AN ASSESSMENT OF THE SHORT-TERM RESPONSE OF THE CUYAHOGA RIVER TO THE REMOVAL OF THE LEFEVER DAM, CUYAHOGA FALLS, OHIO

A Thesis

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment of the Requirements for the Degree Master of Science

> Christopher J. Biro December, 2015

AN ASSESSMENT OF THE SHORT-TERM RESPONSE OF THE CUYAHOGA RIVER TO THE REMOVAL OF THE LEFEVER DAM, CUYAHOGA FALLS, OHIO

Christopher J. Biro

Thesis

Approved:

Accepted:

Advisor Dr. John A. Peck Interim Dean of the College Dr. John C. Green

Faculty Reader Dr. LaVerne M. Friberg Dean of the Graduate School Dr. Chand Midha

Faculty Reader Dr. James McManus

Date

Department Chair Dr. James McManus

ABSTRACT

In recent years, the removal of dams from U.S. rivers has become a more frequent method of river restoration. The August 2013 removal of the 4.1-m-tall LeFever Dam in Cuyahoga Falls, Ohio was the fourth dam removed on the middle Cuyahoga River in an attempt to improve water quality. The LeFever Dam removal has also provided an excellent opportunity to study the effects of low head dam removal on the fluvial environment. Previous studies on the middle Cuyahoga River have provided a comprehensive characterization of the former LeFever dam pool and the pre-LeFever removal conditions. Previous studies have also quantified the effect of the 2005 Munroe Falls Dam removal which served as predictive tool for the LeFever Dam removal located ~ 5.5 km downstream. This study has incorporated new findings from 2011 through 2015 to quantify the rate and magnitude of the geomorphic, sedimentologic and hydraulic changes induced by the LeFever Dam removal. These new findings furthered the understanding of the long-term channel adjustments induced by the Munroe Falls Dam removal as well. The six stage channel evolution model of Doyle et al. (2003) was used as the framework for describing the first-order changes brought about by the LeFever Dam removal and the long-term changes caused by the Munroe Falls removal. However, this study has found site-specific dissimilarities in the channel evolution model that have greatly influenced channel morphology. In addition, the former LeFever Dam pool has progressed through channel evolution at a faster rate than the former Munroe Falls Dam pool because the Cuyahoga River has more slope energy near the former LeFever Dam. The presence of large woody debris and the occurrence of high discharge events have

significantly increased the rate of channel erosion in the study reach. Channel coarsening has resulted from both dam removals as well as pronounced degradation of the former LeFever Dam pool sediment and prolonged channel widening upstream of the former Munroe Falls Dam. Based on the river response to the Munroe Falls and LeFever Dam removals, the future conditions within the former LeFever Dam pool have been predicted.

ACKNOWLEDGEMENTS

This thesis research simply could not have been possible without the help of the dedicated individuals who supported me from the very beginning of this endeavor. First, I would like to extend my deepest gratitude to my professor and advisor Dr. John A. Peck. From my undergraduate days through my time as graduate student, he has accepted nothing but my best. I have learned more from him than any instructor in my academic career and without his knowledge, guidance, and patience I would not be where I am today.

I would also like to sincerely thank my committee members Dr. LaVerne M. Friberg and Dr. James McManus for their insights and advice and for helping me compose a quality Master's Thesis. Dr. Friberg was my very first Geology professor and I am very grateful to have worked him during my time at the University of Akron. I would also like to thank Tom Quick for his genius in building the field equipment I utilized and for always being a beacon of positivity and kindness. Elaine Butcher has been there for me since I decided to peruse geology and has always been extremely helpful, patient and hilarious. This department could not function without Tom or Elaine and I thank you both for all you have done for me and for everyone in the Geosciences Department.

I would also like to offer a special thanks to Stephanie Mitchell for her countless hours of field and lab work, friendship and support through times both good and bad. Thank you also to my fellow graduate students Carl Medvid, Charles Spurr, Zack Strong, Natalie Murray, Justin Gilbow, Gina Filliano Kunkel and Paul Krasner for your friendship

V

and academic support. Thank you to Michael Humphreys and the Szalay Family and crew for a great season on the farm.

Finally, I would like to thank my mother Jan and father Mark for giving me the love, support and tools to complete this master's degree long before I knew I was even capable doing it. Thank you also to my brother Mark and sister-in-law Monica for always being there for me. And thank you to my amazing girlfriend Hae Nim Cho. Her unwavering love, support and friendship have been paramount in my success. I will always be grateful to have her in my life and for all she has done to for me. Thank you everyone, I am eternally grateful.

TABLE OF CONTENTS

LIS	LIST OF FIGURES		
LIS	LIST OF TABLES		
CH	IAPTER		
I.	INTRODUCTION		
	1.1 Significance of Dam Removal		
	1.2 Geologic Setting		
	1.3 Study Area7		
	1.4 Objectives		
II.	METHODS		
	2.1 Sedimentology		
	2.2 Geomorphic Profiles		
	2.3 Hydrology		
	2.4 Flow Velocity		
	2.5 Channel Cross-Sectional Area		
	2.5 Cuyahoga River Discharge		
	2.6 Slope of the Cuyahoga River		
	2.7 LeFever Impoundment Delta Survey		
III.	RESULTS41		
	3.1 Sediment Characteristics of the Deep Water Channel		
	3.1.1 Zone 1		

3.1.2 Zone 2	50
2.1.3 Zone 3	50
2.1.4 Zone 4	51
2.1.5 Zone 5	52
3.2 Fluvial Geomorphology	53
3.2.1 Zone 1	54
3.2.2 Zone 2	54
3.2.3 Zone 3	63
3.2.4 Zone 4	68
3.2.5 Zone 5	81
3.3 The LeFever Impoundment Delta	87
3.4 Hydrologic Adjustments	99
3.4.1 Cross Sectional Area and Velocity Changes in Zone 5	99
3.4.2 Changes in River Slope in Zone 5	102
IV. DISCUSSION	
4.1 Changing Energy of the Cuyahoga River	
4.2 Geomorphic and Sediment Response to Dam Removal	114
4.2.1 Long-Term Changes in the former Munroe Falls Dam Pool	114
4.2.2 Geomorphic and Sediment Changes in the former LeFever Dam Pool (Zone 5)	117
4.2.3 Zone 4	127
4.3 The Role of Large Woody Debris (LWD)	130
4.3.1 LWD Related Erosion	130
4.3.2 LWD Related Deposition	132
4.4 High Discharge Events	135
4.4.1 Upstream Changes	137
4.4.2 Downstream Changes	141

4.5 Future Conditions	146
CONCLUSIONS	151
Summary	151
FERENCES	154
PENDICES	158
APPENDIX A. GRAIN SIZE DATA OF SEDIMENT SAMPLES FROM THE DEEP WATER CHANNEL ENVIRONMENT	159
APPENDIX B. LOSS ON IGNITION DATA OF SEDIMENT SAMPLES FROM THE DEEP WATER CHANNEL ENVIRONMENT	252
APPENDIX C. LOCATION MAPS OF GEOMORPHIC TRANSECTS	259
APPENDIX D. SURVEY DATA OF GEOMORPHIC PROFILES	
APPENDIX E. SPATIAL AND GEOMORPHIC DATA OF LEFEVER IPOUNDMENT DELTA SURVEYS	

LIST OF FIGURES

Figure	2	Page
1	Location of the Cuyahoga River and major tributaries, dams and reservoirs within Northeast Ohio	4
2	Photos A and B are the upstream and downstream views of the LeFever Dam pre-removal taken August 8, 2013	6
3	The location of the Cuyahoga River, its watershed and tributaries within Northeast Ohio	
4	Channel evolution model based on the response of two Wisconsin rivers to the removal of low-head dams	10
5	Location of all Cuyahoga River sediment samples collected within the study area in 2003-04, 2006 2008-09, 2010, 2012 and 2014	
6	Location of Cuyahoga River sediment samples collected in 2008-09, 2012, 2013 and 2014	
7	Location of Cuyahoga River sediment samples collected in 2003-04, 2006, 2008-09, 2010, 2012, 2013 and 2014	17
8	Location of Cuyahoga River sediment samples collected in 2003-04, 2006, 2008-09, 2010, 2012, 2013 and 2014	18
9	Location of Cuyahoga River sediment samples collected in 2003-04, 2006, 2008-09, 2010, 2012 and 2014	
10	Location of Cuyahoga River sediment samples collected in 2003-04, 2006, 2008-09, 2010, 2012 and 2014	20
11	Location of all Cuyahoga River transects where geomorphic profiles were measured within the study area	27
12	Geomorphic profile and replicate survey of transect D-8 located 4,023 m upstream of the LeFever Dam, surveyed on May 3, 2015	31
13	Spatial distribution of geomorphic survey points of the LeFever Impoundment Delta located 2,415 m (ULFD)	
14	Raster surface of the LeFever impoundment delta using Natural Neighbors interpolation on August 30, 2013	38

15	Map view of the geomorphology at the head of the former LeFever Dam pool on 8-30-2013	
16	Location of geomorphic transects and 5 Zones boundaries within the Middle Cuyahoga River study reach	
17	Deep channel sediment characteristics pre (closed circles) (Kasper, 2010; Rumschlag, 2007) and post-removal (open squares) (Kasper, 2010) of the former Munroe Falls Dam	46
18	Deep channel sediment characteristics pre (closed circles) (Kasper 2013, Rumschlag, 2007) and post-removal (open squares) (Kasper, 2010) of the former Munroe Falls Dam	47
19	Deep channel sediment characteristics pre (closed circles) and post- removal (open squares) (Kasper, 2010) of the former LeFever Dam	
20	Deep channel sediment characteristics pre (closed circles) and post- removal (open squares) (Kasper, 2010) of the former LeFever Dam	
21	Geomorphic profile of transect U-8 located 10,107 m upstream of the former LeFever Dam, surveyed from March 2006 to August 2014	55
22	Geomorphic profile of the transect at Fish Creek tributary located 9,217 m upstream of the former LeFever Dam, surveyed from May 2004 to August 2014	
23	Geomorphic profile of transect U-4 located 9,204 m upstream of the former LeFever Dam, surveyed from November 2005 to August 2014	58
24	Geomorphic profile of transect U-5 located 7,859 m upstream of the former LeFever Dam, surveyed November 2005 to July 2011	
25	Geomorphic profile of transect U-1 located 7,325 m upstream of the former LeFever Dam, surveyed from April 2004 to August 2014	60
26	Geomorphic profile of transect U-6 located 7,056 m upstream of the former LeFever Dam, surveyed from November 2005 to August 2014	61
27	Geomorphic profile of transect U-2 located 6,476 m upstream of the former LeFever Dam, surveyed from April 2004 to May 2015	
28	Geomorphic profile of transect U-7 located 5,858 m upstream of the former LeFever Dam, surveyed from December 2005 to August 2014	
29	Geomorphic profile of transect U-3 located 5,765 m upstream of the former LeFever Dam, surveyed from April 2004 to August 2014	
30	Geomorphic profile of transect D-3 located 5,554 m upstream of the former LeFever Dam, surveyed from May 2006 to August 2014	

31	Geomorphic profile of transect D-7 located 5,169 m upstream of the former LeFever Dam, surveyed from January 2005 to May 2015	71
32	Geomorphic profile of transect D-4 located 4,916 m upstream of the former LeFever Dam, surveyed from May 2009 to September 2013	
33	Geomorphic profile of transect D-5 located 4,607 m upstream of the former LeFever Dam, surveyed from May 2005 to May 2015	
34	Geomorphic profile of transect D-2 located 4,254 m upstream of the former LeFever Dam, surveyed from January 2005 to May 2015	75
35	Geomorphic profile of transect D-8 located 4,023 m upstream of the former LeFever Dam, surveyed from May 2009 to May 2015	
36	Geomorphic profile of transect D-10 located 3,310 m upstream of the former LeFever Dam, surveyed from May 2009 to December 2014	
37	Geomorphic profile of transect D-14 located 3,146 m upstream of the former LeFever Dam, surveyed from May 2013 to April 2015	
38	Geomorphic profile of transect D-11 located 2.947 m upstream of the former LeFever Dam, surveyed from May 2009 to May 2013	
39	Geomorphic profile of transect D-12 located 2,795 m upstream of the former LeFever Dam, surveyed from May 2009 to April 2015	
40	Geomorphic profile of transect D-15 located 2,216 m upstream of the former LeFever Dam, surveyed from September 2013 to December 2014	
41	Geomorphic profile of transect D-6 located 843 m upstream of the former LeFever Dam, surveyed from December 2008 to April 2015	
42	Geomorphic profile of transect D-13 located 273 m upstream of the former LeFever Dam, surveyed from May 2009 to August 2014	
43	Map view of the geomorphology at the head of the former LeFever Dam pool on 7-8-11	
44	Map view of the geomorphology at the head of the former LeFever Dam pool on 5-17-12	91
45	Map view of the geomorphology at the head of the former LeFever Dam pool on 5-20-2013	
46	Map view of the geomorphology at the head of the former LeFever Dam pool on 8-30-2013	93
47	Map view of the geomorphology at the head of the former LeFever Dam pool on 12-17-13	95

48	Map view of the geomorphology at the head of the former LeFever Dam pool on 3-23-2014	
49	Map view of the geomorphology at the head of the former LeFever Dam pool on 5-23-14	97
50	Map view of the geomorphology at the head of the former LeFever Dam pool on 7-25-14	
51	Map view of the geomorphology at the head of the former LeFever Dam pool on 12-15-14	
52	Map view of the geomorphology at the head of the former LeFever Dam pool on 5-3-15	101
53	Comparison of the pre (left) and post (right) removal geomorphic profiles and cross-sectional areas at transect D-13 located 273 m upstream of the former LeFever	103
54	Comparison of pre (left) and post (right) removal velocity (top) and geomorphic (bottom) profiles measured at transect D-6 located 843 m ULFD on 5-17-12 (pre-removal) and 8-11-14 (post-removal)	
55	Comparison between the pre (left) and post-removal (right) cross- sectional areas within the former LeFever Dam pool and farther upstream	
56	Hjulström diagram showing the relationship between flow velocity and the behavior of different sized sediments in a stream under 1 meter flow depth (modified from Press and Siever, 1986)	113
57	Mean grain size (ϕ) per sampling year of all five zones in the study reach (top)	116
58	Photographs of the former LeFever Dam pool viewed looking upstream ~ 4 mo. post removal	118
59	Geomorphic profile of transect D-6 located 843 m upstream of the former LeFever Dam, surveyed from May 2012 to April 2015	120
60	Photographs of the Cuyahoga River near transect D-13 (273 m ULFD)	
61	Photos of a migrating sand wave just downstream of the Doodlebug Railroad Bridge (1,146 m ULFD) first observed ~ 4 mo. post-LeFever removal on 12-19-13	
62	Photographs of the former LeFever Dam pool from 450-1,146 m (ULFD)	
63	Geomorphic profile of transect D-2 located 4,254 m upstream of the former LeFever Dam, surveyed from January 2005 to May 2015	
64	Photographs of large woody debris (LWD) related erosion at transect U-6 (7,056 m ULFD) in October 2012 (Peck personal communication)	

65	Geomorphic profile of transect D-8 located 4,023 m upstream of the former LeFever Dam, surveyed from September 2013 to March 2014	133
66	Geomorphic profile of transect D-14 located 3,146 m upstream of the former LeFever Dam, surveyed from July 2014 to April 2015	134
67	Stream hydrograph showing the mean daily discharge of the Cuyahoga River recorded at the Old Portage stream gauging station USGS 04206000 (waterdata.usgs.gov)	136
68	Lateral erosion rates per year at transects U1-U8 located 10,107-7,325 m (ULFD)	138
69	Stream hydrograph showing the mean daily discharge from 2004 - 2016 at Old Portage stream gauging station USGS 04206000 (waterdata.usgs.gov)	144
70	Photograph of rotational slump just downstream of transect D-6 (843 m ULFD) taken on November 30, 2014	145
71	Comparison between the geomorphology at transect D-6 (843 m ULFD) (top) and transect U-3 (5,765 m ULFD) (bottom)	147
72	Geomorphic profile of transect D-6 (843 m ULFD) representing the future conditions within the former LeFever Dam pool	149

LIST OF TABLES

Table		Page
1	Geographic coordinates, water depth and upstream distance from the former LeFever Dam of Cuyahoga River sediment samples collected in 2	201221
2	Geographic coordinates, water depth and upstream distance from the former LeFever Dam of Cuyahoga River sediment samples collected on 9-7-2013	
3	Geographic coordinates, water depth and upstream distance from the former LeFever Dam of Cuyahoga River sediment samples collected from 7-25-2014 to 12-15-2014	
4	Survey dates for geomorphic profiles at each transect along the Cuyahoga River study area	28
5	Geographic coordinates and upstream distance from the former LeFever Dam of all geomorphic profiles within the study area	30
6	Cross section, distance, elevation and location of all local reference stakes used for plotting of Cuyahoga River geomorphic profiles	32
7	Mean daily discharge at the Old Portage stream gauging station USGS 04206000 on the days surveys were conducted (waterdata.usgs.gov)	34
8	Average surficial sediment characteristics of the deep water channel environment for each Zone in the study reach	
9	Average surficial sediment characteristics of the deep water channel environment for each Zone in the study reach	
10	Combined survey and flow data used to calculate Cuyahoga River discharge at transect D-6 on 5-17-12	105
11	Combined survey and flow data used to calculate Cuyahoga River discharge at transect D-6 on 8-11-14	
12	Measured and calculated parameters used to calculate the pre and post LeFever Dam (LFD) removal boundary shear stress (τ o) and stream power (Ω) at transects D-13, D-6 and D-12	

13	Dates when the high discharge threshold of 80 m ³ /s was surpassed on the middle Cuyahoga River recorded by the Old Portage stream gauging station USGS 04206000 (waterdata.USGS.gov)	139
14	Rates of downcutting due to floods (Flood Erosion) and the LeFever Dam removal (Non-Flood Erosion) at seven transects in Zones 4 and 5	143

CHAPTER I INTRODUCTION

1.1 Significance of Dam Removal

The construction of dams on U.S. waterways has been prolific over the past two centuries and their presence has influenced the natural course of American rivers and streams in the past and present (Heinz Center, 2002). Dams are of great economic, environmental and historical value and provide many societal benefits. Dams are a vital part of American infrastructure because they are used for generating hydroelectric power, irrigation, flood control; navigation for the shipment of goods, municipal water supplies and recreational activities (American Rivers, 2002). There is no doubt that dams can be invaluable resources and fulfill the basic necessities of many people but their implementation has a profound impact on the rivers they exploit.

Dams can significantly impact river channel morphology, sedimentation and biological systems (Doyle et al., 2003; Peck and Kasper, 2013). Dams increase the upstream water depth, creating an unnatural, low-energy slack water impoundment. Within this impoundment, flow regime, temperature and dissolved oxygen levels are altered; often negatively affecting aquatic life (Burroughs et al., 2009; Csiki and Rhoads, 2010). Dams impede the natural flow of rivers and trap sediment, nutrients, and pollutants (Bednarek, 2001; Stanley and Doyle, 2002; Doyle et al., 2005; Green et al., 2013). Dams also block the movement of migratory taxa and cause degradation of downstream sediments. Many of the dams occupying waterways today were built in the early 1900s and are reaching or have exceeded their life expectancy of ~ 50 years (American Rivers and Trout Unlimited, 2002; Heinz Center, 2002). Many of these dams are no longer needed for their intended purposes and have become obsolete. For this reason, dams are abandoned and left to deteriorate over time; giving rise to serious safety risks for downstream communities of both humans and wildlife (American Rivers and Trout Unlimited, 2002). In many cases, complete removal of the weakened structures is more cost effective than making the necessary repairs. In light of these negative impacts on the fluvial environment and hazard potential; dam removal is now viewed as a viable method of river restoration (ICF, 2005).

In recent years, the removal of manmade dams from U.S. rivers has become a more frequent method of river restoration (Doyle et al., 2002; Csiki and Rhoads, 2013). There are nearly 87,000 (NID, 2013) dams greater than 25 feet tall and potentially a total of ~ two million dams (Heinz Center, 2002) including the smallest of structures nationwide. 1,185 dams have been removed for various reasons to date; 72 of which were removed in 2014 alone (American Rivers, 2014). With the multitude of dams in the U.S and the growing trend to remove them, it is important to understand how a river system will adjust and equilibrate once a dam is removed. Doyle et al., (2003) developed a six stage, channel evolution model based on two small dam removals in Wisconsin to describe how a river system equilibrates in response to dam removal (base level lowering) (Doyle et al., 2002).

The August 2013 removal of the LeFever Dam from the Cuyahoga River in Cuyahoga Falls, Ohio provided an excellent opportunity to study the effects of dam removal on the fluvial environment. The pre-removal hydrologic, geomorphic and sedimentological conditions upstream of the LeFever dam have been extensively studied by Rumschlag and Peck (2007), Kasper (2010) and Peck and Kasper (2013). The objective of this study

is to quantify the rate and magnitude of change induced by the removal of the LeFever Dam. This objective was addressed by conducting repeated field surveys to measure stream flow, geomorphic profiles and channel floor sediment characteristics. The channel evolution model of Doyle et al. (2003) describes the first-order hydrologic, geomorphic, and sedimentologic response of the river to the removal of the LeFever Dam. However, this study has found some site specific dissimilarities with the model. This study addresses the physical response of the river to dam removal. The results of this study can be of benefit to biologic studies because channel sediment serves as the habitat for benthic communities. In addition, the results of this study can be applied to other lowhead dam removal projects on streams similar to the Cuyahoga River.

1.2 Geologic Setting

The Cuyahoga River is located in northeast Ohio (Figure 1). The river begins in Geauga County, takes a U-shaped course for nearly 160 kilometers, and discharges into Lake Erie. The Cuyahoga River watershed is ~1,300 km² and contains many different land use types ranging from highly industrial to rural land uses (OEPA, 2003; Peck and Kasper, 2013). Northeast Ohio has been subject to several glacial advances and retreats during the Pleistocene epoch (Szabo et al., 2013) The Cuyahoga River flows through a complex, interlobate zone where ice from the Erie Lobe was divided into three, Late Wisconsinan glacial lobes (Szabo and Ryan, 1981). The Cuyahoga, Grand River and Killbuck glacial lobes were topographically controlled by the resistant Pennsylvanian sandstones of the Allegheny Plateau. As the late Wisconsinan Hiram ice retreated, a northward drainage direction was established due to the regional slope of the Cuyahoga lowland (Szabo, 1986). The ancestral Cuyahoga River migrated southward by headward erosion, dissecting major morainic complexes and capturing the southward draining,

Figure 1. Location of the Cuyahoga River and major tributaries, dams and reservoirs within Northeast Ohio. The study area spans the reach from the LeFever Dam in Cuyahoga Falls to the reach upstream of the Munroe Falls Dam in Munroe Falls, OH along the Middle Cuyahoga River (USGS and Summit County GIS databases).

more mature, middle and upper reaches of the Cuyahoga River (Szabo, 1986). Glacial deposits consist of tills, lacustrine and outwash sediments (Szabo, 1986). These glacial deposits range in thicknesses from a few meters to greater than 60 m (Szabo and Ryan, 1981). The dominant soils of the Cuyahoga River watershed are the Mahoning, Canfield, Rittman, and Chili soils. They are generally derived from till and lacustrine deposits and are moderately to highly erodible (ODNR, 2002; OEPA 2003). The outwash sands and gravels are highly permeable and provide a valuable groundwater resource (ODNR, 2002).

Within the middle Cuyahoga River, near the vicinity of the former LeFever Dam, the Cuyahoga River flows directly on Pennsylvanian through Mississippian-aged siliciclastic sedimentary rocks. Where the river flows over more resistant sandstone beds of the Pennsylvanian Sharon Formation and Mississippian Cuyahoga Group, rapids and waterfalls are present. It was the waterpower of these falls that lead to the development and establishment of the city of Cuyahoga Falls and the construction of dams on the Cuyahoga River (Raub, 1984).

Upstream of the former LeFever Dam there are abundant exposures of the Sharon Formation composed of quartz arenite beds with minor quartzose conglomerate interbeds. The exposed bedrock is present as near-vertical cliffs on river left downstream of Waterworks Park and on both sides of the river downstream of the Doodlebug railroad bridge (Figure 2). At Waterworks Park, the Cuyahoga River dissects the north-south trending buried valley of Mud Brook and flows over the Wisconsinan sands and gravels of the valley fill (Szabo et al., 2013). Along this river reach, the absence of the Sharon Formation on the channel margins marks an unconfined boundary of the river, leading to an increased sinuosity of the meander bends. Other unconsolidated glacial sediment and soils comprise the banks of the former LeFever Dam impoundment where the Sharon

5

Figure 2. Photos A and B are the upstream and downstream views of the LeFever Dam pre-removal taken August 8, 2013. Photos C and D (cuyahogafalls.ohio.com) are the upstream and downstream views of the LeFever Dam site post-removal. Photo C was taken August 24, 2013 and photo D is was taken in the winter of 2013/2014.

Formation is absent and in areas outside the limits of the buried valley. These banks of sediment and soil are stabilized by the growth of well-established vegetation.

1.3 Study Area

The study area encompasses a 10.6 km stretch of the middle Cuyahoga River which spans Portage and Summit counties in northeastern Ohio (Figure 3). The boundaries of the study reach extend 4.5 km upstream of the Former Munroe Falls Dam down to the former LeFever Dam. The LeFever Dam (also known as the Powerhouse Dam) was 4.1 m tall, 30.5 m wide and once stood at river kilometer (RK) 74.5 (HDC, 2011) (Figures 1,2 and 3). The structure was a poured-concrete, curved weir dam, supported by concrete abutments on both sides (HDC, 2011). The dam was built in 1914 to replace a timber dam located just upstream that had been destroyed in the flood of 1913 (Raub, 1984). The LeFever Dam supplied hydroelectric power to the Falls Hollow Staybolt Company until 1953 when the company went out of business (HDC, 2011). Since then, the dam was no longer needed by industry; however, the dam retained structural integrity (HDC, 2011).

Even though the LeFever Dam posed no imminent social or economic risks, it was negatively affecting water quality and wildlife communities (OEPA, 2007). The low velocity impoundment extended ~2.4 km upstream of the dam and contained more than 52,000 m³ of sediment (Kasper, 2010; Peck and Kasper, 2013). The dam pool contained 1-3 m of fine-grained sand and mud in the shallow water margins and 0.5-1 m of coarser sand and gravel in the thalweg (Kasper, 2010). The impounded sediment contained elevated concentrations of the anthropogenic metals Cr, Pb, Cu and Zn (Kasper, 2010; Peck and Kasper, 2013).

The OEPA Environmental Assessment (2011) of the lower Cuyahoga River and OEPA (2007) biological surveys conducted in the vicinity of the former LeFever Dam

Figure 3. The location of the Cuyahoga River, its watershed and tributaries within Northeast Ohio. The watershed spans six counties. The inset map shows the middle Cuyahoga River within the study area and the location of the former LeFever (LF) and Munroe Falls (MF) Dams. Flow is from east to west.

concluded that water quality, and fish and macroinvertebrate health standards were not met in accordance with the 2003 Total Maximum Daily Load (TMDL) report. To improve water quality and the health of fish and macroinvertebrate communities, the City of Cuyahoga Falls and the Northeast Ohio Regional Sewer District (NEORSD) were funded by the Ohio Water Pollution Control Loan Fund (OWPCLF) to remove the LeFever Dam between August 12 and 19, 2013 (Figure 2). In addition, the low-head Sheraton Dam, located further downstream, was removed between July 30 and August 7, 2013. These dams were the third and fourth dams to be removed from the Cuyahoga River in the past 9 years (OEPA, 2011). The bypass of the Kent Dam in 2004 and the removal of the Munroe Falls Dam in 2005 successfully improved water quality and habitat conditions upstream of those dams (OEPA, 2011).

Based on studies of the removal of two low-head dams in Wisconsin, a channel evolution model describing the river response to dam removal has been developed by Doyle et al. (2003) (Figure 4). This model describes the geomorphic change in six sequential stages (A to F) resulting from a lowered base level, instantaneous increase in slope and decrease in water cross sectional area. The model also incorporates grain size and cohesion of the impoundment sediment because these factors can control the rate and magnitude of channel adjustment (Doyle et al., 2005). The stages of channel evolution are as follows:

- Stage A: Pre-Removal The channel upstream of the dam is submerged under the low velocity and low energy dam pool.
- Stage B: Lowered water surface The dam has been breached and causes a rapid decrease in water level. The drop in water level increases the slope of the river which increases the boundary shear stress. The decrease in water area results in an increase in flow velocity as expressed by the continuity equation; discharge equals the flow velocity multiplied by the cross sectional area of water in the

Figure 4. Channel evolution model of Stanley and Doyle (2003) based on the response of two Wisconsin rivers to the removal of low-head dams. The lower illustration shows the corresponding change along the longitudinal profile (Stanley and Doyle, 2003).

channel. Increased flow velocity and boundary shear stress initiates the first stage of geomorphic change within the channel itself (Stanley and Doyle, 2002).

- Stage C: Degradation Due to the increased energy of the free flowing river, the channel erodes vertically into the impoundment sediment to the depth of the pre-dam substrate. This vertical erosion creates a deeply incised channel. The upstream end of the incision is called a headcut or knick point which migrates upstream by headward erosion. The rate of headcut migration controls the rate of overall change throughout the reservoir. Vertical incision occurs almost immediately after the dam is removed so Stage C may occur while Stage B dewatering is progressing (Stanley and Doyle, 2002).
- Stage D: Degradation and widening Prolonged incision produces over steepened banks, particularly in impoundments consisting of fine-grained cohesive sediments. These banks become unstable and are prone to mass wasting. Stage D is characterized by channel widening due to slumping of the steep banks. As these banks erode, the sediment is transported downstream, while upstream sediments begin to move through the newly formed, high energy channel. As upstream sediment and eroded bank material are deposited within the impoundment, Stage E aggradation begins.
- Stage E: Aggradation and widening Stage E is characterized by sediment deposition within the newly formed channel. During this stage, new flood plains are established and significant, non-seasonal erosion events have stopped.
- Stage F: Quasi-equilibrium Major geomorphic adjustments within the impoundment no longer occur due to bank stabilization from the growth of riparian vegetation (Stanley and Doyle, 2002). The channel form is now stabilized within the former impoundment and the free flowing river reach has reached a state of near-equilibrium.

The degree and rate to which a stream progresses through these six stages depends largely on the local geologic and hydrologic conditions of the dammed river reach and associated impoundment (Evans, 1994; Stanley and Doyle, 2002). The response of the middle Cuyahoga River to the 2005 removal of the Munroe Falls Dam has been well documented and can be used to predict the response of the river to the removal of the LeFever Dam (Rumschlag 2007; Rumschlag and Peck 2007; Kasper, 2010; Peck and Kasper, 2013). Incision to the pre-dam substrate (Stage C) occurred within one month after the removal of the Munroe Falls Dam and lateral erosion (Stage D) continued for nearly three years after removal (Kasper, 2010). Stage E was reached downstream at Water Works Park within ~2.5 years post-removal. A similar sequence of channel evolution is expected within the former LeFever Dam impoundment.

1.4 Objectives

Rumschlag and Peck (2007), Kasper (2010) and Peck and Kasper (2013) extensively studied the hydrology, sedimentology and geomorphology of the LeFever Dam pool and the immediate upstream reach. Their work provides a quantitative characterization of the pre-removal conditions within the LeFever Dam pool.

The objective of this study is to quantify the rate and magnitude of hydrologic, sedimentologic and geomorphic change within the former LeFever Dam pool in response to the removal of the LeFever Dam. It is hypothesized that the channel evolution model of Doyle et al. (2003) will predict the first-order sequence of hydrologic, sedimentologic and geomorphic changes to occur within the former LeFever Dam pool. It is also hypothesized that the hydrologic, sedimentologic and geomorphic changes to the former LeFever Dam pool will occur at faster rates than within the former Munroe Falls Dam pool because the slope of the Cuyahoga River is greater near the former LeFever Dam pool.

CHAPTER II METHODS

2.1 Sedimentology

To assess the changes in channel floor sedimentation, transport and erosion, sediment samples were collected from upstream of the former Munroe Falls Dam to downstream to the former LeFever Dam pool. Sites previously sampled between 2003 and 2010 by Peck et. al. (2007), Rumschlag (2007), Rumschlag and Peck (2007), Kasper (2010) and Peck and Kasper (2013) were resampled to assess the sedimentologic changes resulting from the LeFever Dam Removal. By resampling this stretch of the middle Cuyahoga River, pre and post-removal changes in sediment characteristics resulting from the Munroe Falls and LeFever Dam removals can be quantified.

The uppermost 1 cm of channel floor sediment was collected from the deep water channel using a pole-mounted scoop. The geographic coordinates of each sample were recorded using a hand held GPS. The GIS data from the previous years of sampling were included in the new sample location maps so that data coverage through time could be assessed (Figures 5-10; Tables 1-3). Water depth at each location was measured with a meter stick. Sampling took place in the summer of 2012, the fall of 2013 and the summer and winter of 2014. The grain size of each sample was visually examined in the field and the samples were placed in labeled plastic bags. These samples were then refrigerated until grain size analysis and loss-on-ignition were performed.

Figure 7. Location of Cuyahoga River sediment samples collected in 2003-04, 2006, 2008-09, 2010, 2012, 2013 and 2014. See inset box B on Figure 5 for the location within the study area. Water boundaries were obtained from Summit County Geographic Information Services (SCGIS) et al. (2000).

inset box C on Figure 5 for the location within the study area. Water boundaries were obtained from Summit County Geographic Figure 8. Location of Cuyahoga River sediment samples collected in 2003-04, 2006, 2008-09, 2010, 2012, 2013 and 2014. See Information Services (SCGIS) et al. (2000).

		<u>sea nivel se</u>	unitent se	unpies com	
Sample ID	Latitude	Longitude	Water Depth (m)	Distance from LeFever	Comments
			. ,	(m)	
CR12-G1	41.1431	-81.4417	-	5764	Gravel
CR12-G2	41.1432	-81.4417	0.89	5762	Sand
CR12-G3	41.1435	-81.4425	-	5682	Pebbly sand
CR12-G4	41.1441	-81.4443	-	5523	Gravel
CR12-G5	41.1441	-81.4444	0.56	5509	Sand with pebbles
CR12-G6	41.1443	-81.4462	1.18	5380	Sand with gravel
CR12-G7	41.1458	-81.4472	0.69	5198	Sand
CR12-G8	41.1471	-81.4485	1.15	5008	Sand with granules
CR12-G9	41.1479	-81.4495	0.56	4893	Sand with granules
CR12-G10	41.1484	-81.4512	0.83	4739	Sand with granules
CR12-G11	41.1486	-81.4528	1.3	4603	Sand
CR12-G12	41.1474	-81.4562	1.08	4071	Sand
CR12-G13	41.1460	-81.4557	0.76	3908	Sand
CR12-G14	41.1457	-81.4573	0.86	3719	Sand
CR12-G15	41.1461	-81.4591	1.32	3453	Coarse sand
CR12-G16	41.1456	-81.4590	0.41	3398	Sand
CR12-G17	41.1463	-81.4624	1.14	2887	Sand
CR12-G18	41.1459	-81.4618	0.14	2962	Sand
CR12-G19	41.1468	-81.4628	0.76	2831	Sand
CR12-G20	41.1484	-81.4654	0.76	2546	Sand
CR12-G21	41.1486	-81.4674	2.7	2372	Gravel, boulders on bedrock
CR12-G22	41.1478	-81.4686	1.55	2248	Boulders, gravel on bedrock
CR12-G23	41.1465	-81.4706	1.9	2023	Mud
CR12-G24	41.1453	-81.4725	2.48	1818	Sand and leaves
CR12-G25	41.1447	-81.4737	2.75	1687	Sand
CR12-G26	41.1428	-81.4750	1.3	1455	Sand
CR12-G27	41.1419	-81.4758	1.65	726	Mud
CR12-G28	41.1410	-81.4768	2.04	603	Mud
CR12-G29	41.1382	-81.3900	0.764	10719	Mud
CR12-G30	41.1381	-81.3913	1.146	10587	Sand, gravel with shells
CR12-G31	41.1393	-81.3918	1.35	10443	Sand and pebbles
CR12-G32	41.1400	-81.3918	0.81	10401	Sand gravel with shells
CR12-G33	41.1397	-81.3951	1.35	10130	Sand, gravel with shells
CR12-G34	41 1397	-81 3969	1 35	9980	Sand and pebbles
CR12-G35	41 1393	-81 4024	0.81	9491	No sample cobbles-boulders
CR12-G36	41 1388	-81 4031	0.81	9411	Boulders with gravely bars
CR12-G37	41.1380	-83.4031	0.81	9235	Sand to gravel with shells

Table 1. Geographic coordinates, water depth and upstream distance from the former LeFever Dam of Cuyahoga River sediment samples collected in 2012.

Sample ID	Latitude	Longitude	Water Depth (m)	Distance from LeFever (m)	Comments
CR12-G38	41.1374	-83.4068	0.81	9043	Sand, gravel with shells
CR12	41.1381	-81.4159	0.54	8252	No sample, all cobbles
CR12-G39	41.1372	-81.4081	0.68	8952	Sand and granules
CR12-G40	41.1380	-81.4104	0.58	8736	Gravel
CR12-G41	41.1385	-81.4126	0.84	8537	Sand, pebbles with shells
CR12	41.1382	-81.4145	0.37	8367	Cobbles
CR12-G42	41.1381	-81.4157	0.1	8267	Gravel with shells
CR12	41.1376	-81.4175	0.58	8102	Gravel and cobbles
CR12-G43	41.1365	-81.4189	0.47	7934	Sand and gravel
CR12-G44	41.1359	-81.4198	0.68	7831	Sand and gravel
CR12-G45	41.1360	-81.4219	0.3	7658	Sand and gravel
CR12-G46	41.1470	-81.4242	0.42	7473	Sand with pebbles
CR12-G47	41.1373	-81.4286	0.77	7070	Sand, gravel with shells
CR12-G48	41.1381	-81.4312	0.53	6839	Sand
CR12-G49	41.1392	-81.4336	0.58	6599	Sand and pebbles
CR12-G50	41.1401	-81.4343	0.78	6489	Sand to boulders on bedrock
CR12-G51	41.1420	-81.4378	0.22	6116	Sand, gravel with shells

Table 1. Geographic coordinates, water depth and upstream distance from the former LeFever Dam of Cuyahoga River sediment samples collected in 2012 (Continued).

	or Cuyullo	<u>54 101 500</u>	innent su		
Sample ID	Latitude	Longitude	Water Depth (m)	Distance from LeFever (m)	Comments
CR13-G1	41.14317	-81.44177	0.65	5150	Sand with pebbles
CR13-G2	41.14417	-81.44453	0.79	4887	Sand with pebbles
CR13-G3	41.14485	-81.44640	0.84	4707	Sand, pebbles with shells
CR13-G4	41.14603	-81.44753	0.28	4547	Sand and granules
CR13-G5	41.14778	-81.44928	1.2	4305	Sand to pebbles
CR13-G6	41.14845	-81.45192	0.54	4069	Sand, granules with shells
CR13-G7	41.14952	-81.46048	0.45	3742	Sand
CR13-G8	41.14708	-81.45637	0.52	3430	Coarse sand and granules
CR13-G9	41.14537	-81.45872	0.6	2751	Sand
CR13-G10	41.14642	-81.46168	0.24	2337	Sand
CR13-G11	41.14560	-81.46168	0.4	2378	Small dunes.
CR13-G12	41.14780	-81.46447	0.48	2039	Coarse sand and granules
CR13-G13	41.14792	-81.46847	0.36	1655	Sand
CR13-G14	41.14642	-81.47067	0.55	1406	Little sand, no bed forms.
CR13-G15	41.14457	-81.47368	0.65	1076	Mud, sand with some leaves
CR13-G16	41.14382	-81.47453	0	964	Mud

Table 2. Geographic coordinates, water depth and upstream distance from the former LeFever Dam of Cuyahoga River sediment samples collected on 9-7-2013.

Sample ID	Latitude	Longitude	Water Depth (m)	Distance from LeFever (m)	Comments
CR14-G1	41.14227	-81.43825	0.5	5466	Sand, pebbles with shells
CR14-G2	41.14220	-81.43818	0.5	5473	Sand, gravel with shells
CR14-G3	41.14313	-81.44178	0.56	5154	Sand and pebbles
CR14-G4	41.14412	-81.44440	0.54	4907	Sand and gravel
CR14-G5	41.14427	-81.44525	0.78	4831	Sand with cobbles
CR14-G6	41.14587	-81.44725	0.42	4588	Sand to pebbles with shells
CR14-G7	41.14795	-81.44985	0.76	4262	Sand and granules
CR14-G8	41.14737	-81.45638	0.57	3473	Sand and 2.5-D ripples
CR14-G9	41.14438	-81.45992	0.5	2582	Sand, gravel with leaves
CR14-G10	41.14578	-81.46168	0.42	2366	Sand
CR14-G11	41.14818	-81.46520	0.38	1957	Sand
CR14	41.14742	-81.46907	0.2	1581	Bedrock
CR14-G12	41.14637	-81.47080	0.28	1391	Sandy granules
CR14-G13	41.14483	-81.47350	1.08	1106	Sand
CR14-G14	41.14282	-81.47510	0	847	Sand, gravel and mud
CR14-G15	41.14252	-81.47527	0.91	811	Sand and gravel
CR14-G16	41.13818	-81.39002	0.72	10104	Sand to fine cobbles
CR14-G17	41.13812	-81.39145	0.96	9969	Cobbles and bigger
CR14-G18	41.13922	-81.39180	0.84	9854	Sand with pebbles and shells
CR14-G19	41.14000	-81.39263	0.72	9738	All cobbles
CR14-G20	41.13962	-81.39557	0.81	9486	Sand to fine cobbles
CR14-G21	41.13980	-81.39745	0.79	9319	Sand and pebbles
CR14-G22	41.14002	-81.39887	0.54	9199	Sand to fine cobbles
CR14-G23	41.14007	-81.40062	0.6	9056	Coarse with sand inbetween
CR14-G24	41.13907	-81.40268	0.61	8849	Sand with pebbles and mud
CR14-G25	41.13828	-81.40420	0.8	8700	Sand
CR14-G26	41.13785	-81.40545	0.6	8584	Cobbles and boulders
CR14-G27	41.13740	-81.40703	0.78	8440	Gravel with sand
CR14-G28	41.13750	-81.40943	0.88	8229	Gravel on bedrock.
CR14-G29	41.13865	-81.41182	0.91	7997	Sand to gravel
CR14-G30	41.13833	-81.41462	0.48	7755	Cobbles
CR14-G31	41.13802	-81.41668	0.69	7581	Cobbles and fines inbetween
CR14-G32	41.13652	-81.41892	0.59	7331	Sand to fine cobbles, shells
CR14-G33	41.13578	-81.41993	0.8	7213	Gravel with sand and shells
CR14-G34	41.13597	-81.42175	0.41	7059	Fine cobbles
CR14-G35	41.13652	-81.42470	0.53	6804	Sand, mud, Macrophytes

Table 3. Geographic coordinates, water depth and upstream distance from the former LeFever Dam of Cuyahoga River sediment samples collected from 7-25-2014 to 12-15-2014.

Sample ID	Latitude	Longitude	Water Depth (m)	Distance from LeFever (m)	Comments
CR14-G36	41.13722	-81.42840	1.01	6480	Sand and gravel
CR14-G37	41.13793	-81.43103	0.64	6246	Cobbles and big boulder
CR14-G38	41.13925	-81.43363	0.74	5984	Red pebbley sand on bedrock
CR14-G39	41.14360	-81.44252	0.5	5076	Sand to gravel
CR14-G40	41.14562	-81.44702	0.63	4622	Sand to gravel with shells
CR14-G41	41.14727	-81.44858	0.66	4393	Sand, granules with shells
CR14-G42	41.14850	-81.45198	0.54	4073	Sand, gravel with shells
CR14-G43	41.14870	-81.45307	0.96	3976	Sand to pebbles with shells
CR14-G44	41.14963	-81.45458	1.27	3819	Cobbles and sand
CR14-G45	41.14772	-81.45625	0.84	3513	Sand, granules with shells
CR14-G46	41.14562	-81.45708	0.6	3139	Sand and gravel
CR14-G47	41.14573	-81.45742	-	3108	Gravel with sand
CR14-G48	41.14552	-81.45878	0.56	2774	Sand to pebbles with shells
CR14-G49	41.14200	-81.43785	0.56	5507	Sand to fine cobbles
CR14-G50	41.14318	-81.44163	0.84	5162	Sand with gravel
CR14-G51	41.14358	-81.44258	0.74	5070	Sand with gravel
CR14-G52	41.14417	-81.44447	0.76	4902	Sand to pebbles
CR14-G53	41.14425	-81.44530	1.18	4829	All cobbles
CR14-G54	41.14528	-81.44667	1.08	4667	Sand to pebbles
CR14-G55	41.14615	-81.44763	0.56	4540	Sand, pebbles with shells
CR14-G56	41.14778	-81.44968	1.1	4281	Sand, granules with shells
CR14-G57	41.14840	-81.45145	0.94	4118	Sand, granules with shells
CR14-G58	41.14865	-81.45298	1.38	3985	Sand, coarse pebbles, shells
CR14-G59	41.14958	-81.45438	0.96	3834	Sand with leaves and shells
CR14-G60	41.14723	-81.45630	0.71	3458	Sand and granules
CR14-G61	41.14565	-81.45715	0.42	3132	Sand and pebbles
CR14-G62	41.14560	-81.45877	0.72	2778	Coarse sand
CR14-G63	41.14435	-81.45983	-	2590	Gravel
CR14-G64	41.14582	-81.46188	0.62	2356	Sand and gravel
CR14-G65	41.14737	-81.46400	0.71	2095	Sand, granules with shells
CR14-G66	41.14662	-81.47015	0.9	1457	Little sand on bedrock
CR14-G67	41.14410	-81.47400	0.74	1016	Sand and granules
CR14-G68	41.14252	-81.47532	0.97	809	Coarse sand

Table 3. Geographic coordinates, water depth and upstream distance from the former LeFever Dam of Cuyahoga River sediment samples collected from 7-25-2014 to 12-15-2014 (Continued).

Sediment grain size was measured following the methodology of Folk (1980). Varying amounts of each sediment sample were used for analysis based on the sample grain size; 45 g for wet mud, 90 g for wet sand and 150 g for pebbly samples. Each sample then received six 10 ml treatments of 30% hydrogen peroxide to oxidize the organic matter in the sediment. After the six treatments when effervescence was minimal, the samples were air-dried at room temperature to obtain the starting weight for grain size analysis. Cobble samples were air-dried at room temperature and did not receive any hydrogen peroxide treatments because any organic matter attached to the cobble contributes a negligible amount of mass.

Sandy and gravely samples were sieved at half-phi intervals from 4 ϕ to -5.5 ϕ using a Tyler Rotap. The long, intermediate and short axes of clasts coarser than -5.5 ϕ were measured with a ruler, weighed and the ϕ size was calculated. The statistical mean, median, sorting and skewness as well as the percentages of sand, gravel and mud were calculated using the template made available by Rumschlag (2007) (Appendix A). Muddy samples were measured by settling using the pipette method of Folk (1980). Representative sand and mud samples were measured in duplicate to assess reproducibility.

Sediment wet and dry bulk density and organic content were measured by Dean's (1974) method of loss on ignition (Appendix B). Approximately 10% of the samples were measured in replicate.

2.2 Geomorphic Profiles

To measure the changes in channel morphology, Cuyahoga River transects previously established by Rumschlag (2007), Rumschlag and Peck (2007), Kasper (2010) and Peck and Kasper (2013) were resurveyed ~4 times per year (Figure 11, Table 4). Two new

ect D-13 is closest to	nt Delta. The survey	
noga River study area. Trans	its the LeFever Impoundme	isured on that date.
h transect along the Cuyah	he study area. L-1 represer	es that the profile was mea
eomorphic profiles at eac	at the upstream limit of the	y season. The "X" indicat
Table 4. Survey dates for g	he former dam and U-8 is	lates have been grouped by

Surveys Di3 De6 Di15 Le1 Di21 Di3 Di3 U-1 U-4 FC U-3 30-Aug-13 - - ×	-																			
Surveys Di3 Di4 Di7 Di3 U-7 U-1		U-8	ı	ı	ı	I	ı	ı	ı	ı	ı	ı	ı	Х	I	ı	ı	ı	ı	ı
Surveys D-13 D-14 D-12 D-14 D-15 U-1 D-12 U-4 U-1 U-4 30-Aug-13 - - X		FC	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	X	ı	ı	ı	ı	ı	ı
Surveys D-13 D-6 D-13 D-14 D-10 D-2 D-8 D-7 D-3 U-7 U-7 U-6 U-1 30-Aug-13 - - × </td <td></td> <td>U-4</td> <td>·</td> <td>ı</td> <td></td> <td>ı</td> <td>ı</td> <td>·</td> <td>·</td> <td></td> <td>·</td> <td>·</td> <td></td> <td>X</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>·</td> <td>ŀ</td> <td>X</td>		U-4	·	ı		ı	ı	·	·		·	·		X	ı	ı	ı	·	ŀ	X
Surveys D-13 D-6 D-15 L-1 D-12 D-14 D-10 D-2 D-8 D-5 D-4 D-7 U-2 U-6 D-3 U-7 U-7 U-7 U-6 D-3 U-7 U-7 <t< td=""><td></td><td>U-1</td><td>·</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>·</td><td>X</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td></t<>		U-1	·	ı	ı	ı	ı	ı	ı	ı	ı	ı	·	X	ı	ı	ı	ı	ı	ı
Surveys D-13 D-6 D-15 L-1 D-12 D-8 D-5 D-4 D-7 D-3 U.7 U.7 U.2 U.7 U.2 U.7 U.2 U.7 U.2 U.2 <thu.2< th=""> U.2 U.2 U</thu.2<>		0 - 0	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	X	ı	ı	ı	ı	ı	ı
Surveys D-13 D-6 D-15 L-1 D-10 D-2 D-8 D-5 D-4 D-7 D-3 U-3 U-3 <thu-3< th=""> U-3 U-3 <thu-< td=""><td></td><td>U-2</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>•</td><td>ı</td><td>·</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>·</td><td>X</td></thu-<></thu-3<>		U-2	ı	ı	ı	ı	ı	ı	ı	•	ı	·	ı	ı	ı	ı	ı	ı	·	X
Surveys D-13 D-6 D-15 L-1 D-12 D-8 D-5 D-4 D-7 D-3 U-3 30-Aug-13 - - X	auro.	U-7	ı	ı	ı	ı	ı	ı	ı	ı	ı	·	ı	Х	ı	ı	ı	ı	ı	ı
Surveys D-13 D-6 D-15 L-1 D-10 D-2 D-8 D-5 D-4 D-7 D-3 30-Aug-13 - - X<	ו הוותר	U-3	ı	ı	ı	ı	ı	ı	ı	ı	ı	·	X	ı	ı	ı	ı	ı	ı	ı
Surveys D-13 D-6 D-15 L-1 D-12 D-13 D-5 D-4 D-7 30-Aug-13 - - - X		D-3	·	ı	ı	ı	ī	·	·		·		X	·	ı	ī	ı	ı	ı	ı
Surveys D-13 D-6 D-15 L-1 D-12 D-14 D-10 D-5 D-4 D-5 D-4 30-Aug-13 -	in choi	D-7		X	ı	ı	ı	X	ı		Х			ı	Х	ī	ı	ı	ı	X
Surveys D-13 D-6 D-15 L-1 D-12 D-8 D-5 30-Aug-13 - - X <		D-4	·	Х	·	ı	ī	·	·		·			·	ı	ī	ı	ī	ı	ı
Surveys D-13 D-6 D-15 L-1 D-14 D-10 D-2 D-8 30-Aug-13 - - ×	21112	D-5	ı	Х	ı	ı	ı	Х	ı	ı	Х	ı	ı	ı	Х	ı	ı	ı	·	X
Surveys D-13 D-6 D-15 L-1 D-13 D-10 D-2 30-Aug-13 - - X Z	urv pr	D-8	ı	Х	ı	ı	ı	X	ı	ı	ı	·	ı	X	Х	ı	ı	ı	ı	X
Surveys D-13 D-6 D-15 L-1 D-13 D-14 D-10 30-Aug-13 - - X X X X X X 30-Aug-13 - - X X X X X X 30-Aug-13 - X X X X X X X 17-Dec-13 - X X X X X X X 29-Oct-13 - X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	הוותר	D-2	ı	X	ı	ı	ı	X	ı	ı	ı	X	ı	ı	ı	ı	X	ı	X	ı
Surveys D-13 D-6 D-15 L-1 D-12 D-14 30-Aug-13 - - X X X X 30-Aug-13 - - X X X X 30-Aug-13 - - X X X X X 7-Sep-13 - X X X X X X 17-Dec-13 - X X X X X X 23-Mar-14 - X X X X X X 24-Mar-14 - X X X X X X 24-Mar-14 - X X X X X X 25-Jul-14 - X X X X X X 25-Jul-14 - X X X X X X 1-Aug-14 - X X X	~~~~~	D-10	·	X	·	ı	ı	X	·		ı	·	·	X	Х	ı	ı	ı	ı	X
Surveys D-13 D-6 D-15 L-1 D-12 30-Aug-13 - - X X X 30-Aug-13 - - X X X 30-Aug-13 - - X X X 7-Sep-13 - X X X X 17-Dec-13 - X X X X 29-Oct-13 - X X X X 29-Mar-14 - X X X X 29-May-14 - X X X X 29-May-14 - X X X X 29-Mug-14 - X X X - 1-Apr-14 - X X X - 1-Aug-14 - X X X - 1-Aug-14 - X X X - 1-Aug-14 - <		D-14	·	Х	Х	ı	ı	X	ı	·	Х	ı	ı	ı	Х	ı	ı	Х	ı	·
Surveys D-13 D-6 D-15 L-1 30-Aug-13 - - × × 30-Doct-13 - × × × 29-Oct-13 - - - - 17-Dec-13 - × × × 23-Mar-14 - × × × 24-Mar-14 - × × × 25-Jul-14 - × × × 11-Aug-14 - × × × 11-Aug-14 - - - - 11-Aug-14 - - - - 11-Aug-14 - - - - 1	~ ~ ~ ~ ~	D-12	ı	X	ı	ı	X	ı	ı	·	ı	ı	ı	Х	Х	ı	ı	Х		,
Surveys D-13 D-6 D-15 30-Aug-13 - - - 30-Aug-13 - - - 30-Aug-13 - X - 30-Aug-13 - - - 7-Sep-13 - X X 29-Oct-13 - - - 17-Dec-13 - X X 23-Mar-14 - X X 24-Mar-14 - X X 24-Mar-14 - X X 25-Jul-14 - X X 25-Jul-14 - X X 25-Jul-14 - X X 25-Jul-14 - X X 1-Aug-14 - X X 11-Aug-14 - - - 11-Aug-14 - - - 12-Dec-14 - - - 12-Dec-14 - - - 12-Apr-15 - - - 13-Mav-15		L-1	Х	Х	ı	Х	Х	ŀ	ŀ	Х	Х	·	·	ı	ı	Х	ı	·	ı	X
Surveys D-13 D-6 30-Aug-13 29-Oct-13 - - 30-Aug-13 - - - 7-Sep-13 - - - 17-Dec-13 - - - 17-Dec-13 - - - 17-Dec-13 - - - 23-Mar-14 - - - 1-Apr-14 - - - 23-May-14 - - - 24-Mar-14 - - - 25-Jul-14 - - - 9-Aug-14 - - - 1-Apr-14 - - - 19-Aug-14 - - - 11-Aug-14 - - - 15-Dec-14 - - - 15-Dec-14 - - - 12-Apr-15 - - - 3-May-15 - - -	, , , , , , , , , , , , , , , , , , , 	D-15	·	Х		Х	Х			Х	Х				ı	Х	ī	·	·	ı
Surveys D-13 Surveys D-13 30-Aug-13 - 7-Sep-13 - 7-Sep-13 - 29-Oct-13 - 17-Dec-13 - 23-Mar-14 - 24-Mar-14 - 25-Jul-14 - 25-Jul-14 - 9-Aug-14 - 11-Aug-14 - 12-Dec-14 - 15-Dec-14 - 12-Apr-15 - 13-Mav-15 -	Jupea	D-6	·	X	ı	Х	X	ı	X	Х	ı	·	X	ı	ı	X	ı	Х	ı	ı
Surveys Surveys 30-Aug-13 7-Sep-13 17-Dec-13 17-Dec-13 17-Dec-13 14-Dec-14 19-Aug-14 19-Aug-14 19-Aug-14 19-Aug-14 19-Aug-14 19-Aug-14 19-Aug-14 19-Aug-14 19-Aug-15 18-Apr-15 18-Apr-15 3-Mav-15		D-13		ı		ı	ı	·	·			·	X		ı	ı	ı		·	
		Surveys	30-Aug-13	7-Sep-13	29-Oct-13	17-Dec-13	23-Mar-14	24-Mar-14	1-Apr-14	23-May-14	25-Jul-14	9-Aug-14	11-Aug-14	19-Aug-14	14-Dec-14	15-Dec-14	22-Dec-14	12-Apr-15	18-Apr-15	3-May-15

transects were established in the fall of 2013; one at the head of the former LeFever Dam pool (Transect D-15) and one further upstream at Water Works Park (Transect D-14). All transects were marked by placing a semi-permanent reference stake (reinforced steel bar with a washer cap) on each bank of the river. The geographic coordinates of each reference stake were recorded with a handheld GPS unit and field maps were produced so that the transects could be relocated (Table 5, Appendix C). Geomorphic profiles were surveyed using a CST/Burger PAL Automatic Level (26x magnification), Stadia Rod and tape measure (rope with 1 m tape markings) (Appendix D). Transect D-8 was surveyed twice on May 3, 2015 to assess reproducibility (Figure 12). Reading the Stadia Rod to the nearest quarter centimeter provides a horizontal resolution of 25 cm for each survey point. All of the profiles were graphed so that they are viewed looking downstream with distance and elevation measured relative to the local reference stakes (Table 6). The depth of pre-removal substrate was measured by pushing a metal probe rod through the bank/ channel material until the underlying substrate could no longer be penetrated. If bedrock was determined to be the pre-removal substrate it was listed as such on the profiles. If former floodplain or pre-removal gravel lag deposits composed the pre-removal substrate, then that surface was denoted "depth of refusal" or "refusal" on the profiles.

The river downstream of the former LeFever Dam was not studied because this area is characterized by a bedrock gorge having a steep gradient and little to no sediment deposition. Upon removal of the LeFever Dam, sediment eroded from the impoundment was transported further downstream to the Gorge Dam pool.

2.3 Hydrology

The removal of the LeFever Dam induced significant hydrologic changes to the previously dammed reach of the middle Cuyahoga River. The pre and post-removal flow

			Distance	
The second se	T 1	T • . 1	from	-
Iransect	Latitude	Longitude	LeFever Dam	Zone
			(m)	
D-13	41.1390	-81.4794	273	
D-6	41.1425	-81.4748	843	5
D-15	41.1470	-81.4630	2216	5
L-1	41.1460	-81.4610	2415	
D-12	41.1455	-81.4591	2795	
D-11	41.1466	-81.4583	2947	
D-14	41.1455	-81.4573	3146	
D-10	41.1459	-81.4559	3310	
D-9	41.1486	-81.4561	3610	
D-8	41.1489	-81.4525	4023	4
D-2	41.1490	-81.4500	4254	
D-5	41.1458	-81.4470	4607	
D-4	41.1442	-81.4443	4916	
D-7	41.1433	-81.4416	5169	
D-3	41.1420	-81.4370	5554	
U-3	41.1405	-81.4354	5765	
U-7	41.1399	-81.4348	5858	3
U-2	41.1379	-81.4283	6476	
U-6	41.1362	-81.4218	7056	
U-1	41.1366	-81.4191	7325	
U-5	41.1385	-81.4134	7859	2
U-4	41.1403	-81.3989	9204	
FC	41.1403	-81.3989	9217	
U-8	41.1383	-81.3901	10107	1

Table 5. Geographic coordinates and upstream distance from the former LeFever Dam of all geomorphic profiles within the study area. L-1 is at the LeFever impoundment delta and FC is located at the mouth of Fish Creek Tributary.

Figure 12. Geomorphic profile and replicate survey of transect D-8 located 4,023 m upstream of the LeFever Dam, surveyed on May 3, 2015.

Transect	Distance (m)	Elevation (m)	Location
D-13	0	0	Left bank
D-6	66.1	0	Right bank
D-15	0	0	Right bank, top of scarp is at 1.5 m distance
D-12	0	0	Right bank
D-11	0	12.5	Left bank
D-14	0	0	Left bank, rebar is 0.81 m below deck
D-10	3	0.1	Right bank
D-9	0	0	Left bank
D-2	0	1.55	Right bank
D-8	0	0	Right bank
D-5	45	0	Right bank
D-4	0	0	Right bank
D-7	0	0	Left bank
D-3	-11.75	0.43	Right bank
U-3	31.5	-2.756	Left bank
U-7	0	0	Left bank
U-2	91.3	-1.825	Right bank
U-6	0	0	Right bank
U-1	0	0	Right bank
U-5	0	0	Right bank
U-4	0	0	Right bank
FC	10.12	-0.58	Right bank
U-8	0	0	Right bank

 Table 6. Cross section, distance, elevation and location of all local reference stakes used for plotting of Cuyahoga River geomorphic profiles.

velocity, channel cross-sectional area, river discharge and river slope were all evaluated 843 m upstream of the former LeFever Dam at transect D-6 (Figure 11).

2.4 Flow Velocity

Flow velocity measurements were recorded every meter across the channel using a Gurley pygmy current meter held at 0.6 of the water depth (measured from the water surface) which is equal to 0.4 of the water depth measured from the channel floor. The pre-removal flow velocity was measured within the former LeFever Dam pool at transect D-6 on May 17, 2012 (J. Peck, written communication, 2013) when the mean daily discharge was 5.26 m³/s at the Old Portage stream gauging station (Table 7) (waterdata. usgs.gov). The post-removal flow velocity was measured at the same location on August 11, 2014 when the mean daily discharge was 8.32 m³/s at the Old Portage stream gauging station (waterdata.usgs.gov). The mean daily discharge pre and post-removal was similar so it was appropriate to make comparisons between the two conditions.

2.5 Channel Cross-Sectional Area

The channel cross-sectional area was determined by dividing the channel into rectangles bounded by the water surface and channel floor. Each field measurement of water depth served as the midpoint of the individual rectangles. The area of the individual rectangles were summed to obtain the total channel area. The number of rectangles and therefore the accuracy of the estimated area were controlled by the number of data points collected. Because all of the geomorphic profiles were not graphed using a smooth curve, any over estimation of cross sectional area was reduced by subtracting the area of the

Survey Date	Mean Daily Discharge (ft ³ /s)	Mean Daily Discharge (m ³ /s)
14-Mav-09	317	8.98
7-Jul-11	179	5.07
14-May-12	296	8.39
17-May-12	175	4.96
20-May-13	147	4.17
30-Aug-13	199	5.64
7-Sep-13	171	4.85
29-Oct-13	368	10.43
17-Nov-13	205	5.81
23-Mar-14	822	23.29
24-Mar-14	735	20.83
1-Apr-14	963	27.29
23-May-14	710	20.12
25-Jul-14	173	4.90
9-Aug-14	304	8.61
11-Aug-14	284	8.05
19-Aug-14	251	7.11
14-Oct-14	347	9.83
15-Oct-14	323	9.15
22-Dec-14	314	8.90
12-Apr-15	1,350	38.26
2-May-15	223	6.32
3-May-15	214	6.06

Table 7. Mean daily discharge at the Old Portage stream gauging station USGS 04206000 on the days surveys were conducted (waterdata.usgs.gov).

portions of the individual rectangles that extended beyond the channel boundaries. The channel cross sectional area was assessed within the former dam pool and at transects further upstream. Pre and post-removal comparisons were made only on days of similar discharge because changes in discharge alter the river's cross-sectional area (Table 7).

