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ABSTRACT

This thesis studies the optimal inputs and capacities of non-coherent correlated

multiple-input single-output (MISO) channels in fast Rayleigh fading. We consider

two scenarios: channels under per-antenna power constraints and channels under

joint per-antenna and sum power constraints. For per-antenna power constraints,

we establish the convexity and compactness of the feasible sets, and demonstrate the

existence of optimal input distribution. By exploiting the solutions of a quadratic op-

timization problem, we show that the Kuhn-Tucker condition (KTC) on the optimal

inputs can be simplified to a single dimension and prove the discreteness and finite-

ness of the optimal effective magnitude distribution. Then, we are able to construct a

finite and discrete optimal input vector and determine the capacity gain of MISO over

SISO. We also extend the results to MISO channels subject to the joint per-antenna

and sum power constraints. For this case, the optimal phases and the optimal power

allocation among the transmit antennas need to be determined simultaneously via a

quadratic optimization subject to inequality constraints. Based on our results, the

capacity of considered channels can be obtained and exploited as an upper bound for

the operational transmission rate. Further researches can also rely on our analysis of

the optimal inputs to construct reliable coding schemes for MISO fading channels.

iii



ACKNOWLEDGMENT

Foremost, I would like to express my thanks and appreciation to my advisor, Dr.

Nghi Tran, for his continuous support and guidance during my study and research

at the University of Akron. His enthusiasm, motivation and immense knowledge

consistently encourage me throughout the research and writing of this thesis.

I am very grateful to Dr. Truyen Nguyen from the Department of Mathe-

matics, University of Akron, who has continuously supported me with his patience

and knowledge during my study and research. I also wish to express my appreciation

to Prof. Hoang Duong Tuan from School of Electrical and Data Engineering, UTS,

Australia. His guidance and support contribute significantly to the achievement of

this thesis.

In addition, I would like to thank my lab mate, Mohammad Ranjbar, whose

ideas and comments have enlightened me throughout this research. Partial financial

support from National Science Foundation (NSF) is also gratefully acknowledged.

Finally, I would like to express my profound gratitude to my parents for

providing me consistent support and encouragements. Without their assistances,

this thesis would have not been accomplished.

iv



TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Literature Review . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II. NON-COHERENT MISO: CHANNEL MODEL, MUTUAL INFOR-
MATION, AND CHANNEL CAPACITY . . . . . . . . . . . . . . . . . . 9

2.1 Channel Model and Power Constraints . . . . . . . . . . . . . . . . . 9

2.2 Mutual Information and Channel Capacity . . . . . . . . . . . . . . 11

III. NON-COHERENT MISO CHANNEL UNDER PER-ANTENNA
POWER CONSTRAINTS: OPTIMAL INPUTS AND CHANNEL
CAPACITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Existence of Optimal F ∗X and Existence and Uniqueness of Opti-
mal F ∗Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Kuhn-Tucker Condition (KTC) and Detailed Characteristics of
Optimal F ∗Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 A Finite and Discrete F ∗X and MISO Capacity . . . . . . . . . . . . 22

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



IV. EXTENSION TO MISO CHANNELS UNDER JOINT PER-
ANTENNA AND SUM POWER CONSTRAINTS . . . . . . . . . . . . . 36

4.1 KTC and Characteristics of Optimal Inputs . . . . . . . . . . . . . . 36

4.2 MISO Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS . . . . . . 44

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 45

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

APPENDIX A. PROOF OF PROPOSITION 1 . . . . . . . . . . . . . . 51

APPENDIX B. THE POSITIVITY OF KTC COEFFICIENTS IN (3.7) 53

APPENDIX C. PROOF OF PROPOSITION 2 . . . . . . . . . . . . . . 55

APPENDIX D. CLOSED-FORM SOLUTIONS OF θ∗ FOR 2 × 1
AND 3× 1 CHANNELS . . . . . . . . . . . . . . . . . . 56

vi



LIST OF FIGURES

Figure Page

3.1 The amplitudes and corresponding probabilities of F ∗Z for the per-
antenna power constraint channel. . . . . . . . . . . . . . . . . . . . . . 30

3.2 The KTC of the effective amplitude at SNR=−3dB for the per-
antenna power constraint channel. . . . . . . . . . . . . . . . . . . . . . 30

3.3 The 2-D KTC of the input vector at SNR = −3dB for the per-
antenna power constraint channel. . . . . . . . . . . . . . . . . . . . . . 33

3.4 Mass points locations of an optimal distribution for channels with
covariance matrices Σ3×1

1 and Σ3×1
2 at SNR = −3dB. . . . . . . . . . . . 33

4.1 The amplitudes and corresponding probabilities of F ∗Z for the 2× 1
MISO channel under joint per-antenna and sum power constraints. . . . 41

4.2 The KTC of the effective amplitude at SNR=−3dB for the 2 × 1
MISO channel under joint per-antenna and sum power constraints. . . . 41

4.3 The 2-D KTC of the input vector at SNR = −3dB for channel under
joint constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



LIST OF TABLES

Table Page

3.1 Table of mass points’ amplitude of F ∗X . Note that the zero mass
point is excluded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Capacity gain of MISO over SISO for correlated channels under per
power constraints with different number of transmit antennas M . . . . 35

4.1 Capacity gain of MISO over SISO for correlated channels under
joint per-antenna and sum power constraints with different number
of transmit antennas M . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



LIST OF ACRONYMS

AWGN Additive White Gaussian Noise

CDF Cumulative Distribution Function

CSI Channel State Information

KTC Kuhn-Tucker Condition

LOS Line of Sight

MISO Multiple Input Single Output

MIMO Multiple Input Multiple Output

PDF Probability Distribution Function

SISO Single Input Single Output

SNR Signal to Noise Ratio

ix



CHAPTER I

INTRODUCTION

1.1 Motivation and Literature Review

The use of multiple antennas has been widely acknowledged as an effective solution

to enhance the robustness and performance of current and future wireless networks.

In multi-antenna wireless systems, while the knowledge of channel state information

(CSI) plays an essential role for performance gains, acquiring accurate CSI at the

receiver and/or the transmitter is a challenging task. This particularly holds true in

fast fading environments or in massive antenna systems [1,2]. In fact, the estimation

of CSI can also be confronted by pilot-contamination, which may degrade the system

performance significantly [3]. As such, non-coherent antenna systems where neither

the transmitter nor receiver has the CSI have attracted significant attention in the

literature [4–9].

Over the last two decades, considerable efforts have been dedicated to infor-

mation theoretic studies of non-coherent multi-antenna systems under the sum power

constraint, leading to several interesting characterizations. For example, in uncorre-

lated fading, it is well-known that unitary space-time codes are capacity-achieving

[4, 5]. Perera et al. in [10] further showed that for uncorrelated multiple-input
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multiple-output (MIMO) Rayleigh fading channels under, the capacity-achieving dis-

tribution of the input vector’s magnitude is discrete and finite, with a mass points

located at the origin. Such results can be considered as an extension of the well-

established results obtained earlier in [11, 12] for non-coherent single-antenna chan-

nels. However, it is worth mentioning that for non-coherent uncorrelated fading,

capacity does not increase when the number of transmit antenna increases beyond

the coherence interval [4, 5]. It means that in fast fading environments, there is no

benefit of using multiple antennas at the transmitter.

In contrast to the above information-theoretic drawback in uncorrelated fad-

ing, Jafar and Goldsmith in [13] demonstrated optimistic results regarding the capac-

ity advantage of using multiple transmit antennas in non-coherent correlated fading

channels. In particular, while the unitary structure of the optimal inputs still re-

mains, it was shown in [13] that the capacity is Schur-convex in the eigenvalues of the

correlation matrix. As such, spatial correlation enhances capacity. However, without

a detailed characterization of the capacity-achieving signal, the capacity gain of mul-

tiple antenna systems over a single-antenna system can only be determined precisely

in [13] for the special case of fully correlated channels. Sommerfeld in [14] attempted

to generalize the results in [10] to more realistic correlated multi-antenna channels.

Since the Identity Theorem is not valid for holomorphic functions of multiple complex

variables [14, 15], only the boundedness of the optimal magnitude distribution was

shown in [14] for correlated channels. Thus, under the sum power constraint, the

question whether the optimal input amplitude for a general non-coherent correlated
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multi-antenna channel is discrete or not still remains unanswered.

In addition to the sum power constraint that reflects the total power budget at

the transmitter, a per-antenna constraint represents the power limitation on each indi-

vidual RF chain of each antenna [16]. Such a constraint is also suitable for distributed

multiple inputs system, in which the transmitters are placed at different locations,

and the power cannot be shared among antennas [17]. The per-antenna constraint

is, therefore, more realistic in many practical systems [18–21]. While information-

theoretic aspects of multi-antenna systems under per-antenna constraints are less

well understood due to the complexity of related optimization problems, several in-

teresting results have been obtained recently, but only for coherent channels [22–24].

