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ABSTRACT

The Kinect camera is a versatile tool that is effectively used to recognize and correct

errors in exercise performance using the 3D joint location data. In several exercises

that involve complex sequences of motion, a single camera cannot track all joint

locations because of occlusions. A natural solution is to utilize multiple cameras.

However, two challenges must be addressed before multiple cameras are used. First,

although the Kinect cameras are supposed to collect data at 30 fps, there is variability

in the period of each camera. Second, each camera uses its center as its frame

of reference for collection of skeletal joint data. A novel approach is proposed to

address these challenges. Interpolation is used to sample data at a constant rate of

10 fps, to address the variability in frequency. Singular Value Decomposition is used

to determine the rotation and translation parameters from each cameras frame of

reference to a global reference frame. The results demonstrate the effectiveness of the

approach.
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CHAPTER I

INTRODUCTION

Recognizing and analyzing human motion is essential for a broad spectrum of ap-

plications such as wellness management, sports training, rehabilitation, surveillance

and assistive technologies to improve the quality of life [1, 2, 14, 36, 43]. Basing in-

terest in the context of empowering personalized wellness management (PWM). The

objective of the thesis is to recognize errors that may occur when performing exer-

cises; in particular, the main interest is in detecting those mistakes that can lead to

injury without requiring an expensive personal trainer. Such a solution is important

because it will improve the self-efficacy and adherence of the participants. It is also

important to provide real-time feedback instead of offering a post-exercise evaluation

of the performance. Toward this end, the thesis will explore what can be achieved

by analyzing the 3D skeletal joint data that was gathered using a non-invasive sensor

such as the Microsoft Kinect camera [44].

The skeletal joint tracking algorithm supported for the Kinect 2 camera [45]

provides time-series data of joint locations. Standard algorithms have been utilized

to extract skeletal joint data in the literature [45, 53]. When an exercise involves a

complex sequence of motions, some of the joints can be occluded by other parts of

the body. Consequently, the estimates of the joint positions can be inaccurate. A
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tracking index indicates the confidence in the estimate of a joint position. Without

accurate estimates of the joint positions, it is not possible to accurately detect the

exercises or analyze the motions to identify errors in exercise performance. A natural

solution to this problem is to utilize multiple Kinect cameras to gather the joint

location data of a participant.

Two challenges must be addressed before multiple Kinect cameras can be

used to gather joint location data. First, although the Kinect camera is supposed to

provide 30 frames per second, there is considerable variability in the period of the

data. For example, while the period is expected to be 33.33 m/s, measure periods of

27 m/s and up to 37 m/s are observed. Thus, when multiple cameras are used, data

from a pair of cameras is likely not to be synchronized. Next, the data from each

camera is provided by considering the position of the camera as the origin. Thus,

the location and orientation of each camera are implicitly embedded in the data.

Classical methods should therefore be utilized to address these challenges.

A Singular Value Decomposition (SVD) of a real or complex matrix, M , of

order m × n is a factorization of M into the form UΣV > where U is m ×m real or

complex unitary matrix, Σ is a m×n rectangular diagonal matrix with non negative

real numbers on the diagonal, and V is an n × n real or complex unitary matrix.

The diagonal entries σi of Σ are known as the singular values of M . The columns of

U and V are called the left-singular vectors and right-singular vectors of M , respec-

tively. SVD has been used for point set registration to find optimal rotational and

translational parameters between two point sets. The approach minimizes the least
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squares registration error. By viewing the joint data from each camera, in each frame,

as a point set, SVD is applied to find rotational and translation parameters. This

approach is viable because the IR sensors used in the Kinect camera provide more

accurate estimates of the common locations than traditional image processing tech-

niques [16]. Further, since the joint estimates from each camera are already tagged,

complex image processing techniques are not utilized to register corresponding joints.

Basing on our results from the thesis, this approach is useful to fuse the information

from multiple cameras into a single frame of reference. In the fused data set, esti-

mate of a joint from the camera that has the highest values of the tracking index is

considered as tracked and this break ties arbitrarily.

