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ABSTRACT

A three-stage, unidirectional pit growth model, from initiation to stable growth

and repassivation as the bulk potential is decreased, is developed. Stage I models

metastable pit growth under ohmic control and a constant current density. Here

it is assumed that the pit is covered by a semi-permeable oxide layer. Stage I is

terminated when the metal concentration reaches its saturation limit at which time

the pit cover instantaneously bursts. Stage II models the stable pit growth under

diffusion control and the formation of a salt film at the bottom of the pit. During

Stage II the bulk potential is decreased at a specified scan rate. When the bottom

pit potential reaches the transition potential, Stage III begins. Here we model the

pit growth under ohmic control, for a prescribed polarization curve, until the metal

repassivates as the potential is decreased. The governing system of equations for each

stage is solved numerically to determine the potential drop, and the concentrations of

sodium, chloride, and metal ions within the pit. The pit depth as a function of time

is determined from Faraday’s Law in Stages I and III, and from a mass balance at

the electrolyte/metal interface in Stage II. The cumulative pit depth is fit to a power

law model that is used in existing Markov models for pit initiation and growth, and

is compared with experimental pit depths for stainless steel in seawater.
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CHAPTER I

INTRODUCTION

1.1 Pitting Corrosion and Corrosion Cells

Pitting corrosion is the process by which a metal has an accelerated dissolution of

ions in a localized area on its surface [1]. A corrosion cell must be present in order

for corrosion to occur on a metal. A corrosion cell is comprised of four key elements:

an anodic region, a cathodic region, an ionic path, and an electron path. The anodic

region is on the surface of the metal where an oxidation reaction occurs of the form

Me ⇋ Men+ + ne−, (1.1)

which describes the release of n electrons. For our unidirectional pit model, we assume

that this dissolution only takes place at the bottom of the pit, and not along the walls.

The cathodic region is on the surface of the metal where a reduction reaction takes

place. In particular, we are interested in the reduction of oxygen into hydroxide

anions in the reaction

O2 + 2H2O + 4e− ⇀ 4OH−. (1.2)
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An ionic pathway provides the necessary ionic transport processes for electrochemical

reactions to take place. This ionic transport is any combination of diffusion, migra-

tion and convection of the ions. Note that the anode is the location where electrons

are produced, and the cathode is where electrons are consumed. This constant ex-

change of electrons creates the electron path between the anode and the cathode.

The oxidation and reduction reactions (1.1) and (1.2) are followed by a hydrolysis

equilibrum reaction [2] in the form

Men+ +H2O ⇋ Me(OH)(n−1)+ +H+ (1.3)

where equilibrium is reached fairly quickly. It is important to note that (1.3) will

give the minimum degree of acidification that is expected to be found inside the pit.

We also assume [2] that the aggressive anion salts act as a supporting electrolyte for

the ionic species that are formed in reactions (1.1) and (1.3) through electrolysis of

sodium chloride

NaCl → Na+ + Cl−. (1.4)

1.2 Pit Initiation, Pit Growth and Mechanisms of Pitting

Many metals possess passive films, which are naturally occuring thin oxide layers

that grow on their surface and greatly inhibit the process of pitting corrosion. In

this section, we focus on the process of how pits initiate on passive metals (metals
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with a passive film), how they exhibit metastable and stable growth, and the most

important mechanisms that control their pitting process.

While it is not entirely known exactly how pitting corrosion is initiated on

a passive metal, many important observations have given insight into the pitting

process. In order for a pit to initiate, the passive film must break down and an

aggressive chemistry must develop locally at the site of attack. A breakdown in the

passive film is almost always due to either a chemical or physical imperfection of

its crystalline structure. This means that attacks will typically occur on a crystal

grain, grain boundary, flaw, or a place of mechanical damage or dislocation. [1, 3]

The development of an aggressive chemistry is due to a high concentration of anion

species, most frequently chloride and the strength of damage due to pitting varies

directly with the logarithm of the chloride concentration [4]. If oxidizing agents are

included into the solution of chloride ions, then the potential inside the pit increases

which leads to the chemistry becoming even more aggressive and the damage more

severe [1].

After a pit initiates there are many factors that control whether or not the

pit will continue to grow in a stable fashion, or if it will quickly die. One very

important quantity that controls pit propagation is the potential drop within the

pit. It is widely known in the literature [1] that there is a critical potential known

as the pitting potential EPit which defines the minimum potential that allows for

the required local acidification in order to achieve stable growth. If the potential is

lower than EPit, then pitting events are still possible but they are very short lived

3



due to being unable to maintain the local chemistry; these are known as metastable

pits [4]. Note that the value of EPit is fixed for a particular metal in a prescribed

environment and higher values of EPit indicate the metal is more resistant to pitting.

Certain metal alloys and stainless steels are used in a wide variety of applications

specifically because they tend to have thicker passive layers attributing to higher

values of EPit than pure metals. In particular, stainless steels are used in water and

sewage treatment equipment, for transport applications such as ship containers and

chemical tanks, and for medical applications such as surgical equipment [5].

Because the stability of a pit is directly related to the pitting potential, it is

important to understand the electrochemical factors that fix the value of EPit. These

factors have been studied extensively in the literature [1]. In particular, the value of

EPit is dependent upon both the aggressive and non-aggressive anion concentrations,

the external pH, weak acid salts, and alloying elements in the metal [2]. According

to results by Galvele [2] the pitting potential decreases in an amount directly pro-

portional to the logarithm of aggressive anion (chloride) concentration. These results

show the importance of anion concentration on the stability of pit growth. A higher

chloride concentration will decrease the pitting potential and thus make it easier to

maintain stable growth in the pit.

Pit stability is also related to the maximum pit depth inside the pit. Galvele’s

main result [2] was to discuss how a critical value of the factor xi, where x is the pit

depth and i is the current density, corresponds to a critical pH level within a pit. By

plotting various ionic concentrations as a function of xi he concludes that by knowing
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the current density and total pit depth of one particular pit, the correct value of pH

inside that particular pit can then be predicted. Additionally, if a particular change

in concentration is needed for a given pit depth, the required current density can then

be calculated. Note that Frankel states [1] that it is likely the case that the chloride

concentration is a more important factor to consider in order to predict pit stability,

rather than the critical pH as in the focus of Galvele.

The idea of metastable pits is particularly important to us when building our

pit growth model, because metastable pits are able to transition into stable pits under

certain conditions. Metastable pits are generally considered [1] to be pits that grow

to be about 1µm in size and have a lifetime that is at most a few seconds. They are

characterized by the presence of a pit cover; a semi-permeable oxide layer that forms

on its surface. When a metastable pit transitions into a stable pit, the cover will burst

instantaneously and there is a sudden drop in the current density. For this transition

to occur, the applied potential must be greater than EPit and the current density is

large enough for the metal concentration to reach a critical level of saturation [1].

This causes a building osmotic pressure of the metal ions and eventually a rupture

in the cover, at which point pit growth will continue. According to Frankel [6] the

precipitation of a salt film during the process of metastable growth is required for the

pit to ultimately become stable. It was suggested by Vetter and Strehblow [7] that a

resistive layer between the passive surface and the active pit bottom is required for

growth of the pit to occur. The pit cover will provide the needed resistance during

metastable growth, and the formation of a salt film at the pit bottom allows the pit
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to become stable [6] so it can continue growing after the oxide layer has ruptured.

The added resistance provided by the salt film also explains why there is a sudden

drop in the current density at the moment that the cover breaks (since in that instant

of time the potential and pit depth remain fixed).

Before we discuss the process by which a metal repassivates, we first describe

two classifications of corrosion and their relationship to metastable and stable pitting.

These are ohmic controlled corrosion and diffusion controlled corrosion. In ohmic

controlled corrosion, the current density i plays an important role in the chemistry of

the corrosion process through Ohm’s Law in the relationship V = iR, where V is the

potential and R is the (electrochemical) resistance. Ohm’s Law shows us that if the

current is increased, then the required resistance to achieve a fixed value of potential

decreases (and hence the required pit depth also decreases). Thus, pits with large

current densities do not need to be as deep as pits with smaller current densities

in order to reach the pitting potential and become stable. It is for this reason that

metastable growth can be described as an ohmic controlled corrosion process.

After a metastable pit transitions into being a stable pit, the pit is governed

by diffusion controlled corrosion. When this happens, the pit enters a steady state

growth process (multiple steady states may be possible for a single pit) where the

dissolution rate of the metal ions at the interface exactly matches the diffusion rate

of ions away from the surface [8]. This is mathematically interpreted as a mass balance

of the two fluxes, and is described in more detail in the next chapter.
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It is important to note that not every pit will stop growing (repassivate).

In order to repassivate, the anodic and cathodic current densities in the pit must

decrease [9] enough that it reaches a small, critical value known as the repassivation

value iRP . This will occur at a specific potential value ERP . Thus, the pit chemistry is

the determining factor that allows for a pit to either continue growing, or eventually

shut down. If the environment of the pit allows for the potential to change very

little from the bulk value EB, then there is no limitation on the cathodic and anodic

current and the pit is allowed to grow indefinitely. If however, the environment

allows for a changing value of EB, then the current density is limited and the pit will

repassivate. Our model will focus specifically on pits that will eventually repassivate.

For the purposes of simplifying the mathematics in our model, we will simply assume

that the cathodic current and anodic current are always equal and we will only be

concerned with anodic limitations.

According to Anderko [10], a pit that is undergoing stable growth will begin

to repassivate when a metal oxide layer starts to form between the metal halide (salt)

layer and the bottom of the pit. It is assumed that the oxide layer grows as the halide

layer shrinks and the dissolution rate of the metal through the oxide layer is slower

than through the halide layer. At the moment that the metal begins to repassivate,

the potential takes on the transition value ET . When there is enough ohmic drop for

the metal to become passive, so the oxide layer is large enough that metal ions can no

longer pass through, the potential has reached the repassivation value ERP . During

the repassivation process, Anderko [10] assumes that the current density decreases
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as a function of the potential, so the current density is written as i(E). Because

repassivation depends upon the resistivity of the oxide layer and hence the ohmic

drop in the pit, we say that the process is ohmic controlled.

