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ABSTRACT 

In the past decades, the Finite Element (FEM) and the Boundary Singularity (BSM) 

Methods have proven their efficiency in solving electromagnetic and thermal problems. 

In fluid mechanics, BSM is a special case of BEM based on known fundamental 

solutions of the Stokes equation called Stokeslets. Potentially, the method has advantages 

over traditional finite-volume and finite-difference mesh-based methods for low-

Reynolds number flows (𝑅𝑒 < 1). Unlike Finite Difference and Finite Volume Methods, 

BSM only requires placement of fundamental solutions (singularities) at the boundaries 

of the considered geometry. However, in its’ present state the use of BSM is hindered by 

solution oscillations and instabilities, due to high condition numbers of computational 

matrices and Stokeslet placement particularities that we attempted to resolve in the 

present research. 

Application of proposed methods allows solving problems of a Stokes flow about 

ensembles of particles, “droplet – fiber” systems and flows in micro-channels using 

moderate number of singularities. Methods of geometric allocations of Stokeslets to 

achieve convergence with moderate number of Stokeslets are proposed, implemented and 

tested. 

Optimized allocation of Stokeslets and collocation points is suggested for pairs and 

clusters of particles forming variable surface curvature including rapid variation of 
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curvature and presence of inflection points. In the present Dissertation local normal 

and combined Stokeslets allocation methods to solve Stokes flow problems for clusters of 

particles.  

Another extension to the Stokeslet allocation schemes has been developed to evaluate 

Stokes flow field about single droplets and the “peanut-shape” clusters of merging 

droplets settling on relatively long cylindrical fibers. Three test problems are solved to 

demonstrate capability of BSM and proposed schemes of allocation of singularities.  

Coupling of BSM and Finite Volume Methods was developed and applied to the 

solution of multiple scale quasi-steady problems of viscous deformation of 3-D droplets 

and 2-D tracks in a rectangular channel under air stream impinging at various angles.   

At last, BSM simulation of a Stokes flow about micro-scale 3-D parabolic ripples and 

droplets was performed and the corresponding droplet viscous deformations were 

computed. The computational results are compared to the results of presented 

experimental visualization of viscous deformation of polydimethylsiloxane (PDMS) 

droplets and tracks in a scaled up replica of the air-liquid reaction zone. The mentioned 

simulations and experiments represent simplified model viscous deformation of molten 

mesophase pitch surface perturbation under the impinging hot air jet in the stagnation 

zone of the so-called Nanofiber-by-Gas Jet (NGJ) slit nozzle. 

 

Keywords: Boundary singularity method, Stokes equations, microfluidics, Stokeslet, 

allocation of Stokeslets, matrix condition number, quasi-steady approach, viscous 

deformations, meltblowing, Nanofiber-by-Gas Jet, combined BSM and Finite Volume 

Method, production of submicron and nanofibers. 
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CHAPTER I 

INTRODUCTION 

 

Present research is dedicated to: (i) the development of algorithms of placement of 

singularities for the Boundary Singularity Method and their comparison to the basic ones 

(Zhao, Povitsky [1,2,3,4,5], Gu et al [6], Chen, Gu [7]); (ii) determination of Stokes 

force, pressure and velocities of steady-state Stokes flows about merging particles and 

their clusters, “droplet – fiber” and other micro-scale multiphase flow systems and (iii) 

validation and application of the developed algorithms to important practical problems 

(fibrous filtration, particulate flows, multiphase flows and deformations of viscous media 

surfaces exposed to incoming high speed jet in which case Stokes flow is used to describe 

flow field in the vicinity of impact and droplet/track deposition line). 

A Stokes flow model describes fluid moving at low Reynolds numbers (𝑅𝑒 < 1), so 

that convection terms in the governing Navier-Stokes equations are neglected. Condition 

𝑅𝑒 < 1  corresponds to either slow motion, or small characteristic length or large 

viscosity or combination of these factors. 
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1.1. Boundary element methods in practical micro- and nanoscale flow problems 

 

There are numerous practical applications of Stokes flows that require computing of 

flow field such as micromechanical engineering (nano- and micro- filtration of 

multiphase mixtures [ 8 , 9 ], penetration of fluid drops in porous media and their 

hydrodynamic interaction [10,11,12, 13]), biomedical engineering (precise medicine 

filtration and injection, vascular flows development of media capturing viruses, bacteria 

and cells, protein folding, vascular and capillary blood flow [14, 15]) and aerospace 

engineering (micro-channel heat exchangers development), to name a few. A distinct 

advantage of the Boundary Singularity Method (BSM) considered in this work and 

compared to finite-element (FEM) and finite-volume (FVM) methods is that BSM 

requires meshing only the boundary surface and not the entire 3-D domain. Therefore, 

BSM is easily applicable to flow about particles and their pairs and clusters of arbitrarily 

and changing shape. 

 

1.2. Method of Fundamental Solutions and allocation of singularities review 

 

Being one of the Boundary Element Methods (BEM) [10, 16 ], Method of 

Fundamental Solution (MFS) (also known and named hereinafter as the Boundary 

Singularity Method (BSM)) has demonstrated good accuracy using moderate number of 

fundamental solutions, so-called Stokeslets, at the boundary for Stokes flows about 

spherical particles [1-4, 9, 17]. The physical meaning of Stokeslets is a reaction on a unit 
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point force applied in a particular point at a surface. Then the sum of Stokeslets 

represents a total drag about whole surface. Most of BEM are based on the integral 

representations of governing equations and requiring a continuous surface distribution of 

singularities and the computation of the singular single-layer and double-layer integrals. 

Unlike those BEM, BSM involves only a point-wise distribution of singularities and thus 

simplifies the computer implementation and decreases the cost of computations. 

The authors of the papers cited above obtained optimal allocation of singularities 

primarily for spherical particles. The problem with BSM method is appearance of near-

singular matrices with large condition number (the ratio of maximum-to-minimum 

eigenvalues) in cases when either Stokeslets are located too close to observation points or 

Stokeslets are located too close to each other [4]. Therefore Stokeslets can neither 

coincide with collocation points nor placed near the geometric center of spherical 

particle. The optimal radius of spherical surface at which Stokeslets are located has been 

determined in prior studies as a fraction of radius of spherical particle. 

Prior MFS studies are focused on techniques to extend its applicability, to reduce 

number of singularities required to achieve convergence and to avoid near-singular 

matrices. The developed approaches include slender-body approach [11, 12, 18, 19, 20, 

21], method of images [22, 23, 24, 25, 26, 27], method of regularized Stokeslets [28, 29, 

30, 31], and method of allocation of Stokeslets outside of computational domain (also 

known as method of submerged Stokeslets [1-3, 8, 17, 32]).  In the current study, the 

meethod of submerged Stokeslets has been extended to particles with variable curvature 

radii associated with geometric properties of fused particles. 
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1.2.1 Slender-body approach 

 

One of techniques allocating MFS singularities is based on slender-body approach 

[12, 18 and 19]. The necessary condition for validity of this approach is that one 

dimension (size of body) should be much larger than other dimensions ( 𝜖 =
𝑙

𝑏
 ≤

0.005), where l is a body length and b is the maximum characteristic length in other 

directions [20]. In frame of the slender body approach, Stokeslets are placed along the 

axis of a slender body. This method has been adopted  for basic shapes like cylinders, 

helices, spheroids and other axisymmetric bodies (Clarke et al. [11], Cortez and Nicholas 

[21], Nitsche and Parthasarathi [30]), complex flagella swimming models, closed 

filaments and combined bodies (Johnson and Brokaw [20], Cortez and Nicholas [21]), 

flexible fibers and filaments (Tornberg and Shelley [12]), and various slender 

axisymmetric particles (Batchelor [18]), to name a few. The slender-body approach 

separates collocation points and singularities and thus offers straightforward approach to 

allocation of singularities. However, this technique is limited to axisymmetric slender 

bodies and is not applicable to pairs and clusters of particles where the above slenderness 

condition is not satisfied. 

 

1.2.2 Method of Regularized Stokeslets 

 

To remove singularities associated with close proximity of Stokeslets and collocation 

points, the method of regularized Stokeslets (MRS) is used for Stokes flow problems 
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including flow about translating spheres (Cortez  et al. [29]) and more complex shapes 

like cilia- and flagella- driven flows (Lobaton and Bayen [31] and Smith et al. [33]). 

MRS has been introduced by Cortez et al. [29, 34] and has been updated and improved by 

Lin [35] and Gonzalez [36]. MRS is based on exact solution of Stokes equations for 

velocity in response to local force expressed by regularized delta functions. The Method 

of Regularized Stokeslets becomes another version of MFS specifically focused on 

elimination of singularities [16]. In MRS the Green’s function singularity is removed [37] 

by distortion of original Green’s function (Stokeslet). 

According to Zhao [5], BSM with Stokeslets cause significant pressure 

oscillations in the obtained numerical solution, when the Stokeslets and collocation points 

are located at the same spherical surface. Zhao emphasizes that regularized Stokeslets 

help avoiding singular solution at the boundary surface and remove pressure oscillations, 

making it one of the perspective methods that will be used to solve problems mentioned 

above. This statement will also to be verified in the present work. 

 

1.2.3 Method of Submerged Stokeslets 

 

In the current study, the focus was made on different schemes of optimal 

placement of Stokeslets distributed under considered boundary. The proposed schemes 

are to produce accurate Stokes flow solution using moderate number of Stokeslets. 

Method of Submerged Stokeslets does not create singular matrix even if two particles 

collide or close to each other. Present research proposes novel schemes of Stokeslets’ 
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allocation to particles of arbitrarily shapes formed as a result of merging of two or more 

spherical particles, particles interacting with fibers, as well as viscous and liquid droplets 

deformed in the flow. The goal is to achieve solution convergence using moderate 

number of Stokeslets for Stokes flow about generic shapes of ensembles of particles and 

other surfaces in hydrodynamic interaction. For liquid or gas droplets or solid particles 

that are frozen liquid droplets, the spherical convex shape has minimum surface for a 

given volume [38]. While single particles typically have convex surface, their newly 

formed pairs and clusters have combined convex and concave surfaces separated by 

inflexion points (see Figures 2-3 and 2-6). The convex spherical part of surface is 

inherited from single spherical particles, while the concave part of surface is formed 

where particles are merged. The proposed combined approach to allocation of Stokeslets 

accounts for intermittent convex and concave parts of surface of cluster or pair of 

particles. 

 

1.2.4 Basic Stokeslet allocation methods in BSM 

 

In existing allocation methods, Stokeslets are placed at submerged surface 𝛤𝑆 similar in 

shape to physical particle surface 𝛤 but of smaller geometric scale (see Chapter II). There 

are two Stokeslet allocation techniques widely used in frame of the method of submerged 

Stokeslets, namely, similar shape uniform and non-uniform methods (Zhao and Povitsky 

[1-5], Young, Chen [32,39], and Aboelkassem and Staples [8]). In frame of the uniform 

allocation scheme the surface 𝛤𝑆 is divided to elementary surface cells of equal area and 
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Stokeslets are placed at the centers of these cells. A non-uniform Stokeslet allocation 

scheme assumes equal number of Stokeslets at each lateral cross-section, which leads to 

more dense concentration of Stokeslets in the cross-sections with a smaller radius such as 

necks and poles.  

Young et al. [40, 41 and 42] applied BSM to 2-D and 3-D problems of Stokes 

flow about spheres and inside cavities with various shape forms. Their numerical 

experiments revealed range of distances between Stokeslets and collocation points that 

produced acceptable convergence. Thus, for a Stokes flow about sphere they chose 

normalized Stokeslets allocation depth of 𝐷 ≈ 0.167 under the spherical surface of the 

unity radius and the number of Stokeslets varied from 20 to 40 Stokeslets for the flows in 

circular cavity to more than 266 Stokeslets for the flow about complex shape. Kolodziej 

and Klekiel [43] used MFS to obtain parameters of Stokes flows through ducts of 

arbitrarily cross-section. For a duct with square cross-section, they placed Stokeslets 

outside of flow domain at a distance of 10% of the square length. 

Many studies adopt uniform Stokeslet allocation scheme including Zhao and 

Povitsky [1-5] for Stokes flows about sets of spheres, Young et al. [44, 39, 45, 46, 47]  

for a lid driven cavity flow, Aboelkassem and Staples [8] for Stokes flows in curved 

ducts and Young et al. [32] for Stokes flow inside free-form cavities and about spherical 

particles. Zhao and Povitsky [1-5] applied uniform Stokeslet distribution scheme for a 

Stokes flow past a sphere and about ensembles of spherical particles for no-slip and 

partial-slip boundary conditions. They have determined that the optimal Stokeslet 

allocation is at spherical surface 𝛤𝑆 with its normalized radius 𝑎 = 0.7 that corresponds to 
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Stokeslets' allocation depth D = 0.3 (Figure 2-1). This submergence depth has been used 

for both uniform and non-uniform Stokeslet allocation schemes.  