The main contribution of this thesis is the effective method to fuse data from

multiple cameras into a single frame of reference and bringing them together at one

point. Methods similar to our prior work [30, 41] need to be considered also, to

recognize the exercise using a Support Vector Machine [46, 47] and recognize errors.

As described in [30, 41], the variety of errors and the variability in exercise

performance from one individual to another dramatically increases the volume of

training data that is necessary. Further, novice participants tend to make more

mistakes in exercise, and it is difficult to get novices to make mistakes predictably so

that so that a training dataset with labels can be assembled. Training data assembled

by having experts making errors deliberately is unlikely to be useful for detecting

and classifying errors made by novices. For these reasons, classifier-based approaches

cannot be readily applied to address the problem of recognizing errors in exercise
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performance. Following our approach in [30, 41], geometric characterizations based

on the joint trajectories are used to recognize the errors using the fused data. The

effective fusion of joint data from multiple cameras allowed us to extend the range

of exercises reported in [30, 41]. Using the methods in this thesis, it is easy to

recognize all the exercises in the High-Intensity Circuit Training [31]. Errors in

these exercises are recognized as identified through discussions with domain experts

in exercise science. While other works in the literature address the general problem

of human action recognition [48, 49], the study focuses squarely on recognizing and

detecting errors in the HICT suite.

The remainder of the thesis is organized as follows: Chapter 2 presents back-

ground information. There will be a description on the approach to fusing data

from multiple views and recognizing exercises in Chapter 3. Experimental results

that demonstrate the effectiveness of these approaches are also discussed in Chap-

ter 4. After a discussion of the results in Chapter 5, conclusions and next steps are

presented in Chapter 6.
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CHAPTER II

BACKGROUND

The literature review part of the thesis explains and proves the main agenda of the

thesis. It is related to the Kinect camera and other applications where multiple Kinect

cameras apply. A description of the methods used for human action recognition and

a few applications of Singular Value Decomposition are also discussed.

2.1 Action Recognition using Joint Information

The data obtained from a Kinect camera have been used in Joint-based [13, 28, 33,

40, 52] and Part-based approaches [12]. Some of the analysis techniques that are used

in the part-based approaches include computation of 3D joint angles [40], Principal

Component Analysis (PCA), Fourier Temporal Pyramid (FTP) [49] and Dynamic

Time Warping (DTW).

2.2 Kinect Camera Applications

The Microsoft Kinect Camera has been extensively used to study and analyze human

motion in the recent years [18, 24, 26, 51]. In [4] the authors evaluate the performance

of dancers by comparing against a reference standard; visual feedback is provided to

the participants. In [17, 35, 39], the authors discuss the role of Kinect camera in
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rehabilitation. In [7], the authors present an exercise feedback system that uses a

classifier to recognize the exercises; the performance is compared to a reference to

provide real-time guidance and feedback in a tele-rehabilitation system. In [42], the

authors estimate the anthropometry for participants by analyzing the data obtained

from a Kinect camera. A good survey of the current research trends using the Kinect

camera can be found in [25] and a detailed description of techniques used in Kinect

camera are described in [44].

One of novelties of the Kinect camera is that there is a very efficient algorithm

that identifies the 3D coordinates of a set of twenty five joints by integrating the depth

and shape information [45, 53]. Because the camera captures 30 frames per second,

it is possible to obtain time-series data of joint coordinate positions for the duration

of an exercise. These coordinates are calibrated to the real-world units and, hence,

can be readily analyzed.

Recent results have demonstrated that 3D joint data obtained from the non-

invasive Kinect camera is comparable to what can be achieved using invasive and

more expensive marker-based systems [10, 20, 22]. In [23], the authors exploit the

joint information to ensure anonymity of the participants.

2.3 Multiple Kinect Cameras

Multiple Kinect cameras has been used in several applications. In all these cases,

two problems have been addressed. The first is to calibrate the depth sensing across

multiple cameras. The second problem is to fuse the joint location data.
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In [5] the authors designed a system that can produce realistic, full 3-D

reconstructions of foreground moving objects in real-time. All pairs of cameras were

calibrated in pairs. RGB image inputs of a calibration bar were used to find point

correspondences from two cameras in each pair.