Under this line of work, since Gaussian signaling schemes are still optimal, the main

focus is on the power allocation to maximize the capacity. For example, the capac-

ity of multiple-input single-output (MISO) coherent Rayleigh fading channel under

per-antenna constraints was established in closed-form in [22]. The consideration of

joint per-antenna and sum power constraints has recently been considered in [18,25]

for coherent multi-antenna channels. However, for non-coherent multi-antenna chan-

nels, the problem of characterizing the optimal inputs and determining the capacity

under per-antenna power constraints is challenging, even in uncorrelated fading. It

is because the use of per-antenna power constraints constitutes different feasible sets

and makes it more difficult to examine the conditions for which an input is optimal.
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1.2 Contributions

In this thesis, we provide a comprehensive analysis of the optimal signaling schemes

and capacities of general non-coherent correlated MISO channels in fast Rayleigh fad-

ing. We consider both scenarios where channels are subjected to per-antenna power

constraints, and joint per-antenna and sum power constraints. The latter includes

channels under the sum power constraint as a special case. We prove the discrete

nature of the optimal effective input amplitude Z =
√
XHΣX, where X is the trans-

mit vector and Σ is the covariance matrix of the channel. We also show the existence

of a finite and discrete capacity-achieving input vector for practical implementation.

The optimal amplitude and phase distributions of this input allow us to calculate

and compare MISO capacity directly from SISO capacity. Our contributions in this

research can be summarized as follows.

• In the first part of the thesis, the focus is on MISO channels under per-antenna

power constraints. We first establish the convex and compact properties of

the feasible sets, and demonstrate the existence of optimal input distribution

and the uniqueness of optimal effective magnitude input distribution. Then

by formulating the Kuhn-Tucker condition (KTC) on the optimal input and

examining it via a quadratic optimization problem, we show that the KTC can

be simplified to one dimension. As a consequence, the Identity Theorem [26]

can be applied. This result allows us to prove the discrete and finite nature

of the optimal effective magnitude distribution, with a mass point located at
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the origin. We then exploit this optimal distribution to construct a finite and

discrete optimal input vector. More interestingly, we show that the phases of

the optimal transmitted signals are the phase solutions of a constrained non-

convex quadractic optimization problem on a sphere, which can be calculated

effectively via a penalized optimization algorithm. The use of this optimal

signaling scheme helps to determine precisely the capacity gain of MISO over

SISO channels.

• In the second part of this work, we extend the results to MISO channels under

the joint per-antenna and sum power constraints. The findings therefore include

the MISO channel under the sum power constraint only as a special case, which

has not been considered before. Different from channels under per-antenna con-

straints, we show that at least of one of the per-antenna power constraints must

be inactive. As such, the KTC coefficients need to be examined more carefully.

While the finiteness and discreteness of the optimal effective magnitude distri-

bution and the optimal input vector distribution still hold, the optimal phase

solutions and the optimal power allocation among the transmit antennas are de-

termined simultaneously via a quadratic optimization problem under inequality

constraints. These solutions can be used to find the MISO capacity gain.

It should be noted that several novel methods have been proposed recently

to overcome the problem of having multiple complex variables in the KTC in multi-

antenna systems. For example, the author in [15] studies the optimal inputs and

5



capacity of multi-antenna channels under peak power constraints via lower and up-

per bounds on the capacity. The work in [27] addresses the discreteness of the optimal

input and capacity of multi-antenna channels under both peak and power constraints.

However, the channel models considered in [15,27] are deterministic, where the chan-

nel gains are assumed to be constant, and they are known at both the receiver and

transmitter. On the other hand, we consider a general non-coherent correlated fading

channel. The key aspects that make our contributions stand out from the previously

used approaches and ideas, especially those in [11, 15, 27], can be summarized as

follows:

• While we follow a similar methodology in [11] to prove the existence of opti-

mal input distribution and the uniqueness of optimal effective magnitude input

distribution, the presence of multi-dimensional input vectors in non-coherent

MISO channels requires new derivations.

• Under the assumption of deterministic channels in [15], it is straightforward to

convert the problem of finding the optimal inputs to one-dimensional space for

the case of MISO. The discreteness of the optimal input then comes directly

from the SISO channel because of the imposed peak constraint in [15]. By also

considering deterministic channels, [27] exploits the independence of optimal

phases and amplitude in the spherical domain to simplify the problem of maxi-

mizing the channel mutual information to one dimension under both peak and

power constraints. Then the peak constraint plays an essential role in proving
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showing the discreetness and finiteness of the optimal amplitude in [27]. For our

considered non-coherent channels, the optimal magnitudes and phases are not

independent, and the dimension reduction techniques used in [15,27] cannot be

applied. In fact, as we demonstrate, the optimal phases depend strictly on the

signal’s magnitude of each signal vector component. Our approach is to exploit

the solutions of a quadratic optimization problem to simplify the KTC before

showing the finiteness and discreteness of the optimal effective magnitude dis-

tribution without the need of peak power constraints. Note that the proof of

finiteness and discreteness is not the same with [11]. It is because in our case,

we do not have the strictly inequality in the KTC for non-optimal mass points.

• Reference [15] further evaluates the capacity of a deterministic multi-antenna

channel under peak constraints via lower and upper bounds. The main idea is

based on the transformation of the considered coupled multi-antenna channel

into decoupled channels with coupled inputs for which the capacities are known.

Unfortunately, this technique can only be used for deterministic channels. For

our considered non-coherent fading channels, we have exploited the dependence

between the phases and amplitudes of the optimal inputs to find the capacity

gain of non-coherent MISO over SISO. Specifically, we first carefully select a

specific optimal input vector based on the discrete optimal effective magnitude

distribution. It is then shown that the phase solutions of the optimal signals de-

pend on the power constraints via non-convex quadratic optimization problems,

and they can be obtained effectively using our proposed penalized optimization
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algorithm. From the phase and power solutions, the capacity gain of MISO

over SISO can be determined precisely. These interesting results only hold for

non-coherent channels, and they certainly make our work different from the

results in [15,27].

• Our study in this work for non-coherent correlated MISO is comprehensive,

and it includes both channels under per-antenna power constraints as well as

channels under joint per-antenna and sum power constraints. The later includes

MISO channels under the sum power constraint as a special case for which the

detailed characterization of the optimal inputs and the determination of the

capacity are not yet understood.

The rest of the thesis is organized as follows. Chapter 2 introduces the con-

sidered non-coherent MISO fading channel and formulate the input-output mutual

information and channel capacities. In Chapter 3, we study the detailed characteri-

zations of the capacity-achieving signals and the capacity under per-antenna power

constraints. The investigation is extended to the non-coherent multiple input channel

under joint per-antenna and sum power constraints in Chapter 4. Finally, conclusions

are drawn in Chapter 5.
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CHAPTER II

NON-COHERENT MISO: CHANNEL MODEL, MUTUAL INFORMATION, AND

CHANNEL CAPACITY

2.1 Channel Model and Power Constraints

We are interested in a correlated MISO system having M transmit antennas and one

receive antenna, e.g., downlink systems. The input-output model of the system can

be described as:

Y =
M∑
k=1

HkXk +N. (2.1)

In (2.1), Xk, 1 ≤ k ≤M , is the complex transmitted signal from antenna k, Y is the

received signal, and N is the complex circularly symmetric Gaussian noise, denoted

as CN (0, σ2
N). For convenience, we define X = [X1, ..., XM ] as the channel input

vector. The vector H = [H1, ..., HM ] consists of M channel gains, each of them

being a complex circularly symmetric Gaussian with zero mean. For a non-coherent

fast fading channel, it is assumed that H is neither known at the transmitter nor at

the receiver, and it changes independently over time, i.e., the fading process is i.i.d.

Furthermore, it is assumed that the covariance matrix of the channel Σ = E(H⊗HH)

of size M ×M , with E being the expectation operation, is a constant matrix. The

matrix Σ reflects the correlation between channel gains as well as the average power
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gain on each transmit-receive antennas. The elements of Σ can be estimated using

observed channel samples, and they are made available at both the transmitter and

receiver. Over the years, various realistic physical and analytical models have been

proposed for the design and analysis of multi-antenna systems [28]. In this work, we

simply adopt a distance-based correlated multi-antenna channel model [28], which

has been widely used in the literature.

