
c©2018

SUSHMABHARGAVI NIMMALAPALLI

ALL RIGHTS RESERVED

VIDEO PROCESSING USING MULTIPLIERLESS 2D-DCT WITH ALGEBRAIC

INTEGERS AND MR-DCT

A Thesis

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Sushmabhargavi Nimmalapalli

December 2018

VIDEO PROCESSING USING MULTIPLIERLESS 2D-DCT WITH ALGEBRAIC

INTEGERS AND MR-DCT

Sushmabhargavi Nimmalapalli

Thesis

Approved:

Advisor
Dr. Arjuna Madanayake

Co-Advisor
Dr. Subramaniya Hariharan

Faculty Reader
Dr. Kye-Shin Lee

Department Chair
Dr. Robert Veillette

Accepted:

Dean of the College
Dr. Donald P. Visco Jr.

Dean of the Graduate School
Dr. Chand K Midha

Date

ii

ABSTRACT

Discrete cosine transform (DCT) has various applications in the field of image processing

related to image compression. Image compression aims at reducing redundancy in image

data such that only a minimal number of samples are stored or transmitted. Here, the

purpose of DCT and its role in image compression is studied and explained.

The ultimate purpose of this research is to develop an 8× 8× 8 3D-DCT archi-

tecture by applying the methods of two-dimensional (2D) 8× 8 DCT and MR-DCT. The

2D 8× 8 DCT algorithm is based on the Loeffler one-dimensional (1D) DCT; it operates

with exact computation and is an error-free arithmetic system up to the final reconstruction

step (FRS). The next stage is the modified round DCT, which is a low-complexity DCT

approximation that requires only 14 additions. A digital architecture is proposed for the

complete system and is implemented on a field-programmable gate array (FPGA) platform

for on-chip verification.

iii

ACKNOWLEDGMENTS

First and foremost, I would sincerely like to thank my advisor, Dr. Arjuna Madanayake,

for always being there to guide, motivate, share ideas and encourage me throughout my

Master’s program. This journey would not have been successful without his support.

I would like to thank my committee members, Dr. Subramaniya Hariharan and Dr.

Kye-Shin Lee, for their contribution to this project, their advice, and for taking time out of

their busy schedules to attend my defense.

I would like to thank Dr. Renato Cintra for his contribution to the thesis in de-

veloping the algorithms for 2D-DCT, and MR-DCT. I would also like to thank Dr. Diego

Coelho, Dr. Vassil Dimitrov, and Dr. Tisserand for their contribution to the thesis in devel-

oping the algorithms for 2D-DCT.

It will be incomplete if I do not mention my brothers and sisters at Akron and my

friends who have helped me throughout my Master’s program by providing motivation and

advice.

Finally, I take this opportunity to dedicate this thesis to my father Venkata

Sudhaker Nimmalapalli, my mother Sreematha Anapothula, and my brother Sunny Rahul

Nimmalapalli. Without them, none of this would have been possible.

iv

No. Team members Work Contributed

1 Dr.Diego Coelho Major contribution in deriving the algorithms for
Classes and FRS. Huge effort put in, to execute and
publish the paper on 8×8 2D-DCT.

2 Dr.Renato Cintra Great effort and support provided in developing the
algorithms using the method of AI and Loeffler
factorization. MR-DCT algorithm developer which
helped as 1D-DCT.

3 Dr.Arjuna Madanayake Advisor/Reviewer. Immense support provided during
the entire research work.

4 Dr.Vassil Dimitrov Advisor to Dr.Diego. Co-author of 8 x 8 2D-DCT.

5 Dr.Tisserand Reviewer and advisor for the work. Provided with
immense support for deriving FRS algorithms.

6 Sushmabhargavi Nimmalapalli Implemented algorithms developed in Dr.Diego and
Dr.Cintra on Simulink. Implemented hardware block
for 2D-DCT using ML-605 kit and calculated the fre-
quency and slice distributions. Generated reports for
time, power and area on ASIC. Implemented 3D-DCT
using 2D-DCT and MRDCT.

Special Acknowledgment

I would like to acknowledge the National Science Foundation (NSF) for their financial

support of this research.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTER

I. INTRODUCTION TO DIGITAL IMAGE AND VIDEO PROCESSING 1

1.1 Digital Images . 2

1.2 Image processing using DCT . 4

1.3 Video processing using DCT . 5

1.4 Contributions of the thesis . 5

1.5 Thesis outline . 6

II. REVIEW ON THE DISCRETE COSINE TRANSFORM 8

2.1 Grayscale image . 8

2.2 Colored image . 9

2.3 Representation of a Digital image . 10

2.4 Introduction to DCT . 11

III. 2D-DCT IMPLEMENTATION USING MULTIPLIERLESS ARCHITECTURE 19

3.1 Introduction to Algebraic Integers . 20

3.2 The Algebraic Integer Representation . 22

vi

3.3 The 2D DCT and the AI basis representation 27

3.4 Final Reconstruction Step . 38

IV. 3D-DCT AND MONOCHROME VIDEO . 50

4.1 Introduction to MR-DCT . 50

4.2 Implementation of 3D-DCT . 52

V. DIGITAL FPGA IMPLEMENTATION OF THE ARCHITECTURE 56

5.1 Designing of algorithms for classes on simulink. 56

5.2 Design of algorithms on Simulink for the final reconstruction step 56

5.3 Design and Implementation of the 2-D architecture using XILINX ML605 . 60

5.4 Design and Implementation of the 3-D DCT architecture 68

VI. CONCLUSIONS AND FUTURE WORK . 70

6.1 Conclusions . 70

6.2 Future Work . 70

BIBLIOGRAPHY . 72

vii

LIST OF TABLES

Table Page

2.1 Different Image Formats. 10

3.1 Quantities required by the Loeffler algorithm for an 8-point DCT and their re-

spective products by an arbitrary algebraic integer 24

3.2 AI representation classification. 28

3.3 Comparison for fast algorithms for the computation of 2D 8-point DCT with

algebraic integer theory . 37

3.4 Fast algorithms for FRS for Dyadic Approximation for an 11-bit word length

and its arithmetic cost for Class A, and Class B. 40

3.5 Fast algorithms for FRS for Dyadic Approximation for an 11-bit word length

and its arithmetic cost for Class C, Class D, and Class E. 41

3.6 Scale factors and maximum/minimum relative errors 47

3.7 Fast algorithms for FRS for Expansion Factor Method for an 11-bit word length

(α∗ = 1849.39) and its arithmetic cost for Class A, Class B, and Class C. 48

3.8 Fast algorithms for FRS for Expansion Factor Method for an 11-bit word length

(α∗ = 1849.39) and its arithmetic cost for Class D, and Class E. 49

4.1 Comparison of MR-DCT with other proposed DCTs 54

viii

5.1 Comparison of FPGA implementation metrics. 65

5.2 Comparison of ASIC implementation metrics. 67

5.3 Measurements recorded for 3D-DCT using ML605 kit 69

5.4 Measurements recorded for 3D-DCT using ASIC. 69

ix

LIST OF FIGURES

Figure Page

2.1 Figures representing monochrome and color (RGB) images. 9

3.1 Loeffler algorithm for the 8-point DCT computation, where dashed lines rep-

resent product by −1. 25

3.2 The 8-point DCT algorithm for a real quantized input sequence. 26

3.3 2D representation of the input coefficient class: (a) before the transformation,

(b) after the application of the 1D DCT over its columns, and (c) after the

application of the 2D DCT. 29

3.4 The 8-point DCT algorithm for an input sequence in the AI representation

belonging to Class B. 32

3.5 The 8-point DCT algorithm for an input sequence in the AI representation

belonging to Class C. 35

3.6 The 8-point 2D DCT AI-based fast algorithm. 36

x

3.7 Graphical representation of the entire 2D DCT parallel architecture using AI

representation including FRS. The blocks DCTA, DCTB, and DCTC represent

the 1D DCT in the AI-based representation for inputs in classes A, B, and C,

respectively, and are implemented by the algorithms in the Figs. 3.2, 3.4, and

3.5. 37

3.8 FRS block using dyadic approximation for (a) Class B, (b) Class C, (c) Class

D, and (d) Class E for an 11-bit wordlength. 42

3.9 Pictorial representation of 2D-DCT . 46

4.1 Signal flow graph for MR-DCT. 51

4.2 Overview of 3-D DCT . 53

4.3 3D-DCT output of 8× 8 input of first frame representing each pixel and its

coefficient value with its corresponding color 55

5.1 Figure representing a Class A algorithm on Simulink. 57

5.2 Figure representing a Class B algorithm on Simulink. 58

5.3 Figure representing a Class C algorithm on Simulink. 59

5.4 Figures representing algorithms on Simulink for the final reconstruction step

(FRS) using a dyadic approximation method. 61

5.5 Simulink design of 2D-DCT with final reconstruction step (FRS) 62

5.6 2D-DCT hardware block generated on FPGA 62

5.7 DCT outputs of Matlab using matlab ”dct2” command 63

5.8 DCT outputs of hardware designed and generated on FPGA 63

xi

5.9 Comparison of matlab and hardware generated outputs for image from real-

time . 64

5.10 Figure representing MR-DCT algorithm on Simulink. 68

xii

CHAPTER I

INTRODUCTION TO DIGITAL IMAGE AND VIDEO PROCESSING

Due to the increasing requirements for transmission of images via computers and mobile

environments, the research in the field of image compression has increased significantly.

Image compression plays a crucial role in digital image processing, as it is very important

for the efficient transmission and storage of images [1].

There is no general agreement among researchers regarding where image pro-

cessing stops and areas such as image analysis and computer vision begin. Sometimes a

distinction is made by defining image processing as a discipline in which both the input and

the output of a process are images. This is a limiting and somewhat artificial boundary. The

area of image analysis (image understanding) lies between the areas of image processing

and computer vision.

There are no clear-cut boundaries in the continuum from image processing at one

end to complete vision at the other. However, one useful paradigm is to consider three types

of computerized processes in this continuum: low-, mid-, and high-level processes. Low-

level processing involves primitive operations such as image processing to reduce noise,

enhance contrast, and sharpen images. A low-level process is characterized by the fact

that both its inputs and outputs are images. Mid-level processing of images involves tasks

such as segmentation, description of an object to reduce it to a form suitable for computer

1

processing, and classification of individual objects. A mid-level process is characterized

by the fact that its inputs generally are images, but its outputs are attributes extracted from

those images. Finally, higher-level processing involves making sense of an ensemble of

recognized objects, by performing image analysis and, at the far end of the continuum, by

performing the cognitive functions normally associated with human vision [2].

1.1 Digital Images

A digital image is composed of a finite number of elements, each of which has a particular

location and value. Thus a digital image is represented by a matrix of values, where each

value is a function of the information surrounding the corresponding point in the image. A

single element in an image is called a picture element or pixel. In a color system, a pixel

includes information for all color components. However, unlike humans, who are limited

to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost

the entire EM spectrum, ranging from gamma waves to radio waves. They can operate

also on images generated by sources that humans are not accustomed to associating with

images.

The digital video is represented in the equivalent manner by a three-dimensional

(3D) matrix set of values, where frames of video represent the third dimension in the set

of values. Digital video and image processing are characterized by the need for extensive

experimental work to establish the viability of proposed solutions to a given problem. An

important characteristic underlying the design of image processing systems is the signif-

icant level of testing and experimentation that normally is required before arriving at an

2

acceptable solution. This characteristic implies that the ability to formulate approaches

and quickly prototype candidate solutions generally plays a major role in reducing the cost

and time required to arrive at a viable system implementation.

Signals captured from the physical world are translated into digital form by pro-

cess called digitization. Digitization involves two processes: sampling and quantization,

which can be conducted in any order. When an image is sampled, two-dimensional (2D)

space is partitioned into small, discrete regions. Quantization assigns an integer to the

amplitude of the signal in each interval or region [3].