2.5 Cuyahoga River Discharge

Cuyahoga River discharge was calculated using the continuity equation:

$$Q = V \times A \tag{Eq. 1}$$

where Q is the river discharge in m³/s, V is the flow velocity in m/s and A is the cross sectional area of the river channel in m². The river discharge in the former dam pool was determined using a technique similar to the one used for estimating channel cross-sectional area. Discharge was calculated within each of the previously described rectangles, and the summation of the discharge through the individual rectangles yielded the total river discharge through the channel. The discharge values at D-6 differ from those recorded at the Old Portage stream gauging station because Old Portage is located further downstream and the little Cuyahoga River discharges into the Cuyahoga River between the gauging station and Transect D-6 (Figure 1).

2.6 Slope of the Cuyahoga River

The change in the slope of the Cuyahoga River after the removal of the LeFever Dam is directly related to the boundary shear stress and the erosive capability of the river.

The pre-removal slope of 0.00029 m/m was determined using the 7.5 minute Hudson Quadrangle 2 ft. topographic contour map (USGS, 1994). The 990 ft. contour line crossed the river at the location of transect D-15 (Figure 11). The upstream distance from the former LeFever Dam to this transect was already determined using the ruler tool in ArcGIS (Table 5), so it was used to calculate the change in distance. The elevation change was determined using the elevation of the aforementioned contour line crossing and the 988 ft. elevation of the former LeFever Dam determined by BBC&M Engineering (2008). The post removal slope was surveyed on August 11, 2014 using a Stadia Rod and Transit 843 m upstream of the former dam at Transect D-6 (Figure 11).

2.7 LeFever Impoundment Delta Survey

The deltaic deposit at the head of the former LeFever impoundment was surveyed using a handheld GPS unit. The GPS points were measured in a grid around the deltaic feature to map its position, shape, and spatial extent (Figure 13). Water depth was measured at each of the GPS locations using a meter stick. Water depth was converted into a height measurement relative to the local reference stake so that the geomorphic change between surveys could be assessed (Appendix E). In order to quantify the rate and magnitude of geomorphic change to the delta following the removal of the LeFever Dam, the delta was resurveyed in the summer and winter of 2013, the spring, summer and winter of 2014 and in the spring of 2015 (Table 4). Raster surfaces of the delta were generated by using Natural Neighbors interpolation in ArcMap 10.2 (Figure 14). Using the same field data, contour maps were also drawn by hand and later digitized in ArcMap 10.2 (Figure 15). The accuracy of the interpolated raster surface was limited by the number of data points collected in the field. For example, a deep water channel observed in the field along river right disappears in the interpolated raster surface (Figure 14). The

hand-drawn contour maps provided a more realistic depiction of the geomorphology of the delta because it uses field observations to connect widely spaced data points.

CHAPTER III RESULTS

3.1 Sediment Characteristics of the Deep Water Channel

The middle Cuyahoga River study reach has been grouped into five Zones of similar physical characteristics (Figure 16). Zone 1 begins at the upstream limit of the study area which is located 10,615 m upstream of the former LeFever Dam m (ULFD) and extends downstream to the Zone 1-2 boundary at 9,315 m (ULFD). Zone 3 extends from the Zone 2-3 boundary at 6,615 m (ULFD) downstream to the site of the former Munroe Falls Dam at 5,615 m (ULFD). Zone 4 ends at the upstream limit of the LeFever Dam pool at 2,670 m (ULFD). Zone 5 encompasses the former LeFever Dam pool and ends at the site of the former LeFever Dam at 0 m (ULFD).

Grain size data has been collected throughout this reach of the middle Cuyahoga River from 2003 to 2014. These results characterize the sedimentologic changes before and after the 2005 removal of the Munroe Falls Dam and the 2013 removal of the LeFever Dam. A detailed characterization of the former Munroe Falls Dam pool sediment, and pre-removal conditions can be found in Rumschlag (2007), Rumschlag and Peck (2007), and Peck et al. (2007). Kasper (2010) and Peck and Kasper (2013) provided a comprehensive assessment of the sedimentologic changes associated with the removal of the Munroe Falls Dam as well and the characteristics of the former LeFever impoundment fill. These existing data were added and reinterpreted. The study area was regrouped into five new Zones based on varying sedimentologic and geomorphic

Figure 16. Location of geomorphic transects and 5 Zones boundaries within the Middle Cuyahoga River study reach. The location of the former LeFever (LF) and Munroe Falls (MF) Dams are also shown and flow is from east to west.

properties. Although the previous studies addressed the sediment characteristics of both channel margins and the thalweg of the former dam pools, this study only evaluated the deep water channel environment.

Twelve sedimentologic parameters were analyzed and averaged by each of the 5 Zones to characterize the sedimentologic change throughout the study reach (Tables 8, 9) (Figures 17-20). The following section describes the sedimentologic results beginning furthest upstream and moving downstream towards the LeFever Dam.

3.1.1 Zone 1

Zone 1 is located at the upstream limit of the study area from 10,615 to 9,315 m upstream of the LeFever Dam m (ULFD). Zone 1 is located at the upstream end of the former Munroe Falls Dam impoundment. While the Munroe Falls Dam was in place, the deep water channel contained mostly gravel ($\approx 67\%$) with some sand ($\approx 31\%$) and a trace amount of mud ($\approx 1\%$) (Table 8, Figure 17). The average water depth was 1.91 m and the organic content of the sediment was relatively low ($\approx 4\%$) (Table 8). Following the 2005 removal of the Munroe Falls Dam, the average water depth rapidly decreased by 1.05 m in 2006 (Figure 17). The average sand content in the channel increased by 21% with a subsequent decrease (-20%) in the average gravel content (Table 8, Figure 17). The channel sediment became more poorly sorted and the average organic content decreased by 3% (Figures 17-18). By 2008-09, the proportion of gravel to sand returned to its pre-removal condition. By 2012, the gravel content increased to 84% while the sand content decreased to 15% (Table 9).

No data was collected in this zone immediately following the removal of the LeFever Dam so the post-removal changes were evaluated using only the data from 2014. Between 2012 and 2014 the average sand and gravel content remained nearly the same (Table 9, Figure 19).

Table 8. Av The sample Falls Dam.	/erage s e sets al N.D. d	surfici: re grou lenote:	al sedim uped by s no data	lent char; their col a collecti	acteristi lection (ion.	cs of the dates pre	e (Rums) e	ater cha chlag, 2	nnel env 007) and	ironment fé post remo	or each 2 val (Kas	Zone in t	he study 0) of the	reach. Munroe
Sample Set	Zone	и	Water Depth (m)	Gravel (%)	Sand (%)	Mud (%)	D_{50}	Mean (Ф)	Sorting (Φ)	Skewness (Ф)	WBD (g/cc)	DBD (g/cc)	Water (%)	Organics (%)
	1	4	0.68	99	34	0.21	-1.79	-2.53	1.35	2.74	1.38	1.44	20	2
Post	0	20	0.64	75	25	0.21	-2.66	-2.84	1.57	4.63	1.49	1.54	19	ŝ
Removal	ε	9	0.86	55	45	0.19	-1.11	-1.67	1.59	2.99	1.44	1.48	20	7
2008-09	4	18	1.09	53	46	1	-0.84	-1.78	1.47	4.47	1.44	1.46	21	7
	5	25	2.11	10	73	17	2.18	1.99	1.78	2.98	0.94	0.62	56	11
	1	9	0.86	47	52	0.31	N.D.	-1.13	1.34	5.53	2.22	1.80	19	1
Post	7	25	0.86	29	69	7	N.D.	-0.30	1.19	1.67	2.11	1.64	22	3
Removal	б	10	0.99	17	83	1	N.D.	0.37	0.78	-0.74	2.05	1.59	23	4
2006	4	16	1.06	23	76	7	N.D.	0.31	0.70	0.47	2.06	1.60	23	7
	S	0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
	1	S	1.91	67	31	1	N.D.	-1.40	0.73	2.99	1.80	1.40	19	4
Pre	7	17	1.95	8	87	5	N.D.	1.15	0.67	-1.22	1.80	1.35	25	9
Removal	ε	15	2.70	6	71	20	N.D.	2.41	2.84	0.84	1.41	0.71	48	12
2003-04	4	6	1.57	81	17	7	N.D.	-1.85	0.44	1.25	1.97	1.58	20	ε
	5	0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

Table 9. Av The sample no data col	/erage s e sets al lection.	surfici re gro	al sedim uped by	ent chars their col	acteristic lection c	es of the lates pro	deep w e (Kaspe	ater cha rr, 2010)	nnel env) and pos	ironment fo t removal c	or each 2 of the Le	Cone in t Fever D	he stud am. N.İ	y reach. D. denotes
Sample Set	Zone	и	Water Depth (m)	Gravel (%)	Sand (%)	Mud (%)	D_{50}	Mean (Ф)	Sorting (\sigma)	Skewness (Ф)	WBD (g/cc)	DBD (g/cc)	Water (%)	Organics (%)
	1	9	0.81	82	18	0.11	-4.71	-3.54	1.85	4.31	2.10	1.72	22	2
Post	0	14	0.66	83	17	0.15	-4.59	-3.26	1.73	7.43	2.15	1.77	22	2
Removal	ε	ŝ	0.80	84	16	0.06	-4.64	-3.39	2.25	90.6	2.16	1.78	22	1
2014	4	32	0.74	54	46	0.22	-1.84	-1.61	1.52	4.07	2.11	1.71	24	З
	5	13	0.59	49	51	0.76	-1.49	-1.26	1.51	3.42	2.01	1.54	32	С
	-	0												U N
Deet	- c													
P1	1 (N.U.N	U.N.	U.N.	U.N.	.U.N	.U.N.	.U.N	.U.N	U.N.	N.U.Y	L.N.	N.D.
Kemoval	τ η	0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2013	4	6	0.65	35	65	0.36	-0.58	-0.35	1.57	1.20	2.04	1.64	20	2
	5	9	0.45	10	89	7	1.10	1.00	1.17	-0.55	1.76	1.27	29	8
	1	8	1.05	84	15	0.44	-3.57	-2.97	2.01	9.42	2.14	1.78	17	7
Pre	0	15	0.57	80	20	0.23	-3.61	-2.67	1.99	5.46	2.16	1.77	18	2
Removal	ε	9	0.62	62	38	0.26	-2.56	-2.23	1.73	3.99	2.11	1.72	18	2
2012	4	16	0.85	17	83	0.30	0.47	0.35	1.13	-0.26	2.03	1.60	21	4
	5	6	1.90	25	71	3.79	0.54	0.51	1.31	2.12	1.57	0.91	46	12
	-	0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Pre	7	٢	1.19	85	15	0.16	-3.21	-2.86	1.40	5.01	1.98	1.61	19	5
Removal	e	ŝ	0.99	73	26	0.22	-2.55	-1.93	1.93	6.16	2.05	1.73	16	1
2010	4	12	1.19	68	32	0.16	-2.49	-2.22	1.95	6.35	2.05	1.69	17	2
	5	7	1.30	10	90	0.10	0.65	0.65	1.01	-1.17	1.97	1.55	21	2

Figure 17. Deep channel sediment characteristics pre (closed circles) (Kasper, 2010; Rumschlag, 2007) and post-removal (open squares) (Kasper, 2010) of the former Munroe Falls Dam. Zone boundaries are shown by vertical dashed lines and are modified from Kasper (2010) such that the Former LeFever Dam lies at 0 m and the former Munroe Falls Dam lies at 5615 m.

Figure 18. Deep channel sediment characteristics pre (closed circles) (Kasper 2013, Rumschlag, 2007) and post-removal (open squares) (Kasper, 2010) of the former Munroe Falls Dam. Zone boundaries are shown by vertical dashed lines and are modified from Kasper (2010) such that the Former LeFever Dam lies at 0 m and the former Munroe Falls Dam lies at 5615 m.

Distance from the Former LeFever Dam (m)

• 2008-09 • 2010 • 2012 • 2013 • 2014

Figure 19. Deep channel sediment characteristics pre (closed circles) and post-removal (open squares) (Kasper, 2010) of the former LeFever Dam. Zone boundaries are shown by vertical dashed lines and are modified from (Kasper, 2010) such that the Former LeFever Dam lies at 0 m and the former Munroe Falls Dam lies at 5615 m.

• 2008-09 • 2010 • 2012 • 2013 • 2014

Figure 20. Deep channel sediment characteristics pre (closed circles) and post-removal (open squares) (Kasper, 2010) of the former LeFever Dam. Zone boundaries are shown by vertical dashed lines and are modified from Kasper (2010) such that the Former LeFever Dam lies at 0 m and the former Munroe Falls Dam lies at 5615 m.

3.1.2 Zone 2

Continuing downstream into Zone 2 the sedimentologic change during the study period has been quite substantial. Zone 2 is located between 9,315 and 6,615 m (ULFD) and comprises the largest portions of the former Munroe Falls Dam impoundment. When the Munroe Falls Dam was in place, the thalweg was composed mainly of moderately well sorted, medium sand ($\approx 87\%$) with lesser amounts of gravel ($\approx 8\%$) and mud ($\approx 5\%$) (Table 8, Figure 17). The average water depth was slightly deeper than in Zone 1 (1.95 m) and the channel sediment was more organic rich ($\approx 6\%$). Once the dam was removed, the amount of gravel increased to 29% whereas sand decreased to 69% and mud decreased to 2% by 2006 (Figure 17). The increase in gravel content was also reflected in the shift of mean grain size from medium sand (1.15 ϕ) to granules (-0.30 ϕ) post-removal (Table 8). Accompanying this channel coarsening was a 1.09 m decrease in average water depth and a 50% decrease in organic matter. By 2008, the amount of gravel increased to 75%, the sand content decreased to 25% and the mean grain size coarsened substantially.

The majority of the sedimentologic change induced by the Munroe Falls Dam removal had taken place by 2010 because the 2010, 2012, and 2014 grain size data show similar gravel contents (80-85%) and similar mean grain sizes (Tables 8-9). The 2013 LeFever Dam removal had no effect on Zone 2 because it is located well above the LeFever Dam pool.

2.1.3 Zone 3

Further downstream in Zone 3, the sedimentological change was quite significant following the removal of the Munroe Falls Dam. The former Munroe Falls Dam marks the downstream limit of this zone at 5,615 m (ULFD). While the Munroe Falls Dam was in place, the average water depth was 2.70 m and fine sand (mean 2.41 ϕ) dominated the deep water channel (\approx 71%) (Table 8, Figure 17). Zone 3 had the greatest mud content (\approx

20%) and was the most organic rich (\approx 12 %) among all the Zones upstream of the former Munroe Falls Dam (Figure 17).

After the Munroe Falls Dam was removed, Zone 3 experienced a marked decrease (-1.71 m) in the average water depth, mud content (-19%) and organic matter (-66%) (Figure 17). The average gravel content rose from 17% in 2006 to 73% in 2010 as the average sand content fell from 83% to 26% (Figure 17, 19). Within a year of the Munroe Falls Dam removal the mud had all been transported downstream of Zone 3.

Although no data was collected immediately following the removal of the LeFever Dam, channel coarsening did continue through 2014. From 2012 to 2014, channel sands declined by 22% (Table 9, Figure 19). The mean grain size steadily increased from fine sand (2.41 ϕ) in 2003-04 to pebbles (-3.39 ϕ) in 2014 (Tables 8, 9).

2.1.4 Zone 4

Zone 4 extends downstream from the former Munroe Falls Dam site to the upstream limit of the former LeFever Dam pool (5,615 - 2,670 m ULFD). This zone has shown a different pattern of sedimentologic change than Zones 1,2 and 3. Pre-Munroe Falls removal, the channel sediment was composed of 81% well sorted granules (mean -1.85 ϕ) and the channel had an average water depth of 1.57 m (Table 8, Figure 17). Compared to Zones 1,2 and 3, Zone 4 had the least amount of sand, mud and organic matter prior to the removal of the removal of the Munroe Falls Dam (Figure 17).

By 2006 following the removal of the Munroe Falls Dam, moderately well sorted, coarse sands (mean 0.31 ϕ) accounted for 76% of the channel sediment and average gravel content decreased to just 23% (Table 8, Figure 17). Two years later in 2008-09, the Zone 4 sediment becomes coarser (mean -1.78 ϕ) with an average of 53% gravel. The coarsening of Zone 4 sediment continued in 2010 when the mean grain size reached its maximum of -2.22 ϕ (Table 9). These poorly sorted pebbles accounted for 68% of the

bed sediment (Table 9, Figure 19). There have been trace amounts of mud in the Zone 4 sediment since 2010.

The trend of channel sediment coarsening in Zone 4 from 2006 to 2010 changed markedly in 2012. In 2012, the average sand content reached its maximum (83%) as poorly sorted, coarse sand (mean 0.35 ϕ) dominated the channel (Table 9, Figure 17). The amounts of mud and organic matter also doubled.

Following the LeFever Dam removal, the average gravel content of the Zone 4 sediment increased from 17% to 35% (Table 9, Figure 19). The amount of organic matter also decreased by 50% but the proportion of mud in the channel sediment remained constant. Channel coarsening continued between 2012 and 2014 as the mean grain size increased to -1.61¢. By 2014 the bed sediment contained almost equal parts sand (46%) and gravel (54%) with trace amounts of mud (Table 9, Figure 19).

2.1.5 Zone 5

The furthest downstream zone in the study reach is Zone 5 which extends from 2,670 m (ULFD) downstream to the site of the former LeFever Dam. No data was collected in this zone until 2008-09 so the impact of the Munroe Falls Dam removal on the Zone 5 sediment could not be assessed. However, field observations indicate that most of the mobilized sediment from the former Munroe Falls impoundment was deposited within Zone 4 (Kasper, 2010). Following the removal of the LeFever Dam, no sediment samples were collected in the first 843 m upstream of the former dam because of the swift current and limited access.

After the Munroe Falls Dam removal but before the LeFever Dam removal (2008-09), Zone 5 had an average water depth of 2.11 m and a maximum depth of about 4 m close to the dam. The channel sediment in Zone 5 was composed of poorly sorted sand (73%) with a mean grain size of 1.99 ϕ (Table 8, Figure 17). The mean grain size reflected the elevated sand content and organic rich ($\approx 11\%$) mud was present in higher concentrations ($\approx 17\%$) than gravel.

In 2010, the thalweg contained 90% sand having a mean grain size of 0.65 ϕ (Table 9, Figure 19). Because sampling did not continue all the way down to the LeFever Dam the Zone 5 average water depths were 1.3 m and 1.9 m in 2010 and 2012 respectively (Table 9). In 2012 the thalweg contained 71% sand having a mean grain size of 0.51 ϕ . The organic rich mud content in 2012 is comparable to that in 2008-09. The survey one month after the LeFever Dam was removed indicated the average water depth in Zone 5 had decreased by 1.45 m (Table 9, Figure 19). The sand content in 2013 (89%) was comparable to that between 2008 and 2012 (71 – 90%). By 2014 the mean grain size in Zone 5 was the coarsest (-1.26 ϕ) of all the survey years.

3.2 Fluvial Geomorphology

In order to assess the impact of the Munroe Falls (2005) and LeFever (2013) Dam removals on the Cuyahoga River, geomorphic profiles were measured along flow-perpendicular transects. Geomorphic data has been collected from 2003 to 2015 throughout this reach of the middle Cuyahoga River. These results describe the geomorphic changes before and after the removal of the Munroe Falls Dam and the LeFever Dam. Rumschlag (2007), Rumschlag and Peck (2007), and Peck et al. (2007) described the initial morphologic changes pre and post-Munroe Falls removal primarily upstream of that dam. Kasper (2010) and Peck and Kasper (2013) further assessed the ongoing changes post-Munroe Falls removal upstream of that dam and along the reach extending down to the former LeFever Dam. This study revisits the geomorphic profiles of the aforementioned authors in addition to two new transects in Zones 4 and 5. These results will be described starting with the upstream profiles of Zone 1, ending with the downstream profiles of Zone 5.

3.2.1 Zone 1

Transect U-8 is located furthest upstream from 10,615 to 9,315 m ULFD (Figure 16). Measurements at this location began in 2006 after the removal of the Munroe Falls Dam. Little geomorphic change has occurred during the subsequent 8 years. What little geomorphic change did occur was in the form of minor lateral erosion and minor fluctuations (≤ 10 cm) in the mid-channel reflecting sediment aggradation and degradation (Figure 21). The right bank laterally eroded 1.65 m from the 2011 to 2014 surveys as slumped bank material was eroded away during high flows.

3.2.2 Zone 2

Zone 2 encompasses the river reach from 9,315 to 6,615 m (ULFD) (Figure 16). This zone is characterized by rapid downcutting soon after the Munroe Falls Dam was removed followed by slower rates of lateral erosion in the subsequent years. Transects at the mouth of Fish Creek tributary (FC), U-4, U-5, U-1, and U-6 are located in Zone 2 and generally exhibit this pattern of channel adjustment.

The confluence of Fish Creek and the Cuyahoga River is located at the upstream end of Zone 2 at 9,217 m (ULFD). Fish Creek has experienced significant downcutting and channel widening. From the 2004 to 2005 surveys, the channel rapidly downcut \sim 0.5 m after the Munroe Falls Dam was removed (Figure 22). The newly incised channel continued downcutting as well as laterally eroding through 2011. By 2014, the channel had downcut an additional \sim 0.19 m and the right bank laterally eroded 2.25 m between 2011 and 2014. The main channel of Fish Creek tributary has experienced a total of \sim 0.9 m of downcutting and a total channel widening of \sim 3.25 m since the removal of the

Figure 21. Geomorphic profile of transect U-8 located 10,107 m upstream of the former LeFever Dam, surveyed from March 2006 to August 2014.

Munroe Falls Dam. However, significant lateral erosion has occurred to the right bank since 2011. Immediately downstream of the Fish Creek tributary is transect U-4 located at 9,204 m (ULFD). In November 2005, after the Munroe Falls Dam was removed, a linear sand bar on river left was deposited in the lee of large woody debris (LWD) (Figure 23). The sand bar was completely eroded by the August 2006 survey because the LWD had moved further downstream. Between the 2010 and 2011 surveys, Fish Creek had incised a 4 m wide channel on river right resulting in a total of ~ 0.57 m of downcutting since the 2005 survey. Minor fluctuations (≤ 10 cm) of mid-channel aggradation and degradation also occurred between 2005 and 2014.

Continuing downstream in Zone 2 is transect U-5 located 7,859 m (ULFD). The large deposit of sand and gravel of the Pambi Farms delta can be seen in the November 2005 survey (Figure 24). By May 2009 the deltaic feature was substantially eroded away and the bedrock-floored channel on river left had increased in width. Between 2009 and 2011, continued erosion reduced the size of the Pambi Farms delta deposit. Because the river channel rests on bedrock at this location further erosion will not produce significant downcutting so this transect was no longer surveyed.

Further downstream in Zone 2, at about 7,500 m (ULFD), the channel of the Cuyahoga River was much wider and substantial amounts of muddy sediment accumulated in the channel margins from when the Munroe Falls Dam was in place (Rumschlag and Peck, 2007). Transects U-1 and U-6 are located at 7,325 and 7,056 m (ULFD) respectively and exhibit these channel characteristics (Figures 25, 26).

At transect U-1, significant change occurred in the ~ 2.5 years following the Munroe Falls Dam removal (2005-2008) whereas geomorphic change has been less extensive after 2008 (Figure 25). After the Munroe Falls Dam was removed, it took the Cuyahoga River ~ 10 months to incise through impoundment sediments in the channel and reach the pre-dam substrate (Figure 25). The large sediment accumulation present at 30-35 m

Figure 23. Geomorphic profile of transect U-4 located 9,204 m upstream of the former LeFever Dam, surveyed from November 2005 to August 2014.

Figure 25. Geomorphic profile of transect U-1 located 7,325 m upstream of the former LeFever Dam, surveyed from April 2004 to August 2014.

Figure 26. Geomorphic profile of transect U-6 located 7,056 m upstream of the former LeFever Dam, surveyed from November 2005 to August 2014.

on the profile resulted from the presence of submerged LWD in the former dam pool. Between 2008 and 2014, minor fluctuations in erosion/deposition characterize the channel floor. From 2008 to 2014, the channel widened a total of ~3.5 m producing near vertical banks on either side of the channel. The small sediment deposit present at 27.75 m on the profile accumulated next to LWD and a metal boat hull present at that location. Following the Munroe Falls Dam removal, the effect of dewatering of the exposed impounded muddy sediment is evident on the left bank (Figure 25). The left bank vertically compacted ~ 21 cm between 2004 and 2005 at a rate of ~1.12 cm/month. The impounded mud was 3 m thick on the left bank before dewatering occurred.

Transect U-6 is located 7,056 m (ULFD) near the downstream end of Zone 2 (Figure 16). At this location the former Dam pool had a wide channel with substantial deposits of impounded mud (Figure 26). Significant lateral erosion and compaction have occurred exclusively on the right bank at this transect. Geomorphic data was first collected along this transect about one month (Nov. 2005) after the Munroe Falls Dam was removed. Seven months following the removal of the Munroe Falls Dam, the Cuyahoga River downcut an additional 0.53 m to the pre-dam substrate (25-35 m on profile) and laterally eroded 2 m on the right bank (Figure 26). By 2012 (74 months later), the river downcut 0.4 m through the pre-dam flood plain sediments on river left. This slower rate of erosion is due to the substrate type. The left bank is comprised of more cohesive pre-dam flood plain sediments with tree trunks in growth position. The right bank of U-6 displays a progressive back-stepping in the form of vertical slump blocks since the removal of the Munroe Falls Dam (Figure 26). The right bank has receded 9.5 m since the Munroe Falls Dam was removed in 2005. Between the 2005 and 2008 surveys the right bank receded 4 m whereas the right bank only eroded 0.5 m from 2008-2009. Between the 2010 and 2011 surveys the right bank receded 3.05 m. Between the 2011 and 2012 surveys the right bank receded 0.7 m and from 2012 to 2014 it eroded an additional 2.5 m.

The vertical compaction of dewatered impoundment mud is clearly shown on the upland portion of the right bank. A rapid rate of compaction was observed immediately following dam removal and this rate diminished in the subsequent years. Compaction was assessed at 10 m distance on the profile (Figure 26). The right bank vertically compacted 0.23 m between 2005 and 2008. From 2008 to 2009 the right bank vertically compacted 0.04 m and only compacted 0.03 m from 2009 to 2014. The thickness of the underling mud was 2.2 m. Significant vertical compaction was completed by the July 2009 survey.

3.2.3 Zone 3

Zone 3 extends from 6,615 m ULFD to the upstream end of the former Munroe Falls Dam at 5,615 m (ULFD) (Figure 16). Geomorphic profiles U-2, U-7 and U-3 are located within this Zone. The most upstream profile measured in Zone 3 is located at 6,476 m (UFLD) at transect U-2 (Figure 27). The initial response of the Cuyahoga River to the removal of the Munroe Falls Dam was rapid vertical incision (~ 0.8 m from ~ 69-79 m distance) to the pre-dam substrate by March 2006 (Figure 27). The channel was also widened by lateral erosion. Between 2008 and 2009 a tree trunk lining the left bank was transported downstream and enhanced lateral erosion of the left bank by 2.75 m that year (Peck and Kasper, 2013). The right bank consists of a vertical scarp cut into the impoundment sediment. Erosion of this scarp has been episodic. From 2010 to 2011 the right bank scarp was stationary while the central channel (65-80 m) downcut 0.15 m. Between the 2011 and 2012 surveys, the right bank laterally eroded 1.3 m. Transect U-2 was resurveyed in 2015 and no significant morphologic change had took place between 2012 and 2015.

Transect U-2 also clearly shows the effect of vertical compaction of the impounded sediment following the removal of the Munroe Falls Dam. At 45 m on the U-2 profile the impounded sediment was 2.85 m thick. In the 2 months following the Munroe Falls

Dam removal the sediment compacted 0.28 m. By 2009 it had compacted an additional m 0.33 m. Closer to the upland at 25 m distance on the profile, the impoundment fill was 1.9 m thick. Here the total amount of compaction was 0.23 m between 2005 and 2008. By the July 2009 survey, vertical compaction all along the right bank was complete and no further change was observed in 2010.

Transect U-7 is located further downstream at 5,858 m (ULFD) (Figure 16). Transect U-7 exhibits a similar sequence of behavior as transect U-2. The Cuyahoga River incised to the pre-dam substrate by May 2006 (Figure 28). Between 2011 and 2012 more significant lateral erosion of 1.5 m occurred. Lateral erosion then became the dominant form of geomorphic change resulting in a total channel widening of \sim 9.6 m (\sim 8.1 m on the right bank and \sim 1.5 m on the left bank) since the Munroe Falls Dam removal. The lateral erosion on the right bank occurred as a progressive back stepping in the form of vertical slump blocks. From 2010 to 2011 the right bank laterally eroded 0.34 m. No significant geomorphic change has occurred at this transect between 2012 and 2014.

Vertical compaction on the right bank was comparable to that of transect U-2. At transect U-7, the thickness of the impoundment sediment was about 2 m at 65 m distance on the profile and the impounded sediment compacted about 0.30 m between 2005 and 2007.

Transect U-3 is located near the downstream end of Zone 3 just upstream of the former Munroe Falls Dam at 5,765 m (ULFD) (Figure 16). The maximum width (90 m) of the former dam pool is represented at this transect as well (Figure 29). By December 2005, the channel downcut to the pre-dam substrate (bedrock) and began to laterally erode both banks (Figure 29). By August 2014 the channel had widened a total of 7 m. From May 2010 to July 2011 the right bank laterally eroded 0.5 m whereas the left bank eroded 0.75 m resulting in a total channel widening of 1.25 m. From July 2011 to October 2012 the right bank receded 1 m whereas the left bank remained unchanged.

From the October 2012 to August 2014 surveys, the left bank laterally eroded ~ 1 m whereas the right bank remained unchanged. The minor variations in elevation within the channel reflect irregularities in the bedrock channel floor and the placement of the stadia rod during the individual surveys. The geomorphic change at this transect also displays significant bank subsidence associated with the dewatering and compaction of the impounded mud following the removal of the Munroe Falls Dam. The following compaction values were calculated between the April 2004 and March 2007 surveys. The right bank vertically compacted ~59 cm at 72 m distance and ~32 cm at 82 m distance on the profile. The thickness of the underlying mud at these distances was ~1.96 m and ~1.87 m, respectively. The left bank displays much less vertical compaction; ~ 0.08 m at 18 m distance and ~0.05 m at 25 m distance. The thickness of the underlying mud at these distances was ~1.23 m and ~1.14 m respectively. A major difference between the left and right banks is that the right bank receives significant water from upland seeps and was notably wetter than the left bank.

3.2.4 Zone 4

Zone 4 begins at the former Munroe Falls Dam (6,615 m ULFD) and ends at the upstream limit of the former LeFever Dam pool (2,670 m ULFD) (Figure 16). The nature of the middle Cuyahoga River in this zone differs from the upstream zones as it meanders more extensively and contains cut bank, point bar, and chute sub-environments (Peck and Kasper, 2013). Because this zone is downstream of the former Munroe Falls Dam the trends in morphologic change are different than the upstream zones.

Zone 4 is generally characterized as sediment starved while the Munroe Falls Dam existed, by aggradation following the Munroe Falls removal and by degradation following the LeFever Dam removal. Transects D-3, D-7, D-4, D-5, D-8, D-2, D-9, D-10, D-14, D-11 and D-12 are located within this zone and generally exhibit these characteristics.

Transects D-3 and D-7 are located near the upstream end of Zone 4 at 5,554 and 5,169 m (ULFD) respectively (Figure 30, 31). Both of these transect show little geomorphic change following both dam removals. At transect D-3 a 0.17 m high sand levee was deposited on the right bank between the January 2007 and June 2008 surveys (Figure 30). At transect D-7 a 0.14 m levee deposit also accumulated on the right bank between the May 2009 and July 2011 surveys (Figure 31). Transect D-3 remained fairly stable from 2008 to 2014 (Figure 30). At D-7 however, 0.14 m of additional levee sands were deposited on the right bank between the July 2011 and May 2015 surveys (Figure 31). The right bank at D-7 underwent a total of 0.5 m of lateral erosion between May 2009 and May 2015.

Continuing downstream is the location of transect D-4 (4,916 m ULFD) which is located downstream of an island in the Cuyahoga River. This transect was established ~3.5 years after the Munroe Falls Dam removal so sediment released from the former Munroe Falls impoundment had already accumulated along the left side at this location (Figure 32). Little change occurred in response to the LeFever Dam removal (0.10 m of downcutting between May 2009 and Sept. 2013) and no geomorphic data has been collected since (Figure 32).

Further downstream is transect D-5 located at 4,607 m (ULFD) (Figure 16). A sediment bar occupied the channel from 12-40 m on the profile and maintained its maximum size from May 2009 to September 2013. By March 2014 the bar began to erode and continued to do so through 2015. By December 2014, the bar only spanned 10-20 m distance on the profile (Figure 33). Between the 2012 and 2015 surveys, the bar was downcut a total of 0.62 m at 19 m on the profile. A new sand bar appeared in the lee of LWD on river left at 7 to 12 m distance between December 2014 and May 2015

surveys (Figure 33). The elevation of this bar exceeded the maximum elevation in 2010 by 0.14 m. The sediment accumulation in the channel between 33-40 m on the profile has remained unchanged since 2009 (Figure 33).

Continuing downstream is the location of transect D-2 which is located 4,254 m (ULFD) adjacent to Water Works Park (Figure 16). This profile is unique among the profiles downstream of the former Munroe Falls Dam because the profile was surveyed pre-Munroe Falls removal (Rumschlag and Peck 2007). The channel was deep and gravely prior to the Munroe Falls removal. Bed elevation changes were evaluated at 27 m on the profile (Figure 34).

Between the January 2005 and December 2006 surveys the channel aggraded with 0.96 m of sand eroded from the Munroe Falls impoundment fill (Figure 34). By January 2013, the channel down cut through the aggraded sediment by 0.14 m. Following the removal of the LeFever Dam, the channel incised an additional 0.18 m by the September 2013 survey. The channel sands continued to be downcut through the winter of 2014 (0.12 m by December 2014) and spring of 2015 (0.25 m by May 2015). The channel reached the pre-Munroe Falls removal substrate at 25 m on the profile in 2015 as well. Nearly two thirds of the sand deposited following the Munroe Falls Dam removal was eroded (72% decrease in elevation) and transported downstream between December 2006 and May 2015 (Figure 34).

Further downstream in Zone 4 is transect D-8 located 4,023 m (ULFD) (Figure 16). The impoundment sediment from the former Munroe Falls Dam was deposited in the channel by May 2009 and the channel was stable through May 2012. The accumulation of sand was right of the center of the channel between 30-10 m on the profile. The thalweg was on river left at about 35 m on the profile and the thalweg was composed of cobbles reflecting the pre-Munroe Falls removal conditions (Figure 35). One month after the LeFever Dam removal (September 2013 survey) 0.5 m of sand was eroded at 20 m on

the profile (Figure 35). By the March 2014 survey, an additional ~ 0.7 m of downcutting occurred and the channel reached the pre-Munroe Falls removal substrate. In addition to this downcutting, 0.68 m of sand accumulated on river left due to the transport of LWD to this location (30-35 m on profile) between September 2013 and March 2014. From March to December 2014 more sediment was deposited in the lee of this LWD aggrading the channel at 30-35 m on the profile.

Moving further downstream is the location of transect D-10 located 3,310 m (ULFD) (Figure 16). Similar to the previously described transects in Zone 4, significant deposition of sands eroded from the Munroe Falls impoundment span the channel by the time of the May 2009 surveys (Figure 36). The maximum elevation of sand is maintained between the 2009-2010 surveys except on river left where the thalweg was scoured ~ 0.46 m. After the 2010 survey, extensive sand deposition occurred on the point bar and adjacent chutes located on river right. As a result, the local reference stake was buried and new one had to be emplaced. All of the surveys from 2011-2015 were measured from the new, local reference stake on the left bank. By May 2013, ~ 0.23 m of downcutting through the sand deposit occurred at 22-30 m on the profile (Figure 36). Between May 2013 and September 2013, the channel downcut an additional ~ 0.27 m. The LeFever Dam was also removed between these dates. From September 2013 to December 2014 the channel continued to downcut a total of ~ 0.17 m. Between the December 2014 and May 2015 surveys the 0.26 m of downcutting occurred in the thalweg while the channel on river right at 10-20 m on the profile aggraded 0.15 m.

Further downstream in Zone 4, is transect D-14 located 3,146 m (ULFD) at Water Works Park (Figure 16). This transect was not established until May 2013 so the initial aggradation of Munroe Falls sand is not recorded. However, field observations at this location following the removal of the Munroe Falls Dam showed that the right bank aggraded substantially with sand released from the former Munroe Falls Impoundment

(J. Peck personal communication). As of the May 2013 survey, Munroe Falls sand deposits comprised the right side of the profile and the thalweg was on river left between 0-17 m (Figure 37). Following the removal of the LeFever Dam in September 2013 the right bank was scoured ~ 0.38 m between ~ 29-39 m on the profile while the left bank remained stable. No significant geomorphic change occurred between September 2013 and October 2013. The right bank and mid-channel sediment bar laterally eroded (~1.77 m) toward river right between October 2013 and March 2014. Between the March 2014 and July 2014 surveys, the sediment bar was largely eroded away leaving a small barform at about 20 m on the profile. Downcutting and lateral erosion continued from July to December 2014 and resulted in a ~ 2.23 m recession of the right bank and the lowest incision at 27 m distance. The erosion recorded on the December 2014 survey was enhanced by the presence of a tree that had moved from upstream to the profile location. This log was angled in such a way as to direct the flow of the Cuyahoga River toward the right bank and this accelerated the erosion. The thalweg is now at 27 m at the same location as the log on the profile line that created obstacle scour of the bed.

Substantial geomorphic change took place between the December 2014 and May 2015 surveys as the trend of post-removal downcutting was reversed. At 29 m on the profile, the right bank aggraded 0.76 m with sand transported to this location from upstream. Sand stored in chutes to the right of transect D-14 likely deposited along the right bank because a small chute channel was observed to be actively discharging on the right bank. In the center of the channel between 25-35 m about 1 m of sediment accumulated. This extensive deposition of sand resulted from the seasonal high flows of the winter and spring that caused a sediment bar to migrate downstream to the profile location.

Transect D-11 located at 2,947 m (ULFD) coinciding with a meander bend having a cut bank and point bar. Following the Munroe Falls Dam removal, sands were deposited

Figure 37. Geomorphic profile of transect D-14 located 3,146 m upstream of the former LeFever Dam, surveyed from May 2013 to April 2015.

on the point bar on river left (Figure 38). From 2009 to 2010 the point bar was eroded slightly. By July 2011 the bar is nearly eroded away and by May 2013 the sands have been removed. The erosion of this sandy point bar is not related to the removal of the LeFever Dam because the LeFever Dam was removed after May 2013.

The furthest downstream geomorphic profile measured in Zone 4 is transect D-12 at 2,795 m (UFLD) (Figure 16). This transect was established in 2009 after the deposition of sediment from the Munroe Falls impoundment following the removal of the Munroe Falls Dam (Figure 39). The maximum bed elevation of the channel deposit was maintained from the May 2009 to the May 2013 surveys. Surveys during these four years display minor fluctuations in erosion/deposition across the channel as sandy dunes migrated downstream. For example between May 2010 and July 2011, sediment accumulated on both river right and river left. One month after the LeFever Dam was removed, the transect was surveyed in September 2013 and was found to resemble the May 2013 profile. However, by March 2014, the bed incised an average of ~ 0.42 m across the channel. Downcutting continued through December 2014 scouring sand from river right and incising portions of the central channel and left bank by 10-20 cm.

3.2.5 Zone 5

Zone 5 begins at the head of the LeFever Dam pool (2,670 m ULFD) and ends at the site of the former LeFever Dam (0 m ULFD) (Figure 16). This zone has shown rapid incision to the pre-dam substrate following the removal of the LeFever Dam. The LeFever impoundment delta and transects D-15, D-6, and D-13 are located in this zone and display this trend in geomorphic change. The furthest upstream geomorphic measurements made in Zone 5 are at the LeFever impoundment delta (2,415 m ULFD) but will be discussed in more detail in section 3.3 because a dense network of 3-D measurements were made rather than a channel cross section.

Just downstream of the delta is transect D-15 located at 2,216 m (ULFD) (Figure 16). Transect D-15 was established in September 2013 following the removal of the LeFever Dam. The channel bed is underlain by bedrock and the maximum, measured sediment thickness was ~ 0.67 m at 23 m on the September 2013 profile (Figure 40). In December 2013, ~ 4 months after the LeFever Dam was removed, about half of the sediment was eroded and transported downstream. The Cuyahoga River incised to bedrock by the March 2014 survey and bedrock continued to be exposed on the channel floor through the December 2014 survey. The channel floor at this location is primarily bedrock with patchy deposits of sand and gravel that are being actively transported downstream.

Much farther downstream is the widest geomorphic profile measured in Zone 5 (Figure 16). Transect D-6 is located 843 m (ULFD) and contains formerly impounded muddy sediment in the channel margins and a thalweg on river right (Figure 41). The December 2008 to May 2012 surveys were measured before the removal of the LeFever Dam and show very little geomorphic change when the dam was in place. The first post-removal survey was conducted one month after the LeFever Dam was removed in September 2013. This survey however, was not accurately referenced to the rebar on river right so the elevation of the channel floor is not a reliable measurement even though the channel width is accurate.

Four months after the LeFever Dam removal in December 2013, the Cuyahoga River had incised 1.02 m to bedrock at transect D-6 (Figure 41). By March 2014 the newly incised channel aggraded ~ 0.60 m with sand and gravel. Following the LeFever Dam removal the river formed wide and shallow channel. The channel at D-6 remains wide and shallow through the December 2014 survey, however the river continued to slowly erode the newly aggraded thalweg as well as the muddy channel margin on river left. Between March 2014 and May 2014 the thalweg downcut by 0.2 m with the most erosion on river left. The channel between ~20-45 m is composed of a thin layer of actively

Figure 40. Geomorphic profile of transect D-15 located 2,216 m upstream of the former LeFever Dam, surveyed from September 2013 to December 2014.

transporting sand and gravel that was deposited on top of the impoundment mud. The channel floor lowered by an average of 0.22 m between 20-45 m on the profile (Figure 41). Between May 2014 and August 2014, the main channel downcut an average of 0.18 m. From August 2014 to December 2014 the main channel downcut and additional 0.2 m at 45-48 m on the profile.

The total channel widening is difficult to determine at this transect because the left bank in not marked by a vertical scarp. The right bank has laterally eroded ~ 3.2 m from the December 2013 to December 2014 surveys. The channel at D-6 in December 2014 was 36.6 m wide with sand and gravel in bed load transport. The mud on the left bank (10-20 m on profile) experienced 0.16 m of lowering between the December 2014 and May 2015 surveys. The thalweg remained stable between these surveys as well. Former LeFever Dam pool mud is still present and is the thickest on the channel margins.

The final geomorphic profile measured in Zone 5 is transect D-13 (273 m ULFD) (Figure 16). When the LeFever Dam was in place, the channel was 41 m wide and \sim 3.5 m deep in May 2009 (Figure 42). Mud to gravel sized sediment comprised the left bank. After the LeFever Dam was removed, the channel narrowed to about 13.5 m wide and \sim 0.94 m deep on the August 2014 survey (Figure 42). No additional geomorphic data was collected here in 2015.

3.3 The LeFever Impoundment Delta

Before the 2005 Munroe Falls and 2013 LeFever Dam removals, two, deep water, low velocity impoundments existed within the middle Cuyahoga River. The initial sediment release following the Munroe Falls Dam removal was transported downstream, causing extensive sand deposition in Zone 4. Sand sedimentation was prevented from continuing downstream by the low velocity LeFever Dam pool (Zone 5) located 3.2 km downstream

of the former Munroe Falls Dam. This forced deposition of sandy sediment resulted in the formation of a large deltaic feature at the head of the former LeFever Dam pool known in this study as the LeFever impoundment delta.

Kasper and Peck (2013) observed the initial deposition of this deltaic feature several months after the Munroe Dam removal and determined that the deposit was ~1.35 m thick by 2009. High river discharge through March 2010 caused erosion of the delta top and subsequent downstream migration of 25 m (Peck and Kasper, 2013). Geomorphic surveys of this delta have since continued through 2015 and document the profound impacts of the LeFever Dam removal on the morphology and spatial extent of the deposit.

The deltaic deposit was dynamic in terms of its spatial extent and sedimentation/ erosion prior to the LeFever Dam removal as well. In July 2011, the deposit occupied the main channel of the Cuyahoga River while the chute on river right and downstream end of the delta had minimal amounts of sediment (Figure 43). By the May 2012 survey, the delta top aggraded 0.56 m in the lee of the mid-channel island (Figure 44). At the downstream end, the channel floor aggraded 0.81 m as migrating 2-D dunes with superimposed 2.5-D ripples moved downstream (Figure 44). However, between the May 2012 and May 2013 surveys, the delta top eroded 0.45 m while the downstream end eroded 0.70 m (Figure 45). Changes in bed elevation of the chute on river right were negligible between the July 2011 and May 2013 surveys. The spatial extent of the subaerially exposed delta sediment was dependent upon the discharge and water surface elevation on each survey date as well.

Eleven days after the LeFever Dam removal, the August 2013 survey revealed significant changes to the geomorphology of the impoundment delta. The water surface elevation dropped 0.48 m between the May and August 2013 surveys (Figure 46). Because discharge at Old Portage Path (waterdata.usgs.gov) was higher in August (5.64 m³/s) than in May (4.17 m³/s) the lowered water surface can be attributed to the

Figure 44. Map view of the geomorphology at the head of the former LeFever Dam pool on 5-17-12. Elevations relative to the local reference stake (LRS) and contoured at a 0.5 m interval. The water surface is -0.43 m from the LRS.

dewatering of the LeFever Dam pool. The upstream end of the delta top vertically eroded an average of 0.25 m. The downstream end then aggraded 0.35 m as did the chute on river right by an average of 0.24 m (Figure 46).

By the December 2013 survey the post-removal thalweg is well established between the vegetated island and mid-channel sediment bar (Figure 47). The 1.5 m wide thalweg incised into the underlying LeFever impoundment sediment creating mud furrows and 0.2-0.5 m tall scarps on the channel margins. The new thalweg aggraded 0.05 m with sand and gravel in active transport. The chute on river right also aggraded 0.36 m as a sand bar migrated downstream. The channel on river right and the downstream end of the delta contained sandy bedforms in active transport resulting in 0.17 m and 0.15 m of aggradation respectively. Bedrock was exposed at the upstream and downstream ends of the delta on river left as well.

Erosion of the delta sediment was prominent between December 2013 and March 2014. The thalweg experienced 0.71 m of vertical erosion as a sand bar eroded away and just downstream of the mid-channel sediment bar, 0.57 m vertical erosion occurred as well (Figure 48). On the downstream end of the delta, the sandy bedforms in transport during the December 2013 survey had moved downstream resulting in an average decrease in bed elevation of 0.42 m. Sand continued to be transported through the chute on river right.

Erosion continued through the May 2014 survey. The upstream end of the delta eroded further as the post-removal thalweg became deeper and wider (Figure 49). Bedrock was also exposed in the center channel downstream of the mid-channel sediment bar and in portions of the farthest left and right bank downstream of the vegetated island. LeFever impoundment clay was also exposed on the downstream end of the mid channel sediment bar. By the July 2014 survey the thalweg was very well established and spanned the entire length of the delta (Figure 50). The former mid-channel sand

Figure 49. Map view of the geomorphology at the head of the former LeFever Dam pool on 5-23-14. Elevations relative to the local reference stake and contoured at a 0.5 m interval. The water surface is -0.83 m from the LRS.

Figure 50. Map view of the geomorphology at the head of the former LeFever Dam pool on 7-25-14. Elevations relative to the local reference stake (LRS) and contoured at a 0.5 m interval. The water surface is -1.2 m from the LRS.

bar has been completely eroded leaving a small island of impoundment clay. The delta sediments continued to be eroded on river left through the December 2014 survey (Figure 51) and by the May 2015 survey only two small remnants of the clay island remained (Figure 52). Bedrock with very thin deposits of sand in gravel in active transport comprised the majority of the channel floor at the downstream end of the delta and near the clay remnants. The former impoundment clay will likely be eroded by the winter of 2015/2016.

3.4 Hydrologic Adjustments

The presence of the LeFever Dam induced major changes in the hydrology of the middle Cuyahoga River during its ~100 year existence. The dam created a wide, deep and low velocity pool that extended 2.67 km upstream to Water Works Park in Cuyahoga Falls. A detailed description of the dam pool characteristics can be found in Kasper (2010). Just as the presence of the LeFever Dam affected the hydrology of the middle Cuyahoga River; the removal of the dam caused significant changes to occur as well.

The August 2013 removal of the LeFever Dam resulted in a marked decrease in the cross sectional area of the channel and an accompanying increase in flow velocity within the former dam pool. Base level lowering resulted in an increase in the slope of the river, which increased the boundary shear stress under the new, free flowing conditions. Transects D-13 (273 m ULFD) and D-6 (843 m ULFD) are located closest to the former dam and best exhibit these hydrologic changes.

3.4.1 Cross Sectional Area and Velocity Changes in Zone 5

Transect D-13 is located closest to the former dam (273 m ULFD) and experienced the greatest change in channel cross sectional area following the LeFever Dam removal

Figure 51. Map view of the geomorphology at the head of the former LeFever Dam pool on 12-15-14. Elevations relative to the local reference stake and contoured at a 0.5 m interval. The water surface is -1.11 m from the LRS.

Figure 52. Map view of the geomorphology at the head of the former LeFever Dam pool on 5-3-15. Elevations relative to the local reference stake (LRS) and contoured at a 0.5 m interval. The water surface is -1.22 m from the LRS.

(Figure 53). It is important to note that the channel cross sectional area varies daily depending on the river discharge (Q) so pre and post-removal comparisons were made only on days of similar discharge. Pre-removal on May 14, 2009 the river discharge was 8.98 m³/s and post-removal on August 11, 2014 the river discharge was 8.04 m³/s. Therefore it is appropriate to compare these two survey dates. The cross sectional area of the channel on May 14, 2009 was 79.87 m² and decreased by 86.6% to 10.7 m² on August 11, 2014 following the removal of the dam (Figure 53). Although flow velocity data was not collected at this transect, field observations showed that the post-removal velocity increased from a slack-water impoundment to a stream flowing too fast to be waded across.

Transect D-6 is located further upstream from D-13 at 843 m (ULFD) and underwent similar hydrologic change. Pre-removal on May 17, 2012 the river discharge was 4.96 m³/s and post-removal on August 11, 2014 the river discharge was 8.04 m³/s. These discharge rates are comparable. Even though the post-removal cross sectional area was measured on a day when discharge was greater than the pre-removal discharge, the decrease in area was still quite substantial. The pre-removal cross sectional area was 84.3 m² and decreased by 84.5% to 13.1 m² following the removal of the LeFever Dam (Figure 54). The peak flow velocity also increased considerably. While the dam was in place, the maximum flow velocity through the deep water channel was only 0.06 m/s (Figure 54, Table 10). Post-removal the flow velocity became ~ nine times faster reaching 0.53 m/s in the thalweg (Figure 54, Table 11).

3.4.2 Changes in River Slope in Zone 5

The pre and post-removal slopes of the Cuyahoga River were measured within the former dam pool near transect D-6 (843 m UFLD). The pre-removal slope was calculated using the 7.5 minute Hudson Quadrangle 2 ft. topographic contour map (USGS, 1994).

Figure 53. Comparison of the pre (left) and post (right) removal geomorphic profiles and cross-sectional areas at transect D-13 located 273 m upstream of the former LeFever.

Distance (m)	Elevation (m)	Water Depth (m)	# Clicks per minute	0.4 Water Depth (m)	Segment Width (m)	Area (m ²)	Velocity (m/s)	Discharge (m ³ /sec)
65.1	-0.55	0.00	0	0.00	-	-	0.00	0.00
62.42	-1.09	0.53	0	0.21	3.68	1.95	0.00	0.00
60.42	-1.48	0.92	0	0.37	2.00	1.84	0.00	0.00
58.42	-1.73	1.17	0	0.47	2.00	2.34	0.00	0.00
54.42	-2.21	1.65	0	0.66	4.00	6.60	0.00	0.00
52.42	-2.73	2.17	6	0.87	2.00	4.34	0.03	0.13
50.42	-3.00	2.44	8	0.98	2.00	4.88	0.04	0.20
48.42	-2.86	2.3	10	0.92	2.00	4.60	0.05	0.23
46.42	-2.63	2.07	9	0.83	2.00	4.14	0.05	0.19
44.42	-2.43	1.87	8	0.75	2.00	3.74	0.04	0.15
42.42	-2.25	1.69	7	0.68	2.00	3.38	0.04	0.12
40.42	-2.14	1.58	10	0.63	2.00	3.16	0.05	0.16
38.42	-2.06	1.5	7	0.60	2.00	3.00	0.04	0.11
36.42	-2.04	1.48	7	0.59	2.00	2.96	0.04	0.11
34.42	-1.97	1.41	4	0.56	2.00	2.82	0.02	0.06
32.42	-1.97	1.41	7	0.56	2.00	2.82	0.04	0.10
30.42	-1.95	1.39	10	0.56	2.00	2.78	0.05	0.14
28.42	-1.86	1.3	9	0.52	2.00	2.60	0.05	0.12
26.42	-1.88	1.32	12	0.53	2.00	2.64	0.06	0.16
24.42	-1.84	1.28	6	0.51	2.00	2.56	0.03	0.08
22.42	-1.82	1.26	9	0.50	2.00	2.52	0.05	0.12
20.42	-1.80	1.24	6	0.50	2.00	2.48	0.03	0.08
18.42	-1.78	1.22	7	0.49	2.00	2.44	0.04	0.09
16.42	-1.72	1.16	7	0.46	2.00	2.32	0.04	0.08
14.42	-1.69	1.13	7	0.45	2.00	2.26	0.04	0.08
12.42	-1.62	1.06	4	0.42	2.00	2.12	0.02	0.04
10.42	-1.46	0.9	0	0.36	2.00	1.80	0.00	0.00
8.42	-1.31	0.75	0	0.30	2.00	1.50	0.00	0.00
6.42	-1.13	0.57	0	0.23	6.50	3.71	0.00	0.00
0.92	-0.56	0.00	0	0.00	-	-	0.00	0.00
					TOTAL	84.29	TOTAL	2.54

Table 10. Combined survey and flow data used to calculate Cuyahoga River discharge at transect D-6 on 5-17-12. The number of clicks per minute is multiplied by the constant 0.0050813 to obtain flow velocity (m/s).

Distance (m)	Elevation (m)	Water Depth (m)	# Clicks per minute	0.4 Water Depth (m)	Segment Width (m)	Area (m ²)	Velocity (m/s)	Discharge (m ³ /sec)
55.05	-2.57	0.00	0.0	0.00	-	-	0.00	0.00
54.55	-2.79	0.22	40.0	0.09	1.00	0.22	0.20	0.04
53.55	-2.99	0.42	79.0	0.17	1.00	0.42	0.40	0.17
51.55	-3.40	0.83	100.0	0.33	2.00	1.66	0.51	0.84
49.55	-3.49	0.92	97.0	0.37	2.00	1.84	0.49	0.91
47.55	-3.25	0.68	102.0	0.27	2.00	1.36	0.52	0.70
45.55	-3.18	0.61	100.0	0.24	2.00	1.22	0.51	0.62
43.55	-3.13	0.56	80.0	0.22	2.00	1.12	0.41	0.46
41.55	-3.05	0.48	88.0	0.19	2.00	0.96	0.45	0.43
39.55	-2.93	0.36	86.0	0.14	2.00	0.72	0.44	0.31
37.55	-2.90	0.33	65.0	0.13	2.00	0.66	0.33	0.22
35.55	-2.87	0.3	104.0	0.12	2.00	0.60	0.53	0.32
33.55	-2.87	0.3	90.5	0.12	2.00	0.60	0.46	0.28
31.55	-2.81	0.24	64.0	0.10	2.00	0.48	0.33	0.16
29.55	-2.72	0.15	50.0	0.06	2.00	0.30	0.25	0.08
27.55	-2.71	0.14	21.0	0.06	2.00	0.28	0.11	0.03
25.55	-2.70	0.13	20.0	0.05	2.00	0.26	0.10	0.03
23.55	-2.70	0.13	10.0	0.05	2.75	0.36	0.05	0.02
21.80	-2.57	0.00	0.0	0.00	-	-	0.00	0.00
					TOTAL	13.06	TOTAL	5.61

Table 11. Combined survey and flow data used to calculate Cuyahoga River discharge at transect D-6 on 8-11-14. The number of clicks per minute is multiplied by the constant 0.0050813 to obtain flow velocity (m/s).

=

The post-removal slope was surveyed on August 11, 2014. The removal of 4.1 m high LeFever Dam resulted in a base level lowering comparable to the height of the dam and was responsible for the increase in river slope. The slope more than doubled as it increased from 0.00029 m/m to 0.00066 m/m.

CHAPTER IV DISCUSSION

4.1 Changing Energy of the Cuyahoga River

After the LeFever Dam was removed in 2013, the channel width and depth upstream of the former dam decreased, whereas the river slope increased due to base level lowering. These physical changes yielded an increase in erosive energy that resulted in the post-removal erosion of the impoundment sediment. Pre and post-removal stream power and boundary shear stress were calculated to quantify the erosive capabilities in the upper and lower portions of the dam pool. The most significant physical changes occurred immediately upstream of the former dam whereas physical changes were less extensive further upstream (Table 12). The following describes (downstream to upstream) how the energy of the Cuyahoga River has changed following the LeFever Dam removal.

The increased erosive energy can be expressed in terms of boundary shear stress (τ_0) which is calculated using the DuBoys equation

where; λ is the fluid density, g is the acceleration due to gravity, Rh is the hydraulic radius (cross-sectional area/wetted perimeter) and S is the river slope (Boggs, 2011). The fluid density of the river water did not change following dam removal so it did

	Table 12. Measur stress (τ_o) and str discharge (Q), riv the measured dep normalized by the relationship.	red and calc eam power ver slope (S oth and velc e ratio of th	ulated paran (Ω) at transe (Ω) , flow veloc $)$, flow veloc ocity. Q_0 is the Q at $Old P$ is the Q at $Old P$	acters used 1 sets D-13, D ity (V), cros he discharge ortage and t	to calcula -6 and D- ss-section at Old P he measu	te the pre an -12. These v al area (A) a ortage strean red Q at D-6	d post-LeFev ariables are nd hydraulic n gauging str on 11 Aug	ver Dam (channel w radius (R ation (wat 14. Q _o [*] is	LFD) remov ridth (w), wa h). Average erdata.usgs. s used in the	/al boundary ater depth (d values were gov) and Qo calculated v	shear) river used for * was elocity
	Variahles and	anarow	Tr	ansect D-13		<u>T</u>	ransect D-6		Tr	ansect D-12	
	v ai iaulos aite	u uluigy ers	Pre LFD	Post LFD	%	Pre LFD	Post LFD	%	Pre LFD	Post LFD	%
			14 May 09	11 Aug 14	Change	17 May 12	11 Aug 14	Change	14 May 12	19 Aug 14	Change
		w (m)	41.55	13.7	-67	64.18	33.25	-48	21.7	19.75	6-
		d (m)	1.93	0.93	-52	1.28	0.4	-69	0.63	0.47	-24
	Measured	$Q(m^{3/s})$	·	ı	ı	2.54	5.61	121	ı	ı	I
	variables	$\rm Q_{\rm OP}$	8.98	8.05	-10	4.96	8.05	62	8.39	7.11	-15
1(Q_{OP}^{*}	6.26	5.61	-10	·	ı	ı	5.85	4.95	-15
)9		S (m/m)	0.00029	0.0072	2383	0.00029	0.00066	128	0.00029	0.00029	0
		V (m/s)	I	I		0.03	0.32	1081	·	ı	I
	Calculated	$A (m^2)$	7.9.7	10.7	-87	84.29	13.06	-85	14.24	13.66	-4
	variables	$R_{h}(m)$	1.76	0.69	-61	1.26	0.38	-70	0.62	0.66	9
	Calculated										
	velocity	V = Q/A	0.08	0.52	568	0.03	0.43	1325	0.41	0.36	-12
	relationship										
	Boundary Shear	$\mathfrak{r}_{\mathrm{o}}$	007	18 57	873	05 E	87 C	31	1 <i>T</i> K	1 22	y
	Stress	(N/m)	CC.+	10.01	610	<i>(C</i> . <i>C</i>	7.40	16-	1./0	1.00	0
	Stream Power	C	1 00	05 96	7541	0.17		105	12.0	92.0	0
	per unit width	(W/m^2)	1.00	NC.02	1407	U.14	0.4 <i>2</i>	CK1	U./1	U./0	0

not change τ_0 . The slope on the other hand, increased from 0.00029 m/m to 0.00066-0.0072 m/m (BBCM, 2008) in Zone 5 and remained unchanged (0.00029) m/m in Zone 4 (Peck personal measurement at Water Works Park, Sept. 2015). At transect D-13 (273 m ULFD) the cross-sectional area decreased by 87% and the calculated average velocity increased from 0.08 to 0.52 m/s (Table 12). Both of these changes yielded an increase in τ_0 from 4.99 to 48.57 N/m. Similarly, at transect D-6 (843 m ULFD) the cross-sectional area decreased by 85% and the measured average velocity increased from 0.03 to 0.32 m/s. τ_0 actually decreased from 3.59 to 2.48 N/m post-removal because the pre-removal hydraulic radius (Rh) was more than three times greater than the post-removal hydraulic radius. (Table 12). Within the former dam pool, the channel at transects D-13 and D-6 experienced similar decreases in cross-sectional area which was the dominant factor for increasing τ_0 .

Just upstream of the former dam pool (Zone 4) at transect D-12 (2,795 m ULFD), the cross-sectional area decreased by only 4% but the calculated velocity decreased by 10% (Table 12) (Figure 55). However, the mean daily discharge was less on the day the post-removal survey was conducted compared to the pre-removal survey so the calculated velocity will also be less post-removal. The river slope did not increase either, meaning the dominant mechanism for sediment erosion was the decrease in cross sectional area (Figure 55). Sediment no longer accumulates at the LeFever impoundment delta so Zone 4 sediments can be freely transported downstream as well.

While boundary shear stress is sufficient for quantifying the erosive energy of the Cuyahoga River, stream power (Ω) expresses how the river does work on the bed per unit area across the channel. Because the channel has become substantially narrower and shallower within the former dam pool, the increased erosive energy is now concentrated within the channel. Stream power was calculated at the same three transects above using the equation;

Figure 55. Comparison between the pre (left) and post-removal (right) cross-sectional areas within the former LeFever Dam pool and farther upstream. Transect D-6 (843 m ULFD) is located within the former dam pool and (top) transect D-12 (2,795 m ULFD) is located farther upstream near Water Works Park (bottom). The cross-sectional area at transect D-6 decreased by 85% post-removal and transect D-12 decreased by 4%.

where; ρ is the fluid density, g is the acceleration due to gravity, R_h is the hydraulic radius (cross-sectional area/wetted perimeter), S is the river slope, Q is the river discharge and w is the channel width (Boggs, 2011). Stream power increased substantially within the former dam pool at transects D-13 and D-6 (Table 12). The channel at D-13 experienced the greatest increase in Ω from 1.08 to 28.50 W/m² and is evident in the narrow, high velocity channel floored by bedrock (Table 12). Stream power at transect D-6 increased comparably from 0.14 to 0.42 W/m² post-removal. Upstream of the former dam pool at D-12, Ω slightly increased from 0.71 to 0.76 W/m².

The changes in fluvial energy and resulting impact on sedimentary processes can be described by the Hjulström Diagram. This diagram shows the relationship between flow velocity and the erosion, transport and deposition of sediment of varying grain size (Press and Siever, 1986). Although the Hjulström Diagram is limited to a channel with one meter flow depth and a bed composed of quartz spheres of uniform size, it can be used to predict the behavior of sediments under certain flow conditions (Boggs, 2011). At transect D-6 the post-removal bed was composed of 85% quartz and 15% lithic fragments with trace amounts of anthropogenic slag and cinders. The mean grain size was -1.26 ϕ and on August 11, 2014 the maximum flow velocity was 53 cm/s. These conditions plotted on the Hjulström Diagram at the boundary of erosion and transport of granules (Figure 56). The flow velocity of river in the former dam pool is great enough to erode and transport consolidated mud to granules and transport pebbles as bedload. Pre-removal the river was only capable of transporting unconsolidated mud up to coarse sand as bedload (Figure 56).