Apart of the solution of a Stokes flow problems, allocation of boundary 

singularities is discussed by Goldberg and Cheng [48] and applied to the heat transfer 

problem inside two merging spheres. They placed singularities over an imaginary sphere 

of a greater radius than the boundary surface. Tsai and Young [17] applied non-uniform 

Stokeslet allocation scheme to a peanut-shaped model solving 3-D Helmholtz problems.  

Tsai et al. [ 49 ] used the non-uniform Stokeslet allocation scheme to place 

Stokeslets (referred to as source points) to solve unsteady problem of motion of peanut-

shaped particle in a viscous media. They used a combined temporal-spatial discretization 

scheme, i.e. they placed source points at the same spatial locations as collocation points 

but at different time levels that allows for the non-zero distance between Stokeslets and 

collocation points. 

 

1.3 BSM application to particulate flows and fibrous filtration problems 

 

Determination of the flow parameters about ensembles of micro-scale droplets 

during their hydrodynamic interaction, as well as with cylindrical fibers and study of the 

drag force depending on orientation of “droplet - fiber” systems, is one of the core 

problems considered in present research. 
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For Stokes flows about pairs and clusters of particles with convex and concave 

surfaces, BSM still has stability constraints and requirements for substantial 

computational resources due to a large condition number of computational matrix 

associated with BSM (see Chapter II). The number of Stokeslets affects condition 

number of a computational matrix and, consequently, the convergence rate. If the number 

of Stokeslets and collocation points increases, the computational matrix may become ill-

posed because the corresponding vectors connecting neighboring Stokeslets and 

collocation points become near-parallel [3]. This issue becomes even more critical in the 

vicinity of inflexion points for complex convex-concave shapes. 

This calls for allocation of Stokeslets at more broadly defined surfaces 𝛤𝑆 that are 

not necessarily geometrically similar to particle's physical surface 𝛤, at which collocation 

points are placed (Figure 2-1). The study is aiming at development of Stokeslets-

allocating methodology applicable to arbitrarily shaped bodies typical for particles' 

interaction problems in order to reduce the size of linear system and to obtain acceptable 

accuracy of the solution using moderate number of Stokeslets. This allows for significant 

savings in computational time of the BSM applied to a Stokes flow problems where 

precise determination of Stokes force and other flow parameters are critical. If successful, 

the proposed schemes can be applied to arbitrary-shaped surfaces modeling freeform 

droplets and particles. The problem of finding Stokes force, velocity and stresses for such 

surfaces with known empirical formulas is cumbersome as soon as finding volume of an 

arbitrary-shaped surface is quite complicated [50], especially for ensembles of interacting 

surfaces. 
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1.4 BSM application to a “gas – liquid” interaction problem in the NGJ process 

 

Besides fibrous filtration and hydrodynamic interaction of particles, the practical 

applicability of BSM is demonstrated through solving of the microfluidics problems 

typical for the Nanofiber-by-Gas Jet (NGJ) process. NGJ is a nanofiber production 

process that was developed and patented at The University of Akron back in 2002. 

Similar to meltblowing [51,52], the physical principle of the process is aerodynamic 

interaction of pre-heated gas jet with a liquefied polymer surface. However, meltblowing 

implies injection of the polymer in strands where at the outlet it is coaxially surrounded 

and attenuated by gas jet. Instead, the NGJ process in rectangular nozzle is based on 

development of the disturbances on a free pitch surface under high temperature gas jet 

and fiber-forming stretching by means of drag force exerted at the surface of molten 

polymer surface ripples (Figure 1-1). 

Although NGJ method has been proven efficient in producing micro- and 

nanofibers from various polymers, interaction between processes taking place is quite 

complicated to develop the computer model for design optimization. The physics of the 

process incorporates multiphase turbulent flow with simultaneous effect of air-pitch-solid 

interaction, turbulent flow in the channel, rheological liquid flow with non-Newtonian 

properties relating viscosity, shear stress and dynamic tensile modulus. 
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Figure 1-1 Schematic of the air flow impinging the molten pitch ripple. 

 

Because of the micro-scale nozzle dimensions and intense nanofiber and molten 

pitch particles scattering, NGJ and meltblowing processes are quite complicated for 

visualization and PIV-imaging inside (Figure 1-2). Meanwhile, there is a demand [52] in 

understanding of physics of multiphase flows occurring in the contact zone, where high-

velocity air jet contacts with molten resin, mesophase pitch in particular. 

As shown at Figure 1-1, the angle at which air jet impinges the lower channel wall 

is 𝛽 = 45𝑜. This corresponds to experimental nozzle air jet channel assembly. However, 

numerous experimental nozzle runs have shown that specified air jet channel inclination 

is not optimal, because it produces contaminating pitch particles besides fiber due to 

aero-acoustic effects inside. It was also shown experimentally using concentric nozzle 

that grazing air jet contacting with disturbed pitch film at smaller angles of impingement 

has higher nanofiber production rate than “loosening” jet at larger angles that causes 

“spitting out” pitch particles. Therefore, present study includes numerical simulation and 

experimental research of viscous deformation effects for the pitch surface perturbation in 

a low-Reynolds flow region for different 𝛽. 
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Figure 1-2 Photograph of the rectangular NGJ nozzle (details are omitted due as an 

intellectual property of the UARF and the College of Polymer Science and Polymer 

Engineering) 

 

 

Recent experiments on NGJ development were conducted with participation of 

author of the present work at Sydney L. Olson Research Center of the University of 

Akron under advisory of Prof. Darrell H.Reneker (College of Polymer Science and 

Polymer Engineering) and management of Dr. Barry Rosenbaum (UARF). The 

experiments with the new NGJ nozzle (Figure 1-2) operated with the GraphTech carbon 

mesophase pitch show importance of the balance between air flow and melted pitch flow 

characteristics. It is predicted that at smaller angles between impinging air stream and the 

pitch flow direction, the process is more sustainable. That is pitch pressure tends to grow 

at larger angles (Figure 1-1), and the volume fraction of fiber with respect to 
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contaminating pitch particles occasionally produced together with fiber, is lower. The 

appropriate process modeling, numerical simulations of the flow of impinging air jet at 

the disturbed pitch surface in stagnation region at different angles and determination of 

flowfield, stress components the flow are necessary to predict deformations of viscous 

pitch nanofiber embryos. In present PhD dissertation, the effect of impinging air jet 

orientation angle versus deformation of a liquid pitch droplet/track in a rectangular 

channel is studied. 

  

1.5 Objectives of the present work 

 

The present work is aimed at improvement of computational efficiency and 

increasing accuracy of BSM in terms of drag (Stokes) force and velocity solving Stokes 

flow problems for convex-concave 3-D models of merging particles, bubbles and 

droplets, their interaction with the cylindrical fibers, as well as for the problems of 

viscous liquid surface deformations. For this purpose, advanced schemes of allocation of 

Stokeslets with their comparison to a commonly used allocation schemes are developed. 

The proposed schemes are applied to practical problems of microfluidics with faster and 

more accurate prediction of Stokes flow parameters for: 

a) particles and droplets of arbitrary shape (Chapter II); 

b) hydrodynamic interaction, droplets merging into pairs and clusters (Chapter II); 

c) hydrodynamic interaction of droplets settling on fibers (Chapter III). 
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The author is also attempting to obtain computationally efficient and accurate 

prediction of multiple-scale fluid flow about liquid surfaces in a microscale channel using 

FV – BSM approach. The algorithm of the problem scale transition with the domain 

overlap for respective FV and BSM application will be discussed in Chapter IV. 

 

1.6 Organization of the present work 

 

The dissertation is composed as follows. Chapter II formulates BSM for a Stokes 

flow problem and validates BSM methodology using known solution for the flow about 

pairs and clusters of merging particles. The proposed Stokeslet allocation schemes for 

arbitrarily-shaped bodies are introduced and applied to Cassinian and modified Cassinian 

ovals introduced as representatives of pairs and clusters of particles. 

 Chapter III describes another alternative Stokeslet allocation scheme, which was 

developed particularly for the problems of Stokes flows about “droplet - fiber” systems 

and the resulting velocity vector field and the drag force evolution depending on system 

orientation with respect to a flow direction are presented. 

Chapter IV introduces experimental apparatus for study of viscous deformation of 

droplets and tracks in a rectangular channel. The scale up of real NGJ process nozzle 

reaction zone justification is discussed and deformation visualization results are presented 

in order to compare them with subsequent numerical simulation for the respective air 

flow orientation angles. 
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There are very few examples of coupling of Finite Volume and Boundary 

Element Methods for multiscale problems. Kassab et al in [53] and Li and Kassab in [54] 

used BEM/FVM coupling to address the problem of heat transfer in 3-D cooled film 

turbine blades. In Chapter V, a multiple scale FVM-BSM quasi-steady approach is 

proposed for simulation of Stokes flow about deformable surfaces of viscous 2-D semi-

circular and parabolic tracks is validated and used. In this Chapter surface stresses and 

resulting viscous deformations of the liquid surface modeling PDMS and mesophase 

pitch ripple under impinging air uniform crossflow in vicinity of stagnation line inside 

NGJ nozzle are predicted. First, validation of MRS has been performed applying it to the 

test case problem of a Stokes flow in a rectangular channel with semi-circle protrusion. 

Pressure and shear stress along the channel bottom wall with protrusion are compared to 

the results obtained by Cortez [34] and the ones computed with the FV method. Then 

MRS is incorporated into a BSM code to solve iterative quasi-steady problem of viscous 

deformations of the surface in a Stokes flow region. The initial velocity vector field at the 

boundaries of the considered 1056𝜇𝑚 × 256𝜇𝑚 fluid flow domain is imported from the 

resulting velocity vector field for the whole channel obtained in ANSYS Fluent. 

Chapter VI represents 3-D extension of Chapter V and discusses solution of 

multiple scale problem of viscous deformation of 3-D parabolic droplet under air jet 

discharged into the channel at orientation angles equal to 30 and 45 degrees. 

Finally, conclusions and directions of the proposed future research are presented 

in Chapter VII. 
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CHAPTER II 

 

DEVELOPMENT OF THE BOUNDARY SINGULARITY METHOD FOR THE 

PROBLEMS OF HYDRODYNAMIC INTERACTION BETWEEN PARTICLES AND 

THEIR CLUSTERS 

2.1 Formulation of the problem and common Stokeslet allocation schemes 

 

The model of a viscous flow with Re<1 is represented by the system of simplified 

vector momentum equation (Stokes equations) and a continuity equation, which can be 

written as follows: 

{
𝛻 ∙ 𝑢⃗ = 0

−𝛻𝑝 + 𝜇𝛻2𝑢⃗ = 0,
                      (2-1) 

where 𝑢⃗ (x,y,z) and p(x,y,z) are the 3-D velocity vector and pressure respectively. The 

general solution of above system of equations for velocity can be presented using sums of 

Green’s functions corresponding to 𝑁 elementary flow singularities (Stokeslets): 

𝑢𝑗
(𝑘) =

1

8𝜋𝜇
∑ (

𝐹𝑖
(𝑘)

|𝑟𝑖𝑗̃|
+
𝐹𝑖
(𝑚)𝑟𝑖𝑗̃

(𝑘)𝑟𝑖𝑗̃
(𝑚)

|𝑟𝑖𝑗̃|
3 )𝑁

𝑖=1                    (2-2) 

where 𝑟𝑖𝑗̃ = 𝑟𝑗⃗⃗ − 𝑎𝑖⃗⃗  ⃗  are vectors connecting collocation points and Stokeslets. Here 

subscripts j are associated with collocation points, and subscripts i denote Stokeslets, 

index k=1,2,3 denote components  of velocity. Einstein summation rule is applied to 
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index m=1,2,3 that denote components of Stokeslets vectors. The above system can be 

expressed in the matrix form: 

𝑈 = 𝑀𝐹                              (2-3) 

where 𝑈⃗⃗  is a velocity vector at collocation points, 𝐹  is a Stokes force vector with 3N 

unknowns, and M is the 3𝑁 × 3𝑁 matrix of system (2-2). The Stokeslets' strength vector 

is 𝐹 = {𝐹1
1, 𝐹1

2, 𝐹1
3, … , 𝐹𝑁

1, 𝐹𝑁
2, 𝐹𝑁

3}. To reduce round-off errors, distances 𝑟𝑖𝑗̃ in (2-2) 

are normalized by characteristic radius that is defined as the ratio of a particle volume to 

its surface area and is equal to radius of sphere for a spherical particle. 