Three Kinect cameras with minimal non-overlapped regions were used to

track people in indoor spaces [6]. Since the non-overlapped region was minimal,a

common plane is used as a feature for global coordinate system instead of point

correspondences. A pole with two boards attached at the ends is utilized as a cal-

ibration tool. The tool was positioned, such that each board could be detected by

two cameras, thus, creating a pair of corresponding planes.

Calibration of Kinect cameras is done using a standard checker board. in [37].

Transformation between the pair of cameras is done by using a best fit plane approach.

Checker board is positioned such that it was visible to both cameras in the pair.

RGB image data is used to determine the center of the checker board and the vector

normal to it. Relative translation and rotation of cameras is computed using the

above information. This approach requires precise positioning of the checker board

in the overlapping region of the cameras. Another report using a checker board and

SVD to calibrate Kinect cameras was reported in [11]. The RGB images from the

cameras were used as input for the calibration.

In [50] multiple Kinect cameras were used for dismounted soldier training.

Classification and fusing corresponding joints is done by using RGB image data. A

spherical object, such as a basketball, is used to calibrate Kinect cameras that were
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used in a gait monitoring application to predict falls. Image processing techniques

were used to track the silhouette of the sphere. The transformation parameters were

obtained by using SVD on the 3D centers of the spheres.

Based on review [16] authors discussed benefit of using the Kinect IR camera

instead of a RGB camera. IR camera in Kinect is used to capture narrow band images

filter out most undesired ambient light and makes the system robust to natural indoor

illumination. Since skeleton data acquisition is done by using IR depth camera,

calibration using skeleton joint information is immune to noise when compared to

using RGB images.

A large part of the literature uses either point cloud data or data from the

RGB and IR cameras to calibrate multiple kinects. Use of an external calibration

tool or offline analysis before performing the exercise is undesirable in case of indoor

exercising. In this thesis, skeleton joint data will be extracted from Kinect cameras

during the exercise using java API and calibrate the multiple kinect cameras using

this joint data.

2.4 Singular Value Decomposition

The authors in [19] used a registration method based on SVD to fuse PET-CT images

to get both functional and anatomical information of the animals. They identified

the point sources for both CT and PET images and used a least squares approach

to minimize the co-registration error. SVD was used along with geometric analysis

in [3] to estimate the rigid-body transformation to align the laser scans of the point
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correspondences in metric space. Defects in fabric were found using SVD on sub

images of the fabric in [15]. The authors computed the average singular value and

used this as a threshold value for the fabric. Defective fabrics resulted in different

average singular value. In [29] authors extracted embodied knowledge from the time-

series data of motion by using SVD. A matrix was formed using the time-series data

and they used the left singular vectors of the matrix as the patterns of the motion.

These vectors were used as features to classify the gestures. Walking disability was

evaluated using the singular values obtained from the SVD.

The work in [34] is closely related to the work reported here. They also

used SVD to find the transformation parameters between multiple Kinect cameras.

However, they did not consider the issue of synchronization across multiple Kinect

cameras. For this reason, work submitted in this thesis is more likely to be useful for

exercises that involve fast motions.
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CHAPTER III

APPROACH

The Kinect camera and the skeletal tracking algorithm provide 3D coordinates for

the location of twenty five joints. These coordinates are with respect to the location

of the camera as the origin. As already noted, when an exercise involves a complex

sequence of motions, not all the joints can be tracked by a single camera because

of occlusions. Thus, the objective in this investigation was to use multiple Kinect

cameras to accurately track the locations of all the joints.

Three challenges were addressed when collecting data from multiple Kinect

cameras. First, since the data from each camera had to transformed common reference

frame. For this purpose, one of the cameras (Camera 1) was selected as the reference.

Rotation and translation operators were designed to transform the data from every

camera to the common reference. Second, the cameras had to be synchronized so

that every camera collected data at the same time. For this purpose, cameras are

networked and a command response model is designed to carry out the experiment.