Figure 56. Hjulström diagram showing the relationship between flow velocity and the behavior of different sized sediments in a stream under 1 meter flow depth (modified from Press and Siever, 1986). The pre (red dot) and post-LeFever flow (green dot) velocities were measured on 5-17-2012 and 8-11-2014 at transect D-6 (843 m ULFD). The mean grain size for all of Zone 5 in those years was used for the grain sizes plotted above.

4.2 Geomorphic and Sediment Response to Dam Removal

Channel evolution models describe how a fluvial system progressively returns to equilibrium following dam removal. Channel evolution models are also beneficial for predicting how the channel will respond after a dam is removed as well as the rate at which channel adjustments progress through time (Doyle et al., 2002). Doyle et al. (2003) developed a channel evolution model based on the study of two low-head dam removals in Wisconsin (Figure 4). This model describes the geomorphic change in six sequential stages (A to F) resulting from a lowered base level, instantaneous increase in slope and decrease in water cross sectional area. The model incorporates grain size and cohesion of the impoundment sediment because these factors can control the rate and magnitude of channel adjustments (Doyle et al., 2005).

The 2013 removal of the LeFever Dam has brought about significant increases in fluvial energy that eroded and coarsened the channel sediments upstream of the former dam. The LeFever Dam removal impacted the channel in Zones 4 and 5 only, while Zones 1-3 continued long-term adjustments following the 2005 Munroe Falls Dam removal. The following sections discuss the long-term geomorphic and sedimentologic response in Zones 1-3 to the Munroe Falls Dam removal followed by an in-depth discussion of the response in Zones 4 and 5 to the LeFever Dam removal.

4.2.1 Long-Term Changes in the former Munroe Falls Dam Pool

Previous studies have been conducted upstream of the former Munroe Falls Dam (Zones 1, 2, 3) but the present thesis research incorporates new findings from the years 2011 through 2015. Rumschlag (2007) and Rumschlag and Peck (2007) concluded that the channel evolution model of Doyle et al. (2003) generally described the short-term morphologic change of the middle Cuyahoga River in response to the removal of the

Munroe Falls Dam. Stage A impoundment spanned the 113 year existence of the Munroe Falls Dam, trapping sediment upstream and eliminating the sediment supply downstream. Pre-removal in 2003-04 the sediment stored behind the dam (Zone 3) contained 71% sand and 20% organic rich mud (Table 8). Post-removal the channel upstream of the former dam (Zone 3) progressed from Stage A to Stage C (incision to the pre-dam substrate) in less than two months. Once the river eroded to the pre-dam substrate, Stage D degradation and widening commenced and persisted for ~ 2 years (Rumschlag, 2007; Rumschlag and Peck 2007). By March 2007, Zone 4 transitioned from Stage D to Stage E aggradation and widening as the former Munroe Falls impoundment sediment was transported downstream (Rumschlag, 2007; Rumschlag and Peck, 2007). As a result the gravel content decreased from 81% to 23% by 2008-09 as fine, well sorted sand occupied the channel (Table 8). Due to the prolonged erosion of the sandy impoundment upstream, the mean grain size and gravel content in Zone 4 increased to -1.78 ϕ and 55% by 2008-09 (Figure 57).

Five years after the removal of the Munroe Falls Dam the Cuyahoga River was still laterally eroding and Stage F quasi-equilibrium had not yet been reached (Kasper, 2010; Peck and Kasper, 2013). The upstream reach (Zones 1-3) hardly aggraded with sand, rather the channel floor became a gravel lag deposit composed of 73% - 85% gravel having a mean grain size -1.92 to -2.86ϕ (Kasper, 2010) (Table 9) (Figure 57). It took ~ 2 years after the Munroe Falls Dam was removed for the mean grain size to increase from sand to gravel whereas former LeFever Dam pool coarsened to gravel within one year post-removal (Figure 57). The channel downstream of the former Munroe Falls Dam experienced significant aggradation resulting from the upstream erosion and transport of the Munroe Falls impoundment sediment to the LeFever Dam pool (Zones 4,5). By 2012 the channel sediment contained 71% - 83% sand in Zones 4 and 5 (Table 9)

 $(Z \ 1 - Z \ 5)$. The grain size listed on the bottom of the figure indicates the future channel substrate once the river reaches dashed horizontal line represents the grain size boundary between sand and gravel. (Center) Map view of the Cuyahoga River showing the locations of the former LeFever (LF) and Munroe Falls Dam as well as the Zone boundaries a state of near-equilibrium.

The new findings from 2011 through 2015 have furthered the understanding of the long-term channel adjustments following the Munroe Falls Dam removal. Channel widening has been the prevailing form of geomorphic change while downcutting occurred in minor amounts because the post-removal channel is coarse grained and flows on resistant bedrock (Figure 57). Channel widening has occurred as episodic slump block erosion of the remnant Munroe Falls impoundment mud that composes the vegetated channel margins in Zones 1-3. The channel sediment has also coarsened significantly in the long-term and was composed of ~ 80% gravel and 20% sand with trace amounts of organic rich mud in 2014. Factors unrelated to the Munroe Falls Dam removal have also affected these geomorphic and sedimentologic changes in Zones 1-3 and are discussed in sections 4.3 and 4.4.

4.2.2 Geomorphic and Sediment Changes in the former LeFever Dam Pool (Zone 5)

The LeFever Dam was in place from 1914 to 2013 and represents the Stage A preremoval impoundment. The channel sediment was composed of 71% sand and 17% organic rich mud in Zone 5 due to ~100 years of sediment storage (Table 9). Stage B dewatering commenced as soon the dam removal process began on August 12, 2013 and ended by the completion of dam removal on August 19, 2013. Stage C incision then began when a headcut/knickpoint formed and migrated upstream by headward erosion. Kasper (2010) predicted that downcutting to the underlying bedrock would occur within days to weeks following the removal of the LeFever Dam. About four months postremoval on the December 17, 2013 survey the location of a 0.64 m tall headcut was discovered 1,000 m (ULFD) on river right (Figure 58). Upstream of the former LeFever Dam to the State Rt. 8 bridge (0-450 m ULFD), the thalweg had a thin deposit (<0.5 m) (Kasper, 2010), so the rate of headcut migration was calculated using the State Rt. 8 bridge as the starting point. The headcut propagated upstream at a rate of 117 m/mo,

Figure 58. Photographs of the former LeFever Dam pool viewed looking upstream ~ 4 mo. post removal. Photos A and B show the location of the headcut within the former dam pool (1,000 m ULFD) on December 17, 2013. Photos C and D show the same as A and B but with the 0.64 m tall headcut is outlined with a white dashed line.

eroding the impoundment sediment and exposing the underlying bedrock (Stage C). Downstream of the headcut on the December 17, 2013 survey at transect D-6 (843 m ULFD) bedrock was exposed on the channel floor (Figure 59). Stage C was met two months sooner in the former LeFever Dam pool than at a comparable location (U-3) in the former Munroe Falls Dam pool. The headcut could not be found on any subsequent survey most likely because it had completely migrated upstream through the impounded sediment and reached the location of the Doodlebug railroad bridge. With a headcut migration rate of 117 m/mo Stage C incision was completed through the wide dam pool section (0-1,146 m ULFD) by mid-February 2014.

The reach closest to the former LeFever Dam completed Stage C incision within days to weeks post removal based upon visual observations. It took 1-5 months longer to reach stage C at a similar location in the former Munroe Falls Dam pool (U-7). Subaerially exposed impoundment muds comprise the new channel margins. The exposed impoundment muds were slowly dewatered and underwent mass wasting by rotational slumping. Mass wasting of these muddy channel margins marks the onset of Stage D degradation and widening which was first observed 9 days post-removal (Figure 60). It is very unlikely that significant deposition will occur throughout Zone 5 in the future because a high velocity, bedrock channel with a steep slope was formed post-removal. The channel may widen during episodic slump block erosion of the muddy bank material during high discharge events (Stage E widening). Stage E aggradation is not likely to occur along this reach because the high energy channel acts a zone of transport.

Although Stage E aggradation has not occurred downstream of the St. Rt. 8 bridge, the middle and upper dam pool did undergo extensive aggradation as upstream sediment was eroded following the LeFever Dam removal. The sand content in Zone 5 increased by 18% while and sand content in Zone 4 decreased by 18% within one month post-removal. On December 19, 2013, (~4 months post removal) a sand wave

Figure 60. Photographs of the Cuyahoga River near transect D-13 (273 m ULFD). Photo A shows the river pre-LeFever removal on 8-9-13. Photo B was taken 9 days post-removal on 8-28-13 and shows extensive rotational slumping of the subaerially exposed impoundment mud on the channel margins. The red circle marks a stationary highway sign for reference and flow is from left to right.

with superimposed 2.5-D ripples was located just downstream of the Doodlebug railroad bridge (1,146 m ULFD) (Figure 61). This migrating sand wave represents the initial pulse of sediment being remobilized from the upstream portion of the LeFever Dam pool due to increased stream power exerted by the free flowing Cuyahoga River. The sand wave characterizes the aggradation element of Stage D of channel evolution. Doyle et al. (2002) discussed the transport of impounded sediment as a distinct unit which translates downstream as a sediment wave versus sediment dispersal. The sediment moves downstream as a sediment wave if it is finer than the sediment of the preexisting substrate (bedrock in Zone 5) and the thickness of the deposit is less than the depth of the channel (Doyle et al., 2003). It was likely that the sand wave accumulated here because there was a deep water hole immediately downstream of the Doodlebug railroad bridge. This deep water hole was a favorite location for people to jump from the bridge into the former dam pool without injuring themselves. The increased cross-sectional area of the deep water hole would produce the lower velocity conditions needed for sand deposition. This distinct wave morphology was not observed at any other time throughout the study but it affected the channel morphology at transect D-6 as it was transported downstream.

By the March 24, 2014 survey, the channel at 45-50 m on the D-6 profile (843 m ULFD) had aggraded ~0.60 m with sand transported from upstream (Figure 59). The scarp present in the December 2013 survey was buried by this deposition. The wide mud deposit between 17-45 m on the profile was 1.6 m thick on average and vertically eroded and compacted a total of 0.68 m by the March 2014 survey. This geomorphic change represents the transition from Stage D degradation and widening to Stage E aggradation and widening. The progression from Stage C to E was not recorded on specific survey dates but must have occurred sometime between the December 2013 and March 2014 surveys. Part of the 0.68 m vertical lowering of the left bank could be due to the compaction of the mud by sand and gravel deposition as the sediment wave

122

Figure 61. Photos of a migrating sand wave just downstream of the Doodlebug Railroad Bridge (1,146 m ULFD) first observed ~ 4 mo. post-LeFever removal on 12-19-13. A. is looking downstream from the bridge. B. shows the right side of the sand wave. C. is looking upstream and displays 2.5-D ripples in active transport. The white dashed lines mark the slip face of the sand wave.

moved through this location. Sand and gravel are denser than mud which leads to mud compaction. In addition, the loss of pore water in the muds when the left bank is exposed during low flow would further aid in compaction. The magnitude of bank subsidence due to the dewatering of the LeFever Dam pool is comparable to that in the Munroe Falls Dam pool (Zone 3). The 1.9 m thick mud deposit at transect U-2 compacted 0.61 m and at transect U-3, the 1.96 m thick mud deposit compacted 0.59. Channel widening in the former LeFever Dam pool did not occur by mass wasting as the channel evolution model of Doyle et al. (2003) describes. Instead the muddy impoundment sediment of the left bank was eroded vertically downward. This different style of erosion can be attributed to the following site specific conditions.

The muddy channel margins from 450-1,146 m ULFD did not reach their critical bank height (the height at which the over steepened bank collapses) when the LeFever Dam pool was dewatered. One small area on river left just downstream of the Doodlebug railroad bridge did reach its critical bank height and the channel widened by vertical slump block erosion. The exposed impoundment fill along the channel margins gently slope toward the new river channel and did not become stabilized by the growth of riparian vegetation except for the banks farthest inland. These margins are often inundated during moderate to high flows further preventing the growth of new vegetation (Figure 62). The St. Rt. 8 bridge abutments may also cause a ponding effect as the water is backed up behind them. Groundwater discharges at the base of the sandstone cliffs in many locations within the former dam pool which also prevents bank stabilization by plant growth.

Further upstream in Zone 5 is transect D-15 (2,216 m ULFD) and the LeFever impoundment delta (2,415 m ULFD), both of which exhibit morphologic changes consistent with the channel evolution model of Doyle et. al. (2003). Transect D-15 was first surveyed one month after the LeFever Dam was removed on September 7, 2013 and

Figure 62. Photographs of the former LeFever Dam pool from 450-1,146 m ULFD. Photo A was taken on 4-19-15 and shows the non-vegetated left and right banks. Photo B was taken on 6-15-15 and shows vegetated banks on the upland but exposed muddy sediment near the river on the left and right bank. Photo C was taken on 1-1-2015 and shows the water lines and extent of inundation of the muddy sediment; note the lack of vegetation near the water's edge.

represents the maximum bed elevation at that location (Figure 40). By the December 2013 survey the channel had vertically incised 0.48 m and Stage C degradation was completed by the March 2014 survey when the river incised to bedrock. It took the Cuyahoga River 7 months to vertically incise a total of 0.7 m to bedrock (complete Stage C) after the LeFever Dam was removed. This is quite different compared to the channel at transect D-6 in which the river incised 1.02 m to bedrock via headcut migration in about 4 months.

Transect D-15 continued to be surveyed in May, July and December of 2014 but showed no geomorphic change because the river was flowing on bedrock. The later stages of the channel evolution model were not observed here because this area is now a zone of transport and with a bedrock channel confined by a bedrock cliff on river left. River right is also a cliff but composed of vegetated soil with large amounts of coarse debris (bricks and cinder blocks) at its base. The river is now wide and shallow at this location so any additional widening is not likely. Temporary aggradation may occur here as upstream sediments are transported through. Overall, transect D-15 reached Stage F quasi-equilibrium by the completion of the December 2014 survey followed by eight months of morphologic stability.

Just upstream of transect D-15 is the LeFever impoundment delta (2,415 m ULFD) deposited at the head of the former LeFever Dam pool. The progression through channel evolution was more complex at this location than at D-15. Prior to the LeFever Dam removal on the May 2013 survey, a large, thick, fairly uniform body of sand spanned the main channel resulting in shallow water depths and no bedrock exposure (Figure 45). There was however, deeper water in the chute on river right because less sand was deposited in that channel. The delta did not undergo significant morphologic change by the August 2013 survey, but Stage B dewatering was complete as the spatial extent of subaerially exposed delta sediments significantly increased (Figure 46). The delta sands

continued to erode from the December 2013 through the March 2014 survey where bedrock was first exposed at the downstream end of the delta and along the channel on river left. Consolidated mud deposited in the former LeFever Dam pool was also observed near the mid channel sand island. This clay was buried by the initial deposition of the deltaic sediment after the Munroe Falls Dam was removed. The river has eroded the sandy sediment on top and exposed this resistant impoundment clay.

Significant erosion of all the delta sediment occurred by March 2014 and the thalweg was well established in the area between the mid-channel sand island and larger vegetated island (Figure 48). Stage C degradation was completed by the March 2014 survey and the delta then transitioned into Stage D degradation and widening. By the May 2014 survey, the thalweg reached Stage E aggradation and widening as sand and gravel was transported as bedload on top of bedrock. The areas of the delta beyond the thalweg continued to be eroded but did not undergo significant deposition. Through the duration of the study, sand and gravel continued to be transported as bedload on top of bedrock in the thalweg while the remainder of the deltaic sediments continued to be eroded eventually to reach the underlying bedrock.

By the May 2015 survey virtually all of the deltaic sediment had been eroded and transported downstream (Figure 52). Bedrock was exposed at the downstream end of the delta and on the farthest side of river left. Because impoundment clay is still present in the central channel, the delta is still in Stage E aggradation and widening but once the clay is eroded the transition into Stage F quasi-equilibrium can take place.

4.2.3 Zone 4

The progression through the stages of channel evolution in Zone 4 occurred along a different pathway than in Zone 5. Six transects within Zone 4 displayed morphologic changes consistent with the Stage C degradation in Doyle et al's. (2003) channel evolution model. These transects include D-5, D-2, D-8, D-10, D-14 and D-12 from 4,607 m (ULFD) to 2,795 m (ULFD). The Cuyahoga River flows over the gravel fill of a glacial buried valley (Figure 57) at the locations of these transects so bedrock did not control the depth to which downcutting occurred.

Transects D-5, D-2, D-8, D-10 and D-12 all experienced significant downcutting with minor channel widening following the LeFever Dam removal. D-14 has also experienced downcutting as well as channel widening. The rates at which the channel reached the pre-Munroe Falls Dam substrate and/or minimum bed elevation differed depending on the upstream distance from the former LeFever Dam and the amount of previously deposited Munroe Falls Dam pool sediment. It took the river 21 months for the channel to reach the pre-Munroe Falls Dam substrate at transects D-5 (4,607 m ULFD), D-2 (4,254 m ULFD), and D-10 (3,310 m ULFD). The channel at these locations had extensive deposits of sandy sediment which spanned the width of the channel. The channel at transect D-12 and at D-8 reached its minimum bed elevation in just 7 months post-removal. Erosion to the pre-dam substrate occurred at D-14 11 months post-removal.

Transect D-2 (4,254 m ULFD) best displays the rate and magnitude of Stage C channel incision resulting from the LeFever Dam removal (Figure 63). It took 21 months for incision to the pre-Munroe Falls substrate to occur at this location. One year post-removal by the August 2014 survey, nearly half of the channel sediment (0.47 m) had been eroded. By the May 2015 survey the river incised to the pre-Munroe Falls substrate therefore transitioning from Stage C degradation to Stage D degradation and widening. However channel widening in the future is not likely to be drastic at this location. In fact, significant channel widening is not likely to occur at any of the transects mentioned above because the river vertically eroded the majority of the preexisting sediment and is nearing equilibrium. In addition, sediments released from the Munroe Falls impoundment did not deposit in large quantities on the channel margins that would have reached a

critical bank height upon dewatering of the dam pool. But sands did accumulate in chutes on river right near transects D-10, D-14 and D-12 at Water Works Park. The right bank chute environment is most susceptible to lateral erosion in Zone 4 so the magnitude of channel widening should be the greatest at these three transects.

4.3 The Role of Large Woody Debris (LWD)

The channel evolution model describes the first-order change caused by dam removal but this study has also identified an additional element that enhances post-removal sediment dynamics and channel morphology. The presence of large woody debris (LWD) in the Cuyahoga River affected localized channel adjustments in several ways. LWD has both armored channel margins slowing erosion as well as constricted flow which increases bank erosion. As an obstacle scour in the channel, LWD results in both bed aggradation in the lee and obstacle scour erosion.

4.3.1 LWD Related Erosion

At transect U-2 (6,476 m ULFD) LWD that had armored the left bank was dislodged between the June 2008 and May 2009 surveys resulting in 2.75 m of lateral bank erosion (Figure 27) (Peck and Kasper, 2013). Transect U-6 (7,056 m ULFD) best illustrates how LWD constricts flow and enhances bank erosion. LWD was transported and deposited immediately downstream of transect U-6 in the winter of 2011-2012. This LWD directed flow into the right bank which is composed of former Munroe Falls Dam impoundment sediment (Figure 64). Field observations of a vertical scarp and recent slump blocks clearly show the enhanced bank erosion upstream of the LWD (Figure 64). Downstream of the LWD the bank remains vegetated and less prone to erosion. Before the arrival of the LWD obstacle, the right bank at U-6 was relatively stable between 2011 and

Figure 64. Photographs of large woody debris (LWD) related erosion at transect U-6 (7,056 m ULFD) in October 2012 (Peck personal communication). In both photos flow is from right to left and the scale bar is 1.5 m long. (Top) The extent of the LWD and actively eroding vertical scarp upstream (right) and vegetated bank downstream (left). (Bottom) Close up of the actively eroding bank and recent slump blocks. Note the boils on the stream surface upstream of the LWD.

2012 (Figure 26). After the LWD was deposited the right bank laterally eroded 3.5 m (Figure 26). Since the photographs in Figure 64 were taken, the LWD has moved further downstream and the eroding bank scarp has also moved downstream.

4.3.2 LWD Related Deposition

LWD in the channel creates an obstacle that promotes both sediment deposition and erosion. Peck and Kasper (2013) noted that mid-channel sediment deposits associated with LWD were present on profiles U-1 and U-4. Once the LWD at those locations was washed away the sediment deposits were eroded as well.

At Waterworks Park a high flow in the winter of 2013 brought LWD to the location of transect D-8 (Figure 65). Sediment was continually deposited in the low velocity lee thus temporarily storing sediment as a mid channel bar. Furthermore, this LWD redirected flow to the right side of the channel and accelerated the erosion of sands that had been previously deposited following the removal of the Munroe Falls

At Waterworks Park, LWD appeared at the location of transect D-14 (3,146 m ULFD) in the fall of 2014. The log directed flow towards the right bank promoting 2.36 m of erosion to the right bank (Figure 66). Where the tree trunk crossed the profile line at 30 m, flow was directed to the channel floor and scoured the channel to its lowest elevation (Figure 66). However, between the December 2014 and April 2015 profile the channel aggraded 0.69 m where the tree trunk intersects the profile line. The sediment dynamics associated with the presence of LWD have been variable at this particular location as well as the other transects described above.

The channel evolution model of Doyle et al. (2003) has been sufficient for describing the response of the Cuyahoga River to dam removal but LWD placement is unpredictable and has a significant local effect on channel erosion and deposition. LWD has additional implications in fluvial environments. LWD can form deep, shaded pools on their

upstream end which provides a favorable, nutrient rich habitat for anadromous fish and invertebrates (Abbe and Montgomery, 1996). In fact, from 1950-1980s LWD was widely removed from rivers to attempt to improve fish habitat, but today LWD is known to be a healthy part of the riparian system (Abbe and Montgomery, 1996). Removing LWD from rivers increases flow velocity and reduces the amount in-channel materials available for natural bank stabilization (McBroom et al., 2014). LWD has also been used as a cost effective, natural construction material for bank stabilization in many states throughout the U.S. as well as in Australia and British Columbia (Shields et al., 2004).

4.4 High Discharge Events

With increased flow velocities and large volumes of water in the channel; high discharge events erode and transport larger quantities of coarser grained sediment. Flooding events are frequently accompanied by prolonged precipitation which saturates the land surrounding the river increasing the potential for mass wasting. Oversaturated river banks/valleys and high flows can impact natural river systems in a profound way as well as accelerate the rate of channel evolution in a river reach recovering from dam removal. Since 2003, the frequency and magnitude of floods on the Cuyahoga River has increased (Liberatore, 2013) (Figure 67). In fact, since data collection began in the spring of 1922, six of the top ten historical floods on the Cuyahoga have occurred in 2003 or later (Figure 67) (waterdata.USGS.gov). Since the completion of the Munroe Falls Dam removal on October 31, 2005, there have been 42 days greater than 80 m³/s mean daily discharge on the middle Cuyahoga River (waterdata.USGS.gov) (Table 13). Following the study of Liberatore (2013) this study also chose 80 m³/s as the threshold for high flow. The middle Cuyahoga River has undergone significant geomorphic and sedimentologic

Figure 67. Stream hydrograph showing the mean daily discharge of the Cuyahoga River recorded at the Old Portage stream gauging station USGS 04206000 (waterdata.usgs.gov). In this study 80 m^3 /sec was chosen as the threshold for high discharge events and is represented by the red line. The numbered red dots represent the date and ranking of a historical flood based on instantaneous discharge (waterdata.usgs.gov). The 2005 Munroe Falls Dam removal (green triangle) and 2013 LeFever Dam removal (red triangle) are also shown.

change resulting from the Munroe Falls and LeFever Dam removals and high discharge events have aided in the process.

4.4.1 Upstream Changes

The river reach upstream of the former Munroe Falls Dam is characterized by thick, near-vertical banks of former impoundment mud. Transects U8-U1 are all located along this reach and display this channel morphology. The lateral erosion rates were the greatest within the first year after the Munroe Falls Dam was removed and rapidly decreased in the second year as the banks dewatered and were vegetated (Peck and Kasper, 2013) (Figure 68). These banks eroded by episodic, near vertical slump blocks. Between the spring of 2009 and January 2011 there were no high discharge events (Figure 68) and the bank erosion was near 0.0 m/mo for all transects except U-2 which declined from the previous years (Figure 68).

In February to March, 2011 there were fifteen consecutive days of high mean daily flow (> 80 m³/s) (Table 13). This prolonged period of high discharge resulted in marked increases in the lateral erosion rates at transects U-8, U-1, U-6, U-2, and U-3. Transects U-1 and U-3 were the most affect by the high flow as their lateral erosions rates increased by six-fold and nine-fold respectively (Figure 68). The channel at U-1 widened by 1.66 m and the channel at U-3 widened by 1.25 m between the May 2010 and July 2011 surveys.

Additional high discharge events occurred in the summer of 2013 and in the winter/ spring of 2014 causing accelerated lateral erosion at transects U-8, U-1, U-7 and U-3 (Table 13) (Figure 68). The channel at all of these locations experienced 0.5 m or more of channel widening. The most severe lateral erosion occurred at transect U-1 where the channel widened by 1.5 m. Due to irregular time intervals between surveys, transects U-6 and U-2 were affected not only by the two previously mentioned high flows but also five consecutive days of high flow in the spring of 2015. Between the October 2012 and May

Figure 68. Lateral erosion rates per year at transects U1-U8 located 10,107-7,325 m (ULFD). The downward pointing arrows indicate the times of the Monroe Falls (MFD) and LeFever Dam (LFD) removals. The legend in each graph is arranged in decreasing distance from the former LeFever Dam and the top graph displays the four upstream most transects. Data collected after 2010 has been added to the post-Munroe Falls erosion rates (Kasper, 2010; Peck and Kasper, 2013).

Date	Mean Daily Discharge (m^3/s)
	(111 / S)
1/15/2007	89
1/16/2007	91
1/17/2007	84
3/2/2007	81
3/16/2007	84
3/17/2007	88
3/18/2007	83
2/6/2008	101
2/7/2008	102
2/8/2008	106
2/9/2008	103
3/20/2008	88
3/21/2008	84
3/22/2008	84
2/12/2009	98
2/13/2009	95
2/14/2009	86
3/9/2009	85
3/10/2009	80
2/28/2011	96
3/1/2011	96
3/2/2011	93
3/3/2011	101
3/4/2011	90
3/5/2011	104
3/6/2011	109
3/7/2011	99
3/8/2011	97
3/9/2011	99
3/10/2011	118
3/11/2011	115
3/12/2011	110
3/13/2011	110
3/14/2011	94
5/26/2011	90

Table 13. Dates when the high discharge threshold of 80 m³/s was surpassed on the middle Cuyahoga River recorded by the Old Portage stream gauging station USGS 04206000 (waterdata.USGS.gov). The threshold was not surpassed until 1/15/2007, two years after the Munroe Falls Dam removal.

Jears arter the Wallie Tans Dam Temove	a (Continued):
Date	Mean Daily Discharge (m ³ /s)
7/11/2013	103
5/13/2014	83
3/14/2015	85
3/15/2015	97
3/16/2015	102
3/17/2015	106
3/18/2015	91

Table 13. Dates when the high discharge threshold of 80 m³/s was surpassed on the middle Cuyahoga River recorded by the Old Portage stream gauging station USGS 04206000 (waterdata.USGS.gov). The threshold was not surpassed until 1/15/2007, two years after the Munroe Falls Dam removal (Continued).

2015 surveys, the channel at U-6 widened by 3.5 m and by 0.75 m at U-2. Lateral erosion at transect U-6 was however enhanced by the presence of LWD.

The present day, long-term (10 years) relationship between high discharge events, the placement of LWD and channel erosion/deposition has been exemplified in Zones 1-3. This study has highlighted the local effect of these factors within the study reach and can be applied to the Cuyahoga River as whole. Although the Cuyahoga River is small compared to the large rivers of the world, the interplay of floods and LWD can be applied to other river systems. However, the mean annual discharge of a river and vegetative cover within its watershed changes based on geographic location. Also, higher discharge and LWD deposits composed of larger tree types exacerbates the sedimentologic and geomorphic impacts on the channel and flood plain. In a greater context, the modern analogue in this study provides quantitative information (which is lacking) (Colombera et al., 2013) for incorporating site specific occurrences into traditional alluvial facies models to better understand the ancient fluvial sedimentary record. Cross bedding and deep scour holes (erosional surfaces) are often used as indicators for fluvial environments in the sedimentary record (Latrubesse, 2015). This study has shown the LWD can cause obstacle scour and bar forms to accumulate in the channel that, if preserved, would closely resemble the cross beds and erosional surfaces that are often attributed to other mechanisms such as sharp meander bends, lithologic differences and tributary confluence (Latrubesse, 2015).

4.4.2 Downstream Changes

While channel widening has characterized the effects of high discharge events in the upstream Zones 1, 2, 3, vertical changes in downcutting and aggradation have resulted from flooding events in Zone 4 and 5. In order to accurately assess the role of flooding, it was important to determine the erosion rate induced purely by the LeFever Dam removal.

A high discharge event occurred between nearly all consecutive survey dates. However, when a flood did not occur between surveys, the erosion that took place was attributed to the increased stream energy resulting from the LeFever Dam removal alone. The total amount of erosion between consecutive surveys often exceeded the rate caused by the LeFever Dam removal therefore indicating that flooding events accelerate stream erosion.

The 6th (July 10, 2013) and 10th (May 13, 2014) largest floods on record on the Cuyahoga River and a five-day flood in March of 2015 increased stream erosion in Zones 4 and 5. The rate of downcutting already established by the LeFever Dam removal was accelerated during one or more of these flooding events at transect D-5, D-2, D-8, D-10, D-12, D-14 and D-6 (Table 14). Flooding events often doubled the rate of downcutting at most of the transects above and even caused channel aggradation as the former Munroe Falls impoundment sediment was transported downstream (Table 14). Transect D-6 experienced the greatest increase in the rate of downcutting and aggradation because it was located closest to the former LeFever Dam while the other transects were upstream of the dam pool. However, the rate of downcutting did not increase as drastically during the March 2015 flood at transects D-12 and D-6 because the highest erosion rates tends to occur immediately after dam removal, then decay in the long-term (Figure 69) (Kasper, 2013; Peck and Kasper, 2013). The long-term decrease in erosion is often interrupted during times of high discharge when erosion becomes more intense like in the year 2011 (Figure 69).

Although erosion rates have slowed in both the former Munroe Falls and LeFever Dam pools, the May 2014 flood mobilized a very large rotation slump which protruded into the left side of the river just downstream of transect D-6. The rotation slump was first observed on the May 23, 2014 survey and also exposed a portion of buried fiber optic cable (Figure 70). The former LeFever Dam pool provided support to the toe of the failed slope but saturated the land mass at the same time. Once the dam pool was

142

Table 14. Rates of downcutting due to floods (Flood Erosion) and the LeFever Dam removal (Non-Flood Erosion) at seven transects in Zones 4 and 5. Mean daily discharge values greater than 80 m³/s are considered a flooding event. The time between surveys was normalized using a 31-day month. When no floods occurred between consecutive surveys, the erosion was attributed to the LeFever Dam removal. * indicates the mean daily discharge on 12/22/13 was 79 m³/s. Bold values were affected by LWD and (+) values indicate channel aggradation rather than erosion.

		No.Days	No. Davs	Flood	Flood	Non-Flood
Transect	Survey Date	Between	$> 80 \text{ m}^{3}/\text{s}$	Rank	Erosion	Erosion
		Surveys		th	(m/mo)	(m/mo)
	Mar 2014 - Jul 2014	123	1	6 th	0.05	-
D-5	Jul 2014 - Dec 2014	142	0	-	-	0.02
	Dec 2014 - May 2015	140	5	-	0.06	-
	Sep 2013 - Mar 2014	201	0 *	-	-	0.01
D-2	Mar 2014 - Aug 2014	135	1	6^{th}	0.01	-
	Aug 2014 - May 2015	269	5	-	0.03	
	May 2012 - Sep 2013	481	1	10^{th}	0.03	-
D-8	Sep 2013 - Mar 2014	201	0	-	-	0.07
	Aug 2014 - Dec 2014	117	0 *	-	-	0.08
	May 2012 - May 2013	371	0	-	+ 0.03	-
	May 2013 - Sep 2013	110	1	10^{th}	0.09	-
D-10	Sep 2013 - Mar 2014	198	0 *	-	-	0.03
	Mar 2014 - Aug 2014	143	1	6^{th}	0.03	-
	Aug 2014 - Dec 2014	117	0	-	-	0.04
D-14	May 2013 - Sep 2013	110	1	10^{th}	0.14	-
	Sep 2013 - Oct 2013	52	0	-	-	0.06
	Oct 2013 - Mar 2014	146	0 *	-	-	0.08
	Mar 2014 - Jul 2014	120	1	6^{th}	0.19	-
	Jul 2014 - Dec 2014	145	0	-	-	0.08
	Sep 2013 - Mar 2014	198	0 *	-		0.08
D-12	Mar 2014 - Aug 2014	143	1	6^{th}	0.13	-
D^{-1}	Aug 2014 - Dec 2014	117	0	-	-	+0.03
	Dec 2014 - Apr 2015	119	5	-	0.07	
	May 2012 - Dec 2013	548	1 *	10^{th}	0.06	-
	Dec 2013 - Mar 2014	97	0 *	-		0.03, + 0.22
D-6	Mar 2014 - May 2014	60	1	6^{th}	0.31	-
	May 2014 - Aug 2014	80	0	-	-	0.07
	Aug 2014 - Apr 2015	244	5	-	0.02	+0.02

Figure 69. (Top) Stream hydrograph showing the mean daily discharge from 2004 - 2016 at Old Portage stream gauging station USGS 04206000 (waterdata.usgs.gov). (Bottom) Lateral erosion rates per year at five transects upstream of the former Munroe Falls Dam (MFD) (Peck and Kasper, 2013). The removal of the former LeFever Dam is also shown (LFD). The blue rectangles border portions of the years 2009 through 2011 and highlight the relationship between frequent high discharge events and elevated lateral erosion in the long-term following the Munroe Falls Dam removal.

Figure 70. Photograph of rotational slump just downstream of transect D-6 (843 m ULFD) taken on November 30, 2014. The slump was first observed in the former dam pool on May 23, 2014 and occurred during a heavy precipitation event and the 6th largest flood on the Cuyahoga River on May 13, 2014.

dewatered, the pore fluid pressure in the saturated bank material decreased which could have caused the mass wasting to occur (Jiao et. al., 2014). On the other hand, prolonged precipitation during the May 13, 2014 flood may have led to soil oversaturation therefore causing the slumping event (Liang et. al. 2014). The specific conditions that caused this rotational slump cannot be ascertained but it is likely a combination of both scenarios. Mass wasting like this could have happened anywhere in the downstream end of Zone 5. The right side of this reach is bordered by the urban infrastructure of Cuyahoga Falls which easily could have been subjected to this slope failure. Assessing slope stability is important in the dam removal process because mass wasting could lead to property damage and human injury.

4.5 Future Conditions

Based upon the ten years of data collection in Zones 1-3 and the current rate of channel of evolution in Zones 4 and 5, the likely future conditions of the Cuyahoga River can be predicted. Transects U-3 and D-6 are located immediately upstream of the former Munroe Falls Dam and LeFever Dam respectively. While the dams were in place, these transects represented dam pool locations having the deepest water, greatest channel width, and largest quantities of impounded sediment. The long term response of the Cuyahoga River to the Munroe Falls Dam removal has been assessed with continued geomorphic surveys so those data can aid in predicting the future conditions within the LeFever Dam pool. During low flow on the August 2014 (~10 years post-Munroe Falls removal), the channel at transect U-3 was ~30 m wide, ~0.5 m deep, floored by bedrock and had vegetated banks of impoundment mud (Figure 71). During the August 2014 survey (~1 year post-LeFever removal) the channel at transect D-6 was also ~30 m wide and ~0.5 m deep (Figure 71). The river was not flowing on bed rock because

Figure 71. Comparison between the geomorphology at transect D-6 (843 m ULFD) (top) and transect U-3 (5,765 m ULFD) (bottom). The channel at transect U-3 has had ~10 years to adjust after the Munroe Falls Dan removal and the channel at transect D-6 has had ~2 years to adjust after the LeFever Dam removal. The elevation of the future water surface at D-6 is likely to be attained within ~5 years post removal.

the thalweg had aggraded with sand and gravel transported from upstream. However, as the impoundment sediment continues to be transported downstream it is likely that the channel will be floored by bedrock in the future (Figure 57). Impoundment mud occupies the channel margins but is not as extensively vegetated as the banks at U-3, nor do the banks have vertical scarps. Once the impoundment sediment from the former LeFever Dam is entirely transported downstream, the river should flow on top of bedrock as it does at transect U-3 (Figure 71). The channel will also widen episodically during seasonal floods. Furthermore, because no significant tributaries enter the Cuyahoga River between U-3 and U-6 both locations should have similar low flow widths (30 m) and depths (0.5 m) (Figure 71).

Predicating future channel conditions after dam removal is important for a number of reasons including the health and safety of wild life downstream of the dam, risk assessment for property damage and flood control. The channel in former LeFever Dam pool should be ~30 m wide, ~0.5 m deep, flow on top of bedrock and be flanked by partially vegetated banks of impoundment mud (Figure 72). Because dam removal has been shown to improve water quality, potential recreation opportunities are also considered after dam removal. In fact, this study has aided in the planning of a boat launch construction project at Waterfront Park just upstream of transect D-6. These data were presented to a panel of professionals at City Hall in Cuyahoga Falls, Ohio. The city of Cuyahoga Falls desired to build a boat ramp on the right bank. Because only ~1 m of impoundment mud underlain by bedrock remains, it was concluded that the construction of this ramp was feasible (Figure 72). The City successfully gained the funding to complete this project and will begin the construction process within two years.

Because the banks of impoundment mud are often inundated during medium to high flows and wetted by groundwater discharge, there will always be portions of the banks that are saturated. From the Waterfront Park standpoint, the saturated banks are not safe

Figure 72. Geomorphic profile of transect D-6 (843 m ULFD) representing the future conditions within the former LeFever Dam pool. The river will flow on top of bedrock and former impoundment mud will occupy the channel margins. It is likely that the banks closest to the water's edge will always be saturated.

for children because it is very easy to sink into the impoundment mud. The mud is also polluted (Kasper, 2013) and contains a large amount of litter and debris which is also not a safe environment for recreation. Furthermore, there are locations that are dewatered and safe to walk on so in time, the conditions of the former dam pool will improve and Waterfront Park will become a safer and cleaner place for recreation.

CHAPTER V CONCLUSIONS

Summary

The growing trend of removing dams as a river restoration technique necessitates a deeper understanding of how a river system will equilibrate following dam removal. Predicting how a river system will adjust to dam removal is also of great importance because rivers provide the habitat for an abundance of biota. This thesis quantified the response of the Cuyahoga River in the 1.5 years following the LeFever Dam removal and furthered the understanding of the long-term adjustments following the Munroe Falls Dam removal upstream. The major findings of this thesis research are:

- The LeFever Dam removal increased stream power by about 26 times within the former dam pool (Zone 5) due to an increase in river slope from 0.00029 to 0.0072 m/m and an 87 % decrease in channel cross-sectional area.
- The peak stream velocity in the former dam pool increased from 0.06 to 0.53 m/s post-removal. This increase in velocity is great enough to erode and transport consolidated mud to granules and transport small cobbles as bedload whereas the pre-removal dam pool could only transport unconsolidated mud to coarse sand as bedload.
- Stage C incision to the pre-dam substrate occurred two months sooner in the former LeFever Dam pool (D-6) than at a comparable location in the former Munroe Falls Dam pool (U-3). Stage D degradation and widening is still

occurring within the former Munroe Falls Dam pool (10 years post-removal) and aggradation of sand is not likely because the channel has become a gravel lag deposit. Stage E aggradation and widening occurred in the former LeFever Dam pool within 4 months post removal and reached stage F quasi-equilibrium within 7 months at transect D-15.

- The LeFever impoundment delta was almost completely eroded by the May 2015 survey. This location will likely reach Stage F quasi equilibrium by May 2016. Bedrock with very thin deposits of sand and gravel in active transport will comprise the channel substrate near the Zone 4/Zone 5 boundary.
- Large woody debris has had a significant local effect on channel erosion/ deposition throughout the study reach and should be considered in channel evolution models.
- High discharge events have been shown to nearly double the rate of downcutting induced by the LeFever Dam removal in Zones 4 and 5. Flooding has also temporarily increased the rate of lateral erosion of the former Munroe Falls impoundment mud in Zones 1-3. Even though lateral erosion is increased episodically in Zones 1-3, the overall trend of lateral erosion has decreased in the long-term.
- Channel coarsening and depletion of organic rich mud was the prevailing sedimentological change following the LeFever and Munroe Falls Dam removals because flow velocity significantly increased post-removal. The mean grain size increased from 2.41 \$\phi\$ in 2003-04 to -3.39 \$\phi\$ in 2014 upstream of the former Munroe Falls Dam and increased from 1.99 \$\phi\$ in 2008-09 to -1.26 \$\phi\$ in 2014 upstream of the LeFever Dam.
- Based upon the long-term morphological response of the Munroe Falls Dam removal and short-term response of the LeFever Dam removal, the likely future

conditions within the former LeFever Dam pool can be predicated. During low flow, the channel will likely be \sim 30 m wide, \sim 0.5 m deep, flow on top of bedrock and be flanked by partially vegetated banks of former impoundment mud.

• These future conditions are favorable for recreation along the waterfront and this research has aided the city of Cuyahoga Falls in the planning of a boat ramp construction project within the former LeFever Dam pool.

REFERENCES

- Abbe, T. B., Montgomery, D. R., 1996, Large woody debris jams, channel hydraulics and habitat formation in large rivers, Regulated Rivers: Research & Management. v. 12, p. 201-221.
- Ager, D. V., The Nature of the Stratigraphic Record, second edition, New York, Halsted Press. 1981: p. 36-48
- BBC&M Engineering, Inc, 2008, Hydrologic Engineering Report-Cuyahoga River Study Cuyahoga Falls, Ohio, no. 1, 31 p.
- Bednarek, A. T., 2001, Undamming Rivers: A review of the Ecological Impacts of Dam Removal. Environmental Management 27, no. 6, p. 803-814.
- Burroughs, B. A., Hayes, D. B., Klomp, K.D., Hansen, J. F., Mitak, J., 2009, Effects of Stronach Dam removal on fluvial geomorphology in the Pine River, Michigan, United States. Geomorphology 110, no. ³/₄, p. 96-107.
- Boggs, S., Jr., Principles of Sedimentation and Stratigraphy, fourth edition, Upper Saddle River, New Jersey, Pearson Prentice Hall: p 21-47.
- Cannatelli, K. M., Curran, J, C., 2012, Importance of Hydrology on Channel Evolution Following Dam Removal: Case Study and Conceptual Model. Journal Of Hydraulic Engineering 138, no.5, p. 377-390.
- Colombera, L., Mountney, N. P., McCaffrey, W. D., 2013, A quantitative approach to fluvial facies models: Methods and example results. Sedimentology, no. 60, p. 1526-1558.
- Csiki, S., Rhoads, B. L., 2010, Hydraulic and geomorphological effects of run-of-river dams. Progress In Physical Geography 34, no. 6, p. 755-780.
- Csiki, S., Rhoads, B. L., 2013, Influence of four run-of-river dams on channel morphology and sediment characteristics in Illinois, USA. No. 206, p. 215-229.
- Dean, W. E., Jr., 1974, Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods: Journal of Sedimentary Petrology, v. 44, p. 242-248.
- Demasi, T., 2011, Finding no significant impacts to all interested citizens, organizations and government agencies. Ohio Environmental Protection Agency Environmental Assessment-Cuyahoga Falls Dam Removal. WRRSP no. WR390296-0004, 6 p.

- Doyle, M. W., Stanley, E. H., Harbor, J. M., 2003, Channel adjustments following two dam removals in Wisconsin. Water Resources Research v. 39, no. 1, 1011.
- Doyle, M. W., Stanley, E. H., Orr, C.H., Selle, A. R., Sethi, S. A., Harbor, J. M., 2005, Stream Ecosystem response to small dam removal: Lessons from the Heartland. Geomorphology v.71 p. 227-244.
- Evans, J. E., 2007, Sediment impacts of the 1994 failure of IVEX dam (Chagrin River, NE Ohio); a test of channel evolution models. Journal of Great Lakes Research 33, no. Special issue 2, p. 90-102.
- Folk, R. L., 1980, Petrology of Sedimentary Rocks: Austin, TX Hemphill Publishing Company, p. 15-84.
- Green, S. L., Krause, A. J., Knox. J. C., 2013, A decade of geomorphic and hydraulic response to the LaValle Dam project, Baraboo River, Wisconsin. Journal of the American Water Resources Association, v. 49 no. 6, p. 1473-1484.
- Hardlines Design Company (HDC), 2011, Phase I History/Architecture Evaluation of Two Concrete Dams on the Cuyahoga River. HDC 1168, p. 8-13, 26-28.
- Harris, N., Evans, J., 2014. Channel Evolution of Sandy Reservoir Sediments following low-head dam removal, Ottawa River, Northwestern Ohio, U.S.A. Open Journal of Modern Hydrology no.4, p. 44-56.
- Heinz Center, 2002, Dam Removal Science and Decision Making, The H. John Heinz III Center for Science, Economics and the Environment, 263 p.
- ICF Consulting, 2005, A summary of existing research on low-head dam removal projects, NCHRP Project 25-25, Task 14, National Cooperative Highway Research Program, Transportation Research Board, no. 1, 170 p.
- Kasper, N. A., An assessment of the LaFever Dam pool, middle Cuyahoga River, Summit County, Ohio. Master's Thesis. Department of Geology, University of Akron, 2010.
- Krieger, K. A., Zawiski B., 2013, Changes in biotic and habitat indices in response to dam removals in Ohio. Reviews In Engineering Geology v. 21, p. 105-116.
- Latrubesse, M. E., 2015, Large rivers, megafans and other quaternary avulsive fluvial systems: A potential "who's who" in the geological record, Earth-Science Reviews. no. 146, p. 1-30.
- Liberatore, S., Changes in Geomorphic Equilibrium on Furnace Run, Summit County, Ohio., Masters Thesis. Department of Geology, University of Akron, 2013.
- McBroom, M., Ringer, .M, Zhang, Y., 2014, Instream woody debris and riparian forest characteristics in the Sabine River Texas. Proceedings of the 5th Big Thicket Science Conference: Changing Landscapes and changing Climate, Southeastern Naturalist, v. 13, p. 1-14.
- Ohio Environmental Protection Agency Division of Surface Water, 2003, Total Maximum Daily Loads for the Lower Cuyahoga River, Final report. 102 p.

- Raub, E. J., The Walsh Industries in Cuyahoga Falls. Unpublished report from the Cuyahoga Falls Historical Society, 1984.
- Rumschlag, J. H., The sediment and morphologic response of the Cuyahoga River to the removal of the Munroe Falls Dam, Summit County, Ohio. Master's Thesis. Department of Geology, University of Akron, 2007.
- Rumschlag, J, H., Peck J. A., 2007, Short-term sediment and morphologic response of the middle Cuyahoga River to the removal of the Munroe Falls dam, Summit County, Ohio. Journal Of Great Lakes Research 33, no. Special issue 2, p. 142-153.
- Peck, J, A., Kasper N. R., 2013, Multiyear assessment of the sedimentological impacts of the removal of the Munroe Falls Dam on the middle Cuyahoga River, Ohio. Reviews In Engineering Geology v. 21, p. 81-92.
- Peck, J. A., Mullen, A., Moore, A., Rumschlag, J. H., 2007, The legacy sediment record within the Munroe Falls dam pool, Cuyahoga River, Summit County, Ohio. Journal of Great Lakes Research 33, no. Special issue 2, p. 127-141.
- Peck, M., 2012, Middle Cuyahoga River Watershed Action Plan, Northeast Ohio Four County Regional Planning and Development Organization, no. 1, 491 p.

Press, F., Siever, R., Earth, fourth edition, New York, W.H. Freeman and Company, 1986.

- Schiefer, M. C., 2002, Basin Descriptions and flow Characteristics of Ohio Streams. Ohio Department of Natural resources Division of Water, Bulletin 47, p. 12-26.
- Shields, F. D. Jr., Morin, N., Cooper, C. M., 2004, Large woody debris structures for sand-bed channels, Journal of Hydraulic Engineering v. 217, p. 1-12.
- Stanley, E. H., Doyle, M. W., 2002, A Geomorphic Perspective on Nutrient Retention Following Dam Removal. Bioscience v. 52, no. 8 p. 693.

Summit County Interactive GIS Database, 2014. scids.summitoh.net

Surface Water data for USA, 2014, Old Portage Stream Gauge USGS 04206000USGS, Surface- Water Daily Statistics. http://waterdata.usgs.gov.

Szabo, J, P., 1987, Wisconsinan stratigraphy of the Cuyahoga Valley in the Erie Basin, northeastern Ohio. Canadian Journal of Earth Science. v. 24, p. 279-290.

- Szabo, J. P., Ryan, D. E., 1981, Quaternary Stratigraphy of the Lower Mud Brook Basin,Northampton Township, Summit County, Ohio. Ohio Journal of Science. v. 81 no. 6, p. 239.
- Szabo, J. P., Huth-Pyscher, C. G., Kushner, V. A., 2013, Vertical Variability and Latera Distribution of Late Wisconsinan Sediments Parallel to the Axis of the Buried Valley of Mud Brook North of Akron, Summit County, Ohio. Ohio Journal of Science v. 111 no. 2-5, p.18-27.

USGS., 1994, 7.5 minute Hudson Quadrangle 2 ft. topographic contour map.

Jiao, Yu-Yong, Zhang, Huan-Qiang, Tang, Hui-Ming, Zhang, Xiu-Li, Adoko, Amoussou Coffi, Tian, Hu-Nan., 2014, Simulating the process of reservoir impoundment- induced landslide using the extended DDA method, Engineering Geology, v. 39, no. 1, 1011.

APPENDICES

APPENDIX A

GRAIN SIZE DATA OF SEDIMENT SAMPLES FROM THE DEEP WATER CHANNEL ENVIRONMENT

Grain size analysis was performed on deep water sediment samples collected from 2013 through 2014 following the method of Folk (1980). Samples were sieved at half phi intervals. Mud fractions (> 4 ϕ) were measured using the pipette method. Sample identifications ending in "R" are the replicate samples.

		$f(m_{\varphi}-x)^3$	-875.464	-0.243	0.000	0.143	5.772	13.366	36.255	43.436	76.502	111.672	291.916	468.165	519.516	336.679	169.708	73.118	24.205	58.555	1353.301		
		$(m_{\Phi}$ -x) ³	-17.010	-0.123	0.000	0.079	0.800	2.913	7.169	14.318	25.108	40.291	60.616	86.834	119.694	159.946	208.341	265.628	332.557	409.879			
		$f(m_{\varphi}\text{-}x)^2$	340.413	0.490	0.000	0.335	6.218	9.358	18.802	17.888	26.126	32.574	74.312	105.723	105.416	62.024	28.627	11.375	3.494	7.883	851.058		
		$(m_{\phi}-x)^2$	6.614	0.247	0.000	0.183	0.862	2.040	3.718	5.896	8.575	11.753	15.431	19.609	24.287	29.466	35.144	41.322	48.000	55.179			
		т _ф -х	-2.572	-0.497	0.003	0.428	0.928	1.428	1.928	2.428	2.928	3.428	3.928	4.428	4.928	5.428	5.928	6.428	6.928	7.428			
CR13-G1	259.034 0.285	fm_{φ}	-295.944	-7.297	-3.321	-5.025	-16.239	-8.029	-6.321	-2.275	-0.762	0.693	3.612	6.739	7.596	4.736	2.240	0.895	0.273	0.607	-317.823		
Sample ID	Initial wt. (g) % error	Cummulative wt. %	51.468	53.454	54.500	56.328	63.545	68.133	73.190	76.223	79.270	82.042	86.858	92.249	96.590	98.695	99.509	99.784	99.857	100.000			
		% G S M		73.190											26.667					0.143			
		Individual wt. %	51.468	1.986	1.046	1.827	7.217	4.588	5.057	3.034	3.047	2.772	4.816	5.391	4.340	2.105	0.815	0.275	0.073	0.143		13.533	-5.514
		Individual wt. (g)	132.941	5.129	2.702	4.720	18.642	11.850	13.062	7.836	7.870	7.159	12.439	13.926	11.211	5.437	2.104	0.711	0.188	0.369	258.296	SKφ	D50
		phi (ф)	-5.5	-3.35	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	б	3.5	4	< 4	TOTAL	-3.178	2.917
		m_{φ}	-5.75	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σφ

					Sample ID	CR13-G2					
					Initial wt. (g)	123.365					
					% error	0.765					
${\mathfrak m}_{\varphi}$	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _⊕ -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
-3.175	ή	5.331	4.355	18.052	4.355	-13.826	-3.683	13.563	59.063	-49.951	-217.520
-2.75	-2.5	1.814	1.482		5.836	-4.075	-3.258	10.613	15.727	-34.577	-51.235
-2.25	-2	4.977	4.065		9.902	-9.147	-2.758	7.606	30.921	-20.975	-85.274
-1.75	-1.5	3.290	2.687		12.589	-4.703	-2.258	5.098	13.700	-11.510	-30.933
-1.25	-	6.687	5.462		18.052	-6.828	-1.758	3.090	16.878	-5.432	-29.669
-0.75	-0.5	6.487	5.299		23.351	-3.974	-1.258	1.582	8.384	-1.990	-10.545
-0.25	0	10.017	8.182		31.533	-2.046	-0.758	0.574	4.699	-0.435	-3.561
0.25	0.5	9.934	8.115		39.648	2.029	-0.258	0.066	0.539	-0.017	-0.139
0.75	1	17.430	14.238		53.885	10.678	0.242	0.059	0.835	0.014	0.202
1.25	1.5	18.962	15.489		69.375	19.361	0.742	0.551	8.532	0.409	6.332
1.75	7	19.201	15.684	81.748	85.059	27.448	1.242	1.543	24.201	1.917	30.061
2.25	2.5	14.311	11.690		96.749	26.302	1.742	3.035	35.481	5.288	61.813
2.75	ŝ	3.065	2.504		99.253	6.885	2.242	5.027	12.587	11.272	28.221
3.25	3.5	0.549	0.448		99.701	1.457	2.742	7.519	3.372	20.620	9.247
3.75	4	0.121	0.099		99.800	0.371	3.242	10.512	1.039	34.080	3.368
4.25	>4	0.245	0.200	0.200	100.000	0.851	3.742	14.004	2.803	52.405	10.488
	TOTAL	122.421				50.783			238.760		-279.144
$mean_{\varphi}$	0.508	SKφ	-2.791								
σφ	1.545	D50	0.864								

			$f(m_{\varphi}-x)^3$	-86.313	-38.999	-43.784	-8.389	-0.611	0.019	2.075	9.693	22.870	51.331	101.697	90.713	61.907	34.039	17.178	32.776	246.201		
			$(m_{\phi}-x)^3$	-12.075	-6.530	-2.567	-0.657	-0.050	0.002	0.251	1.446	4.337	9.675	18.209	30.689	47.865	70.488	99.306	135.072			
			$f(m_{\phi}-x)^2$	37.623	20.864	31.978	9.652	1.656	0.147	3.289	8.572	14.023	24.090	38.656	28.974	17.050	8.240	3.710	6.388	254.913		
			$(m_{\phi}-x)^2$	5.263	3.494	1.875	0.755	0.136	0.017	0.398	1.279	2.660	4.540	6.921	9.802	13.183	17.064	21.445	26.325			
			m _ф -x	-2.294	-1.869	-1.369	-0.869	-0.369	0.131	0.631	1.131	1.631	2.131	2.631	3.131	3.631	4.131	4.631	5.131			
CR13-G3	124.795	-0.059	fm_{φ}	-22.696	-16.423	-38.382	-22.359	-15.191	-6.460	-2.066	1.676	3.955	6.632	9.774	6.651	3.557	1.569	0.649	1.031	-88.083		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	7.148	13.120	30.179	42.955	55.108	63.721	71.986	78.689	83.962	89.267	94.852	97.808	99.101	99.584	99.757	100.000			
			% G S M	55.108										44.649					0.243			
			Individual wt. %	7.148	5.972	17.059	12.777	12.153	8.613	8.265	6.703	5.273	5.306	5.585	2.956	1.293	0.483	0.173	0.243		2.462	-1.297
			Individual wt. (g)	8.926	7.457	21.301	15.954	15.175	10.755	10.32	8.37	6.584	6.625	6.974	3.691	1.615	0.603	0.216	0.303	124.869	SKφ	D50
			phi (ф)	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	С	3.5	4	>4	TOTAL	-0.881	1.597
			m_{φ}	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σф

					Sample ID	CR13-G4					
					Initial wt. (g)	131.649					
					% error	0.032					
${\mathfrak m}_{\varphi}$	phi (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fim_{Φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\Phi}-x)^3$
-3.675	-3.35	4.278	3.251	58.473	3.251	-11.946	-2.673	7.144	23.222	-19.095	-62.069
-3.175	ή	15.044	11.431		14.682	-36.293	-2.173	4.721	53.968	-10.258	-117.262
-2.75	-2.5	4.927	3.744		18.425	-10.295	-1.748	3.055	11.437	-5.339	-19.989
-2.25	-2	22.533	17.121		35.547	-38.523	-1.248	1.557	26.659	-1.943	-33.266
-1.75	-1.5	17.195	13.065		48.612	-22.864	-0.748	0.559	7.307	-0.418	-5.464
-1.25	-	12.978	9.861		58.473	-12.326	-0.248	0.061	0.606	-0.015	-0.150
-0.75	-0.5	9.017	6.851		65.325	-5.139	0.252	0.064	0.436	0.016	0.110
-0.25	0	7.069	5.371		70.696	-1.343	0.752	0.566	3.039	0.426	2.286
0.25	0.5	6.075	4.616		75.312	1.154	1.252	1.568	7.238	1.963	9.063
0.75	1	6.772	5.146		80.458	3.859	1.752	3.070	15.798	5.379	27.680
1.25	1.5	10.548	8.015		88.472	10.018	2.252	5.072	40.653	11.424	91.559
1.75	7	10.409	7.909	41.253	96.382	13.841	2.752	7.574	59.908	20.846	164.877
2.25	2.5	2.727	2.072		98.454	4.662	3.252	10.577	21.916	34.397	71.274
2.75	Э	1.020	0.775		99.229	2.131	3.752	14.079	10.912	52.826	40.942
3.25	3.5	0.481	0.365		99.594	1.188	4.252	18.081	6.608	76.884	28.100
3.75	4	0.174	0.132		99.726	0.496	4.752	22.583	2.986	107.319	14.189
4.25	>4	0.360	0.274	0.274	100.000	1.163	5.252	27.585	7.546	144.883	39.632
	TOTAL	131.607				-100.218			300.236		251.511
meanф	-1.002	SKφ	2.515								
σφ	1.733	D50	-1.430								

CR13-G4

			$f(m_{\phi}-x)^3$	-9.160	-18.858	-34.627	-56.995	-36.690	-20.019	-4.333	-0.206	0.226	5.505	23.360	40.810	37.356	18.032	14.518	8.350	18.125	-14.606		
			$(m_{\varphi}-x)^3$	-49.588	-31.972	-20.771	-11.374	-5.349	-1.948	-0.420	-0.015	0.016	0.424	1.958	5.370	11.408	20.822	34.364	52.782	76.827			
			$f(m_{\varphi}\text{-}x)^2$	2.493	5.942	12.597	25.344	20.979	16.030	5.786	0.829	0.898	7.329	18.671	23.305	16.594	6.554	4.465	2.226	4.264	174.305		
			$(m_{\phi}-x)^2$	13.497	10.073	7.556	5.057	3.059	1.560	0.561	0.062	0.063	0.564	1.565	3.066	5.068	7.569	10.570	14.071	18.072			
			m _ф -x	-3.674	-3.174	-2.749	-2.249	-1.749	-1.249	-0.749	-0.249	0.251	0.751	1.251	1.751	2.251	2.751	3.251	3.751	4.251			
CR13-G5	109.556	0.183	fm_{φ}	-0.679	-1.873	-4.584	-11.275	-12.004	-12.847	-7.738	-3.344	3.560	9.742	14.910	13.300	7.368	2.381	1.373	0.593	1.003	-0.112		
Sanmple ID	Initial wt. (g)	% error	Cummulative wt. %	0.185	0.775	2.442	7.453	14.312	24.589	34.906	48.284	62.525	75.515	87.443	95.043	98.317	99.183	909.66	99.764	100.000			
			% G S M	24.589											75.175					0.236			
			Individual wt. %	0.185	0.590	1.667	5.011	6.859	10.277	10.317	13.377	14.242	12.990	11.928	7.600	3.275	0.866	0.422	0.158	0.236		-0.146	0.060
			Individual wt. (g)	0.202	0.645	1.823	5.480	7.501	11.239	11.282	14.629	15.574	14.205	13.044	8.311	3.581	0.947	0.462	0.173	0.258	109.356	SKφ	D50
			phi (ф)	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	б	3.5	4	>4	TOTAL	-0.001	1.320
			\mathfrak{m}_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σφ
		$-x)^3 f(m_{\varphi} - x)^3$	285 -77.566	823 -70.012	171 -15.052	986 -40.434	15.836 -15.836	2.608 -2.608	01 -0.007	71 0.710	65 7.232	30 27.070	17 68.537)75 65.272	756 13.789	308 7.858	981 12.326	10.855 10.855	694 31.773	23.908			
-----------	----------------------------	--------------------------------	-------------	-------------	-------------	-------------	----------------	--------------	-----------	----------	----------	-----------	-----------	------------	------------	-----------	------------	---------------	------------	---------	--------	--------	
		² (m _φ -	-27.3	-15.3	-9.0	-3.9	-1.2	-0.2	-0.0	0.0	0.7	2.8	7.0	14.(24.7	39.8	59.5	86.(118.				
		f(m _{\$\phi} -x)	25.765	27.887	7.217	25.502	14.588	4.455	0.079	1.713	7.909	19.138	35.800	27.034	4.731	2.301	3.149	2.459	6.465	216.19			
		$(m_{\Phi}-x)^2$	9.063	6.303	4.349	2.514	1.178	0.343	0.007	0.172	0.836	2.001	3.665	5.830	8.494	11.659	15.323	19.487	24.152				
		m _ф -x	-3.011	-2.511	-2.086	-1.586	-1.086	-0.586	-0.086	0.414	0.914	1.414	1.914	2.414	2.914	3.414	3.914	4.414	4.914				
CR13-G6	111.433 0.434	fm_{φ}	-10.447	-14.048	-4.563	-22.825	-21.664	-16.241	-8.104	-2.492	2.364	7.174	12.209	8.115	1.253	0.543	0.668	0.473	1.138	-66.446			
Sample ID	Initial wt. (g) % error	Cummulative wt. %	2.843	7.267	8.927	19.071	31.450	44.443	55.249	65.218	74.676	84.241	94.009	98.646	99.203	99.401	909.606	99.732	100.000				
		% G S M	44.443											55.289					0.268				
		Individual wt. %	2.843	4.425	1.659	10.144	12.380	12.992	10.806	9.969	9.457	9.566	9.768	4.637	0.557	0.197	0.205	0.126	0.268		0.239	-0.763	
		Individual wt. (g)	3.154	4.909	1.841	11.255	13.735	14.415	11.989	11.061	10.493	10.613	10.837	5.145	0.618	0.219	0.228	0.140	0.297	110.949	SKφ	D50	
		phi (φ)	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	б	3.5	4	>4	TOTAL	-0.664	1.470	
		m_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σф	