For convenience of posting boundary conditions, a Stokes flow problem is 

considered for a particle that moves with the velocity 𝑈∞ through a stationary fluid. For 

no-slip boundary conditions, the velocity components are equal to U∞ at rigid boundaries, 

where collocation points are located while far-field boundary conditions are omitted. 

Numerical solution of above linear system (2-3) was performed using the MATLAB 

backslash linear algebraic operation, F=U\M. For a square matrix (2-3) a general 

triangular factorization is computed by Gaussian elimination with partial pivoting 

implemented  in MATLAB's backslash operator [55]. In the future research the system 

(2-3) can be replaced with its simplified version that nulls small contributions of 

Stokeslets and collocation points located at a distance from each other (see Equation (2-

2)). This would allow using more efficient algorithms available in MATLAB's backslash 

operator for banded linear systems [55]. 
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Figure 2-1 Stokeslet allocation schemes for Stokes flow about spherical particle: a) non-

uniform (196 Stokeslets) and b) uniform (194 Stokeslets). Particle has surface Г; 

Stokeslets are allocated at spherical surface 𝛤𝑆. 

 

After system (2-3) is solved, velocity can be determined at any point of the flow 

field using the right-hand side of (2-2) with values of radius-vectors corresponding to a 

point location. The resulting pressure is computed by: 

𝑝𝑗 =
1

4𝜋
∑

𝐹𝑖
(𝑚)∙𝑟𝑖𝑗̃

(𝑚)

|𝑟𝑖𝑗̃|
3

 𝑁
𝑖=1     (2-4) 

Validation of BSM matrix equation (2-3) is conducted using the flow about spherical 

particle, for which analytical solution is known [56] and presented in Appendix A.  

a) b) 

Γ 

ΓS 

D D 

Γ 

ΓS 
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Figure 2-2 Validation of numerical solution for Stokes flow about sphere: (a-b)  

convergence in terms of Stokes force a) non-uniform Stokeslet allocation scheme, b) 

uniform scheme; flow velocity magnitude at distance 0.1R from the sphere surface: c) 

non-uniform Stokeslet allocation scheme (324 Stokeslets) and d) uniform scheme (339 

Stokeslets). 

 

Compared variables include Stokes force, velocity field and pressure at the 

particle surface. The method of submerged Stokeslets [1-3, 43, 48, 40, 57, 58] was 

applied to allocate Stokeslets inside the sphere (Figure 2-1) to avoid ill-conditioned 

matrix M. The depth of Stokeslet allocation is a difference between radius of the physical 

particle surface 𝛤, R, and radius of spherical surface 𝛤𝑆, a, at which Stokeslets are located. 

The normalized Stokeslet submergence depth, D, is defined as follows: 
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𝐷 =
𝑅−𝑎

𝑅
= 1 − 𝑎,                 (2-5) 

To evaluate convergence to analytical solution in terms of Stokes force (see Equation (A-

1) in Appendix A) and tangential velocity (A-3), numerical results (Figure 2-2) are 

obtained for non-uniform and uniform Stokeslet distribution schemes. 

Non-uniform scheme (Figure 2-2a) has an equal number of Stokeslets (and 

collocation points) at each cross-section of the sphere. Non-uniform distribution of 

Stokeslets gives satisfactory convergence (0.1% of the absolute error in terms of Stokes 

force) using 625 Stokeslets, while uniform distribution scheme (Figure 2-2b) gives the 

same accuracy using 262 Stokeslets. 

Spherical particle is a convenient geometric shape to validate BSM using exact 

analytical solution and known methods of allocation of Stokeslets. However, for 

arbitrarily shaped particles, one has to account for the variable radius of curvature and the 

presence of inflection points to allocate Stokeslets in an optimal way. In the next sections 

it will be shown that Stokeslet allocation at submerged similar shape surface  𝛤𝑆  can be 

replaced by more efficient local normal and combined schemes for Stokes flow problems 

about arbitrarily shaped particles. 

 

2.2 Proposed Stokeslet allocation schemes 

Proposed schemes of Stokeslets allocation based on geometric features of 

arbitrary-shaped bodies are introduced in this section. The suggested advanced allocation 



 

21 

 

 

schemes are designated to fend off solution instabilities for the regions near inflection 

points of convex – concave shapes and achieve faster Stokes force and velocity 

convergence. 

 

2.2.1 Local normal Stokeslet allocation scheme 

 

In a general case of asymmetrical arbitrarily shaped particle, the Stokeslet 

allocation algorithm at local normal lines (Figure 2-3a) places Stokeslets at surface 

formed by points S belonging to segments of  lines locally normal to the surface and 

connecting the collocation points (𝐴1, 𝐴2, … , 𝐴𝑁) with the dividing line (𝐵1, 𝐵2, … , 𝐵𝑁). 

The dividing line splits the particle's axial cross-section into two areas of equal size. For 

an arbitrarily-shaped body this reference dividing line is curvilinear (see Figure 2-3a), 

while for an axisymmetric particle this line coincides with its symmetry axis. 

Local normal lines are passing through the centers ( 𝑂1, 𝑂2, … , 𝑂𝑁) of the circles 

tangent to particle surface, whose radii are the local radii of curvature of the surface. The 

surface 𝛤𝑆 is formed by points ( 𝑆1, 𝑆2, … , 𝑆𝑁) in such a way that: 

𝐷 =
𝐴1𝑆1

 𝐴1𝐵1
=

𝐴2𝑆2

𝐴2𝐵2
= ⋯ =

𝐴𝑁𝑆𝑁

𝐴𝑁𝐵𝑁
= 𝑐𝑜𝑛𝑠𝑡.   (2-6) 

Using above proportion, the normalized distance from a Stokeslet to the surface along the 

radius of curvature remains the same for all Stokeslets located at  𝛤𝑆 . The local distance 

from the particle surface to the centerline along the local radius of curvature is used for 

scaling. Note that the local radius of curvature might not be an appropriate scale if a point 
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A2 (see Figure 2-3a and Figure 2-3c) is near-inflexion point, where the curvature radius 

tends to infinity.   

 

Figure 2-3 Proposed Stokeslets' allocation schemes for 3-D arbitrarily shaped particles: a) 

local normal scheme, b) locus of images of inflection points P1,..,P4 obtained using local 

normal scheme, c) combined Stokeslets' allocation scheme, and d) change in location of 

Stokeslets near inflection points using combined allocation scheme. 
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Using this method, Stokeslets are located between points A and B (as opposed to centers 

of curvature, O) to ensure that they are submerged under the surface. For example, point 

On (Figure 2-3a) is located outside the particle in the flowfield because of concave local 

property of the surface, that would create a singularity point in the flowfield if a Stokeslet 

is placed at point On. In frame of BSM, the Stokeslets should be allocated outside the 

flowfield. After surface 𝛤𝑆 for allocation of Stokeslets is formed as described above, 

Stokeslets are distributed at the 𝛤𝑆 uniformly. 

Figure 2-3b shows the 2-D longitudinal section of an arbitrarily shaped particle 

and location of Stokeslets (dashed line) at a relative distance of 𝐷 = 0.5, submerged 

under the surface. Here  𝐼1, . . , 𝐼4  are inflexion points and 𝑃1, … , 𝑃4  are corresponding 

points at Stokeslets' allocation surface. Using the local normal method, Stokeslets are 

located at a flatter surface compared to the original shape (compare dashed and solid 

curves in Figure 2-3b). 

For an arbitrarily concave-convex particle, the application of the local normal 

method along one axis might lead to self-intersecting Stokeslets' allocation surface, that 

place Stokeslets at a close proximity to each other. It is recommended to divide the body 

in sections separated by the line passing through the inflexion points (line 𝑃1𝑃2̅̅ ̅̅ ̅̅  formed 

by inflexion points, see Figure 2-3b) and apply the local normal scheme for each section 

using the longest possible reference dividing line (for example, lines a and b in Figure 2-

3b and d).  
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2.2.2 Combined Stokeslet allocation scheme 

The main obstacle of application of BSM to merging particles is its’ numerical 

instability caused by the presence of the inflexion points and their adjacent areas with 

large curvature radii. Proposed combined Stokeslet allocation scheme (Figure 2-3c) 

achieves convergence with fewer number of Stokeslets and smaller condition number of 

the BSM computational matrix. It uses local normal scheme at convex areas whereas a 

different Stokeslets allocation scheme is used in concave regions to ensure superior 

solution convergence caused by reduced matrix condition number. For concave areas and 

inflexion points the similar shape uniform Stokeslets' allocation scheme is adopted. For 

simplicity, switching between local normal and similar shape allocation schemes is 

applied exactly at inflection points; more gradual switching will be investigated in the 

future research.  

Algorithms of Stokeslets' allocation pass through surface collocation points 

A1,…,An  (Figure 2-3a-c) and find corresponding locations of Stokeslets by the Equation 

(2-6) with needed corrections as outlined in this section. Particular optimal values of 

submergence depth, BSM matrix condition numbers and needed number of Stokeslets for 

the proposed methods are presented in Tables 2-1 and 2-2 and discussed in Section 2.3 

after representative particles shapes are introduced in the next Section. 
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2.3 Representative shapes of merging particles 

In this Section, a Cassini oval (also known as Cassinian) and its variants are 

introduced as typical representative shapes of merging particles, and applications of 

proposed Stokeslet allocation methods are demonstrated for these shapes.  

 

2.3.1 Peanut-shaped Cassinian oval 

 

As an example, peanut-shaped merging particles model is described by Cassini 

oval in [17,49,59]. Cassinian ovals are used for modeling of interaction of two viscous 

particles or bubbles as an extension of modeling of the spherical particles motion at pre-

merging state [1, 3, 28, 60, 61]. 

 

Figure 2-4 Set-up of Cassini (Cassinian) ovals. 
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Cassinian oval [62, 63] is a quadratic curve (see Figure 2-4), which is defined as a family 

of points satisfying condition (2-7). 

𝑆𝑃1 ∙ 𝐻𝑃1 =  𝑆𝑃2. 𝐻𝑃2 = ⋯ = 𝑆𝑃𝑁 ∙ 𝐻𝑃𝑁 = 𝑐𝑜𝑛𝑠𝑡      (2-7) 

To satisfy (2-7), points 𝑃𝑖 having coordinates (x, y) are located in such a way that ((𝑥 −

 𝑐)2  +  𝑦2) ∙ ((𝑥 +  𝑐)2  +  𝑦2)  =  𝑑4, where values of coefficients d and c define the 

particular shape of the oval: 

𝑟(𝜃) = 𝑐√𝑐𝑜𝑠2𝜃 ± √(
𝑑

𝑐
)
4

− 𝑠𝑖𝑛22𝜃, 0 ≤ 𝜃 ≤ 2𝜋

𝑥(𝑟, 𝜃) = 𝑟(𝜃) cos(𝜃) ,      𝑦(𝑟, 𝜃) = 𝑟(𝜃) sin(𝜃),

          (2-8)  

where x and y are 2-D Cartesian coordinates of Cassini oval related to polar coordinates, r 

and θ. Variation of coefficients c and d allows for obtaining different modifications of 

Cassini oval. The 3-D model particle shape is obtained by rotating the 2-D Cassinian oval 

(2-9) about its’ longitudinal axis x (Figure 2-4). Hereafter, the 3-D particles having their 

longitudinal cross-sections as Cassinian ovals will be called Cassinian ovals for brevity. 

 

2.3.2 Barrel-shaped modified Cassinian oval 

A cluster of adhering particles, for example, the 3-D dendrite particle deposits in fibrous 

filtration [10], can be presented by a barrel-shaped modified Cassinian oval introduced in 

the current study: 
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𝑟(𝜃) = ±𝑐√𝑒 + 𝑐𝑜𝑠2𝜃 ± √(
𝑑

𝑐
)
4

− 𝑠𝑖𝑛22𝜃, 0 ≤ 𝜃 ≤ 2𝜋      (2-9) 

where 𝑒 > 0 is a modification coefficient defining size and geometric shape.  