We now summarize some of the most important assumptions and simplifica-

tions in current pit growth models in localized corrosion. If the reader wishes for a

more extensive review of the relevant literature, the reader is referred to [11]. Most

pitting and crevice models that wish to predict the damage h as a function of time

t employ a one-dimensional approximation [2, 4, 8], so that the width of the crevice

mouth is much smaller than the total depth h, or that for a cylindrical pit the radius

r is much smaller than h. More recent models have been developed that predict the

concentration field and the damage for two dimensional pits. However, these two di-

mensional models are much more computationally burdensome, and a solution must

be found numerically using highly sophisticated techniques such as the combined level

set and finite element method as presented in [12]. The model becomes much more

complex when hydrolysis reactions are considered, which is why they are very fre-

quently neglected [2, 8, 12] so that the only species considered are Fe2+, Na+ and

Cl−. An additional simplification made to pit growth models is to assume that the

concentration of ions in the pit is in steady state [4, 12, 13]. The basis of this argu-

ment is that the the velocity of the interface is so slow compared to the diffusion rate

of the ions that the concentration in the pit undergoes steady flow [11]. The validity

of this assumption is discussed in more depth in our model description in Chapter 2.

One final simplification that is often made [4, 8, 13, 14], is that electromigration can
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be neglected in the diffusion controlled regime. This detail is also discussed further

in Chapter 2. The following is a list of assumptions we make for simplification of the

model:

1. Hydrolysis reactions are neglected in a steel metal so we only consider the species

Fe2+, Na+ and Cl−.

2. We only consider pits with width w and depth h such that w << h so we may

use a thin domain asymptotic expansion and pit growth is unidirectional.

3. The solid domain is homogeneous and the concentration of metal ions is a

constant value C = Csolid at all time [12].

4. Mass transport can be due to diffusion or electromigration from a potential

gradient; however, advection is neglected.

5. The concentration of ions within the electrolyte is in steady state. Here bulk

reactions are assumed to be fast and hence, the system is in equilibrium.

6. Electromigration can be neglected in the diffusion controlled regime, so that

each ionic species is a linear function of pit depth.

Our pit model, which is the focus of this paper, consists of three separate

stages of pit growth that describe how a single pit grows in time beginning with its

birth, where it exhibits metastable growth, and ending with its death at the point

that the metal repassivates. Our Stage I characterization is based on the description

of metastable growth as presented by Frankel et al. [15]. According to Frankel et
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al., the current for hemispherical pits during ohmic controlled metastable growth was

found to increase with the square of the radius, and the IR drop was approximately

constant, leading to a constant current density and a linear growth rate. Laycock [4]

has shown that a pit cover will burst after the concentration reaches a certain fraction

of its saturation limit, which is the minimum required value in order to maintain stable

growth. Therefore, we end Stage I metastable growth and begin Stage II stable growth

once the metal concentration reaches the critical value. Our Stage II characterization

is based upon the numerous papers [4, 8, 13, 14] that have experimentally described

transitions from ohmic controlled metastable growth to diffusion controlled stable

growth. In each of these studies, the current density during stable growth was found

to be dominated by the diffusion gradient, leading to iL ∝ 1
h
so that h ≈ t1/2 by

Faraday’s Law. Further, a salt film forms in the transition from Stage I to Stage II.

We assume this formation is instantaneous and do not model this transient behavior

that occurs between Stages I and II. Our Stage III characterization is based upon our

previous discussion of repassivation according to Anderko [10], where pit repassivation

begins at the potential E = ET , ends at E = ERP , and the current density is a

function of potential i(E). Similar to the neglect of any transient behavior between

Stages I and II, we also neglect transients between Stages II and III. Our model

consists of the following three quasi-steady stages:

• Stage I - Ohmic controlled metastable growth that varies linearly in time. The

current density is constant and large and we transition to Stage II once the

metal concentration reaches a critical percent of the saturation value Csat.
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• Stage II - Diffusion controlled stable growth that varies according to the square

root of time. We transition to Stage III when the potential reaches the transition

potential E = ET .

• Stage III - Ohmic controlled stable growth where the depth will asymptotically

reach its maximum value at a rate that is slower than the square root of time.

The current density is chosen to be a decreasing function of potential. Growth

ends when the repassivation potential ERP is reached.

A more detailed explanation for the growth rates of each of the three stages

is given in the next chapter where we describe each stage of the model in more depth.

As we describe each of the three stages of the pit growth model, we refer to the

polarization curve in Figure 1.1, which gives the relatonship between the potential

E and the current density i. The theoretical values of the potential and current

density used to define the polarization curve are chosen to match the data given in

Srinivisan [16] and are shown in Table 1.1 In solving the problem numerically, we

choose the repassivation values ERP and iRP to be the same as the stated theoreti-

cal values; however the diffusion limiting values iT and ET are calculated and then

compared to Table 1.1 This is discussed further in Chapter 3 when we describe the

numerical implementation.
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Figure 1.1: The polarization curve for each of the three stages in the growth model.
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Table 1.1: Polarization curve values.

Variable Name Description Numerical Value Unit

EApp Applied Potential 0.510 V

EHold Potential Value During Potentiostatic Hold 0.45 V

ET Transition Potential 0.025 V

iT Transition Current Density 0.50
A

cm2

ERP Repassivation Potential -0.16 V

iRP Repassivation Current Density 3.0e-5
A

cm2
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CHAPTER II

MODEL DESCRIPTION

2.1 Geometry of the Problem and the Governing Equation

Consider the cross section of a pit (side view) where the width is w and depth h. In

each of the three stages we set the top of the pit as the location z = 0 and at the

bottom of the pit we have z = h(x, t) so the pit depth varies as a function of time

and width. Assuming that w << h , then we may use a thin domain asymptotic

expansion leading to a unidirectional growth model with z = h(t) only. A diagram of

the domain of the problem is shown in Figure 2.1.

The ion flux ~Jj is represented in terms of the concentration Cj corresponding

to the species j of ions and in terms of the potential E as

~Jj = −Dj(~∇Cj)− njαDjCj(~∇E). (2.1)

Here, Dj is the diffusivity and nj represents the charge of the species where nj is (+)

for an anion and nj is (-) for a cation. The parameter α is defined by

α =
F

RT
(2.2)
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Bulk Electrolyte

Metal Metal

Pit
Electrolyte

Metal Ions

w

Interface

z = 0
x

z

z = h(x, t)

h(x, t)

Figure 2.1: The domain of the problem.

where F is Faraday’s Constant, R is the universal gas constant, and T is the tem-

perature in kelvin. The first term in (2.1) represents the diffusion of ions through a

concentration gradient, and the second term represents the migration of ions as the

result of an electric field due to a potential gradient. Note that as z increases, the

potential goes from high potential at the cathode to low potential at the anode, so

that ~∇E < 0. Also note that as z increases, the concentration changes from low

concentration to high concentration so ~∇Cj > 0.

The continuity equation gives

∂Cj

∂t
+ ~∇ · ~Jj = s(+) − s(−) (2.3)
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with s(+) representing a source and s(−) representing a sink. Assuming that the system

is in equilibrium, we have

~∇ · ~Jj = −
∂Cj

∂t
. (2.4)

In each of the three stages of pit growth, we need to find the potential E(z, t) in the

pit. The outward normal points in the positive z direction, so (2.4) is equivalent to

the governing equation

∂ ~Jj

∂n̂
=

∂

∂z

[

Dj
∂Cj

∂z
+ njαDjCj

∂E

∂z

]

= −
∂Cj

∂t
. (2.5)

The growth rate at the bottom of the pit is governed by Faraday’s Law

∂h

∂t
=

iAMW

2ρF
. (2.6)

Here, ρ = 7.92
g

cm3
is the density of the steel alloy [16] and MW = 55.85

g

mol
is its

molecular weight [16]. We define the non-dimensional time t̄ as

t̄ =
t

ttrans
, (2.7)

where

ttrans =
2ρFh

iAMW
(2.8)
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is the time scale for dissolution of metal at the bottom of the pit. The non-dimensional

diffusion equation is then given by

∂

∂z̄

[

∂C̄j

∂z̄
+ C̄j

∂Ē

∂z̄

]

= −
1

ttrans

h2

Dj(1 + |nj |αE)

∂C̄j

∂t̄
, (2.9)

where z̄ =
z

h
and Ē =

E

EB

. The quantity

tdiff =
h2

Dj(1 + |nj |αE)
(2.10)

represents the time scale for the diffusion of ions in the pit. Note that after non-

dimensionalization, the quantity |nj |αEB is O(1), so that all terms on the transport

side of (2.9) are O(1). Therefore, the non-dimensional group

ǫ =
tdiff
ttrans

(2.11)

will control the size of the time derivative. Assuming that h, Dj , and iA have sizes

that are no larger than 100µm, 1.0× 10−5 cm2/s and 5.0A respectively, the quantity

ttrans is much slower than tdiff and we have ǫ << 1. When we keep terms of O(1)

and neglect terms of O(ǫ), the diffusion equation

∂

∂z̄

[

∂C̄j

∂z̄
+ C̄j

∂Ē

∂z̄

]

= −ǫ
∂C̄j

∂t̄
, (2.12)
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is equivalent to the quasi-steady state equation

~∇ · ~Jj = 0. (2.13)

We use the term quasi-steady because the pit depth is still increasing with time.