			در 3	(x-фIII)I	-131.960	-41.809	-9.991	-20.282	-23.721	-13.059	-7.396	-1.018	0.001	3.967	19.721	14.066	0.171	5.504	11.459	16.109	-178.237		
			()	(x- ^ф III)	-58.579	-41.376	-25.901	-14.864	-7.515	-3.104	-0.881	-0.097	0.000	0.159	1.129	3.661	8.506	16.412	28.130	44.410			
			ex	1(x- ^ф 111)	33.978	12.088	3.377	8.249	12.111	8.953	7.714	2.219	0.036	7.329	18.939	9.126	0.084	2.166	3.768	4.549	134.686		
			() ²	(x- ^ф III)	15.083	11.963	8.754	6.045	3.837	2.128	0.919	0.210	0.002	0.293	1.084	2.376	4.167	6.458	9.249	12.541			
			4 4	v- ^ф тт	-3.884	-3.459	-2.959	-2.459	-1.959	-1.459	-0.959	-0.459	0.041	0.541	1.041	1.541	2.041	2.541	3.041	3.541			
CR13-G7	69.204	-0.389	fm	фин	-7.152	-2.779	-0.868	-2.388	-3.946	-3.156	-2.098	2.636	15.927	31.269	30.568	8.644	0.055	1.090	1.528	1.542	70.872		
Sample ID	Initial wt. (g)	% error	Cummulative	wt. %	2.253	3.263	3.649	5.013	8.170	12.377	20.771	31.314	52.550	77.565	95.033	98.874	98.895	99.230	99.637	100.000			
			IN S J 70		8.170										91.467					0.363			
			Individual	wt. %	2.253	1.010	0.386	1.365	3.157	4.207	8.393	10.544	21.236	25.015	17.467	3.842	0.020	0.335	0.407	0.363		-1.782	0.940
			Individual	wt. (g)	1.565	0.702	0.268	0.948	2.193	2.923	5.831	7.325	14.753	17.379	12.135	2.669	0.014	0.233	0.283	0.252	69.473	$SK\phi$	D50
			(4) نام	(ආ) IIId	ς-	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	2	2.5	З	3.5	4	< 4	TOTAL	0.709	1.161
			£	фтт	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σф

					and and and						
					Initial wt. (g)	123.685					
					% error	0.169					
${\rm m}_{\varphi}$	phi (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{φ}	m_{φ} -x	$(m_{\Phi}-x)^2$	$f(m_{\Phi}-x)^2$	$(m_{\varphi}-x)^3$	$f(m_{\phi}-x)^3$
-2.75	-2.5	7.174	5.810	24.559	5.810	-15.978	-2.653	7.038	40.892	-18.672	-108.486
-2.25	-2	5.687	4.606		10.416	-10.363	-2.153	4.635	21.349	-9.980	-45.963
-1.75	-1.5	8.121	6.577		16.993	-11.510	-1.653	2.732	17.970	-4.516	-29.704
-1.25		9.343	7.567		24.559	-9.458	-1.153	1.329	10.059	-1.533	-11.597
-0.75	-0.5	11.592	9.388		33.947	-7.041	-0.653	0.426	4.003	-0.278	-2.614
-0.25	0	17.358	14.058		48.005	-3.514	-0.153	0.023	0.329	-0.004	-0.050
0.25	0.5	18.147	14.697		62.702	3.674	0.347	0.120	1.770	0.042	0.614
0.75	1	19.873	16.095		78.797	12.071	0.847	0.717	11.547	0.608	9.781
1.25	1.5	16.005	12.962		91.759	16.203	1.347	1.815	23.520	2.444	31.682
1.75	2	7.621	6.172	75.209	97.931	10.801	1.847	3.412	21.056	6.301	38.892
2.25	2.5	1.835	1.486		99.417	3.344	2.347	5.509	8.186	12.929	19.214
2.75	С	0.221	0.179		99.596	0.492	2.847	8.106	1.451	23.077	4.130
3.25	3.5	0.137	0.111		99.707	0.361	3.347	11.203	1.243	37.496	4.160
3.75	4	0.076	0.062		99.768	0.231	3.847	14.800	0.911	56.935	3.504
4.25	< 4	0.286	0.232	0.232	100.000	0.984	4.347	18.897	4.377	82.145	19.027
	TOTAL	123.476				-9.704			168.663		-67.411
meanф	-0.097	$SK\varphi$	-0.674								
σφ	1.299	D50	0.068								

Sample ID CR13-G8

					Sample ID	CR13-G9					
					Initial wt. (g)	73.254					
					% error	-0.564					
m_{Φ}	phi (ф)	Individual	Individual ^{wf} %	% G S M	Cummulative	fm_{d}	m ₀ -x	(m _{db} -x) ²	$f(m_{dh}-x)^2$	(m ₀ -x) ³	$f(m_{dh}-x)^3$
-3 175	۲,	mt. (5) 1 551	7 105	4 803	7 105	-6.685	4636	21 488	45 241	-90 608	-200717
21 C-	ر ر ۲	0000	0000	000.1	2.105	0000	4 211	17 778	0000	-74.646	0.000
20.2 20.0	ر رو رو	0.000	0.306		201.2	-0 807	-3 711	13 768	5 457	-51.086	-20.249
1 75	7 - - 7	7770			20202		2 2 1 1	00/.CI	7 00 F		102 3C
C/.1-	C.1-	COC.U	0./0/		607.C	-1.342	117.6-	100.01	CUE.1	760.00-	100.02-
-1.25	-	1.130	1.534		4.803	-1.917	-2.711	7.347	11.270	-19.914	-30.547
-0.75	-0.5	0.449	0.609		5.412	-0.457	-2.211	4.886	2.978	-10.801	-6.583
-0.25	0	0.645	0.876		6.288	-0.219	-1.711	2.926	2.562	-5.005	-4.382
0.25	0.5	1.197	1.625		7.913	0.406	-1.211	1.465	2.381	-1.774	-2.882
0.75	1	6.488	8.807		16.720	6.605	-0.711	0.505	4.446	-0.359	-3.159
1.25	1.5	17.100	23.213		39.932	29.016	-0.211	0.044	1.029	-0.009	-0.217
1.75	7	25.502	34.618	93.938	74.550	60.581	0.289	0.084	2.901	0.024	0.840
2.25	2.5	16.393	22.253		96.803	50.069	0.789	0.623	13.870	0.492	10.950
2.75	ŝ	1.175	1.595		98.398	4.386	1.289	1.663	2.652	2.144	3.420
3.25	3.5	0.201	0.273		98.671	0.887	1.789	3.202	0.874	5.730	1.564
3.75	4	0.051	0.069		98.740	0.260	2.289	5.242	0.363	12.001	0.831
4.25	>4	0.928	1.260	1.260	100.000	5.354	2.789	7.781	9.802	21.706	27.343
	TOTAL	73.667				146.052			113.731		-258.170
meanф	1.461	SKφ	-2.582								
Ծփ	1.066	D50	1.855								

					Sample ID (Initial wt. (g)	CR13-G9-R 71.850					
					% error	0.214					
${\rm m}_{\varphi}$	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\varphi}-x)^2$	$f(m_{\phi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
-2.75	-2.5	0.082	0.114	1.557	0.114	-0.315	-4.323	18.686	2.137	-80.777	-9.239
-2.25	-2	0.181	0.252		0.367	-0.568	-3.823	14.614	3.689	-55.864	-14.103
-1.75	-1.5	0.322	0.449		0.816	-0.786	-3.323	11.041	4.959	-36.686	-16.476
-1.25	-	0.531	0.741		1.557	-0.926	-2.823	7.968	5.901	-22.492	-16.658
-0.75	-0.5	0.337	0.470		2.027	-0.353	-2.323	5.395	2.536	-12.532	-5.891
-0.25	0	0.484	0.675		2.702	-0.169	-1.823	3.322	2.243	-6.056	-4.088
0.25	0.5	1.376	1.919		4.621	0.480	-1.323	1.750	3.358	-2.314	-4.442
0.75	1	5.491	7.659		12.280	5.744	-0.823	0.677	5.185	-0.557	-4.266
1.25	1.5	17.838	24.880		37.160	31.100	-0.323	0.104	2.592	-0.034	-0.837
1.75	7	28.817	40.193	98.205	77.353	70.338	0.177	0.031	1.262	0.006	0.224
2.25	2.5	14.481	20.198		97.551	45.445	0.677	0.459	9.263	0.311	6.273
2.75	3	1.370	1.911		99.462	5.255	1.177	1.386	2.648	1.631	3.118
3.25	3.5	0.154	0.215		99.676	0.698	1.677	2.813	0.604	4.718	1.013
3.75	4	0.061	0.085		99.761	0.319	2.177	4.740	0.403	10.321	0.878
4.25	>4	0.171	0.239	0.239	100.000	1.014	2.677	7.168	1.710	19.189	4.577
	TOTAL	71.696				157.277			48.491		-59.917
$mean_{\varphi}$	1.573	SKφ	-0.599								
σφ	0.696	D50	1.660								

			$f(m_{\varphi}-x)^3$	-10.604	-3.870	-11.187	-6.740	-13.780	-7.335	-0.865	0.085	6.219	10.364	3.023	1.009	1.315	6.063	-26.300		
			$(m_{\phi}-x)^3$	-37.892	-23.364	-13.124	-6.422	-2.509	-0.633	-0.046	0.003	0.264	1.486	4.421	9.817	18.425	30.995			
			$f(m_{\varphi}-x)^2$	3.157	1.354	4.743	3.626	10.141	8.541	2.410	0.603	9.699	9.081	1.842	0.471	0.498	1.930	58.096		
			$(m_{\phi}\text{-}x)^2$	11.282	8.173	5.564	3.455	1.846	0.738	0.129	0.020	0.411	1.302	2.694	4.585	6.976	9.867			
			т _ф -х	-3.359	-2.859	-2.359	-1.859	-1.359	-0.859	-0.359	0.141	0.641	1.141	1.641	2.141	2.641	3.141			
CR13-G10	70.412	0.528	fm_{Φ}	-0.630	-0.290	-1.065	-0.787	-1.373	2.895	14.041	37.802	41.284	15.690	1.881	0.334	0.268	0.831	110.879		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	0.280	0.445	1.298	2.347	7.840	19.420	38.141	68.382	91.973	98.946	99.630	99.733	99.804	100.000			
			% G S M	1.298								98.507					0.196			
			Individual wt. %	0.280	0.166	0.852	1.049	5.493	11.581	18.721	30.241	23.591	6.973	0.684	0.103	0.071	0.196		-0.263	1.317
			Individual wt. (g)	0.196	0.116	0.597	0.735	3.847	8.111	13.112	21.181	16.523	4.884	0.479	0.072	0.050	0.137	70.040	SKφ	D50
			phi (φ)	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	б	3.5	4	>4	TOTAL	1.109	0.762
			m_{Φ}	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σφ

					Initial wt. (g)	78.554				
					% error	0.284				
${ m m}_{\Phi}$	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$
-1.75	-1.5	0.089	0.114	0.712	0.114	-0.199	-2.883	8.314	0.945	-23.973
-1.25	-	0.469	0.599		0.712	-0.748	-2.383	5.681	3.401	-13.540
-0.75	-0.5	1.451	1.852		2.565	-1.389	-1.883	3.547	6.571	-6.681
-0.25	0	3.501	4.469		7.034	-1.117	-1.383	1.914	8.554	-2.648
0.25	0.5	8.962	11.441		18.475	2.860	-0.883	0.780	8.929	-0.689
0.75	1	15.228	19.441		37.916	14.580	-0.383	0.147	2.858	-0.056
1.25	1.5	22.656	28.923		66.839	36.154	0.117	0.014	0.393	0.002
1.75	7	19.801	25.279	98.995	92.118	44.238	0.617	0.380	9.610	0.234
2.25	2.5	5.177	609.9		98.727	14.871	1.117	1.247	8.240	1.392
2.75	С	0.601	0.767		99.494	2.110	1.617	2.613	2.005	4.225
3.25	3.5	0.091	0.116		99.611	0.378	2.117	4.480	0.520	9.482
3.75	4	0.076	0.097		99.708	0.364	2.617	6.846	0.664	17.914
4.25	< 4	0.229	0.292	0.292	100.000	1.242	3.117	9.713	2.840	30.271
	TOTAL	78.331				113.343			55.531	
mean_{Φ}	1.133	SKφ	-0.139							
օփ	0.745	D50	1.209							

Sample ID CR13-G10 R

					Sample ID	CR13-G11					
					Initial wt. (g)	71.836					
					% error	-0.093					
Ē	nhi (4)	Individual	Individual	WS 5 %	Cummulative	fm.	mx	(mv) ²	f/m _v) ²	(mv) ³	f(mv) ³
фтт	(ሐ) ጠվ	wt. (g)	wt. %		wt. %	Фттт	v_bm	(v -∲m)	(ν- ^φ π)ι	(ν _ ^φ πι)	(ν- ^φ π1)τ
-2.75	-2.5	0.398	0.55	4.252	0.554	-1.522	-3.793	14.390	7.965	-54.588	-30.216
-2.25	-2	0.576	0.80		1.355	-1.802	-3.293	10.847	8.689	-35.723	-28.617
-1.75	-1.5	0.773	1.08		2.430	-1.881	-2.793	7.803	8.389	-21.798	-23.434
-1.25	-	1.310	1.82		4.252	-2.277	-2.293	5.260	9.583	-12.063	-21.978
-0.75	-0.5	2.415	3.36		7.610	-2.519	-1.793	3.216	10.803	-5.768	-19.374
-0.25	0	3.699	5.14		12.755	-1.286	-1.293	1.673	8.607	-2.164	-11.132
0.25	0.5	7.476	10.40		23.152	2.599	-0.793	0.630	6.546	-0.500	-5.193
0.75	1	12.284	17.08		40.236	12.813	-0.293	0.086	1.471	-0.025	-0.432
1.25	1.5	18.937	26.34		66.573	32.921	0.207	0.043	1.124	0.009	0.232
1.75	2	15.315	21.30	95.061	87.873	37.274	0.707	0.499	10.633	0.353	7.513
2.25	2.5	6.793	9.45		97.320	21.257	1.207	1.456	13.754	1.757	16.595
2.75	З	1.050	1.46		98.780	4.016	1.707	2.912	4.253	4.970	7.258
3.25	3.5	0.238	0.33		99.111	1.076	2.207	4.869	1.612	10.744	3.556
3.75	4	0.145	0.20		99.313	0.756	2.707	7.325	1.477	19.827	3.998
4.25	>4	0.494	0.69	0.687	100.000	2.920	3.207	10.282	7.064	32.970	22.652
	TOTAL	71.903				104.344			101.969		-78.573
meanф	1.043	SKφ	-0.786								
օփ	1.010	D50	1.185								

312	9	6	$m = \frac{1}{2} $	m_{Φ}^{-X} (m_{Φ}^{-X}) m_{Φ}^{-X}) m_{Φ}^{-X}) m_{Φ}^{-X}	4 -3.951 15.608 22.291 -61.661 -88.063	5 -3.526 12.430 6.220 -43.825 -21.929	2 -3.026 9.155 22.102 -27.699 -66.874	1 -2.526 6.379 11.558 -16.111 -29.191	1 -2.026 4.103 9.817 -8.312 -19.886	5 -1.526 2.328 6.594 -3.551 -10.061) -1.026 1.052 6.269 -1.079 -6.430	-0.526 0.276 2.352 -0.145 -1.236	3 -0.026 0.001 0.015 0.000 0.000	4 0.474 0.225 5.977 0.107 2.835	5 0.974 0.949 18.783 0.925 18.301	1.474 2.174 7.778 3.205 11.468	7 1.974 3.898 1.541 7.696 3.042	2.474 6.122 0.795 15.149 1.967	7 2.974 8.847 0.890 26.313 2.649	7 3.474 12.071 3.768 41.939 13.093	7 126.751 -190.316		
Sample	Initial wt.	% erro	vidual Individual ov C S M Cummula	. (g) wt. % 70 U 3 M wt. %	979 1.428 8.547 1.428	343 0.500 1.929	655 2.414 4.343	242 1.812 6.155	640 2.392 8.547	942 2.833 11.380	085 5.959 17.339	834 8.511 25.850	.961 23.284 49.132	209 26.563 75.698	.563 19.786 91.141 95.482	453 3.578 99.062	271 0.395 99.457	089 0.130 99.587	069 0.101 99.688	214 0.312 0.312 100.00	.549	Кф -1.903	•
			m ubi (A) Indiv	ուփ pin (այ wt	-3.175 -3 0.	-2.75 -2.5 0.	-2.25 -2 1.	-1.75 -1.5 1.3	-1.25 -1 1.	-0.75 -0.5 1.	-0.25 0 4.	0.25 0.5 5.	0.75 1 15.	1.25 1.5 18	1.75 2 13.	2.25 2.5 2.4	2.75 3 0.3	3.25 3.5 0.	3.75 4 0.	4.25 > 4 0.7	TOTAL 68	теанф 0.776 SI	

			$f(m_{\varphi}-x)^3$	-141.660	-39.054	-65.529	-104.794	-49.861	-23.467	-7.728	-1.919	-0.068	0.325	11.789	40.588	19.087	4.271	4.484	6.004	32.265	-315.266		
			$(m_{\varphi}-x)^3$	-71.599	-48.724	-33.618	-20.289	-11.051	-5.155	-1.849	-0.385	-0.012	0.020	0.461	2.061	5.569	11.737	21.313	35.048	53.692			
			$f(m_{\varphi}-x)^2$	34.115	10.693	20.304	38.422	22.385	13.585	6.296	2.638	0.299	1.194	15.259	31.894	10.768	1.880	1.617	1.835	8.553	221.736		
			$(m_{\phi}-x)^2$	17.243	13.340	10.416	7.439	4.961	2.984	1.507	0.529	0.052	0.074	0.597	1.619	3.142	5.165	7.687	10.710	14.232			
			m_{φ} -x	-4.152	-3.652	-3.227	-2.727	-2.227	-1.727	-1.227	-0.727	-0.227	0.273	0.773	1.273	1.773	2.273	2.773	3.273	3.773			
CR13-G13	112.803	0.127	fm_{φ}	-7.271	-2.545	-5.360	-11.621	-7.896	-5.691	-3.134	-1.246	1.444	12.049	31.957	34.466	7.711	1.001	0.684	0.642	2.554	47.743		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	1.979	2.780	4.729	9.894	14.406	18.959	23.138	28.124	33.901	49.966	75.532	95.226	98.653	99.017	99.228	99.399	100.000			
			% G S M	18.959											80.440					0.601			
			Individual wt. %	1.979	0.802	1.949	5.165	4.512	4.553	4.179	4.986	5.778	16.065	25.565	19.695	3.427	0.364	0.210	0.171	0.601		-3.153	1.001
			Individual wt. (g)	2.229	0.903	2.196	5.819	5.083	5.129	4.708	5.617	6.509	18.099	28.802	22.188	3.861	0.410	0.237	0.193	0.677	112.660	$SK\phi$	D50
			phi (ф)	-3.35	ή	-2.5	4	-1.5	-1	-0.5	0	0.5	1	1.5	7	2.5	С	3.5	4	>4	TOTAL	0.477	1.489
			${\mathfrak m}_{\varphi}$	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σφ

			$n_{\varphi}\text{-}x)^3 f(m_{\varphi}\text{-}x)^3$	37.452 -28.382	23.045 -66.507	12.907 -96.541	6.288 -75.491	2.437 -32.776	0.605 -7.008	0.041 -0.325	0.004 0.017	0.280 2.175	1.538 9.930	4.527 18.892	9.998 32.018	8.700 146.754	1.383 162.241	8.798 225.169	290.166		
			$f(m_{\Phi}-x)^2$ (r	8.483 -3	23.371 -2	41.156 -1	- 40.900	24.356 -	8.287 -	0.940	0.113 (3.324 (8.603	11.420	14.862	55.290 1	51.436 3	61.618 4	354.158		
			$(m_{\phi}-x)^2$	11.194	8.098	5.502	3.407	1.811	0.715	0.120	0.024	0.428	1.332	2.737	4.641	7.045	9.949	13.354			
			m_{φ} -x	-3.346	-2.846	-2.346	-1.846	-1.346	-0.846	-0.346	0.154	0.654	1.154	1.654	2.154	2.654	3.154	3.654			
CR13-G14	19.437	0.880	fm_{Φ}	-2.084	-6.493	-13.089	-15.007	-10.086	-2.896	1.966	3.558	9.706	11.300	9.390	8.807	25.506	19.386	19.611	59.574		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	0.758	3.644	11.123	23.129	36.577	48.163	56.026	60.770	68.535	74.992	79.165	82.368	90.216	95.386	100.000			
			% G S M	23.129									72.257					4.614			
			Individual wt. %	0.758	2.886	7.479	12.006	13.449	11.585	7.864	4.744	7.765	6.457	4.173	3.203	7.848	5.170	4.614		2.902	0.117
			Individual wt. (g)	0.146	0.556	1.441	2.313	2.591	2.232	1.515	0.914	1.496	1.244	0.804	0.617	1.512	0.996	0.889	19.266	$SK\phi$	D50
			phi (ф)	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	ς	3.5	4	>4	TOTAL	0.596	1.882
			m_{φ}	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	օփ

					Sample ID	CR13-G15					
					Initial wt. (g)	62.020					
					% error	0.255					
m_{d}	phi (φ)	Individual	Individual	% G S M	Cummulative	fm_{d}	m ₀ -x	$(m_{\rm m}-x)^2$	$f(m_{dh}-x)^2$	$(m_{h}-x)^{3}$	f(m _d -x) ³
		wt. (g)	WL. %0		WL. %0			, T	, т ,	, т.,	, т ,
-1.75	-1.5	0.195	0.315	0.823	0.315	-0.552	-3.787	14.340	4.520	-54.304	-17.117
-1.25	-	0.314	0.508		0.823	-0.634	-3.287	10.803	5.484	-35.509	-18.023
-0.75	-0.5	0.138	0.223		1.046	-0.167	-2.787	7.766	1.733	-21.644	-4.828
-0.25	0	0.245	0.396		1.442	-0.099	-2.287	5.230	2.071	-11.959	-4.736
0.25	0.5	0.436	0.705		2.147	0.176	-1.787	3.193	2.250	-5.705	-4.021
0.75	1	1.041	1.683		3.829	1.262	-1.287	1.656	2.787	-2.131	-3.586
1.25	1.5	4.184	6.763		10.593	8.454	-0.787	0.619	4.187	-0.487	-3.295
1.75	2	27.315	44.155	96.416	54.748	77.271	-0.287	0.082	3.633	-0.024	-1.042
2.25	2.5	17.551	28.371		83.119	63.835	0.213	0.045	1.289	0.010	0.275
2.75	ς	5.555	8.980		92.099	24.694	0.713	0.509	4.567	0.363	3.257
3.25	3.5	1.940	3.136		95.235	10.192	1.213	1.472	4.616	1.786	5.599
3.75	4	1.240	2.004		97.239	7.517	1.713	2.935	5.883	5.028	10.079
4.25	>4	1.708	2.761	2.761	100.000	11.734	2.213	4.898	13.524	10.840	29.930
	TOTAL	61.862				203.683			56.543		-7.509
meanф	2.037	SKφ	-0.075								
σφ	0.752	D50	1.946								

					Sample ID	CR14-G1					
					Initial wt. (g)	979.883					
					% error	0.023					
m_{Φ}	phi (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
-6.25	-9	641.770	65.510		65.510	-409.436	-0.666	0.443	29.029	-0.295	-19.323
-5.75	-5.5	111.148	11.346		76.855	-65.237	-0.166	0.027	0.311	-0.005	-0.052
-5.25	-5	88.400	9.024		85.879	-47.374	0.334	0.112	1.009	0.037	0.337
-4.75	-4.5	23.990	2.449		88.328	-11.632	0.834	0.696	1.705	0.581	1.422
-4.25	4	20.781	2.121		90.449	-9.015	1.334	1.780	3.777	2.376	5.039
-3.675	-3.35	15.243	1.556	97.098	92.005	-5.718	1.909	3.646	5.672	6.961	10.830
-3.175	ς.	14.051	1.434		93.439	-4.554	2.409	5.805	8.326	13.986	20.060
-2.75	-2.5	10.823	1.105		94.544	-3.038	2.834	8.033	8.875	22.769	25.155
-2.25	-2	13.209	1.348		95.892	-3.034	3.334	11.118	14.990	37.070	49.983
-1.75	-1.5	5.567	0.568		96.461	-0.994	3.834	14.702	8.355	56.373	32.034
-1.25	-	6.247	0.638		97.098	-0.797	4.334	18.786	11.980	81.426	51.923
-0.75	-0.5	4.626	0.472		97.570	-0.354	4.834	23.371	11.036	112.982	53.351
-0.25	0	2.855	0.291		97.862	-0.073	5.334	28.455	8.293	151.789	44.236
0.25	0.5	3.015	0.308		98.170	0.077	5.834	34.039	10.476	198.597	61.120
0.75	1	4.077	0.416		98.586	0.312	6.334	40.124	16.698	254.157	105.772
1.25	1.5	5.195	0.530		99.116	0.663	6.834	46.708	24.769	319.218	169.278
1.75	7	5.620	0.574	2.889	069.66	1.004	7.334	53.792	30.859	394.531	226.331
2.25	2.5	2.302	0.235		99.925	0.529	7.834	61.377	14.422	480.845	112.989
2.75	б	0.420	0.043		99.968	0.118	8.334	69.461	2.978	578.911	24.819
3.25	3.5	0.128	0.013		99.981	0.042	8.834	78.045	1.020	689.478	9.009
3.75	4	0.064	0.007		99.987	0.024	9.334	87.130	0.569	813.297	5.313
4.25	>4	0.125	0.013	0.013	100.000	0.054	9.834	96.714	1.234	951.117	12.136
	TOTAL	979.656				-558.433			216.381		1001.762
meanф	-5.584	SKφ	10.018								
σф	1.471	D50	-6.118								

					Sample ID Initial wt. (g)	CR14-G2 297.147					
					% error	0.177					
${ m m}_{\Phi}$	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{φ}	m _ф -x	$(m_{\varphi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\varphi}\text{-}x)^3$	$f(m_{\varphi}-x)^3$
-5.75	-5.5	93.933	31.668		31.668	-182.089	-1.956	3.824	121.108	-7.479	-236.838
-5.25	-5	43.389	14.628		46.295	-76.796	-1.456	2.119	30.993	-3.084	-45.113
-4.75	-4.5	0.000	0.000		46.295	0.000	-0.956	0.913	0.000	-0.873	0.000
-4.25	4	40.814	13.760		60.055	-58.478	-0.456	0.208	2.856	-0.095	-1.301
-3.675	-3.35	10.742	3.621	87.458	63.677	-13.309	0.119	0.014	0.052	0.002	0.006
-3.175	ς	22.537	7.598		71.274	-24.123	0.619	0.384	2.915	0.238	1.806
-2.75	-2.5	12.078	4.072		75.346	-11.198	1.044	1.091	4.442	1.139	4.639
-2.25	-2	18.667	6.293		81.640	-14.160	1.544	2.385	15.011	3.684	23.182
-1.75	-1.5	8.226	2.773		84.413	-4.853	2.044	4.180	11.591	8.545	23.697
-1.25	-1	9.034	3.046		87.458	-3.807	2.544	6.474	19.717	16.473	50.169
-0.75	-0.5	5.959	2.009		89.467	-1.507	3.044	9.268	18.620	28.217	56.687
-0.25	0	4.510	1.520		90.988	-0.380	3.544	12.563	19.101	44.528	67.703
0.25	0.5	3.994	1.346		92.334	0.337	4.044	16.357	22.025	66.155	89.078
0.75	1	5.401	1.821		94.155	1.366	4.544	20.652	37.603	93.849	170.885
1.25	1.5	7.387	2.490		96.646	3.113	5.044	25.446	63.370	128.360	319.666
1.75	7	7.615	2.567	12.510	99.213	4.493	5.544	30.740	78.918	170.438	437.556
2.25	2.5	1.777	0.599		99.812	1.348	6.044	36.535	21.887	220.832	132.296
2.75	б	0.299	0.101		99.913	0.277	6.544	42.829	4.317	280.292	28.254
3.25	3.5	0.100	0.034		99.946	0.110	7.044	49.624	1.673	349.569	11.785
3.75	4	0.066	0.022		<u>96.969</u>	0.083	7.544	56.918	1.266	429.413	9.555
4.25	>4	0.093	0.031	0.031	100.000	0.133	8.044	64.712	2.029	520.574	16.322
	TOTAL	296.621				-379.441			479.495		1160.032
meanф	-3.794	SKφ	11.600								
σφ	2.190	D50	-4.365								

Individual	Individual		Sample ID Initial wt. (g) % error	CR14-G3 1027.241 0.082					
idividual wt. (g)	maiviauäi wt. %	% G S M	Cummulauve wt. %	fm_{Φ}	$m_{\varphi}\text{-}x$	$(m_{\phi}-x)^2$	$f(m_{\phi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\phi}-x)^3$
526.800	51.325		51.325	-320.782	-0.923	0.852	43.712	-0.786	-40.340
172.219	16.779		68.104	-96.479	-0.423	0.179	3.000	-0.076	-1.269
134.494	13.103		81.208	-68.793	0.077	0.006	0.078	0.000	0.006
61.574	5.999		87.207	-28.495	0.577	0.333	1.998	0.192	1.153
27.787	2.707	95.319	89.914	-9.949	1.652	2.730	7.390	4.510	12.209
14.497	1.412		91.326	-4.484	2.152	4.632	6.542	9.968	14.079
7.203	0.702		92.028	-1.930	2.577	6.642	4.661	17.116	12.012
15.998	1.559		93.587	-3.507	3.077	9.469	14.759	29.137	45.414
9.303	0.906		94.493	-1.586	3.577	12.796	11.598	45.773	41.487
8.480	0.826		95.319	-1.033	4.077	16.623	13.734	67.775	55.995
6.067	0.591		95.910	-0.443	4.577	20.950	12.384	95.892	56.681
4.900	0.477		96.388	-0.119	5.077	25.777	12.306	130.875	62.479
5.519	0.538		96.925	0.134	5.577	31.104	16.725	173.474	93.278
6.780	0.661		97.586	0.495	6.077	36.932	24.396	224.439	148.256
8.716	0.849		98.435	1.061	6.577	43.259	36.735	284.519	241.608
9.407	0.917	4.658	99.352	1.604	7.077	50.086	45.904	354.465	324.869
5.044	0.491		99.843	1.106	7.577	57.413	28.214	435.027	213.784
1.025	0.100		99.943	0.275	8.077	65.240	6.515	526.954	52.624
0.285	0.028		99.971	060.0	8.577	73.567	2.043	630.997	17.521
0.064	0.006		99.977	0.023	9.077	82.394	0.514	747.906	4.663
0.237	0.023	0.023	100.000	0.098	9.577	91.722	2.118	878.431	20.283
1026.399				-532.714			295.324		1376.792
SKφ	13.768								
D50	-6.013								

					Sample ID	CR14-G4					
					Initial wt. (g)	495.122					
					% error	0.162					
m_{Φ}	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_φ	m_{φ} -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\varphi}-x)^3$	$f(m_{\varphi}-x)^3$
-5.25	-5	259.963	52.590		52.590	-276.097	-1.010	1.019	53.613	-1.029	-54.131
-4.75	-4.5	52.130	10.546		63.136	-50.092	-0.510	0.260	2.739	-0.132	-1.396
-4.25	4-	57.758	11.684		74.820	-49.658	-0.010	0.000	0.001	0.000	0.000
-3.675	-3.35	14.940	3.022	94.029	77.842	-11.107	0.565	0.320	0.966	0.181	0.546
-3.175	ς	42.576	8.613		86.455	-27.346	1.065	1.135	9.775	1.209	10.414
-2.75	-2.5	11.335	2.293		88.748	-6.306	1.490	2.221	5.093	3.310	7.590
-2.25	-2	14.604	2.954		91.703	-6.647	1.990	3.961	11.703	7.884	23.293
-1.75	-1.5	6.599	1.335		93.038	-2.336	2.490	6.202	8.279	15.444	20.618
-1.25	-	4.898	0.991		94.029	-1.239	2.990	8.942	8.860	26.740	26.495
-0.75	-0.5	2.436	0.493		94.521	-0.370	3.490	12.182	6.003	42.520	20.954
-0.25	0	1.864	0.377		94.898	-0.094	3.990	15.923	6.004	63.537	23.959
0.25	0.5	2.359	0.477		95.376	0.119	4.490	20.163	9.622	90.538	43.207
0.75	1	3.950	0.799		96.175	0.599	4.990	24.903	19.900	124.276	99.306
1.25	1.5	7.432	1.503		97.678	1.879	5.490	30.144	45.320	165.498	248.823
1.75	2	6.782	1.372	5.943	99.050	2.401	5.990	35.884	49.232	214.957	294.917
2.25	2.5	4.234	0.857		99.907	1.927	6.490	42.124	36.081	273.400	234.175
2.75	ξ	0.034	0.007		99.914	0.019	6.990	48.865	0.335	341.579	2.343
3.25	3.5	0.218	0.044		99.958	0.143	7.490	56.105	2.474	420.244	18.533
3.75	4	0.071	0.014		99.972	0.054	7.990	63.845	0.917	510.144	7.327
4.25	> 4	0.138	0.028	0.028	100.000	0.119	8.490	72.086	2.012	612.030	17.086
	TOTAL	494.321				-424.032			278.931		1044.057
meanф	-4.240	SKφ	10.441								
σφ	1.670	D50	-5.025								

$x)^{2} (m_{\varphi} \text{-} x)^{3} f(m_{\varphi} \text{-} x)^{3}$	0 -29.325 -4.194	1 -17.248 -14.006	4 -9.048 -11.698	57 -3.972 -11.668	3 -1.273 -6.343	4 -0.199 -3.307	6 -0.001 -0.016	8 0.072 2.476	0 0.769 8.081	0 2.841 3.385	9 7.037 1.569	1 14.107 1.478	1 24.802 7.905	-26.338		
² f(m _φ -	1.36	5.42	5.61	7.36	5.85	5.66	0.18	5.94	8.82	2.39	0.81	0.61	2.71	52.70		
(m _{\$\$} -x)	9.509	6.676	4.342	2.508	1.174	0.341	0.007	0.173	0.840	2.006	3.672	5.838	8.505			
m _ф -x	-3.084	-2.584	-2.084	-1.584	-1.084	-0.584	-0.084	0.416	0.916	1.416	1.916	2.416	2.916			
fm_φ	-0.250	-1.015	-0.970	-0.734	1.246	12.467	33.173	60.071	23.637	3.277	0.725	0.393	1.355	133.374		
Cummulative wt. %	0.143	0.955	2.248	5.185	10.169	26.792	53.330	87.657	98.162	99.354	99.577	99.681	100.000			
% G S M	0.955							98.726					0.319			
Individual wt. %	0.143	0.812	1.293	2.937	4.984	16.623	26.538	34.326	10.505	1.192	0.223	0.105	0.319		-0.263	1.437
Individual wt. (g)	0.127	0.721	1.148	2.608	4.425	14.760	23.564	30.479	9.328	1.058	0.198	0.093	0.283	88.792	SKφ	D50
phi (φ)	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	Э	3.5	4	>4	TOTAL	1.334	0.726
m_{φ}	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	oφ
	$m_{\varphi} \qquad phi \left(\varphi\right) \qquad \begin{array}{ccc} Individual \ Individual \ Individual \ Methods \\ wt. \ \% \ G \ S \ M \ wt. \ \% \ fm_{\varphi} \ fm_{\varphi} \ m_{\varphi} - x \ (m_{\varphi} - x)^2 \ f(m_{\varphi} - x)^3 \ f(m$	$ m_{\varphi} phi \left(\varphi\right) \begin{array}{cccc} Individual \ Indidual \ Individual \ Individual \ Individual \ In$	$ m_{\varphi} phi \left(\varphi\right) \frac{\text{Individual Individual Individual Nut. } { (\varphi) \ wt. } { (\varphi)$	$ m_{\varphi} phi (\varphi) m_{\varphi} phi (\varphi) m_{\psi} (g) wt. \% G S M Cumulative \\ \hline wt. \% fm_{\varphi} m_{\varphi} - x (m_{\varphi} - x)^2 f(m_{\varphi} - x)^3 \ \hline -1.75 -1.5 0.127 0.143 0.955 0.143 -0.250 -3.084 9.509 1.360 -29.325 -4.194 \\ \hline -1.25 -1 0.721 0.812 0.955 -1.015 -2.584 6.676 5.421 -17.248 -14.006 \\ \hline -0.75 -0.5 1.148 1.293 2.248 -0.970 -2.084 4.342 5.614 -9.048 -11.698 \\ \hline \end{array} $	$ m_{\oplus} phi \left(\varphi \right) \mbox{Individual Individual Individual Nut. } \\ w_{t.} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

201100 E -Ū

			$f(m_{\phi}-x)^3$	-6.935	-6.834	-13.541	-18.316	-10.124	-6.303	-1.668	0.001	4.607	7.953	2.672	0.771	1.258	7.653	-38.809		
			$(m_{\phi}-x)^3$	-41.798	-26.210	-15.078	-7.651	-3.179	-0.914	-0.104	0.000	0.148	1.091	3.578	8.360	16.186	27.806			
			$f(m_{\varphi}-x)^2$	1.998	2.301	5.481	9.296	6.885	6.495	3.545	0.027	8.700	7.725	1.747	0.380	0.497	2.526	57.602		
			$(m_{\phi}-x)^2$	12.044	8.824	6.103	3.883	2.162	0.942	0.221	0.001	0.280	1.060	2.340	4.119	6.399	9.178			
			m_{φ} -x	-3.470	-2.970	-2.470	-1.970	-1.470	-0.970	-0.470	0.030	0.530	1.030	1.530	2.030	2.530	3.030			
R14-G5-R	76.008	0.093	fm_{Φ}	-0.373	-0.456	-1.123	-1.796	-0.796	1.724	12.014	38.348	54.293	16.397	2.053	0.300	0.291	1.170	122.046		
Sample ID C	Initial wt. (g)	% error	Cummulative wt. %	0.166	0.427	1.325	3.719	6.903	13.800	29.818	60.496	91.521	98.808	99.555	99.647	99.725	100.000			
			% G S M	1.325								98.400					0.275			
			Individual wt. %	0.166	0.261	0.898	2.394	3.184	6.897	16.019	30.678	31.024	7.288	0.747	0.092	0.078	0.275		-0.388	1.329
			Individual wt. (g)	0.126	0.198	0.682	1.818	2.418	5.237	12.164	23.296	23.559	5.534	0.567	0.070	0.059	0.209	75.937	SKφ	D50
			phi (φ)	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	б	3.5	4	>4	TOTAL	1.220	0.759
			m_{φ}	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean _o	σψ

					Sample ID	CR14-G6					
					Initial wt. (g)	135.818					
					% error	0.149					
m_{Φ}	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m_{φ} -x	$\left(m_{\varphi}\text{-}x\right)^2$	$f(m_{\varphi}\text{-}x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
-3.675	-3.35	13.927	10.270	63.246	10.270	-37.740	-2.447	5.988	61.495	-14.653	-150.482
-3.175	ς	14.320	10.559		20.829	-33.526	-1.947	3.791	40.031	-7.381	-77.943
-2.75	-2.5	8.024	5.917		26.746	-16.271	-1.522	2.317	13.707	-3.526	-20.863
-2.25	-2	21.451	15.818		42.563	-35.590	-1.022	1.045	16.523	-1.068	-16.888
-1.75	-1.5	15.974	11.779		54.342	-20.613	-0.522	0.273	3.210	-0.142	-1.676
-1.25	-1	12.075	8.904		63.246	-11.130	-0.022	0.000	0.004	0.000	0.000
-0.75	-0.5	7.329	5.404		68.650	-4.053	0.478	0.228	1.234	0.109	0.590
-0.25	0	6.767	4.990		73.640	-1.247	0.978	0.956	4.772	0.935	4.667
0.25	0.5	4.966	3.662		77.302	0.915	1.478	2.184	7.999	3.228	11.821
0.75	1	5.960	4.395		81.697	3.296	1.978	3.912	17.193	7.738	34.008
1.25	1.5	9.700	7.153		88.849	8.941	2.478	6.140	43.918	15.215	108.827
1.75	2	7.754	5.718	36.391	94.567	10.006	2.978	8.868	50.705	26.409	150.996
2.25	2.5	4.299	3.170		97.737	7.133	3.478	12.096	38.345	42.069	133.360
2.75	С	1.857	1.369		99.106	3.766	3.978	15.824	21.668	62.947	86.194
3.25	3.5	0.576	0.425		99.531	1.380	4.478	20.052	8.517	89.791	38.137
3.75	4	0.144	0.106		99.637	0.398	4.978	24.780	2.631	123.353	13.098
4.25	>4	0.492	0.363	0.363	100.000	1.542	5.478	30.008	10.887	164.381	59.636
	TOTAL	135.615				-122.794			342.840		373.481
meanф	-1.228	$SK\phi$	3.735								
σφ	1.852	D50	-1.684								

ual % G S M Cu % G S M Cu 7 28.588 5 8 8 8
^{Jal} % G S M ^{Cu} 28.588
28.588
70.918
0.495

				Sample ID (Initial wt. (g)	CR14-G7-R 82.227					
				% error	0.126					
phi (φ) Individual Individual % G S M wt. %	Individual Individual % G S M wt. (g) wt. %	Individual % G S M wt. %	% G S M	 Cummulative wt. %	fm_{φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\phi}-x)^2$	$(m_{\Phi}-x)^3$	$f(m_{\varphi}-x)^3$
-3 0.557 0.678 29.175	0.557 0.678 29.175	0.678 29.175	29.175	0.678	-2.153	-3.188	10.163	6.893	-32.397	-21.973
-2.5 4.269 5.198	4.269 5.198	5.198		5.877	-14.295	-2.763	7.634	39.681	-21.091	-109.635
-2 5.363 6.530	5.363 6.530	6.530		12.407	-14.694	-2.263	5.121	33.440	-11.587	-75.671
-1.5 6.587 8.021	6.587 8.021	8.021		20.428	-14.037	-1.763	3.108	24.927	-5.479	-43.943
-1 7.183 8.747	7.183 8.747	8.747		29.175	-10.933	-1.263	1.595	13.950	-2.014	-17.617
-0.5 8.071 9.828	8.071 9.828	9.828		39.002	-7.371	-0.763	0.582	5.720	-0.444	-4.364
0 6.251 7.612	6.251 7.612	7.612		46.614	-1.903	-0.263	0.069	0.526	-0.018	-0.138
0.5 7.874 9.588	7.874 9.588	9.588		56.202	2.397	0.237	0.056	0.539	0.013	0.128
1 9.613 11.706	9.613 11.706	11.706		67.908	8.779	0.737	0.543	6.360	0.401	4.688
1.5 11.375 13.851	11.375 13.851	13.851		81.759	17.314	1.237	1.530	21.199	1.893	26.225
2 7.769 9.460 70.438	7.769 9.460 70.438	9.460 70.438	70.438	91.219	16.555	1.737	3.018	28.547	5.242	49.589
2.5 5.413 6.591	5.413 6.591	6.591		97.811	14.830	2.237	5.005	32.988	11.196	73.797
3 1.255 1.528	1.255 1.528	1.528		99.339	4.203	2.737	7.492	11.449	20.506	31.337
3.5 0.127 0.155	0.127 0.155	0.155		99.493	0.503	3.237	10.479	1.621	33.921	5.246
4 0.098 0.119	0.098 0.119	0.119		99.613	0.447	3.737	13.966	1.667	52.193	6.228
>4 0.318 0.387 0.387	0.318 0.387 0.387	0.387 0.387	0.387	100.000	1.646	4.237	17.953	6.952	76.070	29.456
TOTAL 82.123	82.123				1.288			236.457		-46.647
0.013 SKф -0.466	SKф -0.466	-0.466								
1.538 D50 0.177	D50 0.177	0.177								

		$f(m_{\phi}-x)^3$	-3.716	-5.203	-5.990	-8.268	-4.549	-0.651	0.385	5.444	4.324	1.240	0.831	1.071	7.202	-7.880		
		$(m_{\varphi}-x)^3$	-35.496	-11.953	-5.701	-2.129	-0.486	-0.023	0.010	0.363	1.787	5.032	10.846	19.981	33.187			
		$f(m_{\varphi}-x)^2$	1.131	2.276	3.353	6.427	5.784	2.271	1.801	7.629	3.563	0.723	0.375	0.395	2.241	37.970		
		$(m_{\phi}-x)^2$	10.801	5.228	3.191	1.655	0.618	0.082	0.046	0.509	1.473	2.936	4.900	7.363	10.327			
		x-∲m	-3.286	-2.286	-1.786	-1.286	-0.786	-0.286	0.214	0.714	1.214	1.714	2.214	2.714	3.214			
78.449	0.150	fm_{Φ}	-0.236	-0.544	-0.788	-0.971	2.338	20.762	49.369	26.220	5.443	0.678	0.249	0.201	0.922	103.643		
Initial wt. (g)	% error	Cummulative wt. %	0.105	0.540	1.591	5.474	14.827	42.509	82.005	96.987	99.406	99.653	99.729	99.783	100.000			
		% G S M	0.540							99.243					0.217			
		Individual wt. %	0.105	0.435	1.051	3.884	9.353	27.683	39.495	14.983	2.419	0.246	0.077	0.054	0.217		-0.079	1.095
		Individual wt. (g)	0.082	0.341	0.823	3.042	7.326	21.684	30.937	11.736	1.895	0.193	0.060	0.042	0.170	78.331	SKφ	D50
		phi (ф)	-2	-	-0.5	0	0.5	1	1.5	2	2.5	З	3.5	4	>4	TOTAL	1.036	0.616
		${\mathfrak m}_{\varphi}$	-2.25	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	օփ

Sample ID CR14-G8

	$f(m_{\varphi}-x)^3$	-19.482	-1.811	0.000	1.358	1.054	0.000	0.000	0.658	1.202	2.756	152.346	5.177	7.078	11.335	14.256	13.632	21.943	31.853	166.120	409.474		
	$(m_{\phi}-x)^3$	-1.233	-0.187	0.000	0.127	0.798	2.910	7.164	14.309	25.095	40.274	60.593	86.805	119.658	159.902	208.288	265.566	332.485	409.796	498.249			
	$f(m_{\varphi}-x)^2$	18.169	3.164	0.000	2.701	1.136	0.000	0.000	0.271	0.411	0.804	38.787	1.169	1.436	2.088	2.405	2.121	3.167	4.288	20.954	103.073		
	$(m_{\Phi}-x)^2$	1.150	0.327	0.000	0.253	0.861	2.038	3.716	5.894	8.572	11.749	15.427	19.605	24.283	29.460	35.138	41.316	47.993	55.171	62.849			
	m _ф -x	-1.072	-0.572	0.003	0.503	0.928	1.428	1.928	2.428	2.928	3.428	3.928	4.428	4.928	5.428	5.928	6.428	6.928	7.428	7.928			
CR14-G9 204.028	fim _ф	-75.062	-41.059	-217.070	-33.932	-3.628	0.000	0.000	-0.057	-0.036	-0.017	0.629	0.045	0.074	0.124	0.154	0.141	0.214	0.291	1.417	-367.773		
Sample ID Initial wt. (g)	Cummulative wt. %	15.803	25.464	84.530	95.217	96.537	96.537	96.537	96.583	96.631	96.699	99.213	99.273	99.332	99.403	99.472	99.523	99.589	99.667	100.000			
	% G S M			96.583											3.084					0.333			
	Individual wt. %	15.803	9.661	59.067	10.687	1.319	0.000	0.000	0.046	0.048	0.068	2.514	0.060	0.059	0.071	0.068	0.051	0.066	0.078	0.333		4.095	-3.418
	Individual wt. (g)	32.325	19.762	120.824	21.861	2.699	0.000	0.000	0.094	0.098	0.140	5.143	0.122	0.121	0.145	0.140	0.105	0.135	0.159	0.682	204.555	SKφ	D50
	phi (ф)	-4.5	4	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	2	2.5	З	3.5	4	>4	TOTAL	-3.678	1.015
	m	-4.75	-4.25	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σф

			$f(m_{\varphi}-x)^3$	-16.326	-16.828	-14.017	-16.420	-11.778	-4.321	-0.263	0.517	10.168	10.883	4.391	2.401	2.178	11.508	-37.905		
			$(m_{\phi}-x)^3$	-33.506	-20.209	-10.998	-5.123	-1.833	-0.379	-0.011	0.021	0.468	2.078	5.603	11.793	21.396	35.164			
			$f(m_{\phi}-x)^2$	5.064	6.178	6.303	9.525	9.624	5.970	1.174	1.873	13.101	8.528	2.472	1.055	0.785	3.513	75.163		
			$(m_{\phi}-x)^2$	10.393	7.419	4.945	2.972	1.498	0.524	0.050	0.076	0.602	1.629	3.155	5.181	7.707	10.733			
			m _ф -x	-3.224	-2.724	-2.224	-1.724	-1.224	-0.724	-0.224	0.276	0.776	1.276	1.776	2.276	2.776	3.276			
CR14-G10	111.568	1.402	fm_{Φ}	-1.096	-1.457	-1.593	-2.404	-1.606	2.849	17.568	30.697	38.056	11.781	2.155	0.662	0.382	1.391	97.384		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	0.487	1.320	2.594	5.800	12.225	23.619	47.044	71.601	93.348	98.584	99.367	99.571	99.673	100.000			
			% G S M	2.594								97.078					0.327			
			Individual wt. %	0.487	0.833	1.274	3.205	6.425	11.394	23.425	24.557	21.746	5.236	0.784	0.204	0.102	0.327		-0.379	1.060
			Individual wt. (g)	0.536	0.916	1.402	3.526	7.068	12.534	25.768	27.014	23.922	5.760	0.862	0.224	0.112	0.360	110.004	SKφ	D50
			phi (ф)	-2	-1.5	-	-0.5	0	0.5		1.5	2	2.5	б	3.5	4	< 4	TOTAL	0.974	0.867
			${\mathfrak m}_{\varphi}$	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	oφ

(m _{\phi} -x) ³ -51.382 -51.382 -33.314 -20.072 -10.907 -20.072 -10.907 -0.370 -0.010 0.479 -0.370 -0.010 0.479 -2.109 5.662 11.889 2.109 2.109 2.109 2.109 2.109 2.103 35.363	$\begin{array}{c} f(m_{\phi}\text{-x})^2\\ 3.196\\ 2.679\\ 3.700\\ 8.265\\ 8.443\\ 8.359\\ 8.359\\ 8.359\\ 6.567\\ 0.982\\ 8.359\\ 6.567\\ 0.982\\ 0.922\\ 0.922\\ 0.177\\ 1.028\\ 0.430\\ 0.799\\ 3.945\\ 3.945\end{array}$	$\begin{array}{c} (m_{\varphi}\text{-}x)^2 \\ (m_{\varphi}\text{-}x)^2 \\ 13.821 \\ 10.353 \\ 7.386 \\ 4.918 \\ 2.950 \\ 1.483 \\ 0.515 \\ 0.515 \\ 0.612 \\ 1.644 \\ 3.177 \\ 5.209 \\ 7.741 \\ 10.774 \end{array}$	m_{Φ} -x -3.718 -3.718 -2.718 -2.218 -1.718 -1.718 -0.718 0.282 0.782 1.782 1.782 1.782 2.782 3.282 2.782	$\begin{array}{c} \text{R14-G10-R} \\ 72.779 \\ 0.176 \\ \text{fm}_{\oplus} \\ \text{fm}_{\oplus} \\ -0.636 \\ -0.582 \\ -0.637 \\ -0.877 \\ -0.877 \\ -2.085 \\ -2.146 \\ -1.409 \\ 3.188 \\ 15.548 \\ 36.398 \\ 37.815 \\ 36.398 \\ 37.815 \\ 8.452 \\ 0.387 \\ 0.387 \\ 0.387 \\ 0.387 \\ 0.387 \\ 0.387 \\ 0.556 \end{array}$	Sample ID C Initial wt. (g) % error Cummulative wt. % 0.231 0.490 0.991 0.490 0.991 2.659 5.521 11.159 5.521 11.159 23.910 44.641 73.759 99.125 99.448 99.631 99.634 100.000	% G S M 2.659 96.975 0.366	Individual wt. % 0.231 0.259 0.501 1.668 2.862 5.638 12.751 29.119 29.119 29.119 21.609 3.756 0.323 0.083 0.103	Individual wt. (g) 0.168 0.188 0.364 1.212 2.079 9.264 15.061 15.061 15.069 21.155 15.699 2.729 0.235 0.06 0.075 0.266	phi (φ) -2.5 -2.5 -1.5 -1.5 -1.5 -1.5 -0.5 0 0 0.5 0.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1
	70.057			96.766				72.651	TOTAL
35.363	3.945	10.774	3.282	1.556	100.000	0.366	0.366	0.266	>4
21.539	0.799	7.741	2.782	0.387	99.634		0.103	0.075	4
11.889	0.430	5.209	2.282	0.268	99.531		0.083	0.06	3.5
5.662	1.028	3.177	1.782	0.890	99.448		0.323	0.235	æ
2.109	6.177	1.644	1.282	8.452	99.125		3.756	2.729	2.5
0.479	13.226	0.612	0.782	37.815	95.368	96.975	21.609	15.699	7
0.023	2.321	0.080	0.282	36.398	73.759		29.119	21.155	1.5
-0.010	0.982	0.047	-0.218	15.548	44.641		20.731	15.061	1
-0.370	6.567	0.515	-0.718	3.188	23.910		12.751	9.264	0.5
-1.805	8.359	1.483	-1.218	-1.409	11.159		5.638	4.096	0
-5.068	8.443	2.950	-1.718	-2.146	5.521		2.862	2.079	-0.5
-10.907	8.205	4.918	-2.218	-2.085	2.659		1.668	1.212	-1
-20.072	3.700	7.386	-2.718	-0.877	0.991		0.501	0.364	-1.5
-33.314	2.679	10.353	-3.218	-0.582	0.490		0.259	0.188	-2
-51.382	3.196	13.821	-3.718	-0.636	0.231	2.659	0.231	0.168	-2.5
$(m_{\phi}-x)^3$	$f(m_{\varphi}\text{-}x)^2$	$(m_{\phi}-x)^2$	m_{φ} -x	fm_{φ}	Cummulative wt. %	% G S M	Individual wt. %	Individual wt. (g)	phi (ф)
				0.176	الالالة المراجع الم				
				JR14-G10-R 72 779	Sample ID C				

			$(m_{\varphi}\text{-}x)^3$ $f(m_{\varphi}\text{-}x)^3$	-48.767 -409.141	-31.360 -43.986	-20.313 -36.695	-11.067 -85.660	-5.164 -23.780	-1.854 -12.468	-0.387 -2.767	-0.012 -0.078	0.020 0.129	0.459 4.666	2.056 25.281	5.559 91.446	11.720 91.274	21.288 29.904	35.014 12.444	53.646 9.872	77.936 43.134	-306.424		
			$f(m_{\varphi}-x)^2$	111.986	13.948	13.449	38.438	13.757	10.149	3.798	0.340	0.476	6.048	19.883	51.621	40.182	10.790	3.804	2.617	10.098	351.384		
			$(m_{\Phi}-x)^2$	13.348	9.945	7.445	4.966	2.988	1.509	0.531	0.052	0.074	0.595	1.617	3.138	5.160	7.681	10.703	14.224	18.246			
			m∲-x	-3.654	-3.154	-2.729	-2.229	-1.729	-1.229	-0.729	-0.229	0.271	0.771	1.271	1.771	2.271	2.771	3.271	3.771	4.271			
CR14-G11	140.674	-1.211	fm_{Φ}	-30.832	-4.453	-4.968	-17.415	-8.058	-8.405	-5.367	-1.630	1.616	7.621	15.373	28.786	17.522	3.863	1.155	0.690	2.352	-2.149		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	8.390	9.792	11.599	19.339	23.943	30.668	37.823	44.343	50.806	60.967	73.266	89.715	97.502	98.907	99.263	99.447	100.000			
			% G S M	30.668											68.779					0.553			
			Individual wt. %	8.390	1.403	1.806	7.740	4.605	6.724	7.156	6.519	6.463	10.162	12.298	16.449	7.788	1.405	0.355	0.184	0.553		-3.064	0.438
			Individual wt. (g)	11.945	1.997	2.572	11.020	6.556	9.574	10.188	9.282	9.202	14.468	17.510	23.420	11.088	2.000	0.506	0.262	0.788	142.378	SKφ	D50
			phi (φ)	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ŝ	3.5	4	>4	TOTAL	-0.021	1.875
			m_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σф

		$f(m_{\varphi}-x)^3$	-76.206	-12.760	-62.685	-28.245	-9.032	-0.927	0.003	2.132	18.233	39.094	47.465	20.808	8.150	6.021	7.666	29.140	-11.143		
		$(m_{\phi}-x)^3$	-23.429	-14.464	-7.261	-2.964	-0.821	-0.083	0.000	0.179	1.203	3.822	8.787	16.847	28.752	45.253	64.099	95.040			
		$f(m_{\varphi}-x)^2$	26.632	5.237	32.371	19.663	9.645	2.124	0.044	3.782	17.144	25.004	23.002	8.117	2.660	1.690	1.887	6.385	185.385		
		$(m_{\phi}-x)^2$	8.188	5.936	3.750	2.063	0.877	0.190	0.004	0.318	1.131	2.445	4.258	6.572	9.385	12.699	16.512	20.826			
		x-∲m	-2.861	-2.436	-1.936	-1.436	-0.936	-0.436	0.064	0.564	1.064	1.564	2.064	2.564	3.064	3.564	4.064	4.564			
CR14-G12 135 228	-2.264	fm_{Φ}	-10.327	-2.426	-19.423	-16.676	-13.748	-8.362	-2.697	2.977	11.367	12.785	9.453	2.779	0.780	0.432	0.428	1.303	-31.355		
Sample ID Initial wt (g)	% error	Cummulative wt. %	3.253	4.135	12.767	22.297	33.295	44.444	55.232	67.142	82.298	92.526	97.928	99.163	99.446	99.579	99.693	100.000			
		% G S M	33.295										66.398					0.307			
		Individual wt. %	3.253	0.882	8.633	9.529	10.999	11.149	10.787	11.910	15.157	10.228	5.402	1.235	0.283	0.133	0.114	0.307		-0.111	-0.242
		Individual wt. (g)	4.498	1.220	11.938	13.178	15.210	15.418	14.918	16.470	20.960	14.144	7.470	1.708	0.392	0.184	0.158	0.424	138.290	SKφ	D50
		phi (ф)	-3 -3	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ξ	3.5	4	>4	TOTAL	-0.314	1.362
		$\mathrm{m}_{\mathrm{\Phi}}$	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	օփ

			$(m_{\phi}-x)^3$.27.452	-7.085	28.903	20.096	.18.701	.12.716	-6.828	-1.774	0.000	2.739	13.679	7.753	2.965	2.571	3.280	17.488	.73.078		
			$(m_{\phi}-x)^3$ f	61.316	43.551	.27.497	.15.970	-8.221	-3.500 -	-1.056	-0.139	0.000	0.112	0.946	3.253	7.783	15.285	26.509	42.207			
			$(m_{\phi}-x)^2$	6.962	2.014	9.576	7.980	9.266	8.375	6.705	3.422	0.010	5.687	13.933	5.232	1.496	1.036	1.100	5.023	87.817		
			$(m_{\phi}-x)^2$ 1	15.550	12.378	9.110	6.342	4.073	2.305	1.037	0.269	0.000	0.232	0.964	2.195	3.927	6.159	8.891	12.122			
			m _ф -x	-3.943	-3.518	-3.018	-2.518	-2.018	-1.518	-1.018	-0.518	-0.018	0.482	0.982	1.482	1.982	2.482	2.982	3.482			
CR14-G13	146.991	2.141	fm_{φ}	-1.421	-0.447	-2.365	-2.202	-2.843	-2.725	-1.617	3.185	22.149	30.634	25.300	5.362	1.048	0.547	0.464	1.761	76.829		
Sample ID (Initial wt. (g)	% error	Cummulative wt. %	0.448	0.610	1.662	2.920	5.195	8.828	15.294	28.033	57.565	82.072	96.530	98.913	99.294	99.462	99.586	100.000			
			% G S M	5.195										94.391					0.414			
			Individual wt. %	0.448	0.163	1.051	1.258	2.275	3.633	6.467	12.739	29.532	24.507	14.457	2.383	0.381	0.168	0.124	0.414		-0.731	0.872
			Individual wt. (g)	0.644	0.234	1.512	1.810	3.272	5.226	9.302	18.324	42.480	35.252	20.796	3.428	0.548	0.242	0.178	0.596	143.844	SKφ	D50
			phi (ф)	-3	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	Э	3.5	4	< 4	TOTAL	0.768	0.937
			${\mathfrak m}_{\varphi}$	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σф

					Sample ID	CR14-G14					
					Initial wt. (g) % error	168.051 0.451					
${\mathfrak m}_{\varphi}$	phi (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	т _ф -х	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
-4.25	4	17.022	10.175		10.175	-43.244	-3.388	11.477	116.781	-38.883	-395.634
-3.675	-3.35	13.696	8.187	56.983	18.362	-30.087	-2.813	7.912	64.774	-22.255	-182.197
-3.175	ή	31.659	18.924		37.286	-60.085	-2.313	5.349	101.229	-12.372	-234.124
-2.75	-2.5	7.271	4.346		41.632	-11.952	-1.888	3.564	15.490	-6.728	-29.241
-2.25	-2	12.755	7.624		49.257	-17.155	-1.388	1.926	14.685	-2.673	-20.380
-1.75	-1.5	6.929	4.142		53.399	-7.248	-0.888	0.788	3.265	-0.700	-2.898
-1.25	-	5.997	3.585		56.983	-4.481	-0.388	0.150	0.539	-0.058	-0.209
-0.75	-0.5	4.587	2.742		59.725	-2.056	0.112	0.013	0.035	0.001	0.004
-0.25	0	3.782	2.261		61.986	-0.565	0.612	0.375	0.847	0.229	0.519
0.25	0.5	3.667	2.192		64.178	0.548	1.112	1.237	2.711	1.376	3.015
0.75	1	6.874	4.109		68.287	3.082	1.612	2.599	10.680	4.190	17.218
1.25	1.5	6.704	4.007		72.294	5.009	2.112	4.461	17.878	9.423	37.761
1.75	7	8.965	5.359	36.286	77.653	9.378	2.612	6.823	36.566	17.824	95.517
2.25	2.5	9.554	5.711		83.364	12.850	3.112	9.686	55.314	30.144	172.148
2.75	б	7.318	4.374		87.738	12.029	3.612	13.048	57.076	47.131	206.169
3.25	3.5	5.314	3.176		90.915	10.324	4.112	16.910	53.714	69.537	220.882
3.75	4	3.939	2.355		93.269	8.830	4.612	21.272	50.086	98.111	231.008
4.25	>4	11.260	6.731	6.731	100.000	28.606	5.112	26.134	175.903	133.604	899.247
	TOTAL	167.293				-86.218			777.572		1018.803
meanф	-0.862	$SK\phi$	10.188								
σφ	2.788	D50	-1.910								

σф

		$f(m_{\varphi}-x)^3$	-178.551	-104.415	0.000	-10.450	-11.937	-6.129	-5.318	-5.170	-2.620	-0.125	1.225	10.639	8.630	1.317	1.245	1.298	9.353	-291.009		
		$(m_{\varphi}-x)^3$	-97.449	-69.011	-49.705	-32.060	-19.180	-10.314	-4.714	-1.630	-0.310	-0.006	0.034	0.558	2.317	6.061	12.539	22.503	36.701			
		$f(m_{\varphi}\text{-}x)^2$	38.801	25.456	0.000	3.289	4.459	2.816	3.172	4.393	3.872	0.708	3.789	12.923	6.522	0.722	0.536	0.460	2.815	114.732		
		$(m_{\phi}-x)^2$	21.176	16.825	13.519	10.092	7.165	4.738	2.812	1.385	0.458	0.031	0.104	0.678	1.751	3.324	5.397	7.971	11.044			
		m _ф -x	-4.602	-4.102	-3.677	-3.177	-2.677	-2.177	-1.677	-1.177	-0.677	-0.177	0.323	0.823	1.323	1.823	2.323	2.823	3.323			
CR14-G15	74.638 0.114	fin_{φ}	-6.734	-4.804	0.000	-0.733	-1.089	-0.743	-0.846	-0.793	2.113	17.002	45.332	33.372	8.381	0.598	0.323	0.216	1.083	92.678		
Sample ID	Initial wt. (g) % error	Cummulative wt. %	1.832	3.345	3.345	3.671	4.294	4.888	6.016	9.188	17.641	40.311	76.576	95.646	99.371	99.588	99.687	99.745	100.000			
		% G S M	4.888											94.857					0.255			
		Individual wt. %	1.832	1.513	0.000	0.326	0.622	0.594	1.128	3.172	8.453	22.670	36.265	19.070	3.725	0.217	0.099	0.058	0.255		-2.910	1.134
		Individual wt. (g)	1.366	1.128	0.000	0.243	0.464	0.443	0.841	2.365	6.302	16.901	27.037	14.217	2.777	0.162	0.074	0.043	0.190	74.553	SKφ	D50
		phi (ф)	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	2	2.5	Э	3.5	4	>4	TOTAL	0.927	1.071
		m_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σф