 

       

      

Figure 2-5 Stokeslets' allocation schemes for peanut-shaped (regular) Cassinian: a) non-

uniform allocation (256 Stokeslets), b) uniform allocation (252 Stokeslets), c) local 

normal allocation scheme (258 Stokeslets), and d) combined allocation scheme (258 

Stokeslets). 

a) b) 

c) d) 
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This type of modified Cassinian oval (2-9) has 8 inflexion points, near-flat surface 

regions with large curvature radii and areas with rapid change in curvature (Figure 2-6b). 

In formulas (2-8) and (2-9) the following values of parameters are adopted [48]: 𝑐 =

1 and 𝑑4 =  1.1. 

 

       

Figure 2-6 Local normal Stokeslet allocation for barrel-shaped (modified) Cassinian: a) 

representative geometric points for local normal method, b) resulting Stokeslet allocation 

curve (dashed line). 

 

a) 

b) 
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To describe non-equal pair of merging particles (Figure 2-3c, d), for example, water 

droplets captured by fiber [64], the stretched Cassinian oval is proposed as follows. In 

Equation (2-8) coordinate x is multiplied by the constant 𝑓+ for positive x and by the 

constant 𝑓− for negative x. The value of y remains the same as for original Cassinian. 

 

 

Figure 2-7 Stokeslets' allocation for barrel-shaped Cassinian: a) non-uniform allocation 

(361 Stokeslets), b) uniform allocation (384 Stokeslets), c) local normal allocation (387 

Stokeslets), and d) combined allocation (387 Stokeslets). 
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Consequently, the volume of the stretched Cassinian remains the same as that for the 

original Cassinian (2-8) as soon as (𝑓+ + 𝑓−)/2 = 1. 

Uniform and non-uniform allocations of Stokeslets at submerged similar shape surface 𝛤𝑆  

are considered first. Non-uniform Stokeslet allocation scheme (Figures 2-5a and 2-7a) 

has an equal number of Stokeslets at each cross-section, which leads to more dense 

concentration of Stokeslets in the “neck” concave region as well as near the poles of the 

peanut-shaped merging pair of particles  [17, 49].  

In the next Section the BSM performance for this allocation is investigated and 

found to be least efficient for Cassinian convex-concave surfaces. Uniform Stokeslet 

allocation scheme (Figures 2-5b and 2-7b) has a homogeneous distribution of Stokeslets 

over submerged similar shape surface 𝛤𝑆. This helps to avoid unnecessary concentration 

of Stokeslets near the poles and “neck” regions and thus to reduce condition number of 

the matrix M (see Tables 1-2). As will be discussed in next Section, this method is more 

efficient compare to non-uniform allocation in terms of required number of Stokeslets, 

however, proposed below local normal and combined methods have superior 

performance. 

The construction of Stokeslets' allocation surface by proposed methods for barrel 

shape is outlined in Figure 2-6. In Figure 2-6a, local curvature circles and points of 

intersection of local radii of curvature with the particle axis, B1 and B2, are constructed 

for a convex surface point A1 and concave point A2.  The corresponding Stokeslet 

allocation surface points are determined by Equation (2-6). The optimal value of 

parameter D is shown in Tables 2-1 and 2-2 and discussed in the next Section. The 
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inflexion points 𝐼1, …, 𝐼8 and corresponding locations of Stokeslets𝑃1,…, 𝑃8 are shown in        

Figure 2-6b. 

The proposed combined scheme for regular and modified Cassinians (Figures 2-

5d, 2-6c-d and 2-7d) is aimed at further reduction of condition number of the matrix M 

(see Tables 2-1 and 2-2). In Figure 2-6c, d the submergence depth is D for convex areas 

P8P1, P2P3, P4P5 and P6P7 and 𝐷̅  for concave areas P1P2, P3P4, P5P6 and P7P8. The 

Stokeslet allocation surface is depicted in Figure 2-6c, d. The abrupt change in depth of 

Stokeslets' locations at inflection points is shown in Figure 2-6d.  

The number of Stokeslets for the cases presented in Figure 2-6 is slightly different 

for various allocation schemes. For non-uniform Stokeslets' allocation scheme the 

number of Stokeslets is equal to  𝑁2, where N is the number of cross-sections, while the 

uniform Stokeslets' allocation scheme places a different number of Stokeslets at each 

cross-section. Local normal (Figures 2-5c, 2-6a and 2-7c) and combined allocation 

(Figures 2-5d, 2-6c and 2-7d) schemes also produce different number of Stokeslets if one 

places Stokeslets uniformly at the constructed surface. 

 

2.4 BSM results and evaluation of numerical efficiency for Stokeslets' allocation schemes 

For the proposed Stokeslets’ allocation schemes the BSM solutions were obtained 

and their convergence and computational efficiency are discussed in this Section. For the 

considered peanut-shaped and barrel-shaped Cassinians coefficients were selected in the 

previous section.  A Stokes flow is oriented along the longitudinal axis of the Cassinians. 
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Values of 𝜇 and 𝑈∞ are taken equal to unity. The convergence in terms of Stokes force as 

a function of the number of Stokeslets for peanut-shaped pair of merged particles is 

presented in Figure 2-8. Similarly, the Stokes force convergence for barrel-shaped cluster 

of merging particles is shown in Figure 2-9. 

 

 

 

Figure 2-8 Stokes force convergence with the number of Stokeslets for various Stokeslet 

allocation schemes applied to peanut-shaped surface: a) non-uniform Stokeslet allocation 

scheme, 𝐷 = 0.05, b) uniform allocation scheme, 𝐷 = 0.05, c) local normal allocation 

scheme, 𝐷 = 0.22, and d) combined allocation scheme, 𝐷 = 0.08, 𝐷 = 0.28. 

 

In Figures 2-8 and 2-9 and in Tables 2-1 and 2-2 the converged value of the Stokes force 

is 14.31 for the peanut-shaped Cassinian and 21.99 for the barrel-shaped Cassinian.  

a) b) 

c) d) 
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The Stokeslets’ allocation depth is two decimals precise. The allocation depth, D, 

presented in Tables 2-1 and 2-2 corresponds to the minimum number of Stokeslets that is 

required to achieve convergence to above listed values of the Stokes force. The combined 

scheme (Figs.3.1c-d, 4.3c-d) has two parameters gathered in Tables 2-1 and 2-2: the 

Stokeslets' allocation depth for convex regions, D, and the Stokeslet allocation depth for 

concave regions including inflexion points, 𝐷.  

 

Figure 2-9 Stokes force convergence for longitudinally-oriented barrel-shaped cluster 

model: a) non-uniform Stokeslet allocation scheme, D=0.05, b) uniform allocation 

scheme, D=0.05, c) local normal scheme, D = 0.4, and d) combined scheme, 𝐷 = 0.28 

and D = 0.4. 
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The BSM solutions were obtained using MATLAB (version 2013) backslash linear 

algebraic solver. An AMD Athlon quad-core processor of 2.8GHz each core and 8GB of 

RAM was used for computations and measurements of CPU time in Tables 2-1 and 2-2. 

Table 2-1 BSM results for peanut-shaped Cassinian: comparison of performance of 

Stokeslets’ allocation methods. 

 Non-uniform  Uniform  Local normal  Combined  

Stable Stokeslets' 

allocation depth 

range, D and 𝐷: 

D=0.03÷0.05 D=0.03÷0.05 D=0.20÷0.37 
𝐷 =0.07÷0.29, 

𝐷=0.05÷0.29 

Optimum Stokeslet 

allocation depth  
0.05 0.05 0.22 

𝐷=0.08 

𝐷 = 0.28 

Minimum number 

of Stokeslets  
625 579 404 258 

Matrix condition 

number 
1.5774e+20 3.4446e+18 2.2163e+016 7.2723e+012 

CPU  time, sec 31.31 28.46 18.55 5.61 

 

Table 2-2 BSM results for barrel-shaped Cassinian: comparison of performance of 

Stokeslets’ allocation methods. 

 Non-uniform  Uniform  Local normal  Combined  

Stable Stokeslets' 

allocation depth 

range,  D and D̅  

0.03÷0.05 0.03÷0.05 0.22÷0.7 
D̅ =0.07÷0.35, 

D=0.05÷0.45 

Optimum Stokeslet 

allocation depth  
0.03 0.03 0.4 

D=0.28 

D = 0.4 

Minimum number 

of Stokeslets  
1521 867 387 295 

Matrix condition 

number 
2.6675e+21 4.1772e+017 4.0797e+013 5.6594e+012 

CPU time, sec 224.89 86.21 11.58 7.69 
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In Tables 2-1 and 2-2, the condition numbers of the computational matrix M for 

considered Stokeslet allocation schemes are given for regular and modified Cassinians, 

respectively. The condition numbers of matrix M are given for the corresponding optimal 

number of Stokeslets and allocation depth for each Stokeslet allocation scheme. Uniform 

and non-uniform allocation methods have condition numbers of matrix M up to 10
20

. The 

proposed allocation methods have smaller condition numbers  1011 − 1012 that is to their 

advantage. Tables 2-1 and 2-2 show that for the local normal and combined schemes 

submergence depth range, which corresponds to stable BSM solution, is significantly 

larger compared to known uniform and non-uniform Stokeslets' allocation schemes.  

To form Tables 2-1 and 2-2, the allocation depth D (D and 𝐷 for combined scheme) 

varies from zero to unity with the step of 0.01. For each depth, the minimum number of 

Stokeslets is obtained to have the relative error in terms of the Stokes force smaller than 

or equal to  0.1% . The absolute minimum in needed number of Stokeslets for each 

Stokeslets' allocation method and corresponding allocation depth is shown in Tables 2-1 

and 2-2. For each Stokeslets' allocation method, the submergence depth range, which 

corresponds to stable BSM solution, is recorded in Tables 2-1 and 2-2. 

For the regular Cassinian, D and 𝐷 ranges are about the same (Table 2-1) allowing for 

accurate Stokes force and velocity solutions, while for the modified barrel-shaped 

Cassinian 𝐷 range is larger than that for 𝐷 (Table 2-2). 
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Figure 2-10 Pressure and velocity vector flow field about barrel-shaped Cassinian: a, c) 

longitudinally-oriented cluster, b, d) transversally-oriented cluster; a, b) velocity field and 

c, d) pressure field. 

 

To maintain matrix condition number and solution stability, in combined method 

Stokeslets are placed close to the surface in narrow and concave regions including 

inflexion points. Out of the four Stokeslet allocation schemes considered, the combined 

a) b) 

c) d) 
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scheme delivers converged BSM solution using the minimum number of Stokeslets. This 

is due to the fact that at inflexion points and in concave regions Stokeslets' surface is 

formed differently than that for convex areas. In the proximity of inflexion points with 

infinite curvature radius (Figures 2-3c, 2-6c),  𝑟𝑖𝑗̃  vectors (see Equation 2-2) between 

neighboring Stokeslets and the corresponding collocation points are near-parallel, which 

leads to near-equal rows in the computational matrix M that makes M close to a singular 

matrix. The proposed combined allocation scheme was developed to improve the 

situation. The value of 𝐷 is as small as in the similar shape uniform Stokeslet distribution 

scheme. As a result, the difference between radius-vectors connecting Stokeslets and 

collocation points for neighboring points at near-inflexion regions (see Figures 2-5d, 2-6c 

and 2-7d) becomes substantial to maintain smaller condition number of the computational 

matrix M (see Tables 2-1, 2-2) and reach the convergence using moderate number of 

Stokeslets.  

The elapsed computer time are presented in Tables 2-1 and 2-2 and demonstrate its’ 

significant reduction for the proposed allocation schemes and the decrease in the number 

of Stokeslets required for Stokes force to converge. In addition, the advanced Stokeslet 

allocation schemes show smaller oscillation of the Stokes force with the number of 

Stokeslets compared to BSM solution using the non-uniform Stokeslets' allocation 

scheme (compare Figures 2-8a and 2-9a). 

As a result of application of the combined Stokeslet allocation scheme, the required CPU 

time has been reduced five times for regular peanut-shaped Cassinian (Table 2-1) and 

thirty times for a modified “barrel-shaped” Cassinian. 
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To illustrate the results of the proposed approach, Figure 2-10 presents pressure and 

velocity vector field for a modified Cassinian obtained using BSM with the combined 

Stokeslets' allocation scheme applied. To show applicability of the approach to an 

arbitrary flow direction, the pressure and velocity vector fields are presented for 

longitudinally and transversally oriented peanut-shaped Cassinians (see in next Section, 

Figures 2-11d – 2-14d). 