Thus, the diffusion equation can be reduced to the quasi-steady state (dimensional)

equation

∂

∂z

[

Dj
∂Cj

∂z
+ njαDjCj

∂E

∂z

]

= 0, (2.14)

which can be used to determine the potential inside the pit E(z, t). Integration of

(2.14) with respect to z gives

∂Cj

∂z
+ njαCj

∂E

∂z
= J = constant. (2.15)

For a non-reactive species at the electrolyte/metal interface, J = 0 so that

∂Cj

∂z
+ njαCj

∂E

∂z
= 0. (2.16)

Separation of variables and integration with respect to z gives an expression for

the concentration Cj as a function of potential E as follows. Note that because

the potential E = E(z, t) is a function of pit depth and time, the concentration

Cj = Cj(z, t) is also a function of pit depth and time. Here, the index j may refer to

either the concentration of metal ions C = [Fe2+], or the concentration of the sodium
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cations
[

Na+
]

or chloride anions
[

Cl−
]

. From this point forward, we suppress the

time dependence of E(z, t) and similar terms so that E(z, t) is to be interpreted as

E(z) for the remainder of the document. The coefficients Aj are found to be

Aj = Cj(0)e
njαEB , (2.17)

where E(0) = EB is the potential in the bulk electrolyte and Cj(0) refers to the bulk

concentration of species j. Note that the bulk potential EB is a function of time

because it is linearly stepped in time during Stages II and III. So the concentration

is written as

Cj(z) = Cj(0)e
−njα[E(z)−EB]. (2.18)

Hence, the concentrations of the sodium cations and the chloride anions are written

as

[

Cl−
]

= Cl−bulke
−α[E−EB], (2.19)

[

Na+
]

= Na+bulke
α[E−EB]. (2.20)

The electroneutrality condition gives an expression for the concentration Cj as a

function of E,

−nj [Cj] +
[

Na+
]

−
[

Cl−
]

= 0. (2.21)
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Therefore when we drop the j and use nj = −2 for the iron concentration C then

C(z) =
1

2

[

Cl−bulke
−α[E(z)−EB ]

−Na+bulke
α[E(z)−EB ]

]

, (2.22)

where the derivative is

∂C

∂z
= −

α

2

(

∂E

∂z

)

[

Cl−bulke
−α[E−EB]

+Na+bulke
α[E−EB]

]

. (2.23)

2.2 Stage I Model Description

In Stage I, we assume that the growth of the pit is metastable, and is ohmically

controlled so the pit growth depends upon the current density at the bottom of the

pit. We assume that there is a semi-permeable membrane with a mass transport

coefficient 0 < k < ∞ to allow passage of metal cations into the bulk at the top of

the pit. A diagram of the model in Stage I is shown in Figure 2.2.

Pit CoverMetal Metal

z = 0

Metal Ions

Pit
Electrolyte

Interface

z = h

Figure 2.2: The Stage I pit growth model.

20



At the pit cover z = 0, the net flux of metal ions is given by

−D
∂C

∂z
+ 2αDC

∂E

∂z
= −k(C − Cbulk), at z = 0, (2.24)

where Cbulk is the metal concentration in the bulk. Here, the flux is proportional to

the difference in concentration C−Cbulk, where the direction of transport is from the

pit interior to the bulk. Because the concentration at the pit cover C(z = 0) is much

smaller than the concentration at the pit bottom C(z = h), the electromigration term

is neglected and the boundary condition becomes

−D
∂C

∂z
= −k(C − Cbulk), at z = 0. (2.25)

At the bottom of the pit, there is a mass balance between the metal ion flux and the

current, so we have

D
∂C

∂z
− 2αDC

∂E

∂z
=

iA
2FCSolid

(CSolid − C), at z = h(t) (2.26)

where Csolid is the metal concentration at the solid interface. Note that the direction

of transport is from the solid to the electrolyte. As we have stated in the previous

section, the pit depth grows in time according to Faraday’s Law in (2.6). We take

the anodic current density iA to be a constant so the pit depth h is a linear function

of time. Equation (2.6) can be used to determine the damage h at each time step
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by integration. When we substitute the metal concentration (2.22) and its derivative

(2.23) into the governing equation (2.14) where nj = −2 for iron, we have the second

order ODE written only in E,

∂

∂z

(

−
α

2

∂E

∂z

[

Clbulke
−α[E−EB] +Nabulke

α[E−EB]
]

− α
∂E

∂z

[

Clbulke
−α[E−EB] −Nabulke

α[E−EB]
]

)

= 0. (2.27)

Combining terms and simplifying (2.27) we have

∂

∂z

(

∂E

∂z

[

−3Clbulke
−α[E−EB] +Nabulke

α[E−EB]
]

)

= 0. (2.28)

Distrubuting the derivative in (2.28) yields

[

− 3Clbulke
−α[E−EB] +Nabulke

α[E−EB]
]∂2E

∂z2

+ α
[

3Clbulke
−α[E−EB] +Nabulke

α[E−EB]
]

(

∂E

∂z

)2

= 0. (2.29)

In order to simplify notation, we write (2.29) in terms of the functions A(z) and B(z)

to give the final form of our governing equation:











































A(z)
∂2E

∂z2
+B(z)

(

∂E

∂z

)2

= 0,

A(z) = −3Cl−bulke
−α[E−EB] +Na+bulke

α[E−EB],

B(z) = α
[

3Cl−bulke
−α[E−EB] +Na+bulke

α[E−EB]
]

.

(2.30)
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Using both (2.22) and (2.23) in the boundary conditions (2.25) and (2.26), we have

two conditions for the potential E,

αD

(

∂E

∂z

)

[

Cl−bulke
−α[E−EB] +Na+bulke

α[E−EB]
]

= k
[

2Na+bulk − Cl−bulke
−α[E(z)−EB] +Na+bulke

α[E−EB]
]

, at z = 0. (2.31)

α

2

(

∂E

∂z

)

[

−3Cl−bulke
−α[E−EB] +Na+bulke

α[E−EB]
]

=
iA

4FCsolidD

[

2Csolid − Cl−bulke
−α[E(z)−EB] +Na+bulke

α[E−EB]
]

, at z = h(t). (2.32)

Experiments have shown [4] that a pit cover will burst after the concentration reaches

a certain fraction of its saturation limit, which is the minimum required value in order

to maintain stable growth. This minimum value has been commonly accepted to be

roughly between 60-80% [8, 17]. We estimate this fraction conservatively, and assume

the stopping condition in our Stage I model when we transition to stable growth is

when the concentration reaches 60% of the saturation limit, so C = γCsat, with

γ = 0.6 at which point we no longer update the damage.

2.3 Stage II Model Description

After reaching saturation, the pit cover at z = 0 in Figure 2.2 instantaneously ruptures

due to the building osmotic pressure of the metal ions. There is a decrease in current
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and potential and we transition to the Stage II model where the pit exhibits diffusion

controlled stable growth. The defining characteristic for stable growth of a pit is the

formation of a metal halide salt layer at the interface between the metal and the

electrolyte solution. As the pit grows deeper in time, the salt layer becomes thicker.

This halide layer increases the resistance in the pit solution. Mathematically, this is

incorporated into our model by linearly decreasing the bulk potential EB over time.

The governing equation that we are interested in solving is still (2.14), how-

ever the boundary conditions are different. Because the pit cover is no longer present,

it is not able to act as a resistive layer to the flow of ions, so the boundary condition

at the top of the pit is

E = EB at z = 0. (2.33)

The potential is fixed at the value of the bulk electrolyte. The concentration at the

pit bottom stays fixed, so using C = γCsat in (2.22) gives

γCsat =
1

2

[

Cl−bulke
−α[E(z)−EB] −Na+bulke

α[E(z)−EB]
]

at z = h. (2.34)

Equation (2.34) is used to solve for the potential at the bottom of the pit,

E(z = h), and is equivalent to

Nabulke
2β − 2γCsate

β + Clbulk = 0, (2.35)
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where β = α[E(z = h)−EB]. The two roots of the quadratic equation are

ξ± =
−γCsat ±

√

γ2C2
sat +NabulkClbulk

Nabulk
= eβ , (2.36)

and the potential at the bottom of the pit is

E(z = h) =
1

α
ln(ξ+) + EB. (2.37)

The positive root is taken to ensure that the potential drop ∆E is positive. In

particular, we have

∆E = EB −E(z = h) = −
1

α
ln(ξ−). (2.38)

Note that E(z = h) and ∆E are both constants that depend upon the bulk values

Nabulk and Clbulk as well as the saturation level of the metal Csat. In addition,

the potential at the pit bottom depends upon the bulk potential EB. The major

conclusion is that the potential drop down the depth of the pit is fixed in Stage II. A

diagram of the Stage II model is given in Figure 2.3.

Because the pit growth is diffusion controlled, the metal ion flux is the same

as the dissolution rate of the metal at the bottom of the pit so we have that

D
∂C

∂z
− 2αDC

∂E

∂z
=

∂h

∂t
(Csolid − γCsat) at z = h(t). (2.39)
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Halide

Metal 

C = γCsat

Interface

z = 0

Electrolyte

Pit

No CoverMetal Metal

∆E = constant

z = h

E = EB
C = CB

E = constant

Figure 2.3: The Stage II pit growth model.

The growth rate of the pit is then given by

∂h

∂t
=

D

Csolid − γCsat

(

∂C

∂z
− 2αC

∂E

∂z

)

at z = h(t). (2.40)

According to Moayad and Newman [13], and experiments conducted by Tester and

Isaacs [18, 19], the current is dominated by the diffusion gradient for diffusion con-

trolled pit growth where the bulk concentration of NaCl is between 0.5 × 10−4 mol
cm3

and 10 ×10−4 mol
cm3 . Issacs [19] argued that the potential has little effect on the current

because the system is self-regulating. He states that any perturbations in the current

that occur from stepping the potential will only occur for a short period of time,

until the current returns to a value equal to the diffusion flux. This is consistent

with our quasi-steady state assumption where all transients are fast compared to the

dissolution rate. It follows that the electromigration term can be neglected in (2.40)
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and the governing equation (2.14), so that we have
∂2C

∂z2
= 0, and the growth rate

can be simplified to

∂h

∂t
=

D

Csolid − γCsat

(

∂C

∂z

)

at z = h(t). (2.41)

The concentration is linear, so

C(z) = a+ bz. (2.42)

The boundary conditions C(0) = Cbulk and C(z = h) = γ Csat then give

C = Cbulk +

(

γCsat − Cbulk

h

)

z. (2.43)

The derivative
∂C

∂z
is given by

∂C

∂z
=

(

γCsat − Cbulk

h

)

, (2.44)

and we have

∂h

∂t
=

D (γCsat − Cbulk)

Csolid − γCsat

1

h
∝

1

h
. (2.45)
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It follows that

h dh ≈ dt =⇒ h ∝ t1/2. (2.46)

This fact allows us to assume that the overall damage profile in time can be fit using

a power law as

h(t) = atb. (2.47)

The current density is not constant as we had assumed previously in Stage

II, but is instead decreasing with pit depth. We refer to Chapter 3 for discussion on

a method where we are able to use (2.45) together with Faraday’s Law in (2.6) for

calculating the diffusion limiting current density for Stage II.