Some of the first applications of digital video and image processing were to im-

prove the quality of the captured images—but as the power of computers grew, so did the

number of applications where video and image processing could make a difference. Today,

video and image processing are used in many diverse applications, such as astronomy (to

enhance the quality of astronomical images), medicine (to measure and understand some

parameters of the human body, such as blood flow in broken veins), image compression (to

reduce the memory requirement when storing an image), sports (to capture the motion of

an athlete in order to understand and improve the performance), rehabilitation (to assess the

locomotion abilities of a patient), motion pictures (to capture the motion of actors in order

to produce special effects based on graphics), surveillance (detect and track individuals and

vehicles), manufacturing (to assess the quality of products), control of robots (to detect an

object so that a robot can grasp it and pick it up), television production (mixing graphics

and live video, e.g., a weather forecast), biometrics (to measure some unique parameters

of a person), and photo editing (improving the quality or adding effects to photographs).

3

The different flavors of video and image processing are often grouped into the

general categories listed below. There is no unique definition for each of the different

categories—and, to make matters worse, they also overlap significantly. Here is one set

of definitions: video and image compression is probably the most well defined category

and comprises various methods used for compressing video and image data, while image

manipulation comprises methods (for example, rotating or scaling an image, or improving

the quality by changing the contrast).

1.2 Image processing using DCT

Image processing originates from the more general field of signal processing and covers

methods used to segment the object of interest [4]. Segmentation here refers to methods

which in some way enhance the object while suppressing the rest of the image (for example

the edges). A discrete cosine transform (DCT) expresses a finite sequence of data points in

terms of a sum of cosine functions oscillating at different frequencies. DCTs are important

to numerous applications in science and engineering, from audio to images (in JPEG or

MPEG). The use of cosine functions is more critical in compression than the use of sine

functions, since fewer cosine functions create the approximated signal as needed. The

DCT, and in particular the DCT-II, which is often used in signal and image processing,

in particular the DCT which is used in JPEG image compression. For analysis of two-

dimensional (2D) signals such as images, we need a 2D version of the DCT. Since the 2D

DCT can be computed by applying one dimensional (1D) transforms separately to the rows

and columns, we say that the 2D DCT is separable in the two dimensions [5].

4

1.3 Video processing using DCT

Video processing covers most of the image processing methods. Here the goal is to analyze

the image with the purpose of first finding objects of interest and then extracting some

parameters of the position and size of these objects. Digital video processing is the best

way to support video communications, and video processing using DCT has proven to be

more efficient than spatial domain. One reason for considering DCT is that data is arranged

in a block-by-block fashion in this system, where the inverse DCT can be obtained easily.

Video compression in different formats is possible using DCT, as the data is divided into

three segments. Once the 2D-DCT is applied separately for each image to create a video,

the final 1D-DCT is applied to the images in a row- and column-wise fashion for the final

transformation. Orthogonal transforms are tested for 1D-DCT to be applied for the frames.

1.4 Contributions of the thesis

The work done can be summarized as follows:

1. A massively parallel 2D-DCT architecture is proposed where the design process be-

gins with algorithms that are designed without multipliers. The DCT’s are subjected

to different levels of pipelining to improve speed performance. Design simulations

are carried out in Matlab and Simulink, and the results are verified with the 2D-DCT

command outputs on Matlab.

2. The successful working of this 2D-DCT block is used to generate a digital three-

dimensional (3D) DCT architecture with the addition of 1D-DCT block, for applying

5

to a video in real time. The architecture of the DCT has less complexity compared

to other DCT algorithms proposed so far, and is more efficient in terms of area, time

and power consumption.

3. An 8× 8× 8 3D-DCT architecture is constructed that provides a scope for future

work in video compression. The performance characteristics are calculated using us-

ing field-programmable gate array (FPGA) and application-specific integrated circuit

(ASIC) analysis.

1.5 Thesis outline

The remainder of the thesis is organized as follows:

Chapter 2 provides a comprehensive review of the digital image and video pro-

cessing concepts including the analysis of 2D-DCT and 3D-DCT, and their architecture

and methods of implementation. Later in this chapter, we discuss the different algorithms

implemented for DCT and learn about the best methods implemented to date.

Chapter 3 begins by discussing the methods used in this study for the implemen-

tation of the 2D-DCT and 3D-DCT architectures. Next, a new approach to DCT using

algebraic integer (AI) representation is discussed, including its application in the construc-

tion of the 2D-DCT architecture. The advantages of this approach and methodology are re-

vealed through its use in a DCT representation. The components of the DCT representation

(referred to here as classes) and their algorithms are studied, using only adders/subtractors

and shifters. The proposed method is thus considered to be a multiplier-less architecture,

6

which later helps us to study the benefits of the architecture without considering multipli-

ers. Next, the algorithms associated with the architecture are explained. The results are

compared with previous studies and other proposed research that best describes the work

on digital image processing with a 2D-DCT architecture. Finally, different 1D-DCT meth-

ods are studied in order to determine which works better with the proposed 2D-DCT for

the construction of 3D-DCT architecture.

Chapter 4 explains the concept of a modified round discrete cosine transform (MR-

DCT) identifying its benefits and the idea of developing the 3D-DCT architecture from a

2D-DCT and subjecting it to video processing. This chapter also presents the modeling of

3D-DCT block for video processing using 2D-DCT and MR-DCT.

Chapter 5 begins with the design and implementation of the 2D-DCT architecture

on FPGAs. Initially, the design with the mentioned algorithms is created and is hardware

co-simulated in the ML605 FPGA platform. This chapter provides a brief introduction

to the FPGA, explains the design and implementation of the 2D-DCT architecture, and

explains how the 3D-DCT architecture is implemented.

Chapter 6 is the final chapter. It describes possible future investigations based on

the work completed in this study.

7

CHAPTER II

REVIEW ON THE DISCRETE COSINE TRANSFORM

The discrete cosine transform (DCT) is an essential tool in digital signal processing. In re-

cent years, the signal processing literature has been populated with low-complexity meth-

ods for the efficient computation of an eight-point DCT [6]. One of the many techniques

in the category of image processing is image compression. Image compression aims at

reducing redundancy in image data such that only a minimal number of samples is stored

or transmitted. First, let us consider the purpose of DCT and its role in image compression.

For processing 1-D or 2-D signals, a common method is to divide the signal into ”frames”

and then apply an invertible transform to each frame that compresses the information into

a few coefficients [1].

An image is represented as a 2D function f (x,y) where x and y are spatial co-

ordinates and the amplitude of ‘ f ’ at any pair of coordinates (x,y) is referred to as the

intensity of the image at that point.

2.1 Grayscale image

The term monochrome image refers to two dimensional light intensity function f (x,y),

where x and y denote spatial coordinates, and the value of f at any point (x,y) is propor-

tional to the brightness (or gray level) of the image at that point. A grayscale image, also

8

(a) Grayscale Image (b) RGB Image

Figure 2.1: Figures representing monochrome and color (RGB) images.

referred to as an intensity image, is represented by a 2D matrix, where the elements of the

matrix may take integer values ranging from 0 to 255 (for uint8 type).

2.2 Colored image

An image with red, green, and blue (RGB) values, sometimes referred to as a true-color

image, is represented as an m × n × 3 data array that defines red, green, and blue color

components for each individual pixel. The color of each pixel is determined by the com-

bination of the red, green, and blue intensities stored in each color plane at the pixel’s

location. An RGB image may be viewed as “stack” of three grayscale images that used

as the red, green and blue inputs of a color monitor. The number of bits used to represent

the pixel values of the component images determines the bit depth of the RGB image. For

example, if each component image is an 8-bit image, the corresponding RGB image is said

to be 24 bits deep.

9

Table 2.1: Different Image Formats.

Format Name Description Recognized Extension

TIFF Tagged Image File Format .tif, .ti

JPEG Joint Photograph Experts Group .jpg, .jpeg

GIF Graphics Interchange Format .gif

MPEG Moving Picture Experts Group .mp, .mp3

BMP Windows Bitmap .bmp

PNG Portable Network Graphics .png

XWD X Window Dump .xwd

2.3 Representation of a Digital image

An image may be continuous with respect to the x and y coordinates and also continuous

in amplitude. Converting such an image to digital form requires the coordinates as well

as the amplitude to be digitized. Digitizing the coordinate’s values is called sampling and

digitizing the amplitude values is called quantization. A Digital image is an image f (x,y)

that has been discretized both in spatial coordinates and brightness. A digital image can be

considered as a matrix whose row and column indices identify a point in the image, and the

corresponding matrix element value identifies the gray level at that point. When a digital

image is represented in the form of matrix, f is considered to be an image with m rows and

10

n columns, and the matrix is given by

f (1,1) f (1,2) f (1,3) f (1,N)

f (2,1) f (2,2) f (2,3) f (2,N)

f (3,1) f (3,2) f (2,3) f (3,N)

.

.

f (M,1) f (M,2) f (M,N)

2.4 Introduction to DCT

The standard, classic, and well known 2D DCT is largely used in the MPEG or JPEG

world for very efficient image compression. Formally, the discrete cosine transform is a

linear, invertible function f: RN → RN (where RN denotes the set of real numbers), or

equivalently an invertible N×N square matrix. There are several variants of the DCT with

slightly modified definitions. The N real numbers x0, ..., xN−1 are transformed into the

N real numbers X0,..., XN−1 according to one of the formulas presented in the following

subsections.

2.4.1 Overview of DCT

Here is a brief overview of how DCT is performed:

11

1. How to perform a 2D DCT ? It is a transform that is both forward and inverse. We can

perform manual calculations for the small size matrices using inner product notation.

In matlab the commands dct2 and idct2 are used.

2. How to quantize DCT coefficients? DCT coefficients are quantized using various

step sizes for different DCT coefficients based on visual sensitivity to different fre-

quencies.

3. What is a quantization matrix ? A quantization matrix specifies the default quanti-

zation step size for each coefficient. The matrix can be scaled using a user chosen

parameter (QP) to obtain different trade-offs between quality and size.

2.4.2 DCT-I

The basic equation for a DCT is expressed as follows:

Xk =
1
2
(x0 +(−1)kxN−1)+

N−2

∑
n=1

xn cos
[

π

N−1
nk
]

k = 0, . . . ,N−1 (2.1)

Sometimes this equation is further modified by multiplying the x0 and xN−1 terms

by
√

2, and correspondingly by multiplying the X0 and XN−1 terms by 1√
2
. This makes the

DCT-I matrix orthogonal, if one further multiplies by an overall scale factor of
√

2
N−1 , but

it breaks the direct correspondence with a real-even DFT.

The DCT-I is exactly equivalent (up to an overall scale factor of 2), to a DFT of

2N − 2 real numbers with even symmetry. For example, a DCT-I of N=5 real numbers

12

(a,b,c,d, and e) is exactly equivalent to a DFT of eight real numbers (a,b,c,d,e,d,c and b;

even symmetry), divided by two. (In contrast, DCT types II-IV involve a half-sample shift

in the equivalent DFT.)

Note, however, that the DCT-I is not defined for N less than 2. (All other DCT

types are defined for any positive N.)

Thus, the DCT-I corresponds to the boundary conditions: xn is even around n = 0

and even around n = N−1 ; similarly for Xk.

2.4.3 DCT-II

The DCT-II is probably the most commonly used form, and it is often simply referred to as

”the DCT” [7, 8].

Xk =
N−1

∑
n=0

xn cos
[

π

N

(
n+

1
2

)
k
]

k = 0, . . . ,N−1. (2.2)

This transform is exactly equivalent (up to an overall scale factor of 2) to a DFT

of 4N real inputs of even symmetry where the even-indexed elements are zero. That is, it

is half of the DFT of the 4N inputs yn, where y2n = 0, y2n+1 = xn for 0 ≤ n < N, y2N = 0,

and y4N−n = yn for 0 < n < 2N. DCT II transformation is also possible using a 2N signal

followed by a multiplication by a half shift.

Sometimes the X0 term is further multiplied by 1/
√

2, and the resulting matrix

is multiplied by an overall scale factor of
√

2
N (see below for the corresponding change in

DCT-III). This makes the DCT-II matrix orthogonal, but it breaks the direct correspondence

with a real-even DFT of half-shifted input. This is the normalization used by Matlab, for

13

example. In many applications, such as JPEG, the scaling is arbitrary because the scale

factors can be combined with a subsequent computational step (e.g., the quantization step

in JPEG [9]), and a scaling can be chosen that allows the DCT to be computed with fewer

multiplications [10] [11].