 

2.5 Application of BSM to the merging particles Stokes force computation 

 

Evaluation of Stokes force is important to study interaction of two spherical gaseous 

bubbles (Wijngaarden [65], Moshfegh, [66]) and liquid or solid particles approaching 

each other and adhering in the flow (Ardekani [61], Goldman, Cox and Brenner [67] and 

Laurenceau et al. [64]). Two slow-moving particles immersed in viscous media were 

considered in literature either in steady [68,69,70] or in unsteady formulation [61]. 

Considered cases of Stokes flow for particles in a different degree of proximity and 

corresponding computed pressure and velocity vector field are shown in Figures 2-11 

through 2-14. The radius of each of two merging particles was chosen R = 0.5713, so as 

the total volume of two particles equals the volume of the peanut-shaped Cassinian 

(Figure 2-5) described by Equation (2-8) with its’ parameters listed in Section 2.2. The 

quasi-steady approach to solution of Stokes equations is adopted for the lead-up to a 

merge. The drag force exerted to each particle by the flow is computed till they touch 
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each other. Then the drag force exerted on a single merged peanut-shaped particle is 

computed. 

 

Figure 2-11 Velocity contours and  field about two transversally-oriented spherical 

particles at various distance between their centers: a) L=7R, b) L=3.5R, c) L=2R, and d) 

merged transversally-oriented peanut-shaped Cassinian. 

 

Depending on orientation of particles in the flow, two formulations of the problem are 

considered: a) Stokes flow about transversally-oriented particles [70] and b) Stokes flow 
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about longitudinally-oriented particles. In the former case a Stokes flow velocity vector 

field is normal to the line passing through the centers of both spheres as shown in Figure 

2-11, while in the latter case a Stokes flow velocity vector field is parallel to the line 

passing through the centers of the spheres as shown in Figure 2-13.  

    

       

Figure 2-12 Pressure field about two transversally-oriented spherical particles: a) L=7R, 

b) L=3.5R, c) L=2R, and d) merged transversally-oriented peanut-shaped Cassinian. 

 

 

 

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-1.5 -1 -0.5 0 0.5 1 1.5

 

 

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-1.5 -1 -0.5 0 0.5 1 1.5

 

 

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-1.5 -1 -0.5 0 0.5 1 1.5

 

 

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

d) c) 

a) 
b) 



 

41 

 

 

Corresponding pressure field is shown in Figures 2-12 and 2-14. When the spherical 

particles merge in transversal orientation, they can form a peanut-shaped particle in an 

unstable transversal state (Figure 2-11d). Consequently, the angular momentum rotates 

merging pair of particles around its center of mass in the flow field and eventually the 

cluster takes a sustainable longitudinal equilibrium state (Figure 2-13d).  

 

Figure 2-13 Velocity contours and streamlines about longitudinally-oriented spherical 

particles: a) L=7R, b) L=3.5R, c) L=2R, and d) merged peanut-shaped Cassinian. 
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Computations of the Stokes force exerted on particles were performed at characteristic 

stages of their merging. The uniform Stokeslets' distribution scheme with geometrically 

similar surfaces  𝛤𝑆  and 𝛤  [1, 2] is adopted for spherical particles before they merge. 

According to the results presented in Tables 2-1 and 2-2 (see previous Section), the local 

normal and combined Stokeslet distribution methods have demonstrated superior 

performance compared to uniform and non-uniform distribution schemes. The local 

normal and combined Stokeslet allocation schemes are used for merged particles.  

The results obtained for the Stokes force about two spherical particles 

approaching each other correlate well with the results [67] obtained for two equal 

spheres. In BSM computations total force consists of the sum of z-components of 

Stokeslet solutions, while sums of x- and y- components cancel. The Stokes force for two 

equal spheres in longitudinal orientation (Figure 2-15a) is normalized by the sum of 

Stokes forces about two far apart spherical particles of equal radii, i.e. 𝐹Σ = 2[6𝜋𝜇𝑅𝑈∞].  

The BSM simulation result shows that total Stokes force about two spheres 

contacting at a single point (L=2R) and oriented longitudinally to the flow direction 

(Figure 2-15a) is equal to 64.53% of that value ,  𝐹2spheres = 0.6453𝐹Σ . Stimson and 

Jeffrey correction factor for two translating spheres moving in a Stokes flow parallel to 

far-field velocity vector [67] is 64.514%, therefore, the relative error of the BSM result 

is ~10−4. 

The BSM result is compared with the Stokes force obtained by Goldman, Cox and 

Brenner [67] for two spheres in the flow oriented transversally to the far field velocity 
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vector. The Stokes force about two spheres in contact (𝐿 = 2𝑅)  was 72.472% of  𝐹Σ 

(Figure 2-15b). Its relative error compared to the solution [67] (72.469%) was ~10−4. 

 

   

Figure 2-14 Pressure field about two longitudinally-oriented spherical particles: a) L=7R, 

b) L=3.5R, c) L=2R and d) merged peanut-shaped Cassinian. 

 

The analysis of both cases shows that Stokes force decreases as soon as particles are 

approaching each other (Figure 2-15). This trend is valid until particles come into the 
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contact and start adhering. As soon as they start forming a peanut-shaped surface, Stokes 

force increases.  

 

Figure 2-15 Stokes force exerted on two particles with various distances between 

particles: a) longitudinally oriented and b) transversally oriented. In sub-figures a) and b) 

the force acting on two isolated merging spheres of equal radius and the force acting on 

merging pair of spherical particles in longitudinal orientation are shown for comparison. 

 

One may notice that the Stokes forces exerted on each of two particles are equal in 

longitudinal Stokes flow orientation regardless of the distance between particles. Stokes 

equations describe entirely diffusive exchange of momentum, where advection terms are 
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neglected. As a result, mutual hydrodynamic interaction between particles is of much 

longer range compare to cases with 𝑅𝑒 > 1 and the drag force on both particles become 

equal. 

Obtained by the BSM computations, the repetitive pattern of pressure distribution 

about spherical particles in longitudinal orientation confirms this statement (see Figure 2-

16). Indeed, the drag forces about each of two particles become unequal if particles are of 

different sizes [70, 71]. Note that if 𝑅𝑒 > 1 the flow cannot be described by the Stokes 

equations anymore and forward particle in longitudinal orientation gets larger drag even 

if two particles are of an equal size. 

Figure 2-16 shows that the monotonic pressure distribution along the isolated 

particles' surface (Figure 2-16a) becomes non-monotonic as particles approach each other 

(Figure 2-16b,c). This causes reduction in net pressure force (the difference between 

pressures at front and rear semi-spheres). For the merged particles (Figures 2-16c,d), the 

area of non-monotonic pressure corresponds to the neck of Cassinian that confirms 

pressure isolines shown in Figures 2-14c,d. 

In Figure 2-17 the Stokes force as a function of particle orientation with respect to 

the flow is presented. The zero degrees case corresponds to the transversal orientation 

while the ninety degrees corresponds to the longitudinal orientation. In Figure 2-17 the 

value of Stokes force on the sphere of equal volume is presented for comparison. The 

Stokes force reaches its’ maximum value at about 45 degrees. The pressure and velocity 

flowfield for this case are shown in Figure 2-18. The maximum value of the Stokes force 

is close to that obtained for two spheres with the same total volume as the peanut shape. 
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Figure 2-16 Dimensionless pressure distribution at the surface of two merging spherical 

particles in longitudinal orientation: a) L=7R, b) L=3.5R, c) L=2R, and d) peanut-shape 

merged spherical particles. 

 

The minimum value of the Stokes force is observed in longitudinal orientation 

and close to that one obtained for a single sphere of an equal volume.  

a) 

d) c) 

b) 
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Figure 2-17 Stokes force exerted on peanut-shaped particles at the range of angles 

between particle's axis and the flow velocity. Results are presented for peanut-shaped 

Cassinian and stretched Cassinians with two pairs of stretching coefficients 𝑓+ and 𝑓−. 

 

To confirm applicability of the proposed algorithms to a broader variety of 

merged particles and droplets, BSM was applied to two stretched Cassinian ovals with 

values of 𝑓+ = 1.5, 𝑓− = 0.5 and 𝑓+ = 1.75, 𝑓− = 0.25 ,respectively. The Stokes forces in 

Figure 2-15 practically coincide for cases considered. 
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Figure 2-18 Velocity contours, streamlines and pressure for Stokes flow at 45 degrees 

with the axis of Cassini oval: a) velocity contours and streamlines about peanut shape, b) 

velocity contours and streamlines about barrel shape, c) isolines of pressure for the flow 

about peanut shape, and d) isolines of pressure for the flow about barrel-shaped 

Cassinian. 
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Computations presented in this section can be used to detect changes of the Stokes force 

at various phases of particles' collective motion and to apply appropriate measures to 

keep particles dispersed or, per contra, to collect them into pairs and clusters of particles. 

2.6 Validation of the Stokes force for merging droplet surfaces 

 

Validation of the Stokes force for a peanut-shaped 3-D body derived from 2-D Cassinian 

is possible using numerous empirical relations provided in literature. One of the most 

accurate total drag solutions may be obtained using empirical formula (11) introduced in 

[72] by Haider and Levenspiel. The Stokes force calculated 𝐹𝑆𝑡𝑜𝑘𝑒𝑠 = 6𝜋𝜇𝑅𝑒𝑞 , where 

𝑅𝑒𝑞  is a radius of sphere of equal volume, does not account for orientation of the 

considered surface with respect to flow and therefore it cannot accurately predict drag. 

In order to find Reynolds number at a given dimensionless velocity and viscosity, 

one needs to find a characteristic dimension of the cross-sectional area. 

𝐶𝐷 =
24

𝑅𝑒
[1 + 𝑒2.3288−6.4581𝜙+2.4486𝜙

2
𝑅𝑒0.0964+0.5565𝜙] +                     

+𝑅𝑒
𝑒4.905−13.8944𝜙+18.4222𝜙

2−10.2599𝜙3

𝑅𝑒+𝑒1.4681+12.2584𝜙−20.7322𝜙
2+15.8855𝜙3

,        (2-10) 

where 𝜙 is a sphericity factor (see Equation 2-12). 

For simplicity, we need to find dimensions of the given 3-D “peanut-shaped” 

body that has the same volume as the sphere of a unity radius. In order to do that, a 

special algorithm evaluating 2-D curve and derived 3-D shape geometric parameters was 

used (Figure 2.19).  
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Figure 2-19 Parametric curve analysis. Traditional Cassinian. 

It finds the initial curve length, local curvature radii, surface area and volume of the 

shape derived from the initial curve by its rotation around selected axis, as well as 

equivalent radius of the sphere having the same volume or the same surface area. 

Looking in the figure above, one may find the radius/diameter of the middle 

section of the 3-D “peanut-shaped” body with respect to the flow depending on its’ 

orientation. For longitudinal orientation, the middle section diameter is 𝐷 = 1.0488. 

Therefore: 

𝑅𝑒𝐷 =
𝑈∞𝐷

𝜈
= 1.0488,       (2-11) 
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where 𝑈∞  is the velocity of a far-field flow about the considered body. Finally, the 

sphericity parameter 𝜙 by definition is: 

𝜙 =
𝑠𝑠𝑝ℎ

𝑆𝑏𝑜𝑑𝑦
      (2-12) 

where 𝑠𝑠𝑝ℎ is a sphere area having the same volume as the considered “peanut-shaped” 

body, and 𝑆𝑏𝑜𝑑𝑦 is a considered body surface area. The respective surface area of 3-D 

peanut-shaped body with the coefficients c and d taken equal to 1 and 1.10.25 (Figure 2-

19) is 16.4595, and the resulting sphericity is 𝜙 =
4𝜋

20.0139
= 0.6279. 

Substituting the resulting values obtained in (2-10), the resulting drag coefficient 

for longitudinal orientation is 𝐶𝐷 = 33.8241; 

The total drag force (Stokes force) is computed with the following well-known 

[56] expression: 

𝐶𝐷 =
𝐹𝑆𝑡𝑜𝑘𝑒𝑠

1

2
𝜌𝑈∞

2 𝐴𝑚𝑖𝑑
     (2-13) 

where 𝐴𝑚𝑖𝑑 is a 3-D shape middle section oriented across the flow. 

𝐷𝑟𝑎𝑔∥ =
1

2
𝐶𝐷𝜌𝑈∞

2𝐴𝑚𝑖𝑑∥ = 14.6110,     

which may be compared to the values presented at Figure 2-15. 