A stable pit shuts down only if the pit has a limiting cathodic current density.

Here, we make the assumption that the anodic and cathodic current densities are the

same, and we simulate a limiting cathodic value by stepping the potential down along

the polarization curve beginning at the potential value EB = EHold > EPit and ending

at the transition potential E = ET . Thus, our stopping condition for Stage II is for

E = ET . This is mathematically equivalent to the experimental process of scanning

the potential with a scanning electrode procedure as performed by Srinivasan [16].

Prior to scanning, Srinivasan held the potential fixed and allowed the pit to drill

to various specified depths. In order to match the polarization curve and to obtain
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pit depths on the same order of magnitude as reported by Srinivisan, we have taken

the same approach in our Stage II model. We hold the potential fixed and update

the damage and concentration profiles until we reach close to iT = 0.50A/cm2. Our

process that is used to step down the potential is described in more detail in Chapter

3.

2.4 Stage III Model Description

In the Stage III model, the pit begins to approach repassivation through ohmic con-

trolled growth as in Figure 2.4. Because the pit cover is still gone in Stage III, we

have

E = EB at z = 0. (2.48)

Because the growth is ohmic controlled, the mass balance between the metal ion flux

and the current gives

D
∂C

∂z
− 2αDC

∂E

∂z
=

iA(E)

2FCSolid
(CSolid − C), at z = h(t) (2.49)

where we no longer assume that the anodic current density is constant as in Stage I,

but now varies with potential. The growth of the pit is then

∂h

∂t
=

iA(E)MW

2ρF
, at z = h(t). (2.50)
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Using (2.22) and (2.23) the boundary condition is

α

2

(

∂E

∂z

)

[

−3Cl−bulke
−α[E(z)−EB ] +Na+bulke

α[E(z)−EB]
]

=
iA(E)

4FCsolidD

[

2Csolid − Cl−bulke
−α[E(z)−EB]

+Na+bulke
α[E(z)−EB ]

]

, at z = h(t).

(2.51)

In Stage III, repassivation is begun at the transition value ET where the

metal oxide layer begins to form between the halide layer and the metal interface and

repassivation has completed after the potential has been stepped down to the value

ERP at the pit bottom. The scanning process and the numerical implementation for

our current density i(E) using the polarization curve is described in more detail in

the algorithm description in Chapter 3.

Metal
Oxide

Halide
Metal 

z = h

No CoverMetal Metal

Pit

Electrolyte

Interface

z = 0
E = EB

Figure 2.4: The Stage III pit growth model.
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2.5 Quick Reference For Model Equations

Quick reference equations are given in terms of C and also in terms of E. The forms

using C are easier to understand and manipulate from a conceptual point of view,

and are listed first.

Governing Equation (In terms of C):

∂

∂z

[

D
∂C

∂z
− 2αDC

∂E

∂z

]

= 0.

Electroneutrality Condition:

C(z) =
1

2

[

Cl−bulke
−α[E(z)−EB ] −Na+bulke

α[E(z)−EB ]
]

.

Stage I Boundary Conditions (In terms of C):

−D
∂C

∂z
= −k(C − Cbulk), at z = 0,

D
∂C

∂z
− 2αDC

∂E

∂z
=

iA
2FCSolid

(CSolid − C), at z = h(t),

∂h

∂t
=

iAMW

2ρF
.
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Stage II Concentration

C = Cbulk +

(

γCsat − Cbulk

h

)

z.

Stage II Boundary Conditions (In terms of C):

E = EB, at z = 0,

C = γCsat, at z = h(t),

∂h

∂t
=

D (γCsat − Cbulk)

Csolid − γCsat

1

h
.

Stage III Boundary Conditions (In terms of C):

E = EB, at z = 0,

D
∂C

∂z
− 2αDC

∂E

∂z
=

iA(E)

2FCSolid
(CSolid − C), at z = h(t),

∂h

∂t
=

iA(E)MW

2ρF
.
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Here, the quick reference equations are given in terms of E. These are the

equations that we will solve using MATLAB.

Governing Equation (In terms of E):

A(z)
∂2E

∂z2
+B(z)

(

∂E

∂z

)2

= 0,

where

A(z) = −3Cl−bulke
−α[E(z)−EB]

+Na+bulke
α[E(z)−EB]

,

and

B(z) = α
[

3Cl−bulke
−α[E(z)−EB] +Na+bulke

α[E(z)−EB ]
]

.

Stage I Boundary Conditions (In terms of E):

αD

(

∂E

∂z

)

[

Cl−bulke
−α[E(z)−EB]

+Na+bulke
α[E(z)−EB ]

]

= k
[

2Na+bulk − Cl−bulke
−α[E(z)−EB]

+Na+bulke
α[E(z)−EB ]

]

, at z = 0,

α

2

(

∂E

∂z

)

[

−3Cl−bulke
−α[E(z)−EB ] +Na+bulke

α[E(z)−EB]
]

=
iA

4FCsolidD

[

2Csolid − Cl−bulke
−α[E(z)−EB] +Na+bulke

α[E(z)−EB ]
]

, at z = h(t),

∂h

∂t
=

iAMW

2ρF
.
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Stage II Boundary Conditions (In terms of E):

E = EB, at z = 0,

E =
1

α
ln(ξ−) + EB, at z = h(t),

where

ξ− =
γCsat −

√

γ2C2
sat −NabulkClbulk

Nabulk
,

∂h

∂t
=

D (γCsat − Cbulk)

Csolid − γCsat

1

h
.

Stage III Boundary Conditions (In terms of E):

E = EB, at z = 0,

α

2

(

∂E

∂z

)

[

−3Cl−bulke
−α[E(z)−EB ] +Na+bulke

α[E(z)−EB]
]

=
iA(E)

4FCsolidD

[

2Csolid − Cl−bulke
−α[E(z)−EB] +Na+bulke

α[E(z)−EB]
]

, at z = h(t)

∂h

∂t
=

iA(E)MW

2ρF
.
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CHAPTER III

NUMERICAL IMPLEMENTATION AND ALGORITHM DESCRIPTION

3.1 Stage I Implementation

The spatial grid z is built using N = 5001 equally spaced points, zm. The grid value

z1 = 0 is the location at the top of the pit and the value zN = h(n+1) is the location

at the bottom so the spatial domain is z ∈
[

0, h(n+1)
]

. Here h(1) is the scalar value

of the total damage when the pit initiates (time step n = 0) and h(n+1) is the total

damage at the nth time step. The time grid t is built using n + 1 equally spaced

points so the time domain is t ∈ [0, tn]. When we use separation of variables on (2.6)

we obtain

h(t) = h(0) +
iA MW

2ρF
t, (3.1)

which we discretize as

h(n+1) = h(1) +
iA MW

2ρF
ndt. (3.2)

At each of the three stages in the model, the governing equation (2.30) is solved using

4th order Runge-Kutta (ode45 in MATLAB) to determine the potential. For each

stage, we describe the algorithm that is used to determine the damage, potential and

concentrations for all time. The following is a step by step implementation for our

Stage I model:
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1. Assuming the initial pit depth of h(1) = 1µm, determine the potential E(z)

and its derivative
∂E

∂z
when t = 0 by solving equation (2.30) subject to the

boundary conditions (2.31) and (2.32).

2. For t = 0, determine the concentrations of sodium and chloride as well as the

concentrations of the metal by using the solution for E(z) in the electroneutral-

ity condition (2.22). Determine the derivative
∂C

∂z
using (2.23).

3. For time step n, update the damage h(n+1) by using (3.2) with dt = 0.1 second,

and rebuild the z grid using N points in the new spatial domain
[

0, h(n+1)
]

.

4. Use h(n+1) and the new z grid to repeat steps (1) and (2) at time step n.

5. Exit the time loop when C = γCsat.

A list of the parameters used in Stage I of the model are given in Table 3.1. We choose

the bulk iron concentration to be the arbitrarily small value Cbulk = 1.0×10−5 mol
cm3 and

the bulk chloride concentration to be Clbulk = 6.0×10−4 mol
cm3 , which is consistent with

the data set in Srinivasan et al. [16]. The bulk sodium concentration is obtained from

the electroneutrality condition in (2.22) to be Nabulk = 5.8×10−4 mol
cm3 . The values for

ρ, MW , Csolid, T , D, and EB are also chosen to match the data in [16]. In particular,

D is chosen so that our expression for the slope m of a graph of iL versus 1
h
matches

the slope in [16]. The parameter γ is chosen based on a conservative estimate for

the minimum fraction of saturation needed to maintain stable growth, as presented

in [8, 17]. Our value for Csat is based upon estimates of Csat for 316L stainless steel

according to Bright in [20]. Assuming that 316L stainless steel is comprised of 67.5%
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Fe, it has the saturation limit [20]

Csat(steel) =
Csat(iron)

0.675
= 1.48Csat(iron). (3.3)

According to Laycock et al. [14], at 23 ◦C the saturation limit of Fe2+ in FeCl2 is

3.5×10−3 mol

cm3
. Therefore, we have Csat(steel) = 5.18 × 10−3 mol

cm3
, which is the value

we choose for our saturation limit.
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Table 3.1: Stage I Model Parameters (Baseline)

Variable Name Description Numerical Value Unit

F Faraday’s Constant 9.64853365×104
C

mol

R Gas Constant 8.3144621
J

mol K

T Temperature 2.9515×102 K

EB Bulk Potential 0.510 V

D Diffusivity 1.357×10−5 cm2

s

k Mass Transport Coefficient 1.0×10−2 cm

s

MW Molecular Weight of 316 SS 55.85
g

mol

ρ Density of 316 SS 7.92
g

cm3

iA Anodic Current Density 5.0
A

cm2

Clbulk Chloride Concentration in Bulk 6.00×10−4 mol

cm3

Nabulk Sodium Concentration in Bulk 5.80×10−4 mol

cm3

Cbulk Metal Concentration in Bulk 1.00×10−5 mol

cm3

Csolid Metal Concentration at Solid Interface 0.143
mol

cm3

Csat Concentration of Metal at Saturation Limit 5.18×10−3 mol

cm3

γ Saturation Multiplier 0.6 N/A

3.2 Stage II Implementation

Equation (2.41) is implemented numerically by using a forward Euler’s method at

each time step. The derivative
∂h

∂t
is approximated by

∂h

∂t
≈

h(n+1) − h(n)

dt
, (3.4)
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so (2.45) can then be written as

h(n+1) = h(n) + dt
D

Csolid − γCsat

(

∂C

∂z

)