The DCT-II implies the boundary conditions: xn is even around n = −1/2 and

even around n = N−1
2 ; Xk is even around k = 0 and odd around k = N.

The 2D DCT-II of N×N blocks are computed, and the results are quantized and

entropy coded. In this case, N is typically 8 and the DCT-II formula is applied to each

row and column of the block. The result is an 8× 8 transform coefficient array in which

the (0,0) element (the one at top left) is the DC (zero-frequency) component, and entries

with increasing vertical and horizontal index values represent higher vertical and horizontal

spatial frequencies.

2.4.4 Multi-Dimensional DCT

Multidimensional DCTs (MD DCTs) have several applications, and 3-D DCT-II has several

new applications like hyperspectral imaging coding systems, variable temporal length 3-

D DCT coding, video coding algorithms, adaptive video coding and 3-D compression.

Due to advances in hardware and software and the introduction of several fast algorithms,

the necessity of using M-D DCTs is rapidly increasing. DCT-IV has gained popularity

for its applications in fast implementation of real-valued polyphase filtering banks, lapped

orthogonal transforms, and cosine-modulated wavelet bases.

14

2.4.5 M-D DCT-II

In MD DCT-II, for example, a two-dimensional DCT-II of an image or a matrix is sim-

ply the one-dimensional DCT-II, from above, performed along the rows and then along

the columns (or vice versa). That is, the 2D DCT-II is given by the formula (omitting

normalization and other scale factors, as above):

Xk1,k2 =
N1−1

∑
n1=0

(
N2−1

∑
n2=0

xn1,n2 cos
[

π

N2

(
n2 +

1
2

)
k2

])
cos
[

π

N1

(
n1 +

1
2

)
k1

]

=
N1−1

∑
n1=0

N2−1

∑
n2=0

xn1,n2 cos
[

π

N1

(
n1 +

1
2

)
k1

]
cos
[

π

N2

(
n2 +

1
2

)
k2

]
. (2.3)

The inverse of a multi-dimensional DCT is just a separable product of the in-

verse(s) of the corresponding one-dimensional DCT(s), e.g. the one-dimensional inverses

applied along one dimension at a time in a row-column algorithm. The 3-D DCT-II is only

the extension of the 2-D DCT-II in three-dimensional space and can be calculated by the

formula

Xk1,k2,k3 =
N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

xn1,n2,n3 cos
[

π

N1

(
n1 +

1
2

)
k1

]
cos
[

π

N2

(
n2 +

1
2

)
k2

]

cos
[

π

N3

(
n3 +

1
2

)
k3

]
, ∀ki = 0,1,2, . . . ,Ni−1. (2.4)

The inverse of 3-D DCT-II is 3-D DCT-III and can be computed from the formula given by

xn1,n2,n3 =
N1−1

∑
k1=0

N2−1

∑
k2=0

N3−1

∑
k3=0

Xk1,k2,k3 cos
[

π

N1

(
n1 +

1
2

)
k1

]
cos
[

π

N2

(
n2 +

1
2

)
k2

]

15

cos
[

π

N3

(
n3 +

1
2

)
k3

]
, ∀ni = 0,1,2, . . . ,Ni−1. (2.5)

Technically, computing a two-, three- (or multi-) dimensional DCT by sequences

of one-dimensional DCTs along each dimension is a row-column algorithm. With multi-

dimensional fast Fourier transform (FFT) algorithms, however, there exist other methods

to compute the same DCT while performing the computations in a different order (i.e.,

interleaving/combining the algorithms for the different dimensions). Owing to the rapid

growth in applications based on the 3D DCT, several fast algorithms are developed for the

computation of 3D DCT-II. Vector-radix algorithms are applied for computing the MD-

DCT to reduce the computational complexity and to increase the computational speed. To

compute 3D DCT-II efficiently, a fast algorithm, vector-radix decimation in frequency (VR

DIF) algorithm was developed.

2.4.6 Why use 8×8 blocks?

The DCT treats the block as if it were periodic and thus must reconstruct the resulting jump

at the boundaries. When using 64× 64 blocks, there will most likely be a huge jump at

the boundaries, and a large number of high-frequency components will be needed to recon-

struct the block to a satisfactory precision. The use of ”8” rather than ”64” results from a

trade-off that can not be theoretically optimized; however, it seems to work well for typical

images, where the variation across 8× 8 blocks is typically small enough that blocking

artifacts can be avoided without having to encode too much high-frequency information.

16

In addition, since 8 is a power of 2, even if the optimal trade-off from an informa-

tion content standpoint had been, for example, 10, one might still have chosen 8 because

the transform is much simpler and faster to perform.

Compression is always a trade-off. While sharper images can always be obtained

by keeping more of the information, sharp images can also be obtained with 4×4, 8×8 or

64×64 blocks simply by keeping the entire high-frequency information. Experience shows

that in 8×8 blocks, much of the information can be dropped without creating unacceptable

blocking artifacts. Certainly for 4× 4 blocks the boundary jump would be even less, but

there would also be less opportunity for compression. Consider an 8× 8 block made up

of four 4× 4 blocks: If you transform each of the 4× 4 blocks separately, their averages

(zero-frequency components) must be stored with the same (high) precision for all four

of them. If they are transformed together as an 8× 8 block, instead of four averages, one

average and three oscillating components will be obtained that can be stored with lower

precision. This cannot be expressed in a single precise formula; one has to look at how

data in real-world images are actually distributed and then make the required trade-offs.

2.4.7 Summary of Advantages of DCT

In summary, the use of DCT for image processing has the following advantages:

1. DCT is advantageous for image coding because its feature is based on a real trans-

form and is easier to perform than DFT.

2. DCT can ignore most high-frequency coefficients, since they are nearly zero.

17

3. Different coefficients can be quantized with different levels of accuracy based on

human sensitivity.

18

CHAPTER III

2D-DCT IMPLEMENTATION USING MULTIPLIERLESS ARCHITECTURE

In this chapter, algebraic integers(AIs) and their role in the construction of algorithms

for 2D-DCT is discussed. The initial focus is on the application of 1D-DCT in signal

processing.

The discrete cosine transform (DCT) is a pivotal tool for solving signal processing

problems [12,13] such as image compression [14], noise reduction [15], and watermarking

methods [16,17]. Among the several existing discrete transforms, the DCT has the distinc-

tive characteristic of optimally approximating the Karhunen–Loève transform (KLT) for

highly correlated stationary Markov signals of type I [13]. This is relevant because images

often follow such a model [13].The 8-point DCT of type II, hereafter referred only as DCT,

has been employed in different image and video compression standards [18], including

JPEG [19], MPEG-1 [20], H.264 [21], and HEVC [22].

Due to such wide acceptance, several fast algorithms were proposed for the 8-point

DCT [13]. A particularly relevant fast algorithm is the one proposed by Loeffler et al. de-

scribed in [23], which is capable of computing the 8-point DCT with the minimum possible

number of multiplications [23–25].Because of this, the Loeffler factorization for the 8-point

DCT is considered to be a reference method for comparing DCT algorithms.

19

3.1 Introduction to Algebraic Integers

The theory of algebraic integers was first introduced in the context of digital signal pro-

cessing in 1985 by Cozzens and Finkelstein [26, 27], who aimed to compute the discrete

Fourier transform (DFT).The method included the use of residue number systems in order

to reduce the dynamic range of the quantities involved in the DFT computation.

In [27], it was shown that it is possible to numerically evaluate the DFT in exact

format and without error propagation, achieving arbitrary precision according to a final

reconstruction step (FRS).The FRS is responsible for mapping back the quantities from

the algebraic integer representation into a typical fixed-point representation. The irrational

quantities required in the FRS are approximated by rational quantities that can be efficiently

implemented in hardware.

Several fast algorithms based on algebraic integer theory have been proposed for

the computation of the 1D and 2D DCT [28–31]. These architectures are able to compute

the 1D DCT without multipliers within an error-free structure.

The typical computation of a 2D DCT is accomplished by column- and row-wise

calls of the 1D DCT. However, simply computing the 1D DCT by means of an AI-based

algorithm does not result in a bona fide AI-based 2D DCT computation. Indeed, from

the standpoint of a 2D DCT point-of-view, the FRS blocks from an AI-based 1D DCT

appear as an intermediate computation. Such intermediate reconstruction precludes error-

free computation and undermines one of the purposes of employing algebraic integers, as

it uses 1D DCT its FRS. An error-free computation of 2D DCT was proposed for the Arai

20

algorithm [32]. Therefore, the output of the algorithm used both in [33] and [34] is a

non-uniform scaled version of the 2D DCT spectrum.

The error-free characteristic of the methods proposed in [26–31, 33, 34] is a by-

product of the algebraic integer encoding, possibly not the most important. The additional

advantages of AI-based fast algorithms are the (i) parallelization and (ii) low latency due

to the accumulation of multiplicative complexity at the FRS.

This chapter introduces a 2D DCT (type II) algorithm based on the AI represen-

tation that combines (i) high throughput; (ii) low latency; (iii) parallelization; and (iv)

error-free architecture. This is achieved by means of the Loeffler fast algorithm for the

1D 8-point DCT using the encoding proposed in [4]. The fully error-free architecture is

possible only because we propose new fast algorithms for the 1D DCT tailored for the in-

puts required by the 2D architecture.The use of the proposed dedicated algorithms allows

the removal of the FRS at the end of each 1D DCT when applied to the columns of the

8×8 blocks. A digital circuit that is capable of computing the 2D DCT with these partic-

ular characteristics makes it attractive to a designer who needs to consider several metrics

when deciding which particular method he/she is using for an application [12]. The adop-

tion of this building block will be determined by the specific application requirements and

constraints.

21

3.2 The Algebraic Integer Representation

3.2.1 Review of 8-point DCT AI Basis

The AI Basis

The 8-point 1D DCT is a linear orthogonal transformation given by [13, 14]:

Xk =
1
2

7

∑
n=0

βkxn cos
[

π(2n+1)k
16

]
, k = 0,1, . . . ,7, (3.1)

where β0 = 1/
√

2 and βk = 1, for k = 1,2, . . . ,7.

In [4], the authors characterized the ring spanned by the set Z whose elements

are 1 and ck, where ck = 2cos(kπ/16), for k = 1,2, . . . ,7. The vector space span(Z) gen-

erated by a linear combination of the elements of Z is suitable for the computation of the 8-

point DCT, due to the fact that the 8-point DCT requires the quantities cos [πk(2n+1)/16],

n,k = 0,1, . . . ,7 [13]. Hereafter, we denote ζ =

1 c1 c2 c3 c4 c5 c6 c7

> as the

basis element vector.

Encoding and Decoding

The encoding of a given real number x over the considered AI basis is denoted by

fenc(x;ζ) = x, where x =

a0 a1 a2 a3 a4 a5 a6 a7

> is the encoded integer vec-

tor, ak ∈ Z, k = 0,1, . . . ,7, and > denotes transposition.

22

The decoding operation is given directly by the dot product operation [33]:

fdec(x;ζ) = x> ·ζ = a0 +
7

∑
k=1

ak · ck = x̂. (3.2)

In [4], it was shown that the above representation is dense and can provide arbitrary

precision, i.e., it is always possible to determine a vector x such that |x− x̂|< ε , for any ε >

0. The authors have also pointed out that in typical applications, such as in the context of

image compression, the input data are real, discrete, and quantized [35] in the form of an

integer [13].

In such conditions, a real quantized input m, the AI-encoded data can be trivially

obtained according to fenc(m;ζ) =

m 0 0 0 0 0 0

>.

Arithmetic Operations

AI-based addition and multiplication operations over the considered basis were defined

in [4] as being the only elementary operations required by the Loeffler DCT algorithm.

Since AI quantities are represented by arrays of integers, the addition and subtraction op-

erations obeys the usual vector addition and subtraction rule. For the multiplication opera-

tion, the product of an arbitrary algebraic integer in the proposed representation by one of

the basis elements obey the relations described in Table 3.1. Such multiplications are trivial

in the sense that only additions, subtractions, and permutations of the input coefficients are

needed. In hardware implementation, these operations are performed by simple wiring and

adders/subtractors.