In this work, we consider two types of average power constraints, per-antenna

and sum power constraints. For per-antenna power constraints, the transmitted signal

at each antenna is subject to a constraint as follows:

E
[
|Xk|2

]
≤ Pk, k = 1, 2, ...,M. (2.2)

In case of sum power constraint, the total average transmit power from all M antennas

is constrained by

E

[
M∑
k=1

|Xk|2
]
≤ Psum. (2.3)

A system is under only the condition in (2.2) can be referred to as the per-antenna

power constraint system. On the other hand, if both (2.2) and (2.3) are imposed,

we have a system under joint per-antenna and sum power constraints. Without loss

of generality, we can assume that Psum <
∑M

k=1 Pk. Note that when Pk ≥ Psum,

∀ k = 1, 2, · · · ,M , the system becomes a traditional system under the sum power

constraint only.
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2.2 Mutual Information and Channel Capacity

For the channel in (2.1), the conditional output probability density function (PDF)

for a given input vector x can be written as [4]:

pY |X(y|x) =
1

π(σ2
N + xHΣx)

exp

(
− |y|2

σ2
N + xHΣx

)
. (2.4)

Since the phases of the fading coefficients are uniform, the conditional PDF in (2.4)

involves only the squared amplitude of Y . Let YR and YI be the real and imaginary

components of Y , and V = |Y |2. By considering the polar transformation YR =

√
V cos(Θ) and YI =

√
V sin(Θ), we obtain the joint PDF pV,Θ|X(v, θ|x) as

pV,Θ|X(v, θ|x) = pYR,YI |X(yR(v, θ), yI(v, θ)|x)|J(v, θ)|

=
1

2π(σ2
N + xHΣx)

exp

(
− v

σ2
N + xHΣx

)
. (2.5)

Here, J(v, θ) is the determinant of the Jacobian matrix, which is

J(v, θ) = det

∂yR
∂v

∂yR
∂θ

∂yI
∂v

∂yI
∂θ

 = det

 cos(θ)
2
√
v
−
√
vsin(θ)

sin(θ)
2
√
v

√
vcos(θ)

 =
1

2
. (2.6)

By integrating the PDF in (2.5) over the phase, we obtain an equivalent conditional

PDF of (2.4) as

pV |X(v|x) =
1

σ2
N + xHΣx

exp

(
− v

σ2
N + xHΣx

)
. (2.7)

For a given input distribution FX(x), which is denoted as FX hereafter, the mutual

information (MI) between the input and output of the channel can then be expressed

as [4]:

I(X;Y )
∆
= I(FX) =

∫ ∫
pV |X(v|x)ln

(
pV |X(v|x)

pV (v;FX)

)
dvdFX , (2.8)
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where

pV (v;FX) =

∫
pV |X(v|x)dFX , (2.9)

is the marginal density of V induced by FX . It can be easily observed that the

conditional PDF pV |X(v|x) is a function of Z =
√
XHΣX. Z is referred to as the

effective magnitude of the input signalX, and it follows a distribution FZ . Therefore,

pV |X(v|x) can be simplified to the transition probability between a non-negative input

Z and a non-negative output V as follows:

pV |Z(v|z) , p(v|z) =
1

σ2
N + z2

exp

(
− v

σ2
N + z2

)
, ∀z ≥ 0. (2.10)

Furthermore, the MI I(X;Y ) can also be re-written as

I(X;Y )
∆
= I(FZ) =

∫ ∫
p(v|z)ln

(
p(v|z)

p(v;FZ)

)
dvdFZ , (2.11)

where

p(v;FZ) =

∫
p(v|z)dFZ . (2.12)

As shown in [4, 29, 30], for a non-coherent multi-antenna channel with i.i.d. fading,

channel coding can be performed over many independent coherent intervals so that

favorable fading gains can be exploited to compensate for unfavorable ones. As a

result, information can be transmitted reliably at any rate below the maximum MI

between the transmitted and received signals under long-term average power con-

straints [4, 29, 30]. Therefore, the channel capacity is the supremum of the input-

output MI over the set of all input distributions satisfying the average power con-

straints, either sum or per-antenna constraints. Let denote Ωper
X as the feasible set

12



of distribution functions FX of X satisfying the per-antenna constraints in (2.2). In

a similar manner, Ωjoint
X is defined as the feasible set of distributions FX satisfying

both (2.2) and (2.3). The channel capacity under per antenna power constraints Cper

and the channel capacity under joint per-antenna and sum power constraints Cjoint

can be written respectively as follows

Cper = sup
FX∈Ωper

X

I(X;Y ), (2.13)

and

Cjoint = sup
FX∈Ωjoint

X

I(X;Y ). (2.14)

Different from coherent channels, the optimal input distribution, which is

denoted as F ∗X , is no longer Gaussian. In the next chapter, we shall characterize

the optimal input and study the capacity for the channel under per-antenna power

constraints before extending the results to the channel under joint per-antenna and

sum power constraints in Chapter 4.
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CHAPTER III

NON-COHERENT MISO CHANNEL UNDER PER-ANTENNA POWER

CONSTRAINTS: OPTIMAL INPUTS AND CHANNEL CAPACITY

In this chapter, the focus is on the non-coherent MISO channel under per-antenna

power constraints. We first show the existence of the optimal F ∗X and the existence

and uniqueness of the optimal F ∗Z . We then formulate the KTC and examine the

detailed characteristics of F ∗Z . Finally, we construct a highly-structure optimal input

F ∗X , which is helpful for the calculation of the channel capacity.

3.1 Existence of Optimal F ∗X and Existence and Uniqueness of Optimal F ∗Z

In [11], Abou-Faycal et. al. proved the existence and uniqueness of the optimal

amplitude distribution for non-coherent SISO channels. In the following, we shall

extend the result to the MISO channels taking into account the presence of multiple

per-antenna constraints. Because of such multiple variables and constrains in the

considered MISO channels, a new derivation is needed. The key step is to establish

the convexity and compactness of the feasible set Ωper
X and the set Ωper

Z , which is

the feasible set of all distribution function FZ of a non-negative random variable

Z =
√
XHΣX with FX ∈ Ωper

X . The results are given in the following two lemmas.

Lemma 1. Ωper
X is convex and compact with respect to the weak convergence.

14



Proof. For any FXA
, FXB

in Ωper
X , and λ ∈ [0, 1], the convex combination FX =

λFXA
+ (1− λ)FXB

is a distribution function. Furthermore, for each component Xk

of vector X, we have:

∫
C
|xk|2dFXk

(xk) =

∫
C
|xk|2d

(
λFXAk

(xk) + (1− λ)FXBk
(xk)

)
= λ

∫
C
|xk|2dFXAk

(xk) + (1− λ)

∫
C
|xk|2dFXBk

(xk) ≤ λPk + (1− λ)Pk = Pk, (3.1)

for all k = 1, 2, ...,M . Therefore, FX is in Ωper
X and the convexity of Ωper

X follows.

Regarding the compactness, since the weak* topology on distribution func-

tions is metrizable, it is sufficient to show that the set of distribution functions subject

to per-antenna power constraints Ωper
X is tight [11, Appendix I.A, p. 1297]. To this

end, let define a ball B(K) as B(K) =

{
x ∈ CM :

√∑M
i=1 |xk|2 ≤ K

}
. It then fol-

lows that

M∑
k=1

Pk ≥
M∑
k=1

∫
C
|xk|2dFXk

(xk) ≥
M∑
k=1

∫
|xk|>K

√
M

|xk|2dFXk
(xk)

≥
M∑
k=1

∫
|xk|>K/

√
M

K2

M
dFXk

(xk) =
K2

M

M∑
k=1

∫
|xk|>K/

√
M

dFXk
(xk)

≥K
2

M

∫
x/∈B(K)

dFX(x) =
K2

M
FX {x /∈ B(K)} , ∀K > 0. (3.2)

Thus, for every ε > 0, there is a ball B(K) such that

sup
FX∈Ωper

X

FX {x /∈ B(K)} ≤ M
∑M

k=1 Pk
K2

< ε. (3.3)

Thus, Ωper
X is tight. It then follows that Ωper

X is compact with respect to the weak

convergence.
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Using Lemma 1, we have the existence of an optimal input distribution F ∗X

achieving the supremum (2.13). It is because the MI is a continuous and concave

function of the input distribution [10, 31]. In the next lemma, we will establish the

convexity and compactness of the feasible set Ωper
Z of FZ induced by FX ∈ Ωper

X .

Lemma 2. Ωper
Z is convex and compact with respect to the weak convergence.

Proof. For any λ ∈ [0, 1], we consider FZ = λFZ1 + (1 − λ)FZ2 , where FZ1 and FZ2

are induced from two distributions FX1 and FX2 ∈ Ωper
X , respectively. FZ can then

be expressed as:

FZ(z) =λ

∫
√
xHΣx≤z

dFX1(x) + (1− λ)

∫
√
xHΣx≤z

dFX2(x)

=

∫
√
xHΣx≤z

d (λFX1 + (1− λ)FX2) (x). (3.4)

Therefore, FZ is in Ωper
Z , since Ωper

X is convex. Consequently, Ωper
Z is convex.