Finally, it is important to cope with the the differences in the sampling rates of the

cameras that are inherent in the electronic subsystem of the cameras.

This chapter describes the approach that was used to address the above three

challenges.
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3.1 Common Reference for 3D Joint Coordinates Data

To obtain a common reference, well-known SVD spatial transformation was used [9].

SVD is a decomposition of an input matrix, M , M = U · Σ · V T where U and V are

the orthonormal eigenvectors of M ·MT and MT ·M , respectively. Σ is a diagonal

matrix containing the square roots of the eigenvalues of U (or V ) in descending order.

To spatially transform the data to a common reference, two cameras are

considered, 1 and 2, as illustrated in Figure 3.1. Rotation is a 3×3 matrix, represented

in terms of Rx(θx), Ry(θy), Rz(θz) where θx, θx, θx are the rotations of Kinect camera

1 with respect to x,y and z axes respectively. The translation T is represented as

T = (∆x,∆y,∆z). This means that a joint coordinate c = (x, y, z) that is collected

from camera 1 will have the coordinates c ·R + T with respect to camera 2.

3.1.1 Calculation of R and T from Kinect data

Let the data at time instant t from the ith Kinect camera for joint j be ~Ji,j =

(xj
i, yj

i, zj
i) 1. To compute the centroids, joints that are tracked with high confidence

in both the cameras are considered 2. Let Q represent the set of joints that are tracked

1The major benefit of using the skeletal tracking algorithm is that the joint reg-
istration problem is already resolved. That is, the data from camera 1 for joint j
corresponds to the same joint from camera 2.

2The tracking algorithm also provides a tracking state; this is a value between 0
and 1 that indicates the confidence in the estimate of the joint position.

11
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∆� 

Kinect Camera 1 

�� 

FOV 

FOV 

Figure 3.1: The 3D Joint coordinates from each camera are provided by considering
the location of the camera as the origin. When data for the same exercise are collected
using multiple cameras, it is necessary to translate and/or rotate the coordinates from
one camera to the frame of reference of the other camera.

by both camera 1 and camera 2, and let n = |Q|. Then,

~µ1 =
1

n
Σi∈Q~J1,i (3.1)

~µ2 =
1

n
Σj∈Q~J2,j (3.2)
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The input matrix, M , that is decomposed is constructed as

M =
1

N
· ΣN

i=1 · [(~J1,j − ~µ1) · (~J2,j − ~µ2)], (3.3)

where N = 25 for the Kinect 2.0 cameras because the skeletal tracking algorithm

provides information for 25 joints [38].

SVD of M gives, M = U · Σ · V T .The SVD is useful because calibration is

done using the cameras that are collecting joint data and obtain the rotation and

translation matrices as [9] as:

R = V · UT , (3.4)

and

T = −R · ~µ1 + ~µ2, (3.5)

where ~µ1 and ~µ2 are the centroids of joint coordinate data that are tracked by both

cameras 1 and 2.

To guide the SVD, an objective function that represents the current error is

considered. For this purpose, the mean square error will be defined as

error =
1

N
· ΣN

i=1||~J1,i ·R + T − ~J2,i||
2
. (3.6)

The SVD method provided a decomposition that minimized the above error.
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3.2 Common Reference Time

To fuse joint coordinates data from two cameras, it is important to ensure that

the time at which the data are collected in the respective cameras is synchronized.

Because of the large volume of data that are collected from a Kinect camera, only

one camera could be connected to a computer at a time. Thus, it was necessary

to network multiple computers and synchronize the collection operation across these

computers.

Two separate problems were addressed to synchronize the collection. The

first problem involved synchronizing the data collection by estimating the network

delays over each link. Our approach to address this problem is described in this

section. Also, it was noted that although each camera was supposed to collect data

at 30 frames per second, or 33.33 ms per frame, this rate actually varied between 26

ms and 45 ms from one camera to another. Solutions to both these problems are now

described.