23

Table 3.1: Quantities required by the Loeffler algorithm for an 8-point DCT and their
respective products by an arbitrary algebraic integer

x fenc(x;ζ) ·u

1 [u0 u1 u2 u3 u4 u5 u6 u7]
>

c1 [2u1 u0 +u2 u1 +u3 u2 +u4 u3 +u5 u4 +u6 u5 +u7 u6]
>

c2 [2u2 u1 +u3 u0 +u4 u1 +u5 u2 +u6 u3 +u7 u4 u5−u7]
>

c3 [2u3 u2 +u4 u1 +u5 u0 +u6 u1 +u7 u2 u3−u7 u4−u6]
>

c4 [2u4 u3 +u5 u2 +u6 u1 +u7 u0 u1−u7 u2−u6 u3−u5]
>

c5 [2u5 u4 +u6 u3 +u7 u2 u1−u7 u0−u6 u1−u5 u2−u4]
>

c6 [2u6 u5 +u7 u4 u3−u7 u2−u6 u1−u5 u0−u4 u1−u3]
>

c7 [2u7 u6 u5−u7 u4−u6 u3−u5 u2−u4 u1−u3 u0−u2]
>

3.2.2 Loeffler 1D DCT Multiplicands

The Loeffler DCT algorithm has a four-stage signal flow graph (SFG), shown in Fig-

ure 3.1 [23], and it requires the following multiplicands: {c1,
√

2c2,c3,c4,c5,
√

2c6,c7}.

If the multiplicands in Stages 2 to 4 are combined, then only six resulting multiplicands are

required: c4 ·c2, c4 ·c6, c4 ·c3, c4 ·c5, c4 ·c1, and c4 ·c7. Employing trigonometric rules, we

obtain ci · ck = ci+k + ci−k for any i,k ∈ Z, and ci =−c16−i for i = 8,9, . . . ,16. Therefore,

the quantities required by the Loeffler DCT computation possess simple and multiplierless

representations over the representation introduced in [4].

In [4], it was shown that the ring implied by the AI formalism for the 1D DCT case

is over-complete; thus, the coefficients linked to the basis element c4 are not required.On

the other hand the 2D DCT demands the coefficients associated to c4.

24

c1

c1

c5
−c5

c3

c3

x1

x2

x3

x4

x5

x6

x7

x0

X4

X2

X6

X7

X3

X5

X1

X0

√
2

√
2

−c7
c7

√
2c6

√
2c6

Stage 1 Stage 4Stage 3

√
2c2 −

√
2c2

Stage 2

Figure 3.1: Loeffler algorithm for the 8-point DCT computation, where dashed lines rep-
resent product by −1.

3.2.3 1D AI-based Fast Algorithm

The representation proposed in [4], when applied to the 1D 8-point DCT, furnishes the

Algorithm 3.2, which is multiplierless. It requires a total of 20 additions. Indeed, due to

the definition in the Loeffler DCT, the algorithm output is a scaled DCT with a scaling

factor of 2. If required, the output can be re-scaled by simple bit-shifting, or it can be

inserted into the decoding stage. Therefore, scaling by a factor of 2 does not contribute to

an increase in arithmetic complexity when performing the processing.

25

Input: xn ∈ Z for n = 0,1, . . . ,7
Output: Xk ∈ span(Z), for k = 0,1, . . . ,7

Additions in Stage 1:

A0 = x0 + x7 A4 = x3− x4

A1 = x1 + x6 A5 = x2− x5

A2 = x2 + x5 A6 = x1− x6

A3 = x3 + x4 A7 = x0− x7

Additions in Stage 2:

B0 = A0 +A3 B2 = A1−A2

B1 = A1 +A2 B3 = A0−A3

Additions in Stage 3:

C0 = B0 +B1 C2 = B2 +B3

C1 = B0−B1 C3 = B2−B3

Additions in Stage 4:

D0 =−A5 +A6 D2 = A4 +A7

D1 = A4−A7 D3 =−A5−A6

Output:

X0 = [2C0 0 0 0 0 0 0 0]>

X1 = [0 −D3 0 D2 0 −D1 0 D0]
>

X2 = [0 0 C2 0 0 0 −C3 0]>

X3 = [0 −D1 0 D3 0 D0 0 D2]
>

X4 = [2C1 0 0 0 0 0 0 0]>

X5 = [0 D2 0 −D0 0 D3 0 D1]
>

X6 = [0 0 −C3 0 0 0 −C2 0]>

X7 = [0 −D0 0 −D1 0 −D2 0 −D3]
>

Figure 3.2: The 8-point DCT algorithm for a real quantized input sequence.

26

3.3 The 2D DCT and the AI basis representation

3.3.1 The 2D DCT

Let xm,n be a 2D array for m,n = 0,1, . . . ,7. The 2D 8-point DCT is a linear transformation

defined as [13, 14]:

Xl,k =
1
4

7

∑
m=0

7

∑
n=0

αkβlxm,n cos
[

π(2n+1)l
16

]
cos
[

π(2m+1)k
16

]
, (3.3)

where l,k = 0,1, . . . ,7, α0 = β0 = 1/
√

2 and αk = βl = 1, for l,k = 1,2, . . . ,7.

As adopted by several image encoding schemes [13, 36–38], the 2D DCT compu-

tation is performed by successive calls of the 1D DCT applied to the columns of the input

2D data, then to the rows of the resulting matrix. For blocks of size 8×8, sixteen calls of

the 1D DCTs are required to furnish the 2D DCT.

3.3.2 2D AI-based Fast Algorithm

When the 2D input array is real and quantized, several simplifications arise. These simpli-

fications can be exploited to provide efficient (fast) algorithms for the 2D DCT over the AI

basis representation proposed in [4] without a need of FRS for each 1D DCT between the

computation over the columns and rows.

Considering the 2D DCT computation by means of column- and row-wise calls of

the 1D DCT, we notice the following structure. If the 2D input data consists of integer ele-

ments, then the AI-encoded quantities resulting from the column-wise calls of the 1D DCT

have the following configuration: (i) the elements in Row 0 and Row 4 will always have

27

Table 3.2: AI representation classification.

Class AI representation

A u = [× 0 0 0 0 0 0 0]>

B u = [0 × 0 × 0 × 0 ×]>

C u = [0 0 × 0 0 0 × 0]>

D u = [× 0 × 0 × 0 × 0]>

E u = [× 0 0 0 × 0 0 0]>

Note: Multiplication symbols correspond to non-null coefficients.

a non-null first coefficient in its AI-based representation; (ii) the elements in Row 1, Row

3, Row 5, and Row 7 will exhibit exhibit non-null odd-index coefficients; and (iii) Row 2

and Row 6 will have non-null coefficients only in the 3rd and 7th coefficients on its respec-

tive AI-based representation. Such fixed patterns are due to the Algorithm 3.2 as proposed

in [4].

In view of their patterns, we categorize the AI quantities into the five classes

shown in Table 3.2, where non-null coefficient locations are represented by a multipli-

cation symbol. If we represent the two-dimensional input sequence in graphical format as

in Figure 3.3(a), we obtain the configuration shown in Figure 3.3(b) after the application

of 1D DCT over the columns. The letters A, B, C, D, and E represent the class to which

the quantity belongs, according to the definitions of the AI representations in Table 3.2.

For an error-free realization of the 2D DCT without FRS blocks between the

column- and row-wise 1D DCT calls, we need to derive tailored AI-based DCT algorithms

28

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

m

n

(a) Input data

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

l

n

(b) Column-wise
1D DCT output

l

k

B

D

B

D

B

D

B

D

C

B

E

B

C

B

E

B

B

D

B

D

B

D

B

D

A

B

C

B

A

B

C

B

B

D

B

D

B

D

B

D

C

B

E

B

C

B

E

B

B

D

B

D

B

D

B

D

A

B

C

B

A

B

C

B

(c) 2D DCT output

Figure 3.3: 2D representation of the input coefficient class: (a) before the transformation,
(b) after the application of the 1D DCT over its columns, and (c) after the application of
the 2D DCT.

that consider input data in Class B and Class C. For input in Class A, the DCT algorithm

collapses to the method detailed in [4]. For such, we consider the multiplication rules out-

lined in Table 3.1. The obtained procedures are detailed in the algorithm in Fig. 3.4 (for

Class B data), and in the algorithm in Fig. 3.5 (for Class C data). The algorithm in Fig.

3.4 requires 136 additions and 14 bit-shifting operations; whereas the algorithm in Fig. 3.5

demands 74 additions and 8 bit-shifting operations. The outputs of the algorithms in Figs.

3.4 and 3.5 also follow a fixed pattern that determines the class of each output element

in the AI representation. The class of each element of the output sequence is shown in

Figure 3.3(c).

For a given 8× 8 block x, let xm,· and let x·,n denote the m th row and the n th

column of x, respectively.

Let also the operators DCTA(·), DCTB(·), and DCTC(·) be instantiations of algo-

rithms in the Fig. 3.2, Fig. 3.4, and Fig. 3.5, respectively. For example, DCTA(x·,n) denotes

the computation of the 1D DCT over the n th column of the block x whose coefficients

belong to Class A in the AI-based representation.

29

Input: xn ∈ ZB for n = 0,1, . . . ,7
Output: Xk ∈ span(Z), for k = 0,1, . . . ,7

Stage 1 Outputs:

A0 = [0 x0(2)+x7(2) 0 x0(4)+x7(4) 0 x0(6)+x7(6) 0 x0(8)+x7(8)]>

A1 = [0 x1(2)+x6(2) 0 x1(4)+x6(4) 0 x1(6)+x6(6) 0 x1(8)+x6(8)]>

A2 = [0 x2(2)+x5(2) 0 x2(4)+x5(4) 0 x2(6)+x5(6) 0 x2(8)+x5(8)]>

A3 = [0 x3(2)+x4(2) 0 x3(4)+x4(4) 0 x3(6)+x4(6) 0 x3(8)+x4(8)]>

A4 = [0 x3(2)−x4(2) 0 x3(4)−x4(4) 0 x3(6)−x4(6) 0 x3(8)−x4(8)]>

A5 = [0 x2(2)−x5(2) 0 x2(4)−x5(4) 0 x2(6)−x5(6) 0 x2(8)−x5(8)]>

A6 = [0 x1(2)−x6(2) 0 x1(4)−x6(4) 0 x1(6)−x6(6) 0 x1(8)−x6(8)]>

A7 = [0 x0(2)−x7(2) 0 x0(4)−x7(4) 0 x0(6)−x7(6) 0 x0(8)−x7(8)]>

Auxiliary additions in Stage 2:

a0 = A4(2)+A7(8) a1 = A4(2)−A7(8) a2 = A4(8)+A7(2) a3 = A4(8)−A7(2)

a4 = A4(4)+A7(6) a5 = A4(4)−A7(6) a6 = A4(6)+A7(4) a7 = A4(6)−A7(4)

a8 = A5(2)+A6(8) a9 = A5(2)−A6(8) a10 = A5(8)+A6(2) a11 = A5(8)−A6(2)

a12 = A5(4)+A6(6) a13 = A5(4)−A6(6) a14 = A5(6)+A6(4) a15 = A5(6)−A6(4)
Stage 2 Outputs:

B0 = [0 A0(2)+A3(2) 0 A0(4)+A3(4)

0 A0(6)+A3(6) 0 A0(8)+A3(8)]>

B1 = [0 A1(2)+A2(2) 0 A1(4)+A2(4)

0 A1(6)+A2(6) 0 A1(8)+A2(8)]>

B2 = [0 A1(2)−A2(2) 0 A1(4)−A2(4)

0 A1(6)−A2(6) 0 A1(8)−A2(8)]>

B3 = [0 A0(2)−A3(2) 0 A0(4)−A3(4)

0 A0(6)−A3(6) 0 A0(8)−A3(8)]>

B4 = [2a4 0 a0 +a6 0 a1 +a2 0 a5−a3 0]>

B5 = [2a8 0 a9 +a12 0 a13 +a14 0 a15 +a10 0]>

B6 = [−2a11 0 a10−a15 0 −a13 +a14 0 a12−a9 0]>

B7 = [−2a7 0 −a3−a5 0 −a1 +a2 0 a6−a0 0]>

Class B algorithm continued...