			$(m_{\phi}-x)^3$	-52.354	-34.042	-20.592	-11.254	-5.277	-1.911	-0.407	-0.014	0.017	0.437	1.996	5.443	11.529	21.003	34.616			
			$f(m_{\varphi}-x)^2$	3.499	6.697	4.899	4.497	5.376	5.482	5.804	1.382	2.417	11.076	3.372	0.483	0.297	0.554	2.150	57.985		
			$(m_{\phi}-x)^2$	13.995	10.504	7.513	5.022	3.031	1.540	0.549	0.058	0.067	0.576	1.585	3.094	5.103	7.612	10.621			
			m_{φ} -x	-3.741	-3.241	-2.741	-2.241	-1.741	-1.241	-0.741	-0.241	0.259	0.759	1.259	1.759	2.259	2.759	3.259			
R14-G15-R	75.704	0.141	fm_{Φ}	-0.688	-1.435	-1.141	-1.119	-1.330	-0.890	2.643	17.846	45.030	33.643	4.786	0.429	0.189	0.273	0.860	960.66		
Sample ID C	Initial wt. (g)	% error	Cummulative wt. %	0.250	0.888	1.540	2.435	4.209	7.769	18.341	42.135	78.159	97.383	99.511	99.667	99.725	99.798	100.000			
			% G S M	2.435									97.362					0.202			
			Individual wt. %	0.250	0.638	0.652	0.896	1.774	3.560	10.572	23.795	36.024	19.224	2.127	0.156	0.058	0.073	0.202		-0.558	1.165
			Individual wt. (g)	0.189	0.482	0.493	0.677	1.341	2.691	7.992	17.988	27.233	14.533	1.608	0.118	0.044	0.055	0.153	75.597	SKφ	D50
			phi (ф)	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ŝ	3.5	4	>4	TOTAL	0.991	0.761
			$\mathrm{m}_{\mathrm{\varphi}}$	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_	oφ

					Sample ID	CR14-G16					
					Initial wt. (g) % error	602.906 -0.586					
	phi (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\Phi}-x)^3$	$f(m_{\varphi}-x)^3$
	-5.5	301.060	49.644		49.644	-285.452	-1.185	1.405	69.761	-1.666	-82.696
5	-5	133.410	21.999		71.643	-115.494	-0.685	0.470	10.335	-0.322	-7.084
5	-3.35	44.027	7.260	92.951	78.902	-26.680	0.890	0.791	5.745	0.704	5.111
5	Ϋ́	27.837	4.590		83.493	-14.574	1.390	1.931	8.863	2.683	12.316
5	-2.5	13.449	2.218		85.710	-6.099	1.815	3.293	7.302	5.975	13.250
5	-2	19.093	3.148		88.859	-7.084	2.315	5.357	16.867	12.400	39.039
5	-1.5	14.880	2.454		91.312	-4.294	2.815	7.922	19.438	22.297	54.708
5	-	9.934	1.638		92.951	-2.048	3.315	10.986	17.997	36.415	59.651
5	-0.5	9.399	1.550		94.500	-1.162	3.815	14.551	22.552	55.506	86.027
5	0	7.469	1.232		95.732	-0.308	4.315	18.616	22.927	80.318	98.921
	0.5	5.752	0.948		96.680	0.237	4.815	23.180	21.986	111.603	105.853
	1	5.492	0.906		97.586	0.679	5.315	28.245	25.579	150.109	135.940
	1.5	3.526	0.581		98.168	0.727	5.815	33.809	19.658	196.587	114.301
	2	3.853	0.635	6.679	98.803	1.112	6.315	39.874	25.334	251.787	159.972
	2.5	2.312	0.381		99.184	0.858	6.815	46.438	17.704	316.459	120.647
	З	0.625	0.103		99.287	0.283	7.315	53.503	5.514	391.352	40.333
	3.5	0.224	0.037		99.324	0.120	7.815	61.068	2.256	477.218	17.627
0	4	1.853	0.306		99.630	1.146	8.315	69.132	21.124	574.805	175.634
	< 4	2.246	0.370	0.370	100.000	1.574	8.815	77.697	28.776	684.864	253.645
	TOTAL	606.441				-456.458			369.716		1403.195
۹ ^ل	-4.565	SKφ	14.032								
	1.923	D50	-5.492								

	3 f(m _{ϕ} -x) ³	13 -4815.722	30 -952.971	43 -621.117	-1574.088		
	(m _{\$\$} -x	-89.64	-41.98	-26.34			
	$f(m_{\varphi}-x)^2$	1076.026	274.199	208.746	482.945		
	$(m_{\phi}-x)^2$	20.030	12.079	8.853			
	m_{φ} -x	-4.475	-3.475	-2.975			
CR14-G17 1460.130 0.000	fm_{Φ}	-389.479	-141.879	-135.574	-277.453		
Sample ID Initial wt. (g) % error	Cummulative wt. %	53.721	76.422	100.000			
	% G S M		100.000				
	Individual wt. %	53.721	22.701	23.578		-15.741	-7.035
	Individual wt. (g)	784.400	331.460	344.270	1460.130	$SK\phi$	D50
	phi (φ)	L-	-9	-5.5	TOTAL	-2.775	2.198
	m_{φ}	-7.25	-6.25	-5.75		meanф	σф

ndividual Individual wt. (g) wt. % 6.950 5.239 12.562 9.470 5.382 4.057 5.108 3.851 2.700 2.035 2.168 1.634 2.447 1.845 2.953 2.226 4.571 3.446	% G S M	IIIIIIai wr. (g)						
idual Individual (g) wt. % (g) wt. % 562 9.470 82 4.057 08 3.851 00 2.035 68 1.634 47 1.845 53 2.226 53 2.226	% G S M	% error	-0.163					
50 5.239 562 9.470 82 4.057 08 3.851 08 3.851 00 2.035 68 1.634 47 1.845 53 2.226 71 3.446		Cummulative wt. %	fm_{φ}	m _ф -x	$\left(m_{\varphi}\text{-}x\right)^2$	$f(m_{\varphi}\text{-}x)^2$	$(m_{\varphi}-x)^3$	$f(m_{\varphi}-x)^3$
562 9.470 382 4.057 382 4.057 108 3.851 700 2.035 168 1.634 447 1.845 953 2.226 951 3.446	26.286	5.239	-19.254	-3.949	15.597	81.717	-61.600	-322.731
 382 4.057 108 3.851 100 2.035 168 1.634 147 1.845 553 2.226 551 3.446 		14.709	-30.066	-3.449	11.898	112.671	-41.041	-388.642
108 3.851 700 2.035 168 1.634 147 1.845 533 2.226 571 3.446		18.766	-11.157	-3.024	9.147	37.110	-27.663	-112.233
700 2.035 168 1.634 147 1.845 553 2.226 571 3.446		22.616	-8.664	-2.524	6.372	24.537	-16.086	-61.941
168 1.634 447 1.845 953 2.226 571 3.446		24.652	-3.562	-2.024	4.098	8.341	-8.296	-16.885
447 1.845 953 2.226 571 3 446		26.286	-2.043	-1.524	2.324	3.798	-3.542	-5.789
53 2.226 571 3.446		28.131	-1.383	-1.024	1.049	1.936	-1.075	-1.983
571 3.446		30.357	-0.557	-0.524	0.275	0.612	-0.144	-0.321
		33.802	0.861	-0.024	0.001	0.002	0.000	0.000
.881 9.710		43.513	7.283	0.476	0.226	2.197	0.108	1.045
553 18.509		62.021	23.136	0.976	0.952	17.618	0.929	17.188
.913 27.072	73.575	89.094	47.376	1.476	2.177	58.950	3.213	86.988
.923 9.742		98.835	21.919	1.976	3.903	38.023	7.711	75.120
181 0.890		99.726	2.448	2.476	6.129	5.456	15.173	13.508
000 0.000		99.726	0.000	2.976	8.854	0.000	26.347	0.000
180 0.136		99.861	0.509	3.476	12.080	1.639	41.986	5.697
184 0.139	0.139	100.000	0.589	3.976	15.806	2.192	62.838	8.716
.656			27.437			396.798		-702.263
Кф -7.023								
50 1.175								

			₄ ۲۰۰۰ س	(x-ф111)1	-0.093	7.340	0.000	7.247		
			() ³	(ν- φμη)	-0.001	0.726	15.142			
			₄ ۲, سرا2	(x-ф111)1	0.918	8.165	0.000	9.083		
			() ²	(x-∲m)	0.010	0.808	6.120			
			v tt	v_¢m	-0.101	0.899	2.474			
CR14-G19	829.400	0.000	fm	фтит	-561.852	-53.044	0.000	-614.896		
Sample ID	Initial wt. (g)	% error	Cummulative	wt. %	89.896	100.000	100.000			
			VIS U 70			100.000				
			Individual	wt. %	89.896	10.104	0.000		0.072	-6.222
			Individual	wt. (g)	745.600	83.800	0.000	829.400	SKφ	D50
			(ф) idn	(എ) IIII	9-	-5	-3.35	TOTAL	-6.149	0.301
			Ĕ	фтт	-6.25	-5.25	-3.675		meanф	σφ

					Initial wt. (g) % error	429.118 0.035					
${\mathfrak m}_{\Phi}$	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm _φ	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\phi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}\text{-}x)^3$
-5.75	-5.5	90.400	21.074		21.074	-121.175	-1.791	3.208	67.606	-5.746	-121.089
-5.25	5	178.000	41.495		62.569	-217.848	-1.291	1.667	69.170	-2.152	-89.305
-3.675	-3.35	28.606	699.9	87.134	69.237	-24.507	0.284	0.081	0.537	0.023	0.153
-3.175	ή	22.351	5.210		74.448	-16.543	0.784	0.614	3.202	0.482	2.510
-2.75	-2.5	11.720	2.732		77.180	-7.513	1.209	1.461	3.993	1.767	4.827
-2.25	-2	19.800	4.616		81.796	-10.385	1.709	2.920	13.479	4.991	23.035
-1.75	-1.5	13.236	3.086		84.881	-5.400	2.209	4.879	15.055	10.778	33.255
-1.25	-	9.664	2.253		87.134	-2.816	2.709	7.338	16.532	19.878	44.783
-0.75	-0.5	9.052	2.110		89.244	-1.583	3.209	10.297	21.729	33.042	69.725
-0.25	0	7.004	1.633		90.877	-0.408	3.709	13.756	22.460	51.019	83.302
0.25	0.5	6.714	1.565		92.442	0.391	4.209	17.715	27.726	74.560	116.698
0.75	1	8.260	1.926		94.368	1.444	4.709	22.174	42.697	104.414	201.054
1.25	1.5	7.496	1.747		96.115	2.184	5.209	27.133	47.413	141.331	246.969
1.75	7	8.869	2.068	12.798	98.183	3.618	5.709	32.592	67.384	186.062	384.686
2.25	2.5	4.792	1.117		99.300	2.513	6.209	38.550	43.065	239.356	267.384
2.75	б	1.946	0.454		99.753	1.248	6.709	45.009	20.418	301.963	136.985
3.25	3.5	0.594	0.138		99.892	0.450	7.209	51.968	7.196	374.634	51.876
3.75	4	0.173	0.040		99.932	0.151	7.709	59.427	2.397	458.118	18.476
4.25	>4	0.291	0.068	0.068	100.000	0.288	8.209	67.386	4.571	553.165	37.525
	TOTAL	428.968				-395.890			496.629		1512.848
meanф	-3.959	$SK\phi$	15.128								
σφ	2.229	D50	-5.151								

Sample ID CR14-G20 nitial wt. (g) 429.118
				Sample ID	CR14-G21					
				Initial wt. (g) % error	470.361 -0.018					
hi (ф) Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	$\mathrm{fm}_{\mathrm{\varphi}}$	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\Phi}-x)^3$	$f(m_{\phi}-x)^3$
-5.5	257.110	54.652		54.652	-314.251	-1.674	2.804	153.237	-4.695	-256.590
Ś	44.100	9.374		64.026	-49.214	-1.174	1.379	12.930	-1.620	-15.186
-3.35	36.277	7.711	84.368	71.738	-28.339	0.401	0.160	1.237	0.064	0.495
ή	14.171	3.012		74.750	-9.564	0.901	0.811	2.443	0.730	2.200
-2.5	10.879	2.312		77.062	-6.359	1.326	1.757	4.063	2.329	5.386
2	14.884	3.164		80.226	-7.119	1.826	3.333	10.544	6.084	19.248
-1.5	10.115	2.150		82.376	-3.763	2.326	5.408	11.628	12.577	27.041
٦	9.372	1.992		84.368	-2.490	2.826	7.984	15.905	22.558	44.939
-0.5	8.365	1.778		86.146	-1.334	3.326	11.059	19.664	36.778	65.394
0	7.384	1.570		87.716	-0.392	3.826	14.635	22.970	55.985	87.873
0.5	9.012	1.916		89.632	0.479	4.326	18.710	35.842	80.932	155.035
1	14.993	3.187		92.819	2.390	4.826	23.286	74.211	112.366	358.107
1.5	14.571	3.097		95.916	3.872	5.326	28.361	87.842	151.039	467.808
0	11.337	2.410	15.551	98.326	4.217	5.826	33.937	81.782	197.700	476.424
2.5	4.895	1.040		99.366	2.341	6.326	40.012	41.633	253.099	263.350
б	1.808	0.384		99.750	1.057	6.826	46.588	17.904	317.987	122.207
3.5	0.581	0.123		99.874	0.401	7.326	53.663	6.627	393.113	48.549
4	0.212	0.045		99.919	0.169	7.826	61.239	2.760	479.227	21.596
\ 4	0.381	0.081	0.081	100.000	0.344	8.326	69.314	5.614	577.080	46.736
OTAJ	L 470.447				-407.553			608.836		1940.611
-4.076	SKφ	19.406								
2.467	D50	-5.543								

					and and and						
					Initial wt. (g)	330.172					
					% error	0.259					
m_{φ}	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\varphi}-x)^2$	$f(m_{\Phi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
-5.25	-5	155.200	47.128		47.128	-247.421	-1.901	3.612	170.245	-6.866	-323.574
-4.25	4	14.831	4.504		51.631	-19.140	-0.901	0.811	3.653	-0.731	-3.290
-3.675	-3.35	46.796	14.210	81.721	65.841	-52.222	-0.326	0.106	1.507	-0.035	-0.491
-3.175	ς	19.056	5.787		71.628	-18.372	0.174	0.030	0.176	0.005	0.031
-2.75	-2.5	6.950	2.110		73.738	-5.804	0.599	0.359	0.758	0.215	0.454
-2.25	-2	15.017	4.560		78.298	-10.260	1.099	1.209	5.511	1.329	6.059
-1.75	-1.5	6.745	2.048		80.347	-3.584	1.599	2.558	5.239	4.091	8.379
-1.25	-	4.525	1.374		81.721	-1.718	2.099	4.407	6.056	9.253	12.714
-0.75	-0.5	3.548	1.077		82.798	-0.808	2.599	6.757	7.280	17.563	18.922
-0.25	0	2.610	0.793		83.591	-0.198	3.099	9.606	7.613	29.773	23.596
0.25	0.5	3.146	0.955		84.546	0.239	3.599	12.955	12.376	46.631	44.547
0.75	-	7.881	2.393		86.939	1.795	4.099	16.805	40.216	68.889	164.861
1.25	1.5	14.560	4.421		91.360	5.527	4.599	21.154	93.528	97.296	430.171
1.75	7	19.335	5.871	18.210	97.232	10.275	5.099	26.004	152.673	132.601	778.535
2.25	2.5	6.954	2.112		99.343	4.751	5.599	31.353	66.206	175.556	370.712
2.75	б	1.436	0.436		97.79	1.199	6.099	37.202	16.222	226.910	98.945
3.25	3.5	0.377	0.114		99.894	0.372	6.599	43.552	4.986	287.413	32.903
3.75	4	0.121	0.037		99.930	0.138	7.099	50.401	1.852	357.815	13.147
4.25	>4	0.229	0.070	0.070	100.000	0.296	7.599	57.750	4.016	438.866	30.518
	TOTAL	329.317				-334.937			600.114		1707.140
meanф	-3.349	SKφ	17.071								
օփ	2.450	D50	-4.181								

Sample ID CR14-G22

					Sample ID	CR14-G23					
					Initial wt. (g) % error	2700.795 0.017					
m_{Φ}	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\phi}-x)^3$
-7.25	L-	2624.400	97.188	97.348	97.188	-704.614	-7.287	53.093	5160.053	-386.867	-37598.869
-2.75	-2.5	1.219	0.045		97.233	-0.124	-2.787	7.765	0.351	-21.637	-0.977
-2.25	-2	1.620	0.060		97.293	-0.135	-2.287	5.228	0.314	-11.954	-0.717
-1.75	-1.5	0.416	0.015		97.309	-0.027	-1.787	3.192	0.049	-5.702	-0.088
-1.25	-	1.076	0.040		97.348	-0.050	-1.287	1.655	0.066	-2.129	-0.085
-0.75	-0.5	0.984	0.036		97.385	-0.027	-0.787	0.619	0.023	-0.487	-0.018
-0.25	0	1.672	0.062		97.447	-0.015	-0.287	0.082	0.005	-0.024	-0.001
0.25	0.5	2.548	0.094		97.541	0.024	0.213	0.046	0.004	0.010	0.001
0.75	1	6.716	0.249		97.790	0.187	0.713	0.509	0.127	0.363	060.0
1.25	1.5	21.271	0.788		98.578	0.985	1.213	1.473	1.160	1.787	1.408
1.75	7	26.438	0.979	2.613	99.557	1.713	1.713	2.936	2.875	5.031	4.925
2.25	2.5	9.121	0.338		99.894	0.760	2.213	4.899	1.655	10.845	3.663
2.75	б	1.152	0.043		99.937	0.117	2.713	7.363	0.314	19.979	0.852
3.25	3.5	0.480	0.018		99.955	0.058	3.213	10.326	0.184	33.184	0.590
3.75	4	0.189	0.007		99.962	0.026	3.713	13.790	0.097	51.208	0.358
4.25	>4	1.029	0.038	0.038	100.000	0.162	4.213	17.753	0.677	74.803	2.850
	TOTAL	2700.331				3.653			7.898		12.853
meanф	0.037	SKφ	0.129								
αф	0.281	D50	-7.243								

					Sample ID Initial wt. (g) % error	CR14-G24 1602.978 -0.017					
	(ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m∲-x	$(m_{\varphi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
S I	5.5	669.923	41.785		41.785	-240.265	-0.857	0.735	30.722	-0.630	-26.343
	S	553.458	34.521		76.306	-181.235	-0.357	0.128	4.411	-0.046	-1.577
4	1.5	190.014	11.852		88.158	-56.296	0.143	0.020	0.241	0.003	0.034
í	4	16.499	1.029		89.187	-4.374	0.643	0.413	0.425	0.265	0.273
	35	22.893	1.428	94.841	90.615	-5.248	1.218	1.482	2.117	1.805	2.577
	Ċ.	14.755	0.920		91.535	-2.922	1.718	2.950	2.715	5.067	4.663
\sim	.5	8.845	0.552		92.087	-1.517	2.143	4.590	2.533	9.835	5.426
- T	0	22.025	1.374		93.461	-3.091	2.643	6.983	9.593	18.453	25.350
_	.5	13.917	0.868		94.329	-1.519	3.143	9.876	8.572	31.034	26.939
	Ļ	8.212	0.512		94.841	-0.640	3.643	13.268	6.796	48.329	24.755
\circ	.5	5.932	0.370		95.211	-0.277	4.143	17.161	6.349	71.088	26.303
\sim	0	4.110	0.256		95.467	-0.064	4.643	21.553	5.525	100.061	25.651
	S.	3.525	0.220		95.687	0.055	5.143	26.446	5.814	135.998	29.901
	1	6.044	0.377		96.064	0.283	5.643	31.838	12.002	179.648	67.724
_	S.	12.044	0.751		96.815	0.939	6.143	37.731	28.344	231.762	174.105
	2	24.173	1.508	5.080	98.323	2.639	6.643	44.123	66.527	293.090	441.906
\sim	S.	17.117	1.068		99.391	2.402	7.143	51.016	54.467	364.382	389.029
		6.331	0.395		99.786	1.086	7.643	58.408	23.065	446.388	176.272
\mathbf{c}	.5	1.678	0.105		99.890	0.340	8.143	66.301	6.939	539.857	56.503
7	4	0.491	0.031		99.921	0.115	8.643	74.693	2.288	645.540	19.770
Λ	4	1.268	0.079	0.079	100.000	0.336	9.143	83.586	6.611	764.187	60.439
<u> </u>	TAL	1603.254				-489.253			286.056		1529.698
<u> </u>	893	SKφ	15.297								
÷.	591	D50	-5.381								

		Sample ID Initial we (a)	CR14-G25					
		Initial wt. (g) % error	103.803 -0.022					
idu . %	al % G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\varphi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\Phi}-x)^3$
584	6.022	0.684	-1.540	-3.100	9.609	6.576	-29.786	-20.386
<i>1</i> 76		2.460	-3.108	-2.600	6.759	12.004	-17.573	-31.209
562		6.022	-4.452	-2.100	4.409	15.704	-9.259	-32.976
576		12.598	-4.932	-1.600	2.559	16.832	-4.095	-26.929
565		21.164	-2.141	-1.100	1.210	10.361	-1.330	-11.395
794		31.957	2.698	-0.600	0.360	3.884	-0.216	-2.330
607		49.564	13.205	-0.100	0.010	0.176	-0.001	-0.018
075		69.639	25.094	0.400	0.160	3.215	0.064	1.286
830	93.388	90.468	36.452	0.900	0.810	16.878	0.729	15.193
608		97.777	16.445	1.400	1.960	14.329	2.745	20.063
241		99.018	3.412	1.900	3.611	4.480	6.861	8.513
251		99.269	0.817	2.400	5.761	1.447	13.827	3.474
41		99.410	0.527	2.900	8.411	1.182	24.393	3.428
90	0.590	100.000	2.508	3.400	11.561	6.822	39.310	23.195
			84.984			113.890		-50.091
501								
)11								

	n_{Φ} -x) ³ f(m_{\Phi}-x) ³	2.874 -96.891	0.783 -24.030	0.075 0.000	0.000 0.007	1.279 1.621	.533 5.279	.930 1.224	.975 6.977	7.137 7.599	9.166 7.967	5.812 14.411	7.825 19.621	5.956 43.213	0.953 161.597	73.569 311.882	94.551 821.631	34.650 517.111	4.617 215.365	15.201 106.556	7.152 51.263	1.221 108.353	2280.755		
	$f(m_{\phi}-x)^2$ (n	68.144 -2	26.067 -(0.000 -(0.085 0	2.481 0	4.578 1	0.776 3	3.357 8	2.947 13	2.588 29	4.027 45	4.811 65	9.439 9.	31.822 13	55.911 17	135.178 22	78.610 28	30.427 35	14.061 43	6.346 52	12.631 63	494.287		
	$(m_{\phi}-x)^2$	2.022	0.850	0.178	0.006	0.427	1.330	2.491	4.319	6.647	9.475	12.803	16.631	20.959	25.788	31.116	36.944	43.272	50.100	57.428	65.257	73.585			
	m _ф -x	-1.422	-0.922	-0.422	0.078	0.653	1.153	1.578	2.078	2.578	3.078	3.578	4.078	4.578	5.078	5.578	6.078	6.578	7.078	7.578	8.078	8.578			
CR14-G26 490.591 0.015	fm_{Φ}	-193.817	-161.037	0.000	-58.959	-21.376	-10.930	-0.857	-1.749	-0.776	-0.341	-0.236	-0.072	0.113	0.926	2.246	6.403	4.087	1.670	0.796	0.365	0.730	-432.815		
Sample ID Initial wt. (g) % error	Cummulative wt. %	33.707	64.381	64.381	78.254	84.070	87.513	87.824	88.602	89.045	89.318	89.633	89.922	90.372	91.606	93.403	97.062	98.879	99.486	99.731	99.828	100.000			
	% G S M					89.318											10.510					0.172			
	Individual wt. %	33.707	30.674	0.000	13.873	5.817	3.442	0.312	0.777	0.443	0.273	0.315	0.289	0.450	1.234	1.797	3.659	1.817	0.607	0.245	0.097	0.172		22.808	
	Individual wt. (g)	165.340	150.460	0.000	68.048	28.531	16.886	1.528	3.813	2.175	1.340	1.543	1.419	2.209	6.053	8.814	17.948	8.911	2.979	1.201	0.477	0.842	490.517	SKφ	020
	phi (ф)	-5.5	-5	-4.5	4-	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	-	1.5	2	2.5	С	3.5	4	>4	TOTAL	-4.328	
	m_{φ}	-5.75	-5.25	-4.75	-4.25	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	4-

					Sample ID	CR14-G27 1549-121					
					% error	-0.018					
m_{Φ}	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\phi}\text{-}x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\Phi}-x)^3$	$f(m_{\varphi}\text{-}x)^3$
-6.75	-6.5	995.300	64.237		64.237	-433.603	-4.961	24.614	1581.140	-122.116	-7844.430
-6.25	9-	269.400	17.387		81.625	-108.671	-4.461	19.903	346.055	-88.791	-1543.836
-5.25	-5	132.400	8.545		90.170	-44.862	-3.461	11.980	102.374	-41.467	-354.340
-4.75	4.5	37.840	2.442		92.612	-11.601	-2.961	8.769	21.416	-25.967	-63.418
-4.25	4	12.559	0.811		93.423	-3.445	-2.461	6.058	4.910	-14.910	-12.085
-3.675	-3.35	12.114	0.782	97.912	94.205	-2.873	-1.886	3.558	2.782	-6.711	-5.247
-3.175	ή	21.619	1.395		95.600	-4.430	-1.386	1.922	2.681	-2.664	-3.717
-2.75	-2.5	6.648	0.429		96.029	-1.180	-0.961	0.924	0.396	-0.888	-0.381
-2.25	-2	15.020	0.969		96.998	-2.181	-0.461	0.213	0.206	-0.098	-0.095
-1.75	-1.5	8.266	0.533		97.532	-0.934	0.039	0.002	0.001	0.000	0.000
-1.25	-	5.885	0.380		97.912	-0.475	0.539	0.290	0.110	0.156	0.059
-0.75	-0.5	4.565	0.295		98.206	-0.221	1.039	1.079	0.318	1.121	0.330
-0.25	0	3.682	0.238		98.444	-0.059	1.539	2.368	0.563	3.643	0.866
0.25	0.5	3.413	0.220		98.664	0.055	2.039	4.157	0.916	8.474	1.867
0.75	1	5.127	0.331		98.995	0.248	2.539	6.445	2.133	16.363	5.415
1.25	1.5	5.956	0.384		99.380	0.481	3.039	9.234	3.550	28.060	10.786
1.75	7	6.209	0.401	2.071	99.780	0.701	3.539	12.523	5.018	44.315	17.759
2.25	2.5	2.230	0.144		99.924	0.324	4.039	16.312	2.348	65.878	9.482
2.75	С	0.586	0.038		99.962	0.104	4.539	20.600	0.779	93.499	3.536
3.25	3.5	0.221	0.014		99.976	0.046	5.039	25.389	0.362	127.929	1.825
3.75	4	0.105	0.007		99.983	0.025	5.539	30.678	0.208	169.917	1.151
4.25	>4	0.262	0.017	0.017	100.000	0.072	6.039	36.467	0.617	220.212	3.724
	TOTAL	1549.407				-178.875			497.742		-1926.321
meanф	-1.789	SKφ	-19.263								
Ծփ	2.231	D50	-6.611								

					Sample ID	CR14-G28					
					Initial wt. (g) % error	388.577 0.058					
m_{φ}	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m_{φ} -x	$(m_{\varphi}\text{-}x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\varphi}-x)^3$	$f(m_{\varphi}\text{-}x)^3$
-6.25	-9	95.600	24.617		24.617	-153.855	-2.023	4.093	100.763	-8.281	-203.862
-5.75	-5.5	62.000	15.965		40.582	-91.798	-1.523	2.320	37.040	-3.534	-56.418
-5.25	ς.	0.000	0.000		40.582	0.000	-1.023	1.047	0.000	-1.071	0.000
-4.75	-4.5	73.258	18.864		59.445	-89.603	-0.523	0.274	5.163	-0.143	-2.701
-4.25	4	18.613	4.793		64.238	-20.369	-0.023	0.001	0.003	0.000	0.000
-3.675	-3.35	17.299	4.454	90.984	68.693	-16.370	0.552	0.305	1.356	0.168	0.748
-3.175	ς	31.247	8.046		76.739	-25.546	1.052	1.106	8.901	1.164	9.363
-2.75	-2.5	14.308	3.684		80.423	-10.132	1.477	2.181	8.035	3.221	11.867
-2.25	-2	21.068	5.425		85.848	-12.206	1.977	3.908	21.200	7.725	41.908
-1.75	-1.5	11.840	3.049		88.897	-5.335	2.477	6.135	18.703	15.194	46.324
-1.25	-1	8.108	2.088		90.984	-2.610	2.977	8.861	18.501	26.379	55.074
-0.75	-0.5	7.012	1.806		92.790	-1.354	3.477	12.088	21.826	42.029	75.886
-0.25	0	5.363	1.381		94.171	-0.345	3.977	15.815	21.840	62.894	86.854
0.25	0.5	4.980	1.282		95.453	0.321	4.477	20.042	25.700	89.724	115.056
0.75	1	5.962	1.535		96.989	1.151	4.977	24.769	38.025	123.269	189.243
1.25	1.5	4.865	1.253		98.241	1.566	5.477	29.996	37.576	164.280	205.798
1.75	7	3.916	1.008	8.932	99.250	1.765	5.977	35.722	36.021	213.506	215.291
2.25	2.5	1.662	0.428		99.678	0.963	6.477	41.949	17.953	271.697	116.276
2.75	С	0.550	0.142		99.819	0.389	6.977	48.676	6.894	339.603	48.096
3.25	3.5	0.251	0.065		99.884	0.210	7.477	55.903	3.613	417.975	27.015
3.75	4	0.128	0.033		99.917	0.124	7.977	63.630	2.097	507.562	16.729
4.25	>4	0.323	0.083	0.083	100.000	0.353	8.477	71.856	5.976	609.114	50.661
	TOTAL	388.353				-422.682			437.188		1049.207
${\sf mean}_{\varphi}$	-4.227	$SK\varphi$	10.492								
αф	2.091	D50	-4.750								

					Sample ID	CR14-G29					
					Initial wt. (g) % error	384.559 0.120					
	phi (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\phi}\text{-}x)^2$	$f(m_{\varphi}\text{-}x)^2$	$(m_{\phi}-x)^3$	$f(m_{\Phi}-x)^3$
5	-5.5	106.500	27.727		27.727	-159.433	-2.054	4.221	117.032	-8.671	-240.436
5	-5	91.200	23.744		51.472	-124.656	-1.554	2.416	57.373	-3.756	-89.184
5	4-	29.304	7.629		59.101	-32.425	-0.554	0.307	2.345	-0.170	-1.300
75	-3.35	29.516	7.685	84.721	66.785	-28.241	0.021	0.000	0.003	0.000	0.000
75	ςÌ	19.587	5.100		71.885	-16.191	0.521	0.271	1.382	0.141	0.719
5	-2.5	5.436	1.415		73.300	-3.892	0.946	0.894	1.265	0.845	1.196
5	-2	17.725	4.615		77.915	-10.383	1.446	2.090	9.643	3.021	13.939
5	-1.5	15.432	4.018		81.933	-7.031	1.946	3.785	15.208	7.364	29.587
5	-	10.709	2.788		84.721	-3.485	2.446	5.981	16.675	14.626	40.779
5	-0.5	9.260	2.411		87.132	-1.808	2.946	8.676	20.917	25.556	61.612
5	0	6.458	1.681		88.813	-0.420	3.446	11.872	19.961	40.905	68.775
5	0.5	5.375	1.399		90.212	0.350	3.946	15.567	21.785	61.422	85.953
5	1	6.396	1.665		91.878	1.249	4.446	19.763	32.909	87.857	146.300
5	1.5	6.326	1.647		93.525	2.059	4.946	24.458	40.283	120.960	199.220
5	2	10.301	2.682	15.042	96.206	4.693	5.446	29.654	79.528	161.482	433.076
5	2.5	8.163	2.125		98.332	4.782	5.946	35.350	75.127	210.172	446.668
5	б	3.454	0.899		99.231	2.473	6.446	41.545	37.360	267.781	240.803
5	3.5	1.517	0.395		99.626	1.284	6.946	48.241	19.053	335.057	132.332
5	4	0.526	0.137		99.763	0.514	7.446	55.436	7.592	412.752	56.524
5	>4	0.911	0.237	0.237	100.000	1.008	7.946	63.132	14.974	501.616	118.973
	TOTAL	384.096				-369.555			590.413		1745.537
\mathbf{n}_{Φ}	-3.696	SKφ	17.455								
-	2.430	D50	-5.031								

	$f(m_{\varphi}-x)^3$	-0.046	1.196	1.151		
	$(m_{\phi}-x)^3$	-0.001	0.073			
	$f(m_{\varphi}\text{-}x)^2$	0.559	2.860	3.419		
	$(m_{\phi}-x)^2$	0.007	0.175			
	m _ф -x	-0.082	0.418			
CR14-G30 1173.700 0.000	fm_{φ}	-522.812	-94.013	-616.825		
Sample ID Initial wt. (g) % error	Cummulative wt. %	83.650	100.000			
	% G S M	100.000				
	Individual wt. %	83.650	16.350		0.012	-6.201
	Individual wt. (g)	981.800	191.900	1173.700	SKφ	D50
	phi (φ)	9-	-5.5	TOTAL	-6.168	0.185
	$\mathrm{m}_{\mathrm{\Phi}}$	-6.25	-5.75		$mean_{\Phi}$	σφ

					Sample ID Initial wt. (g)	CR14-G31 494.213					
					% error	-0.001					
phi (φ) Individual Individual % G S M C wt. %	Individual Individual % G S M C wt. %	Individual % G S M C	% G S M	\cup	Cummulative wt. %	fm_φ	m _{\$} -x	$(m_{\phi}\text{-}x)^2$	$f(m_{\varphi}\text{-}x)^2$	$(m_{\phi}-x)^3$	$f(m_\varphi\text{-}x)^3$
-5 325.500 65.861	325.500 65.861	65.861			65.861	-345.773	-0.643	0.414	27.259	-0.266	-17.537
-4.5 64.477 13.046	64.477 13.046	13.046			78.908	-61.970	-0.143	0.021	0.268	-0.003	-0.038
-4 9.020 1.825	9.020 1.825	1.825			80.733	-7.757	0.357	0.127	0.232	0.045	0.083
-3.35 42.961 8.693 95.936	42.961 8.693 95.936	8.693 95.936	95.936		89.426	-31.946	0.932	0.868	7.545	0.809	7.029
-3 16.522 3.343	16.522 3.343	3.343			92.769	-10.614	1.432	2.050	6.852	2.934	9.810
-2.5 3.825 0.774	3.825 0.774	0.774			93.543	-2.128	1.857	3.447	2.668	6.400	4.953
-2 6.620 1.339	6.620 1.339	1.339			94.882	-3.014	2.357	5.554	7.439	13.088	17.532
-1.5 2.573 0.521	2.573 0.521	0.521			95.403	-0.911	2.857	8.160	4.249	23.312	12.137
-1 2.638 0.534	2.638 0.534	0.534			95.936	-0.667	3.357	11.267	6.014	37.820	20.187
-0.5 1.781 0.360	1.781 0.360	0.360			96.297	-0.270	3.857	14.874	5.360	57.363	20.672
0 1.933 0.391	1.933 0.391	0.391			96.688	-0.098	4.357	18.980	7.424	82.691	32.342
0.5 2.244 0.454	2.244 0.454	0.454			97.142	0.114	4.857	23.587	10.710	114.555	52.013
1 3.009 0.609	3.009 0.609	0.609			97.751	0.457	5.357	28.694	17.470	153.703	93.580
1.5 4.630 0.937	4.630 0.937	0.937			98.688	1.171	5.857	34.300	32.134	200.886	188.196
2 3.725 0.754 4.032	3.725 0.754 4.032	0.754 4.032	4.032		99.441	1.319	6.357	40.407	30.455	256.854	193.595
2.5 1.894 0.383	1.894 0.383	0.383			99.825	0.862	6.857	47.014	18.017	322.357	123.537
3 0.488 0.099	0.488 0.099	0.099			99.923	0.272	7.357	54.120	5.344	398.145	39.314
3.5 0.153 0.031	0.153 0.031	0.031			99.954	0.101	7.857	61.727	1.911	484.968	15.014
4 0.070 0.014	0.070 0.014	0.014			99.968	0.053	8.357	69.834	0.989	583.576	8.266
>4 0.156 0.032 0.032	0.156 0.032 0.032	0.032 0.032	0.032		100.000	0.134	8.857	78.440	2.476	694.720	21.929
TOTAL 494.219	494.219					-460.666			194.816		842.613
-4.607 SKф 8.426	SKφ 8.426	8.426									
1.396 D50 -5.120	D50 -5.120	-5.120									

	2 $(m_{\Phi}\text{-}x)^{3}$ $f(m_{\Phi}\text{-}x)^{3}$	1 -18.366 -366.242	-9.778 -137.531	-3.821 -10.184	-1.202 -6.500	-0.260 -1.448	-0.003 -0.019	0.047 0.304	0.640 4.364	2.525 13.957	6.452 40.136	13.172 65.864	23.434 92.548	37.988 103.455	57.585 153.534	82.975 297.986	114.907 175.810	154.131 66.956	201.398 23.541	257.458 47.162	563.692		
	$f(m_{\varphi}-x)^2$	138.814	64.316	6.514	6.113	2.269	0.137	0.840	5.065	10.250	21.559	27.889	32.341	30.775	39.759	68.320	36.163	12.488	4.016	7.414	515.042		
	$(m_{\phi}-x)^2$	6.961	4.573	2.444	1.131	0.408	0.019	0.131	0.742	1.854	3.466	5.577	8.189	11.301	14.912	19.024	23.635	28.747	34.359	40.470			
	m _ф -x	-2.638	-2.138	-1.563	-1.063	-0.638	-0.138	0.362	0.862	1.362	1.862	2.362	2.862	3.362	3.862	4.362	4.862	5.362	5.862	6.362			
CK14-G32 229.623 0.150	fm_{Φ}	-94.723	-59.778	-9.795	-17.164	-15.311	-16.126	-11.235	-8.527	-4.146	-1.555	1.250	2.962	3.404	4.666	8.080	4.208	1.412	0.438	0.779	-211.163		
Sample IU Initial wt. (g) % error	Cummulative wt. %	19.942	34.007	36.673	42.079	47.646	54.813	61.234	68.055	73.584	79.805	84.805	88.755	91.478	94.144	97.736	99.266	99.700	99.817	100.000			
	% G S M			68.055											31.761					0.183			
	Individual wt. %	19.942	14.065	2.665	5.406	5.567	7.167	6.420	6.822	5.529	6.221	5.000	3.949	2.723	2.666	3.591	1.530	0.434	0.117	0.183		5.637	-2.336
	Individual wt. (g)	45.722	32.249	6.111	12.395	12.765	16.433	14.720	15.641	12.676	14.263	11.465	9.055	6.244	6.113	8.234	3.508	0.996	0.268	0.420	229.278	SKφ	D50
	phi (φ)	-4.5	4	-3.35	ς	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	З	3.5	4	>4	TOTAL	-2.112	2.269
	$\mathrm{m}_{\mathrm{\Phi}}$	-4.75	-4.25	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		$mean_{\Phi}$	σф

					Sample ID	CR14-G33					
					Initial wt. (g)	410.816					
m	phi (φ)	Individual wt (a)	Individual w ⁺ %	% G S M	Cummulative	fm ₀	m _ф -x	$(m_{0}-x)^{2}$	$f(m_{dh}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{do}-x)^3$
-5.75	-5 5	wt. (5) 184 600	44 976		44 976	-258,610	-1 765	3 116	140 126	-5 499	-747 337
-5.25	5. 5- 5.	42.400	10.330		55.306	-54.234	-1.265	1.600	16.533	-2.025	-20.917
-4.25	4-	49.001	11.939		67.244	-50.739	-0.265	0.070	0.839	-0.019	-0.222
-3.675	-3.35	5.041	1.228	87.934	68.473	-4.514	0.310	0.096	0.118	0.030	0.037
-3.175	ςÌ	17.016	4.146		72.618	-13.163	0.810	0.656	2.719	0.531	2.202
-2.75	-2.5	15.684	3.821		76.440	-10.508	1.235	1.525	5.827	1.883	7.196
-2.25	-2	26.008	6.337		82.776	-14.257	1.735	3.010	19.072	5.222	33.088
-1.75	-1.5	12.029	2.931		85.707	-5.129	2.235	4.995	14.638	11.163	32.715
-1.25	-	9.139	2.227		87.934	-2.783	2.735	7.480	16.654	20.456	45.548
-0.75	-0.5	4.670	1.138		89.071	-0.853	3.235	10.465	11.906	33.852	38.516
-0.25	0	3.691	0.899		89.971	-0.225	3.735	13.949	12.544	52.100	46.852
0.25	0.5	3.190	0.777		90.748	0.194	4.235	17.934	13.939	75.950	59.029
0.75	1	4.672	1.138		91.886	0.854	4.735	22.419	25.519	106.153	120.832
1.25	1.5	9.561	2.329		94.216	2.912	5.235	27.404	63.836	143.458	334.175
1.75	7	11.327	2.760	11.939	96.975	4.829	5.735	32.889	90.764	188.615	520.520
2.25	2.5	7.914	1.928		98.903	4.338	6.235	38.874	74.955	242.375	467.337
2.75	ŝ	2.687	0.655		99.558	1.800	6.735	45.359	29.694	305.487	199.989
3.25	3.5	1.014	0.247		99.805	0.803	7.235	52.344	12.931	378.701	93.558
3.75	4	0.277	0.067		99.873	0.253	7.735	59.829	4.038	462.768	31.231
4.25	>4	0.523	0.127	0.127	100.000	0.542	8.235	67.814	8.641	558.437	71.158
	TOTAL	410.444				-398.490			565.296		1835.507
mean_{Φ}	-3.985	SKφ	18.355								
σφ	2.378	D50	-5.257								

		$f(m_{\varphi}-x)^3$	-5.452	0.000	0.650	7.155	7.597	8.951	4.593	18.765	13.196	11.643	13.426	16.221	16.863	16.036	13.436	11.093	10.685	7.437	5.343	2.717	7.287	187.641		
		$(m_{\phi}-x)^3$	-0.116	0.000	0.134	1.037	3.998	9.091	15.853	27.328	43.321	64.582	91.861	125.909	167.474	217.308	276.160	344.780	423.918	514.324	616.749	731.941	860.652			
		$f(m_{\Phi}-x)^2$	11.174	0.005	1.269	7.069	4.787	4.289	1.828	6.230	3.757	2.902	2.976	3.236	3.059	2.667	2.063	1.582	1.422	0.928	0.628	0.302	0.766	62.941		
		$(m_{\phi}-x)^2$	0.238	0.000	0.262	1.024	2.519	4.356	6.311	9.073	12.335	16.097	20.359	25.121	30.383	36.145	42.407	49.169	56.431	64.194	72.456	81.218	90.480			
		т _ф -х	-0.488	0.012	0.512	1.012	1.587	2.087	2.512	3.012	3.512	4.012	4.512	5.012	5.512	6.012	6.512	7.012	7.512	8.012	8.512	9.012	9.512			
CR14-G34 1535.384	0.001	fm_{φ}	-269.903	-191.005	-22.990	-29.331	-6.984	-3.126	-0.797	-1.545	-0.533	-0.225	-0.110	-0.032	0.025	0.055	0.061	0.056	0.057	0.040	0.028	0.014	0.036	-526.209		
Sample ID Initial wt. (g)	% error	Cummulative wt. %	46.940	83.322	88.162	95.063	96.963	97.948	98.238	98.924	99.229	99.409	99.555	99.684	99.785	99.859	99.907	99.939	99.965	97.979	99.988	99.992	100.000			
		% G S M					99.409											0.582					0.008			
		Individual wt. %	46.940	36.382	4.840	6.902	1.900	0.985	0.290	0.687	0.305	0.180	0.146	0.129	0.101	0.074	0.049	0.032	0.025	0.014	0.009	0.004	0.008		1.876	-5.458
		Individual wt. (g)	720.700	558.600	74.311	105.964	29.177	15.117	4.448	10.543	4.677	2.768	2.244	1.978	1.546	1.133	0.747	0.494	0.387	0.222	0.133	0.057	0.130	1535.376	SKφ	D50
		phi (ф)	-5.5	-5	-4.5	4	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	С	3.5	4	>4	TOTAL	-5.262	0.793
		m_{Φ}	-5.75	-5.25	-4.75	-4.25	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		$mean_{\Phi}$	σф

	$_{\varphi}\text{-}x)^{2} (m_{\varphi}\text{-}x)^{3} f(m_{\varphi}\text{-}x)^{3}$	5.780 -24.783 -483.335	.693 -14.094 -168.346	.208 -7.029 -48.287	665 -2.409 -12.956	436 -0.594 -4.569	649 -0.072 -0.270	046 0.001 0.004	337 0.200 0.782	654 1.275 3.963	619 3.978 8.903	749 9.057 20.322	.807 17.263 48.605	.926 29.346 135.489	5.767 46.055 379.118	0.992 68.141 494.188	.608 96.353 264.103	.214 131.443 92.608	.504 174.159 64.242	888 225.252 29.741		162 285.471 1.065	162 285.471 1.065 8.704 825.367	162 285.471 1.065 8.704 825.367
	$(m_{\phi}-x)^2$ f(m	8.500 165	5.835 69	3.669 25	1.797 9.	0.706 5.	0.173 0.	0.007 0.	0.342 1.	1.176 3.	2.511 5.	4.345 9.	6.679 18	9.514 43	12.848 105	16.683 120	21.017 57	25.852 18	31.186 11	37.021 4.		40.00 CCC.C4	.0 ccc.c4 678	.0 ccc.c4 978
	m _ф -x	-2.916	-2.416	-1.916	-1.341	-0.841	-0.416	0.084	0.584	1.084	1.584	2.084	2.584	3.084	3.584	4.084	4.584	5.084	5.584	6.084	6 584	100.0	102.0	F0000
CR14-G36 268.948 0.309	${ m fm}_{\varphi}$	-102.389	-56.736	-29.198	-19.765	-24.431	-10.331	-14.586	-6.850	-3.884	-1.679	-0.561	0.704	3.463	10.290	12.692	6.167	1.938	1.199	0.495	0.016	010.0	-233.447	-233.447
Sample ID Initial wt. (g) % error	Cummulative wt. %	19.503	31.447	38.317	43.696	51.390	55.147	61.630	65.544	68.651	70.889	73.133	75.948	80.566	88.797	96.050	98.791	99.495	99.864	96.66	100.000			
	% G S M				68.651											31.345					0.004			
	Individual wt. %	19.503	11.944	6.870	5.378	7.695	3.757	6.483	3.914	3.107	2.238	2.244	2.816	4.617	8.232	7.252	2.741	0.705	0.369	0.132	0.004			8.254
	Individual wt. (g)	52.290	32.025	18.420	14.420	20.631	10.072	17.381	10.495	8.330	6.001	6.016	7.549	12.379	22.071	19.445	7.349	1.889	0.989	0.354	0.010		268.116	268.116 SKф
	phi (φ)	-5	-4.5	4	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ŝ	3.5	4	< 4		TOTAL	TOTAL -2.334
	m_{Φ}	-5.25	-4.75	-4.25	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25			mean _{th}

	$\eta_{\varphi} - x)^3 f(m_{\varphi} - x)^3$	1.136 -822.369	A:883 -590.569	1.505 -3.293	000 -0.001	0.110 0.110	0.304	.482 1.536	.373 2.854	3.045 4.609	3.247 7.683	7.731 19.547	7.246 37.180	2.542 73.841	4.369 118.282	3.477 176.507	0.616 224.120	6.536 114.848	1.987 66.907	7.719 21.070	4.482 44.360	319.894		
	$f(m_{\phi}-x)^2$ (n	261.404 -3	275.199 -9	2.874 -]	0 6000	0.257 0	0.356 0	1.134 2	1.539 6	1.958 1.	2.692 2.	5.828 3'	9.647 5'	16.959 82	24.368 11	32.967 15	38.285 20	18.075 25	9.762 32	2.865 39	5.648 48	450.421		
	$(m_{\phi}-x)^2$	9.897	4.605	1.313	0.005	0.184	0.729	1.833	3.437	5.541	8.145	11.250	14.854	18.958	23.562	28.666	34.270	40.374	46.978	54.082	61.686			
	m _ф -x	-3.146	-2.146	-1.146	-0.071	0.429	0.854	1.354	1.854	2.354	2.854	3.354	3.854	4.354	4.854	5.354	5.854	6.354	6.854	7.354	7.854			
CR14-G37 1265.105 0.030	fm _{\$\phi\$}	-178.282	-343.612	-10.394	-6.780	-4.428	-1.342	-1.392	-0.784	-0.442	-0.248	-0.130	0.162	0.671	1.293	2.013	2.514	1.231	0.675	0.199	0.389	-360.403		
Sample ID Initial wt. (g) % error	Cummulative wt. %	26.412	86.171	88.359	90.204	91.598	92.086	92.705	93.153	93.506	93.836	94.354	95.004	95.899	96.933	98.083	99.200	99.648	99.855	90.908	100.000			
	% G S M				93.506											6.403					0.092			
	Individual wt. %	26.412	59.759	2.188	1.845	1.395	0.488	0.619	0.448	0.353	0.331	0.518	0.649	0.895	1.034	1.150	1.117	0.448	0.208	0.053	0.092		3.199	-5.803
	Individual wt. (g)	334.040	755.780	27.674	23.334	17.637	6.170	7.823	5.663	4.469	4.180	6.552	8.214	11.314	13.080	14.545	14.129	5.662	2.628	0.670	1.158	1264.722	SKφ	D50
	phi (φ)	-6.5	-5.5	-4.5	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	С	3.5	4	>4	TOTAL	-3.604	2.122
	$\mathrm{m}_{\mathrm{\Phi}}$	-6.75	-5.75	-4.75	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		${\sf mean}_{\varphi}$	օփ

	$f(m_{\varphi}-x)^3$	-53.752	-41.068	-3.321	0.000	0.327	2.941	4.665	24.617	33.244	35.959	39.697	62.762	100.026	204.159	387.295	412.148	208.632	61.744	34.525	14.316	44.180	1573.097		
	$(m_{\phi}-x)^3$	-3.543	-1.075	-0.144	0.000	0.167	1.159	3.212	7.709	15.170	26.344	41.980	62.831	89.644	123.170	164.160	213.363	271.530	339.409	417.752	507.308	608.827			
	$f(m_{\varphi}-x)^2$	35.259	40.085	6.331	0.000	0.594	2.800	3.161	12.461	13.429	12.085	11.422	15.787	22.350	41.033	70.733	68.973	32.219	8.852	4.618	1.795	5.213	409.201		
	$(m_{\phi}-x)^2$	2.324	1.050	0.275	0.001	0.303	1.104	2.177	3.903	6.128	8.854	12.079	15.804	20.030	24.755	29.981	35.706	41.932	48.657	55.883	63.608	71.834			
	m _ф -x	-1.525	-1.025	-0.525	-0.025	0.550	1.050	1.475	1.975	2.475	2.975	3.475	3.975	4.475	4.975	5.475	5.975	6.475	6.975	7.475	7.975	8.475			
CR14-G38 795.833 0.250	fim _¢	-87.231	-200.497	-109.306	-3.339	-7.205	-8.056	-3.994	-7.185	-3.835	-1.706	-0.709	-0.250	0.279	1.243	2.949	3.380	1.729	0.500	0.269	0.106	0.308	-422.549		
Sample ID Initial wt. (g)	Cummulative wt. %	15.171	53.361	76.372	77.158	79.118	81.656	83.108	86.301	88.492	89.858	90.803	91.802	92.918	94.575	96.935	98.866	99.635	99.817	99.899	99.927	100.000			
	% G S M					89.858											10.070					0.073			
	Individual wt. %	15.171	38.190	23.012	0.786	1.961	2.537	1.452	3.193	2.191	1.365	0.946	0.999	1.116	1.658	2.359	1.932	0.768	0.182	0.083	0.028	0.073		15.731	-5.044
	Individual wt. (g)	120.420	303.140	182.660	6.236	15.562	20.140	11.527	25.346	17.395	10.835	7.506	7.929	8.857	13.157	18.727	15.333	660.9	1.444	0.656	0.224	0.576	793.769	SKφ	D50
	phi (φ)	-5.5	-5	4.5	4-	-3.35	ςÌ	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	С	3.5	4	< 4	TOTAL	-4.225	2.023
	m_{Φ}	-5.75	-5.25	-4.75	-4.25	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean _{th}	σф

	$f(m_{\varphi}-x)^3$	-272.157	-54.533	-118.073	-9.442	-0.998	-0.003	0.168	3.616	7.592	12.091	15.563	32.156	60.317	168.586	445.439	572.639	379.326	102.192	46.505	16.452	48.677	1456.113		
	$(m_{\Phi}-x)^3$	-18.662	-9.973	-4.512	-1.531	-0.193	0.000	0.042	0.609	2.447	6.306	12.937	23.089	37.513	56.957	82.173	113.911	152.919	199.949	255.750	321.073	396.667			
	$f(m_{\varphi}-x)^2$	102.605	25.335	71.453	8.193	1.729	0.039	0.482	4.266	5.634	6.544	6.629	11.293	18.018	43.817	102.458	118.130	70.935	17.476	7.326	2.403	6.625	631.390		
	$(m_{\phi}-x)^2$	7.036	4.633	2.731	1.328	0.333	0.006	0.121	0.718	1.816	3.413	5.511	8.108	11.206	14.804	18.901	23.499	28.596	34.194	40.291	46.889	53.986			
	т _ф -х	-2.652	-2.152	-1.652	-1.152	-0.577	-0.077	0.348	0.848	1.348	1.848	2.348	2.848	3.348	3.848	4.348	4.848	5.348	5.848	6.348	6.848	7.348			
CR14-G39 381.045 0.128	fm_{Φ}	-83.857	-28.709	-124.294	-26.218	-19.053	-20.689	-10.982	-13.363	-5.430	-2.396	-0.902	-0.348	0.402	2.220	6.776	8.797	5.581	1.406	0.591	0.192	0.522	-309.754		
Sample ID Initial wt. (g) % error	Cummulative wt. %	14.584	20.052	46.219	52.388	57.573	64.089	68.082	74.021	77.124	79.041	80.244	81.637	83.245	86.205	91.625	96.653	99.133	99.644	99.826	99.877	100.000			
	% G S M					79.041											20.836					0.123			
	Individual wt. %	14.584	5.468	26.167	6.169	5.184	6.516	3.993	5.939	3.103	1.917	1.203	1.393	1.608	2.960	5.421	5.027	2.481	0.511	0.182	0.051	0.123		14.561	-4.194
	Individual wt. (g)	55.500	20.810	99.581	23.476	19.730	24.798	15.197	22.602	11.808	7.296	4.578	5.300	6.119	11.264	20.629	19.131	9.440	1.945	0.692	0.195	0.467	380.558	SKφ	D50
	phi (φ)	-5.5	-5	-4.5	4-	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	-	1.5	7	2.5	б	3.5	4	>4	TOTAL	-3.098	2.513
	m_{φ}	-5.75	-5.25	-4.75	-4.25	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		meanф	σф

ndividual % G S wt. %
13.609 67.94
15.022
9.975
11.768
10.032
7.535
4.167
3.859
3.490
4.314
4.656
3.910 31.864
5.059
1.930
0.386
0.092
0.195 0.195
5.441
-2.016

					Sample ID	CR14-G41					
					Initial wt. (g) % error	131.452 0.141					
m _ф	phi (φ)	Individual	Individual	% G S M	Cummulative	fm_{d}	m _ф -x	(m ₀ -x) ²	$f(m_{dh}-x)^2$	(m ₀ -x) ³	f(m _{db} -x) ³
4		wt. (g)	WL. %0		WI. %0	1	4	, T ,	, т,	, т.,	, + ,
-3.175	ή	1.498	1.141	23.703	1.141	-3.623	-3.507	12.297	14.033	-43.120	-49.208
-2.75	-2.5	2.886	2.199		3.340	-6.046	-3.082	9.497	20.879	-29.265	-64.342
-2.25	-2	7.054	5.374		8.714	-12.091	-2.582	6.665	35.816	-17.206	-92.464
-1.75	-1.5	8.302	6.325		15.038	-11.068	-2.082	4.333	27.406	-9.020	-57.049
-1.25	-	11.374	8.665		23.703	-10.831	-1.582	2.502	21.676	-3.957	-34.284
-0.75	-0.5	11.182	8.519		32.222	-6.389	-1.082	1.170	996.6	-1.265	-10.780
-0.25	0	12.800	9.751		41.973	-2.438	-0.582	0.338	3.299	-0.197	-1.919
0.25	0.5	10.891	8.297		50.270	2.074	-0.082	0.007	0.055	-0.001	-0.005
0.75	1	11.204	8.535		58.805	6.402	0.418	0.175	1.494	0.073	0.625
1.25	1.5	14.063	10.713		69.518	13.392	0.918	0.843	9.035	0.775	8.298
1.75	2	19.201	14.628	75.717	84.146	25.598	1.418	2.012	29.427	2.853	41.737
2.25	2.5	17.236	13.131		97.277	29.544	1.918	3.680	48.322	7.060	92.698
2.75	Э	2.247	1.712		98.988	4.707	2.418	5.848	10.011	14.144	24.211
3.25	3.5	0.393	0.299		99.288	0.973	2.918	8.517	2.550	24.855	7.441
3.75	4	0.174	0.133		99.420	0.497	3.418	11.685	1.549	39.944	5.295
4.25	>4	0.761	0.580	0.580	100.000	2.464	3.918	15.353	8.901	60.160	34.877
	TOTAL	131.266				33.165			244.419		-94.868
$mean_{\varphi}$	0.332	SKφ	-0.949								
σφ	1.563	D50	0.484								

		$f(m_{\Phi}-x)^3$	-27.772	-51.785	-37.371	-61.009	-38.066	-10.388	-0.800	0.003	1.530	10.997	29.257	38.484	125.733	65.708	16.463	8.540	48.741	118.266		
		$(m_{\phi}-x)^3$	-37.853	-23.336	-14.396	-7.219	-2.940	-0.811	-0.081	0.000	0.183	1.216	3.850	8.836	16.922	28.860	45.399	67.288	95.279			
		$f(m_{\Phi}\text{-}x)^2$	8.271	18.122	15.362	31.568	26.570	11.139	1.849	0.047	2.697	10.303	18.666	18.615	48.974	21.422	4.615	2.100	10.672	250.991		
		$(m_{\phi}-x)^2$	11.274	8.166	5.918	3.735	2.052	0.870	0.187	0.005	0.322	1.139	2.457	4.274	6.591	9.409	12.726	16.543	20.861			
		m _ф -x	-3.358	-2.858	-2.433	-1.933	-1.433	-0.933	-0.433	0.067	0.567	1.067	1.567	2.067	2.567	3.067	3.567	4.067	4.567			
CR14-G42	154.709 0.181	fm_{φ}	-2.696	-7.046	-7.139	-19.017	-22.655	-16.007	-7.410	-2.571	2.094	6.783	9.498	7.622	16.717	6.261	1.179	0.476	2.174	-31.737		
Sample ID	Initial wt. (g) % error	Cummulative wt. %	0.734	2.953	5.549	14.001	26.946	39.752	49.632	59.917	68.295	77.338	84.937	89.292	96.722	96.999	99.362	99.488	100.000			
		% G S M	39.752											59.736					0.512			
		Individual wt. %	0.734	2.219	2.596	8.452	12.946	12.806	9.880	10.285	8.378	9.044	7.598	4.355	7.430	2.277	0.363	0.127	0.512		1.183	-0.482
		Individual wt. (g)	1.133	3.427	4.009	13.052	19.992	19.776	15.257	15.883	12.938	13.966	11.734	6.726	11.474	3.516	0.560	0.196	0.790	154.429	SKφ	D50
		phi (ф)	-3.35	ς	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ξ	3.5	4	>4	TOTAL	-0.317	1.584
		m_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_{φ}	oφ

		$f(m_{\varphi}-x)^3$	-145.371	-57.288	-37.279	-56.173	-21.686	-6.759	-0.469	0.021	2.574	14.275	45.948	80.087	68.218	14.540	5.143	4.229	14.652	-75.338		
		$(m_{\Phi}-x)^3$	-35.907	-21.930	-13.381	-6.582	-2.594	-0.668	-0.052	0.002	0.245	1.427	4.298	9.608	18.107	30.544	47.671	70.236	98.990			
		$f(m_{\varphi}-x)^2$	44.064	20.467	15.703	29.974	15.782	7.732	1.254	0.166	4.112	12.678	28.260	37.672	25.979	4.652	1.418	1.025	3.167	254.104		
		$(m_{\phi}-x)^2$	10.884	7.835	5.636	3.512	1.888	0.764	0.140	0.016	0.392	1.268	2.644	4.520	6.895	9.771	13.147	17.023	21.399			
		m _ф -x	-3.299	-2.799	-2.374	-1.874	-1.374	-0.874	-0.374	0.126	0.626	1.126	1.626	2.126	2.626	3.126	3.626	4.126	4.626			
CR14-G43	159.804 0.227	fm_{φ}	-14.878	-8.294	-7.661	-19.202	-14.628	-12.650	-6.719	-2.625	2.624	7.501	13.362	14.587	8.477	1.309	0.351	0.226	0.629	-37.591		
Sample ID	Initial wt. (g) % error	Cummulative wt. %	4.049	6.661	9.447	17.981	26.340	36.460	45.419	55.917	66.414	76.415	87.105	95.440	99.208	99.684	99.792	99.852	100.000			
		% G S M	36.460											63.392					0.148			
		Individual wt. %	4.049	2.612	2.786	8.534	8.359	10.120	8.959	10.499	10.497	10.001	10.690	8.335	3.768	0.476	0.108	0.060	0.148		-0.753	-0.282
		Individual wt. (g)	6.455	4.165	4.442	13.607	13.327	16.136	14.284	16.739	16.736	15.946	17.044	13.290	6.007	0.759	0.172	0.096	0.236	159.441	SKφ	D50
		phi (φ)	-3.35	ς	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	2	2.5	Э	3.5	4	>4	TOTAL	-0.376	1.594
		m_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_{Φ}	Ծ