To ensure that the cameras collected data at the same time, the cameras were

connected in a client-server configuration. Each computer that was connected to a

Kinect camera was a client and the computer that was collecting the data from all

the cameras was the server. A standard Ethernet connection using the TCP protocol

was used. The main idea for the synchronization was to estimate the network delay

between the server and each client. An assumption was made that that the network

delay would be no-worse than the estimated value for the duration of the experiment.

14



Further assumptions were made that all the computers on the network had synchro-

nized time. The server sent the estimated delay to each client and initiated data

collection at a future time.

When the Kinect camera was powered up, it requested a connection to the

server. The server sent a probe message for each client and the client responded to

this with an ACK. By recording the time stamps at which these messages were sent

at either end, average network delay was computed, ND, for the link between the

client and the server. After the delay with respect to each client was computed, the

server computed the maximum delay. The server initiated a start collection message

at a future time of twice the maximum delay over all the links.

Upon receipt of the start collection message, each client staggered the collec-

tion to the future time by accounting for the delay on the link connecting it to the

server.

3.3 Compensating for Jitter

Although a Kinect camera is expected to sample frames at an interval of 33.33 ms

(30 frames per second), the observed sampling interval varied from 26 ms to 45 ms.

The difference in this interval was different for different cameras as illustrated in

Figure 3.2. This is the well-known jitter problem in real-time systems and arises

both because of hardware (electronic) and software issues. Although this jitter would

be acceptable for exercises involving little or slow motion, it results in incorrect data

15



in fast moving exercises because it is difficult to fuse data that are not on a consistent

time base.

Figure 3.2: Although the sampling interval in a Kinect camera was expected to be
around 33 ms, this interval was observed to vary from 27 ms to 42 ms as illustrated
in the figure. Notice that the variability differs from one camera to another and also
varies depending on the environment conditions.

To compensate for this jitter, the data needs to be interpolated from the

cameras to a common 10 ms time base. The key idea here is illustrated in Figure 3.3.

Here, the xi represent the joint coordinates collected using the Kinect camera. Recall,

each sample is the location of a joint in 3D space. These samples are approximately

33 ms apart in time. The objective is to interpolate these data to a common time

base of 10 ms.

Figure 3.3 depicts the linear interpolation approach explored. In this ap-

proach, it is assumed that the trajectory of a joint between two adjacent joint loca-

tions xi and xi+1 is a line that connects these two locations (in 3D space). Let ai
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𝐱𝐢

𝐱𝐢#𝟏

𝐱𝐢#𝟐

33	ms sampling	 interval	
from	camera

𝐲𝐣

𝐲𝐣#𝟏
𝐲 = 𝐚𝐢𝐱 + 𝐱𝐢

10	ms time	base
Interpolated	data

Figure 3.3: To compensate for the jitter in the sampling interval, all the data were
interpolated to a 10 ms time base. This figure illustrates linear interpolation. The
sampled joints are illustrated as xi. The trajectory of the joint between two successive
sample points was assumed to be linear.

represent the direction vectors (equivalent of slope in 2D space) of the line between

xi and xi+1. Then, in vector form, the interpolated values

y = aix + xi.

Intuitively, using the line between xi and xi+1, the value x̂i+2 is estimated. An actual

value at xi+2 is already known, so the error is calculated and added this mean squared

error over all joint locations to compute the total error in the linear interpolation

approach. Since the samples xi are collected sequentially, s interpolated values yj are

17



computed sequentially.

The trajectories of all the joints were not linear. For example, in the jumping

jacks exercise, the elbow and wrist move along an arc. For this reason, cubic spline

interpolation is explored using the Java Scientific Library [21] and three successive

joint coordinates collected via the Kinect camera. Cubic Spline Interpolation uses a

third degree polynomial to interpolate the values.

y = aix
3 + bix

2 + cix + di.

Again, since the actual data were already available, computations were done to obtain

total error in the interpolated data.

The results obtained using this approach are presented in the next chapter.

3.4 Recognizing Exercises and Detecting Errors

Following the approach reported in our prior work [30, 41], a two step-process to

recognize exercises and detect errors that can occur when performing these exercises.