30

Auxiliary additions in Stage 3:

b0 = B2(2)+B3(2) b1 = B2(2)−B3(2) b2 = B2(4)+B3(4) b3 = B2(4)−B3(4)

b4 = B2(6)+B3(6) b5 = B2(6)−B3(6) b6 = B2(8)+B3(8) b7 = B2(8)−B3(8)

b8 = b0 +b7 b9 = b0−b7 b10 = b1 +b6 b11 = b1−b6

b12 = b2 +b5 b13 = b2−b5 b14 = b3 +b4 b15 = b3−b4

Stage 3 Outputs:

C0 = [0 B0(2)+B1(2) 0 B0(4)+B1(4)

0 B0(6)+B1(6) 0 B0(8)+B1(8)]>

C1 = [0 B0(2)−B1(2) 0 B0(4)−B1(4)

0 B0(6)−B1(6) 0 B0(8)−B1(8)]>

C2 = [0 b9 +b13 0 b8−b15

0 −b11 +b12 0 −b10 +b14]
>

C3 = [0 −b10−b14 0 −b11−b12

0 −b15−b8 0 b13−b9]
>

C4 = [B4(1)+B6(1) 0 B4(3)+B6(3) 0

B4(5)+B6(5) 0 B4(7)+B6(7) 0]>

C5 = [−B5(1)+B7(1) 0 −B5(3)+B7(3) 0

−B5(5)+B7(5) 0 −B5(7)+B7(7) 0]>

C6 = [B4(1)−B6(1) 0 B4(3)−B6(3) 0

B4(5)−B6(5) 0 B4(7)−B6(7) 0]>

C7 = [B5(1)+B7(1) 0 B5(3)+B7(3) 0

B5(5)+B7(5) 0 B5(7)+B7(7) 0]>

Class B algorithm continued...

31

Output:

X0 = [0 2C0(2) 0 2C0(4)

0 2C0(6) 0 2C0(8)]>

X1 = [C4(1)+C7(1) 0 C4(3)+C7(3) 0

C4(5)+C7(5) 0 C4(7)+C7(7) 0]>

X2 = [0 C2(2) 0 C2(4)

0 C2(6) 0 C2(8)]>

X3 = [2C5(5) 0 C5(3)+C5(7) 0

C5(1) 0 C5(3)−C5(7) 0]>

X4 = [0 2C1(2) 0 2C1(4)

0 2C1(6) 0 2C1(8)]>

X5 = [2C6(5) 0 C6(3)+C6(7) 0

C6(1) 0 C6(3)−C6(7) 0]>

X6 = [0 C3(2) 0 C3(4)

0 C3(6) 0 C3(8)]>

X7 = [−C4(1)+C7(1) 0 −C4(3)+C7(3) 0

−C4(5)+C7(5) 0 −C4(7)+C7(7) 0]>

Figure 3.4: The 8-point DCT algorithm for an input sequence in the AI representation
belonging to Class B.

32

Input: xn ∈ ZC for n = 0,1, . . . ,7
Output: Xk ∈ span(Z), for k = 0,1, . . . ,7

Stage 1 Outputs:

A0 = [0 0 x0(3)+x7(3) 0 0 0 x0(7)+x7(7) 0]>

A1 = [0 0 x1(3)+x6(3) 0 0 0 x1(7)+x6(7) 0]>

A2 = [0 0 x2(3)+x5(3) 0 0 0 x2(7)+x5(7) 0]>

A3 = [0 0 x3(3)+x4(3) 0 0 0 x3(7)+x4(7) 0]>

A4 = [0 0 x3(3)−x4(3) 0 0 0 x3(7)−x4(7) 0]>

A5 = [0 0 x2(3)−x5(3) 0 0 0 x2(7)−x5(7) 0]>

A6 = [0 0 x1(3)−x6(3) 0 0 0 x1(7)−x6(7) 0]>

A7 = [0 0 x0(3)−x7(3) 0 0 0 x0(7)−x7(7) 0]>

Auxiliary additions in Stage 2:

a0 = A4(3)+A7(7) a1 = A4(7)+A7(3) a2 = A4(3)−A7(7) a3 =−A4(7)+A7(3)

a4 = A5(3)+A6(7) a5 = A5(3)−A6(7) a6 = A5(7)+A6(3) a7 = A5(7)−A6(3)
Stage 2 Outputs:

B0 = [0 0 A0(3)+A3(3) 0 0 0 A0(7)+A3(7) 0]>

B1 = [0 0 A1(3)+A2(3) 0 0 0 A1(7)+A2(7) 0]>

B2 = [0 0 A1(3)−A2(3) 0 0 0 A1(7)−A2(7) 0]>

B3 = [0 0 A0(3)−A3(3) 0 0 0 A0(7)−A3(7) 0]>

B4 = [0 a0 0 a1 0 a2 0 a3]
>

B5 = [0 a4 0 a5 0 a6 0 a7]
>

B6 = [0 −a7 0 a6 0 −a5 0 a4]
>

B7 = [0 a3 0 −a2 0 a1 0 −a0]
>

Auxiliary additions in Stage 3:

b0 = B2(3)+B3(7) b1 = B2(3)−B3(7) b2 = B2(7)+B3(3) b3 = B2(7)−B3(3)

Class C algorithm continued...

33

Stage 3 Outputs:

C0 = [0 0 B0(3)+B1(3) 0

0 0 B0(7)+B1(7) 0]>

C1 = [0 0 B0(3)−B1(3) 0

0 0 B0(7)−B1(7) 0]>

C2 = [2(b0−b3) 0 0 0

2b2 0 0 0]>

C3 = [−2(b0 +b3) 0 0 0

−2b1 0 0 0]>

C4 = [0 B4(2)+B6(2) 0 B4(4)+B6(4)

0 B4(6)+B6(6) 0 B4(8)+B6(8)]>

C5 = [0 −B5(2)+B7(2) 0 −B5(4)+B7(4)

0 −B5(6)+B7(6) 0 −B5(8)+B7(8)]>

C6 = [0 B4(2)−B6(2) 0 B4(4)−B6(4)

0 B4(6)−B6(6) 0 B4(8)−B6(8)]>

C7 = [0 B5(2)+B7(2) 0 B5(4)+B7(4)

0 B5(6)+B7(6) 0 B5(8)+B7(8)]>

Class C algorithm continued...

34

Output:

X0 = [0 0 2C0(3) 0

0 0 2C0(7) 0]>

X4 = [0 0 2C1(3) 0

0 0 2C1(7) 0]>

X2 = [C2(1) 0 0 0

C2(5) 0 0 0]>

X6 = [C3(1) 0 0 0

C3(5) 0 0 0]>

X7 = [0 −C4(2)+C7(2) 0

−C4(4)+C7(4) 0 −C4(6)+C7(6) 0 −C4(8)+C7(8)]>

X3 = [0 C5(4)+C5(6) 0

C5(2)+C5(8) 0 C5(2)−C5(8) 0 C5(4)−C5(6)]>

X5 = [0 C6(4)+C6(6) 0

C6(2)+C6(8) 0 C6(2)−C6(8) 0 C6(4)−C6(6)]>

X1 = [0 C4(2)+C7(2) 0

C4(4)+C7(4) 0 C4(6)+C7(6) 0 C4(8)+C7(8)]>

Figure 3.5: The 8-point DCT algorithm for an input sequence in the AI representation
belonging to Class C.

35

Input: xm,n ∈ ZA for m,n = 0,1, . . . ,7
Output: Xk,l ∈ span(Z), for k, l = 0,1, . . . ,7

Compute the 1D DCT over the columns of xm,n using the algorithm in Fig. 3.2 :

X·,l = DCTA(x·,l), l = 0,1, . . . ,7

Compute the 1D DCT over the rows of xm,n using algorithm in the Fig. 3.2; :

Xk,· = DCTA(Xk,·), k = 0,4

Xk,· = DCTB(Xk,·), k = 1,3,5,7

Xk,· = DCTC(Xk,·), k = 2,6

Return Xk,l

Figure 3.6: The 8-point 2D DCT AI-based fast algorithm.

Let ZX be the set of 8-point integer vectors belonging to Class X, where X ∈

{A,B,C}. Thus, the complete fast algorithm for the computation of the 2D DCT using

AI representation can be expressed in terms of Algorithms 3.2, 3.4, and 3.5, as shown in

Algorithm 3.6.

Notice that the output are in AI-based representation.

Algorithm 3.6 along with the FRS is graphically depicted on Figure 3.7.

The computational cost of algorithm in the Fig. 3.6 can be derived by noticing

that it demands 10, 4, and 2 instantiations of algorithms in the Figs. 3.2, 3.4, and 3.5,

respectively. Considering the number of additions and bit-shiftings required by these three

algorithms, the computation of the 2D DCT using AI-based representation requires a total

of 892 additions and 92 bit-shifting operations. Counts for arithmetic operations for various

algorithms are shown in Table 3.3.

36

Input Block

Output Block

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

DCTA

DCTA

DCTA

DCTA

DCTA

DCTA

DCTA

DCTA

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

DCTA

DCTA

B

D

B

D

B

D

B

D

C

B

E

B

C

B

E

B

B

D

B

D

B

D

B

D

A

B

C

B

A

B

C

B

B

D

B

D

B

D

B

D

C

B

E

B

C

B

E

B

B

D

B

D

B

D

B

D

A

B

C

B

A

B

C

B

DCTB

DCTC

DCTB

DCTB

DCTC

DCTB

FRS

Figure 3.7: Graphical representation of the entire 2D DCT parallel architecture using AI
representation including FRS. The blocks DCTA, DCTB, and DCTC represent the 1D DCT
in the AI-based representation for inputs in classes A, B, and C, respectively, and are im-
plemented by the algorithms in the Figs. 3.2, 3.4, and 3.5.

Table 3.3: Comparison for fast algorithms for the computation of 2D 8-point DCT with
algebraic integer theory

Algorithm Error-free?

Complexity

———-——— Uniform Scale?

Add Shift

Dimitrov et al. [28] No 384 0 No

Madanayake et al. [33] Yes 1064 32 No

Edirisuriya et al. [34] Yes 1064 32 No

Pradini et al. [39] No 304 0 Yes

Wahid et al. [40] No 384 64 Yes

Wahid et al. [41] No 384 64 No

Rajapaksha et al. [42] Yes 1064 32 No

Fu et al. [43] No 352 360 Yes

Present work Yes 892 92 Yes

37

3.4 Final Reconstruction Step

The final reconstruction step (FRS) block performs the AI decoding described in Eq. (3.2).

It maps AI quantities back to a fixed-point representation. In the proposed design im-

plementation of the 2D DCT, the FRS is performed only at the very final stage after all

the computations required by the 2D DCT are completed over the AI representation. No

intermediate reconstructions are required.

In this section, we consider two methods for AI decoding:

(i) dyadic approximation [13] and (ii) the expansion factor method [13, 44] with

a modified cost function for optimized results. The dyadic approximation method is suit-

able for scenarios where the exact spectrum is required, whereas the expansion factor is

applicable when a scaled version is acceptable.

In both cases, the FRS is reduced to the evaluation of the product of a few integers

by known integer constants. This operation can be understood as an instance of the mul-

tiple constant multiplication (MCM) problem with a small number of constants—no more

than four, as will become clear in the following sections. Several methods for MCM eval-

uation with different constants have been developed by means of optimization and graph

theory [45–48].

For solving the present MCM problems, we employ the method described in [49],

which is based on number recoding and subexpression factorization and which has not been

applied to the design of FRS block in previous studies [28,33,34,39–43]. MCM evaluation

38

can save up to 40% of area in FPGA implementation and provide faster computation when

compared to routine methods [49].

3.4.1 Dyadic Approximation Method

The irrational quantities required by the FRS can be approximated with arbitrary precision

by dyadic integers [13]. Dyadic integers are of the form p/2k, where p is an odd integer

and k ∈N N; this form enables them to be efficiently implemented in hardware [12,13,50].