We now define the ball B′(K) as B′(K) =
{
x ∈ CM :

√
xHΣx ≤ K

}
. Let

λmin be the minimum eigenvalue of Σ. Note that because Σ is positive definite, λmin is

positive. We then have xHΣx ≥ λmin
∑M

i=1 |xk|2. As a result, B′(K) ⊂ B(K/
√
λmin).

Combining this with (3.3) leads to

FZ{z > K} = FX {x /∈ B′(K)} ≤ FX

{
x /∈ B(K/

√
λmin)

}
≤ λminM

∑M
k=1 Pk

K2
,

(3.5)

for all K > 0. As a result, we can choose a sufficiently large K such that Ωper
Z is tight.

Since Ωper
Z is tight, it is compact with respect to weak convergence.
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By using the MI formula in (2.11) as a function of a single distribution FZ ,

the analysis in [11, Appendix I.B, p. 1297] can be applied directly to show that the

MI is a continuous and strictly concave function of FZ [11, Appendix I.B, p. 1297].

Then given the compactness and tightness of Ωper
Z from Lemma 2, it can be concluded

that F ∗Z exists, and it is unique.

On the other hand, the uniqueness of optimal F ∗X does not hold in general.

Consider two distributions FXA
and FXB

with the convex combination FX = λFXA
+

(1−λ)FXB
. Let FZA

, FZB
and FZ be the distributions induced by FXA

, FXB
and FX

respectively. We then have:

I(FX) = I(FZ) ≥ λI(FZA
) + (1− λ)I(FZB

) = λI(FXA
) + (1− λ)I(FXB

). (3.6)

In (3.6), the equality can be achieved by using different FXA
and FXB

that produce

the same effective magnitude distribution, i.e., FZA
= FZB

. Therefore, the MI is only

a concave function of FX . Thus, there might exist multiple solutions of optimal F ∗X

in Ωper
X , each induces the same and unique F ∗Z . In fact, as we shall demonstrate, there

exists an infinite number of optimal F ∗X .

3.2 Kuhn-Tucker Condition (KTC) and Detailed Characteristics of Optimal F ∗Z

Given the uniqueness of F ∗Z , this section shall shed more light on the detailed prop-

erties of F ∗Z . To this end, the following proposition states a necessary and sufficient

condition for a distribution F ∗X to be optimal. This condition is referred to as the

KTC.
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Proposition 1 (The KTC). A distribution F ∗X is optimal if and only if there exists

a set of non-negative {γk}, 1 ≤ k ≤M such that

Φper
F ∗X

(x) =
M∑
k=1

γk(|xk|2 − Pk) + Cper −
∫
p(v|x)ln

(
p(v|x)

p(v;F ∗X)

)
dv ≥ 0, (3.7)

for all x = [x1, ..., xM ], with the equality being achieved when x belongs to the support

of F ∗X .

Proof. See Appendix A.

It can be verified that −
∫
p(v|x)ln(p(v|x))dv = 1 + ln

(
σ2
N + xHΣx

)
. Also,

observe from (2.7) and (2.9) that p(v|x)ln(p(v;F ∗X)) depends on x only through

xHΣx. Let Γ be a diagonal matrix of size M ×M having γk as its diagonal elements.

We can then re-write the KTC in (3.7) as:

Φper
F ∗X

(x) = xHΓx+KF ∗X

(
xHΣx

)
, (3.8)

where KF ∗X

(
xHΣx

)
is a function of xHΣx for a given F ∗X , and it is expressed as

KF ∗X

(
xHΣx

)
=

∫
p(v|x)ln(p(v;F ∗X))dv + ln

(
σ2
N + xHΣx

)
+ Cper + 1−

M∑
k=1

γkPk.

(3.9)

The presence of both xHΓx and xHΣx in (3.8) makes it more difficult to

examine the KTC and the characteristics of F ∗X and F ∗Z , and the techniques in [11]

for a single variable cannot be used. Furthermore, since our considered channels are

non-coherent under the power constraints, the proposed tools in [15,27] to reduce the

dimension cannot be applied. It is because they are applicable only to deterministic
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multi-antenna channels under peak constraints. In order to overcome this issue, we

first have the following lemma regarding the KTC coefficients {γk}.

Lemma 3. The KTC coefficients {γk}, 1 ≤ k ≤ M , in (3.7) are positive. Equiva-

lently, all per-antenna power constraints are active.

Proof. See Appendix B.

Then the next lemma states the relationship between xHΣx and xHΓx for

any mass point x belonging to the support set of an optimal F ∗X , which is helpful to

simplify and analyze the KTC in the subsequent steps.

Lemma 4. For any non-zero mass point x∗ that belongs to any optimal F ∗X , the ratio

α = x∗HΣx∗

x∗HΓx∗
is a constant, and it is equal to the maximum eigenvalue of Γ−1Σ.

Proof. Let z =
√
x∗HΣx∗. Define a set Qz as Qz = {x|xHΣx = z2}. From (3.9), it

can be seen that KF ∗X

(
xHΣx

)
is the same for all x ∈ Qz, which includes x∗. Then

from the KTC in (3.7) and (3.8), the mass point x∗ is one of the minimizers of the

following quadratic optimization problem:

arg min
x

xHΓx, subject to xHΣx = z2. (3.10)

Since {γk} are positive, Γ is positive definite. We also have Σ as a positive definite

matrix. As such, it has been well-known that the minimum value of xHΓx in the

quadratic optimization problem in (3.10) is the product of z2 and the minimum

eigenvalue of Σ−1Γ [32]. As Γ−1Σ is the inverse of Σ−1Γ and any mass point x∗ is a

minimizer, the lemma is therefore proved.
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Now, by applying Lemma 4 to (3.8), we obtain

1

α
xHΣx+KF ∗X

(
xHΣx

)
= 0, ∀x ∈ supp(F ∗X). (3.11)

As a result, we obtain the following condition for all mass points z of F ∗Z :

Υper(z) =

∫
p(v|z)ln(p(v;F ∗Z))dv +

z2

α
+ ln

(
σ2
N + z2

)
+ C1 = 0, (3.12)

where p(v|z) and p(v;F ∗Z) are given in (2.10) and (2.12), respectively, when F ∗Z is

used, and C1 = Cper + 1−
∑M

k=1 γkPk.

Observe that the condition in (3.12) is similar to the KTC in [11] for non-

coherent SISO channels. The difference is that we do not know yet whether the

strictly inequality can be achieved for all non-negative z. However, similar complex

analysis as in [12] can be used to show the discreteness and finiteness of F ∗Z , which is

stated in the following theorem.

Theorem 1. The optimal distribution F ∗Z is discrete and finite.

Proof. First, assume that F ∗Z has an infinite number of mass points on a bounded

interval. Extending Υper(z) in (3.12) to the complex domain, we obtain Υper(z) for a

complex z as

Υper(z) =

∫
p(v|z)ln(p(v;F ∗Z))dv +

z2

α
+ ln

(
σ2
N + z2

)
+ C1. (3.13)

Using similar arguments as in [12], it is easy to see that Υper(z) is analytic in the

region D where Re{σ2
N + z2} > 0. Then following Bolzano-Weierstrass Theorem [33]

and Identity Theorem [26], we have Υper(z) = 0 for all z satisfying Re{σ2
N + z2} > 0.
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By replacing s = 1
σ2
N+z2 , s ∈ D, where the region D is expressed in term of s as

Re{1/s} > 0, we have (3.13) is equivalent to

∫
e−vsln(p(v;F ∗Z))dv = −1

s

[
1

α

(
1

s
− σ2

N

)
− ln(s) + C1

]
, (3.14)

for all s ∈ D. The LHS of (3.14) is the unilateral Laplace transform of ln(p(v;F ∗Z)),

while the RHS is the Laplace transform of− v
α

+
[
σ2
N

α
− C1 − CE

]
−ln(v), with CE being

the Euler constant. Given the uniqueness of the Laplace transform for continuous

function of bounded variations, we obtain:

p(v;F ∗Z) = K
e−v/α

v
, (3.15)

where K = exp
[
σ2
N

α
− C1 − CE

]
. However, observe that, for any value of K and α,

the integral over (0,∞) of p(v;F ∗Z) in (3.15) is infinite. Therefore, p(v;F ∗Z) in (3.15)

is not a valid PDF. As a result, F ∗Z can only have a finite number of mass points on

any bounded interval, i.e., F ∗Z is discrete.