N

, (3.5)

where

(

∂C
∂z

)

N

is the value of the derivative at the pit bottom. Note that the time

evolution of the potential (and thus also the concentration) at time step n depends

upon the total damage at time step n. Therefore, to make sense of (3.5) we must

evaluate the derivative at the previous time step. By using z = h(n) in (2.44), equation

(3.5) is then simplified to

h(n+1) = h(n) + dt
D

Csolid − γCsat

(

γCsat − Cbulk

h(n)

)

. (3.6)

When we equate (2.45) with (2.6), we have

D

Csolid − γCsat

(

γCsat − Cbulk

h(n)

)

=
iAMW

2ρF
. (3.7)

This shows that the required damage in order to reach a specified current density iA

by the end of Stage II is given by

h =
2ρFD

Csolid − γCsat

(

γCsat − Cbulk

iAMW

)

. (3.8)
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Additionally, the diffusion limited current density can be plotted against the inverse

pit depth according to

iL =
2ρFD

Csolid − γCsat

(

γCsat − Cbulk

MW

)

1

h
. (3.9)

Equation (3.9) shows iL is inversely proportional to pit depth z where the propor-

tionality constant is

m =
2ρFD

Csolid − γCsat

(

γCsat − Cbulk

MW

)

, (3.10)

which is an analytic expression for the slope. By using separation of variables on

(2.45) we obtain

h2 =
2D(γCsat − Cbulk)

Csolid − γCsat
t, (3.11)

which can be inverted to give us

1

h2
=

Csolid − γCsat

2D(γCsat − Cbulk)

1

t
. (3.12)

Then by squaring both sides of (3.9) and using (3.12), we obtain an expression for i2L

in terms of
1

t
,

i2L =
2D(ρF )2

(Csolid − γCsat)

(γCsat − Cbulk)

MW 2

1

t
. (3.13)
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We simplify by using Csolid =
ρ

MW
:

i2L =
2D(FCsolid)

2(γCsat − Cbulk)

Csolid − γCsat

(

1

t

)

. (3.14)

Thus, if i2L is plotted against
1

t
the slope of the graph is given by

m =
2D(FCsolid)

2(γCsat − Cbulk)

Csolid − γCsat

. (3.15)

The analytic expressions (3.10) and (3.15) are compared against experimental data

in our results in Chapter 4. At the start of Stage II, we begin the iteration process to

determine the damage in (3.6) by using the value of the derivative at the end of Stage

I. We use our initial calculation for the damage to determine an initial potential curve

by solving (2.30) subject to conditions (2.33) and (2.37). Prior to stepping down the

potential, we hold the potential fixed and we update the damage and concentration

profiles in time until we have reached the desired pit depth. We then linearly step

down the bulk potential by using the scan rate of 5 mV/s to be consistent with the

experiment by Srinivasan et al. [16]. Again, the damage and concentration profiles

are updated at each time step. We use the number of time steps required for the

potential EN to be stepped down to the transition value EN = ET ≈ 0.025 V .

The following is a step by step implementation for the Stage II model:

1. Determine the value of the potential at the bottom of the pit E(z = h) in (2.37).
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2. Use the value of
∂C

∂z
from the previous time step to update the damage using

Euler’s Method in (3.6) and to update the z grid.

3. Use the new z grid to determine the potential E(z) by solving equation (2.30)

at the previous time step (the transition time at the end of Stage I) subject to

the boundary conditions (2.33) and (2.37).

4. Determine the concentrations of sodium, chloride and metal ions by using the

analytic expression in (2.43). Determine the derivative
∂C

∂z
using (2.44). The

critical values of sodium and chloride concentrations are found as Cl−N and Na+N

from the end of Stage I.

5. While holding the potential E fixed, update the damage at time step n for h(n+1)

and the z grid by using Euler’s Method in (3.6) with increment dt. Use the new

value of h and the new z grid to update each of the concentration profiles.

6. Exit the time loop when the desired pit depth is reached.

7. Enter a new time loop. For time step n, linearly decrease the bulk value of the

potential using the scan rate of 5 mV/s and repeat steps (1) - (4).

8. Exit the time loop after the potential at the bottom of the pit EN has been

stepped down to the transition value EN = ET ≈ 0.025V .

9. Determine the limiting current density by using the damage profile in equation

(3.9).
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A list of the parameters used in Stage II of the model is given in Table 3.2.

The values for ET and iT are chosen to match the data in Srinivasan et al. [16].

Table 3.2: Stage II Model Parameters (Baseline)

Variable Name Description Numerical Value Unit

F Faraday’s Constant 9.64853365×104
C

mol

R Gas Constant 8.3144621
J

mol K

T Temperature 2.9815×102 K

EB Bulk Potential 0.510 V

ET Transition Potential (target) 0.025 V

iT Transition Current Density (target) 0.50
A

cm2

D Diffusivity 1.357×10−5 cm2

s

MW Molecular Weight of 316 SS 55.85
g

mol

ρ Density of 316 SS 7.92
g

cm3

Clbulk Chloride Concentration in Bulk 6.0×10−4 mol

cm3

Nabulk Sodium Concentration in Bulk 5.8×10−4 mol

cm3

Cbulk Metal Concentration in Bulk 1.0×10−5 mol

cm3

Csolid Metal Concentration at Solid Interface 0.143
mol

cm3

Csat Concentration of Metal at Saturation Limit 5.18×10−3 mol

cm3

γ Saturation Multiplier 0.6 N/A
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3.3 Stage III Implementation

The damage h in Stage III is very similar to (3.2), only the current density iA is no

longer a constant but varies as a function of potential, so we must use Euler’s method.

The damage equation is then

h(n+1) = h(n) + dt
iA(EN )MW

2ρF
, (3.16)

where iA(EN) is the current density evaluated at the potential value EN . The current

density is evaluated using the polarization curve for Stage III in Figure 1.1. We

implement an artificial curve fit through the two points (iRP , ERP ) and (iT , ET ) where

the potential is an exponential function of the current

E = θ + ηeζiA. (3.17)

Or as an expression for the current as a function of potential

iA(E) =
1

ζ
log

(

E − θ

η

)

. (3.18)

We have chosen ζ to be a free parameter to control the slope of the exponential

curve while the values of θ and η are determined using the two interpolating points

as follows

θ =
(eζiRP )ET − (eζiT )ERP

eζiRP − eζiT
, (3.19)
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η =
ERP − θ

eζiRP

. (3.20)

The repassivation values we take from Table 1.1 to be ERP = −0.16V and iRP =

3.0×10−5 A

cm2
. The limiting transition values of ET and iT are taken as the potential

and current density at the bottom of the pit for the final time step in Stage II. In order

to determine the potential in Stage III, we simulate the approach to repassivation

when the metal oxide layer fully forms and the pit shuts down by stepping down the

value of EB. We take EB at the start of Stage III to be the value E1 at the end of

Stage II. We begin the iteration in (3.16) by evaluating the current density in (3.18)

using the potential EN = ET . The current density and damage are then used to solve

equation (2.30) subject to the conditions (2.48) and (2.49) in order to determine the

potential. The time loop is created by using the previous value EN to update the

current in (3.18) and the damage in (3.16). At each iteration, the value of EB is

stepped down using the chosen scan rate. We stop Stage III when the potential at

the bottom of the pit reaches the repassivation value EN = ERP ≈ −0.16V . The

following is a step by step implementation for the Stage III model:

1. Choose a value of the free parameter ζ . Use the final values of potential and

current from the end of Stage II as the transition values of potential ET and

current iT . Use iRP = 3.0 × 10−5 A
cm2 and ERP = ET − 0.185V as estimates for

the repassivation values. Determine θ and η using (3.19) and (3.20) and use the

fitting parameters to determine the polarization curve defined in (3.18).
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2. Use the polarization curve and the previous potential EN to determine the

current density iA(EN ). Use it to update the damage using Euler’s Method in

(3.16) with increment dt and to update the z grid.

3. Use the new z grid to determine the potential E(z) by solving equation (2.30)

subject to the boundary conditions (2.48) and (2.49).

4. Determine the concentrations of sodium, chloride, and metal ions by using the

potential in the electroneutraility condition (2.22).

5. For time step n, linearly decrease the bulk potential using the scan rate of

5mV/s and repeat steps (2)-(4).

6. Exit the time loop after the potential at the bottom of the pit EN has been

stepped down to the repassivation value EN = ERP ≈ −0.16 V .

A list of the parameters used in Stage III of the model is given in Table 3.3.

The values for ERP and iRP are chosen to match the data in Srinivasan et al. [16].

The parameter ζ is chosen so that the current iA(E) has a moderately steep slope.
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Table 3.3: Stage III Model Parameters (Baseline)

Variable Name Description Numerical Value Unit

F Faraday’s Constant 9.64853365×104
C

mol

R Gas Constant 8.3144621
J

mol K

T Temperature 2.9815×102 K

EB Bulk Potential 0.510 V

ERP Repassivation Potential (Target) -0.16 V

D Diffusivity 1.357×10−5 cm2

s

MW Molecular Weight of 316 SS 55.85
g

mol

ρ Density of 316 SS 7.92
g

cm3

iRP Repassivation Current Density (Target) 3.0×10−5 A

cm2

Clbulk Chloride Concentration in Bulk 6.0×10−4 mol

cm3

Nabulk Sodium Concentration in Bulk 5.8×10−4 mol

cm3

Cbulk Metal Concentration in Bulk 1.0×10−5 mol

cm3

Csolid Metal Concentration at Solid Interface 0.143
mol

cm3

Csat Concentration of Metal at Saturation Limit 5.18×10−3 mol

cm3

γ Saturation Multiplier 0.6 N/A

ζ Free Parameter for Polarization Curve 10 N/A
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Results

In the Stage I model, we solve equation (2.30) subject to the boundary conditions

(2.31) and (2.32) in MATLAB by using the ode45 solver. We use h(1) = 1.0 µm for

an initial value of the damage and time increment dt = 0.1 seconds to update the

damage profile according to (3.2). After determining the potential E at a given time

step, we then calculate the concentration of iron ions C as well as the concentrations

of sodium and chloride by using the electroneutrality condition (2.22). We choose the

bulk iron and bulk chloride concentrations to be Cbulk = 1.0× 10−5 mol
cm3 and Clbulk =

6.0× 10−4 mol
cm3 , and the bulk sodium concentration is obtained from electroneutrality.