In order to implement the FRS with a minimum arithmetic cost, we first approximate each

of the involved irrational constants by a dyadic integer. The accuracy of its approximation is

determined by the wordlength employed, which can vary according to specific applications.

For the sake of clarity, adopting the 11-bit wordlength, we obtain:

ζ ≈

1 4017

211
3784
211

3406
211

2896
211

2276
211

1567
211

799
211

> . (3.4)

For the decoding of 2D DCT output coefficients into a fixed-point representation, we need

to consider the quantities in each AI number class and design specific algorithms for each

class. Considering the classes shown in Table 3.2, we can use the algorithms shown in

Tables 3.4 and 3.5 for the approximate ζ with 11-bit wordlength. The operation x� k

denotes the left shift of k bits over the integer quantity x (i.e., x ·2k), while x� k denotes

the right shift of k bits.

For the purpose of clarity, we also show the graphical representation of the FRS

block for the dyadic approximation method for an 11-bit word length in the Figure 3.8.

39

Table 3.4: Fast algorithms for FRS for Dyadic Approximation for an 11-bit word length
and its arithmetic cost for Class A, and Class B.

Class Algorithm Output fdec(x;ζ)
Arithmetic Cost

Additions Shifts

A fenc(x;ζ) = u0 u0 0 0

B

t1 = u1−u3� 2

4017·u1+3406·u3+2276·u5+799·u7
211 13 12

t2 = u3−u5� 1

t3 = t2−u7� 4

t4 =−u7 +u1

t5 = u5 +u7� 2

t6 = u3 +u1

t7 = t4− t1� 4

t8 =−t1 + t5� 2

t9 =−t2 + t6� 2

t10 =−t3� 1+ t7

t11 = t3 + t8� 2

t12 = t11� 4+ t10

fdec(x;ζ) = (t9� 10+ t12)� 11

40

Table 3.5: Fast algorithms for FRS for Dyadic Approximation for an 11-bit word length
and its arithmetic cost for Class C, Class D, and Class E.

Class Algorithm Output fdec(x;ζ)
Arithmetic Cost

Additions Shifts

C

t1 = u2� 3+u6

3784·u2+1567·u6
211 5 6

t2 = u6� 5−u2

t3 = t1− t1� 5

t4 = t2 + t1� 3

fdec(x;ζ) = (t3 + t4� 6)� 11

D

t1 = u2� 3−u6

2048·u0+3784·u2+2896·u4+1567·u6
211 9 9

t2 = u4� 2−u4

t3 = t1 + t2� 1

t4 = u4−u2� 2

t5 = t4� 4+ t1

t6 = t5− t3� 5

t7 = t3 +u6� 2

fdec(x;ζ) = (t6 + t7� 9)� 11+u0

E

t1 =−u4 +u4� 4
2048·u0+2896·u4

211 4 5t2 = t1� 2+ t1

fdec(x;ζ) = (u4� 12− t2� 4)� 11+u0

41

+ <<4

<<4

<<2

<<4

<<10

+

+

+

+ +

+

+

+

+ <<2<<1<<2

+

+

>>11

<<2

+

<<2 <<1

u1 u3 u5 u7

t4

t5

t1

t6

t3

t10

t11

fdec

t9

t8

t7

t2

t12

(a) Class B

+

+

+

<<3 +

<<3+

<<5

<<5<<3

>>11

u2 u6

fdec

t1

t2

t3 t4

(b) Class C

<<5+

+

+

+

<<9

<<2 <<2<<3<<2

+

+ <<1

+

<<4

+

+

>>11

t1

t6

fdec

t3

t2

t7

t4

t5

u0 u2 u4 u6

(c) Class D

+

+

+<<4

<<2+

<<12

<<4

>>11

u0

u4

fdec

t1

t2

(d) Class E

Figure 3.8: FRS block using dyadic approximation for (a) Class B, (b) Class C, (c) Class
D, and (d) Class E for an 11-bit wordlength.

42

3.4.2 Expansion Factor

The expansion factor method returns a scaled version of the DCT spectrum and is based

on finding an appropriate real constant α∗ > 1 such that α∗ · ζ is as close as possible to

a vector of integers. This provides a means of performing the decoding operation with

multiplications by known integer constants that can be efficiently performed with:

α
∗ · fdec(x;ζ)≈ x> · round(α∗ ·ζ), (3.5)

where round(·) operates over each component of its vector argument. Previous works have

considered an expansion factor α∗ satisfying the following optimization problem:

α
∗ = arg min

α>1
‖ α ·ζ− round(ff · ı) ‖ . (3.6)

In this context, all components of the basis vector ζ are taken into account and have the

same weight. However, such an outcome is not suitable for this problem.In fact, the re-

quired number of multiplications by each of the components of ζ is not uniform. This can

be seen by the output pattern of the 2D DCT coefficients shown in Figure 3.3(c). Therefore,

in order to obtain a more precise estimation for α∗, we must take into account the relative

frequency of occurrence of the multiplications of the coefficients of ζ. This results in the

following optimization problem:

α
∗ = arg min

α>1
‖f> · (α ·ζ− round(ff · ı))‖, (3.7)

43

where f represents the vector with the relative frequency of the occurrence of multipli-

cations by each coefficient of ζ. Clearly, f has the same dimension as ζ, and for this

particular case of 2D DCT with the representation proposed in [4], we obtain

f =

 24
220

32
220

24
220

32
220

20
220

32
220

24
220

32
220

> . (3.8)

The problem in Eq. (3.7) is non-linear and has no closed solution in terms of sim-

ple algebraic functions. In order to solve Eq. (3.7) we employ exhaustive search methods.

Although exhaustive search methods are not considered to be efficient for solving opti-

mization problems in general, the search space for finding suitable expansion factors can

be made small enough that it will not impose prohibitive limitations.

44

For instance, considering the search space [0,2048] (11-bit wordlength) and a step

size of 10−2, we obtain the optimal value of α∗ = 1849.39, leading to

1849.39 ·ζ =

18449.39

3618.97 . . .

3409.00 . . .

3068.02 . . .

2609.13 . . .

2049.98 . . .

1412.05 . . .

719.85 . . .

≈

1845

3619

3409

3068

2609

2050

1412

720

. (3.9)

Table 3.6 shows the optimal expansion factors for some wordlengths N for searches with

steps of 10−2. Minimum and maximum relative errors are also shown.

For the decoding of 2D DCT output coefficient into the fixed-point representation,

we need to consider the different number classes shown in Table 3.2 and design specific

algorithms for each; for this purpose, we adopted the MCM method described in [49]. We

derived the algorithms shown in Table 3.7 for the optimal constant α∗ = 1849.39 with an

11-bit word length.

45

Figure 3.9: Pictorial representation of 2D-DCT

46

Table 3.6: Scale factors and maximum/minimum relative errors

N α∗
ζ− round(α∗·ζ)

α∗

min(·) max(·)

5 25.99 5.22 ·10−4 9.41 ·10−3

6 43.28 5.18 ·10−3 6.47 ·10−3

7 69.26 1.81 ·10−4 3.75 ·10−3

8 253.83 1.96 ·10−4 1.08 ·10−3

9 341.01 1.8 ·10−11 7.65 ·10−4

10 341.01 1.8 ·10−11 7.65 ·10−4

11 1844.95 5.03 ·10−4 8.31 ·10−5

12 1844.95 5.03 ·10−4 8.31 ·10−5

Thus, concluding this chapter with all the discussions of the theoretical and math-

ematical explanations of the algebraic integers, classes (their algorithms), and final recon-

struction step (FRS) etc., [51]. All the reasons for the adoption of the present thesis are

discussed in detail in this chapter. In the successive chapter 4, the final step of the thesis is

discussed.

47

Table 3.7: Fast algorithms for FRS for Expansion Factor Method for an 11-bit word length
(α∗ = 1849.39) and its arithmetic cost for Class A, Class B, and Class C.

Class Algorithm Output fdec(x;ζ)
Arithmetic Cost

Additions Shifts

A

t1 =−u0 +u0� 2

1845 ·u0 4 4
t2 = u0� 11+u0

t3 = t1� 4+ t1

fenc(x;ζ) = t2− t3� 2

B

t1 = t2 + t3� 8

3619 ·u1 +3068 ·u3 +2050 ·u5 +720 ·u7 10 10

t2 =−u7� 4+u1

t3 = u3� 2+u7

t4 = u5−u3� 1

t5 =−u1� 4+u1

t6 = u1� 1+u5

t7 = t4 + t5� 4

t8 = t7� 1− t1

t9 = t6� 9+ t1

fdec(x;ζ) = t8 + t9� 2

C

t1 = u2−u6� 1

3409 ·u2 +1412 ·u6 7 7

t2 = u6� 2+u2

t3 = u2 +u2� 8

t4 = t2 + t1� 6

t5 = t1− t1� 2

t6 = t5� 8+ t4

fdec(x;ζ) = t3� 4+ t6

48

Table 3.8: Fast algorithms for FRS for Expansion Factor Method for an 11-bit word length
(α∗ = 1849.39) and its arithmetic cost for Class D, and Class E.

Class Algorithm Output fdec(x;ζ)
Arithmetic Cost

Additions Shifts

D

t1 =−t5� 7+ t6

1845 ·u0 +3049 ·u2 +2609 ·u4 +1412 ·u6 13 12

t2 = u0 +u4

t3 = u2� 1+u0

t4 = u0� 2−u4

t5 = u6 +u2� 1

t6 = t3 + t4� 2

t7 = u6� 2+u2

t8 = u4� 2−u6

t9 = t7 + t2

t10 = t2� 4+ t8

t11 = t10� 7+ t9

t12 =−t1� 2+ t1

fdec(x;ζ) = t11 + t12� 2

E

t1 = u0� 4+ t3

1845 ·u0 +2609 ·u4 7 6

t2 = u0 +u4

t3 =−u4� 2+u0

t4 = u4� 9+ t2

t5 = t1− t1� 2

t6 = t4 + t2� 11

fdec(x;ζ) = t5� 2+ t6

49

CHAPTER IV

3D-DCT AND MONOCHROME VIDEO

After image processing, the next topic for discussion is the application of DCT for video

compression. Once we have achieved the 2D-DCT for a particular image, we create a

video, calculate its number of frames, and apply the 3D-DCT to the video by constructing

an 8× 8× 8 3D-DCT architecture. The 3D-DCT is obtained from the combination of

2D-DCT and modified round DCT (MR-DCT). Let us begin with a discussion about the

MR-DCT and its benefits over other 1D transforms.

4.1 Introduction to MR-DCT

MRDCT is a low-complexity 8-point orthogonal approximate DCT. The transform requires

no multiplications or bit-shift operations. The derived fast algorithm requires only 14 ad-

ditions, which is less than any existing DCT approximation. Moreover, in several image

compression scenarios, this MR-DCT transform could outperform the well-known signed

DCT (SCDT) as well as other state-of-the-art algorithms. This transform requires only

14 additions and has comparable or better image compression performance than the clas-

sic SDCT and the state-of-the-art BAS-2011 transform. Prominent approximation-based

techniques include the SDCT [52], the level 1 approximation by Lengwehasatit and Or-

tega [53], the Bouguezel–Ahmad–Swamy (BAS) series of algorithms [54–56], and the

50

Figure 4.1: Signal flow graph for MR-DCT.

DCT round-off approximation [57]. In general, the transformation matrix entries required

by approximate DCT methods are only 0,±1/2,±1,±2 . This implies null multiplicative

complexity, because the involved operations can be implemented exclusively by means

additions and bit-shift operations. This algorithm attains the lowest computational com-

plexity among available methods found in literature.At the same time, it could outperform

state-of-the-art approximations.

Figure 4.1 represents the algorithm for the MR-DCT using a signal flow graph.

Input data xn, n = 0,1, ...,7, relates to output data Xk, k = 0,1, ...,7, according to X = T ∗x.

Dashed arrows represent multiplication by −1.