For transversal orientation, we need to calculate new Reynolds number based on middle 

section of equivalent characteristic diameter, which is presented at Figure 2-15 and equal 

to 𝐴𝑚𝑖𝑑⊥ = 2.3016.  The characteristic dimension of transversally-oriented “peanut-
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shape” is max(𝑥) − min(𝑥) = 2.8627. The respective Reynolds number defined from 

characteristic dimension in the transversal shape orientation is also 𝑅𝑒 = 2.8627 

according to (2-11) assuming that far-field velocity and kinematic viscosity are both 

normalized to unity. Then substituting again into the formula (2-10), we obtain 𝐶𝐷 =

14.6950.  

Finally, the total drag becomes: 

𝐷𝑟𝑎𝑔⊥ =
1

2
𝐶𝐷𝜌𝑈∞

2𝐴𝑚𝑖𝑑⊥ = 16.9110;  

It is easy to see that the resulting values obtained with (2-10) correlate well with 

the numerical results obtained with BSM. Total drag force computed with BSM is 

different from the solution proposed by Haider and Levenspiel by 2.06% and 1.13% for 

longitudinally and transversally oriented “peanut-shaped” model respectively. As it is 

mentioned by Hartman et al in [73], the deviation of the solution obtained from empirical 

formula suggested in Haider and Levenspiel for respective Reynolds numbers deviates 

from exact solution by 5-8%. 

Present Chapter was dedicated to the development of more efficient allocation of 

singularities for merging particles and their clusters in Stokes flows. They were compared 

to traditional similar-shape uniform and non-uniform Stokeslet allocation schemes in 

terms of Stokes force convergence and extension of possible range of Stokeslet 

submergence depths. The next Chapter narrates about the development of a new 

computationally efficient Stokeslet allocation scheme particularly for the problems of 

interaction of droplets and fibers in low-Reynolds number flows. 
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CHAPTER III 

DEVELOPMENT OF THE BOUNDARY SINGULARITY METHOD FOR 

HYDRODYNAMIC INTERACTION PROBLEMS IN FIBROUS FILTRATION 

As it was mentioned in literature (Zhao and Povitsky [1-5], Wrobel [74]) BSM 

became more advantageous over traditional mesh-based methods. BSM requires 

optimization of allocation of boundary elements to reduce the computational time and 

increase solution convergence. It was shown in Mikhaylenko and Povitsky [75] that CPU 

time of BSM method needed to obtain solution of the same accuracy in terms of Stokes 

force and velocity may drop 4 to 6 times for the proposed local normal and combined 

schemes compared to the similar-shape non-uniform scheme of allocation of 

singularities. 

The modelling of Stokes flowfield about micro- and nano- scale droplets in their 

proximity to fibers describes flow physics of fibrous filtration and is crucial in predicting 

drag force and filtration efficiency (Hosseini and Tafreshi [76], Viswanadam and Chase 

[ 77 ], Kulkarni, Patel and Chase [ 78 ]). The modelling of flow about droplets and 

computation of total drag and velocities about surfaces at different stages helps to clarify 

particle and droplet capturing mechanism (Winkler et al [79]). On another hand, the 

problems of hydrodynamic interaction between surfaces are challenging in terms of BSM 

application, because singularities located near the points of contact of the bodies increase 
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the condition number of the computational matrix and negatively affect solution 

accuracy. Therefore, the problem of optimal allocation of singularities becomes a critical 

part of computational set-up. 

3.1 Representative model of a Stokes flow about “droplet – fiber” system 

 

Before application of the BSM to the Stokes flow about ensembles of droplets of 

complex convex-concave shapes and spherical droplets in proximity to each other, a 

simple 3-D Stokes flow about single sphere and a 2-D Stokes flow about cylinder were 

solved to validate the approach. The obtained results have matched well-known analytical 

solutions (Fay [80], Batchelor [18], Schlichting [56]) for the sphere: 

𝐹𝑆𝑆 = 6𝜋𝜇𝑅𝑈∞         (3-1) 

and for a cylinder (per its unit length): 

𝐹𝑆𝐶 =
4𝜋𝜇𝑈∞

𝑙𝑛(
7.4

𝑅𝑒𝐷
)
          (3-2) 

where 𝑈∞ is a far-field velocity. 

For the problem of a Stokes flow about spherical droplet settling on fiber depicted at 

Figure 3-1a, the ratio of droplet to fiber 𝑅𝑠𝑝ℎ𝑒𝑟𝑒 𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟⁄ = 0.5 was selected first. The 

method of submerged Stokeslets presented at Figure 3-1 was used, i.e. fundamental 

solutions were located under the surface of considered geometrical model. The 

normalized Stokeslet allocation radius for spherical droplet was chosen 𝑅𝑆𝑆 = 0.7 as an 
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optimum one proposed in [5], and the uniform Stokeslet allocation scheme was selected 

as described in [75].  

 

3.2 Proposed Stokeslet allocation scheme for “droplet – fiber” systems 

The placement of Stokeslets for a cylindrical fiber (Figure 3-1) was studied in 

terms of velocity vector field and Stokes force accuracy [81]. In order to apply BSM to 

the 3-D Stokes flow about the finite length fiber (cylinder) and to get accurate velocity 

vector field, one has to place Stokeslets so as the normalized Stokeslet allocation radius 

to satisfy condition: 

𝑅𝑆𝐶 = 0.5 ÷ 0.8        (3-3) 

The analysis of geometrical setup of a Stokes flow about spherical droplet touching a 

fiber solved with BSM leads to elevated condition number of the matrix M designated by 

near-parallel vectors directed from Stokeslets to collocation points [1-5]. This requires 

allocation of Stokeslets close to the surface.  
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Figure 3-1 Problem set-up and Stokeslet allocation schemes: a) flow about droplet 

sticking to the fiber, b) flow about two droplets sitting on the fiber and 3) flow about 

droplets merging to the “peanut-shape” cluster around fiber surface. o - collocation 

points, ∙  - Stokeslets. 

 

Values of 𝑅𝑆𝐶  outside of range (3-3) distort velocity flow field for a cylinder and 

affect accuracy of the solution about sphere in proximity to the point of contact. In order 

to avoid this inaccuracy, the Stokeslet submergence depth in the vicinity of point of 

contact needs to be small enough, that is 𝑅𝑆𝐶 → 1. However, numerical experiments show 
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that as 𝑅𝑆𝐶 → 1, the velocity component of the resulting flow field about cylinder is 

incorrect near the cylinder surface (Figure 3-3a). If 𝑅𝑆𝐶 < 0.5, the computational matrix 

M condition number increases and the solution becomes inaccurate. For traditional 

“equidistant” scheme with 𝑅𝑆𝐶 = 0.1  with 𝑁 = 650  Stokeslets, the condition number 

increases to 1.1674e+026.  

 

Using the same scheme with  𝑅𝑆𝐶 = 0.7 and  𝑁 = 802 Stokeslets, the condition 

number obtained was 6.6079e+019. To satisfy condition (3-3) apart of point of contact 

and to improve solution accuracy near the point of contact, the radius 𝑅𝑆𝐶  should vary 

along the fiber depending on the distance from the point of contact (𝑥 = 0). 

 

Figure 3-2 Stokeslet allocation scheme for the flow about droplet on a fiber:                     

a) equidistant scheme, b) alternative scheme: (−° −) collocation points,     

(− ∙ −) Stokeslets. 
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Two schemes for 3-D flow about finite cylinder with attached droplet are 

considered: the traditional “equidistant” scheme (Figure 3-2a), where Stokeslet placement 

radius 𝑅𝑆𝐶 = 𝑐𝑜𝑛𝑠𝑡 in the axial direction and the new scheme described here. 

The proposed scheme satisfies condition (3-3) apart from point of contact and, 

simultaneously, allows allocating Stokeslets close to surface near the contact point. The 

allocation depth as a function of distance to contact point is described by the following 

formula: 

𝑅𝑆𝐶(𝑥) = 𝑅𝑚𝑎𝑥 ∙ 𝑒
(−

𝜆|𝑥|

𝐿
)
            (3-4) 

where 𝑥 – axial coordinate along the cylinder, 𝑅𝑆𝐶  – Stokeslet allocation radius, 𝑅𝑚𝑎𝑥 – 

parameter defining the location of Stokeslets closest to the surface of the cylinder near 

the point of contact with a spherical droplet in the middle of the cylinder: 𝑥 = 0, 𝜆 is a 

differentiation coefficient affecting the range of Stokeslet allocation radii along the fiber. 

 

3.3 Validation of the proposed Stokeslet allocation scheme. 

The resulting solution for a spherical droplet touching cylindrical fiber using 

“equidistant” Stokeslet allocation scheme with 𝑅𝑆𝐶 = 0.97 is shown at Figure 3-3a. One 

may observe irregular velocity vectors representing violation of no-slip and non-

penetrating boundary conditions at the cylinder surface. This was accompanied by the 

high computational matrix condition number observed when solving linear system of 

equations. The matrix condition number in this case exceeded 1e+031. For the close to 
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surface equidistant Stokeslet allocation (𝐷 < 0.1 or 𝑅𝑆𝐶 > 0.9) this was observed for the 

figures of large principle curvature radii in any of the directions. The Stokeslet allocation 

scheme presented here for cylindrical fiber is aimed to struggle with this phenomenon. 

For proposed Stokeslet allocation scheme applied to the case of Stokes flow about 

droplet on a fiber, the parameters of scheme introduced by Equation (3-4) were taken: 

𝜆 = 0.075, 𝐿 = 10𝑅  and  𝑅𝑚𝑎𝑥 = 0.97,  where 𝐿 = 10𝑅  and 𝑅 = 1  are dimensionless 

length and radius of cylindrical fiber for this case.  

 

Figure 3-3 A ZY-plane view at 3-D velocity about spherical droplet on cylindrical fiber: 

a) “equidistant” allocation scheme at RSC = 0.97, N = 677 Stokeslets, b) proposed 

allocation scheme (3-4), Rmax = 0.97, λ = 0.07, N = 498 Stokeslets. 

 

By varying parameters 𝑎 and 𝑅𝑚𝑎𝑥 it is possible to tune the scheme in the way to reduce 

the number of Stokeslets and achieve accurate flowfield parameters. For example, by 

changing parameter 𝜆 from 0.075 to 0.05 and keeping 𝑅𝑚𝑎𝑥 = 0.97 it was possible to 

achieve accurate velocity vector field for 𝑁 = 352 Stokeslets instead of 𝑁 = 560 for the 



 

60 

 

 

traditional non-uniform scheme. The minimum condition number achieved for proposed 

scheme was 1.83e+019 for 𝑁 = 444 Stokeslets. 

Similar effect in terms of velocity vector field accuracy was obtained for the 

problem of a Stokes flow about “peanut-shape” droplet cluster on a cylindrical fiber. 

Submergence of Stokeslets with 𝑅𝑆𝐶 = 0.7  or application of proposed Stokeslet 

allocatiocation schemes helped resolving this issue. 

 

3.4 Application of BSM to Stokes flow problems of “droplet – fiber” interaction 

 

In order to demonstrate capability of BSM and proposed Stokeslet allocation 

schemes for droplet-fiber system, three test problems of variation of the Stokes force 

about cylindrical fiber loaded with spherical droplets are considered as shown in the 

Figure 3-1. 

The first problem presumes evaluation of drag versus the radius of spherical droplet 

sticking to a fiber. The ratio of radii 𝑅𝑠𝑝ℎ𝑒𝑟𝑒/𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 varied from 0.1 to 1 (Figure 3-4a). 

The second test problem is evaluation of the Stokes force at flow angles between flow 

velocity vector and y-axis varying from 0 to 90 degrees. The results illustrated on Figure 

3-10b, were obtained for the different length-to-radius ratio for comparison. First case is 

presented for unit length cylinder with 𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 1 and the second case is presented for 

the length-to-radius ration equal to 5. The third problem studies the flow about two 

droplets, one sliding along the fiber toward another and merging into a “peanut-shape” 
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cluster. All these problems are important in terms of determining filtering efficiency and 

help predicting droplets and particles capturing effects (Yarin and Chase [82]). 

The Stokes force (total drag force) was calculated for a spherical droplet at a 

cylindrical fiber of unit length using the proposed BSM approach and then normalized 

over analytical Stokes force value 𝐹𝑆𝐶  for a circular cylinder (3-2).  

 

Figure 3-4 Stokes force about cylindrical fiber loaded with spherical droplet: a) Drag vs  

flow orientation angle, b) total loaded fiber drag FStokes versus 𝑅𝑠𝑝ℎ𝑒𝑟𝑒/𝑅𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 ratio. 