The simulation is run for a total of 17.8 seconds, which is the length of time required

for the concentration to reach 60% of the saturation value Csat = 5.18 × 10−3 mol
cm3 .

Plots of E, C, and concentrations of sodium and chloride all versus pit depth z are

given in Figures 4.1 through 4.8. Figures 4.1 through 4.4 show early time growth

and are plotted for the first 0.3 seconds of the simulation. Note that each time step

corresponds to a plot with varying length. Because a viewing window could not be

chosen so that individual time steps could be distinguished while the damage at the
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end of each time step was also clearly visible, we label the damage for each time step to

clarify the fact that the pit continues growing past the edge of the viewing window.

Note that our chosen viewing window was only able to display a small fraction of

the total damage in each time step, as evident of the fact that the largest value on

our x-axis is 0.01µm Figures 4.5 through 4.8 are plotted over the entire length of

Stage I, and the output is displayed after every 4 time steps (0.4 s). Note that the

y-axis changes slowly in time, which causes each new plot that is displayed to have

substantial overlap with the previous one. To show the progression of the system over

time, the damage is labeled after 4 s, 8 s, 12 s, 16 s and 17.8 s.
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Figure 4.1: Potential E vs pit depth z for Stage I shown for the first 0.3 seconds of
growth.

It is clear from Figure 4.5 that the effective potential at z = 0 is less than

the bulk value EB = 0.510 V . This is because the semi-permeable membrane acts as
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Figure 4.2: Iron concentration C vs pit depth z for Stage I shown for the first 0.3
seconds of growth.

a resistive layer and slows down the flow of the metal ions at the pit cover. Another

observation is that the potential at the pit cover increases slightly in time. According

to Frankel et al. [15], the resistance of a porous pit cover for hemispherical pits was

found to decrease with the inverse square of pit depth. Additionally, as we discussed

in Chapter 1, because the current for hemispherical pits increases with the square of

the radius, the IR drop was found to be approximately constant, leading to a constant

current density. Therefore, our observed result that the potential at the pit mouth

increases in time is inconsistent with a constant IR drop, because our potential at the

pit bottom is shown to decrease in time.

We report the minimum value of the potential at the end of Stage I to be

0.450284 V , which is very close to the target value of the potential that we use
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Figure 4.3: Chloride concentration [Cl−] vs pit depth z for Stage I shown for the first
0.3 seconds of growth.

for the potentiostatic hold at the beginning of Stage II, which is EHold = 0.45 V

as presented on the polarization curve. We also note that the potential appears to

decrease exponentially, but the slope is shallow enough that the graph appears nearly

linear.

As seen in Figure 4.2, i.e., the concentration of iron at the pit cover decreases

slightly in time, and in Figure 4.6 the concentration at the bottom of the pit increases

in time until it reaches the critical saturation level γCsat = 3.108 × 10−3 mol
cm3 . This

buildup of iron at the surface of the interface is due to the fact that the dissolution

rate of the metal is faster than the diffusion rate. We also note that the concentration

increases linearly with pit depth.
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Figure 4.4: Sodium concentration [Na+] vs pit depth z for Stage I shown for the first
0.3 seconds of growth.
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Figure 4.5: Potential E vs pit depth z for Stage I.
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Figure 4.6: Iron concentration C vs pit depth z for Stage I.
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Figure 4.7: Chloride concentration [Cl−] vs pit depth z for Stage I.
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Figure 4.8: Sodium concentration [Na+] vs pit depth z for Stage I.

In Figures 4.3 and 4.7, we see that the chloride concentration follows the

same trend as the iron in Figures 4.2 and 4.6: the concentration increases as the pit

depth increases. This is because the chloride ions enter the pit in order to maintain

electroneutrality within the pit. In Figures 4.4 and 4.8, the sodium concentration fol-

lows an inverse trend to the chloride, also in accordance to electroneutrality. Because

the iron concentration increases as pit depth increases, the sodium concentration de-

creases as pit depth increases because both ions are positively charged. It is reasonable

that both the concentrations of iron and chloride are linear because the sodium con-

centration has a small magnitude and thus its exponential shape has little effect on

the shape of the iron concentration.
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A graph of pit depth z versus total time elapsed for Stage I is shown in

Figure 4.9. The graph is linear, which is consistent with iA being constant, so that

∂h

∂t
is constant. The total damage h at the end of Stage I is 33.52µm.
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Figure 4.9: Pit depth z vs time elapsed t for Stage I.

In the Stage II model, (2.30) is solved subject to the boundary conditions

(2.33) and (2.37). Initially, the potential is held fixed as we update the total damage

in time using time increment dt = 5 seconds according to (2.45). The potential was

held for a total of 310 seconds until the pit reached a depth of 141.93 µm. This

time period is chosen to match the long potentiostatic hold at 0.45 V in Srinivasan

et al. [16] (Figure 3a [16]) and to generate significant pit growth. At each time step

we determine the concentrations of iron, sodium, and chloride by using the updated

damage h in (2.43). Results from Stage I are shown as a solid line while the Stage
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II results are shown as the “dot-dash” pattern. The potential E is plotted against

the pit depth z for the potentiostatic hold in Figure 4.10. Results are displayed after

every 6 time steps (30 s) during this portion of Stage II.

In Figure 4.10, we see that during the time that the potential is held fixed, the

value of E at the pit mouth does not change from the bulk value EB = 0.510 V because

the cover is no longer there. The potential value at the pit bottom Ehold matches the

minimum value of the potential at the end of Stage I, which is E = 0.450284 V . Note

that the change in potential ∆E across the pit, the potential drop, remains constant

at the value ∆E = 0.05923 V as determined by (2.38). This result is consistent with

the result of Laycock [4] that the potential drop is constant in the diffusion controlled

regime.

Next, we lower the bulk potential using a scan rate of 5mV/s for a total of 85.1

seconds until E reaches the transition value ET = 0.0252 V . Because the potential

drop in (2.38) is not a function of the bulk potential, we have ∆E = 0.05923 V as EB

is decreased during the scanning process. Therefore, when we lower the bulk value,

the potential curve is uniformly lowered by the same amount. Using dt = 0.1 seconds

we update the total damage in time according to (2.45) and update the concentration

profiles using electroneutrality. The total damage at the end of Stage II is 159.07

µm, which is the depth required for our diffusion limited current density to reach

iT = 0.5214 A
cm2 . This is fairly close to our target value of 0.50 A

cm2 . At the end of the

scanning procedure, the bulk value has become EB = 0.0845 V and the value at the pit

bottom has reached 0.0252 V , which is very close to the target value of the transition
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potential ET = 0.025 V as presented on the polarization curve. In Figure 4.11, the

potential E is plotted against pit depth z during the linear polarization scan. Results

are displayed after every 50 time steps (5 s).

In Figure 4.12, we display Figures 4.10 and 4.11 together on one plot to show

the overall behavior of the potential during stage II. Note that the potential in Stage

II decreases exponentially much like in Stage I, but has a steeper slope than before

so the graph is no longer close to being linear. We also note that almost all of the pit

growth occurs during the potentiostatic hold.
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Figure 4.10: Potential E versus pit depth z during the portion of Stage II where EB

was held fixed.

A plot of the iron concentration C, and concentrations of sodium and chloride

through the end of Stage II, are shown in Figures 4.13, 4.14, and 4.15.
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Figure 4.11: Potential E versus pit depth z during the portion of Stage II where the
potential is scanned by decreasing EB.
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Figure 4.12: Potential E versus pit depth z through the end of Stage II.
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In Figure 4.13, we note that the concentration of iron at the pit mouth remains

small throughout Stage II because the pit cover is no longer present at the mouth so

there is no longer a resistive layer to slow down passage of the ions. As expected, the

concentration profile is linear and the value at the bottom of the pit remains at 60%

of Csat, which matches the concentration level at the end of Stage I. The slope of the

graph decreases as the pit grows deeper. Note however, that the concentration at the

pit mouth shows a sudden decrease at the beginning of Stage II. This decrease can

be explained by the fact that our model is not able to account for rapid transitions

in time. When we assumed the system was in steady state, we neglected the time

derivative in our asymptotic expansion which was a term of O(ǫ). Therefore, we do

not account for any boundary layers in time. A rapid transition in time occurs in the

system between the end of Stage I and the beginning of Stage II due to the competition

between the dissolution rate and the diffusion rate. In Stage I, the dissolution rate

is faster than the diffusion rate accounting for the buildup of iron at the interface.

In Stage II, the two rates are balanced because the system is under diffusion control.

Therefore, when we rapidly transition from Stage I to Stage II in our model, we

cross a boundary layer in time which leads to our sudden decrease in concentration

at the pit mouth. This is consistent with our neglect of transient behavior in the

potential when we assumed that the pit cover bursts instantaneously between Stages

I and II, and explains the sudden increase in the potential at the pit mouth as seen

in Figure 4.12. Note that a sudden change in concentration at the pit mouth due to
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the boundary layer is also seen in our plots of chloride and sodium in Figures 4.14

and 4.15.
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Figure 4.13: Iron concentration C versus pit depth z through the end of Stage II.

In Figure 4.14 the chloride concentration follows the exact shape of the iron

concentration just as in Stage I. We also note that the change in chloride level from

the mouth to the pit bottom in Stage I is roughly 4.2× 10−3 mol
cm3 which is smaller in

comparison to the change of 5.7× 10−3 mol
cm3 in Stage II.
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Figure 4.14: Chloride concentration [Cl−] versus pit depth z through the end of Stage
II.