51

where the matrix for ”T” is given as below:

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 −1

1 0 0 −1 −1 0 0 1

0 0 −1 0 0 1 0 0

1 −1 −1 1 1 −1 −1 1

0 −1 0 0 0 0 1 0

0 −1 1 0 0 1 −1 0

0 0 0 −1 1 0 0 0

4.2 Implementation of 3D-DCT

As discussed earlier, 3D-DCT is most popular transform for video compression. Here we

are implementing 3D-DCT using a multplierless 2D and 1D transform of DCT so as to

reduce the area and the complexity of the system. The design of the combined 2D-DCT

and MR-DCT is presented in Chapter 5 as an implementation on Simulink.

52

Figure 4.2: Overview of 3-D DCT

53

Table 4.1: Comparison of MR-DCT with other proposed DCTs

Method Additions Multiplications Shifts Total

MR-DCT 14 0 0 14

SDCT [52] 24 0 0 24

Level 1 approximation [53] 24 0 2 26

BAS-2008 transform [54] 18 0 2 20

BAS-2009 transform [55] 18 0 0 18

BAS-2011 transform [56] 18 0 2 20

CB-2011 transform [57] 22 0 0 22

A video from the real time is recorded with a frame rate of 5 frames/sec. Duration

of video is considered to be 8 sec with total number of frames to be 40. Each frame is 640

x 480. Therefore the first eight frames are considered for the first 2D-DCT step and then

1D-DCT is applied to the result using the MR-DCT algorithm. All together 64 1D-DCT’s

are required to operate on 8×8 2D-DCT outputs.

54

Figure 4.3: 3D-DCT output of 8× 8 input of first frame representing each pixel and its
coefficient value with its corresponding color

55

CHAPTER V

DIGITAL FPGA IMPLEMENTATION OF THE ARCHITECTURE

5.1 Designing of algorithms for classes on simulink.

In the work presented in this thesis, the major components of the 2D DCT and the 3D

DCT architecture come from classes that are derived from the mathematical transform of

the DCT. In Chapter 3, we discussed the equations and the number of operations required

for the construction of the algorithms. In simulink, the precision and binary point are

set to a particular number (for example, beginning with 8), and the algorithms are built.

This chapter discusses the design of the algorithms on Simulink and the implementation

of the algorithms in a field-programmable gate array (FGPA) and an application-specific

integrated circuit (ASIC).

5.2 Design of algorithms on Simulink for the final reconstruction step

It has been established that the final reconstruction step (FRS) block performs the AI de-

coding described earlier and maps the AI quantities back to fixed point representation. In

the proposed design implementation of the 2D DCT, the FRS is performed only at the very

final stage after all the computations required by the 2D DCT are completed over the AI

56

Figure 5.1: Figure representing a Class A algorithm on Simulink.

57

Figure 5.2: Figure representing a Class B algorithm on Simulink.

58

Figure 5.3: Figure representing a Class C algorithm on Simulink.

59

representation. One of the advantages of this method is that it does not require intermediate

reconstructions.

5.3 Design and Implementation of the 2-D architecture using XILINX ML605

The 2D DCT is created using XSG Matlab/Simulink, realized, and tested within Virtex-6

LX240T FPGA on ML605. By using ML605. The Xilinx ISE, XSG and Matlab/Simulink

components allow for rapid prototyping and on-chip verification of designs. The ASIC

synthesis and place-and-route results give precise information about the hardware con-

sumption and speed increment, as compared to .xflow results. For the ASIC synthesis, the

hardware description language code was ported to 180-nm complementary metal-oxide-

semiconductor (CMOS) technology using analog/mixed signal (AMS) standard cells and

subject to synthesis and place-and-route using the Encounter tool in Cadence. The adopted

figures of merit were: Maximum frequency (in MHz),throughput,block rate, pixel rate ,

area (in mm2), power (in watts) and final Normalized Dynamic power derived from the

supply voltage (in mW/MHz.V 2
sup).

5.3.1 FPGA Implementation

A fully parallel architecture for the real-time implementation of the proposed 2D DCT

using AI encoding has been designed, simulated and implemented using FPGA technology.

The architecture assumes 64 parallel input channels pertaining to the 64 locations of an

8× 8 matrix of pixel values, which are assumed to be of 8-bit signed values using the

two’s complement format. The inputs are assumed to be normalized in the range of −1

60

(a) FRS for Class B

(b) FRS for Class C

(c) FRS for Class D

(d) FRS for Class E

Figure 5.4: Figures representing algorithms on Simulink for the final reconstruction step
(FRS) using a dyadic approximation method.

61

Figure 5.5: Simulink design of 2D-DCT with final reconstruction step (FRS)

Figure 5.6: 2D-DCT hardware block generated on FPGA

to 127/128. The AI encoded architectures corresponding to Algorithm 3.2, 3.4, and 3.5

are realized in parallelized digital hardware.

The 64 output coefficients are maintained in the AI-encoded infinite precision for-

mat until the FRS block for conversion to fixed-point representation for subsequent pro-

cessing. The algorithms for multiple constant multiplication described in Table 3.4 and 3.7

were used in the FRS design. The FRS was also made fully parallel. Both the AI-encoded

DCT architecture as well as the FRS are fine-grain pipelined for low critical path delay.

The resulting digital design was simulated using bit-true and cycle accurate models

using 1.5 ·104 randomly generated 8×8 input vectors to verify correct operation. The ver-

ified design was thereafter targeted to a Xilinx Virtex-6 XC6VLX240T-1FFG1156 FPGA

62

Figure 5.7: DCT outputs of Matlab using matlab ”dct2” command

Figure 5.8: DCT outputs of hardware designed and generated on FPGA

device installed on a Xilinx ML605 evaluation platform. The design was subjected to

physical implementation and was tested using 1.5 ·104 test matrices provided to the imple-

mentation using stepped hardware co-simulation on the JTAG port. The FPGA resource

consumption and metrics are shown in Table 5.1, and the available metrics of other designs

are shown in Table 3.3.

The throughput is calculated as the number of output coefficients in each cycle; the

designs from the works listed in Table 5.1 are classified into fully parallel 64 coefficients

per clock cycle (FPar64), row parallel 8 coefficients per clock cycle (RPar8), and fully

serial 1 coefficient per clock cycle (FSer1).

The block and pixel rates represent the number of 8× 8 blocks and pixels pro-

cessed per second. The maximum clock frequency for potential real-time operation is 360

63

(a) Matlab

(b) Hardware

Figure 5.9: Comparison of matlab and hardware generated outputs for image from real-
time

64

Table 5.1: Comparison of FPGA implementation metrics.

Method Max. Freq. Board Throughput
Block Pixel

Rate Rate

Madanayake et al. [33] 307 MHz
Xilinx Virtex-6

RPar8∗ 4.78 ·106 3.83 ·107

(XC6VLX240T)

Edirisuriya et al. [34] 316 MHz
Xilinx Virtex-6

FSer1∗∗ 4.93 ·106 4.93 ·106

(XC6VLX240T)

Wahid et al. [40] (1D DCT) 36.7 MHz
Actel A500K

– – –
(A500K050)

Wahid et al. [41] 101 MHz
Xilinx Virtex-E

– – –
(XCV200E-8)

Rajapaksha et al. [42] 302 MHz Achronix SPD60 RPar8∗ 4.71 ·106 3.77 ·107

Proposed 360 MHz
Xilinx Virtex-6

FPar64∗∗∗ 3.6 ·108 2.30 ·1010

(XC6VLX240T)

*RPar8 means fully parallel 64 coefficients per clock cycle,
**FSer1 means row parallel 8 coefficients per clock cycle,
***FPar64 means fully serial 1 coefficient per clock cycle.

65

MHz. This implies a throughput of 360 million 2D DCT computations of size 8×8 every

second, if this core is used as part of a larger image/video processing system designed on

the same FPGA technology. This throughput is equivalent to a pixel rate of 23,040 billion

pixels/second with a sustained data processing rate of 184.32 Gbps (internal to the core).

Obtaining such a high data rate for the processing core is a challenging problem itself. The

intention here is to give the reader a sense of the capabilities of the FPGA realization, if a

suitable data source and algorithm is in fact available to feed it.

Given that the proposed core is expected to be part of a larger ultra-high definition

video processing system, the obtained throughput from the FPGA implementation is quite

sufficient for today’s most challenging UHD video applications.

Note that the proposed design achieves the highest maximum frequency among all

the competitors’ designs. The work in [40] proposes a 2D DCT algorithm, but only the

FPGA implementations results for 1D DCT are presented and therefore used in Table 5.1.

The only works containing complete error-free implementation of 2D DCT are [33, 34,

42]. The proposed design demands a total of 26,000 registers and 30,200 look-up tables

(LUTs) used for logic versus the 10,282 registers and 12,007 LUTs required by the design

in [33]. Although the number of registers and LUTs used are around three times larger, the

proposed design offers a block processing rate that is 100 times higher and a pixel rate that

is 1000 times higher than the design in [33].

66

Table 5.2: Comparison of ASIC implementation metrics.

Method Pradini et al. [39] Fu et al. [43] Present Work

Maximum Frequency 210 MHz 75 MHz 893 MHz

Technology 0.18 µm CMOS 0.18 µm CMOS 0.18 µm CMOS

Throughput FPar64* FSer1** FPar64***

Block rate 4.20 ×107 1.71 ×106 8.93 ×108

Pixel rate 2.68 ×109 7.50 ×107 5.71 ×1010

Area – 2.16 mm2 7.22 mm2

Dynamic Power – – 11.85 W

Normal Dynamic Power – – 13.269 mW/MHz·V2
sup

* FPar64 = fully parallel 64 coefficients per clock cycle.
**RPar8 = row parallel 8 coefficients per clock cycle.
***FSer1 = fully serial 1 coefficient per clock cycle.

5.3.2 ASIC Synthesis

Aside from the FPGA implementation, the design is subjected to the application-specific

integrated circuit (ASIC) synthesis. The employed ASIC technology is the AMS 180 nm

with the software Genus version 15.23. The supply voltage for the ASIC synthesis is

1.8 V [51]. The results for the ASIC metrics are shown in Table 5.2.

5.3.3 Implementation of MR-DCT

As referred earlier Modified Round DCT was developed by Dr.Cintra which is constructed

using only 14 additions.The modified round DCT (MR-DCT) [3], is initially designed on

Simulink, and its subsystem is then connected to the outputs from the 2D DCT blocks.

67

Figure 5.10: Figure representing MR-DCT algorithm on Simulink.

5.4 Design and Implementation of the 3-D DCT architecture

After the implementation of 3D-DCT architecture on Simulink, it is fully pipe lined to

perform the operations at a time. Then FPGA and ASIC analysis is performed same as for

2D-DCT. This provides the metrics like best time achievable, maximum frequency and the

area occupied by the architecture.

5.4.1 FPGA Implementation

The maximum clock frequency of the 3D-DCT architecture for potential real time opera-

tion is 357.2 MHz. The best time achievable for the architecture is 2.8 ns.It uses a total

of 34,302 number of flip flops, which is 11% of the total number of flip flops available for

building an architecture. It uses 34,130 number of look up tables (LUT’s), which is 22%

68

Table 5.3: Measurements recorded for 3D-DCT using ML605 kit

Metrics Results

Maximum Frequency 357.2 MHz

Time 2.8 ns

Flip Flops 34,302

LUT’s 34,130

CLB’s 9,589

Table 5.4: Measurements recorded for 3D-DCT using ASIC.

Metrics Results

Technology used here 0.18 µm CMOS

Throughput FPar64*

Maximum frequency 663.57MHz

Dynamic power 106.06 Watts

Area 70.49 mm2

* FPar64 = fully parallel 64 coefficients per clock cycle.

of the total number of LUT’s available for building an architecture, and 9,589 number of

combinational logic blocks (CLB’s), which is 25% of the available CLB’s.

5.4.2 ASIC Synthesis

ASIC synthesis for 3D-DCT architecture generated the reports for area,time,power and

gate distribution. The time generated is the reciprocal of the maximum frequency which

is 663.57MHz. The dynamic power is given as 106.06 Watts and the area required for the

architecture is given as 70.49 mm2.