Given that, we now assume that the support set of F ∗Z is unbounded. Then

for any positive and finite L, we have:

p(v;F ∗Z) =

∫ ∞
0

1

σ2
N + z2

exp

(
− v

σ2
N + z2

)
dF ∗Z(z) (3.16)

≥
∫ ∞
L

1

σ2
N + z2

exp

(
− v

σ2
N + z2

)
dF ∗Z(z) ≥ exp

(
− v

σ2
N + L2

)∫ ∞
L

1

σ2
N + z2

dF ∗Z(z)

(3.17)

≥ exp

(
− v

σ2
N + L2

)
D[F ∗Z ,L], ∀v ≥ 0,∀ 0 ≤ L <∞, (3.18)
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where D[F ∗Z ,L] > 0. Applying this inequality to (3.12), we obtain the following bound

on Υper(z):

Υper(z) ≥ ln
(
D[F ∗Z ,L]

)
− σ2

N + z2

σ2
N + L2

+
z2

α
+ ln

(
σ2
N + z2

)
+ C1, ∀ 0 ≤ L <∞. (3.19)

It is clear that we can choose L sufficiently large such that 1/α > 1/(σ2
N +L2), which

makes the RHS of (3.19) go to infinity as z → ∞ However, if the support of F ∗Z

is unbounded, Υ(z) is equal to 0 infinitely often, which constitutes a contradiction.

As a consequence, the optimal F ∗Z must be discrete with a finite number of mass

points.

It is also worth noting that by following a similar analysis as in [11], we can

also show that F ∗Z has a mass point at the origin. However, the proof is omitted here

for brevity.

3.3 A Finite and Discrete F ∗X and MISO Capacity

As we demonstrate shortly, given the discreteness of F ∗Z , efficient numerical meth-

ods such as gradient descent-based methods or Arimoto-Blahut algorithms can be

applied to locate the mass points of F ∗Z . However, it is also of importance to fur-

ther understand the detailed structure of the optimal F ∗X and obtain an insight on

the behavior of the capacity. Therefore, in this section, we shall construct a highly

structured optimal distribution of X, denoted as FD∗
X . Then by further exploiting

certain amplitude and phase characteristics of the mass points of FD∗
X , we establish

a direct connection between MISO and SISO capacities. Note that different from

22



SISO work in [11], there exist an infinite number of optimal input vectors in MISO.

It is then clear that for the considered non-coherent correlated MISO channel, the

policy of optimally distributing power among different antennas, and the calculation

of MISO capacity as the sum of the capacities of a set of SISO channels do not hold

as in deterministic multi-antenna channels. Thus, our approaches and results below

are radically different from those in [15,27] that only considered constant channels.

As the support of Z∗ is finite and discrete, we denote its mass points as

{z1, · · · , zN}, with the corresponding probabilities {p1, · · · , pN}. Without loss of

generality, assume that z1 < z2 < · · · < zN . It is then clear that z1 = 0 and zN is

positive. Now, consider an arbitrary optimal distribution F̄X . Since F̄X induces F ∗Z ,

we can choose a mass point x∗N of F̄X of size M × 1 such that x*H
N ΣxN = z2

N . For

convenience, let denote

x∗N = [r∗1e
jθ∗1 , r∗2e

jθ∗2 , · · · , r∗Mejθ
∗
M ]. (3.20)

From x∗N , we obtain (N − 1) vectors {x∗i }, 1 ≤ i ≤ N − 1 as follows:

x∗i =
zi
zN
x∗N . (3.21)

We then have the following proposition:

Proposition 2. Consider a finite and discrete distribution FD∗
X having {x∗i }, 1 ≤

i ≤ N , as its mass points as follows:

FD∗
X =

N∑
i=1

piδ(x− x∗i ). (3.22)

Then FD∗
X is an optimal distribution of X.
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Proof. See Appendix C.

Given the optimality of FD∗
X , and the fact that all of its mass points are

linearly scaled versions of x∗N , we can shed further light on the amplitude r∗k and

phase θ∗k, 1 ≤ k ≤M , of each element of x∗N in (3.20). In particular, from Lemma 3,

we know that all per-antenna power constraints are active. Therefore, when FD∗
X is

used, the power consumed by antenna kth is Pk, and it can be expressed as

Pk =
N∑
i=1

pi

∣∣∣∣ zizN r∗kejθ∗k
∣∣∣∣2 =

r∗k
2

z2
N

P per
Z , (3.23)

where

P per
Z =

N∑
i=1

piz
2
i (3.24)

is an expected value of Z2. It then follows that:

r∗k = zN

√
Pk
P per
Z

, 1 ≤ k ≤M. (3.25)

Now, regarding the optimal phases θ∗per = [θ∗1, · · · , θ∗M ], from Lemma 4, it is

clear that x∗N is a solution of of the Rayleigh quotient:

x∗N ∈ arg max
x

xΣx

xΓx
. (3.26)

As a result, we have x∗N is the optimal solution of the problem

max
x
xHΣx, subject to xHΓx =

z2
N

α
. (3.27)

Now, by applying Lemma 4 for x∗N and using (3.25), we have:

z2
N

α
=
z2
Nx
∗H
N Γx∗N

x∗HN Σx∗N
=
z2
N

∑M
k=1 γkr

∗2
k

z2
N

=
M∑
k=1

γkr
∗2
k . (3.28)
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Thus, the feasible set of (3.27) contains the set of M amplitude constraints {|xk| =

r∗k}. Therefore, x∗N is the solution of

max
x
xHΣx, subject to

{
|xk| = zN

√
Pk
P per
Z

}
. (3.29)

In fact, it can be verified that any of the solutions of (3.29) can be chosen

as x∗N . It is because by using any of the solutions of (3.29), we can construct a

distribution as in (3.22) that is optimal. Since zN/
√
P per
Z is a common factor in all

constraints in (3.29), the optimal phase vector θ∗per is simply a phase of the optimal

solution of the following problem:

max
x
xHΣx, subject to {|xk| =

√
Pk}. (3.30)

Equivalently, the optimal phase θ∗per is the solution of

max
θ

M∑
k=1

M∑
l=k+1

σkl
√
PkPlcos(θk − θl), subject to θ ∈ [0, 2π]M . (3.31)

It is clear that the optimal θθθ∗per involves only the channel covariance matrix

Σ and the per-antenna constrains {Pk} but not the KTC coefficients {γk}. Problem

(3.30) is a nonconvex optimization problem because its objective is nonconcave and

constraints are nonconvex. By using a new variable X = xxxxxxH we obtain the following

equivalent problem:

max
X
〈X,Σ〉, subject to (3.32a)

X � 0,X(k, k) = Pk, k = 1, . . . ,M, (3.32b)

rank(X) = 1, (3.32c)
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where all difficulties are concentrated at the matrix-rank-one constraint (3.32c). The

semi-definite programming relaxation based approach (see e.g. [34]) is to drop this

matrix-rank-one constraint to treat (3.32) as a semi-definite program. It has been

shown in [35] that this approach is only efficient when the solution of the semi-definite

program (3.32a)-(3.32b) is of rank-one that is not the case. Following our previous

works (see e.g. [35]) we address (3.32) via the following penalized optimization prob-

lem

max
X
〈X,Σ〉+ µ(λmax(X)− Tr(X)), subject to (3.32b), (3.33)

where λmax(X) is the maximal eigenvalue of X, and µ > 0 is a penalty parameter.

Take feasible point X(0) for (3.32b) by solving

max
X
〈X,Σ〉, subject to (3.32b), (3.34)

and choose

µ =
〈X(0),Σ〉

Tr(X(0))− λmax(X(0))
.

At the κth iteration we solve the following semi-definite optimization problem to

generate X(κ+1)

max
X
〈X,Σ〉+ µ

(
λmax(X(κ)) +(x(κ))H(X− X(κ))x(κ) − Tr(X)

)
subject to (3.32b),

(3.35)

where x(κ) is the normalized (||x(κ)||2 = 1) eigenvector corresponding to λmax(X(κ)).

By doing so, we will have

Tr(X(κ))− λmax(X(κ))→ 0+,
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so rank(X(κ)) → 1, under which
√
λmax(X(κ))x(κ) is the optimal solution of (3.30).

It is worth mentioning that for some special cases of the covariance matrix Σ, θθθ∗per

can be obtained in closed-form. For example, when all cross channel coefficients are

non-negative, i.e. σkl ≥ 0 for all k, l ∈ {1, ...,M}, the phase solution is θ∗1 = θ∗2 =

... = θ∗M = θ for any θ. Closed-form solutions of θθθ∗per can also be derived for any

covariance matrix Σ when M = 2 and M = 3. The results are given in Appendix D.

Given the solutions in (3.25) and (3.31), we are now ready to study the

behavior of MISO capacity as compared to SISO capacity. First, it can be verified

that P per
Z , the expected value of Z2, can be calculated as

P per
Z =

Pk
r∗2k

z2
N =

Pk
r∗2k
x*H
N Σx∗N =

(√
Pk
r∗2k
x*H
N

)
Σ

(√
Pk
r∗2k
x*
N

)

=
[√

P1e
jθ∗1 , · · ·,

√
PMe

jθ∗M

]H

Σ
[√

P1e
jθ∗1 , · · · ,

√
PMe

jθ∗M

]
, (3.36)

where we have used the fact that
√

Pk

r∗2k
=
√

Pi

r∗2i
for all k, i ∈ {1, ...,M}. It then

turns out that P per
Z is the maximum value of xHΣx in (3.30), which is equivalently

computed as:

P per
Z =

M∑
k=1

σkkPk +
M∑
k=1

M∑
l=k+1

2σkl
√
PkPlcos(θ∗k − θ∗l ). (3.37)

The next theorem states the relationship between MISO capacity under per-

antenna power constraint and SISO capacity.