In Figure 4.15, the sodium concentration decreases linearly as pit depth in-

creases as in Stage I. However, the concentration at the pit mouth is an order of

magnitude larger due to the decrease in iron concentration, in accordance with elec-

troneutrality.
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Figure 4.15: Sodium concentration [Na+] versus pit depth z through the end of Stage
II.

A graph of pit depth z versus total time elapsed through the end of Stage

II is shown in Figure 4.16. The damage in Stage I was curve fit with the model

h = at where a = 0.0001911, and the damage in Stage II was curve fit with the model

h = at1/2 where a = 0.0006227. Using (2.6) for the linear fit and (2.45) for the power

fit, we calculated the respective values a = 0.0001827 and a = 0.0007744, which were

reasonably close to our curve fit parameters. In each fit, the sum of the squares of

the errors was very low (on the order of 1.0 × 10−5 or lower), which verifies the fact

that the total damage h grows linearly during Stage I, and according with the square

root of time during Stage II.

Srinivasan et al. [16] present a graph of diffusion limited current density

versus inverse pit depth (Figure 7a [16]) where they obtain a value for the slope
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Figure 4.16: Pit depth z versus time t through the end of Stage II.

of m = 0.830 A
m
. When we choose our diffusion coefficient to be D = 1.357×10−5 cm2

s
,

we use (3.10) to obtain the slope m = 0.8294 A
m
, which is very close to the value

stated by Srinivasan et al. Because we desire for our limiting current density at the

end of Stage II to be close to iT = 0.50 A
cm2 , this value of D can be used in (3.8) to

predict the required pit depth as h = 165.88µm, which we compare to the results by

Srinivasan et al. [16] in a later discussion.

In Moayad et al. [13], a plot of i2L versus
1

t
is given in Figure 4 for both 316

SS and 302 SS. If we estimate their slope for 302 SS by simply eyeballing the two

data points (0.001,0.15) and (0.006,0.71), we obtain the value m = 112 A2s
cm4 . When

we use their values D = 1.0 × 10−5 cm2

s
, Csat = 5.866 mol

cm3 and γ = 0.62154 in (3.15)
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we obtain m = 99.781 A2s
cm4 . While these two values show some discrepancy, we note

that a large amount of error can be accounted for in the process of eyeballing and

also in the error bars of the graph in [13]. If we use the upper error bar on the second

data point assuming the value (0.006, 0.75) to recalculate the slope then we obtain

m = 120 A2s
cm4 , while if we use the lower error bar on the second data point assuming

the value (0.006, 0.68) we obtain m = 106 A2s
cm4 . These two calculated values have a

12.39% difference, supporting the fact that (3.15) is accurate as an analytic expression

for the slope. We also note that (3.15) can be approximated as m ≈ 2DF 2CsolidγCsat

by using γCsat >> Cbulk and Csolid >> γCsat. This is consistent with the observation

in Moayad et al., that the slope is proportional to the product DCsat.

By using (3.9) we are able to plot the diffusion limited current density against

pit depth z in Figure 4.17. The current density decreases drastically during the period

that the potential is held constant, and remains fairly constant for the remainder of

Stage II when the potential is scanned. As we have already stated above, the current

density at the end of Stage II was iT = 0.5214 A
cm2 .

In the Stage III model, equation (2.30) is solved subject to the boundary

conditions (2.48) and (2.49). The current in Stage III is defined according to the

polarization curve (3.18), where we choose ζ = 10 and iRP = 3.0 × 10−5 A
cm2 . The

values iT = 0.5214 A
cm2 and ET = 0.0252 V are taken from Stage II. The target value

for ERP is ERP = ET − 0.185 V = −0.1598 V , which is due to the 0.185 V potential

difference between the target values ET = 0.025 V and ERP = −0.160 V . After

(2.30) is solved to determine E, the concentrations of iron, sodium, and chloride are
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Figure 4.17: Diffusion limited current density iL versus pit depth z.

all determined analytically using (2.43). We update the total damage using a time

increment dt = 1 second according to (3.16). At each time step, we lower the bulk

potential using a scan rate of 5mV/s. The total time for Stage III was 49 seconds,

which was the length of time required for the potential to reach ERP = −0.159536 V .

Our numerical approximation to the polarization curve is shown in Fig-

ure 4.18. Plots of E, C, and concentrations of chloride and sodium all plotted against

pit depth z are shown in Figures 4.19, 4.20, 4.21, and 4.22. Results from Stage III

are displayed after every 5 time steps (5 s) and are shown as dotted lines.

According to Figure 4.19, we see that the potential in Stage III continues to

decay exponentially as in Stage I and II. However, the change in potential between

the pit mouth and the pit bottom is not the same for each time step. Because the
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Figure 4.18: The numerical approximation to the polarization curve in Stage III.
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Figure 4.19: Potential E versus pit depth z through the end of Stage III.
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Figure 4.20: Iron concentration C versus pit depth z through the end of Stage III.
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Figure 4.21: Chloride concentration [Cl−] versus pit depth z through the end of Stage
III.
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Figure 4.22: Sodium concentration [Na+] versus pit depth z through the end of Stage
III.

potential at the pit bottom E(z = h) depends upon the bulk value, we note that

E(z = h) does not decrease uniformly in time. This causes there to be a smaller

change in potential from the pit mouth to the pit bottom at the end of Stage III than

there is at the beginning. At the end of Stage III, we have E(z = h) = ERP .

In Figure 4.20 we see that at the beginning of Stage III there is a sharp

decrease in C at the pit bottom in comparison to the end of Stage II. At the beginning

of Stage III, the diffusion rate becomes faster than the dissolution rate of the metal

as the pit begins to repassivate. Thus, when we rapidly transition between the end

of Stage II and the beginning of Stage III, we cross a boundary layer in time which

leads to the sharp decrease in C at the pit bottom. A sudden change in concentration
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at the pit bottom due to the boundary layer is also seen in our plots of chloride and

sodium in Figures 4.21 and 4.22.

The concentration continues to decrease in time as the pit depth increases.

This is due to the fact that as the metal repassivates and the current density drops,

the available chloride that can be used in the reaction at the pit bottom (and thus also

the available iron) also decreases. This is consistent with the graph of the chloride

concentration in Figure 4.21.

In Figure 4.22 we see that the sodium concentration at the pit bottom in Stage

III increases very quickly as pit depth increases, in order to maintain electroneutrality

as the iron and chloride concentrations greatly decrease.

A plot of the pit depth z versus total time elapsed for all three stages of the

model is shown in Figure 4.23, and a zoomed in plot showing only Stage III growth

is shown in Figure 4.24. The total pit depth was 166.36µm. When we compare this

value to the results from Srinivasan et al. in Figure 7a [16], we see that the inverse

depth at the value iT = 0.50 A
cm2 is roughly 0.006 (µm)−1 = 166.66µm, which is close

to our depth value considering that we are simply eyeballing the data point. Both of

these values are close to the pit depth h = 165.88µm that we predicted using (3.8).

We curve fit the damage h to the power law atb in MATLAB using nonlinear

least squares with the function fminsearch. The fit parameters for this case are

a = 0.0006358, b = 0.5352. This value of b is consistent with the fact that the

majority of the pit growth in the model occurs during Stage II, when the damage

grows according to the square root of time. However, the power law model does
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not apply to the end of Stage III because there is an asymptotic slowdown in the

damage evolution as the system approaches repassivation. For the scan rate used in

Figures 4.23 and 4.24, the overall deviation is slight because Stage III has a short

duration. For example, truncating the data at 430 seconds (the end of the early time

growth phase for Stage III) yields b = 0.5366, only a slight difference from the value

b = 0.5352 obtained from using the entire data set. Figure 4.24 clearly shows that

the growth is significantly slower than the power law model with b ≈ 1/2 at the end

of Stage III.

However, for a shorter scan rate, the duration of Stage III increases, so the

asymptotic slowdown in the damage evolution has a more pronounced effect on the

global curve fit. Therefore, it becomes more important to truncate the Stage III data

at the end of the early time growth phase. For example, reducing the Stage III scan

rate from 5mV/s to 0.2mV/s causes Stage III to last for a total of 1181 seconds

and the total time of the simulation to last 1594 seconds. If we choose a cutoff of

t = 900 s, then the value of b for the fit changes from b = 0.5558 to b = 0.5480 which

is a significant difference. Also note that the sum of the squares of the errors (SSE)

for the fit is reduced from 1.964× 10−4 to 4.182× 10−5.

A plot of the current density versus total time elapsed for all three stages of

the model is shown in Figure 4.25. The current density stays constant at iA = 5.0 A
cm2

for the duration of Stage I. At the beginning of Stage II, there is a sudden decrease

in the current density to roughly 2.5 A
cm2 due to the pit cover bursting. For the

remainder of Stage II, the current density steadily decreases as pit depth increases
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Figure 4.23: Pit depth z versus time elapsed t through the end of Stage III. The
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Figure 4.24: A zoomed in plot of Figure 4.23 to show Stage III growth.
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according with (3.9) until it reaches iT = 0.5214 A
cm2 . In Stage III, the current density

continues to decrease until it reaches the repassivation value iRP = 4.44× 10−2 A
cm2 .

A plot of the chloride concentration at the metal interface versus pit depth z

is shown for all three stages in Figure 4.26. We see that the chloride at the interface

grows steadily throughout Stage I due to the increase in pit depth and iron concen-

tration due to dissolution, and then remains constant at saturation throughout Stage

II. Following a sharp decline, the chloride steadily decreases throughout Stage III as

the metal repassivates. This sharp decline is consistent with the decline as shown in

Figure 4.21 due to the fact that transient behavior is neglected between Stages II and

III. We note that this is the same general trend that is displayed in Mankowski et

al. [21] in their plot of chloride concentration versus pit diamater (Figure 1 [21]), with

the exception that Mankowski does not show a sharp decline prior to repassivation.
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Figure 4.25: Current density versus pit depth z through the end of Stage III.
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Figure 4.26: Chloride concentration at the metal interface (z = h) versus pit depth z
through the end of Stage III.