		$f(m_{\Phi}-x)^3$	-18.576	-25.907	-30.963	-16.446	-8.877	-1.789	-0.001	2.888	14.754	9.699	1.484	1.087	1.158	9.627	-61.863			
		$(m_{\phi}-x)^3$	-28.065	-16.367	-8.477	-3.645	-1.121	-0.157	0.000	0.098	0.888	3.119	7.542	14.906	25.962	41.460				
		$f(m_{\varphi}-x)^2$	6.113	10.204	15.186	10.687	8.544	3.319	0.031	6.263	15.352	6.639	0.757	0.442	0.391	2.781	86.709			
		$(m_{\phi}-x)^2$	9.235	6.446	4.157	2.368	1.079	0.290	0.002	0.213	0.924	2.135	3.846	6.057	8.768	11.979				
		m _ф -x	-3.039	-2.539	-2.039	-1.539	-1.039	-0.539	-0.039	0.461	0.961	1.461	1.961	2.461	2.961	3.461				
CR14-G44	141.465 0.145	fm_{Φ}	-1.489	-2.770	-4.566	-3.384	-1.979	2.857	15.377	36.831	29.088	6.997	0.541	0.237	0.167	0.987	78.895			
Sample ID	Initial wt. (g) % error	Cummulative wt. %	0.662	2.245	5.898	10.410	18.326	29.754	50.257	79.722	96.344	99.453	99.650	99.723	99.768	100.000				
		% G S M	5.898								93.870					0.232				
		Individual wt. %	0.662	1.583	3.653	4.512	7.916	11.428	20.503	29.465	16.622	3.110	0.197	0.073	0.045	0.232		-0.619	0.994	
		Individual wt. (g)	0.935	2.236	5.160	6.374	11.182	16.143	28.963	41.622	23.480	4.393	0.278	0.103	0.063	0.328	141.260	SKφ	D50	
		phi (ф)	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ξ	3.5	4	>4	TOTAL	0.789	0.931	
		$\mathrm{m}_{\mathrm{\Phi}}$	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_	σφ	
												22	4							

lividual wt. % G S]
0.593 18.75
1.840
2.371
5.043
8.903
1.165
8.872
8.965
6.156
0.541
3.697 80.849
0.967
0.253
0.149
0.084
0.402 0.402
-0.167
0.032

					Sample ID	CR14-G46					
					Initial wt. (g)	241.975					
					% error	0.777					
${ m m}_{\varphi}$	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{d}	m _∲ -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\phi}-x)^3$
-3.175	ς-	7.822	3.258	24.428	3.258	-10.344	-3.536	12.503	40.733	-44.210	-144.032
-2.75	-2.5	10.724	4.467		7.724	-12.283	-3.111	9.678	43.228	-30.108	-134.480
-2.25	-2	16.953	7.061		14.785	-15.887	-2.611	6.817	48.135	-17.799	-125.680
-1.75	-1.5	10.276	4.280		19.065	-7.490	-2.111	4.456	19.072	-9.407	-40.261
-1.25	-	12.875	5.362		24.428	-6.703	-1.611	2.595	13.917	-4.181	-22.419
-0.75	-0.5	10.135	4.221		28.649	-3.166	-1.111	1.234	5.210	-1.371	-5.788
-0.25	0	15.419	6.422		35.071	-1.606	-0.611	0.373	2.397	-0.228	-1.465
0.25	0.5	17.011	7.085		42.156	1.771	-0.111	0.012	0.087	-0.001	-0.010
0.75	1	28.648	11.932		54.088	8.949	0.389	0.151	1.806	0.059	0.703
1.25	1.5	34.033	14.175		68.263	17.719	0.889	0.790	11.204	0.703	9.960
1.75	7	44.368	18.479	75.266	86.742	32.339	1.389	1.929	35.655	2.680	49.525
2.25	2.5	22.967	9.566		96.308	21.523	1.889	3.568	34.135	6.741	64.483
2.75	ε	5.555	2.314		98.622	6.363	2.389	5.707	13.205	13.635	31.548
3.25	3.5	1.969	0.820		99.442	2.665	2.889	8.347	6.845	24.113	19.775
3.75	4	0.604	0.252		99.693	0.943	3.389	11.486	2.889	38.925	9.792
4.25	>4	0.736	0.307	0.307	100.000	1.303	3.889	15.125	4.636	58.820	18.031
	TOTAL	240.095				36.096			283.155		-270.317
mean_{Φ}	0.361	$SK\varphi$	-2.703								
σφ	1.683	D50	0.829								

			$f(m_{h}-x)^{3}$	х т х	-112.006	-80.456	-10.852	-3.522	-0.014	0.336	2.388	6.148	11.340	30.557	137.071	310.103	179.449	87.047	24.533	39.451	621.572		
			$(m_{h}-x)^{3}$, , ,	-8.535	-3.678	-1.400	-0.237	-0.002	0.055	0.685	2.636	6.659	13.505	23.923	38.662	58.474	84.108	116.314	203.442			
			$f(m_{h}-x)^{2}$, т ,	54.808	52.122	9.701	5.694	0.116	0.881	2.710	4.450	6.027	12.832	47.571	91.708	46.233	19.867	5.026	6.708	366.455		
			$(m_{h}-x)^{2}$, т ,	4.176	2.383	1.251	0.383	0.014	0.145	0.777	1.908	3.540	5.671	8.302	11.434	15.065	19.197	23.828	34.591			
			т _ф -х	1	-2.044	-1.544	-1.119	-0.619	-0.119	0.381	0.881	1.381	1.881	2.381	2.881	3.381	3.881	4.381	4.881	5.881			
CR14-G47	606.990	0.175	fm_{d}	1	-48.229	-69.453	-21.321	-33.479	-14.473	-7.567	-2.616	-0.583	0.426	1.697	7.162	14.036	6.905	2.846	0.685	0.824	-163.140		
Sample ID	Initial wt. (g)	% error	Cummulative	WL. /0	13.124	34.999	42.752	57.632	65.902	71.955	75.443	77.775	79.478	81.741	87.471	95.491	98.560	99.595	90.806	100.000			
			% G S M		71.955											27.851				0.194			
			Individual	wr. ⁄0	13.124	21.875	7.753	14.880	8.270	6.053	3.488	2.332	1.703	2.263	5.730	8.021	3.069	1.035	0.211	0.194		6.216	-2.256
			Individual	WL. (B)	79.519	132.546	46.979	90.160	50.110	36.679	21.136	14.131	10.318	13.710	34.718	48.600	18.595	6.271	1.278	1.175	605.925	SKφ	D50
			phi (φ)		-3.35	ς.	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	7	2.5	С	3.5	>4	TOTAL	-1.631	1.914
			m_	4	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	4.25		$\mathrm{mean}_{\mathrm{\Phi}}$	Ծֆ

			$\cdot x)^3$ f(m_{\phi}-x)^3	182 -16.652	-13.513	29 -30.303	47 -14.419	21 -3.856	-0.022	62 1.184	19 7.460	19 18.215	12 26.548	749 25.869	80 14.329	54 4.155	21 4.938	32 3.838	337 26.109	53.880		
			(m _{\$} -	-16.1	-9.3	-4.1	-1.3	-0.2	-0.0	0.0	0.7	2.7	6.8	13.7	24.2	39.1	59.1	84.9	117.3			
			$f(m_{\varphi}-x)^2$	6.583	6.422	18.888	13.057	6.380	0.207	2.992	8.329	13.051	14.004	10.798	4.949	1.224	1.268	0.873	5.333	114.357		
			$(m_{\phi}-x)^2$	6.398	4.428	2.574	1.220	0.365	0.011	0.157	0.802	1.948	3.594	5.739	8.385	11.530	15.176	19.322	23.967			
			m _ф -x	-2.529	-2.104	-1.604	-1.104	-0.604	-0.104	0.396	0.896	1.396	1.896	2.396	2.896	3.396	3.896	4.396	4.896			
CR14-G48	146.207	0.103	fm_{Φ}	-3.267	-3.988	-16.511	-18.736	-21.837	-14.240	-4.778	2.596	5.025	4.871	3.293	1.328	0.292	0.271	0.169	0.946	-64.566		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	1.029	2.479	9.817	20.524	37.993	56.980	76.091	86.474	93.174	97.071	98.952	99.543	99.649	99.732	99.777	100.000			
			% G S M	37.993										61.785					0.223			
			Individual wt. %	1.029	1.450	7.338	10.706	17.469	18.987	19.111	10.382	6.700	3.897	1.881	0.590	0.106	0.084	0.045	0.223		0.539	-0.684
			Individual wt. (g)	1.503	2.118	10.718	15.637	25.515	27.732	27.913	15.164	9.786	5.692	2.748	0.862	0.155	0.122	0.066	0.325	146.056	SKφ	D50
			phi (φ)	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ξ	3.5	4	< 4	TOTAL	-0.646	1.069
			${\mathfrak m}_{\varphi}$	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_{Φ}	σφ

				Sample ID	CR14-G49					
				Initial wt. (g) % error	1481.741 0.016					
Indiv. wt.	idual (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	тф-х	$(m_{\phi}\text{-}x)^2$	$f(m_{\Phi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
1326	5.300	89.524		89.524	-671.432	-0.522	0.272	24.372	-0.142	-12.716
64.	527	4.356	98.397	93.880	-16.007	3.303	10.911	47.525	36.043	156.986
26	.001	1.755		95.635	-5.572	3.803	14.465	25.386	55.012	96.549
8.	925	0.602		96.237	-1.657	4.228	17.878	10.770	75.592	45.539
15	.565	1.051		97.288	-2.364	4.728	22.356	23.488	105.706	111.057
6	280	0.626		97.914	-1.096	5.228	27.334	17.122	142.911	89.519
7.	154	0.483		98.397	-0.604	5.728	32.813	15.845	187.959	90.763
5.	263	0.355		98.752	-0.266	6.228	38.791	13.780	241.599	85.828
4	542	0.307		99.059	-0.077	6.728	45.269	13.879	304.582	93.379
4	714	0.183		99.242	0.046	7.228	52.247	9.571	377.657	69.184
сi	775	0.187		99.430	0.140	7.728	59.726	11.187	461.574	86.458
ŝ	548	0.239		<u>99.669</u>	0.299	8.228	67.704	16.214	557.084	133.415
4	664	0.180	1.567	99.849	0.315	8.728	76.182	13.699	664.936	119.567
Ļ	017	0.069		99.918	0.154	9.228	85.160	5.846	785.880	53.948
0	341	0.023		99.941	0.063	9.728	94.639	2.178	920.667	21.191
0	235	0.016		99.956	0.052	10.228	104.617	1.659	1070.046	16.973
0.	117	0.008		99.964	0.030	10.728	115.095	0.909	1234.767	9.751
0.	529	0.036	0.036	100.000	0.152	11.228	126.073	4.502	1415.581	50.546
148	1.497				-697.824			257.933		1317.938
\mathbf{S}	Кф	13.179								
Ц	050	-6.221								

		$)^3$ f(m $_{\Phi}$ -x) ³	3 -62.450	9 -7.749	1 -0.746	0.016	3 0.679	5.644	4.357	3 24.390	7 21.148	5 29.614	7 31.789	3 60.840	44 90.274	59 203.910	28 370.977	72 371.521	50 189.877	12 41.094	17.248	38 8.036	32.702	1433.170		
		(m _ф -x)	-2.083	-0.469	-0.02	0.011	0.508	2.186	5.114	10.98	20.18	33.47	51.59	75.30	105.34	142.46	187.42	240.97	303.85	376.81	460.60	555.98	663.70			
		$f(m_{\varphi}-x)^2$	48.898	9.970	2.692	0.073	0.851	4.349	2.529	10.972	7.767	9.189	8.539	14.407	19.114	39.042	64.824	59.703	28.244	5.689	2.233	0.977	3.749	343.812		
		$(m_{\phi}-x)^2$	1.631	0.604	0.077	0.050	0.637	1.684	2.968	4.941	7.414	10.387	13.860	17.832	22.305	27.278	32.751	38.724	45.197	52.169	59.642	67.615	76.088			
		m _ф -x	-1.277	-0.777	-0.277	0.223	0.798	1.298	1.723	2.223	2.723	3.223	3.723	4.223	4.723	5.223	5.723	6.223	6.723	7.223	7.723	8.223	8.723			
CR14-G50	761.352 0.036	fm_{d}	-172.372	-86.667	-166.476	-6.268	-4.913	-8.197	-2.343	-4.997	-1.833	-1.106	-0.462	-0.202	0.214	1.073	2.474	2.698	1.406	0.300	0.122	0.054	0.209	-447.284		
Sample ID	Initial wt. (g) % error	Cummulative wt. %	29.978	46.486	81.533	83.008	84.345	86.927	87.779	89.999	91.047	91.932	92.548	93.356	94.213	95.644	97.623	99.165	99.790	99.899	99.936	99.951	100.000			
		% G S M					91.932											8.019					0.049			
		Individual wt. %	29.978	16.508	35.048	1.475	1.337	2.582	0.852	2.221	1.048	0.885	0.616	0.808	0.857	1.431	1.979	1.542	0.625	0.109	0.037	0.014	0.049		14.332	-4.950
		Individual wt. (g)	228.154	125.638	266.739	11.224	10.175	19.649	6.484	16.901	7.973	6.733	4.689	6.149	6.522	10.893	15.064	11.734	4.756	0.830	0.285	0.110	0.375	761.077	SKφ	D50
		phi (φ)	-5.5	-S	-4.5	4	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ŝ	3.5	4	>4	TOTAL	-4.473	1.854
		m_{Φ}	-5.75	-5.25	-4.75	-4.25	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_{φ}	σ¢

						Sample ID	CR14-G51					
						Initial wt. (g) % error	324.671 0.051					
	m_{φ}	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\rm th}-x)^2$	$(m_{\Phi}-x)^3$	$f(m_{\varphi}-x)^3$
	-4.75	-4.5	153.706	47.366		47.366	-224.989	-1.570	2.464	116.694	-3.867	-183.165
	-4.25	4	22.659	6.983		54.349	-29.676	-1.070	1.144	7.989	-1.224	-8.545
	-3.675	-3.35	32.353	9.970	82.675	64.318	-36.639	-0.495	0.245	2.439	-0.121	-1.206
	-3.175	ς	16.959	5.226		69.545	-16.593	0.005	0.000	0.000	0.000	0.000
	-2.75	-2.5	8.657	2.668		72.212	-7.336	0.430	0.185	0.494	0.080	0.213
	-2.25	-2	13.247	4.082		76.295	-9.185	0.930	0.866	3.534	0.805	3.288
	-1.75	-1.5	12.053	3.714		80.009	-6.500	1.430	2.046	7.599	2.927	10.870
	-1.25	-	8.651	2.666		82.675	-3.332	1.930	3.726	9.934	7.193	19.177
	-0.75	-0.5	6.028	1.858		84.532	-1.393	2.430	5.907	10.972	14.356	26.667
23	-0.25	0	6.544	2.017		86.549	-0.504	2.930	8.587	17.317	25.164	50.745
1	0.25	0.5	6.167	1.900		88.449	0.475	3.430	11.768	22.363	40.367	76.715
	0.75	1	8.442	2.601		91.051	1.951	3.930	15.448	40.188	60.717	157.953
	1.25	1.5	11.652	3.591		94.641	4.488	4.430	19.628	70.479	86.961	312.250
	1.75	7	9.986	3.077	17.181	97.719	5.385	4.930	24.309	74.805	119.852	368.817
	2.25	2.5	5.168	1.593		99.311	3.583	5.430	29.489	46.964	160.138	255.030
	2.75	б	1.166	0.359		99.671	0.988	5.930	35.170	12.637	208.569	74.942
	3.25	3.5	0.455	0.140		99.811	0.456	6.430	41.350	5.798	265.896	37.282
	3.75	4	0.146	0.045		99.856	0.169	6.930	48.030	2.161	332.869	14.976
	4.25	>4	0.468	0.144	0.144	100.000	0.613	7.430	55.211	7.962	410.237	59.164
		TOTAL	324.507				-318.039			460.329		1275.174
	mean_	-3.180	SKφ	12.752								
	σφ	2.146	D50	-4.311								

					Sample ID	CR14-G52					
					Initial wt. (g)	146.975					
					% error	0.258					
<u> </u>	phi (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	$\mathrm{fm}_{\mathrm{dh}}$	m _∲ -x	$(m_{\phi}-x)^2$	$f(m_{\phi}-x)^2$	$(m_{\Phi}-x)^3$	$f(m_{\phi}-x)^3$
75	ς	10.713	7.308	64.800	7.308	-23.202	-2.149	4.619	33.758	-9.928	-72.554
75	-2.5	14.265	9.731		17.039	-26.760	-1.724	2.973	28.931	-5.126	-49.885
25	-2	28.617	19.521		36.560	-43.922	-1.224	1.499	29.259	-1.835	-35.821
75	-1.5	23.095	15.754		52.314	-27.570	-0.724	0.525	8.264	-0.380	-5.986
25	-	18.304	12.486		64.800	-15.608	-0.224	0.050	0.628	-0.011	-0.141
75	-0.5	9.229	6.296		71.095	-4.722	0.276	0.076	0.479	0.021	0.132
25	0	6.858	4.678		75.774	-1.170	0.776	0.602	2.815	0.467	2.184
25	0.5	4.482	3.057		78.831	0.764	1.276	1.627	4.976	2.076	6.348
75	1	4.678	3.191		82.022	2.393	1.776	3.153	10.062	5.599	17.868
25	1.5	5.349	3.649		85.671	4.561	2.276	5.179	18.897	11.786	43.004
75	7	6.264	4.273	34.947	89.944	7.478	2.776	7.705	32.922	21.386	91.382
5	2.5	9.512	6.489		96.432	14.599	3.276	10.730	69.625	35.150	228.073
5	б	3.873	2.642		99.074	7.265	3.776	14.256	37.664	53.827	142.209
5	3.5	0.817	0.557		99.632	1.811	4.276	18.282	10.189	78.168	43.564
5	4	0.169	0.115		99.747	0.432	4.776	22.808	2.629	108.923	12.557
25	< 4	0.371	0.253	0.253	100.000	1.076	5.276	27.833	7.044	146.841	37.162
	TOTAL	146.596				-102.573			298.141		460.096
\mathfrak{m}_{ϕ}	-1.026	SKφ	4.601								
-d	1.727	D50	-1.573								

			ر. ع	$f(m_{\phi}-x)$	0.000	0.000		
			, ,	(m _{\$\phi} -x)	0.000			
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	t(m _{\ph} -x) ⁻	0.000	0.000		
			<i>2</i> , ,	(m _{\$\$} -x) ⁻	0.000			
				m∲-x	0.000			
CR14-G53	262.200	0.000	ć	$\mathrm{IIM}_{\mathrm{\Phi}}$	-575.000	-575.000		
Sample ID	Initial wt. (g)	% error	Cummulative	wt. %	100.000			
				%GSM	100.000			
			Individual	wt. %	100.000		0.000	-5.700
			Individual	wt. (g)	262.200	262.200	SKφ	D50
			~ • 7 • •	рh1 (ф)	-5.5	TOTAL	-5.700	0.000
				$\mathrm{m}_{\mathrm{\Phi}}$	-5.75		$\mathrm{mean}_{\mathrm{\Phi}}$	Ծф

					Sample ID	CR14-G54					
					Initial wt. (g)	152.248					
					% error	0.070					
m_{Φ}	phi (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
-3.675	-3.35	11.841	7.783	73.015	7.783	-28.602	-1.909	3.642	28.349	-6.952	-54.105
-3.175	ή	27.326	17.961		25.744	-57.026	-1.409	1.984	35.634	-2.794	-50.191
-2.75	-2.5	44.026	28.938		54.682	-79.578	-0.984	0.967	27.992	-0.951	-27.531
-2.25	-2	0.384	0.252		54.934	-0.568	-0.484	0.234	0.059	-0.113	-0.029
-1.75	-1.5	15.279	10.043		64.977	-17.575	0.016	0.000	0.003	0.000	0.000
-1.25	-	12.229	8.038		73.015	-10.047	0.516	0.267	2.144	0.138	1.107
-0.75	-0.5	7.443	4.892		77.907	-3.669	1.016	1.033	5.055	1.050	5.138
-0.25	0	6.580	4.325		82.232	-1.081	1.516	2.300	9.946	3.487	15.083
0.25	0.5	5.452	3.584		85.815	0.896	2.016	4.066	14.571	8.199	29.382
0.75	1	5.889	3.871		89.686	2.903	2.516	6.333	24.512	15.936	61.684
1.25	1.5	6.437	4.231		93.917	5.289	3.016	9.099	38.498	27.447	116.127
1.75	7	5.374	3.532	26.889	97.449	6.181	3.516	12.366	43.678	43.483	153.593
2.25	2.5	3.056	2.009		99.458	4.519	4.016	16.132	32.404	64.794	130.149
2.75	Э	0.497	0.327		99.784	0.898	4.516	20.398	6.664	92.129	30.096
3.25	3.5	0.132	0.087		99.871	0.282	5.016	25.165	2.183	126.239	10.953
3.75	4	0.049	0.032		99.903	0.121	5.516	30.431	0.980	167.874	5.407
4.25	>4	0.147	0.097	0.097	100.000	0.411	6.016	36.198	3.497	217.783	21.042
	TOTAL	152.141				-176.647			276.169		447.903
mean_{φ}	-1.766	SKφ	4.479								
σφ	1.662	D50	-2.581								

mole ID CR14-G54

		$f(m_\varphi\text{-}x)^3$	-143.275	-61.848	-16.881	-3.879	-0.038	0.224	2.213	7.689	16.795	49.774	170.706	243.629	135.879	30.235	15.334	8.157	36.944	491.658		
		$(m_{\varphi}-x)^3$	-9.146	-4.029	-1.586	-0.296	-0.005	0.037	0.580	2.373	6.166	12.711	22.755	37.051	56.347	81.394	112.941	151.740	198.538			
		$f(m_{\varphi}-x)^2$	68.512	38.868	14.475	5.822	0.229	0.671	2.655	5.765	9.159	21.328	60.240	73.080	35.443	6.977	3.172	1.529	6.333	354.255		
		$(m_{\phi}-x)^2$	4.373	2.532	1.360	0.444	0.028	0.111	0.695	1.779	3.363	5.446	8.030	11.114	14.698	18.781	23.365	28.449	34.033			
		m _ф -x	-2.091	-1.591	-1.166	-0.666	-0.166	0.334	0.834	1.334	1.834	2.334	2.834	3.334	3.834	4.334	4.834	5.334	5.834			
CR14-G55	145.311 0.146	fm_{Φ}	-57.572	-48.737	-29.267	-29.509	-14.473	-7.527	-2.864	-0.810	0.681	2.937	9.377	11.507	5.426	1.022	0.441	0.202	0.791	-158.375		
Sample ID	Initial wt. (g) % error	Cummulative wt. %	15.666	31.016	41.658	54.774	63.044	69.065	72.884	76.125	78.848	82.764	90.266	96.841	99.253	99.624	99.760	99.814	100.000			
		% G S M	69.065											30.749					0.186			
		Individual wt. %	15.666	15.350	10.642	13.115	8.270	6.021	3.819	3.241	2.724	3.916	7.502	6.576	2.411	0.371	0.136	0.054	0.186		4.917	-2.182
		Individual wt. (g)	22.731	22.273	15.442	19.030	12.000	8.737	5.541	4.702	3.952	5.682	10.885	9.541	3.499	0.539	0.197	0.078	0.270	145.099	SKφ	D50
		phi (ф)	-3.35	ų	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	С	3.5	4	>4	TOTAL	-1.584	1.882
		${ m m}_{\varphi}$	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		$mean_{\varphi}$	σφ

					Sample ID	CR14-G56																
					Initial wt. (g) % error	108.676 0.127																
	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	m _ф -x	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\varphi}-x)^3$	$f(m_{\varphi}-x)^3$											
5	-4	12.395	11.420		11.420	-48.535	-3.893	15.152	173.038	-58.982	-673.568											
75	-3.35	1.241	1.143	43.968	12.563	-4.202	-3.318	11.006	12.585	-36.515	-41.750											
75	ή	2.528	2.329		14.892	-7.395	-2.818	7.939	18.491	-22.368	-52.099											
75	-2.5	2.834	2.611		17.504	-7.180	-2.393	5.724	14.947	-13.696	-35.762											
25	-2	9.924	9.143		26.647	-20.573	-1.893	3.582	32.751	-6.779	-61.984											
75	-1.5	10.978	10.114		36.761	-17.700	-1.393	1.939	19.615	-2.701	-27.316											
25	-	7.822	7.207		43.968	-9.008	-0.893	0.797	5.742	-0.711	-5.125											
15	-0.5	4.280	3.943		47.911	-2.957	-0.393	0.154	0.608	-0.061	-0.239											
5	0	3.774	3.477		51.388	-0.869	0.107	0.012	0.040	0.001	0.004											
5	0.5	3.108	2.864		54.252	0.716	0.607	0.369	1.056	0.224	0.642											
5	1	4.447	4.097		58.349	3.073	1.107	1.226	5.025	1.358	5.564											
5	1.5	9.183	8.461		66.810	10.576	1.607	2.584	21.860	4.153	35.138											
5	7	18.795	17.317	55.615	84.126	30.304	2.107	4.441	76.906	9.359	162.071											
5	2.5	14.345	13.217		97.343	29.737	2.607	6.799	89.854	17.727	234.286											
5	б	1.830	1.686		99.029	4.637	3.107	9.656	16.280	30.005	50.590											
5	3.5	0.463	0.427		99.455	1.386	3.607	13.013	5.551	46.945	20.026											
5	4	0.138	0.127		99.583	0.477	4.107	16.871	2.145	69.295	8.811											
5	>4	0.453	0.417	0.417	100.000	1.774	4.607	21.228	8.860	97.807	40.821											
	TOTAL	108.538				-35.741			505.353		-339.890											
\mathbf{n}_{Φ}	-0.357	SKφ	-3.399																			
	2.248	D50	-0.200																			
			$x)^{2}$ $(m_{\Phi}-x)^{3}$ $f(m_{\Phi}-x)^{3}$	73 -20.855 -117.459	89 -12.610 -56.535	79 -6.104 -57.164	55 -2.340 -24.102	4 -0.567 -5.772	6 -0.035 -0.287	9 0.005 0.046 0.046 0.046 0.046 0.046	0.304 2.589	25 1.612 17.850	10 4.678 55.040	11 10.253 73.671	06 19.087 64.957	5 31.929 16.228	3 49.530 6.070	0 72.639 3.420	3 102.008 20.060	-1.388		
-----------	-----------------	---------	---	---------------------	--------------------	-------------------	-------------------	-----------------	-----------------	---------------------------------------	-------------	-----------------	-----------------	------------------	------------------	-----------------	----------------	----------------	------------------	---------	---------------------------------	--------
			2 f(m _{ϕ} -j	7 42.67	3 24.28	31.27	2 18.15	6.97	0.87	0.26	2 3.85	5 15.22	7 32.9	33.9	24.30	4 5.11	7 1.65	9 0.82	2 4.29	246.5		
			(m _{\$\$} -x)	7.577	5.418	3.34(1.762	0.685	0.107	0.03(0.452	1.375	2.797	4.72(7.142	10.06	13.48	17.40	21.83			
-			m _ф -x	-2.753	-2.328	-1.828	-1.328	-0.828	-0.328	0.172	0.672	1.172	1.672	2.172	2.672	3.172	3.672	4.172	4.672			
CR14-G57	144.575	0.108	fm_{Φ}	-17.882	-12.330	-21.072	-18.027	-12.729	-6.124	-2.263	2.129	8.307	14.707	12.574	7.657	1.398	0.398	0.177	0.836	-42.245		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	5.632	10.116	19.481	29.782	39.966	48.131	57.182	65.696	76.771	88.537	95.722	99.125	99.634	99.756	99.803	100.000			
			% G S M	39.966										59.838					0.197			
			Individual wt. %	5.632	4.483	9.365	10.301	10.184	8.166	9.050	8.514	11.075	11.766	7.185	3.403	0.508	0.123	0.047	0.197		-0.014	-0.397
			Individual wt. (g)	8.134	6.475	13.525	14.877	14.707	11.793	13.070	12.296	15.995	16.992	10.377	4.915	0.734	0.177	0.068	0.284	144.419	SKφ	D50
			phi (φ)	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ς	3.5	4	>4	TOTAL	-0.422	1.570
			${ m m}_{\Phi}$	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		$\mathrm{mean}_{\mathrm{\Phi}}$	օփ

			$f(m_{\phi}-x)^3$	-39.576	-20.996	-4.469	-0.140	0.424	3.091	4.835	8.522	14.102	31.334	70.462	110.245	159.170	49.046	27.136	20.421	81.905	515.511		
			$(m_{\varphi}-x)^3$	-4.044	-1.306	-0.298	-0.005	0.037	0.576	2.363	6.147	12.680	22.710	36.988	56.264	81.287	112.809	151.578	198.345	253.859			
			$f(m_{\varphi}-x)^2$	24.841	19.207	689.9	0.831	1.277	3.716	3.630	4.652	6.048	11.065	21.148	28.771	36.744	10.151	5.089	3.502	12.935	200.296		
			$(m_{\phi}-x)^2$	2.538	1.195	0.446	0.028	0.110	0.692	1.774	3.356	5.438	8.019	11.101	14.683	18.765	23.347	28.429	34.011	40.092			
			m_{φ} -x	-1.593	-1.093	-0.668	-0.168	0.332	0.832	1.332	1.832	2.332	2.832	3.332	3.832	4.332	4.832	5.332	5.832	6.332			
CR14-G58	152.656	0.10/	fm_φ	-35.968	-51.033	-41.207	-66.149	-20.299	-6.712	-1.535	-0.347	0.278	1.035	2.381	3.429	4.406	1.196	0.582	0.386	1.371	-208.186		
Sample ID	Initial wt. (g)	70 EIIUI	Cummulative wt. %	9.787	25.861	40.845	70.245	81.844	87.213	89.260	90.646	91.758	93.138	95.043	97.002	98.961	99.395	99.574	99.677	100.000			
			% G S M	87.213											12.464					0.323			
			Individual wt. %	9.787	16.074	14.984	29.399	11.599	5.369	2.047	1.386	1.112	1.380	1.905	1.959	1.958	0.435	0.179	0.103	0.323		5.155	-2.344
			Individual wt. (g)	14.925	24.511	22.850	44.832	17.688	8.188	3.121	2.114	1.696	2.104	2.905	2.988	2.986	0.663	0.273	0.157	0.492	152.493	SKφ	D50
			phi (ф)	-3.35	ή	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	б	3.5	4	>4	TOTAL	-2.082	1.415
			m_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_{Φ}	σф

			$(m_{\varphi}\text{-}x)^3 f(m_{\varphi}\text{-}x)^3$	-40.059 -17.912	-24.939 -12.616	-14.201 -22.805	-7.096 -14.749	-2.873 -13.544	-0.783 -5.643	-0.075 -1.163	0.000 0.015	0.193 4.939	1.254 13.054	3.932 3.592	8.978 1.376	17.141 0.832	29.171 4.658	-59.966		
			$f(m_{\varphi}-x)^2$	5.235	4.318	9.417	7.675	9.527	6.122	2.758	0.189	8.540	12.106	2.275	0.662	0.323	1.513	70.661		
			$(m_{\phi}-x)^2$	11.708	8.536	5.864	3.693	2.021	0.849	0.178	0.006	0.334	1.163	2.491	4.320	6.648	9.476			
			m⊕-x	-3.422	-2.922	-2.422	-1.922	-1.422	-0.922	-0.422	0.078	0.578	1.078	1.578	2.078	2.578	3.078			
CR14-G59	78.361	0.106	fm_{φ}	-1.006	-0.885	-2.007	-1.559	-1.178	1.802	11.634	38.392	44.679	23.423	2.512	0.498	0.182	0.679	117.164		
Sample ID	Initial wt. (g)	% error	Cummulative wt. %	0.447	0.953	2.559	4.637	9.351	16.559	32.070	62.784	88.315	98.725	99.638	99.792	99.840	100.000			
			% G S M	2.559								97.281					0.160			
			Individual wt. %	0.447	0.506	1.606	2.078	4.714	7.208	15.511	30.714	25.531	10.410	0.913	0.153	0.049	0.160		-0.600	1.292
			Individual wt. (g)	0.350	0.396	1.257	1.627	3.690	5.642	12.142	24.042	19.985	8.149	0.715	0.120	0.038	0.125	78.278	SKφ	D50
			phi (φ)	-2	-1.5	-	-0.5	0	0.5	-	1.5	2	2.5	ς	3.5	4	>4	TOTAL	1.172	0.841
			m_{φ}	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_{Φ}	σφ

~ ~ er	% ei	% ei
M Cummu. wt. 9	GSM Cummu wt. 9	wt. % GSM Cummu
9 1.20	10.799 1.20	1.207 10.799 1.20
4.195	4.195	2.989 4.195
10.79	10.79	6.604 10.799
21.15	21.15	10.355 21.154
39.00	39.00	17.855 39.009
58.274	58.274	19.265 58.274
77.311	77.311	19.037 77.311
91.324	91.324	14.013 91.324
0 97.421	88.880 97.421	6.097 88.880 97.421
99.361	99.361	1.940 99.361
99.508	99.508	0.146 99.508
99.607	607.09	0.099 0.099
99.679	629.66	0.072 99.679
100.00	0.321 100.000	0.321 0.321 100.000
		0.018
		0.285

		$(m_{\phi}-x)^3$	37 430	604.10-	-24.906	-14.178	-7.082	-2.865	-0.780	-0.074	0.001	0.195	1.259	3.942	8.995	17.167	29.209	45.870	67.901			
		$f(m_{\phi}-x)^2$	1 272	C/C.1	6.954	11.365	13.800	12.744	10.377	2.578	0.128	6.454	15.680	14.546	3.958	0.697	0.679	1.327	7.445	110.104		
		$(m_{\phi}-x)^2$	11 101	11.171	8.528	5.858	3.688	2.017	0.847	0.177	0.006	0.336	1.166	2.495	4.325	6.655	9.484	12.814	16.644			
		m _ф -x	2 215	C+C.C-	-2.920	-2.420	-1.920	-1.420	-0.920	-0.420	0.080	0.580	1.080	1.580	2.080	2.580	3.080	3.580	4.080			
R14-G60-R 78.440	0.250	$\mathrm{fm}_{\mathrm{\Phi}}$	0.200	-U.SU	-2.242	-4.365	-6.549	-7.897	-9.189	-3.648	5.023	14.405	16.814	10.201	2.059	0.288	0.233	0.388	1.901	17.034		
Sample ID C Initial wt. (g)	% error	Cummulative	ML /0 0 1 7 2	0.120	0.938	2.878	6.620	12.938	25.189	39.779	59.870	79.077	92.529	98.358	99.273	99.378	99.449	99.553	100.000			
		% G S M	17 020	006.71										86.615					0.447			
		Individual ^{wf} %	WL. /0 0 172	0.120	0.815	1.940	3.742	6.317	12.251	14.590	20.091	19.207	13.452	5.829	0.915	0.105	0.072	0.104	0.447		-0.167	0.254
		Individual	ML. (5)	0.070	0.638	1.518	2.928	4.943	9.586	11.416	15.72	15.028	10.525	4.561	0.716	0.082	0.056	0.081	0.35	78.244	SKφ	D50
		phi (ф)	2	, ,	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	ŝ	3.5	4	< 4	TOTAL	0.170	1.049
		$\mathrm{m}_{\mathrm{\varphi}}$	3 175	C / T.C-	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		mean_{Φ}	σφ

		$f(m_{\varphi}-x)^3$	-63.130	-51.944	-23.695	-5.668	-0.047	0.344	2.605	6.630	8.143	19.910	83.166	209.330	216.747	75.672	32.674	14.863	57.792	583.392		
		$(m_{\Phi}-x)^3$	-9.054	-3.976	-1.558	-0.287	-0.004	0.040	0.594	2.410	6.237	12.825	22.924	37.284	56.656	81.788	113.432	152.336	199.252			
		$f(m_{\varphi}-x)^2$	30.289	32.788	20.439	8.598	0.295	1.008	3.099	4.945	4.424	8.506	29.276	62.660	56.434	17.433	6.750	2.783	9.895	299.621		
		$(m_{\phi}-x)^2$	4.344	2.510	1.344	0.435	0.025	0.116	0.707	1.798	3.388	5.479	8.070	11.161	14.751	18.842	23.433	28.523	34.114			
		m _ф -x	-2.084	-1.584	-1.159	-0.659	-0.159	0.341	0.841	1.341	1.841	2.341	2.841	3.341	3.841	4.341	4.841	5.341	5.841			
CR14-G61	150.826 0.106	fm_{φ}	-25.623	-41.476	-41.825	-44.508	-20.345	-10.858	-3.288	-0.688	0.326	1.164	4.535	9.825	8.608	2.544	0.936	0.366	1.233	-159.074		
Sample ID	Initial wt. (g) % error	Cummulative wt. %	6.972	20.036	35.245	55.026	66.652	75.338	79.722	82.473	83.779	85.331	88.959	94.573	98.399	99.324	99.612	99.710	100.000			
		% G S M	75.338											24.372					0.290			
		Individual wt. %	6.972	13.063	15.209	19.782	11.626	8.686	4.384	2.751	1.306	1.552	3.628	5.614	3.826	0.925	0.288	0.098	0.290		5.834	-2.366
		Individual wt. (g)	10.505	19.682	22.915	29.804	17.516	13.087	6.605	4.145	1.967	2.339	5.466	8.459	5.764	1.394	0.434	0.147	0.437	150.666	SKφ	D50
		phi (ф)	-3.35	ς	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	2	2.5	З	3.5	4	>4	TOTAL	-1.591	1.731
		m_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		$mean_{\Phi}$	Ծփ

242
ц
2
Õ
6.
Ē.
7.1
3.9
4.52
5.9
8.0
7.38
1.78
0.3(
0.29
0.25
1.33
3.7

CR14-G62 nle ID

		$f(m_{\phi}-x)^2$ $(m_{\phi}-x)^3$	3.891 -28.334	26.646 -18.059	17.435 -9.577	14.287 -4.280	10.255 -1.419	4.847 -0.243	0.206 -0.002	2.585 0.053	14.635 0.673	22.570 2.608	8.917 6.607	0.800 13.420	0.540 23.798	0.688 38.491	1.314 58.249	5.353 83.821	134.967		
		$(m_{\Phi}-x)^2$	9.294	6.883	4.510	2.636	1.262	0.389	0.015	0.142	0.768	1.894	3.521	5.647	8.274	11.400	15.026	19.153			
		m _ф -x	-3.049	-2.624	-2.124	-1.624	-1.124	-0.624	-0.124	0.376	0.876	1.376	1.876	2.376	2.876	3.376	3.876	4.376			
CR14-G62-R	81.496 0.341	fm_{Φ}	-1.329	-10.645	-8.699	-9.485	-10.153	-9.349	-3.365	4.561	14.290	14.892	4.432	0.319	0.179	0.196	0.328	1.188	-12.640		
Sample ID C	Initial wt. (g) % error	Cummulative wt. %	0.419	4.290	8.156	13.576	21.698	34.164	47.622	65.866	84.920	96.833	99.366	99.507	99.573	99.633	99.721	100.000			
		% G S M	21.698										78.022					0.279			
		Individual wt. %	0.419	3.871	3.866	5.420	8.123	12.465	13.459	18.243	19.054	11.914	2.533	0.142	0.065	0.060	0.087	0.279		-0.607	0.065
		Individual wt. (g)	0.34	3.144	3.14	4.402	6.597	10.124	10.931	14.817	15.475	9.676	2.057	0.115	0.053	0.049	0.071	0.227	81.218	SKφ	D50
		phi (ф)	ςì	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	7	2.5	С	3.5	4	>4	TOTAL	-0.126	1.162
		${\mathfrak m}_{\varphi}$	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		$mean_{\Phi}$	σφ

	$f(m_{\varphi}-x)^3$	-0.112	0.913	2.794	3.595		
	$(m_{\phi}-x)^3$	-0.001	0.059	0.895			
	$f(m_{\varphi}-x)^2$	1.008	2.350	2.899	6.257		
	$(m_{\phi}-x)^2$	0.012	0.151	0.929			
	m _ф -x	-0.111	0.389	0.964			
CR14-G63 264.347 0.000	fm_{φ}	-386.279	-66.115	-11.472	-463.866		
Sample ID Initial wt. (g) % error	Cummulative wt. %	81.322	96.878	100.000			
	% G S M		100.000				
	Individual wt. %	81.322	15.556	3.122		0.036	-4.693
	Individual wt. (g)	214.972	41.123	8.252	264.347	SKφ	D50
	phi (ф)	-4.5	4	-3.35	TOTAL	-4.639	0.250
	m_{φ}	-4.75	-4.25	-3.675		mean _o	Ծփ

				Sample ID	CR14-G64					
				Initial wt. (g) % error	231.434 0.043					
лі (ф)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{φ}	m _ф -x	$(m_{\varphi}\text{-}x)^2$	$f(m_{\phi}-x)^2$	$(m_{\varphi}\text{-}x)^3$	$f(m_{\varphi}-x)^3$
-4.5	909.66	43.057		43.057	-204.521	-1.692	2.864	123.309	-4.846	-208.674
-3.35	31.486	13.611	81.958	56.668	-50.019	-0.617	0.381	5.186	-0.235	-3.201
ς	29.596	12.794		69.461	-40.620	-0.117	0.014	0.176	-0.002	-0.021
-2.5	690.9	2.623		72.085	-7.215	0.308	0.095	0.248	0.029	0.076
-2	12.038	5.204		77.288	-11.708	0.808	0.652	3.395	0.527	2.742
-1.5	5.626	2.432		79.720	-4.256	1.308	1.710	4.159	2.236	5.439
-	5.176	2.237		81.958	-2.797	1.808	3.268	7.312	5.907	13.217
-0.5	4.633	2.003		83.960	-1.502	2.308	5.326	10.666	12.290	24.613
0	5.269	2.278		86.238	-0.569	2.808	7.883	17.955	22.134	50.413
0.5	5.149	2.226		88.464	0.556	3.308	10.941	24.352	36.189	80.550
1	6.803	2.941		91.405	2.206	3.808	14.499	42.637	55.207	162.349
1.5	8.530	3.687		95.092	4.609	4.308	18.556	68.423	79.935	294.745
0	6.663	2.880	17.957	97.972	5.040	4.808	23.114	66.574	111.126	320.069
2.5	3.501	1.513		99.486	3.405	5.308	28.172	42.635	149.528	226.293
ε	0.704	0.304		99.790	0.837	5.808	33.729	10.265	195.891	59.614
3.5	0.225	0.097		99.887	0.316	6.308	39.787	3.870	250.966	24.409
4	0.063	0.027		99.914	0.102	6.808	46.345	1.262	315.503	8.592
>4	0.198	0.086	0.086	100.000	0.364	7.308	53.403	4.571	390.251	33.402
OTAL	231.335				-305.771			436.994		1094.627
-3.058	SKφ	10.946								
2.090	D50	-3.668								

		$(-x)^{3}$ f(m _{ϕ} -x) ³	821 -66.642	.895 -45.208	814 -82.722	419 -55.776	485 -14.577	263 -2.776	003 -0.023)46 0.384	534 4.143	510 18.759	125 60.421	128 111.693	369 90.791	899 21.810	468 10.105	825 6.620	.721 34.842	91.844		
		(m_{ϕ})	-28.	-16.	3.6-	4.	-1.2	-0.2	-0.0	0.0	0.6	2.5	6.4	13.	23.3	37.8	57.4	82.8	114.			
		$f(m_{\varphi}-x)^2$	21.736	17.618	38.637	33.989	12.776	4.331	0.166	1.069	4.823	13.804	32.502	47.347	31.756	6.493	2.619	1.519	7.171	278.355		
		$(m_{\phi}-x)^2$	9.400	6.584	4.584	2.693	1.302	0.411	0.020	0.129	0.738	1.847	3.456	5.565	8.174	11.283	14.892	19.001	23.610			
		m _ф -x	-3.066	-2.566	-2.141	-1.641	-1.141	-0.641	-0.141	0.359	0.859	1.359	1.859	2.359	2.859	3.359	3.859	4.359	4.859			
CR14-G65	144.081 0.136	fm_{Φ}	-8.498	-8.495	-23.180	-28.399	-17.173	-13.176	-6.275	-2.074	1.634	5.606	11.756	14.889	8.741	1.583	0.571	0.300	1.291	-60.901		
Sample ID	Initial wt. (g) % error	Cummulative wt. %	2.312	4.988	13.417	26.039	35.852	46.393	54.760	63.057	69.593	77.067	86.472	94.980	98.865	99.441	99.616	969.66	100.000			
		% G S M	46.393											53.303					0.304			
		Individual wt. %	2.312	2.676	8.429	12.622	9.813	10.541	8.367	8.297	6.536	7.474	9.405	8.508	3.885	0.575	0.176	0.080	0.304		0.918	-0.784
		Individual wt. (g)	3.327	3.850	12.128	18.161	14.120	15.167	12.039	11.938	9.404	10.754	13.532	12.242	5.590	0.828	0.253	0.115	0.437	143.885	SKφ	D50
		phi (φ)	-3.35	ς	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	2	2.5	Э	3.5	4	>4	TOTAL	-0.609	1.668
		m_{φ}	-3.675	-3.175	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		$mean_{\varphi}$	σφ

ndividual 2.6.5	S. Cur	ample ID tial wt. (g) % error mmulative	CR14-G66 262.793 0.381 fm.	Å. E	(m, v) ²	f(m, v) ²	(m, v) ³	f(m. v.) ³
wt. %	% G S M	wt. %	fm _¢	w _⊕ -v	$(m_{\phi}-x)^2$	$f(m_{\phi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\phi}-x)^3$
34.926		34.926	-165.899	-1.896	3.595	125.546	-6.815	-238.028
10.357		45.283	-44.017	-1.396	1.949	20.182	-2.720	-28.174
10.864	79.748	56.147	-39.925	-0.821	0.674	7.322	-0.553	-6.011
7.893		64.040	-25.061	-0.321	0.103	0.813	-0.033	-0.261
3.115		67.156	-8.567	0.104	0.011	0.034	0.001	0.004
5.784		72.940	-13.015	0.604	0.365	2.111	0.220	1.275
3.841		76.781	-6.722	1.104	1.219	4.682	1.346	5.169
2.967		79.748	-3.709	1.604	2.573	7.634	4.127	12.245
2.071		81.819	-1.553	2.104	4.427	9.169	9.315	19.292
2.102		83.921	-0.526	2.604	6.781	14.254	17.658	37.119
1.860		85.781	0.465	3.104	9.635	17.920	29.908	55.625
2.411		88.192	1.808	3.604	12.989	31.318	46.814	112.871
3.779		91.971	4.723	4.104	16.843	63.643	69.126	261.195
4.178	20.116	96.148	7.311	4.604	21.197	88.557	97.594	407.719
3.226		99.374	7.258	5.104	26.051	84.037	132.968	428.931
0.335		99.709	0.921	5.604	31.405	10.521	175.998	58.959
0.113		99.822	0.367	6.104	37.259	4.213	227.434	25.715
0.041		99.864	0.155	6.604	43.614	1.799	288.026	11.882
0.136	0.136	100.000	0.580	7.104	50.468	6.882	358.524	48.891
			-285.405			500.636		1214.419
12.144								
-3.718								

					Initial wt (o)	329 839					
					% error	0.078					
m_{\rm \$\Phi\$}	phi (φ)	Individual wt. (g)	Individual wt. %	% G S M	Cummulative wt. %	fm_{Φ}	т _ф -х	$(m_{\phi}-x)^2$	$f(m_{\varphi}-x)^2$	$(m_{\phi}-x)^3$	$f(m_{\varphi}-x)^3$
-4.75	-4.5	180.780	54.851		54.851	-260.543	-1.568	2.457	134.784	-3.852	-211.283
-4.25	4	29.376	8.913		63.764	-37.881	-1.068	1.140	10.158	-1.217	-10.845
-3.675	-3.35	4.162	1.263	78.982	65.027	-4.641	-0.493	0.243	0.306	-0.120	-0.151
-3.175	ή	10.552	3.202		68.229	-10.165	0.007	0.000	0.000	0.000	0.000
-2.75	-2.5	3.404	1.033		69.261	-2.840	0.432	0.187	0.193	0.081	0.084
-2.25	-2	8.655	2.626		71.888	-5.909	0.932	0.869	2.283	0.811	2.129
-1.75	-1.5	11.882	3.605		75.493	-6.309	1.432	2.052	7.397	2.939	10.596
-1.25	-	11.501	3.490		78.982	-4.362	1.932	3.734	13.031	7.216	25.182
-0.75	-0.5	10.156	3.081		82.064	-2.311	2.432	5.917	18.232	14.392	44.349
-0.25	0	10.609	3.219		85.283	-0.805	2.932	8.599	27.680	25.216	81.170
0.25	0.5	9.819	2.979		88.262	0.745	3.432	11.782	35.100	40.440	120.478
0.75	1	11.476	3.482		91.744	2.611	3.932	15.464	53.845	60.811	211.743
1.25	1.5	12.128	3.680		95.424	4.600	4.432	19.646	72.295	87.082	320.443
1.75	2	8.468	2.569	20.902	97.993	4.496	4.932	24.329	62.508	120.001	308.318
2.25	2.5	4.714	1.430		99.423	3.218	5.432	29.511	42.210	160.318	229.302
2.75	З	1.054	0.320		99.743	0.879	5.932	35.194	11.255	208.785	66.769
3.25	3.5	0.328	0.100		99.843	0.323	6.432	41.376	4.118	266.150	26.487
3.75	4	0.137	0.042		99.884	0.156	6.932	48.059	1.998	333.163	13.849
4.25	>4	0.382	0.116	0.116	100.000	0.493	7.432	55.241	6.403	410.575	47.587
	TOTAL	329.583				-318.243			503.797		1286.207
mean_	-3.182	SKφ	12.862								
оф	2.245	D50	-4.544								

Sample ID CR14-G67

			$\frac{1}{10^2}$ (mx) ³ f(mx) ³	$(v_{-}\phi_{m})$, $(v_{-}\phi_{m})$ (-24.652 -6.351	1 -14.005 -27.723	2 -6.972 -25.546	7 -2.806 -28.359	7 -0.755 -10.740	-0.069 -1.262	0.001 0.010	0.205 2.623	2 1.294 13.165	4 4.017 31.242	7 9.124 45.902	17.366 14.224	29.492 5.790	46.253 3.933	68.398 23.436	4 40.345		
			f(mv)	v_dmi)n	2.182	11.50	13.372	20.10	11.792	3.074	0.115	4.449	12.082	19.65	21.96	5.493	1.874	1.096	5.731	134.49		
			(mv) ²		8.470	5.810	3.650	1.989	0.829	0.168	0.008	0.348	1.187	2.527	4.366	6.706	9.546	12.885	16.725			
			x-∗m	d	-2.910	-2.410	-1.910	-1.410	-0.910	-0.410	0.090	0.590	1.090	1.590	2.090	2.590	3.090	3.590	4.090			
CR14-G68	80.174	0.258	fm.	d	-0.708	-4.454	-6.412	-12.635	-10.675	-4.563	3.570	9.599	12.721	13.612	11.319	2.252	0.638	0.319	1.456	16.040		
Sample ID	Initial wt. (g)	% error	Cummulative	wt. %	0.258	2.237	5.901	16.009	30.242	48.493	62.772	75.571	85.748	93.526	98.557	99.376	99.572	99.657	100.000			
			% G S M		16.009									83.648					0.343			
			Individual	wt. %	0.258	1.980	3.664	10.108	14.233	18.250	14.280	12.799	10.177	7.778	5.031	0.819	0.196	0.085	0.343		0.403	0.053
			Individual	wt. (g)	0.206	1.583	2.930	8.083	11.382	14.594	11.419	10.235	8.138	6.220	4.023	0.655	0.157	0.068	0.274	79.967	SKφ	D50
			տիі (փ)	(ሐ) ጠվ	-2.5	-2	-1.5	-	-0.5	0	0.5	1	1.5	2	2.5	Э	3.5	4	>4	TOTAL	0.160	1.160
			m	ф	-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25		$mean_{\Phi}$	Ծф

APPENDIX B

LOSS ON IGNITION DATA OF SEDIMENT SAMPLES FROM THE DEEP WATER CHANNEL ENVIRONMENT

Sediment wet and dry bulk density and organic content were measured by Dean's (1974) method of loss on ignition (LOI). The measured sediment samples were collected during the years 2012, 2013 and 2014.

Comments	Mud	Mud	Coarse sand	Sand and gravel	Sand, gravel and mud	Mud	Sand and granules	Little sand, no bed forms.	Sand	Sandy granules	Mud, sticks and leaves	Mud	Little sand on bedrock	Sand	Sand	Sand	Sand	Sand and leaves	Small dunes.	Sand, granules with shells	Mud	Sand	Sand and gravel	Sand
Organic Matter (%)	14.657	11.503	1.378	1.725	7.757	9.326	0.974	3.636	5.464	2.881	36.792	14.712	7.094	3.703	1.553	2.740	3.844	19.865	1.776	0.461	26.036	1.032	0.880	2.498
Water (%)	58.503	54.748	24.645	27.258	67.318	55.161	22.535	26.610	35.412	28.220	51.837	64.628	23.200	29.071	24.526	24.896	31.152	32.577	22.623	22.787	87.518	22.367	21.362	32.770
DBD (g/cc)	0.568	0.670	1.665	1.584	0.978	0.648	1.677	1.321	1.446	1.601	0.648	0.455	1.652	1.234	1.396	1.401	1.612	1.125	1.439	1.676	0.134	1.497	1.724	1.503
WBD (g/cc)	1.369	1.480	2.076	2.015	1.637	1.444	2.055	1.800	1.958	2.053	1.346	1.285	2.036	1.740	1.849	1.865	2.114	1.669	1.860	2.057	1.071	1.928	2.093	1.995
Water Depth (m)	2.04	1.65	0.97	0.91	0	0	0.74	0.65	1.08	0.28	0.55	1.3	0.9	0.36	2.75	2.48	0.38	1.9	0.48	0.71	1.55	0.24	0.62	0.42
Distance from LeFever (m)	603	726	809	811	847	964	1016	1076	1106	1391	1406	1455	1457	1655	1687	1818	1957	2023	2039	2095	2248	2337	2356	2366
Longitude	-81.4768	-81.4758	-81.4753	-81.4753	-81.4751	-81.47453	-81.4740	-81.47368	-81.4735	-81.4708	-81.47067	-81.4750	-81.4702	-81.46847	-81.4737	-81.4725	-81.4652	-81.4706	-81.46447	-81.4640	-81.4686	-81.46168	-81.4619	-81.4617
Latitude	41.1410	41.1419	41.1425	41.1425	41.1428	41.14382	41.1441	41.14457	41.1448	41.1464	41.14642	41.1428	41.1466	41.14792	41.1447	41.1453	41.1482	41.1465	41.1478	41.1474	41.1478	41.14642	41.1458	41.1458
Sample ID	CR12-G28	CR12-G27	CR14-G68	CR14-G15	CR14-G14	CR13-G16	CR14-G67	CR13-G15	CR14-G13	CR14-G12	CR13-G14	CR12-G26	CR14-G66	CR13-G13	CR12-G25	CR12-G24	CR14-G11	CR12-G23	CR13-G12	CR14-G65	CR12-G22	CR13-G10	CR14-G64	CR14-G10

Comments	Sand	Sand	Sand, gravel with leaves	Sand	Sand to pebbles with shells	Coarse sand	Sand	Sand	Sand	Sand and pebbles	Sand	Coarse sand and granules	Coarse sand	Sand and granules	Sand and 2.5-D ripples	Sand, granules with shells	Sand	Sand	Cobbles and sand	Sand with leaves and shells	Sand	Sand to pebbles with shells	Sand, coarse pebbles, shells	Sand, granules with shells
Organic Matter (%)	1.987	1.256	4.668	0.780	5.010	1.272	1.021	1.718	0.484	9.068	0.508	1.045	2.977	2.559	1.057	18.466	4.713	2.231	1.898	0.811	0.793	2.363	1.112	1.747
Water (%)	22.506	22.516	46.305	21.792	33.757	25.374	21.181	21.215	21.119	17.690	20.992	20.041	24.084	28.344	30.051	35.616	20.493	21.258	15.907	26.847	22.321	25.226	19.176	21.474
DBD (g/cc)	1.471	1.536	1.348	1.510	1.430	1.582	1.570	1.597	1.573	1.913	1.620	1.634	1.494	1.558	1.600	1.438	1.645	1.527	1.711	1.623	1.616	1.612	1.821	1.576
WBD (g/cc)	1.898	1.983	1.972	1.930	1.912	1.984	1.992	2.027	1.994	2.252	2.051	2.044	1.968	1.999	2.081	1.951	2.068	1.939	1.983	2.058	2.080	2.019	2.170	2.006
Water Depth (m)	0.4	0.76	0.5	0.6	0.56	0.72	0.76	1.14	0.14	0.42	0.41	0.52	1.32	0.71	0.57	0.84	0.86	0.45	1.27	0.96	0.76	0.96	1.38	0.54
Distance from LeFever (m)	2378	2546	2582	2751	2774	2778	2831	2887	2962	3132	3398	3430	3453	3458	3473	3513	3719	3742	3819	3834	3908	3976	3985	4069
Longitude	-81.46168	-81.4654	-81.4599	-81.45872	-81.4588	-81.4588	-81.4628	-81.4624	-81.4618	-81.4572	-81.4590	-81.45637	-81.4591	-81.4563	-81.4564	-81.4563	-81.4573	-81.46048	-81.4546	-81.4544	-81.4557	-81.4531	-81.4530	-81.45192
Latitude	41.1456	41.1484	41.1444	41.14537	41.1455	41.1456	41.1468	41.1463	41.1459	41.1457	41.1456	41.14708	41.1461	41.1472	41.1474	41.1477	41.1457	41.14952	41.1496	41.1496	41.1460	41.1487	41.1487	41.14845
Sample ID	CR13-G11	CR12-G20	CR14-G9	CR13-G9	CR14-G48	CR14-G62	CR12-G19	CR12-G17	CR12-G18	CR14-G61	CR12-G16	CR13-G8	CR12-G15	CR14-G60	CR14-G8	CR14-G45	CR12-G14	CR13-G7	CR14-G44	CR14-G59	CR12-G13	CR14-G43	CR14-G58	CR13-G6

Comments	Sand	Sand, gravel with shells	Sand, granules with shells	Sand and granules	Sand, granules with shells	Sand to pebbles	Sand, granules with shells	Sand, pebbles with shells	Sand and granules	Sand to pebbles with shells	Sand	Sand to gravel with shells	Sand to pebbles	Sand, pebbles with shells	Sand with granules	Sand with cobbles	Sand with pebbles	Sand with granules	Sand to pebbles	Sand and gravel	Sand with granules	Sand with gravel	Sand to gravel	Sand with pebbles
Organic Matter (%)	1.042	3.826	0.970	1.946	2.046	1.780	3.232	4.910	2.481	5.326	0.986	0.534	0.891	1.156	2.377	1.110	1.065	8.093	1.539	1.499	3.161	1.229	1.114	2.412
Water (%)	20.619	26.305	22.439	26.452	25.428	20.323	27.818	19.843	16.839	22.841	20.080	16.106	19.489	18.309	21.032	30.294	18.474	18.431	18.471	23.185	26.915	20.140	20.722	17.222
DBD (g/cc)	1.584	1.619	1.680	1.685	1.592	1.634	1.630	1.787	1.736	1.748	1.620	1.944	1.801	1.705	1.632	1.525	1.693	1.729	1.870	1.852	1.375	1.736	1.862	1.760
WBD (g/cc)	1.996	2.044	2.058	2.131	1.996	2.051	2.083	2.141	2.088	2.147	2.027	2.257	2.152	2.088	2.067	1.987	2.077	2.120	2.216	2.281	1.882	2.086	2.248	2.126
Water Depth (m)	1.08	0.54	0.94	0.76	1.1	1.2	0.66	0.56	0.28	0.42	1.3	0.63	1.08	0.84	0.83	0.78	0.79	0.56	0.76	0.54	1.15	0.74	0.5	0.65
Distance from LeFever (m)	4071	4073	4118	4262	4281	4305	4393	4540	4547	4588	4603	4622	4667	4707	4739	4831	4887	4893	4902	4907	5008	5070	5076	5150
Longitude	-81.4562	-81.4520	-81.4515	-81.4499	-81.4497	-81.44928	-81.4486	-81.4476	-81.44753	-81.4473	-81.4528	-81.4470	-81.4467	-81.4464	-81.4512	-81.4453	-81.44453	-81.4495	-81.4445	-81.4444	-81.4485	-81.4426	-81.4425	-81.44177
Latitude	41.1474	41.1485	41.1484	41.1480	41.1478	41.14778	41.1473	41.1462	41.14603	41.1459	41.1486	41.1456	41.1453	41.14485	41.1484	41.1443	41.14417	41.1479	41.1442	41.1441	41.1471	41.1436	41.1436	41.14317
Sample ID	CR12-G12	CR14-G42	CR14-G57	CR14-G7	CR14-G56	CR13-G5	CR14-G41	CR14-G55	CR13-G4	CR14-G6	CR12-G11	CR14-G40	CR14-G54	CR13-G3	CR12-G10	CR14-G5	CR13-G2	CR12-G9	CR14-G52	CR14-G4	CR12-G8	CR14-G51	CR14-G39	CR13-G1

Comments	Sand and pebbles	Sand with gravel	Sand	Sand with gravel	Sand, pebbles with shells	Sand, gravel with shells	Sand to fine cobbles	Sand with pebbles	Gravel	Pebbly sand	Sand	Gravel	Red pebbley sand on bedrock	Sand, gravel with shells	Cobbles and big boulder	Sand and gravel	Sand to boulders on bedrock	Sand and pebbles	Sand, mud, Macrophytes	Sand	Fine cobbles	Sand, gravel with shells	Gravel with sand and shells	Sand to fine cobbles, shells
Organic Matter (%)	5.116	2.167	10.189	1.097	1.719	1.667	2.234	20.466	·	0.983	0.892	4.964	0.582	1.717	1.113	1.522	1.530	1.935	1.266	1.650	2.038	1.791	1.505	1.591
Water (%)	21.767	22.990	26.230	22.115	22.855	19.726	21.360	17.542	17.032	15.767	21.821	17.407	18.957	17.967	26.681	19.858	17.113	20.679	15.589	19.470	21.619	16.557	17.779	19.527
DBD (g/cc)	1.820	1.733	1.402	1.577	1.746	1.866	1.821	1.805	1.779	1.830	1.573	1.747	1.859	1.768	1.634	1.842	1.781	1.611	1.971	1.680	1.792	1.819	1.955	1.867
WBD (g/cc)	2.216	2.132	1.901	2.025	2.145	2.234	2.210	2.190	2.144	2.173	2.012	2.115	2.212	2.156	2.070	2.207	2.149	2.031	2.278	2.087	2.180	2.180	2.302	2.232
Water Depth (m)	0.56	0.84	0.69	1.18	0.5	0.5	0.56	0.56	ı	·	0.89	ı	0.74	0.22	0.64	1.01	0.78	0.58	0.53	0.53	0.41	0.77	0.8	0.59
Distance from LeFever (m)	5154	5162	5198	5380	5466	5473	5507	5509	5523	5682	5762	5764	5984	6116	6246	6480	6489	6299	6804	6839	7059	7070	7213	7331
Longitude	-81.4418	-81.4416	-81.4472	-81.4462	-81.4383	-81.4382	-81.4379	-81.4444	-81.4443	-81.4425	-81.4417	-81.4417	-81.4336	-81.4378	-81.4310	-81.4284	-81.4343	-81.4336	-81.4247	-81.4312	-81.4218	-81.4286	-81.4199	-81.4189
Latitude	41.1431	41.1432	41.1458	41.1443	41.1423	41.1422	41.1420	41.1441	41.1441	41.1435	41.1432	41.1431	41.1393	41.1420	41.1379	41.1372	41.1401	41.1392	41.1365	41.1381	41.1360	41.1373	41.1358	41.1365
Sample ID	CR14-G3	CR14-G50	CR12-G7	CR12-G6	CR14-G1	CR14-G2	CR14-G49	CR12-G5	CR12-G4	CR12-G3	CR12-G2	CR12-G1	CR14-G38	CR12-G51	CR14-G37	CR14-G36	CR12-G50	CR12-G49	CR14-G35	CR12-G48	CR14-G34	CR12-G47	CR14-G33	CR14-G32

Comments	Sand with pebbles	Cobbles and fines inbetween	Sand and gravel	Sand and gravel	Sand and gravel	Sand to gravel	Gravel on bedrock.	Gravel with shells	Gravel with sand	San, pebbles with shells	Cobbles and boulders	Sand	Gravel	Sand with pebbles and mud	Sand and granules	Sand, gravel with shells	Coarse with sand inbetween	Sand to fine cobbles	Sand to gravel with shells	Sand and pebbles	Sand, gravel with shells	Sand to fine cobbles	Sand with pebbles and shells	Sand and pebbles
Organic Matter (%)	0.787	2.926	2.925	1.022	3.740	1.803	1.244	1.526	3.460	1.371	1.532	6.075	1.377	1.110	4.114	0.000	1.421	1.042	1.513	1.169	1.978	4.634	1.123	1.783
Water (%)	17.218	24.113	17.073	18.489	17.023	19.880	18.243	18.350	20.342	17.832	26.942	32.093	17.573	19.949	16.821	18.495	31.199	22.993	17.248	21.117	15.408	17.387	24.602	18.896
DBD (g/cc)	1.853	1.713	1.804	1.765	1.829	1.891	1.826	1.756	1.836	1.749	1.573	1.497	1.743	1.864	1.805	1.727	1.488	1.684	1.762	1.753	1.899	1.815	1.616	1.634
WBD (g/cc)	2.238	2.126	2.175	2.166	2.204	2.267	2.159	2.151	2.209	2.128	1.996	1.977	2.115	2.235	2.170	2.119	1.952	2.072	2.129	2.124	2.245	2.130	2.013	2.015
Water Depth (m)	0.42	0.69	0.3	0.68	0.47	0.91	0.88	0.1	0.78	0.84	0.6	0.8	0.58	0.61	0.68	0.81	0.6	0.54	0.81	0.79	0.81	0.81	0.84	1.35
Distance from LeFever (m)	7473	7581	7658	7831	7934	7997	8229	8267	8440	8537	8584	8700	8736	8849	8952	9043	9056	9199	9235	9319	9411	9486	9854	0866
Longitude	-81.4242	-81.4167	-81.4219	-81.4198	-81.4189	-81.4118	-81.4094	-81.4157	-81.4070	-81.4126	-81.4055	-81.4042	-81.4104	-81.4027	-81.4081	-81.4068	-81.4006	-81.3989	-81.4031	-81.3975	-81.4031	-81.3956	-81.3918	-81.3969
Latitude	41.1470	41.1380	41.1360	41.1359	41.1365	41.1387	41.1375	41.1381	41.1374	41.1385	41.1379	41.1383	41.1380	41.1391	41.1372	41.1374	41.1401	41.1400	41.1380	41.1398	41.1388	41.1396	41.1392	41.1397
Sample ID	CR12-G46	CR14-G31	CR12-G45	CR12-G44	CR12-G43	CR14-G29	CR14-G28	CR12-G42	CR14-G27	CR12-G41	CR14-G26	CR14-G25	CR12-G40	CR14-G24	CR12-G39	CR12-G38	CR14-G23	CR14-G22	CR12-G37	CR14-G21	CR12-G36	CR14-G20	CR14-G18	CR12-G34

Comments	Sand to fine cobbles	Sand, gravel with shells	Sand gravel with shells	Sand and pebbles	Sand, gravel with shells	
Organic Matter (%)	2.868	1.421	2.039	1.929	1.427	
Water (%)	25.773	16.577	16.706	16.057	16.589	
DBD (g/cc)	1.691	1.842	1.757	1.813	1.752	
WBD (g/cc)	2.127	2.209	2.110	2.160	2.101	
Water Depth (m)	0.72	1.35	0.81	1.35	0.764	
Distance from LeFever (m)	10104	10130	10401	10443	10719	
Longitude	-81.3900	-81.3951	-81.3918	-81.3918	-81.3900	
Latitude	41.1382	41.1397	41.1400	41.1393	41.1382	
Sample ID	CR14-G16	CR12-G33	CR12-G32	CR12-G31	CR12-G29	

APPENDIX C

LOCATION MAPS OF GEOMORPHIC TRANSECTS

These maps aid in locating the local reference stakes (rebars) at the geomorphic transects during field surveys. The latitude and longitude of the rebar locations are given in decimal degrees.