FSC is a Stokes force about the part of single cylindrical fiber of 2𝑅𝑠𝑝ℎ𝑒𝑟𝑒 length without 

presence of droplet. 

 

The results provided at Figure 3-4b are somewhat comparable to the total drag 

shown in [76] for cylindrical fiber loaded with sticking droplet dendrite for considerable 

solid volume fraction 𝛼 and packing density. Total loaded fiber drag hereto designate the 

sum of Stokes forces about spherical droplets attached to a part of fiber with the length of 

one fiber diameter with the middle in a contact point. The volume fraction is determined 

as: 

a) b) 
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𝛼 =
𝑁𝑝𝑉𝑝

𝐴ℎ
,         (3-5) 

where 𝑉𝑝 is the single droplet volume, 𝑁𝑝 − total number of droplets, 𝐴 – view area and ℎ 

is the depth of view. In the present test problems 𝛼 = 9.82%, which is close to the one 

presented in [76]. 

 

Figure 3-5 Stokes force (total drag) about two merging spherical droplets at cylindrical 

fiber versus distance between droplets normalized over droplet radius. The limiting case 

is a “peanut-shape” cluster (PNC) that is formed by droplets at merger phase. 

 

The total drag exerted by a Stokes flow about two droplets settling on a fiber and merging 

to a “peanut-shape” cluster is shown at Figure 3-5. The Stokes force about spherical 

droplets was evaluated for both longitudinal and transversal far-field flow orientation. 

It is worthwhile noting that accurate solution could not be obtained for traditional 

non-uniform and equidistant allocation schemes for the sphere and for cylindrical fiber 

respectively. Slow convergence of non-uniform scheme and solution artefacts observed 
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for equidistant scheme applied to cylindrical geometry negatively affect solution 

convergence for the overall boundary surface formed with contacting sphere and 

cylinder. Therefore, the proposed Stokeslet allocation scheme or alternative schemes are 

needed.  

The resulting drag obtained for two merging droplets on fiber when the surface of 

the latter is completely covered, may be compared with the drag force obtained by 

Goldman, Cox and Brenner in [67] for two contacting particles in longitudinal or 

transversal translational motion in a creeping flow. 

The developed schemes and the results provided in Chapters II and III are helpful 

in evaluation of the steady-state problems of a Stokes flow parameters in particulate 

multiphase flows, fibrous filtration. The next more complex extension to a Stokes flow 

problems considered in this work encompasses quasi-steady processes of viscous 

deformation of liquid surface under low-Reynolds number flows in micro-channels, 

which is described in Chapter IV. Among other methods, MRS with uniform allocation 

scheme for micro-scale low Reynolds number flow coupled with FV method for 

macroscopic flows have been used. 
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CHAPTER IV 

MODELING OF THE NGJ PROCESS BY EXPERIMENTAL AND 

COMPUTATIONAL STUDY OF DEFORMATION OF POLYDIMETHYLSILOXANE 

DROPLETS AND TRACKS IN A RECTANGULAR CHANNEL 

 

As mentioned in the Introduction, the meltblowing and NGJ nanofiber (Figures 1-1 and 

1-2) derivation processes have many advantages compared to traditional spinning 

methods, especially when applying materials with sophisticated rheology. The latter 

includes but is not limited by liquid crystal mesophase pitches and other carbon-based 

polymers. The study of the NGJ nanofiber derivation method is critical for understanding 

and improvement of the process in terms of determination and control of outcome 

product specifications, e.g. thermoelectric and mechanical properties, structure 

homogeneity and morphology. The proper control of air flow parameters and the 

homogeneity of liquid surface perturbations help to minimize standard deviation and 

dispersion of derived submicron/nanofibers diameters and to make them uniform, as well 

as to achieve desired morphology, which is important for commercial companies working 

using submicron and nanoscale precursors for the composite materials production. 

However, visualization of the process inside a nozzle is a laborious process hindered by 

the lack of access to a gas-liquid reacting zone for high-speed imaging. An alternative 
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way to reproduce the process taking place in such reaction nozzle areas is based on 

scaling up the nozzle and studying liquid deformable surface of sample droplets 

controlling air flow velocity and its’ orientation in a considered area. In the present 

Chapter experimental deformation of polydimethylsiloxane (PDMS) droplets and tracks 

is studied. The experiments with a scaled up replica of the gas-liquid reaction zone of the 

NGJ nozzle channel were attempted to model processes in the real scale NGJ nozzle and 

predict viscous deformations of molten carbon pitches in contact with air flow inside it. 

In order to determine proper experimental set up dimensions and air flow conditions for 

the selected droplet and track properties, numerical simulation of the process has to be 

conducted. 

4.1 Numerical simulation of the flow in the air-pitch reaction zone of the NGJ nozzle 

The problem is described as a steady-state flow impinging at a free molten pitch 

surface in an infinitely wide rectangular channel at 30
o
 and 45

o
 (Figure 1-1). It represents 

a two-scale problem, where the pressure drop along the channel and air jet temperature 

was used to solve Navier-Stokes equations coupled with continuity and energy equations 

applying FVM. In order to model the NGJ process and compare experimental results with 

the BSM simulation of Stokes flow about deformable liquid droplets and tracks discussed 

in Chapter V, a preliminary flow field of initially unperturbed surface for the whole 

domain was computed with FVM (Figures 4-1 and 4-2). At the second stage, the resulting 

cell-based Reynolds number, were computed along the horizontal line located at 10 𝜇𝑚 

from the bottom Figures 4-1. Finally, the location of low Reynolds number region 

(𝑅𝑒<1) was found (Figure 4-3) and used as a droplet placement region for experimental 
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and numerical simulations. The micro-scale pitch ripple (liquid track) size is assumed to 

be 𝐷 ≅ 3 ÷ 5 𝜇𝑚, which is 10 times greater than mean submicron fiber diameter derived 

[87]. 

The macroscale flow problem in a whole domain of 1mm long and 0.25 mm high 

of NGJ channel reaction zone is described as viscous compressible jet flow impinging at 

a lower surface. The inlet velocity is 250 m/s and the temperature is 480℃. 

 

Figure 4-1 Unstructured grid in ANSYS Fluent with 10-layer inflation on the 

bottom surface. 

 

For the purpose of initial velocity vector field computation in the overall domain, 

a 2-D channel model meshed with unstructured grid and the bottom surface inflation 

were created (Figure 4-1). Specified mesh resulted in 23213 nodes and 22746 elements 

including the 10-layer inflation zone. 
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Figure 4-2 ANSYS Fluent solution for velocity magnitude contours for the air jet flowing 

into the reaction channel at: a) 45 degrees; b) 30 degrees. 

 

a) 

b) 

Low-Reynolds number 

region 

Low-Reynolds number 

region 
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Although reasonable refinement of the grid and more accurate flow prediction in the 

droplet deposition region is possible, the resulting grid is not fine enough for accurate 

computation of the velocity and stress components about the droplet itself. Each layer 

thickness in the inflation zone was equivalent to 1𝜇𝑚, while considered droplet size was 

3.5 𝜇𝑚 and therefore it requires refinement for accurate prediction of the flow field, 

stress and deformation computations of the droplet. However, this leads to a significant 

computation time increase. 

The fluid flow model was selected based on Reynolds number for the real case 

flow in the channel has been calculated based on the characteristic dimension of the 

channel and inlet velocity. The air jet was calculated equal to 𝑅𝑒 ≈ 2850, which relates it 

to transition flow regime. In the present computations, low-Reynolds 𝑘 − 𝜀 flow model 

was selected to find the solution of the air flow velocity in the overall domain. The 

resulting FVM solution is presented in Figure (4-2). 

Once computed, the local Reynolds numbers (Figure 4-3) throughout the domain are 

determined and the low-Reynolds number (𝑅𝑒𝑑 ≤ 1) regions are then found using   (4-1).  

Based on the air flow data in the NGJ process, the air flow speed during the 

experiment was tuned such that local Reynolds number based on droplet characteristic 

size was less than or equal to unity: 

𝑅𝑒𝐷 =
〈𝑈𝑙𝑜𝑐𝑎𝑙1〉𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡1

𝜈𝑎𝑖𝑟1
=

〈𝑈𝑙𝑜𝑐𝑎𝑙2〉𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡2
𝜈𝑎𝑖𝑟2

≤ 1,              (4-1) 

which yields to: 
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〈𝑈𝑙𝑜𝑐𝑎𝑙1〉 ≤
𝜈𝑎𝑖𝑟2
𝜈𝑎𝑖𝑟1

𝑈𝑙𝑜𝑐𝑎𝑙1𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡1
𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡2

,    (4-1a) 

where 〈𝑈𝑙𝑜𝑐𝑎𝑙1〉, and is the average local velocity across the low Reynolds number region 

(Figure 4-3) in vicinity of stagnation region of the real NGJ nozzle obtained from FVM 

simulation (see Figure 4-2). 𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡1 is a liquid pitch ripple radius and 𝜈𝑎𝑖𝑟1 is the air 

viscosity taken at 𝑇1 = 400℃ and 𝑝1 = 4.76𝑎𝑡𝑚. Consequently, 〈𝑈𝑙𝑜𝑐𝑎𝑙2〉, 𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡2 and 

𝜈𝑎𝑖𝑟2 are the values taken at 𝑇2 = 20℃ and 𝑝2 = 1𝑎𝑡𝑚 for deformation simulations. 

The low-Reynolds number region for the case of 45o  coincides with the 

stagnation region where jet impinges the wall, as shown in the Figure 4-2a. 

 

Figure 4-3 Local Reynolds numbers at 10 μm from surface of the 1116 × 256 μm domain 

with air inlet flow orientation: a) 45 degrees; b) 30 degrees. 

a) 

b) 
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Local Reynolds number data (Figure 4-3) were further used to determine the boundaries 

of the low-Reynolds number flow domain for subsequent BSM simulation to maintain 

applicability conditions. Then velocity flow field, magnitude and local Reynolds number 

regions found with ANSYS Fluent simulation were used determine appropriate 

experimental set up scaling factor and similarity conditions that will be discussed in the 

next Section. 

 

4.2 Experimental set up and justification of the scale-up model 

For experimental purposes, the apparatus presented in Figure 4-4 was designed and built 

to study viscous droplets and tracks deformation in reaction with an impinging air flow in 

the channel at different flow angles with respect to the channel bottom. 

 

Figure 4-4  Experimental set up for tracks and droplets deformation study 

Air pump Polypropylene flex adaptor 

Variac voltage regulator 

Air duct 

Experimental area 

𝑈̅∞ 

Connector 

3x4 PVC elbow 
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Polydimethylsiloxane (PDMS) was selected as a sampling material for the experiment 

conducted in the room conditions. It has viscous properties similar to those of molten 

mesophase pitch at operation temperatures (𝑇𝑝𝑖𝑡𝑐ℎ = 𝑇𝑎𝑖𝑟380 ÷ 400℃ ) and air flow 

conditions in the NGJ nozzle reaction zone, which will be discussed later in this Section.  

For better experimental results visualization, the initial NGJ channel “air-liquid” reaction 

area was designed similar to NGJ experimental set up and scaled by factor 𝑚 = 300, 

which gives the dimensions depicted in Figure 4-5. “1” and “2” in Figure 4-5 designate 

droplet and track deposition lines for 45 and 30 degrees air flow orientation respectively. 

The experimental set up includes assembly of the air supply line from air pump to the 

aluminum experimental channel via polypropylene flexible adapter, styrene connector 

and 3x4 inch PVC elbow. The latter is attached to the testing channel inlet lips (Figure 4-

5) and sealed from the sides before experiment. 

 

Figure 4-5 Experimental testing zone dimensions. 
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The angle 𝛽 between the elbow and channel surface allows adjusting the air flow 

orientation to model respective flow case as per Figure 4-2 in the previous Section. 

The centrifugal air pump was then plugged to a Variac voltage regulator to 

control air flow speed. It was derived from dynamic pressure measured with an inclined 

manometer connected to an elbow channel via static pressure port at the bottom (Figure 

4-6a) and to a pitot tube mounted under the top channel surface to measure total pressure 

at the elbow outlet (Figure 4-6b). 

 

 

Figure 4-6 Static pressure measurement port and Pitot tube hinge. 

The dynamic sequence of the experiment steps is the following. Air is supplied by the 

centrifugal pump and discharged though the duct into the rectangular channel, where 

viscous PDMS droplets and tracks were placed for each particular air flow orientation.  