We now describe how changing the scan rate s and the bulk value of potential

EB, and the bulk value of chloride affects the model results.

The scan rate s for Stage III can be used to to control the total damage h.

Using 5mV/s as our baseline scan rate, we recorded the damage for Stage III and the

overall pit damage for the simulation. We then arbitrarily decreased the scan rate and

reran the simulation, recording both the Stage III damage and the overall damage.

This procedure was done until we had obtained results for four different scan rates,

which are displayed in Table 4.1. It is clear from the table that shorter scan rates

produce pits that are deeper and require a longer time to reach repassivation. We

plotted the total damage for Stage III versus the inverse scan rate, and were then able
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to fit the data using a simple linear curve fit h = 3.2103

(

1

s

)

+2.7533. This gives an

easy way to predict the scan rate needed to produce a given pit depth. For example,

if we wish for the damage from Stage III to be h = 500µm, (and hence the total pit

depth is 659.07µm) then our fit gives us the needed scan rate of s = 0.006456mV/s.

Table 4.1: The effect of scan rate s on total pit damage h.

Scan Rate Stage III Damage Total Pit Damage

5mV/s 7.29µm 166.36µm

1mV/s 34.87µm 194.04µm

0.2mV/s 166.94µm 326.01µm

0.1mV/s 321.99µm 481.06µm
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Figure 4.27: Total damage h in Stage III versus inverse scan rate
1

s
and linear curve

fit.

According to Frankel et al. in [15], if the bulk value EB is increased, the

current density iA may also be increased. In our simulation, the value of iA is user

defined based upon an order of magnitude estimate, so it does not increase with

EB. When we increase the bulk value EB, the potential curve for Stage I of the

simulation is also increased. This causes our calculated value of EHold to increase,

which is the potential value at the end of Stage I and the potential that we use for

the potentiostatic hold in Stage II. Note however, that our calculated values for ET

and ERP will not change. Because EHold has increased, it takes a longer amount

of time to scan the potential in Stage II so that E reaches ET , which increases the

overall pit damage. Additionally, our calculated value for iT is decreased, because
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iL is inversely proportional to h through (3.9). For example, increasing the bulk

value from EB = 0.510 V to EB = 1.0 V results in EHold = 0.9402 V , the ending

potential in Stage I. The total time for the simulation increases from 462 seconds to

559 seconds, and the damage increases from 167.27µm to 184.20µm. The transition

value decreases from iT = 0.5214 A
cm2 to iT = 0.4692 A

cm2 We also note that if we

increase EB, our polarization curve will no longer match the curve of Srinivasan et

al. [16] because iL is smaller and the potentiostatic hold in Figure 3a [16] is done

using a larger EHold.

A similar result can be said for decreasing the value of EB. Decreasing EB

causes EHold to decrease, and the time to scan the potential in stage II is decreased,

resulting in the total damage to decrease and iL to increase. For example, if we

decrease the bulk value from EB = 0.510 V to EB = 0.350 V , the total time for

the simulation decreases from 462 seconds to 430 seconds, and the damage decreases

from 166.36µm to 160.22µm. The transition value increases from iT = 0.5214 A
cm2 to

iT = 0.5426 A
cm2 .

Finally, we note that the shape of the polarization curve i(E) is dependent

upon the value of the bulk chloride. While we currently have the ability to determine

how changing Cl−Bulk could affect our results, we need polarization curves for different

bulk chloride concentrations. To our knowledge, the only polarization curve i(E)

for stainless steel that is plotted with clear values of ET and ERP is in the model

by Srinivasan et al. [16]. If more data become available, then we can make a more

extensive study on the effect of Cl−Bulk.
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4.2 Summary of Findings

We now present a summary of our findings. The following is a full list of the assump-

tions that we make in the model:

• Metastable growth in Stage I is ohmic controlled and varies linearly in time.

The current density is constant and large.

• Stable growth in Stage II is diffusion controlled and varies according to the

square root of time.

• Stable growth in Stage III is ohmic controlled and the depth will asymptotically

reach its maximum value at a rate that is slower than the square root of time.

The current density is chosen to be a decreasing function of potential.

• Hydrolysis and other bulk reactions are neglected, assuming all are in equilib-

rium, so we only consider the species Fe2+, Na+ and Cl−.

• We only consider pits with width w and depth h such that w << h so we may

use a thin domain asymptotic expansion and pit growth is unidirectional.

• The solid domain is homogeneous and the concentration of metal ions is a

constant value C = Csolid at all time [12].

• Mass transport can be due to diffusion or electromigration from a potential

gradient; however, advection is neglected.
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• The concentration of ions within the electrolyte is in quasi-steady state. The

term quasi-steady refers to the fact that the rate of diffusion is much faster

compared to the rate of dissolution, however the pit depth h is still a function

of time.

• Electromigration can be neglected in the diffusion controlled regime, so that

each ionic species is a linear function of pit depth.

• A polarization curve is known, including the values for EB, EPit, ET , iT , ERP

and iRP .

• The values for MW and ρ are known for the alloy, as well as the values iA,

Clbulk, Nabulk, Cbulk, CSolid, and Csat.

As long as the assumptions above are true, we have found the following results to

hold:

1. The required damage h to reach a specified current density iA can be predicted

by equating the Stage II growth rate with the growth rate as described by Fara-

day’s Law. As shown in (3.8), the predicted damage h is inversely proportional

to the specified current density iA.

2. The diffusion limiting current density iL is inversely proportional to the damage

h, where the slope is dependent upon the concentration values Cbulk, CSolid, and

Csat, as well as the diffusivity of the metal ions D. This is shown by the results

(3.9) and (3.10).
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3. The square of the diffusion limiting current density i2L is inversely proportional

to the time t, where the slope is dependent upon the concentration values Cbulk,

CSolid, and Csat, as well as the diffusivity of the metal ions D. This is shown by

the results (3.14) and (3.15).

4. We can choose the diffusivity of the metal ions D to match a known slope for

a graph of iL versus
1

h
, or a graph of i2L versus

1

t
.

5. We can approximate the slope of the graph of i2L vs
1

t
by the quantity 2DF 2CSolidγCsat.

6. The potential drop ∆E in the diffusion controlled regime is a constant that

depends upon the bulk values Nabulk and Clbulk as well as the saturation level

of the metal Csat, as shown in (2.38).

7. The damage h can be accurately curve fit to the power law atb if the Stage III

data is truncated at the end of the early time growth phase.

8. The scan rate s for Stage III can be used to control the total damage h. Shorter

scan rates produce pits that are deeper and require a longer time to grow.

9. If the bulk value EB is increased, the calculated EHold is increased, as well as

the overall pit damage and the time required to scan the potential in Stage II.

The calculated transition current density iT is decreased. Similar results hold

if EB is decreased.

Our results (2.38), (3.10) and (3.15), as well as the overall pit depth for the model and

the plot of the chloride concentration at the metal interface were all verified against

79



experimental results. Our analytic expression for the potential drop (2.38) verified

the observation by Laycock [4] that the potential drop in the diffusion controlled

regime was constant. The slope in (3.10) was able to reproduce the value reported by

Srinivasan et al. [16] in Figure 7a [16] and the slope in (3.15) was able to reproduce

the value reported by Moayad et al. [13] in Figure 4 [13]. Our overall pit depth at the

end of Stage III matched the reported pit depth by Srinivasan et al. [16] in Figure

7a [16]. Our plot of the chloride concentration at the metal interface was able to

reproduce the general trend that is displayed in Mankowski et al. [21] in their plot of

chloride concentration versus pit diameter (Figure 1 [21]).

It is also important to note that the scan rate s is able to control the damage

h for a fixed polarization curve. If we had chosen to increase or decrease the length

of the potentiostatic hold in Stage II to alter the pit depth, this would also affect the

calculated value of iT . For example, if we increased the length of the potentiostatic

hold, the pit depth would increase and iT would decrease.

Finally, note that the result number (6) in our findings list has important

implications for the future creation of Markov Models that can predict damage evo-

lution by using input parameters a and b from the growth model h(t) = atb. This is

discussed more when we describe future work in Chapter 5.
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CHAPTER V

FUTURE WORK

5.1 Future Work

The most immediate use for our pit growth model is to incorporate it into existing

Markov Models [22], which stochastically predict damage evolution of a pit based

on different environmental parameters. These next generation Markov Models will

predict damage evolution by using input parameters a and b in the growth model

h(t) = atb. It is currently somewhat known how a and b are affected by environmental

conditions including potential, pH, and chloride and pollutant concentrations as well

as how a and b depend on pH and temperature for common metals [23, 24, 25, 26].

By correlating known field data for the needed environmental conditions with a curve

fit using our power law, we will be able to generate a and b which can then be used

in the Markov Model. Another intended use of the results is to use them for creating

a new 3D stochastic model by building upon the model of Pieter Van der Weeën et

al. [3] which uses cellular automata to simulate pit growth. To improve the model,

the pit initiation stage will be amended to better accomodate for the influence of

spatial variation in potential and chloride concentration. The “diffusion scheme” will

be updated to allow for increased chloride transport into the pit to better account

81



for the effects of electroneutrality. Finally, the pit growth model will be improved to

better account for the influence of pH and temperature on pit depth. This thesis will

be used to help create a set of guidelines for pit growth and as a baseline result to

compare with the results of the cellular automata model.

While our model is able to successfully create accurate power law models for

pit propagation in the form h(t) = atb, this approach is limited by the requirement

of the user to have a substantial amount of data in their posession including the

four defining values of potential EBulk, EPit, ET , and ERP on a polarization curve

i(E) as well as the bulk chloride value Cl−Bulk, the saturation level of metal ions Csat,

and an initial current density iA for production of metastable pits. As more pit

data become available, our model can be verified for additional polarization curves

which we hope can improve its overall accuracy and streamline the model to require

fewer input parameters. There are also many natural ways that our model can be

improved in future research. For example, we could create a two dimensional model

assuming that the width and depth are close to the same order of magnitude so that

we could incorporate more complex geometries, or we could model a more realistic

pit chemistry by incorporating bulk reactions.
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