APPENDIX D

SURVEY DATA OF GEOMORPHIC PROFILES

Survey data of geomorphic profiles measured from July 8, 2011 through May 3, 2015. Survey data before 2011 was obtained from Rumschlag (2007), Rumschlag and Peck (2007) Kasper (2010) and Peck and Kasper (2013). Transects D-15 and D-14 were established in 2013. Elevations were measured relative to the local reference stake. These data begin upstream at transect U-8 and end downstream and transect D-13.

Transect U-8		
July 7, 2011		
Distance (m)	Elevation (m)	Comments
-8.25	1.5025	Eye height
-4	1.415	-
-0.75	0.735	Top of scarp
0	0	Next to rebar
1.5	-0.44	-
2.75	-0.9	Zero water
2.74	-0.9	-
2.84	-0.98	-
3.84	-1.04	-
4.84	-1.11	-
5.84	-1.26	-
6.84	-1.37	-
7.84	-1.48	-
8.84	-1.56	-
9.84	-1.62	-
10.84	-1.62	-
11.84	-1.65	-
12.84	-1.67	-
13.84	-1.72	-
14.84	-1.66	-
15.84	-1.66	-
16.84	-1.63	-
17.84	-1.56	-
18.84	-1.54	-
19.84	-1.6	-
20.84	-1.7	-
21.84	-1.69	-
22.84	-1.67	-
23.84	-1.58	-
24.84	-1.6	-
25.84	-1.48	-
26.84	-1.42	-
27.84	-1.32	-
28.84	-1.14	-
29.84	-1.05	-
30.84	-0.99	-
31.84	-0.93	-
32.3	-0.9	-

Transect U-8 August 19 2014

August 19, 2014		
Distance (m)	Elevation (m)	Comments
-7.75	1.5975	Instrument height on right bank
-5	1.5225	Parking lot
-1	0.7525	Top of bank
0	-0.21	Rebar
1.1	-0.7025	1.1 m on rope
2	-0.9125	Gravel
3	-1.0025	Gravel
4	-1.1025	Gravel
5	-1.1525	Gravel
6	-1.2525	Gravel
7	-1.3925	Gravel
8	-1.5125	Gravel
9	-1.5825	Gravel
10	-1.6225	Gravel
11	-1.6525	Gravel
12	-1.6625	Gravel
13	-1.7125	Gravel
14	-1.7125	Gravel
15	-1.7025	Gravel
16	-1.7025	-
17	-1.6725	Sand
18	-1.6225	-
19	-1.6225	Sand
20	-1.6625	Gravel
21	-1.5925	Gravel
22	-1.6525	Gravel
23	-1.6025	Gravel
24	-1.6025	Boulder
25	-1.5925	Gravel
26	-1.4925	Gravel
27	-1.3725	Mud begins b/w 26 and 27 m on rope
28	-1.1825	Old dam pool mud
29	-1.0425	Old dam pool mud
30	-0.9825	Old dam pool mud
31	-0.9225	Mud
32	-0.8725	Mud
33	-0.8125	Mud
34	-0.7525	Mud
34.8	-0.7025	Mud
36.25	-0.6275	Edge of the veg. on left bank
39.25	-0.2875	Base of former bank, river left

FC Transect		
July 7, 2011		
Distance (m)	Elevation (m)	Comments
10.12	-0.58	-
12.37	-0.9825	-
12.87	-1.1875	-
13.87	-1.86	-
14.12	-2.1	-
15.87	-2.0825	-
18.12	-2.145	-
19.87	-2.145	-
20.62	-2.0025	-
21.62	-0.7525	-
23.12	-0.46	-
23.62	-0.0475	-
28.62	0.125	-

FC Transect

August	19	2014	
August	17,	2014	

110.80.50			
Distaı	nce (m)	Elevation (m)	Comments
10).12	-0.58	Instrument height at 7/7/11 rebar on right bank
11	.87	-0.8925	Top of bank
12	2.12	-1.71	0 water, base of bank
13	5.12	-1.9375	-
14	.37	-1.965	-
16	5.62	-2.0125	-
19	0.12	-2.1	-
20).87	-2.03	Base of left bank, 34 cm
21	.37	-0.6975	Top of left bank
22	2.87	-0.47	Base of old bank
23	5.37	-0.085	
28	3.12	0.145	-
34	.12	0.2	Rebar distance on left bank

Transect U-4
$J_{11}J_{12} = 7 - 2011$

July 7, 2011			
Distance (m)	Elevation (m)	Comments	
0	0	-	
3.75	0.02	-	
7	-0.3125	-	
8.5	-0.7275	-	
11.5	-1.04	-	
13.25	-1.3975	-	
13.5	-1.7025	-	
14.75	-1.9325	-	
17.5	-1.7125	-	
20	-1.8225	-	
24.25	-1.9875	-	
28.25	-2.0325	-	
32.75	-2.2625	-	
37	-2.3725	-	
39.5	-2.29	-	
41.5	-2.175	-	
43.25	-2.305	-	
45.5	-1.9925	-	
46.75	-1.8525	-	

Transect U-4

May 3, 2015		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height at right bank rebar
6.5	-0.0925	Top of old bank, starting to roll over
8.5	-0.6325	Bottom of old bank
11.5	-1	Edge of vegetation
14.25	-1.4775	Starting on delta
15.25	-1.76	-
18.25	-1.625	Zero water on right bank is in between 7 and 8
25	-1.8775	-
29	-1.9425	All cobbles
32	-2.1725	Base of delta, all cobbles
35.75	-2.3225	Thalweg
40	-2.2825	Wiggle room on bottom reading (5 from bottom)
42	-2.2925	End gravel channel floor, start woody debris and sand
45	-2.0475	LWD and sand
48	-1.6725	Zero water on left bank
51	-0.9425	Edge of vegetation

Transect U-5		
July 7, 2011		
Distance (m)	Elevation (m)	Comments
0	0	-
7.75	-0.7275	-
11.5	-1	-
12.25	-1.6025	-
15	-1.625	-
17	-2.075	-
20	-2.14	-
22.75	-2.32	-
26	-1.8325	-
27.75	-2.135	-
32	-2.27	-
35.5	-2.575	-
40	-2.5825	-
42.5	-2.4525	-
45	-2.1575	-
46.5	-1.1975	-

Transect U-5		
July 7, 2011		
Distance (m)	Elevation (m)	Com
0	0	
7.75	-0.7275	
11.5	-1	
12.25	-1.6025	
15	-1.625	
17	-2.075	
20	-2.14	
22.75	-2.32	
26	-1 8325	

Transect U-1 July 7, 2011		
Distance (m)	Elevation (m)	Comments
0	0	Eye height at rebar
5.25	-0.6125	-
8	-0.995	-
9.75	-1.3675	-
11.5	-1.9825	-
11.5	-2.4875	-
12	-2.6225	Zero water
13.75	-2.925	-
17	-3.0975	-
22	-3.11	-
26	-3.2175	-
27.5	-2.9	-
30.75	-3.0625	Tree/boat
33	-3.19	-
38.5	-3.255	-
40.25	-2.955	-
42.75	-2.875	-
43.75	-2.64	Zero water
43.75	-2.275	-
46	-1.735	-
48.75	-1.2525	_

Transect U-1		
October 13, 2012		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height at rebar
2.25	-0.0825	Top of old bank
2.5	-0.31	Bottom of old bank
6.25	-0.835	-
9.75	-1.385	-
11.5	-2.1075	Top of active bank
11.5	-2.61	Bottom of cut bank
13.5	-2.8775	Mud and sticks
16	-3.065	Sticks, some gravel
20.25	-3.16	Sandy gravel
24	-3.1075	Sandy gravel
27.25	-3.1075	Start of tree jam, sandy gravel
28.5	-2.9475	Crest of tree jam
30.5	-3.195	Sandy gravel, end tree jam
35	-3.235	Gravely sand
36.5	-3.2775	-
39.5	-3.0625	Sandy
42	-2.9175	Mud, sand, sticks, in situ tree stump 2 m upstream
43.75	-2.875	Base of bank
44	-2.31	Top of bank
45	-2.02	-

August 19, 2014	ŀ	
Distance (m)	Elevation (m)	Comments
0	0	Intrument height on right bank
2.25	-0.1025	Top of old bank
2.5	-0.3275	Base of former bank
5.5	-0.78	-
7.5	-1.0325	Old impoundment mud, vegetated
9.75	-1.4025	-
11	-1.8575	Top of active bank
11	-2.2525	10 cm distance at bottom of vertical
11.25	-2.5075	20 cm away from last point
14	-3.0525	LWD and mud
16.25	-3.1125	Gravel, last of LWD
19.75	-3.1475	-
23.25	-3.115	Sand and Gravel
26.5	-3.2125	Start obstruction
27.5	-2.645	On top of rusted metal boat added to tree (ridge)
27.75	-2.8375	25 cm away from last point
28	-2.66	26 cm away from last point
29	-3.18	Stop ridge, Sand
30.75	-3.38	Current crescent, all cobbles
33.75	-3.1925	Sandy Gravel
38	-3.1225	Cobbles
40	-3.0125	End cobbles, start sand and sticks
42.25	-2.8725	-
45.25	-2.655	Base of scarp
45.5	-1.7875	Top of left bank

Transect U-1

Transect U-6		
July 7, 2011		
Distance (m)	Elevation (m)	Comments
6.25	-1.735	-
10.5	-1.965	-
15	-2.06	-
17.5	-2.095	-
17.7	-3.2725	-
19	-3.6	-
20	-3.955	-
20.6	-3.905	-
26	-3.835	-
31.5	-3.83	-
35	-3.73	-
38	-3.61	-
42.5	-3.5225	-
49	-3.11	-

Transect U-6		
October 13, 2012		
Distance (m)	Elevation (m)	Comments
0	0	Rebar
4.75	-1.47	Old water line
9	-1.8475	-
13.25	-1.985	-
16.75	-2.0375	Top of bank
17	-2.995	Top of slump block
17.75	-3.675	Base of slump block
18	-4.01	Gravely Sand
23.75	-3.88	Gravel
28.5	-3.76	Gravel
32	-3.735	Gravel
33.25	-3.735	Gravel
38	-3.615	Gravel
40	-3.525	Gravel
42.5	-3.425	Edge of clay
46	-3.145	Clay

Transect U-6		
August 19, 2014		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height at right bank rebar
0.5	-0.2875	Top of old bank
1.25	-0.79	-
3.5	-1.2675	End of boulders
6	-1.705	Break in slope on old dam pool sediment
9	-1.8875	-
12	-1.9825	-
14.5	-2.0275	Top of scarp
14.5	-3.4225	Bottom of scarp
16	-3.6375	~ 6.5 cm away from last point, small slump blocks
18	-4.06	Sandy Gravel
22.5	-3.9725	Cobbles
28.5	-3.8175	Cobbles, good measurement
34.25	-3.7375	Cobbles
41.25	-3.5075	-
44	-3.3475	Left bank, mud
46	-3.135	-
49	-3.0075	~ Distance of old tree stumps, ~ 1 m off edge of veg.
Transect U-2		
--------------	---------------	--------------------------
July 7, 2011		
Distance (m)	Elevation (m)	Comments
91.1	-1.925	New rebar
87.85	-2.605	top scarp
87.1	-3.55	-
85.85	-4.2975	Zero water, bottom scarp
84.1	-4.7625	-
80.35	-4.9725	-
75.1	-5.0625	-
69.1	-5.1475	-
65.1	-5.1125	-
62.1	-4.9075	Base of vertical scarp
61.6	-4.0725	Top of scarp
61.1	-3.82	-
58.35	-3.385	-
54.6	-3.1225	-

Transect U-2		
$\frac{\text{October 13, 2012}}{\text{Distance}(m)}$	Elevation (m)	Commonts
Distance (III)	Elevation (m)	Comments
91.3	-1.825	Instrument height at new left bank rebar
88.3	-2.48	Top of scarp
88.3	-3.13	Mid way down scarp
86.3	-3.78	Base of scarp, top of another scarp
85.8	-4.1525	Bottom of second scarp, Gravel
84.3	-4.585	Gravel
82.3	-4.9275	Gravel
79.05	-4.8725	Cobbles
75.3	-5.125	Gravel
71.55	-4.985	Sandy Gravel
68.3	-5.045	Gravely sand
65.3	-5.04	Gravely Sand
61.3	-4.7875	Mud, base of scarp
60.3	-3.92	Top of scarp
59.55	-3.515	-

Transect U-2		
May 3, 2015		
Distance (m)	Elevation (m)	Comments
91.3	-1.825	Instrument height at newer rebar on left bank
88.8	-2.4675	Top of bank, rolling over, stair step slump blocks
87.3	-3.3425	Middle
86.55	-4.0525	2nd reading: Zero water on left bank, 2nd stair step
84.05	-4.645	-
81.3	-4.905	All sand and gravel, really flat
76.55	-4.8925	Flat, cobbles
73.05	-4.9325	-
69.8	-4.9625	Still gravel but more sandy
65.3	-5.0225	Still gravel but more sandy
61.55	-4.9425	Where turtles live
62.3	-4.1025	Zero water on right bank
60.55	-3.48	-
57.55	-3.2375	-

Transect U-7		
July 7, 2011		
Distance (m)	Elevation (m)	Comments
31.1	-2.82	Eye height (new rebar)
37.6	-3.79	Top old scarp
38.85	-4.0975	Bottom of scarp
39.1	-4.4425	Zero water
41.35	-4.9275	48cm water depth
45.1	-5.1275	-
49.6	-5.18	-
54.35	-5.17	71 cm water depth
59.1	-5.2325	78cm water depth
62.1	-4.9325	51cm water depth
63.6	-3.755	Top of scarp
63.8	-3.64	Fine sand spring flood

Transect U-7

October 13, 2012		
Distance (m)	Elevation (m)	Comments
31.1	-2.82	New left bank rebar
35.1	-3.165	Top of old scarp
37.1	-3.6925	-
38.6	-4.1325	Top of active bank
39.1	-4.435	Bottom of active bank, bedrock
41.6	-4.9375	Cobbles
44.1	-5.16	Bedrock and boulders
48.1	-5.11	Bedrock and boulders
53.1	-5.185	Boulders
56.1	-5.285	Boulders
62.1	-5.1025	Point prior to base of scarp remeaseured
63.6	-4.9775	Base of bank
63.85	-3.775	Bank top, ~.3m undercut, under bank
62.1	-5.1025	Point prior to base of scarp remeaseured

Transect U-7	
August 19 2014	

August 19, 2014		
Distance (m)	Elevation (m)	Comments
34.1	-2.99	Left bank, back sighted
36.1	-3.305	Instrument height on left bank
38.1	-3.8075	Top of active bank
39.1	-4.26	-
42.1	-4.91	-
45.6	-5.165	Boulders and cobbles on bedrock
50.1	-5.1425	-
53.6	-5.2375	Boulders and cobbles on bedrock
58.1	-5.245	-
60.85	-5.2375	-
63.6	-4.975	Base of undercut scarp
63.6	-3.71	Rght bank

Transect U-3		
July 7, 2011		
Distance (m)	Elevation (m)	Comments
31.5	-2.756	-
35	-3.421	-
37.25	-3.911	-
37.5	-4.286	-
37.5	-4.4535	-
42.5	-4.6135	-
47.25	-4.5785	-
54	-4.561	-
57.75	-4.616	-
62.5	-4.6485	-
64.5	-4.5735	-
65.25	-4.3935	-
66.25	-3.9735	-

Transect U-3

O + 1	10	2012	
October	13,	2012	

Distance (m)	Elevation (m)	Comments
31.5	-2.756	New left bank rebar
34.25	-3.2635	-
35.5	-3.701	-
37.25	-4.046	Top of active bank
37.25	-4.476	Bottom of active banks, gravel
41.25	-4.5935	Sandy gravel
45.25	-4.801	Bedrock
51.5	-4.571	Bedrock
53.5	-4.601	Bedrock
55.5	-4.811	Bedrock
59.5	-4.696	Bedrock
65.5	-4.651	Base of scarp
66	-3.9385	Top of scarp
68.5	-3.616	-

Transect U-3		
August 19, 2014		
Distance (m)	Elevation (m)	Comments
33.5	-3.0335	Instrument height on river left
36.25	-3.9285	Top of scarp
36.75	-4.4285	Bottom of scarp
41.5	-4.4885	Gravel on bedrock
44.5	-4.666	All bedrock
47.75	-4.601	-
54.5	-4.606	Flat bedrock, fudged the bottom number
59.5	-4.476	-
63.5	-4.661	-
65.25	-4.586	Base of scarp, rier right
65.5	-4.126	Zero water
66.5	-3.696	-
67.5	-3.616	-

Transect II-3

Transect D-3		
July 7, 2011		
Distance (m)	Elevation (m)	Comments
-11.5	0.42	-
-6.5	0.1475	-
-3.5	0.1225	-
4	-0.33	-
4.5	-0.8875	Zero water
8.25	-1.0325	-
12.5	-1.03	-
17.5	-0.97	-
23.5	-0.995	-
30	-0.8925	Zero water
32.5	-0.4975	-

Transect D-3

October 13, 2012		
Distance (m)	Elevation (m)	Comments
-11.5	0.43	Rebar at "Y" shaped tree
-8	0.205	-
-3.5	0.12	-
0	0.3	Reference tree
4	-0.31	Top of bank
4.25	-0.73	Base of bank
8	-0.985	Bedrock
11	-1.09	Gravel
16	-1	Gravel
20	-0.945	Gravel
25.5	-0.9375	Gravel
30.25	-0.83	Zero water
34	-0.34	-

Transect D-3		
August 11, 2014		
Distance (m)	Elevation (m)	Comments
-11.75	0.43	Rebar at "V" shaped tree
-7	0.195	-
-2.25	0.16	-
0	0.3	Instrument height at river right
2	0.1	-
3.75	-0.375	Top of right bank, may have eroded back
4	-0.6275	Zero water
4.75	-0.8225	Water was 1.4 meters higher in May high flow
7.25	-0.9325	Bedrock
10	-1.14	Cobbles
13.5	-1.0775	Up on cobble bar
17.25	-0.995	Cobbles
23	-0.98	-
27	-0.94	-

-0.68

-0.3575

-0.3

-0.01

30.75

33.25

35

36.25

-Zero water on River left

Edge of the vegetation, sand

Sand

-

Transect D-7		
July 8, 2011		
Distance (m)	Elevation (m)	Comments
0	0	-
3	-0.0425	-
4.75	-1.4725	water edge
5.5	-1.89	-
10.25	-2.0125	-
14.5	-1.9825	-
18.25	-1.9375	-
22.75	-1.825	-
27.5	-1.7275	-
31	-1.4725	water edge
32.5	-0.5025	-
35.75	-0.365	-
38.25	-0.33	-
42.75	-0.27	-
45.25	-0.01	-

Transect D-7

May 14, 2012		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height
2.5	-0.0375	Top of bank, 140 cm from rebar
3.9	-1.155	Zero water, same point as last transit
4	-1.225	-
4.2	-1.525	-
5	-1.595	Boulders
6	-1.965	Gravel
7	-2.035	Wood
8	-1.975	Gravel
9	-1.995	Gravel
10	-2.015	Gravel
11	-2.015	Gravel
12	-2.035	Gravel
13	-2.015	Gravel
14	-2.025	Gravel
15	-1.965	Sand
16	-2.045	Sand
17	-1.955	Sand
18	-1.945	Gravel
19	-1.915	Gravel
20	-1.925	Gravel
21	-1.895	Gravel
22	-1.875	Gravel
23	-1.815	Sand and gravel
24	-1.795	Sand and gravel
25	-1.785	Sand and gravel
26	-1.755	Sand and gravel
27	-1.715	Sand and gravel
28	-1.715	Sand and gravel
29	-1.725	Sand and gravel
30	-1.765	Sand and gravel
30.5	-1.735	Mud
31	-1.635	Mud
31.8	-1.155	-
32.5	-0.575	Sand

September 7, 2013		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height
3	-0.0375	Used 2009, 2010, 2011, 2012 Top of bank
4.75	-1.525	Zero Water
4.85	-1.825	-
5.45	-1.885	-
6.45	-2.085	-
7.45	-2.165	-
8.45	-2.245	Gravel
9.45	-2.265	Gravel
10.45	-2.265	Gravel
11.45	-2.265	Gravel
12.45	-2.225	Gravel
13.45	-2.225	Gravel
14.45	-2.225	Gravel
15.45	-2.215	Gravel
16.45	-2.175	Gravel
17.45	-2.165	Gravel
18.45	-2.125	-
19.45	-2.105	-
20.45	-2.045	-
21.45	-2.005	Sandy gravel
22.45	-2.005	-
23.45	-1.995	-
24.45	-1.945	-
25.45	-1.925	-
26.45	-1.855	Sandy gravel
27.45	-1.855	-
28.45	-1.835	-
29.45	-1.865	-
30.45	-1.875	-
31.45	-1.945	Large woody debris
32.45	-1.875	Mud
33.45	-1.565	-
33.55	-1.525	-

Transect D-7

Transect D-7		
March 24, 2014		
Distance (m)	Elevation (m)	Comments
0	0	Instrument Height
3	-0.065	-
4	-0.32	-
4.82	-0.9475	Added from field notes
5	-1.8075	Waters surface, transit rotated slightly upstream
5.5	-1.865	Bottom of scarp
6	-1.9075	-
7	-2.1175	-
8	-2.1575	-
9	-2.2675	-
10	-2.2575	-
11	-2.2675	-
12	-2.2875	Gravel
13	-2.2675	-
14	-2.2675	-
15	-2.2075	-
16	-2.2075	-
17	-2.1875	Gravel
18	-2.1675	-
19	-2.1475	Gravel
20	-2.1075	-
21	-2.0675	-
22	-2.0275	-
23	-1.9875	Gravel
24	-1.9875	-
25	-1.9275	Gravel
26	-1.9075	-
27	-1.8775	-
28	-1.8875	Sand and gravel
29	-1.8875	-
30	-1.9375	-
31	-1.9875	-
32	-1.8475	-
33	-1.5475	-
34	-0.9475	-

Transect D-7		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height on left bank
1.5	0.025	Top of bank
2.5	-0.03	On bank
3	-1.0725	3 m on rope, right bank rolling over
4	-1.4225	4 m on rope
4.25	-1.5475	5 meters on the rope, Zero water
5.25	-1.9575	Mud
6.25	-2.1275	-
7.25	-2.2275	-
8.25	-2.2475	Sandy pebbles
9.25	-2.2475	Sandy pebbles
10.25	-2.2875	Sand, pebbles and cobbles
11.25	-2.2875	Sand, pebbles and cobbles
12.25	-2.2675	Sand and pebbles
13.25	-2.2475	Sand and pebbles
14.25	-2.2475	Sand and pebbles
15.25	-2.2275	Pebbles
16.25	-2.1475	Sand, pebbles, scattered cobbles
17.25	-2.1475	Sand, pebbles, scattered cobbles
18.25	-2.1175	Sand, pebbles, scattered cobbles
19.25	-2.1075	Sand, pebbles, cobbles
20.25	-2.0675	Sand, pebbles ,cobbles
21.25	-2.0175	Sand, pebbles and cobbles
22.25	-2.0075	Sand, pebbles and cobbles
23.25	-1.9675	-
24.25	-1.9275	Sandy gravel, bedfroms
25.25	-1.8875	Sandy gravel, bedfroms
26.25	-1.8475	Sandy gravel, cobbles
27.25	-1.8275	Sand, some cobbles
28.25	-1.8475	Sand, pebbles, cobbles, 2-D ripples
29.25	-1.9475	Sand, pebbles, 2-D ripples.
30.25	-1.9375	Sand, pebbles, 2-D ripples.
31.25	-1.8775	Sand and mud
32.25	-1.5575	Very fine sand and mud.
32.4	-1.5475	Mud
33.15	-1.5475	Waters edge on right bank.
33.9	-1.24	34 m on the rope.
35.15	-0.7225	35 meters on the rope.
36.65	-0.3325	At rebar
37.9	-0.3275	Top of right bank
39.4	-0.4025	-
40.9	-0.59	-
41.9	-0.6875	Instrument height on right bank.

Transect D-7		
December 15, 2014	1	
Distance (m)	Elevation (m)	Comments
Distance (m)	Height (m)	Comments
0	0	Instrument height at left bank rebar
2.25	-0.015	Top of bank
4	-1.185	Zero water on left bank
5	-1.6225	Beginning of boulders
5.5	-1.9075	Cobbles, old channel floor, pre MF
7.75	-2.005	Pebbles
10.75	-2.05	Pebbles and small cobbles
14	-2.04	Flat bottom
18.25	-1.965	More pebbles with cobbles
22	-1.89	Pebbly
23.75	-1.81	Lee of gravel bar at upstream culvert
27.75	-1.74	Sand
30.75	-1.77	Base of slope, eroded roots
31.25	-1.4875	30 cm of water
31.75	-1.2075	Zero water. ~ 30 cm distance
33	-0.6175	-
34.75	-0.3725	Top of right bank

Transect D-7		
May 3, 2015		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height on left bank rebar
2.25	0.03	Top of bank
4.25	-1.3725	Zero water on left bank
5.75	-1.805	Boulders, bottom of bank
9.75	-2.005	Looks flat
14.75	-2.005	-
19.75	-1.9125	-
23.75	-1.7825	-
28	-1.71	-
30.75	-1.7225	Ramp, top hard to read
32	-1.36	Top $>$ 284, Zero water on right bank
34	-0.395	Top $<$ 192, huge pile of sand
36	-0.225	Top, hard to read
39.75	-0.235	Lots of sand deposition

Transect D-4		
July 8, 2011		
Distance (m)	Elevation (m)	Comments
0	0	-
2.0006	-0.1456	-
3.7512	-1.8949	-
4.5014	-1.9889	water edge
6.5021	-2.3945	-
8.7528	-2.9165	-
10.0032	-2.8931	-
13.2542	-2.6354	-
18.2558	-2.5470	-
22.7573	-2.5284	-
27.7589	-2.2524	-
29.0093	-2.0091	-
30.7598	-1.9584	water edge
34.5111	-1.6708	-
39.0125	-1.3347	-
42.0135	-1.5306	-
55	-1.4632	-
59.5	-0.2534	-

Transect D-4

September 7, 2013		
Distance (m)	Elevation (m)	Comments
0	0	Instrument Height
2.25	-0.0825	Top of bank
4	-1.875	Waters edge
6	-2.3175	All boulders
8.25	-2.9275	-
11.25	-2.8825	All gravel
15	-2.565	Gravel
19.5	-2.5425	Gravel
23.5	-2.54	Sand
27.5	-2.28	Sand
31	-1.89	Mud on top of sand
35.5	-1.625	Edge of vegetation
39	-1.325	Crest of bar
42.25	-1.53	Mud
49.5	-1.535	Third from last
54	-1.545	-
59.5	-0.29	Left bank rebar

Transect D-4

May 14, 2012		
Distance (m)	Elevation (m)	Comments
0	0	Instrument Height
2.5	-0.1675	Top of bank
3.9	-1.64	Zero water
3.9	-1.88	Vertical
5	-2.04	Boulders
6	-2.12	Boulders
7	-2.36	Boulders
8	-2.84	Boulders
9	-2.94	Boulders
10	-2.94	Boulders
11	-2.89	Boulders
12	-2.82	Boulders
13	-2.73	Boulders
14	-2.68	Boulders
15	-2.66	Boulders
16	-2.64	Boulders
17	-2.6	Boulders
18	-2.59	Boulders
19	-2.59	Boulders
20	-2.56	Boulders
21	-2.57	Gravel
22	-2.59	Gravel
23	-2.6	Gravel
24	-2.6	Gravel
25	-2.56	Gravel
26	-2.43	Gravel
27	-2.34	Sand
28	-2.2	Sand
29	-2.04	Sand
30	-1.94	Sand
31	-1.88	Muddy sand
32	-1.87	Muddy sand
33	-1.86	Muddy sand
34	-1.76	Muddy sand
35	-1.64	Zero water, 35 m on rope
39	-1.3375	30 m on rope, crest of sand bar
41	-1.5275	-
47	-1.5825	-
53	-1.6025	-
55	-1.4825	-
55	-0.2525	Rebar

Transect D-5		
July 8, 2011		
Distance (m)	Elevation (m)	Comments
45	0	-
40.5	-0.8425	-
40.25	-1.5575	Water edge
40.25	-1.6075	-
37	-2.015	-
33.5	-2.01	-
30.25	-2.1475	-
25.75	-2.05	-
21.5	-1.93	-
16.75	-1.79	-
12	-1.825	-
11	-2.1	-
9	-2.24	-
5	-2.005	-
3.5	-1.755	-
3.5	-1.58	Water edge

Transect D-5 September 7, 2013

September 7, 2013		
Distance (m)	Elevation (m)	Comments
45	0	Instrument height ar right bank
41.25	-0.565	Top of bank
40.5	-0.88	Middle of bank, I cm mud cracks
40.25	-1.4775	Zero water
40.25	-1.7075	0.23 m vertical drop at root mass
37	-1.99	Mud and sticks
34	-2.0475	Near a tree
30.75	-2.12	Sand
26	-2.0525	Gravely sand
21.5	-1.91	Gravely sand
16.25	-1.825	Gravely sand
12	-1.79	LWD
11	-2.21	Muddy sand in stagnant water behind LWD
7.5	-2.245	Cobbles, old river bottom.
5.5	-1.985	Cobbles
3.75	-1.655	Gravel, base of bank
3.75	-1.495	-

Transect D-5

May 14, 2012		
Distance (m)	Elevation (m)	Comments
45	0	Instrument height at rebar
41.5	-0.5625	Top of bank
40	-1.2575	Zero water, 5.2 m on rope
39.9	-1.6875	Mud
39.2	-1.6875	Mud
38.2	-1.8175	Mud
37.2	-1.9975	Mud
36.2	-2.0175	Mud and logs
35.2	-2.0275	Mud
34.2	-1.9775	Tree
33.2	-2.1175	Tree
32.2	-2.0975	Muddy sand
31.2	-2.1675	sand
30.2	-2.1175	Sand
29.2	-2.1775	sand
28.2	-2.0975	Sand
27.2	-2.0775	sand
26.2	-2.0375	sand
25.2	-1.9775	Sand
24.2	-1.9475	Sand, CR12-G7 sample
23.2	-1.9075	Sand with shells
22.2	-1.8975	Sand with shells
21.2	-1.8975	Sand with shells
20.2	-1.8275	Sand with shells
19.2	-1.7975	Sand with shells
18.2	-1.7975	Sand with shells
17.2	-1.7775	Sand with shells
16.2	-1.7475	Sand with shells
15.2	-1.8175	Sand with shells
14.2	-1.8175	Sand with shells
13.2	-1.8175	Sand with shells
12.2	-1.8375	Tree
11.2	-2.0175	-
10.2	-2.1975	Tree limb
9.2	-2.1975	Muddy Sand
8.2	-2.2275	Sand
7.2	-2.2275	Gravel
6.2	-2.0975	Cobbles
5.2	-1.8675	Sand
4.2	-1.6975	Sand
3.76	-1.2575	-

Transect D-5		
March 24, 2014		
Distance (m)	Elevation (m)	Comments
45	0	Instrument height on right bank, Zero on the rope
41.75	-0.49	3 meters on the rope
40.25	-0.685	4 meters on the rope
40.25	-0.94	Zero water, 4.52 on the rope
39.77	-1.72	Base of scarp
38.77	-1.74	-
37.77	-1.93	-
36.77	-2.02	-
35.77	-2.06	-
34.77	-2.05	-
33.77	-2.08	Wood
32.77	-2.12	-
31.77	-2.16	-
30.77	-2.12	-
29.77	-2.09	Sand
28.77	-2.18	-
27.77	-2.19	-
26.77	-2.18	-
25.77	-2.14	-
24.77	-2.05	Gravely sand
23.77	-2	Gravely sand
22.77	-1.9	Gravely sand
21.77	-1.88	Gravely sand
20.77	-1.9	Gravely sand
19.77	-1.98	Gravely sand
18.77	-1.98	Gravely sand
17.77	-1.95	Gravely sand
16.77	-1.92	Gravely sand
15.77	-1.94	Gravely sand
14.77	-1.88	Gravely sand
13.77	-1.82	Gravely sand
12.77	-1.88	Gravel
11.77	-2	Gravel
10.77	-2.16	Gravel
9.77	-2.22	Gravel
8.77	-2.08	Gravel
7.77	-2.27	Gravel
6.77	-2.16	-
5.77	-1.94	-
4.77	-1.76	-
3.77	-0 94	-

Transect D-5		
July 25, 2014		
Distance (m)	Elevation (m)	Comments
45	0	Instrument height on right bank
43.5	-0.155	-
42	-0.4225	-
40.75	-0.64	Crest of bank
39.75	-1.21	-
39.75	-1.6175	-
38	-2.005	Very fine sand
34.25	-2.125	Sand
33	-2.015	On top of sand ridge, LWD
29.25	-2.2225	Sandy mud and leaves
27	-2.265	Sand and pebbles
23	-2.095	Sand and pebbles
20	-2.1575	Sand and pebbles
16.75	-1.965	Sand and pebbles, LWD
13	-1.8	Sand an pebble ridge in the lee of LWD
10.5	-1.975	Fine sand, no pebbles
7	-2.1875	Sandy mud, with pebbles, cobbles and leaves
5	-1.94	Sand and pebbles
5	-1.5975	Base of steep bank, on left bank
3	-0.755	Middle of left bank
1.75	0.12	Crest of left bank
0.5	0.31	Top of left bank
0	0.48	At left bank rebar

Transect D-5		
December 14, 2014		
Distance (m)	Elevation (m)	Comments
45	0	Instrument Height at right bank rebar
42.75	-0.4	-
40.75	-0.6925	Top of right bank
40.25	-1.3675	Zero water, subtracted 1 from bottom
40	-1.7125	20 cm distance, leaves, muds, roots
38.25	-1.9075	Mud
36	-2.13	Mud
34	-2.045	Mud, end mud bar woth sticks
31.5	-2.2325	Muddy sand
28	-2.2775	Sandy gravel
23.75	-2.175	Granules
19.75	-2.1175	-
15.75	-2.0175	-
12.75	-1.805	LWD gravel
9.25	-2.1175	Mud
6.75	-2.165	-
4	-1.6425	Base of bank, 38 cm
3	-0.0775	Top of left bank
0	0.435	Left bank rebar, subtracted .25 from top.

Transect D-5		
 May 3, 2015		
 Distance (m)	Elevation (m)	Comments
 45	0	Instrument height at right bank rebar
40.75	-0.6725	Top of bank, rolling over
39	-1.6025	Zero water on right bank, bottom of scarp
38	-1.9625	Muddy, sticks
35	-2.13	Trough of mud and sticks, bar behind
33	-2.0775	Sand bar, sticks
31	-2.2075	Off bar, 2-D ripple sands
27	-2.3075	Beautiful 2-D ripples everywhere, 100% sand
23	-2.3425	All pebbles and granules at boundary
19	-2.3675	-
11.5	-1.6025	-
10.5	-1.6025	-
8.5	-2.0125	Zzero warter around LWD bar
7	-2.0975	Coming toward transit
4	-1.6125	Zero water on left bank, base of cliff

December 14, 2014	1	
Distance (m)	Elevation (m)	Comments
45	0	Instrument Height at right bank rebar
42.75	-0.4	-
40.75	-0.6925	Top of right bank
40.25	-1.3675	Zero water, subtracted 1 from bottom
40	-1.7125	20 cm distance, leaves, muds, roots
38.25	-1.9075	Mud
36	-2.13	Mud
34	-2.045	Mud, end mud bar woth sticks
31.5	-2.2325	Muddy sand
28	-2.2775	Sandy gravel
23.75	-2.175	Granules
19.75	-2.1175	-
15.75	-2.0175	-
12.75	-1.805	LWD gravel
9.25	-2.1175	Mud
6.75	-2.165	-
4	-1.6425	Base of bank, 38 cm
3	-0.0775	Top of left bank
0	0.435	Left bank rebar, subtracted .25 from top.

Transect D-5		
 May 3, 2015		
Distance (m)	Elevation (m)	Comments
 45	0	Instrument height at right bank rebar
40.75	-0.6725	Top of bank, rolling over
39	-1.6025	Zero water on right bank, bottom of scarp
38	-1.9625	Muddy, sticks
35	-2.13	Trough of mud and sticks, bar behind
33	-2.0775	Sand bar, sticks
31	-2.2075	Off bar, 2-D ripple sands
27	-2.3075	Beautiful 2-D ripples everywhere, 100% sand
23	-2.3425	All pebbles and granules at boundary
19	-2.3675	-
11.5	-1.6025	-
10.5	-1.6025	-
8.5	-2.0125	Zzero warter around LWD bar
7	-2.0975	Coming toward transit
4	-1.6125	Zero water on left bank, base of cliff

Transect D-2 January 12, 2013

Station	Distance (m)	Bridge Curvature (m)	Bridge to water (m)	Corrected bridge to water (m)	Bridge to bed (m)	Corrected Bridge to bed (m)	Water depth (m)
1	0	-0.31	-	-	-	-	-
2	2.28	-0.26	-	-	-	-	-
3	4.56	-0.21	-	-	-	-	-
4	6.84	-0.17	-	-	-	-	-
5	9.12	-0.14	-	-	-	-	-
6	11.4	-0.11	-	-	-	-	-
7	13.68	-0.06	-	-	-	-	-
8	15.96	-0.04	-	-	2.66	2.7	-
9	18.24	0	-	-	3.6	3.6	-
10	20.52	0.04	-	-	4.59	4.55	-
11	22.8	0.03	-	-	5.25	5.22	-
12	25.08	0.03	-	-	5.14	5.11	-
13	27.36	0.02	-	-	4.83	4.81	-
14	29.64	0	3.01	-	4.83	4.83	-
15	31.92	-0.01	-	-	4.82	4.83	-
16	34.2	-0.02	-	-	4.75	4.77	-
17	36.48	-0.06	-	-	4.6	4.66	-
18	38.76	-0.08	-	-	4.44	4.52	-
19	41.04	-0.1	-	-	4.34	4.44	-
20	43.32	-0.12	-	-	4.25	4.37	-
21	45.6	-0.17	-	-	4.1	4.27	-
22	47.88	-0.21	-	-	3.94	4.15	-
23	50.16	-0.23	-	-	3.52	3.75	-
24	52.44	-0.31	-	-	3.5	3.81	-
25	54.72	-0.32	-	-	3.2	3.52	-

Transect D-2
September 7, 2013

Station	Distance (m)	Bridge Curvature (m)	Bridge to water (m)	Corrected bridge to water (m)	Bridge to bed (m)	Corrected Bridge to bed (m)	Water depth (m)
1	0	-0.31	-	-	-	-	-
2	2.28	-0.26	-	-	-	-	-
3	4.56	-0.21	-	-	-	-	-
4	6.84	-0.17	-	-	-	-	-
5	9.12	-0.14	-	-	-	-	-
6	11.4	-0.11	-	-	-	-	-
7	13.68	-0.06	-	-	-	-	-
8	15.96	-0.04	-	-	-	-	-
9	18.24	0	-	-	-	-	-
10	20.52	0.04	-	-	4.53	4.49	-
11	22.8	0.03	-	-	5.31	5.28	-
12	25.08	0.03	-	-	5.07	5.04	-
13	27.36	0.02	-	-	5.01	4.99	0.4
14	29.64	0	-	-	5.00	5.00	-
15	31.92	-0.01	-	-	4.90	4.91	-
16	34.2	-0.02	-	-	4.85	4.87	-
17	36.48	-0.06	-	-	4.69	4.75	-
18	38.76	-0.08	-	-	4.49	4.57	-
19	41.04	-0.1	-	-	4.35	4.45	-
20	43.32	-0.12	-	-	4.35	4.47	-
21	45.6	-0.17	-	-	4.22	4.39	-
22	47.88	-0.21	-	-	3.91	4.12	-
23	50.16	-0.23	-	-	3.53	3.76	-
24	52.44	-0.31	-	-	3.48	3.79	-
25	54.72	-0.32	-	-	-	-	-

Transect D-2 March 27, 2014

Station	Distance (m)	Bridge Curvature (m)	Bridge to water (m)	Corrected bridge to water (m)	Bridge to bed (m)	Corrected Bridge to bed (m)	Water depth (m)
1	0	-0.31	-	-	-	-	-
2	2.28	-0.26	-	-	-	-	-
3	4.56	-0.21	-	-	-	-	-
4	6.84	-0.17	-	-	-	-	-
5	9.12	-0.14	-	-	-	-	-
6	11.4	-0.11	-	-	-	-	-
7	13.68	-0.06	-	-	-	-	-
8	15.96	-0.04	-	-	2.63	2.67	-
9	18.24	0	-	-	3.01	3.01	-
10	20.52	0.04	-	-	4.51	4.47	-
11	22.8	0.03	-	-	5.25	5.22	-
12	25.08	0.03	-	-	5.22	5.19	-
13	27.36	0.02	-	-	5.10	5.08	-
14	29.64	0	-	-	5.07	5.07	-
15	31.92	-0.01	-	-	4.99	5.00	-
16	34.2	-0.02	-	-	5.16	5.18	-
17	36.48	-0.06	-	-	4.62	4.68	-
18	38.76	-0.08	-	-	4.83	4.91	-
19	41.04	-0.1	-	-	4.40	4.50	-
20	43.32	-0.12	-	-	4.39	4.51	-
21	45.6	-0.17	-	-	4.20	4.37	-
22	47.88	-0.21	-	-	3.85	4.06	-
23	50.16	-0.23	-	-	4.08	4.31	-
24	52.44	-0.31	-	-	3.47	3.78	-
25	54.72	-0.32	-	-	3.18	3.50	-

Transect D-2 August 9, 2014

Station	Distance (m)	Bridge Curvature (m)	Bridge to water (m)	Corrected bridge to water (m)	Bridge to bed (m)	Corrected Bridge to bed (m)	Water depth (m)
1	0	-0.31	-	-	1.24	1.55	-
2	2.28	-0.26	-	-	1.68	1.94	-
3	4.56	-0.21	-	-	2.43	2.64	-
4	6.84	-0.17	-	-	3.1	3.27	-
5	9.12	-0.14	-	-	3.15	3.29	-
6	11.4	-0.11	-	-	3.25	3.36	-
7	13.68	-0.06	-	-	3.2	3.26	-
8	15.96	-0.04	-	-	2.63	2.67	-
9	18.24	0	-	-	3.2	3.2	-
10	20.52	0.04	-	-	4.4	4.36	-
11	22.8	0.03	-	-	5.24	5.21	-
12	25.08	0.03	-	-	5.225	5.195	-
13	27.36	0.02	-	-	5.16	5.14	-
14	29.64	0	-	-	5.1	5.1	-
15	31.92	-0.01	-	-	5.05	5.06	-
16	34.2	-0.02	-	-	4.91	4.93	-
17	36.48	-0.06	-	-	4.73	4.79	-
18	38.76	-0.08	-	-	4.63	4.71	-
19	41.04	-0.1	-	-	4.44	4.54	-
20	43.32	-0.12	-	-	4.29	4.41	-
21	45.6	-0.17	-	-	4.26	4.43	-
22	47.88	-0.21	-	-	3.845	4.055	-
23	50.16	-0.23	-	-	3.54	3.77	-
24	52.44	-0.31	-	-	3.425	3.735	-
25	54.72	-0.32	-	-	3.16	3.48	-

Transect D-2
December 22, 2014

Station	Distance (m)	Bridge Curvature (m)	Bridge to water (m)	Corrected bridge to water (m)	Bridge to bed (m)	Corrected Bridge to bed (m)	Water depth (m)
1	0.00	-0.31	-	-	1.24	1.55	
2	2.28	-0.26	-	-	1.70	2.01	-
3	4.56	-0.21	-	-	2.40	2.66	-
4	6.84	-0.17	-	-	3.08	3.29	-
5	9.12	-0.14	-	-	3.10	3.27	-
6	11.40	-0.11	-	-	3.22	3.36	-
7	13.68	-0.06	-	-	3.20	3.31	-
8	15.96	-0.04	-	-	2.66	2.72	-
9	18.24	0.00	-	-	3.20	3.24	-
10	20.52	0.04	-	-	4.56	4.56	-
11	22.80	0.03	-	-	5.22	5.18	-
12	25.08	0.03	-	-	5.21	5.18	-
13	27.36	0.02	-	-	5.14	5.11	-
14	29.64	0.00	-	-	5.10	5.08	-
15	31.92	-0.01	-	-	5.00	5.00	-
16	34.20	-0.02	-	-	4.90	4.91	-
17	36.48	-0.06	-	-	4.76	4.78	-
18	38.76	-0.08	-	-	4.62	4.68	-
19	41.04	-0.10	-	-	4.43	4.51	-
20	43.32	-0.12	-	-	4.29	4.39	-
21	45.60	-0.17	-	-	4.26	4.38	-
22	47.88	-0.21	-	-	3.85	4.02	-
23	50.16	-0.23	-	-	3.56	3.77	-
24	52.44	-0.31	-	-	3.46	3.69	-
25	54.72	-0.32	-	-	3.16	3.48	-

May 2, 2015						
		Dridgo	Bridge	Corrected	Bridge	Corrected
Station	Distance	Germanter	to	bridge to	to	Bridge to
Station	(m)	(m)	water	water	bed	bed
		(111)	(m)	(m)	(m)	(m)
1	0	-0.31	-	-	1.52	1.83
2	2.28	-0.26	-	-	1.99	2.25
3	4.56	-0.21	-	-	2.44	2.65
4	6.84	-0.17	-	-	3.08	3.25
5	9.12	-0.14	-	-	3.145	3.285
6	11.4	-0.11	-	-	3.25	3.36
7	13.68	-0.06	-	-	3.16	3.22
8	15.96	-0.04	-	-	2.66	2.7
9	18.24	0	-	-	3.15	3.15
10	20.52	0.04	-	-	4.31	4.28
11	22.8	0.03	-	-	5.25	5.22
12	25.08	0.03	-	-	5.48	5.46
13	27.36	0.02	-	-	5.355	5.355
14	29.64	0	-	-	5.155	5.165
15	31.92	-0.01	-	-	5.01	5.03
16	34.2	-0.02	-	-	4.88	4.94
17	36.48	-0.06	-	-	4.73	4.81
18	38.76	-0.08	-	-	4.56	4.66
19	41.04	-0.1	-	-	4.37	4.49
20	43.32	-0.12	3.26	3.38	4.3	4.47
21	45.6	-0.17	-	-	4.24	4.45
22	47.88	-0.21	-	-	3.79	4.02
23	50.16	-0.23	-	-	3.55	3.86
24	52.44	-0.31	-	-	3.44	3.76
25	54.72	-0.32	-	-	2.81	3.12

Transect D-2

July 8, 2011		
Distance (m)	Elevation (m)	Comments
0	0	Rebar
6.5	-0.2075	-
8.5	-0.7475	-
16.75	-1.28	Water edge
22.5	-1.57	-
26.75	-1.9	-
31.5	-2.27	-
34.5	-2.43	-
37.75	-2.21	-
40	-1.7525	-
42	-1.405	Base of scarp
42.5	-0.2325	-

Transect D-8		
May 14, 2012		
Distance (m)	Elevation (m)	Comments
0	0	Eye height at rebar
4	0.11	-
7	-0.2075	Top of bank
8	-0.5825	Mid-bank
10.4	-0.8875	Zero water
11	-1.0575	Muddy sand
11.5	-1.2475	-
12	-1.4275	-
13	-1.7075	-
14	-1.6175	Sand
15	-1.4075	Sand
16	-1.2675	Sand
17	-1.2575	Sand
18	-1.3275	Sand
19	-1.3675	Sand
20	-1.4075	Sand
21	-1.4475	Sand
22	-1.5075	Sand
23	-1.6075	Sand
24	-1.7075	Sand
25	-1.7675	Sand
26	-1.8275	-
27	-1.8875	-
28	-1.9975	-
29	-2.0675	-
30	-2.0975	-
31	-2.1775	-
32	-2.2075	-
33	-2.2575	-
34	-2.3475	-
35	-2.3275	Gravel
36	-2.2175	Gravel
37	-2.0975	-
38	-2.0375	-
39	-1.7675	-
40	-1.5575	-
41	-1.3475	-

Transect D-8		
September 7, 2013		
Distance (m)	Elevation (m)	Comments
0	0	Instrument Height
4	0.025	Levee sand
7.25	-0.358	Top of bank, sand
9	-0.808	Edge of vegetation
10	-0.985	Top of active scarp
10	-1.228	Bottom of active scarp, sandy
12	-1.478	Sand
15.2	-1.460	Gravely sand
18.5	-1.850	Gravely sand
22.5	-1.790	Gravely sand
25.75	-1.730	Sand bar in lee of a tree
29	-2.105	Same sand bar
31.5	-2.415	Behind tree
33.5	-2.135	Behind Tree, sand
36.75	-1.975	Gravel-cobble, old river bed
40	-1.695	Gravel
41.5	-1.250	At bank, gravel
41.5	-1.250	Vetical bank

Transect D-8

Transect D-8 March 27, 2014		
Distance (m)	Elevation (m)	Comments
0	0	Instrument Height
5.25	-0.025	Mid bank
7	-0.3525	-
8.5	-0.7375	Waters edge
9.2	-0.8975	-
10.2	-1.2575	-
12.2	-1.3775	-
13.2	-1.4975	-
14.2	-1.6575	Sand
15.2	-1.8175	-
16.2	-1.9375	-
17.2	-2.0175	-
18.2	-2.2375	Sand
19.2	-2.3175	-
20.2	-2.3975	-
21.2	-2.5375	-
22.2	-2.4475	-
23.2	-2.2375	-
24.2	-2.0575	-
25.2	-2.0575	-
26.2	-2.1675	-
29.2	-2.3875	-
30.2	-2.2975	-
31.2	-2.0075	-
32.2	-1.7775	-
34.2	-1.7875	-
35.2	-2.2375	-
36.2	-2.2975	-
37.2	-2.1575	-
38.2	-1.9875	-
39.2	-1.8175	-
40.2	-1.5675	-
41.2	-1.4875	Bottom of bank

Transect D-8		
August 19, 2014		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height on right bank
3	0.0225	Bank rolling over
5.25	-0.2175	-
8	-0.69	-
8.5	-1.04	Mini-scarp, active
10.5	-1.3	-
13.5	-1.6875	-
16.25	-1.9025	All sand
20.5	-2.395	Sand, active scarp, bed forms
22.5	-2.4975	-
23.75	-2.1325	On sand bar in lee of LWD
27.5	-2.235	On sand bar in lee of LWD
29.5	-1.9825	On sand bar in lee of LWD
32	-1.6425	Crest of sand bar in lee of LWD, 2-D ripples
36.25	-2.1225	All filled in with sand, used to be deep and creepy
38.5	-2.0475	-
41.75	-1.4325	On left bank
43.2	0.1575	At left bank rebar elevation.

Transect D-8 December 14 2014

December 14, 2014	+	
Distance (m)	Elevation (m)	Comments
42.34	0	Left bank rebar
41.34	-1.4725	Bottom of bank
40.34	-1.5425	All granules
39.34	-1.7525	Lee of LWD
38.34	-1.9325	-
37.34	-2.0025	Sand
36.34	-1.7925	Sand
35.34	-1.8925	Sand
34.34	-1.7925	Sand and LWD
33.34	-1.7625	Sand
32.34	-1.7325	Sand
31.34	-1.8225	Sand
30.34	-2.3125	Sand and LWD
29.34	-2.3925	Granules
27.34	-2.1525	-
26.34	-2.3925	-
25.34	-2.4725	-
24.34	-2.3725	-
23.34	-2.4525	All granules
22.34	-2.4925	Gravel
21.34	-2.4725	Gravel and pebbles
20.34	-2.3125	Granules
19.34	-2.3325	Pebbles
18.34	-2.3225	Sand
17.34	-1.6225	-
16.34	-1.8725	-
15.34	-1.6725	-
14.34	-1.6925	-
13.34	-1.5925	-
12.34	-1.4025	-
11.34	-1.4025	-
10.34	-1.2725	-
9.72	-1.1125	-
8	-0.695	Inflection point
6.84	-0.2975	Bank starting to roll over
3.34	0.0225	-
0	0	Instrument height ar right bank rebar

Transect D-8		
May 3, 2015		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height at right bank rebar
5.75	-0.165	Crest, bank starts to roll over
8.5	-0.8475	Top of scarp
9.25	-1.36	Zero water on right bank
12.75	-1.635	All granules
16	-1.94	-
16.25	-1.9575	Sand ribbon behind upstream LWD
19.25	-2.25	-
21.5	-2.55	Deep, pebbles
23	-2.2925	Top of sand bar
26.25	-2.1875	Sand
28	-2.405	All sand, LWD
29.75	-1.94	-
31	-1.605	-
33	-1.44	Sand
36.5	-2.24	Ramp down to gravel
39.25	-1.9	-
42	-1.485	.145 m water depth, rebar is 1 m inland

Transect D-8	Replicate
--------------	-----------

May 3, 2015	1	
Distance (m)	Elevation (m)	Comments
42	-1.4825	.145 m water depth
38.75	-1.9825	-
37.25	-2.1825	-
36	-2.2275	-
33.75	-1.44	-
31.5	-1.6625	Deer
29.5	-1.86	-
28.75	-2.3725	-
26.75	-2.14	-
24.5	-2.335	-
22.75	-2.3375	Тор
21.5	-2.525	-
20.5	-2.355	-
17.5	-2.0325	-
16	-1.9725	-
12	-1.6325	-
10	-1.3675	Zero water on right bank
8.75	-0.8475	Top of scarp
6	-0.1675	Top of roll over
0	0	Instrument height at right bank rebar

Transect D-10			Transect D-10		
July 8, 2011			May 14, 2012		
Distance (m)	Elevation (m)	Comments	Distance (m)	Elevation (m)	Comments
3	0.1	-	3	0.1	Eye height at 2011 rebar
4	0.0725	Bank top	5	-0.1875	-
6.25	-0.805	-	6.75	-1.035	Zero water
12.5	-1.305	Water edge	7.05	-1.085	Sand
17	-1.7	-	8.05	-1.335	Sand and sticks
18.25	-1.81	-	9.05	-1.355	Sand and sticks
19.25	-1.73	-	10.05	-1.385	Sand
22.25	-1.5575	-	11.05	-1.445	Sand
25.25	-1.785	-	12.05	-1.475	Sand
28.75	-2.0025	-	13.05	-1.585	Sand
32	-1.9475	-	14.05	-1.675	Sand
35.5	-1.8825	-	15.05	-1.665	Sand
38.75	-1.8675	-	16.05	-1.735	Sand
40	-1.315	Water edge	17.05	-1.755	Sand
43	0	-	18.05	-1.755	Sand
			19.05	-1.705	-
			20.05	-1.695	-
			21.05	-1.715	-
			22.05	-1.725	-
			23.05	-1.705	-
			24.05	-1.705	-
			25.05	-1.735	-1.735
			26.05	-1.795	-
			27.05	-1.745	Ripples and dunes
			28.05	-1.795	CR12-G13 sample
			29.05	-1.865	-
			30.05	-1.845	-
			31.05	-1.955	-
			32.05	-1.975	-
			33.05	-2.045	-
			34.05	-2.115	-
			35.05	-2.095	-
			36.05	-2.075	-
			37.05	-2.055	-
			38.05	-2.045	-
			39.05	-1.755	Gravel and sand
			40.05	-1.275	Gravel and sand
			40.77	-1.035	-

Transect D-10		
May 20, 2013		
Distance (m)	Elevation (m)	Comments
3	0.1	Instrument height at new rebar
4	-0.1925	Top of right bank
7.25	-1.28	-
10.5	-1.525	-
12.5	-1.575	-
16	-1.5775	-
18.5	-1.6025	-
22.25	-1.5425	-
26.1	-1.5525	-
29.75	-1.54	-
32.5	-1.7375	-
35.75	-1.955	-
38.25	-1.985	-
41	-1.37	-
43	-0.38	At the tree on left bank

Transect D-10

September 7, 2013	i				
Distance (m)	Elevation (m)	Comments			
3	0.1	Instrument height			
4.75	-0.1775	Top of bank			
7.5	-1.28	-			
11	-1.525	Sand			
15.5	-1.62	Sand			
19	-1.9275	Sand			
20.5	-1.65	Sand			
24.25	-1.6225	Sand			
29	-1.845	Sand			
33	-1.99	Sand			
37.25	-1.975	Sand			
40	-1.84	Mud, gravel, sticks			
42	-1.275	-			
Transect D-10			Transect D-10		
----------------	---------------	-----------------	-----------------	---------------	-------------------
March 27, 2014			August 19, 2014		
Distance (m)	Elevation (m)	Comments	Distance (m)	Elevation (m)	Comments
0	0	Eye height	43.25	-0.84	Base of left bank
4	-0.05	Bank sloping	41.25	-1.345	Hard to read
6	-0.87	-	38.75	-2.055	Sand
7	-1.2	Sand	35.5	-2.1975	Sand
8	-1.37	Sand	31.5	-2.115	Sand
9	-1.49	Sand	28	-1.995	Sand
10	-1.55	Sandy gravel	24.75	-1.8625	Sand
11	-1.6	Gravel	21.75	-1.82	Sand
12	-1.61	Gravel	19	-1.69	Sand
13	-1.68	Gravel	15.5	-1.7325	Sand, Gravel
14	-1.74	Gravel	11.5	-1.6525	-
15	-1.76	Gravel	8	-1.355	Right bank
16	-1.76	Sand	7	-1.1175	-
17	-1.77	Sand	5	-0.555	-
18	-1.83	Sand	4	-0.0275	-
19	-1.71	Sand	3	0.1	Eye height
20	-1.73	Sand			
21	-1.72	Sand			
22	-1.73	Sand			
23	-1.72	Sand			
24	-1.69	Sand			
25	-1.78	Gravely sand			
26	-1.84	Sand			
27	-1.87	Sand			
28	-1.92	Sand			
29	-2.04	-			
30	-2.08	-			
31	-2.07	-			
32	-2.09	-			
33	-2.06	Gravel			
34	-2.13	Sand and gravel			
35	-2.11	Sand			
36	-2.03	Sand			
37	-1.95	-			
38	-1.91	-			
39	-1.57	Gravel			
40	-1.15	-			
41	-0.87	-			

Transect D-10 December 14 2014		
Distance (m)	Elevation (m)	Comments
43.5	0.1925	Left bank, top estimated
42.5	-0.7425	Base of bank
41.75	-1.2225	Zero water
39.25	-1.955	All gravel. Thalwag
37.5	-2.24	_
34.25	-2.1625	Pebbles and granules
31	-2.0775	Sandy
28	-1.8325	-
24.25	-1.715	-
18	-1.7075	Subtracted 10 from top
14.75	-1.6175	-
10.75	-1.565	-
8.25	-1.21	Zero water
6.5	-0.855	-
4.25	0.025	Top of bank
3	0.1	Eye height at right bank, ~ rebar location.

