can be established and tested, the effect of stress state on the orientation of localization 

plane can be established more realistically. 

From what we have already learned from the unit cell model results, it’s obvious 

that the effect of Lode parameter on failure strain is not symmetry to 0 Lode parameter 

value. We don’t exactly know if this asymmetry should be attributed to shear damage or 

the volumetric damage. Further investigation could be done on this topic.  
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