Using the 3D joint coordinate data, features were extracted that represent key aspects

of the exercise and represent these as a feature vector. A Support Vector Machine

(SVM) was trained to classify such feature vectors to one of the known exercises.

This approach was validated in experiments and the approach correctly recognized

exercises 83% of the time.
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For each exercise in the HICT suite [31], a list of potential errors which occur

were identified through discussions with experts in exercise science. These errors were

codified as geometric properties. Using the 3D joint data, it is possible to accurately

detect these errors within four repetitions of an exercise being performed [30, 41].
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CHAPTER IV

RESULTS

This chapter describes the experimental setup and presents results from the experi-

ments that validate the approach.

4.1 Experiment Setup

Three Kinect cameras were used as illustrated in Figure 4.1. The data collection from

Kinect Camera is done by using Java4Kinect package [8] in Java. The center camera

designated as the frame of reference to which all the data were transformed. Each

camera was connected to a separate laptop computer for collecting the data via its

USB port. The computers were connected to a central server as described earlier.

The joint coordinates data were collected from each Kinect camera using a

Java API. The local computer assembled these data and sent these data to the server

using the standard Transmission Control Protocol (TCP) supported in Ethernet.

These data were interpolated on the server.

A participant was asked stand in the surrender pose for 20 seconds before any

exercises were performed. The data from this pose were used to assemble an input

matrix for the SVD. The SVD transformation was performed using the standard

Java linear algebra package called JAMA [27]. The data from the cameras were
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Figure 4.1: Experimental Setup with three cameras.

interpolated to a 10 ms time base before applying SVD. The resulting transformation

matrices, R and T , were used to transform the data that were collected when the

participant performed exercises. The exercise data were collected using the three

cameras as mentioned and interpolated to a 10 ms time base. The data in each

camera that was not already a reference camera, were transformed using the R and

T matrices. After receiving data from multiple cameras, these data were fused using

the tracking index. If the tracking index value was below a threshold value, the data

was discarded. When the tracking index for a joint was high from multiple cameras,
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the transformed data from these cameras were averaged to produce a single joint

coordinate for each joint.

4.2 Selecting Interpolation Method

Data from the cameras were interpolated using linear interpolation and cubic spline

interpolation using the Java Scientific library [21]. Since the actual measured data

is available, error is measured using both these methods. The error is shown in

Figure 4.2 and Table 4.1 for a specific exercise called Jumping Jacks. Notice that the

cubic spline interpolation consistently resulted in smaller error.

Figure 4.2: Cubic spline interpolation results in consistently lower error than linear
interpolation.
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4.3 Without Interpolation

To understand whether the interpolation was necessary, transformation error was

computed for a stationary pose. Figure 4.3 illustrates the in transformation, i.e.,

mean squared distance between estimated and measured joint coordinates. Notice

that the error is consistently lower when interpolation is used. This justified the need

for interpolating the data to a common time base.

Figure 4.3: Comparison of transformation error with interpolated data vs non inter-
polated data

4.4 Transforming frame of reference

To validate the SVD based transformation approach, data was collected when Jump-

ing Jacks exercise was performed. The data were collected from two cameras, one

in the Frontal plane and one in the Sagittal plane. The average tracking index was
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computed for each joint from each camera and is illustrated in Figure 4.4. The data

from Kinect 2 (Sagittal plane) were insufficient to analyze the synchrony between the

two ankles when this exercise is performed. Note that in this experiment, Kinect 1

data was collected as a reference.

Figure 4.4: The average tracking index for the joints from Kinect 2 (Sagittal plane)
is lower than that for Kinect 1 (Frontal plane).

The validity of the SVD based approach is illustrated in the next three figures.

Figure 4.5 presents the time series data of the left ankle and the right ankle when the

Jumping Jacks exercise is performed. These motions should be synchronized and in

contrast to an ideal value of -1, the correlation between these data was computed to

be -0.7451. This means that a novice likely performed the exercise, and the motion

of the ankles was not very well synchronized.