Transect D-14		
May 20, 2013		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height
1.5	-0.315	Deck = 1.1 m
2.25	-0.715	-
4.5	-0.8375	-
7	-0.9525	-
10	-1.195	-
13	-1.2675	-
15.75	-1.275	-
19.25	-1.2725	-
22.75	-1.06	-
24.25	-0.97	Base of slip face
24.75	-0.615	Top of slip face
27.5	-0.6325	Beginning of subaqueaous point, all gravely sand
30.75	-0.63	Sand with 2-D ripples on 2-D dunes
34	-0.5675	-
37.75	-0.3525	-
41.75	-0.0325	Right bank
42.5	0.25	-
44.5	0.36	-
47	0.35	Right bank rebar

Transect D-14		
September 7, 2013	5	
Distance (m)	Elevation (m)	Comments
0	0	-
2.25	-0.735	Boulders
6	-1.004	Gravely sand
11	-1.2275	Gravely sand
15	-1.255	Sand
18	-0.91	Moved up slip face, sand
22	-0.705	Sand
24.5	-0.6475	Pebble Bar
28.75	-0.62	-
32.5	-0.81	-
37	-0.8775	-
39	-0.39	-
41	-0.03	Edge of vegetation
43	0.41	1 cm sand and mud from summer 2013 flood

Transect D-14	
Distance (m)	Elevation (m)
0.52	-0.135
1.26	-0.155
2	-0.303
2	-0.745
4	-0.815
5	-0.915
6	-0 995
7	-1.065
8	-1.105
9	-1.155
10	-1.185
11	-1.165
12	-1.205
13	-1.225
14	-1.215
15	-1.245
16	-1.185
17	-1.095
18	-0.935
19	-0.815
20	-0.775
21	-0.755
22	-0.795
23	-0.745
24	-0.615
25	-0.585
26	-0.605
27	-0.655
28	-0.685
29	-0.725
30	-0.745
31	-0.805
32	-0.815
33	-0.845
34	-0.885
35	-0.885
36	-0.825
37	-0.825

Transect D-14	
October 29, 2013 con	tinued
Distance (m)	Elevation (m)
38.78	-0.555
38.9	-0.235
40	-0.125
41.5	0.23
44	0.39
47	0.375

Transect D-14	

March 24, 2014		
Distance (m)	Elevation (m)	Comments
0	0	Left bank
0.25	-0.02	-
1.25	-0.56	-
2.25	-0.78	Gravel
3.25	-0.8	-
4.25	-0.82	-
5.25	-0.88	Sand
6.25	-0.96	Gravel
7.25	-1.04	Gravel
8.25	-1.1	Gravel
9.25	-1.14	Gravel
10.25	-1.2	-
11.25	-1.24	Gravel
12.25	-1.27	-
13.25	-1.25	-
14.25	-1.22	-
15.25	-1.21	Sandy gravel
16.25	-1.2	Sandy gravel
17.25	-1.2	-
18.25	-1.2	Gravel
19.25	-1.2	Gravel
20.25	-1.1	Gravel
21.25	-0.96	Gravel
22.25	-0.78	Gravel
23.25	-0.68	Sandy gravel
24.25	-0.68	Gravel
25.25	-0.64	Gravely sand
26.25	-0.61	Gravely sand
27.25	-0.62	-
28.25	-0.66	Sand, shells
29.25	-0.74	Sand
30.25	-0.78	Sand
31.25	-0.74	Sand
32.25	-0.86	Sand
33.25	-0.93	-
34.25	-0.88	Sand
35.25	-0.86	-
36.25	-0.85	Sandy gravel
37.25	-0.88	Gravel
38.25	-0.73	-
39.25	-0.72	-

Transect D-14		
March 24, 2014	continued	
Distance (m)	Elevation (m)	Comments
40.25	-0.44	-
40.61	-0.32	Vertical cutbank
40.77	0	-

Transect D-14		Transect D-14		
July 22, 2014		December 14, 2014		
Distance (m)	Elevation (m)	Distance (m)	Elevation (m)	Comments
1.12	-0.625	45.28	0.3275	Right bank rebar
2	-0.765	42.02	0.225	Top of bank, clay
3	-0.875	42	-0.425	Clay
4	-0.825	40.75	-0.66	Clay
5	-0.885	38	-0.85	Clay
6	-0.885	36	-1.07	Clay
7	-0.915	33.75	-1.035	Clay
8	-0.975	30.75	-1.1175	Clay
9	-1.045	29.25	-1.51	At log, gravel
10	-1.135	28	-1.445	-
11	-1.165	26.25	-1.2025	-
12	-1.215	23.5	-0.89	Crest of bar
13	-1.215	22	-0.74	-
14	-1.215	18.75	-1.045	-
15	-1.225	15.5	-1.185	-
16	-1.245	12	-1.185	Sand ripples
17	-1.275	8.25	-0.9625	-
18	-1.175	4.25	-0.8825	-
19	-0.975	2	-0.79	-
20	-0.795	1	-0.43	-
21	-0.755	0	0	Eye height on deck
22	-0.885			
23	-1.105			
24	-1.225			
25	-1.355			
26	-1.345			
27	-1.345			
28	-1.225			
29	-1.145			
30	-0.945			
31	-0.965			
32	-0.945			
33	-0.985			
34	-0.985			
35	-0.905			
36	-0.855			
37	-0.835			
38	-0.795			
39	-0.685			
39.64	-0.625			

Transect D-14 Transect D-14	
April 12, 2015 April 12, 2015 continued	
Distance (m)Elevation (m)CommentsDistance (m)Elevation (m)	Comments
0 -0.0525 Left bank rebar 40.28 -0.6325	Soft sands
0.28 -0.1125 - 41.28 -0.4325	-
1.28 -0.5125 - 42.02 0.0875	Scarp
2.28-0.8225At edge of deck42.280.1775	-
3.28 -0.8225 - 43.33 0.2175	-
4.28 -0.8125 - 43.38 0.3075	Little water fall
5.28 -0.7725 Sandy 44.28 0.3075	-
6.28 -0.9525 - 45.28 0.3075	Rebar, right bank
7.28 -1.1125 - 47.28 0.3275	-
8.28 -1.0925 -	
9.28 -1.1525 -	
10.28 -1.2625 -	
11.28 -1.2325 Hard bottom gravel	
12.28 -1.3125 Hard bottom gravel	
13.28 -1.2825 Hard bottom gravel	
14.28 -1.2725 -	
15.28 -1.1825 -	
16.28 -1.0125 Gravely	
17.28 -0.8625 Sandy gravel	
18.28 -0.8725 Sandy gravel	
19.28 -0.8525 Sandy gravel	
20.28 -0.8625 Sandy gravel	
21.28 -0.8925 Sandy gravel	
22.28 -0.8125 -	
23.28 -0.6925 -	
24.28 -0.5725 -	
25.28 -0.4525 Pebbly sand	
26.28 -0.4125 -	
27.28 -0.4325 -	
28.28 -0.4325 -	
29.28 -0.3925 loose bar sand	
30.28 -0.4125 loose bar sand	
31.28 -0.4925 loose bar sand	
32.28 -0.5925 loose bar sand	
33.28 -0.7125 loose bar sand	
34.28 -0.9525 Sand, firm bottom	
35.28 -0.9625 Firm sand	
36.28 -0.8725 Firm sand	
37.28 -0.8925 Firm sand	
38.28 -0.7725 Firm sand	

Transect D-12		
July 8, 2011		
Distance (m)	Elevation (m)	Comments
0	0	-
3	-0.1075	-
4.75	-0.9875	Water edge
7.25	-1.12	-
10.25	-1.3725	Tree scour
12	-1.8075	Tree scour
13.5	-1.7875	-
15	-1.4775	-
15.75	-1.5675	-
19.5	-1.3525	-
20.25	-1.0325	-
21.75	-0.965	Water edge
24	-0.7575	-
27	-0.9275	-
28.75	-0.7825	-
30	-0.4175	-
32	-0.0175	-

Transect D-12		
May 14, 2012		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height
3	-0.04	Top of bank
4	-0.71	Zero water
4.7	-1.07	Mud
5.7	-1.23	-
6.7	-1.01	Sand
7.7	-1.11	Sand
8.7	-1.31	Sand
9.2	-0.71	Tree
9.7	-1.48	Sand
10.5	-0.71	Tree
10.7	-1.85	-
11.7	-1.95	Gravel
12.7	-1.88	Fine gravel
13.2	-1.76	Gravel
13.7	-1.53	Bried tree
14.7	-1.48	Sand
15.7	-1.49	-
16.7	-1.48	-
17.7	-1.51	-
18.7	-1.2	Sand bar
19.7	-1.18	-
20.7	-1.18	2.5-D sand ripples
21.7	-1.1	-
22.7	-1.06	-
23.7	-1.03	-
24.7	-0.99	-
25.1	-0.87	-
25.7	-0.77	-
26.7	-0.78	-
27.54	-0.71	-

Transect D-12			Transect D-12		
May 20, 2013			March 24, 2014		
Distance (m)	Elevation (m)	Comments	Distance (m)	Elevation (m)	Comments
0	0	Eye height	0	0	Right bank rebar
3	-0.02	Top of scarp	3	-0.0475	Top of bank
5	-0.9475	-	4.25	-0.7475	-
7	-1.1425	Sticks	5.15	-1.1175	LWD
8.5	-1.5325	-	6.15	-1.3275	-
11	-1.5	LWD gone	7.15	-1.5075	-
12.5	-1.8225	-	8.15	-1.7275	-
15.75	-1.45	-	9.15	-1.7475	-
18.5	-1.45	-	10.15	-1.7475	-
20	-1.175	-	12.15	-2.3475	-
23.5	-1.185	-	13.15	-2.2975	-
25.5	-0.9625	-	14.15	-2.1675	-
30.5	-0.425	Tree, left bank	15.15	-2.0475	-
			16.15	-2.3475	-
			17.15	-1.8275	Sand bar
			18.15	-1.7175	Sand bar
			19.15	-1.7675	Sand bar
			20.15	-1.7875	Sand bar
Transect D-12			21.15	-1.7675	-
September 7, 2013			22.15	-1.6975	-
Distance (m)	Elevation (m)	Comments	23.15	-1.7175	-
0	-0.0425	Eye Height	24.15	-1.6175	-
2.75	-0.0425	Top of bank	25.15	-1.4275	-
4.5	-1.0175	-	26.15	-1.3275	-
6	-1.1525	Sand	27.15	-1.1375	-
7.75	-1.5425	-	27.55	-1.0275	-
8.25	-1.4025	Sand	27.65	-0.8675	Bit of a scarp
11	-1.445	Sand, sticks	28.15	-0.7475	-
13.25	-1.705	Sand, gravel			
15.25	-1.5175	Top of slip face			
15.5	-1.3425	Sand			
22	-1.255	Sand			
24.5	-1.04	-			
26.25	-0.855	-			
28	-0.69	-			
29	-0.5	-			

Transect D-12 August 19, 2014		
Distance (m)	Elevation (m)	Comments
0	0	Eye height, right bank
2.75	-0.025	Top of right bank
4.25	-0.835	~Bottom of bank
6.75	-1.35	-
8	-1.785	-
10	-2.325	-
12.75	-2.22	All gravel
14.75	-2.1175	-
17.5	-1.88	On gravely sand bar
21.25	-1.915	On gravely sand bar
24.5	-1.7375	-
26	-1.555	Base of small scarp
26.5	-1.3825	Top of small scarp
27.5	-1.1825	-
28.5	-0.995	-
29.25	-0.545	Top of left bank
30.25	-0.4575	-

Transect D-12 December 14, 2014

December 14, 2012	ł	
Distance (m)	Elevation (m)	Comments
0	0	Right bank rebar
2.75	-0.01	Top of bank
4	-0.8775	Bottom of bank
6	-1.205	Zero water
7.25	-1.56	Sticks and mud
8.5	-1.9775	Sticks and mud
9.75	-2.33	First gravel
11.5	-2.2625	Cobbles
13.5	-2.1725	Gravely bottom
15.25	-1.955	Sand and LWD
18.75	-2.04	Sand and LWD
20.5	-1.85	-
24.5	-1.68	-
26	-1.575	-
27	-1.2	Zero water
28	-1.02	Base of scarp
28.5	-0.59	Top of scarp
30	-0.41	At tree

Transect D-12		
Distance (m)	Elevation (m)	Comments
0	0	Right bank rebar
2	0.06	1.5 m on rope
3	-0.0425	Top of bank
3	-0.335	Bottom of scarp
3.75	-0.53	3.3 m on rope, zero water
4.05	-0.76	-
4.25	-0.77	-
3.45	-0.89	-
4.45	-1.03	LWD
5.45	-1.2	Sticky mud, LWD
6.45	-1.36	Old clayey mud, branches
7.45	-1.76	-
8.45	-2.17	-
12.45	-2.25	-
13.45	-2.29	-
14.45	-2.28	-
15.45	-2.23	-
16.45	-2.14	-
17.45	-1.97	-
18.45	-1.82	-
19.45	-1.8	-
20.45	-1.81	-
21.45	-1.65	-
22.45	-1.48	-
23.45	-1.41	Soft sand
24.45	-1.49	Soft sand
25.45	-1.45	Soft sand
26.45	-1.38	Sandy
27.45	-1.09	-
27.77	-0.95	Sloping scarp
28.17	-0.58	Sloping scarp
28.78	-0.53	River left

Transect D-15			Transect D-15		
September 7, 2013			March 24, 2014		
Distance (m)	Elevation (m)	Comments	Distance (m)	Elevation (m)	Comments
0	0	Eye Height	0	0	Eye Height
1.5	-0.18	Top of bank	1.5	-0.2025	Top of bank
2.5	-0.9	Bottom of bank	2	-0.875	Base of scarp
3	-1.2325	All bricks	2.5	-1.095	Flood sands
4.75	-1.4975	Sand, ripples	4.75	-1.74	-
8.5	-1.64	Sand	7.5	-2.07	Bricks, gravel
11.5	-1.71	Sand	11	-2.1125	-
16	-1.77	-	15.75	-2.175	Bedrock ledge
18.5	-1.4725	On sand bar	20	-2.1	Sand
23	-1.415	-	24	-2.105	Bedrock
29	-1.35	-	28	-1.905	Bedrock
33.5	-1.36	Bar crest	32	-1.785	Bedrock
35	-1.535	-	35.5	-1.155	-
36.5	-1.2525	-	37.25	-0.9575	Base of ss cliff

Transect D-	15
-------------	----

Transect	D-15
Transect	D-15

36.5

-0.935

Base of ss cliff

December 17, 2013	;		May 23, 2014		
Distance (m)	Elevation (m)	Comments	Distance (m)	Elevation (m)	Comments
0	0	Eye Height	0	0	Eye height
3.25	-1.3775	-	1.5	-0.1625	Top of scarp.
5	-1.725	-	2	-0.9425	Base of scarp
8	-1.76	-	3	-1.225	No change.
10.25	-1.77	Small dunes	4.25	-1.625	Sand.
14	-1.9325	-	6.75	-2.03	Sand and LWD.
17.5	-1.955	-	9.5	-2.1125	Sand, dunes.
22	-1.915	-	12	-2.23	Bedrock
25	-1.7725	-	15.5	-2.16	Bedrock
28.75	-1.6775	-	19	-2.21	Sand ribbon
35	-1.425	-	23	-2.01	Bedrock
			28.5	-1.84	Bedrock
			31.5	-1.785	Gravel
			35.5	-1.235	-

Transect D-15 July 25, 2014		
Distance (m)	Elevation (m)	Comments
0	0	Instrument height on right bank
1.5	-0.1325	Crest of right bank
6	-2.025	Mud, bricks, LWD
9.75	-2.165	Sand on bedrock, some pebbles, 2-D ripples
13.5	-2.105	Sand on bedrock, some pebbles
17	-2.125	Sand on bedrock
20.5	-2.2625	Bedrock
25.25	-2.015	Scattered cobbles on berock
29.75	-1.79	Scattered cobbles on berock
32.5	-1.675	Mud
35.5	-1.18	Mud on left bank
37	-0.8825	Base of ss cliff

Transect D-15 December 15, 2014

December 13, 2014	+	
Distance (m)	Elevation (m)	Comments
0	0	Right bank
1.75	-0.1175	Top of scarp
1.75	-0.795	Bottom of scarp
3	-1.3125	Turns into ramp, end bricks
3.5	-1.5125	Zero water, mud meets water
6.25	-1.9075	0.43 m of water, mud and leaves
8	-2.0875	Bedrock and LWD
9.75	-2.155	Bedrock with some sand ribbons
13	-2.1475	-
16.75	-2.2575	Bedrock, some gravel and sand ribbons
19.5	-2.095	-
20.75	-2.2475	Bedrock, irregular
22.25	-2.0825	Bedrock, small distance
26	-1.9775	Bedrock
29	-1.8025	Bedrock
32.5	-1.7225	Zero water
35	-1.5125	-
37	-1.0825	Base of cliff, transit rotated upstream

	Transect D-6		Transect D-6	
_	July 8, 2011		July 8, 2011	continued
	Distance (m)	Elevation (m)	Distance (m)	Elevation (m)
	78.85	2.3725	30.8	-1.9375
	75.85	2.145	29.8	-1.9575
	73.1	1.955	28.8	-1.9275
	69.6	1.245	27.8	-1.8875
	67.6	0.33	26.8	-1.8775
	65.1	-0.215	25.8	-1.8875
	64.6	-0.6175	24.8	-1.8975
	63.8	-0.7775	23.8	-1.8475
	62.8	-0.9275	22.8	-1.8375
	61.8	-1.1375	21.8	-1.8175
	60.8	-1.3475	20.8	-1.8175
	59.8	-1.4375	19.8	-1.7775
	58.8	-1.7175	18.8	-1.8075
	57.8	-1.8075	17.8	-1.8075
	56.8	-1.8375	16.8	-1.7775
	55.8	-1.9975	15.8	-1.7375
	54.8	-2.1175	14.8	-1.7075
	53.8	-2.3075	13.8	-1.6675
	52.8	-2.4375	12.8	-1.6575
	51.8	-2.8375	11.8	-1.5775
	50.8	-2.8375	10.8	-1.5775
	49.8	-2.9975	9.8	-1.5175
	48.8	-2.9475	8.8	-1.4575
	47.8	-2.7975	7.8	-1.3375
	46.8	-2.7075	6.8	-1.2575
	45.8	-2.6475	5.8	-1.1875
	44.8	-2.5275	4.8	-1.1375
	43.8	-2.4375	3.8	-1.1375
	42.8	-2.3475	2.8	-1.0775
	41.8	-2.2975	1.8	-0.9775
	40.8	-2.2475	0.8	-0.7575
	39.8	-2.2875	-0.2	-0.6175
	38.8	-2.1475		
	37.8	-2.1375		
	36.8	-2.0875		
	35.8	-2.0475		
	34.8	-2.0475		
	33.8	-1.9975		
	32.8	-1.9975		

Transect D-6			Transect D-6		
May 17, 2012			May 17, 2012	continued	
Distance (m)	Elevation (m)	Comments	Distance (m)	Elevation (m)	Comments
77.6	2.2025	Old picnic table	30.42	-1.945	-
73.1	2.134	Eye height at tree	29.42	-1.885	-
69.6	1.4025	-	28.42	-1.855	-
67.1	0.32	-	27.42	-1.865	-
65.1	-0.215	Top of Bank	26.42	-1.875	10:00 a.m.
65.1	-0.555	65.68 m on rope	25.42	-1.855	
64.42	-0.725	-	24.42	-1.835	-
63.42	-0.915	-	23.42	-1.815	-
62.42	-1.085	-	22.42	-1.815	-
61.42	-1.235	-	21.42	-1.805	-
60.42	-1.475	-	20.42	-1.795	-
59.42	-1.675	-	19.42	-1.815	-
58.42	-1.725	-	18.42	-1.775	-
57.42	-1.825	-	17.42	-1.755	-
56.42	-1.935	-	16.42	-1.715	-
55.42	-2.005	-	15.42	-1.675	-
54.42	-2.205	Branch	14.42	-1.685	-
53.42	-2.515	-	13.42	-1.645	-
52.42	-2.725	-	12.42	-1.615	-
51.42	-2.915	-	11.42	-1.515	-
50.42	-2.995	-	10.42	-1.455	-
49.42	-2.935	-	9.42	-1.385	-
48.42	-2.855	-	8.42	-1.305	-
47.42	-2.735	-	7.42	-1.195	-
46.42	-2.625	-	6.42	-1.125	-
45.42	-2.535	-	5.42	-1.065	-
44.42	-2.425	-	4.42	-0.995	-
43.42	-2.315	-	3.42	-0.905	-
42.42	-2.245	-	2.42	-0.735	-
41.42	-2.215	-	1.42	-0.575	-
40.42	-2.135	-	0.92	-0.555	-
39.42	-2.085	-			
38.42	-2.055	-			
37.42	-2.055	-			
36.42	-2.035	-			
35.42	-1.985	-			
34.42	-1.965	-			
33.42	-1.975	-			
32.42	-1.965	-			
31.42	-1.915	-			

December 17, 2013			
Distance (m)	Elevation (m)	Depth to Refusal (m)	Comments
66.1	0	-	Instrument Height
65.1	-0.1925	-	Top of old scarp
65.1	-0.5575	-	Bottom of old scarp
61.85	-1.245	-	-
56.85	-1.9025	-	-
55.85	-2.0825	-	Rebar put in
54.1	-2.345	-	-
53.46	-2.825	-	Sticks and mud
52.96	-3.025	-	Mud
51.96	-3.075	-	Mud
50.96	-3.215	-	Mud
49.96	-3.505	-	Mud
48.96	-3.575	-	Mud
47.96	-3.625	1.41	Bedrock
46.96	-3.575	1.38	Bedrock
45.96	-3.195	-	Sand
44.96	-2.945	1.24	Bedrock
43.96	-2.675	-	Mud
42.96	-2.345	-	Mud

Transect D-6

Transect D-6		
March 24, 2014		
Distance (m)	Elevation (m)	Comments
66.1	0	Eye height
65.35	-0.1625	Top of bank
65.1	-0.3025	Top of scarp
64.6	-0.68	Base of scarp
63.1	-0.8975	On bank
61.35	-1.3725	On bank
59.1	-1.73	Base of bank
57.6	-1.97	Zero water
56.85	-2.23	-
56.35	-2.29	Woody
55.35	-2.64	Mud
54.35	-2.83	-
53.35	-3.05	Sand, mud
52.35	-3.11	Sand
51.35	-3.13	Sand, gravel
50.35	-3.17	Sand
49.35	-3.25	-
48.35	-3.15	-
47.35	-3.07	-
46.35	-3.01	-
45.35	-2.96	-
44.35	-3.01	-
43.35	-2.89	-
42.35	-2.81	-
41.35	-2.78	-
40.35	-2.74	-
39.35	-2.72	Sand, gravel
38.35	-2.72	-
37.35	-2.65	-
36.35	-2.66	-
35.35	-2.55	-
34.35	-2.53	-
33.35	-2.5	-
32.35	-2.51	-
31.35	-2.51	-
30.35	-2.5	-
29.35	-2.54	-
28.35	-2.53	-
27.35	-2.48	-
26.35	-2.49	-
25.35	-2.48	Sand, gravel

March 24, 2014continuedDistance (m)Elevation (m)Comments24.35-2.5-23.35-2.41-22.35-2.34-21.35-2.33-20.35-2.27-19.35-2.15-18.35-2.05River left17.351.97	Transect D-6		
Distance (m) Elevation (m) Comments 24.35 -2.5 - 23.35 -2.41 - 22.35 -2.34 - 21.35 -2.33 - 20.35 -2.27 - 19.35 -2.15 - 18.35 -2.05 River left	March 24, 2014	continued	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Distance (m)	Elevation (m)	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.35	-2.5	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.35	-2.41	-
21.35 -2.33 - 20.35 -2.27 - 19.35 -2.15 - 18.35 -2.05 River left 17.35 1.97	22.35	-2.34	-
20.35 -2.27 - 19.35 -2.15 - 18.35 -2.05 River left 17.35 1.97	21.35	-2.33	-
19.35 -2.15 - 18.35 -2.05 River left 17.35 1.97	20.35	-2.27	-
18.35 -2.05 River left	19.35	-2.15	-
17 35 1 07	18.35	-2.05	River left
17.55 -1.97 -	17.35	-1.97	-

Transect D-6		
May 23, 2014		
Distance (m)	Elevation (m)	Comments
68.6	0.9425	Back sighted
66.1	0	Eye height, right bank
65.1	-0.3225	Top of scarp
65.1	-0.71	Bottom of scarp
62.1	-1.095	-
59.6	-1.68	-
56.35	-2.19	197° on transit stage
55.35	-2.54	Dec. 2013 rebar
55.08	-2.63	Mud and LWD
54.08	-2.95	Mud
53.08	-3.11	Mud
52.08	-3.43	Mud
51.08	-3.39	Sand
50.08	-3.32	Sand
49.08	-3.31	Sand
48.08	-3.27	Sand
47.08	-3.15	Sand
46.08	-3.15	Sand, pebbles
45.08	-3.03	Sand
44.08	-3.09	Sand
43.08	-2.99	Sand
42.08	-3.03	Sand
41.08	-2.95	Sand
40.08	-2.95	Sand
39.08	-2.91	Sand
38.08	-2.95	Sand
37.08	-2.85	Sand
36.08	-2.75	Sand
35.08	-2.79	Sand
34.08	-2.71	Sand
33.08	-2.79	Sand
32.08	-2.71	Sand
31.08	-2.73	Sand
30.08	-2.68	Sand
29.08	-2.67	Active ripples, wood
28.08	-2.57	Active ripples
27.08	-2.55	Active ripples
26.08	-2.55	Active ripples
25.08	-2.65	Sand and pebbles
24.08	-2.67	Sand and pebbles
23.08	-2.63	Mud

Transect D-6		
May 23, 2014	continued	
Distance (m)	Elevation (m)	Comments
22.08	-2.6	Mud
21.08	-2.5	Mud
20.08	-2.44	Mud
19.08	-2.36	Mud
18.4	-2.33	Left bank stick
17.08	-2.19	Left of stick

August 11, 2014 Distance (m) Elevation (m) Comments 66.1 0 Eye height 65.1 -0.27 Top of scarp 64.6 -0.69 - 62.6 -1.0725 - 60.85 -1.6425 -
Distance (m) Elevation (m) Comments 66.1 0 Eye height 65.1 -0.27 Top of scarp 64.6 -0.69 - 62.6 -1.0725 - 60.85 -1.6425 -
66.1 0 Eye height 65.1 -0.27 Top of scarp 64.6 -0.69 - 62.6 -1.0725 - 60.85 -1.6425 -
65.1 -0.27 Top of scarp 64.6 -0.69 - 62.6 -1.0725 - 60.85 -1.6425 -
64.6 -0.69 - 62.6 -1.0725 - 60.85 -1.6425 -
62.6 -1.0725 - 60.85 -1.6425 -
60.85 -1.6425 -
1.0 120
57.1 -2.09 Edge of the veg.
55.15 -2.485 -
55.05 -2.57 Zero water
54.55 -2.79 -
53.55 -2.99 -
52.55 -3.15 -
51.55 -3.4 -
50.55 -3.45 -
49.55 -3.49 -
48.55 -3.48 -
47.55 -3.25 -
46.55 -3.24 -
45.55 -3.18 -
44.55 -3.15 -
43.55 -3.13 -
42.55 -3.14 -
41.55 -3.05 -
40.55 -2.99 -
39.55 -2.93 -
38.55 -2.9 -
37.55 -2.9 -
36.55 -2.89 -
35.55 -2.87 -
34.55 -2.89 -
33.55 -2.87 -
32.55 -2.84 -
31.55 -2.81 -
30.55 -2.75 -
29 55 -2 72 -
28.55 -2.71 -
27 55 -2 71 -
26 55 -2 72 -
25.55 -2.7 -
24.55 -2.69 -
23.55 _2.7 Fetimated
22.55 -2.68 -

Transect D-6		
August 11, 2014	continued	
Distance (m)	Elevation (m)	Comments
21.8	-2.57	Left bank

Transect D-6 December 15 2014

Distance (m)	Elouotion (m)	Donth to Deficial (mr)	Commonto
Distance (m)	Dievation (m)	Depui to Ketusai (m)	Pight hank root
00.1	0	-	
65.35	-0.32	-	Top of scarp
64.6	-0.6725	-	Bottom of scarp
62.8	-0.94	-	-
60.85	-1.4075	-	-
58.1	-1.9425	-	-
56.1	-2.1825	-	Edge of veg.
55.1	-2.455	-	Old survey rebar
54.6	-2.5025	-	Zero water
53.6	-2.8625	-	Mud
52.6	-3.0825	-3.6325	-
51.6	-3.2925	-	-
50.6	-3.4425	-	Muddy
49.6	-3.4525	-3.7225	Mud, sand, gravel
48.6	-3.4725	-	Sand
47.6	-3.4325	-3.6925	Sand
46.6	-3.4525	-	Sand
45.6	-3.3825	-	Sand
44.6	-3.2625	-3.7925	Sand
43.6	-3.2425	-	Sand
42.6	-3.1825	-4.0125	Sand
41.6	-3.1525	-	Sand
40.6	-3.0725	-	Sand
39.6	-3.0025	-3.5025	Sand
38.6	-2.9925	-	Sand
37.6	-2.9225	-3.5225	Sand
36.6	-2.9225	-	Sand
35.6	-2.8625	-	Sand
34.6	-2.8025	-3.5625	Sand
33.6	-2.8425	-	Sand
32.6	-2.8525	-3.6225	Sand
31.6	-2.8425	-	Sand
30.6	-2.7925	-	Sand
29.6	-2.7625	-3.6425	Sand
28.6	-2.7425	-	Sand
27.6	-2.6925	-3.6725	Sand
26.6	-2.6825	-	Sand
25.6	-2.6825	-	Sand
24.6	-2.7325	-3.7125	Sand

December 15, 2014	continued		
Distance (m)	Elevation (m)	Depth to Refusal (m)	Comments
23.6	-2.7225	-	Sand
22.6	-2.6825	-3.6525	Sand
21.6	-2.6425	-	Sand, gravel
20.6	-2.5425	-	Sand, gravel
19.8	-2.5025	-	Sand, gravel
16.25	-2.0375	-	Wet mud
13	-1.7475	-	Wet mud
10.5	-1.5425	-	Wet mud
8	-1.3425	-	Wet mud
4.5	-1.0125	-	Dry mud
1.25	-0.6425	-	Dry mud
0	0.0525	-	Left bank rebar, dry mud

Transect D-6 December 15 2014 continued

	Transect D-6 April 12, 2015		
-	Distance (m)	Elevation (m)	Comments
	66.1	0	Eye height
	64.85	-0.28	Top of old bank
	64.85	-0.6625	Bottom of old bank
	62.35	-1.06	On flood plain
	60.1	-1.48	On flood plain
	58.1	-1.78	Zero water
	57.8	-1.92	
	56.8	-2.17	Sticks and mud
	55.8	-2.55	
	54.8	-2.64	Muddy
	53.8	-2.96	Felt softer
	52.8	-3.08	-
	51.8	-3.26	-
	50.8	-3.3	-
	49.8	-3.38	-
	48.8	-3.37	-
	47.8	-3.42	-
	46.8	-3.36	-
	45.8	-3.32	-
	44.8	-3.28	2.10 m to bedrock
	43.8	-3.31	-
	42.8	-3.18	-
	41.8	-3.18	-
	40.8	-3.11	-
	39.8	-3.03	-
	38.8	-3.03	-
	37.8	-3.01	Gravely
	36.8	-2.98	-
	35.8	-2.96	-
	34.8	-2.86	Probe attempted
	33.8	-2.86	-
	32.8	-2.87	-
	31.8	-2.86	-
	30.8	-2.83	-
	29.8	-2.76	Sand, gravel, mud
	28.8	-2.72	Sand on mud
	27.8	-2.73	-
	26.8	-2.71	-
	25.8	-2.74	-

Transect D-6		
April 12, 2015	continued	
Distance (m)	Elevation (m)	Comments
23.8	-2.74	Gravel
22.8	-2.74	Sandy gravel
21.8	-2.67	-
20.8	-2.62	-
19.8	-2.55	-
18.8	-2.48	Sand on mud
17.8	-2.35	-
16.8	-2.24	-
15.8	-2.2	-
14.8	-2.09	-
13.8	-1.96	-
12.8	-1.8	-
12.2	-1.78	Zero water
9.8	-1.485	-
8.3	-1.43	Quick reading
5.8	-1.175	Begin wet mud
3.8	-0.95	-
1.8	-0.605	Old bank
0	0.185	Left bank tree

APPENDIX E

SPATIAL AND GEOMORPHIC DATA OF

LEFEVER IMPOUNDMENT DELTA SURVEYS

GIS and geomorphic survey data for LeFever Impoundment Delta surveys from 2011 through 2015. Geographic coordinates are shown in decimal degrees and elevations were measured relative to the local reference stake.

LeFever Delta May 17, 2012

10109 17, 2012			
Station ID	Latitude Longitu	de Elevation (m)	Comments
0	41.1457 -81.461	6 0.00	Instrument at rebar
1	41.1459 -81.461	-0.61	Medium sand
2	41.1459 -81.461	-0.53	-
3	41.1459 -81.461	-0.42	-
4	41.1459 -81.461	-0.57	-
5	41.1459 -81.461	-0.63	-
6	41.1460 -81.461	-0.51	-
7	41.1460 -81.462	-0.43	-
8	41.1460 -81.462	-0.59	-
9	41.1460 -81.462	-0.59	-
10	41.1461 -81.462	-0.45	-
11	41.1461 -81.462	-0.48	-
12	41.1461 -81.462	-0.63	-
13	41.1462 -81.462	-0.70	-
14	41.1462 -81.462	-0.58	2-D dunes with 2.5 D ripples
15	41.1462 -81.462	-0.75	-
16	41.1462 -81.462	-0.77	-
17	41.1463 -81.462	-0.87	-
18	41.1463 -81.462	-0.91	-
19	41.1460 -81.462	-0.49	-
20	41.1460 -81.462	-0.43	-
21	41.1459 -81.462	-0.41	plus
22	41.1459 -81.462	-0.38	plus
23	41.1458 -81.462	-0.43	-
24	41.1457 -81.91	-0.51	-
25	41.1457 -81.461	-0.57	-
26	41.1456 -81.461	-0.61	-
27	41.1457 -81.461	-0.47	Transect
28	41.1457 -81.461	-0.59	Transect
29	41.1457 -81.461	-0.57	Transect
30	41.1456 -81.461	-0.59	Transect
31	41.1456 -81.461	-0.68	Transect
32	41.1453 -81.461	-1.20	Transect
33	41.1458 -81.462	-0.90	Transect, White House
34	41.1460 -81.462	-1.11	Transect, White House
35	41.1460 -81.462	-0.89	Transect, White House
36	41.1460 -81.462	-0.43	Transect, White House
37	41.1459 -81.461	-1.07	Rebar transect Continued
38	41.1459 -81.461	-1.55	Rebar transect Continued
39	41.1459 -81.461	-1.13	Rebar transect continued, Gravel
40	41.1460 -81.462	20 -1.61	-

LeFever Delta May 17 2012 continued

May 17, 2012	continued			
Station ID	Latitude	Longitude	Elevation (m)	Comments
41	41.1460	-81.4620	-1.63	Bedrock
42	41.1463	-81.4624	-1.66	-
43	41.1463	-81.4624	-1.55	-
44	41.1463	-81.4623	-1.25	-
45	-	-	-0.86	L-1 Transect, Zero water
46	-	-	-0.92	L-1 Transect, Sand
47	-	-	-0.95	L-1 Transect
48	-	-	-1.05	L-1 Transect
49	-	-	-1.07	L-1 Transect
50	-	-	-0.96	L-1 Transect
51	-	-	-1.07	L-1 Transect, Delta Crest
52	41.1460	-81.4620	-1.18	L-1: Halfway down slip face
53	-	-	-1.90	L-1 Transect
54	-	-	-1.94	L-1 Transect
55	-	-	-1.95	L-1 Transect
56	-	-	-2.25	L-1 Transect

LeFever Delta May 20, 2013

LeFever Delta May 20 2013 continued

May 20, 2013			
Station ID	Latitude	Longitude	Elevation (m)
1	41.1457	-81.4616	-0.64
2	41.1457	-81.4617	-0.59
3	41.1459	-81.4618	-0.56
4	41.1459	-81.4618	-0.54
5	41.1458	-81.4619	-0.57
6	41.1459	-81.4620	-0.66
7	41.1460	-81.4620	-0.56
8	41.1460	-81.4621	-0.53
9	41.1461	-81.4622	-0.6
10	41.1461	-81.4623	-1.02
11	41.1461	-81.4623	-1.13
12	41.1461	-81.4623	-1.24
13	41.1462	-81.4624	-1.36
14	41.1463	-81.4624	-1.28
15	41.1463	-81.4624	-1.36
16	41.1464	-81.4624	-1.4
17	41.1463	-81.4625	-1.26
18	41.1462	-81.4625	-0.96
19	41.1462	-81.4626	-0.72
20	41.1462	-81.4626	-1.08
21	41.1462	-81.4626	-0.46
22	41.1462	-81.4625	-0.63
23	41.1461	-81.4624	-0.6
24	41.1461	-81.4623	-0.58
25	41.1461	-81.4622	-0.58
26	41.1460	-81.4622	-0.46
27	41.1460	-81.4622	-0.46
28	41.1460	-81.4622	-0.62
29	41.1460	-81.4621	-0.62
30	41.1460	-81.4620	-0.67
31	41.1459	-81.4622	-0.63
32	41.1459	-81.4618	-0.46
33	41.1459	-81.4617	-0.46
34	41.1459	-81.4616	-0.46
35	41.1459	-81.4615	-0.59
36	41.1458	-81.4621	-0.66
37	41.1458	-81.4620	-1.25
38	41.1458	-81.4620	-0.82
39	41.1458	-81.4620	-0.46
40	41.1458	-81.4620	-0.31
41	41.1458	-81.4620	-0.46
42	41.1459	-81.4619	-0.64

continued		
Latitude	Longitude	Elevation (m)
41.1459	-81.4618	-0.62
41.1459	-81.4619	-0.63
41.1460	-81.4618	-1.65
41.1460	-81.4618	-1.76
41.1460	-81.4618	-1.69
41.1460	-81.4618	-1.44
41.1461	-81.4618	-1.3
41.1456	-81.4619	-0.79
41.1456	-81.4618	-0.62
41.1457	-81.4617	-0.54
41.1458	-81.4616	-0.46
41.1458	-81.4616	-0.46
41.1459	-81.4616	-1.58
41.1460	-81.4615	-1.58
41.1460	-81.4615	-1.27
	continued Latitude 41.1459 41.1459 41.1460 41.1460 41.1460 41.1461 41.1456 41.1456 41.1456 41.1456 41.1456 41.1456 41.1457 41.1458 41.1458 41.1459 41.1458 41.1458 41.1459 41.1460 41.1460 41.1460	continuedLatitudeLongitude41.1459-81.461841.1459-81.461841.1460-81.461841.1460-81.461841.1460-81.461841.1461-81.461841.1456-81.461841.1456-81.461841.1456-81.461841.1456-81.461641.1457-81.461641.1458-81.461641.1459-81.461641.1460-81.461541.1460-81.461541.1460-81.461541.1460-81.4615

LeFever Delta August 30, 2013

ugust 30, 2013			
Station	Latituda	Longitudo	Elevation
ID	Latitude	Longitude	(m)
1	41.1459	-81.4613	-0.48
2	41.1458	-81.4614	-0.48
3	41.1459	-81.4616	-0.48
4	41.1459	-81.4616	-1.36
5	41.1460	-81.4615	-1.33
6	41.1460	-81.4615	-0.48
7	41.1460	-81.4616	-0.48
8	41.1459	-81.4617	-1.28
9	41.1459	-81.4617	-1.45
10	41.1459	-81.4617	-0.48
11	41.1460	-81.4618	-0.48
12	41.1461	-81.4620	-0.48
13	41.1460	-81.4619	-1.15
14	41.1460	-81.4621	-0.69
15	41.1460	-81.4621	-0.69
16	41.1460	-81.4622	-0.48
17	41.1459	-81.4621	-0.48
18	41.1459	-81.4622	-0.7
19	41.1459	-81.4622	-0.61
20	41.1462	-81.4623	-0.71
21	41.1463	-81.4624	-0.89
22	41.1463	-81.4625	-0.72
23	41.1462	-81.4626	-0.68
24	41.1463	-81.4624	-1
25	41.1463	-81.4624	-1.11
26	41.1459	-81.4622	-0.48
27	41.1458	-81.4621	-0.48
28	41.1458	-81.4621	-0.48
29	41.1458	-81.4620	-0.48
30	41.1457	-81.4621	-0.48
31	41.1457	-81.4619	-0.48
32	41.1456	-81.4619	-0.48
33	41.1455	-81.4618	-0.48
34	41.1455	-81.4618	-0.72
35	41.1456	-81.4617	-0.76
36	41.1456	-81.4617	-0.84
37	41.1457	-81.4616	-0.48
38	41.1459	-81.4620	-0.77
39	41.1459	-81.4619	-0.85
40	41.1458	-81.4618	-0.97
41	41.1457	-81.4617	-1.07
42	41.1456	-81.4617	-0.9

LeFever Delta August 30, 2013 continued

Station	Latitude	Longitude	Elevatio
43	41.1456	-81.4616	-0.93
44	41.1456	-81.4616	-0.48
44	41.1456	-81.4616	-0.48

LeFever Delta Dec. 13, 2013

LeFever Delta Dec. 13, 2013 continued

Station	Latituda	Longitude	Elevation
ID	Latitude	Longitude	(m)
1	41.1456	-81.4615	-0.775
2	41.1456	-81.4616	-1.425
3	41.1455	-81.4616	-1.585
4	41.1456	-81.4616	-1.235
5	41.1456	-81.4616	-1.585
6	41.1455	-81.4616	-1.225
7	41.1455	-81.4616	-1.145
8	41.1454	-81.4617	-1.105
9	41.1454	-81.4617	-0.775
10	41.1455	-81.4619	-1.055
11	41.1455	-81.4619	-1.065
12	41.1456	-81.4618	-0.975
13	41.1456	-81.4618	-0.775
14	41.1456	-81.4617	-1.275
15	41.1456	-81.4617	-1.375
16	41.1456	-81.4617	-0.975
17	41.1456	-81.4617	-1.365
18	41.1456	-81.4617	-1.195
19	41.1456	-81.4616	-0.775
20	41.1458	-81.4617	-0.775
21	41.1458	-81.4617	-1.335
22	41.1457	-81.4618	-1.405
23	41.1457	-81.4618	-1.115
24	41.1457	-81.4618	-1.255
25	41.1457	-81.4619	-0.775
26	41.1456	-81.4619	-0.775
27	41.1457	-81.4620	-1.135
28	41.1457	-81.4620	-0.775
29	41.1458	-81.4621	-0.775
30	41.1458	-81.4621	-1.175
31	41.1458	-81.4621	-1.095
32	41.1459	-81.4620	-0.775
33	41.1458	-81.4620	-0.775
34	41.1458	-81.4619	-1.165
35	41.1459	-81.4619	-1.335
36	41.1459	-81.4619	-1.125
37	41.1459	-81.4619	-1.495
38	41.1459	-81.4618	-1.355
39	41.1460	-81.4618	-0.775
40	41.1460	-81.4618	-1.195
41	41.1460	-81.4618	-1.315
42	41.1460	-81.4618	-1.055

Dec. 15, 2015	continued		
Station	Latitude	Longitude	Elevation
ID			(m)
43	41.1461	-81.4617	-0.775
44	41.1459	-81.4615	-0.775
45	41.1459	-81.4615	-1.295
46	41.1460	-81.4615	-1.275
47	41.1460	-81.4615	-1.175
48	41.1460	-81.4615	-0.775
49	41.1459	-81.4613	-0.975
50	41.1459	-81.4613	-0.935
51	41.1459	-81.4613	-0.975
52	41.1460	-81.4615	-1.455
53	41.1460	-81.4616	-1.235
54	41.1459	-81.4616	-1.315
55	41.1459	-81.4617	-1.295
56	41.1459	-81.4617	-0.775
57	41.1461	-81.4619	-0.775
58	41.1460	-81.4620	-1.435
59	41.1460	-81.4620	-1.255
60	41.1460	-81.4621	-1.105
61	41.1460	-81.4621	-1.025
62	41.1459	-81.4622	-0.775
63	41.1459	-81.4622	-0.955
64	41.1459	-81.4622	-1.005
65	41.1459	-81.4623	-0.775
66	41.1460	-81.4624	-0.775
67	41.1461	-81.4624	-0.945
68	41.1461	-81.4624	-1.015
69	41.1462	-81.4623	-1.025
70	41.1462	-81.4623	-1.235
71	41.1462	-81.4622	-1.415
72	41.1462	-81.4622	-1.095
73	41.1463	-81.4622	-0.775
74	41.1461	-81.4622	-1.115

LeFever Delta March 23, 2014

LeFever Delta March 23, 2014 continued

1arch 23, 2014			
Station	Latitude	Longitude	Elevation
		01.4/00	(111)
l	41.1457	-81.4623	-0.665
2	41.1457	-81.4616	-1.305
3	41.1456	-81.4616	-1.725
4	41.1456	-81.4617	-1.425
5	41.1456	-81.4617	-1.575
6	41.1455	-81.4618	-1.525
7	41.1455	-81.4617	-1.155
8	41.1456	-81.4618	-1.125
9	41.1455	-81.4618	-1.455
10	41.1455	-81.4618	-1.535
11	41.1455	-81.4618	-1.465
12	41.1455	-81.4619	-1.225
13	41.1456	-81.4619	-0.985
14	41.1456	-81.4619	-1.345
15	41.1456	-81.4619	-1.455
16	41.1456	-81.4618	-0.915
17	41.1456	-81.4618	-0.925
18	41.1456	-81.4618	-1.325
19	41.1457	-81.4618	-1.585
20	41.1457	-81.4618	-1.465
21	41.1457	-81.4617	-1.765
22	41.1457	-81.4617	-1.305
23	41.1457	-81.4617	-1.345
24	41.1457	-81.4617	-1.025
25	41.1457	-81.4616	-0.665
26	41.1458	-81.4616	-0.665
27	41.1458	-81.4617	-1.105
28	41.1458	-81.4618	-1.565
29	41.1458	-81,4618	-1.685
30	41.1459	-81,4617	-0.665
31	41.1459	-81,4617	-1.625
32	41 1460	-81 4617	-1 275
33	41 1460	-81 4617	-1 275
34	41 1459	-81 4615	-1 225
35	41 1460	-81 4615	-1.225
36	41 1/150	-81 4615	-1.515
37	41 1450	-81 4615	-0.665
38	41 1/51	-81 /617	-0.005
30	<u>41.1451</u>	-81 /619	-1.213
<i>4</i> 0	41 1450	-01.4010 81 /610	1 715
40	41.1439	-01.4018 01.4610	-1./13
41	41.1400	-01.4018	-1.313
42	41.1460	-81.4618	-1.035

Watch 25, 2014	continucu		
Station	Latitude	Longitude	Elevation
ID	Lutitude	Longitude	(m)
43	41.1460	-81.4618	-1.285
44	41.1459	-81.4619	-1.805
45	41.1459	-81.4619	-1.585
46	41.1459	-81.4620	-1.585
47	41.1459	-81.4620	-1.585
48	41.1459	-81.4620	-1.265
49	41.1459	-81.4620	-1.375
50	41.1458	-81.4621	-1.335
51	41.1458	-81.4621	-1.405
52	41.1458	-81.4621	-1.305
53	41.1458	-81.4621	-0.665
54	41.1460	-81.4623	-1.095
55	41.1460	-81.4623	-1.535
56	41.1461	-81.4622	-1.545
57	41.1461	-81.4622	-1.595
58	41.1461	-81.4622	-1.455
59	41.1461	-81.4621	-1.545
60	41.1462	-81.4621	-1.745
61	41.1462	-81.4621	-1.565
62	41.1462	-81.4621	-1.265
63	41.1461	-81.4620	-1.465
64	41.1460	-81.4619	-1.515
65	41.1458	-81.4619	-1.445
66	41.1458	-81.4619	-1.525
67	41.1458	-81.4618	-1.365
68	41.1458	-81.4617	-1.495
69	41.1458	-81.4617	-1.825
70	41.1458	-81.4617	-1.225

LeFever Delta May 23 2014

LeFever Delta May 23 2014 continued

Way 23, 2014				Way 23, 2014	continued		
Station ID	Latitude	Longitude	Elevation (m)	Station ID	Latitude	Longitude	Elevation (m)
1	41.1455	-81.4617	-0.83	44	41.1459	-81.4619	-1.78
2	41.1455	-81.4617	-0.83	45	41.1459	-81.4620	-1.59
3	41.1456	-81.4617	-0.83	46	41.1458	-81.4620	-1.63
4	41.1456	-81.4617	-0.83	47	41.1458	-81.4621	-1.53
5	41.1456	-81.4618	-0.83	48	41.1458	-81.4621	-1.34
6	41.1457	-81.4618	-0.83	49	41.1457	-81.4621	-1.4
7	41.1458	-81.4618	-0.83	50	41.1457	-81.4621	-0.83
8	41.1458	-81.4618	-0.83	51	41.1452	-81.4619	-0.83
9	41.1459	-81.4617	-0.83	52	41.1455	-81.4619	-1.46
10	41.1459	-81.4616	-0.83	53	41.1455	-81.4618	-1.33
11	41.1458	-81.4616	-0.83	54	41.1455	-81.4618	-1.03
12	41.1459	-81.4614	-0.83	55	41.1455	-81.4619	-0.97
13	41.1459	-81.4615	-1.23	56	41.1456	-81.4618	-1.16
14	41.1459	-81.4614	-1.52	57	41.1456	-81.4619	-1.52
15	41.1460	-81.4615	-1.24	58	41.1456	-81.4619	-1.62
16	41.1460	-81.4615	-0.83	59	41.1456	-81.4620	-1.03
17	41.1460	-81.4615	-0.83	60	41.1456	-81.4619	-1.36
18	41.1459	-81.4616	-1.43	61	41.1457	-81.4619	-1.38
19	41.1458	-81.4616	-1.39	62	41.1459	-81.4619	-1.16
20	41.1459	-81.4616	-1.39	63	41.1458	-81.4620	-1.24
21	41.1458	-81.4616	-1.37	64	41.1458	-81.4619	-1.43
22	41.1458	-81.4617	-1.47	65	41.1458	-81.4619	-1.53
23	41.1459	-81.4617	-1.53	66	41.1458	-81.4619	-1.69
24	41.1459	-81.4617	-1.47	67	41.1458	-81.4618	-1.71
26	41.1460	-81.4617	-1.31	68	41.1458	-81.4618	-1.56
27	41.1462	-81.4622	-1.42	69	41.1458	-81.4618	-1.35
28	41.1462	-81.4622	-1.72	70	41.1458	-81.4618	-1.15
29	41.1461	-81.4623	-1.69	71	41.1457	-81.4617	-1.03
30	41.1460	-81.4624	-1.49	72	41.1457	-81.4618	-1.53
31	41.1460	-81.4624	-1.25	73	41.1457	-81.4618	-1.71
32	41.1460	-81.4625	-0.83	74	41.1457	-81.4618	-1.64
33	41.1459	-81.4622	-0.83	75	41.1456	-81.4618	-1.71
34	41.1458	-81.4622	-1.43	76	41.1456	-81.4618	-1.58
35	41.1459	-81.4622	-1.49	77	41.1456	-81.4619	-1.48
36	41.1459	-81.4621	-1.63	78	41.1456	-81.4619	-1.03
37	41.1460	-81.4621	-1.59	79	41.1456	-81.4619	-0.94
38	41.1460	-81.4621	-1.55	80	41.1456	-81.4619	-0.99
39	41.1460	-81.4620	-1.51	81	41.1456	-81.4619	-1.36
40	41.1461	-81.4620	-0.83	82	41.1454	-81.4618	-0.83
41	41.1460	-81.4618	-0.83	83	41.1455	-81.4618	-1.49
42	41.1460	-81.4618	-1.22	84	41.1456	-81.4617	-1.56
43	41.1459	-81.4619	-1.76	85	41.1455	-81.4618	-1.27

LeFever Delta May 23, 2014 continued

101uy 25, 2011	continued		
Station	Latituda	Longitude	Elevation
ID	Latitude	Longitude	(m)
86	41.1455	-81.4617	-1.04
87	41.1455	-81.4617	-1.21
88	41.1455	-81.4617	-1.23
89	41.1455	-81.4617	-1.43
90	41.1455	-81.4617	-1.72
91	41.1456	-81.4617	-1.52
92	41.1456	-81.4616	-1.72
93	41.1456	-81.4616	-1.75
94	41.1456	-81.4616	-1.43
95	41.1456	-81.4616	-1.2
96	41.1456	-81.4616	-0.83
97	41.1456	-81.4616	-0.83
98	41.1458	-81.4617	-0.67
99	41.1458	-81.4617	-0.64
100	41.1458	-81.4616	-0.4825
101	41.1458	-81.4616	-0.465
102	41.1458	-81.4616	-0.5225
103	41.1458	-81.4617	-0.655
104	41.1458	-81.4617	-0.435
105	41.1458	-81.4617	-0.5
106	41.1459	-81.4606	-0.47
107	41.1458	-81.4616	-0.6075
108	41.1458	-81.4616	-0.505
109	41.1458	-81.4617	-0.715
110	41.1458	-81.4616	-0.455
111	41.1457	-81.4616	-0.4475
112	41.1456	-81.4615	-0.44
113	41.1456	-81.4616	-0.44
114	41.1458	-81.4616	-0.4975

LeFever Delta July 25, 2014

LeFever Delta	
July 25 2014	continu

July 25, 2014				July 25, 2014	continued		
Station	Latituda	Longitudo	Elevation	Station	Latituda	Longitudo	Elevation
ID	Latitude	Longitude	(m)	ID	Latitude	Longitude	(m)
1	-	-	-1.2	43	41.1458	-81.4619	-1.64
2	41.1456	-81.4615	-1.2	44	41.1457	-81.4620	-1.61
3	41.1456	-81.4616	-1.49	45	41.1458	-81.4620	-1.32
4	41.1455	-81.4616	-1.76	46	41.1457	-81.4620	-1.2
5	41.1455	-81.4616	-1.34	47	41.1457	-81.4620	-1.41
6	41.1455	-81.4616	-1.6	48	41.1456	-81.4621	-1.2
7	41.1454	-81.4617	-1.7	49	41.1458	-81.4622	-1.2
8	41.1454	-81.4612	-1.59	50	41.1459	-81.4622	-1.2
9	41.1454	-81.4614	-1.2	51	41.1459	-81.4621	-1.48
10	41.1455	-81.4615	-1.2	52	41.1459	-81.4620	-1.32
11	41.1455	-81.4615	-1.56	53	41.1459	-81.4620	-1.46
12	41.1455	-81.4616	-1.61	54	41.1461	-81.4619	-1.7
13	41.1455	-81.4615	-1.66	55	41.1461	-81.4619	-1.4
14	41.1455	-81.4616	-1.52	56	41.1460	-81.4619	-1.2
15	41.1455	-81.4617	-1.64	57	41.1460	-81.4618	-1.26
16	41.1455	-81.4618	-1.52	58	41.1461	-81.4618	-1.2
17	41.1456	-81.4616	-1.77	59	41.1460	-81.4617	-1.2
18	41.1456	-81.4616	-1.46	60	41.1458	-81.4617	-1.35
19	41.1456	-81.4616	-1.2	61	41.1458	-81.4616	-2
20	41.1457	-81.4617	-1.7	62	41.1458	-81.4616	-1.3
21	41.1456	-81.4617	-1.69	63	41.1459	-81.4616	-1.2
22	41.1456	-81.4617	-1.7	64	41.1459	-81.4614	-1.2
23	41.1456	-81.4617	-1.54	65	41.1459	-81.4615	-1.29
24	41.1456	-81.4617	-1.35	66	41.1459	-81.4615	-1.2
25	41.1456	-81.4617	-1.4	67	41.1460	-81.4614	-1.2
26	41.1455	-81.4615	-1.2	68	41.1460	-81.4614	-1.38
27	41.1455	-81.4618	-1.37	69	41.1460	-81.4614	-1.2
28	41.1454	-81.4616	-1.2	70	41.1457	-81.4615	-0.44
29	41.1455	-81.4617	-1.2	71	41.1457	-81.4616	-0.4875
30	41.1456	-81.4618	-1.2	72	41.1457	-81.4617	-0.5725
31	41.1454	-81.4618	-1.37	73	41.1458	-81.4617	-0.5725
32	41.1456	-81.4618	-1.48	74	41.1458	-81.4617	-0.45
33	41.1456	-81.4619	-1.42	75	41.1459	-81.4617	-0.52
34	41.1457	-81.4618	-1.7	76	41.1459	-81.4617	-1.2525
35	41.1456	-81.4617	-1.2	77	41.1458	-81.4617	-0.3875
36	41.1457	-81.4617	-1.72	78	41.1458	-81.4616	-0.5
37	41.1457	-81.4617	-1.71	79	41.1459	-81.4615	-0.55
38	41.1457	-81.4617	-1.76	80	41.1458	-81.4616	-0.4275
39	41.1458	-81.4617	-1.2	81	41.1457	-81.4616	-0.44
40	41.1458	-81.4618	-1.2	82	41.1458	-81.4617	-0.6625
41	41.1459	-81.4619	-1.55	83	41.1458	-81.4618	-0.835
42	41.1458	-81.4619	-1.38	84	41.1459	-81.4618	-1.125

LeFever Delta Dec 15 2014

LeFever Delta Dec. 15, 2014 continued

Dec. 15, 2014				Dec. 15, 2014	continued		
Station ID	Latitude	Longitude	Elevation (m)	Station ID	Latitude	Longitude	Elevation (m)
1	41.1458	-81.4616	-	43	41.1462	-81.4622	-1.605
2	41.1458	-81.4616	-	44	41.1462	-81.4622	-1.735
3	41.1458	-81.3915	-	45	41.1462	-81.4623	-1.735
4	41.1457	-81.4617	-0.52	46	41.1461	-81.4624	-1.735
5	41.1458	-81.4615	-	47	41.1460	-81.4624	-1.765
6	41.1458	-81.4616	-0.365	48	41.1459	-81.4622	-1.495
7	41.1458	-81.4616	-0.4525	49	41.1460	-81.4623	-1.305
8	41.1458	-81.4617	-0.665	50	41.1461	-81.4623	-1.105
9	41.1459	-81.4617	-0.655	51	41.1459	-81.4622	-1.105
10	41.1458	-81.4617	-0.565	52	41.1459	-81.4622	-1.465
11	41.1458	-81.4616	-0.585	53	41.1459	-81.4621	-1.485
12	41.1457	-81.4616	-0.585	54	41.1459	-81.4621	-1.605
13	41.1457	-81.4615	-	55	41.1460	-81.4621	-1.615
14	41.1456	-81.4616	-1.105	56	41.1460	-81.4620	-1.625
15	41.1457	-81.4616	-1.105	57	41.1461	-81.4620	-1.545
16	41.1457	-81.4617	-1.625	58	41.1461	-81.4620	-1.105
17	41.1457	-81.4617	-0.3325	59	41.1460	-81.4619	-1.105
18	41.1457	-81.4617	-1.695	60	41.1459	-81.4620	-1.525
19	41.1458	-81.4617	-	61	41.1459	-81.4620	-1.695
20	41.1458	-81.4618	-1.445	62	41.1459	-81.4620	-1.585
21	41.1457	-81.4617	-0.3	63	41.1459	-81.4621	-1.485
22	41.1458	-81.4617	-1.105	64	41.1459	-81.4621	-1.615
23	41.1458	-81.4617	-0.43	65	41.1459	-81.4619	-1.425
24	41.1459	-81.4618	-1.105	66	41.1458	-81.4621	-1.565
25	41.1459	-81.4617	-1.105	67	41.1458	-81.4622	-1.455
26	41.1459	-81.4617	-1.105	68	41.1458	-81.4622	-1.105
27	41.1459	-81.4616	-1.105	69	41.1457	-81.4620	-1.105
28	41.1459	-81.4615	-1.105	70	41.1457	-81.4619	-1.535
29	41.1459	-81.4614	-1.105	71	41.1458	-81.4619	-1.465
30	41.1459	-81.4614	-1.275	72	41.1458	-81.4619	-1.245
31	41.1460	-81.4614	-1.405	73	41.1458	-81.4620	-1.425
32	41.1460	-81.4615	-1.105	74	41.1458	-81.4619	-1.425
33	41.1460	-81.4618	-1.105	75	41.1458	-81.4619	-1.625
34	41.1460	-81.4617	-1.425	76	41.1458	-81.4619	-1.635
35	41.1459	-81.4617	-1.285	77	41.1458	-81.4619	-1.775
36	41.1459	-81.4618	-1.435	78	41.1459	-81.4518	-1.525
37	41.1459	-81.4617	-1.555	79	41.1459	-81.4618	-1.495
38	41.1459	-81.4618	-1.615	80	41.1459	-81.4618	-1.505
39	41.1459	-81.4618	-1.325	81	41.1457	-81.4619	-1.795
40	41.1459	-81.4617	-1.305	82	41.1457	-81.4618	-1.805
41	41.1459	-81.4618	-1.105	83	41.1457	-81.4618	-1.775
42	41.1462	-81.4622	-1.105	84	41.1457	-81.4618	-1.805

LeFever Delta Dec. 15, 2014 continued

Station	Latituda	Longitude	Elevation
ID	Lanuac	Longitude	(m)
85	41.1457	-81.4619	-1.635
86	41.1457	-81.4616	-1.105
87	41.1456	-81.4619	-1.105
88	41.1456	-81.4618	-1.445
89	41.1456	-81.4619	-1.335
90	41.1457	-81.4620	-1.105
91	41.1456	-81.4620	-1.105
92	41.1456	-81.4618	-1.105
93	41.1455	-81.4618	-1.105
94	41.1455	-81.4615	-1.655
95	41.0000	-81.0000	-0.19
96	41.1456	-81.4619	-1.255
97	41.1456	-81.4618	-1.405
98	41.1456	-81.4618	-1.505
99	41.1456	-81.4618	-1.105
100	41.1456	-81.4617	-1.105
101	41.1456	-81.4618	-1.525
102	41.1456	-81.4617	-1.585
103	41.1456	-81.4617	-1.785
104	41.1457	-81.4616	-1.595
105	41.1457	-81.4616	-1.825
106	41.1458	-81.4615	-1.675
107	41.1456	-81.4615	-1.315
108	41.1456	-81.4615	-1.735
109	41.1456	-81.4616	-1.725
110	41.1455	-81.4616	-1.485
111	41.1455	-81.4616	-1.765
112	41.1455	-81.4616	-1.725
113	41.1454	-81.4616	-1.605
114	41.1454	-81.4617	-1.505
115	41.1454	-81.4617	-1.105

LeFever I	Jelta

LeFever Delta

May 3, 2015				May 3, 2015	continued		
Station ID	Latitude	Longitude	Elevation (m)	Station ID	Latitude	Longitude	Elevation (m)
0	41.1458	-81.4616	0	42	41.1458	-81.4618	-1.6175
1	41.1457	-81.4617	-1.2175	43	41.1459	-81.4618	-1.6975
2	41.1458	-81.4616	-0.815	44	41.1459	-81.4618	-1.6175
3	41.1459	-81.4617	-0.725	45	41.1461	-81.4620	-1.2175
4	41.1459	-81.4617	-1.2175	46	41.1461	-81.4620	-1.6375
5	41.1459	-81.4616	-0.4	47	41.1460	-81.4620	-1.6075
6	41.1459	-81.4616	-1.2175	48	41.1460	-81.4620	-1.5875
7	41.1459	-81.4616	-0.435	49	41.1460	-81.4621	-1.5575
8	41.1457	-81.4616	-0.705	50	41.1459	-81.4621	-1.3775
9	41.1457	-81.4616	-1.2175	51	41.1459	-81.4622	-1.2175
10	41.1456	-81.4615	-1.2175	52	41.1460	-81.4624	-1.2175
11	41.1456	-81.4615	-1.8075	53	41.1462	-81.4624	-1.7675
12	41.1455	-81.4615	-1.5875	54	41.1463	-81.4623	-1.6575
13	41.1455	-81.4616	-1.7775	55	41.1463	-81.4622	-1.6575
14	41.1455	-81.4616	-1.7075	56	41.1463	-81.4622	-1.7775
15	41.1455	-81.4616	-1.7475	57	41.1462	-81.4622	-1.2175
16	41.1454	-81.4616	-1.6175	58	41.1459	-81.4619	-1.5575
17	41.1454	-81.4616	-1.2175	59	41.1459	-81.4619	-1.7475
18	41.1455	-81.4617	-1.2175	60	41.1459	-81.4618	-1.6175
19	41.1454	-81.4617	-1.6075	61	41.1460	-81.4618	-1.5775
20	41.1455	-81.4617	-1.6675	62	41.1460	-81.0118	-1.5275
21	41.1455	-81.4617	-1.5475	63	41.1459	-81.4615	-1.5575
22	41.1622	-81.4617	-1.5775	64	41.1459	-81.4615	-1.5375
23	41.1456	-81.4617	-1.7275	65	41.1457	-81.4619	-1.1575
24	41.1456	-81.4617	-1.5075	66	41.1456	-81.4618	-1.1975
25	41.1456	-81.4616	-1.6575	67	41.1457	-81.4618	-1.5675
26	41.1456	-81.4616	-1.7475	68	41.1457	-81.4618	-1.5475
27	41.1457	-81.4616	-1.2175				
28	41.1457	-81.4617	-1.7375				
29	41.1457	-81.4617	-1.6575				
30	41.1457	-81.4618	-1.7475				
31	41.1457	-81.4618	-1.5875				
32	41.1456	-81.4618	-1.5375				
33	41.1456	-81.4618	-1.0375				
34	41.1455	-81.4619	-1.4775				
35	41.1456	-81.4619	-1.4375				
36	41.1455	-81.4619	-1.2175				
37	41.1457	-81.4620	-1.2175				
38	41.1457	-81.4620	-1.3975				
39	41.1458	-81.4619	-1.4375				
40	41.1458	-81.4619	-1.2275				
41	41.1458	-81.4618	-1.4275				