Theorem 2. The capacity Cper of a non-coherent MISO channel under per-antenna

power constraints [P1, · · · , PM ] is equal to the capacity of non-coherent SISO channel

under power constraint P per
Z , denoted as CSISO(P per

Z ).
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Proof. Consider the non-coherent Rayleigh SISO channel with complex input U and

complex output Y under power constraint E [Z2] ≤ P per
Z , where Z = |U |. It can

be verified that the mutual information of SISO channel [11] is in the same form as

(2.11). Let F ∗Z,SISO be the optimal distribution of Z for this channel. Since F ∗Z,SISO

is finite and discrete [11], let T be the number of mass points of F ∗Z,SISO with the

corresponding mass points {st} and probabilities {qt}, 1 ≤ t ≤ T . Because E[Z2] also

equals P per
Z , CSISO(P per

Z ) = I(F ∗Z,SISO) ≥ I(F ∗Z) = I(F ∗X) = Cper. From F ∗Z,SISO and

the optimal mass point x∗N of F ∗X in (3.22), construct a discrete distribution F ∗X,SISO

for the MISO channel as follows:

F ∗X,SISO =
T∑
t=1

qtδ(x− xt), (3.38)

with xt = st
zN
x∗N , 1 ≤ t ≤ T . Is is straightforward to show that F ∗X,SISO induces

F ∗Z,SISO, and we have I(F ∗X,SISO) = CSISO(P per
Z ). On the other hand, when F ∗X,SISO

is used for the MISO channel, it can be verified from (3.25) and (3.38) that the power

consumed at antenna k is Pk. Thus, I(F ∗X,SISO) ≤ I(F ∗X). As a result, we have

CSISO(P per
Z ) = Cper.

The result from Theorem 2 helps us to quantify precisely the SNR gain, i.e.,

the gain in the ratio of powers, of MISO over SISO. In particular, for the same nor-

malized total transmit power Ptotal =
∑M

k=1 σkkPk, the improvement in the capacity

is:

P per
Z

Ptotal
= 1 +

∑M
k=1

∑M
l=k+1 2σkl

√
PkPlcos(θ∗k − θ∗l )∑M

k=1 σkkPk
. (3.39)
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Note that when {σkl} are non-negative, the gain is simplified to 1+
∑M

k=1

∑M
l=k+1 2σkl

√
PkPl∑M

k=1 σkkPk
.

Similar to the result in [13] for systems under the average power constraint, the gain

is M when Pk = P for all k over fully correlated channels.

3.4 Numerical Results

In this section, numerical examples on non-coherent channel under per-antenna power

constraint are provided to illustrate the theoretical results obtained in the previous

sections. Unless otherwise stated, we adopt a realistic distance-based correlated multi-

antenna channel model as in [28]. In all the results, the signal-to-noise ratio (SNR)

is defined as the ratio between the total transmit power and noise power.

3.4.1 Optimal Inputs and KTC

Let first consider a 2-antenna system where the distance dT between the two antennas

is 0.5 of signal’s wavelength. The corresponding covariance matrix of this 2×1 channel

is given as [28]:

Σ2×1 =

 1 −0.3042

−0.3042 1

 . (3.40)

Furthermore, assume that the per-antenna constraints are P1 = 2P2. To find the

optimal input F ∗Z , we simply apply the gradient descent-based method [11,31] and use

the KTC to find the globally optimal solution. The amplitudes and the corresponding

probabilities of F ∗Z are shown in Fig. 3.1 as a function of SNR. As an illustrative
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Figure 3.1: The amplitudes and corresponding probabilities of F ∗Z for the per-antenna
power constraint channel.
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Figure 3.2: The KTC of the effective amplitude at SNR=−3dB for the per-antenna
power constraint channel.
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example, Fig. 3.2 also plot the KTC of z at SNR=−3dB. It is clear that at the two

optimal mass points, the KTC equals zero.

It can be observed from Fig. 3.1 that there is always a mass point at zero. At

sufficiently low SNRs, F ∗Z has only two mass points. As SNR increases, the number

of mass points also increases. Via our extensive numerical trials, we observe that the

adopted gradient decent-based method is not stable at higher SNR ranges where the

optimal input consists of more mass points, some of which having low probabilities.

It is because this method involves the calculation of MI in the form of a definite

integral with one limit being infinite, and the sensitivity of this value to the number

mass points as well as their locations and probabilities used in each iteration is small.

It therefore makes it difficult locate the optimal mass points and the corresponding

probabilities with high accuracy at higher SNRs. This drawback has been observed in

the literature [11,36]. It is certainly of interest to investigate more effective numerical

methods to find the optimal inputs, especially for multi-antenna channels. The topic,

however, is beyond the scope of our work, and it deserves further studies.

The optimal distribution F ∗X obtained from (3.22) at different SNRs is shown

in Table 3.1. Note that the probabilities of the mass points are the same with that

of F ∗Z . Furthermore, we do not include the zero mass point in Table 3.1. Over

this 2 × 1 channel, because σ12 < 0, the optimal phases are any pair (θ∗1, θ
∗
2) such

that |θ∗1 − θ∗2| = π. As such, only the optimal amplitude distributions are given. A 2-

dimensional (2-D) KTC for real mass points in (3.7) of the input vector at SNR=−3dB

is also plotted in Fig. 3.3. It can be seen that at the two optimal mass points (0, 0)
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Table 3.1: Table of mass points’ amplitude of F ∗X . Note that the zero mass point is
excluded.

SNR(dB) -3 -2 -1 0 1 2 3 4 5 6 7 8 9

x1

x1
1 1.61 1.67 1.75 1.84 1.95 2.04 2.11 2.17 2.21 2.26 2.30 2.33 2.36

x2
1 1.14 1.18 1.24 1.30 1.38 1.44 1.49 1.53 1.57 1.60 1.62 1.65 1.67

x2

x1
2 3.30 3.28 3.21 3.25 3.40 3.62 3.90 4.20 4.45 4.60

x2
2 2.33 2.32 2.27 2.30 2.40 2.56 2.76 2.97 3.15 3.25

x3

x1
3 5.40 5.65 5.91

x2
3 3.82 3.99 4.18

and (1.61,−1.14), the KTC is equal to zero. Because an optimal distribution of the

input vector X is not unique, there also exists another point that makes the KTC

being zero. While this point is not an optimal mass point of F ∗X , it belongs to another

optimal distribution.

To demonstrate the effect of the phases, we consider two 3×1 channels where

the distances among the antennas are dT1 = 0.2 and dT2 = 0.25, respectively. The

two corresponding covariance matrices are given as

Σ3×1
1 =


1 0.6425 −0.0550

0.6425 1 0.6425

−0.0550 0.6425 1

 and Σ3×1
2 =


1 0.4720 −0.3042

0.4720 1 0.4720

−0.3042 0.4720 1

 .

(3.41)

For simplicity, it is assumed that the per-antenna constraints are the same

for all antennas. Fig. 3.4 shows the optimal mass points at SNR=−3dB for the two
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Figure 3.3: The 2-D KTC of the input vector at SNR = −3dB for the per-antenna
power constraint channel.
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Figure 3.4: Mass points locations of an optimal distribution for channels with covari-
ance matrices Σ3×1

1 and Σ3×1
2 at SNR = −3dB.

33



channels. It can be observed that both optimal distributions consist of two mass

points. While the optimal phases associated with Σ3×1
1 are the same across the three

antennas, the optimal phase solutions corresponding to Σ3×1
2 vary.

3.4.2 Capacity Gains over SISO

It is also of interest to examine the capacity gain of MISO over SISO. Toward this

end, besides the antenna distance dT = 0.5, we also consider other correlated channels

having dT = 0.05, dT = 0.1, dT = 0.15 and dT = 0.20. Furthermore, it is assumed

that the same power constraint is imposed on each transmit antenna. With this

condition, it can be verified from (3.39) the capacity gain does not depend on a given

operating SNR. Table 3.2 shows the gains (in dB) over different correlated MISO

systems having different number of transmit antennas. For each system, the capacity

gain is calculated from (3.39) using the optimal phase solutions in (3.30) obtained

by the proposed penalized algorithm. It is clear that for a fixed antenna distance dT ,

the capacity gain increases when the number of transmit antenna increase. It can

also be seen that antenna correlation improves the channel capacity in non-coherent

channels.
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Table 3.2: Capacity gain of MISO over SISO for correlated channels under per power
constraints with different number of transmit antennas M .