69

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this study, a digital 8 × 8 × 8 3D-DCT architecture is developed from 8 × 8 2D DCT

and MR-DCT (with only 14 additions). A massively parallel and pipe lined architecture is

proposed for real-time implementations that is capable of compressing the videos for a pro-

vided number of pixels. The proposed method can be considered to be less complex since

it uses only adders/subtractors and shifters. This implementation is very advantageous in

terms of time, power and complexity.

6.2 Future Work

1. The performance of the architecture can be verified in real-time by implementing it

on the chip.

2. The constructed 8 × 8 × 8 3D DCT digital hardware can be used to explore many

applications that involve digital image and video processing. There is scope for wide

extension of the 3D DCT from monochrome video implementation to a full-color

video.

70

3. Efforts can be made to reduce the size of the architecture with a few modifications in

the design so as to reduce the size of the chip.

71

BIBLIOGRAPHY

[1] A.M. Raid, W.M. Khedr, M.A. El-Dosuky, and W. Ahmed. Jpeg image compression
using discrete cosine transform-a survey. arXiv preprint arXiv:1405.6147, 2014.

[2] Robert J Schalkoff. Digital image processing and computer vision, volume 286. Wi-
ley New York, 1989.

[3] F. M. Bayer and R. J. Cintra. Dct-like transform for image compression requires 14
additions only. Electronics Letters, 48(15):919–921, July 2012.

[4] D. F. G. Coelho, R. J. Cintra, S. Kulasekera, A. Madanayake, and V. S. Dimitrov.
Error-free computation of 8-point discrete cosine transform based on the loeffler fac-
torisation and algebraic integers. IET Signal Processing, 10(6):633–640, 2016.

[5] A.B. Watson. Image compression using the discrete cosine transform. Mathematica,
4(1):81, 1994.

[6] V. Lecuire, L. Makkaoui, and J.-M. Moureaux. Fast zonal dct for energy conservation
in wireless image sensor networks. Electronics Letters, 48(2):125–127, 2012.

[7] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Transac-
tions on Computers, C-23(1):90–93, Jan 1974.

[8] K.R. Rao. Discrete cosine transform-algorithms, advantage and applications. Pro-
ceedings of the Korean Institute of Communication Sciences Conference, pages 3–6,
1989.

[9] William. B. Pennebaker and Joan L. Mitchell. JPEG: Still image data compression
standard. Springer Science & Business Media, 1992.

[10] Y. Arai, T. Agui, and M. Nakajima. A fast dct-sq scheme for images. IEICE transac-
tions (1976-1990), 71:1095–1097, 1988.

[11] X. Shao and S.G. Johnson. Type-ii/iii dct/dst algorithms with reduced number of
arithmetic operations. Signal Processing, 88(6):1553–1564, 2008.

72

[12] Alan V. Oppenheim, Ronald W. Schafer, Mark T. Yoder, and Wayne T. Padgett. Dis-
crete Time Signal Processing, volume 1. Prentice-Hall, Inc., Upper Saddle River, NJ,
3rd edition, August 2009.

[13] V. Britanak, P. Yip, and K. R. Rao. Discrete Cosine and Sine Transforms. Academic
Press, 2007.

[14] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice-Hall, Inc., 2
edition, 2001.

[15] S. K. Gupta, J. Jain, and R. Pachauri. Improved noise cancellation in discrete cosine
transform domain using adaptive block LMS filter. International Journal of Engi-
neering Science and Advanced Technology, 2(3):498–502, June 2012.

[16] Q. C. S. An and C. Wang. A computation structure for 2-D DCT watermarking. In
52nd IEEE International Midwest Symposium on Circuits and Systems, pages 577–
580, 2009.

[17] J. Xiao and Y. Wang. Toward a better understanding of DCT coefficients in wa-
termarking. In Pacific-Asia Workshop on Computational Intelligence and Industrial
Application, volume 2, page 2:206–209, 2008.

[18] V. Bhaskaran and K. Konstantinides. Image and Video Compression Standards. Kluwer
Academic Publishers, June 1997.

[19] G. K. Wallace. The JPEG still picture compression standard. IEEE Transactions on
Consumer Electronics, 38(1):xviii–xxxiv, February 1992.

[20] N. Roma and L. Sousa. Efficient hybrid DCT-domain algorithm for video spatial
downscaling. EURASIP Journal on Advances in Signal Processing, 2007(57291),
June 2007.

[21] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.264/AVC
video coding standard. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 13(7):560–576, July 2003.

[22] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos. HEVC: The new gold
standard for video compression: How does HEVC compare with H.264/AVC? IEEE
Consumer Electronics Magazine, 1(3):36–46, July 2012.

[23] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. A practical fast 1-D DCT algorithms
with 11 multiplications. In International Conference on Acoustics, Speech, and Signal
Processing, volume 2, pages 988–991, May 1989.

73

[24] M. T. Heideman and C. S. Burrus. Multiplicative complexity, convolution, and the
DFT. Springer-Verlag, New York, 1988. Originally presented as the author’s thesis
(Ph. D.–Rice University) under title: Applications of multiplicative complexity theory
to convolution and the discrete Fourier transform.

[25] P. Duhamel and Hedi H’Mida. New 2n DCT algorithms suitable for VLSI implemen-
tation. In IEEE International Conference on Acoustics, Speech, and Signal Process-
ing, pages 1805–1808, 1987.

[26] J. H. Cozzens and L. A. Finkelstein. Computing the discrete Fourier transform us-
ing residue number systems in a ring of algebraic integers. IEEE Transactions on
Information Theory, 31(5):580–588, September 1985.

[27] J. H. Cozzens and L. A. Finkelstein. Range and error analysis for a fast Fourier
transform computed over Z[ω]. IEEE Transactions on Information Theory, 33(4):9,
July 1987.

[28] V. Dimitrov, K. A. Wahid, and G. Jullien. Multiplication-free 8× 8 2D DCT ar-
chitecture using algebraic integer encoding. Electronics Letters, 40(20):1310–1311,
September 2004.

[29] V. Dimitrov and K. A. Wahid. On the error-free computation of fast cosine transform.
Information Theories and Applications, 12(4):321–327, 2005.

[30] K. A. Wahid, V. S. Dimitrov, and G. A. Jullien. On the error-free realization of a
scaled DCT algorithm and its VLSI implementation. IEEE Transactions on Circuits
and Systems II: Express Briefs, 54(8):700–704, July 2007.

[31] K. Wahid. Error-free Implementation of the Discrete Cosine Transform: Algorithms
and Architectures using Multidimensional Algebraic Integer Quantization. Lambert
Academic Publishing, University of Saskatchewan, November 2010.

[32] Y. Arai, T. Agui, and M. Nakajima. A fast DCT-SQ scheme for images. IEICE
Transactions, E71(11):1095–1097, November 1988.

[33] A. Madanayake, R. J. Cintra, D. Onen, V. S. Dimitrov, N. T. Rajapaksha, L. T. Bru-
ton, and A. Edirisuriya. A row parallel 8× 8 2D DCT architecture using algebraic
integer based exact arithmetic. IEEE Transactions on Circuits and Systems for Video
Technology, 22(6):915–929, June 2012.

74

[34] A. Edirisuriya, A. Madanayake, R. J. Cintra, V. S. Dimitrov, and N. Rajapaksha. A
single-channel architecture for algebraic integer-based 8×8 2-D DCT computation.
IEEE Transactions on Circuits and Systems for Video Technology, 23(12):2083–2089,
June 2013.

[35] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-time signal
processing, volume 1. Prentice-Hall, Inc., Upper Saddle River, NJ, 2nd edition, 1999.

[36] S. An and C. Wang. A computation structure for 2-D DCT watermarking. In 52nd
IEEE International Midwest Symposium on Circuits and Systems, pages 577–580, Ag
2009.

[37] F. M. Bayer and R. J. Cintra. Image compression via a fast DCT approximation. IEEE
Latin America Transactions, 8(6):708–713, January 2011.

[38] J. Goebel, G. Paim, L. Agostini, B. Zatt, and M. Porto. An HEVC multi-size DCT
hardware with constant throughput and supporting heterogeneous CUs. In IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), pages 2202–2205, May
2016.

[39] A. Pradini, T. M. Roffi, R. Dirza, and T. Adiono. VLSI design of a high-throughput
discrete cosine transform for image compression systems. In International Confer-
ence on Electrical Engineering and Informatics (ICEEI), pages 1–6, July 2011.

[40] K. Wahid, V. Dimitrov, and G. Jullien. Error-free computation of 8×8 2D DCT and
IDCT using two-dimensional algebraic integer quantization. In 17th IEEE Symposium
on Computer Arithmetic (ARITH’05), pages 214–221, June 2005.

[41] K. Wahid, V. Dimitrov, and G. Jullien. New encoding of 8× 8 DCT to make H.264
lossless. In IEEE Asia Pacific Conference on Circuits and Systems, pages 780–783,
2006.

[42] N. Rajapaksha, A. Edirisuriya, A. Madanayake, R. J. Cintra, D. Onen, I. Amer, and
V. S. Dimitrov. Asynchronous realization of algebraic integer-based 2D DCT using
achronix speedster SPD60 FPGA. Journal of Electrical and Computer Engineering,
February 2013. Article ID 834793.

[43] M. Fu, G. A. Jullien, V. S. Dimitrov, and M. Ahmadi. A low-power DCT IP core based
on 2D algebraic integer encoding. In IEEE International Symposium on Circuits and
Systems (ISCAS), volume 2, pages II–765–8 Vol.2, May 2004.

75

[44] Gerlind Plonka. A global method for invertible integer DCT and integer wavelet
algorithms. Applied and Computational Harmonic Analysis, 16(2):90–110, March
2003.

[45] S. Athar and O. Gustafsson. Optimization of AIQ representations for low complexity
wavelet transforms. In 20th European Conference on Circuit Theory and Design
(ECCTD), pages 314–317, August 2011.

[46] O. Gustafsson and L. Wanhammar. A novel approach to multiple constant multipli-
cation using minimum spanning trees. In The 45th Midwest Symposium on Circuits
and Systems (MWSCAS), volume 3, pages 652–655, August 2002.

[47] H. Ohlsson O. Gustafsson and L. Wanhammar. Improved multiple constant multi-
plication using a minimum spanning tree. In Thirty-Eighth Asilomar Conference on
Signals, Systems and Computers, volume 1, pages 63–66, November 2004.

[48] O. Gustafsson. Towards optimal multiple constant multiplication: A hypergraph ap-
proach. In The 42nd Asilomar Conference on Signals, Systems and Computers, pages
1805–1809, 2008.

[49] N. Boullis and A. Tisserand. Some optimizations of hardware multiplication by con-
stant matrices. IEEE Transactions on Computers, 54(10):1271–1282, October 2005.

[50] R. E. Blahut. Fast Algorithms for Digital Signal Processing. Cambridge University
Press, June 2010.

[51] D. F. Coelho, S. Nimmalapalli, V. Dimitrov, Arjuna Madanayake, R. J. Cintra, and
A. Tisserand. Computation of 2d 8× 8 dct based on the loeffler factorization using
algebraic integer encoding. IEEE Transactions on Computers, 2018.

[52] T. I. Haweel. A new square wave transform based on the dct. Signal processing,
81(11):2309–2319, 2001.

[53] K. Lengwehasatit and A. Ortega. Scalable variable complexity approximate forward
dct. IEEE Transactions on Circuits and Systems for Video Technology, 14:1236–1248,
2004.

[54] S. Bouguezel, M. O. Ahmad, and MNS Swamy. Low-complexity 8× 8 transform for
image compression. Electronics Letters, 44(21):1249–1250, 2008.

[55] S. Bouguezel, M. O. Ahmad, and MNS Swamy. A fast 8× 8 transform for image
compression. In Microelectronics (ICM), 2009 International Conference on, pages
74–77. IEEE, 2009.

76

[56] S. Bouguezel, M. O. Ahmad, and MNS Swamy. A low-complexity parametric trans-
form for image compression. In 2011 IEEE International Symposium on Circuits and
Systems (ISCAS), 2011 IEEE International Symposium on, pages 2145–2148. IEEE,
2011.

[57] R. J. Cintra and F. M. Bayer. A dct approximation for image compression. IEEE
Signal Processing Letters, 18(10):579–582, 2011.

77