Figure 4.6 presents the data for the same motion that was collected using

Kinect 2 in the Sagittal plane. Notice that the left ankle is occluded and the computed
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Figure 4.5: Time Series data of the Left Ankle and Right Ankle from Kinect 1 (Frontal
plane).

correlation was -0.5852. If this value is used to analyze the exercise, it would result

in a false conclusion.

Figure 4.7 shows the data for the left ankle collected in Kinect 2 that was

transformed to the frame of reference of the Kinect 1 camera. Notice that the trans-

formation is visually close to the original data shown in Figure 4.5. The computed

correlation using the transformed data was -0.7218 and this is within 10% of the

original value of -0.7451.

4.5 Kinect Data Fusion

After transformation of joint data from all the Kinect cameras to desired frame of

reference, fusion is done by using averaging the corresponding joint information with
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Figure 4.6: Time Series data of the Left Ankle and Right Ankle from Kinect 2
(Sagittal plane).

highest tracking index. In Figure 4.8 we can observe the transformation error of the

fused set is low when compared to individual transformed joint sets.
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Figure 4.7: Time Series Plot of the transformed data for the Left Ankle collected
using Kinect 2 and the Right Ankle collected from Kinect 1.

Figure 4.8: Comparison of transformation error of fused joint information with indi-
vidual transformed joint coordinate information.
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Table 4.1: Cubic spline interpolation results in consistently lower error than linear
interpolation.

Id Joint LinearError CubicError

1 SPINE BASE 0.902 0.691
2 SPINE MID 0.906 0.721
3 NECK 1.009 0.872
4 HEAD 0.905 0.713
5 SHOULDER LEFT 1.039 0.892
6 ELBOW LEFT 1.233 1.140
7 WRIST LEFT 2.369 2.366
8 HAND LEFT 2.928 2.812
9 SHOULDER RIGHT 0.974 0.768
10 ELBOW RIGHT 1.307 1.225
11 WRIST RIGHT 1.773 1.696
12 HAND RIGHT 1.687 1.284
13 HIP LEFT 0.958 0.759
14 KNEE LEFT 1.051 0.928
15 ANKLE LEFT 0.953 0.874
16 FOOT LEFT 2.544 2.462
17 HIP RIGHT 0.872 0.674
18 KNEE RIGHT 0.949 0.867
19 ANKLE RIGHT 1.108 1.119
20 FOOT RIGHT 2.836 2.574
21 SPINE SHOULDER 0.980 0.831
22 HAND TIP LEFT 3.246 3.122
23 THUMB LEFT 3.850 3.814
24 HAND TIP RIGHT 2.390 2.113
25 THUMB RIGHT 3.344 3.337
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CHAPTER V

DISCUSSION

The approach presented in this thesis to fuse data from multiple Kinect cameras is

effective. The results in the preceding chapter demonstrated that by using a common

time reference, interpolating the acquired data to a common time base and trans-

forming the data to common reference coordinate system effectively allows us to use

the average value as the fused coordinate. Several other options can be explored

in the future. For example, we can select the value that has the highest tracking

index. Another option is to use a Kalman Filter to fuse the data by assuming that

the trajectories of the joints are linear [32].

Fusing joint coordinate data from multiple cameras enables us to encode

expert domain knowledge as detection rules. The current state-of-the-art for exercise

diagnosis is a system that plays back recorded video frame by frame. Our system

on the other hand can alert the participants when errors are identified. When the

experts have fully verified these diagnoses, we can deploy the software system for

routine use at different locations so as to improve exercise adherence.
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CHAPTER VI

CONCLUSION

The thesis presented an approach for fusing 3D joint coordinates data from multiple

Kinect cameras in the context of recognizing and detecting errors that can occur

during the performance of exercises. This capability allowed us to recognize all the

exercises in the HICT suite. Following our prior work, the error detection relies

on the formulation of computationally efficient geometric properties that could be

extracted from the time-series data of the joint locations.By fusing the data from

multiple Kinect cameras, an alternative approach is offered to mitigate the effects

of occlusions. Nevertheless, this system can be extended in the future to provide

cost-effective solutions to improve exercise adherence and wellness management.
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