M 2 3 4 5 6 7 8 9 10

dT = 0.05 2.96 4.62 5.74 6.57 7.16 7.61 7.94 8.17 8.32

dT = 0.10 2.79 4.20 4.98 5.34 5.47 5.39 5.56 5.84 6.06

dT = 0.15 2.53 3.52 3.77 3.62 4.12 4.42 4.55 4.76 5.00

dT = 0.20 2.15 2.60 2.62 3.14 3.30 3.62 3.89 4.05 4.29

dT = 0.50 1.15 1.91 2.47 2.92 3.29 3.61 3.89 4.13 4.35
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CHAPTER IV

EXTENSION TO MISO CHANNELS UNDER JOINT PER-ANTENNA AND

SUM POWER CONSTRAINTS

This chapter shall extend the results developed in Chapter 3 to MISO channels under

joint per-antenna and sum power constraints. In the following, we will first investigate

the KTC and the characteristics of optimal inputs. The connection between MISO

and SISO capacities are then established.

4.1 KTC and Characteristics of Optimal Inputs

It has been well-known that Ωsum
X , the set of all distribution functions of X satisfying

the sum power constraint (2.3), is convex and compact [14]. It is then clear that Ωjoint
X ,

the set of input distributions under both the per-antenna and sum power constraints,

is the joint of two convex and compact sets Ωper
X and Ωsum

X , which must also be convex

and compact. The result also holds for Ωjoint
Z , the feasible set of all distributions FZ

of Z =
√
XHΣX. The by using a similar analysis as in chapter 3, we can show the

existence of the optimal F ∗X and the existence and uniqueness of F ∗Z . Furthermore,

the KTC can be formulated in the following proposition.

Proposition 3 (The KTC). Under joint per-antenna and sum power constraints,

a distribution F ∗X is optimal if and only if there exists a non-negative β and set of
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non-negative {βk}, 1 ≤ k ≤M such that

Φjoint
F ∗X

(x) =β
(
||x||2 − Psum

)
+

M∑
k=1

βk(|xk|2 − Pk) + Cjoint +

∫
p(v|x)ln(p(v;F ∗X))dv ≥ 0,

(4.1)

for all x = [x1, ..., xM ], with the equality being achieved when x belongs to the support

of F ∗X .

Proof. The proof of this proposition is straightforward, and it is omitted here for

brevity of the presentation.

Given the above KTC, the next lemma addresses the positivity of the KTC

coefficient β associated with Psum.

Lemma 5. The KTC coefficient β must be positive.

Proof. Assume β = 0, and consider the capacity as a function of the total power

P for a fixed set of per-antenna constraints {Pk}. The Lagrange multiplier β is

the slope of a line tangent to Cjoint(.) at Psum. Thus, by concavity and mono-

tonicity, at Psum, Cjoint(P ) = Cjoint(Psum) for all P ≥ Psum. When P reaches∑M
k=1 Pk, the system is simply imposed by the per-antenna power constraints only.

As a result, we have Cjoint(Psum) = Cper(P1, · · · , PM). On the other hand, assume

[P1sum , · · · , PMsum ] be the optimal per-antenna power profile for the joint system when

P = Psum. It then follows that Cjoint(Psum) ≤ Cper(P1sum , · · · , PMsum). As a result,

Cper(P1sum , · · · , PMsum) = Cper(P1, · · · , PM). However, since Psum <
∑M

k=1 Pk, there
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must exist at least one antenna k such that Pksum < Pk. This results in a contradic-

tion with Lemma 3. Because for the system under per-antenna constraints only, all

antennas is active.

Different from the per-antenna power constraint system,because Psum <∑M
k=1 Pk, Lemma 5 indicates that at least one of the per-antenna power constraints

must be inactive for the joint system. Φjoint
F ∗X

(x) in (4.1) can be re-written as follows:

Φjoint
F ∗X

(x) = xHΛx+

∫
p(v|x)ln(p(v;F ∗X))dv

+ ln
(
σ2
N + xHΣx

)
+ Cjoint + 1− βP −

M∑
k=1

βkPk, (4.2)

where Λ is an M ×M diagonal matrix with λk = β + βk, 1 ≤ k ≤M , as its diagonal

elements. Observe that Φjoint
F ∗X

(x) in (4.2) is in the same form as Φper
F ∗X

(x) in (3.8).

Since β > 0, we have λk > 0 for all k. Therefore, using the same arguments as in

Lemma 4, it is obvious that the ratio ν = x∗HΣx∗

x∗HΛx∗
is a constant for any mass point

x∗ of an optimal F ∗X . Therefore, we can obtain the following condition on all mass

points z of F ∗Z :

Υjoint(z) =

∫
p(v|z)ln(p(v;F ∗Z))dv +

z2

ν
+ ln

(
σ2
N + z2

)
+ C2 = 0, (4.3)

where C2 = Cjoint + 1− βP −
∑M

k=1 βkPk. As similar to chapter 3, complex analysis

can then be applied to show that F ∗Z is discrete with a finite number of mass points.
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4.2 MISO Capacity

Given F ∗Z , we can also construct an optimal FD∗
X having the same number of mass

points with F ∗Z as in (3.21) for the joint system. However, the determination of the

optimal phases θθθ∗joint and the effective power P joint
Z , the expected value of Z2, is not

the same. It is because under joint per-antenna and sum power constraints, not all

per-antenna power constraints are active. By following similar arguments in chapter

3 to end up with (3.30), it can be verified that θθθ∗joint is the phase of the solution of

max
x
xHΣx, subject to {|xk|2 ≤ Pk and

M∑
k=1

|xk|2 = P}. (4.4)

In addition, it can be seen that the amplitude solution of (4.4) gives us the optimal

power allocation P ∗k at each antenna k, 1 ≤ k ≤ M . The effective power P joint
Z is

therefore the maximum value of xHΣx in (4.4), and it can be expressed as:

P joint
Z =

M∑
k=1

σkkP
∗
k +

M∑
k=1

M∑
l=k+1

2σkl
√
P ∗kP

∗
l cos(θ∗k − θ∗l ), (4.5)

where θ∗k is the kth element of θθθ∗joint. For this non-convex optimization problem,

a similar approach for solving (3.30) via a penalized optimization problem as in

(3.33) can be applied to find the optimal solutions. Specifically, instead of using the

condition in (3.32b), we simply replace it by the following condition

X � 0,X(k, k) ≤ Pk,

M∑
k=1

X(k, k) = P, k = 1, . . . ,M. (4.6)

Note that in the special case that {σkl} are all non-negative, as similar to the per-

antenna power constraint system, it is easy to see that the phase solution is also θ∗1 =
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θ∗2 = ... = θ∗M = θ for any θ, and P joint
Z =

∑M
k=1 σkkP

∗
k +

∑M
k=1

∑M
l=k+1 2σkl

√
P ∗kP

∗
l .

Furthermore, the optimal power allocation is then obtained from solving the following

problem:

max
Pk

M∑
k=1

σkkPk +
M∑
k=1

M∑
l=k+1

2σkl
√

PkPl, subject to {Pk ≤ Pk, and
M∑
k=1

Pk = P},

(4.7)

which is a convex optimization problem of (4.4).

With the obtained P joint
Z , the MISO capacity can then be calculated via the

SISO capacity as:

Cjoint
MISO(P1, ..., PM , P ) = CSISO(P joint

Z ). (4.8)

4.3 Numerical Results

In this section, we provides numerical results to support our theoretical analysis on

channel under joint per-antenna and sum power constraints. Fig. 4.1 shows the

optimal input distributions of F ∗Z over the 2 × 1 MISO channel with the covariance

matrix in (3.40). Here, it is assumed that the total transmit power is P , while the per-

antenna power constraints imposed on the two antennas are P1 = 0.9P and P2 = 0.2P.

As similar to the per-antenna channel, there is always a mass point located at zero,

and the optimal F ∗Z contains more mass points as SNR increases. For verification, we

also plot the KTC of z and the 2-D KTC of x at SNR=−3dB in Fig. 4.2 and Fig.

4.3, respectively.

Finally, Table 4.1 shows the capacity gain P joint
Z /P of MISO over SISO for

different MISO channels, where P is the total transmit power, and P joint
Z is calculated
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Figure 4.1: The amplitudes and corresponding probabilities of F ∗Z for the 2×1 MISO
channel under joint per-antenna and sum power constraints.
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Figure 4.2: The KTC of the effective amplitude at SNR=−3dB for the 2 × 1 MISO
channel under joint per-antenna and sum power constraints.
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Figure 4.3: The 2-D KTC of the input vector at SNR = −3dB for channel under
joint constraints.

from (4.5). As similar to the systems under per-antenna power constraints, we also

consider five correlated channels having dT = 0.05, dT = 0.10 dT = 0.15, dT = 0.20

and dT = 0.50. For each channel, we assume that each transmit antenna has the

same per-antenna constraint Pi = 2P/M . It should be noted that P joint
Z in (4.5)

is obtained by solving the optimal phases and power allocation scheme simultane-

ously. As compared to the systems under per-antenna power constraints, we achieve

a slightly better gain in the systems under per-antenna and sum power constraints

for a given total transmit power P . It is because we have more flexibility in allocating

power to each transmit antenna in the systems under per-antenna and sum power

constraints .
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Table 4.1: Capacity gain of MISO over SISO for correlated channels under joint
per-antenna and sum power constraints with different number of transmit antennas
M .

M 2 3 4 5 6 7 8 9 10

dT = 0.05 2.96 4.63 5.76 6.57 7.18 7.64 7.99 8.25 8.44

dT = 0.10 2.80 4.21 5.02 5.46 5.68 5.78 5.80 5.91 6.26

dT = 0.15 2.53 3.56 3.95 4.04 4.19 4.64 4.79 4.80 5.17

dT = 0.20 2.16 2.75 2.80 3.34 3.56 3.71 4.09 4.14 4.45

dT = 0.50 1.15 1.92 2.48 2.93 3.31 3.63 3.90 4.15 4.37
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

5.1 Conclusions

In this thesis, we have comprehensively characterized the optimal signaling schemes

and examined the capacity of non-coherent MISO Rayleigh fading channels under per-

antenna power constraints and under joint per-antenna and sum power constraints.

For both MISO systems, we exploited the solutions of a quadratic optimization prob-

lem to simplify the KTC to one dimension. This helps us to prove the uniqueness

and discreteness of the optimal effective magnitude input, and construct a finite and

discrete optimal input vector distribution. By further exploiting the discreteness and

finiteness of the optimal inputs, we have shown that the capacity gains of MISO over

SISO for both systems under per-antenna power constraints and joint per-antenna

and sum power constraints can be determined precisely via the phase solutions of con-

strained quadratic optimization problems. Effective algorithms were then proposed

to find these phase solutions and calculate the capacity gains. Finally, numerical

examples were provided to confirm the analysis and verify the obtained results.

44



5.2 Future Research Directions

Even though several important information-theoretical aspects of non-coherent MISO

Rayleigh fading channels have been obtained, many important research questions

remain unanswered for multi-antenna wireless systems. Several potential research

directions related to this work are as follows.

• In this work, we adopted the Rayleigh fading channel model. Even though

Rayleigh fading has been used extensively in the literature, this wireless fading

model is only valid under the assumption that there is no line-of-sight (LOS)

component between the transmitter and receiver, and there exist several small

objects scattering the signal before it arrives. In many wireless environments,

the LOS path does exist, and it can dominate the wireless propagation. Thus,

it would be interesting to investigate the fundamental limits of more general

multi-antenna channels, such as Rician fading channels.

• The focus of this thesis is only on a MISO channel with a single output. There-

fore, the extension of this thesis to the case of a general non-coherent MIMO

channel is certainly worth investigating.
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APPENDIX A

PROOF OF PROPOSITION 1

We know that I(FX) is concave in Ωper
X . Furthermore, the set of input distributions

forms a convex set, and the per-antenna power constraints are linear functionals of

the input distribution. Therefore, by the theorem of Lagrange Multipliers [37], there

exists a set of non-negative {γk}, 1 ≤ k ≤M such that

Cper = sup
FX ∈ Ω

per
X

E
[
|Xk|2

]
≤ Pk ∀k

I(FX) = sup
FX∈Ωper

X

(
I(FX)−

M∑
k=1

γkφk(FX)

)
, (A.1)

where φk(FX) =
∫
|xk|2dFX −Pk. Since pY |X(y|x) is a bounded continuous function

of x and |p(y;FX)logp(y;FX)| ≤ min{1, 1/y2} for all FX , I(FX) is weakly differ-

entiable on Ωper
X with weak derivative [11, Appendix I.B, p. 1297]. We also have

weakly differentiable with weak derivative φk(FX) [31, Appendix B. Lemma B.1, p.

43]. Hence, by [38], F ∗X is optimal if and only if

I ′F ∗X (FX)−
M∑
k=1

γkφ
′
k,F ∗X

(FX) ≤ 0 for all FX in Ωper
X , (A.2)

This condition can then be explicitly written as

−
∫ ∫

p(v|x)ln

(
p(v|x)

p(v;F ∗X)

)
dvdFX(x) +

M∑
k=1

γk

∫ (
|xk|2 − Pk

)
dFX(x) + Cper ≥ 0,

(A.3)

51



for all FX ∈ Ωper
X . By using the contradiction arguments in [11], (A.3) is equivalent

to

−
∫
p(v|x)ln

(
p(v|x)

p(v;F ∗X)

)
dv +

M∑
k=1

γk(|xk|2 − Pk) + Cper ≥ 0, ∀x, (A.4)

with the equality being achieved at any mass point of any optimal F ∗X .
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APPENDIX B

THE POSITIVITY OF KTC COEFFICIENTS IN (3.7)

Assume that not all KTC coefficients are positive. Without loss of generality, let γ1 =

0. Because of the existence of an optimal F ∗X for any positive P1, we can consider the

channel capacity as a function of P1, i.e., Cper(P1), while keeping all others constraint

the same. As a matter of fact, for all P ′1 > P1, we have Cper(P ′1) ≥ Cper(P1) since

the set of all distribution functions F ′X for the former system contains the set of all

distribution functions FX for the later system. The concavity of mutual information

in the input distribution, which is stated in [11], [14], implies that Cper(P1) is also

concave. The KTC coefficient γ1 corresponding to a particular capacity achieving

input distribution F ∗X with power E [X2
1 ] = P1 may be interpreted as the slope of

a line tangent to Cper(.) at P1. Thus, by convexity and monotonicity, γ1 = 0 at P1

implies that Cper(P ′1) = Cper(P1) for all P ′1 ≥ P1. On the other hand, by considering

the capacity as P1 →∞, we obtain

lim
P1→∞

Cper
MISO(P1, P2, ..., PM) ≥ lim

P1→∞
Cper
MISO(P1, 0, ..., 0) = lim

P1→∞
CSISO(P1) =∞,

(B.1)

where the last equality follows the analysis of SISO capacity in [11, Section IV, p.

1293]. This shows the impossibility of having Cper(P ′1) = Cper(P1) for all P ′1 ≥ P1.
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The result thus leads to the contradiction in the assumption of the inactivity of at

least one constraint.
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APPENDIX C

PROOF OF PROPOSITION 2

It is clear from (3.21) and (3.22) that FD∗
X induces F ∗Z . It implies that p(v;FD∗

X ) =

p(v;F ∗Z) = p(v; F̄X) for all v ≥ 0. As a result, it can be verified that:

Φper

FD∗
X

(x) = Φper

F̄X
(x) ≥ 0, (C.1)

for all x ∈ CM×1. In addition, since x∗N is a mass point of optimal F̄X , we then

have the KTCs Φper

F̄X
(xN) = 0. Furthermore, because x∗i , 1 ≤ i ≤ N − 1, is a scaled

version of x∗N with the scaling factor zi/zN , it follows from (3.11) and (3.12) that

Φper

F̄X
(xi) = Υper(zi) = 0. As a result, FD∗

X satisfies the necessary condition of the

KTC in (3.7), and it is optimal.
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APPENDIX D

CLOSED-FORM SOLUTIONS OF θ∗ FOR 2× 1 AND 3× 1 CHANNELS

For the 2× 1 MISO channel, the solutions are trivial. Specifically, when σ12 > 0, we

have θ∗1 = θ∗2. If σ12 < 0, it is then clear that θ∗1 = π − θ∗2. For the 3 × 1 channel,

without loss of generality, we can assume that θ3 = 0. Using the first order necessary

Lagrange condition, the optimal phase θθθ∗ must satisfy the following:
−A3sin(θ1 − θ2) + A2sin(−θ1) = 0,

−A1sin(θ2) + A3sin(θ1 − θ2) = 0,

(D.1)

where A1 = σ23

√
P2P3, A2 = σ31

√
P3P1, and A3 = σ12

√
P1P2. When either A1, A2,

or A3 is 0, the solutions are trivial. Otherwise, we obtain:

↔


−A2

A3
sin(θ1) = sin(θ1)cos(θ2)− sin(θ2)cos(θ1),

A1

A3
sin(θ2) = sin(θ1)cos(θ2)− sin(θ2)cos(θ1).

(D.2)

After some manipulations, we obtain:

−A1A2

A3

=±
√
A2

1 − A2
2sin2(θ1)± A2

√
1− sin2(θ1), (D.3)

which gives us several closed-form solutions of sin2(θ1). These solutions can then be

substituted back to the cost function so that the global maximizer can be obtained.
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