MicroLubrol 200 silicone oil was selected for the liquid droplet/track sample 

deformation tests. It represents PDMS with apparent viscosity 1000 cSt or 0.965 𝑃𝑎 ∙ 𝑠 

[83]. The local velocity of the air flow about 1mm size droplet in low-Reynolds number 

region needed for the experiment was found from the condition (4-1). The equivalent 

Static pressure port 

Pitot tube hinge 

a) b) 
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velocity magnitude near liquid pitch ripple in the NGJ apparatus 〈𝑈𝑙𝑜𝑐𝑎𝑙1〉 = 6.5
𝑚

𝑠
 was 

found from 2-D flow FV simulation results in ANSYS Fluent for the real NGJ process 

presented in Section 4.1: 

〈𝑈𝑙𝑜𝑐𝑎𝑙2〉 ≤
1.5328∙10−5

1.3384∙10−5
∙
6.5∙3.5∙10−6

10−3
≤ 0.026

𝑚

𝑠
.  

The air speed at the inlet of the air duct in the experiment was controlled by the Variac 

voltage regulator, and the dynamic pressure was measured using inclined pressure 

manometer. The velocity was then computed as: 

𝑈∞ = √
2Δ𝑝

𝜌𝑎𝑖𝑟
,          (4-2) 

where Δ𝑝 is a difference  between total and static pressure measured across the duct of 

the rectangular channel. To have average local velocity 〈𝑈𝑙𝑜𝑐𝑎𝑙2〉 = 0.026
𝑚

𝑠
 and satisfy 

condition (4-1) approximately, the velocity in the air duct of the experimental set up had 

to be 𝑈∞ = 6.3  m/s, which follows from the condition (4-1) and has been found in 

ANSYS FLUENT using geometry of the scaled up NGJ channel. The resulting FVM 

solutions gave 〈𝑈𝑙𝑜𝑐𝑎𝑙2〉 values ranging from ~0.03 m/s for 45o   impinging air stream 

down to ~0.025 m/s for 30o degrees oriented air stream, which results in 𝑅𝑒𝐷
450

≅ 1. 

The following experimental conditions had to be met: 

1) The multiphase flow process in the gas-liquid reaction area is isothermal (𝑇𝑎𝑖𝑟 =

𝑇𝑔𝑎𝑠 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒);  
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2) The size of the liquid droplet or track and velocity have to be small enough so that 

local Reynolds number is less than or equal to unity (𝑅𝑒𝐷 ≤ 1). That is droplet 

height ℎ ≤ 1𝑚𝑚. 

Another criterion that helps to evaluate equivalent of test droplet and liquid track 

deformation compared to real NGJ process is a dimensionless time. It can be expressed 

with the equation (4-3): 

𝑡̅ =
𝑡𝑈∞

𝑅

𝜇𝑔

𝜇𝑙
,              (4-3) 

where 𝜇𝑔 and 𝜇𝑙 are gas and liquid dynamic viscosities. 

The first two conditions have to be satisfied in order to make experimental results 

comparable to the ones obtained with BSM. According to (4-3), the real NGJ experiment 

simulation time for the estimated flow conditions (see Section 4.1) is: 

𝑡𝑝̅𝑖𝑡𝑐ℎ =
1𝑠∙14.4776

𝑚

𝑠

10−6𝑚
∙
3.4∙10−5𝑃𝑎∙𝑠

100 𝑃𝑎∙𝑠
≅ 5.  

For the air flow conditions found during the experiment and computed for the reaction 

zone near PDMS droplet deposition lines, the dimensionless deformation time becomes: 

𝑡𝑃̅𝐷𝑀𝑆 =
1𝑠∙0.026

0.001
∙
1.5328∙10−5

0.001
≅ 0.4, 

depending on the angle of the air flow orientation. These two values computed for two 

different liquids show that the same relative deformation of liquid droplet or track with 

respect to their size would take approximately 12.5 times longer for those made from 

PDMS than those from carbon mesophase pitch in the real NGJ apparatus.  
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The specified above dimensionless time values were obtained for the considered liquids 

in respective air flow conditions, channel dimensions and fluid properties. The duration 

of each run for both the 3-D droplet and the 2-D liquid track deformation experiment was 

2÷3s. 

It has to be mentioned that 
𝜇𝑎𝑖𝑟

𝜇𝑝𝑖𝑡𝑐ℎ
 ratio in (4-3) plays a significant role in the 

equivalent deformation time estimate for various liquid media in a gas flow and 

determines the quantitative measure of deformation derived from the constitutive 

equation, which will be discussed in the next Chapter. The ratio of viscosities together 

with the measured duct inlet velocity magnitude 𝑈∞ has been used in the experimental 

part to justify selection of the pitch prototype liquid material to model real NGJ process 

in the nozzle with carbon mesophase pitch. 

In order to determine validity of a Newtonian fluid model selected for further 

simulations and comparison with the experimental results, one has to ascertain that 

viscosity is nearly invariable of shear rate values taking place in both real NGJ process 

and its’ prototype for the respective materials. The interface boundary condition at the 

droplet surface during the process comprises of equality of shear stresses arising from 

both gas flow and liquid motion due to drag induced, which yields: 

−𝜇𝑔
𝜕𝑢⃗⃗ 𝑔

𝜕𝑛⃗ 
= −𝜇𝑙

𝜕𝑢⃗⃗ 𝑙

𝜕𝑛⃗ 
,               (4-4) 

The resulting shear rate of a liquid droplet at a gas-liquid interface becomes: 

𝜕𝑢⃗⃗ 𝑙

𝜕𝑛⃗ 
=

𝜇𝑔

𝜇𝑙

𝜕𝑢⃗⃗ 𝑔

𝜕𝑛⃗ 
,         (4-5) 
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Using Eq.15 from the previous Section it was found: 

𝛾̇𝑃𝐷𝑀𝑆 =
𝜇𝑎𝑖𝑟

𝜇𝑃𝐷𝑀𝑆
𝛾̇𝑎𝑖𝑟 ≅ 360 ÷ 500 𝑠−1,  

Here local 𝛾̇𝑎𝑖𝑟 =
𝜕𝑢⃗⃗ 𝑎𝑖𝑟

𝜕𝑛⃗ 
 was the maximum shear rate evaluated at the liquid surface. This 

value for the low-Reynolds number flow region has not been measured but calculated in 

ANSYS Fluent, where previously measured velocity in the channel duct was set as the 

inlet boundary condition for a 2-D channel model. It is worthwhile to mention that the 

specified shear rate values were estimated particularly for low-Reynolds number flow 

regions of the test channel and correspond to the flow orientation range from 30o to 45o. 

Similarly to the fluid viscosities ratio, determination of a shear rate at the liquid boundary 

is important for the deformation of droplet modeling and for comparison of numerical 

simulations with the obtained experimental results.  

PDMS suited well for the scaled-up experiment of the NGJ process in terms of shear 

rates required for the Newtonian fluid model assumption and the dimensions of the flow 

channel. The respective liquid shear rate values must be lying within a range of 

Newtonian fluid model with invariable viscosity. The resulting shear rate at a surface of 

PDMS must be within the range of linear apparent dynamic viscosity values (Figure 4-7), 

which can be determined using (4-5). 



 

77 

 

 

 

Figure 4-7 Apparent dynamic viscosity versus shear rate for PDMS [83] and Mitsubishi 

mesophase pitch [84]. 

 

In the real case for ARA24r Mitsubishi carbon mesophase pitch (assuming it to be 

material with similar behavior to GrafTech mesophase pitch at 𝑇 ≥ 380oC): 

𝛾̇𝑝𝑖𝑡𝑐ℎ =
𝜇𝑎𝑖𝑟

𝜇𝑝𝑖𝑡𝑐ℎ
𝛾̇𝑎𝑖𝑟 ≅ 36 ÷ 50 𝑠

−1,  

This estimate justifies application of Newtonian fluid stress model in constitutive 

equation for calculation of the corresponding deformation at each point of an “air-liquid” 

interface. 
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4.3 Experimental results and discussion 

As a result of the proposed experiment, a set of photographs of PDMS droplets and tracks 

deformation were obtained for two different angles of air flow that was supplied to the 

reaction zone of the testing channel (Figure 4-8). In order to evaluate results 

quantitatively, a special 1𝑚𝑚  scale was installed along the deposition lines of the 

reaction zone. 

 

 

Figure 4-8 Change of shape of a PDMS 2-D track placed in a low-Reynolds number 

region: before and after its’ deformation under the air jet discharged into the rectangular 

channel at 30 degrees: a) initial profile; b) deformed surface after 2s. 

 

The scale lines depicted in Figures 4-8 – 4-11 have dual purpose: they help to evaluate 

the size of a PDMS track or droplet and their distorted reflection from the semi-

transparent surface shows initial and deformed profile that can be compared with the 

numerical simulation results. 

a) b) 
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Figures 4-8 and 4-9 let one notice reflection of the scale lines at the surface of deformed 

PDMS 2-D tracks and recognize initial and resulting shapes of a transparent sample. It is 

also possible to see that the height of the track peak increases and moves to the right with 

the flow in case air flow oriented at 30° to the channel bottom. Further deformation at 

later times was not tracked and studied since samples leaved low-Reynolds number flow 

region and the results are not comparable to the deformation profiles computed with 

BSM.   

 

 

Figure 4-9 Change of shape of a PDMS 2-D track placed in a low-Reynolds number 

region: before and after its’ deformation under the air jet discharged into the rectangular 

channel at 45 degrees: a) initial profile; b) deformed surface after 2s. 

 

 

 

At the 45-degree air flow, the 2-D liquid track is being smeared over the bottom 

of the channel and finally split in two parts both sides of the flow stagnation line. 

Contrary to the 30o air flow orientation case, the height of a track sample decreases, 

which can be observed in Figures 4-9. 

 

b) a) 
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Figure 4-10 Change of a PDMS droplet shape of a droplet placed in a low-Reynolds 

number flow region after its’ deformation under the air jet discharged into the rectangular 

channel at 30 degrees: a) initial profile; b) deformed surface after 2s. 

 

 

Figure 4-11 Change of a PDMS droplet shape of a droplet placed in a stagnation point 

after its’ deformation under the air jet discharged into the rectangular channel at 45 

degrees: a) initial profile; b) deformed surface after 2s. 

 

 

4.4 Experimental uncertainty analysis and error estimate 

In order to evaluate the obtained results quantitatively, error estimate was conducted 

assuming the following contributing factors: 

b) a) 

b) a) 
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a) imaging parallax error estimate; 

b) linear measurements uncertainty and 

c) deformation time error estimate. 

The parallax (Figure 4-12) observed for imaging of the droplet deformation in the present 

experiment was calculated according to the principles explained in [85]. The resulting 

error can also be found from geometric relationships using Figure 4-12. 

 

Figure 4-12 Imaging scheme and parallax determination parameters. 

 

It easy to notice that ℎ, 𝑙1  and 𝑙2  are known pre-determined distances. They were 

measured every time before the experiment and after the droplet or track deposition. ℎ1 is 

the droplet or track height, which is read from the photograph in the place of deformation 

observation. The elevation of the camera objective above channel surface ℎ is assumed to 
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be constant, while distances from the camera to the observation point A on a sample 

droplet or track and 𝑙1, distance from the observation point at a sample surface to the 

scale plank and initial droplet height ℎ2 depend on each particular test run. At the end of 

the experiment, the true and observed sample heights are ℎ2′ and ℎ1
′  respectively. It was 

noticed that the distance from the camera to an observation point at a sample surface was 

almost the same during the experiment. Therefore, 𝑙1 and 𝑙2 were assumed constant. 

The analysis of uncertainty of the experimental results visualization was 

performed based on calculated of the difference between initial droplet/track heights 

calculated from the angle 𝜒 and between deformed droplet/track surfaces that is observed 

at the angle 𝜒′ in Figure 4-12: 

{
𝜀 = ℎ2 − ℎ1
𝜀′ = ℎ2′ − ℎ1′

    (4-6) 

Observation line is tangent to a sample surface before and after deformation in points 𝐴 

and 𝐴’ respectively (Figure 4-12). Due to small change of height of the sample, it is 

assumed that are located at the same vertical line and therefore 𝑙1 and 𝑙2 are invariant 

during experiment for each particular test. On another hand, the total uncertainty also 

depends on inaccuracy in deformation time measurement. Moreover, for the liquid 

surface deformation the rate of change of deformation is critical. It also allows 

accounting for time measurement uncertainty together with the displacement error.  

The total uncertainty 𝜀Σ is determined as follows: 

{ℎ1, ℎ1
′ , 𝑙1, 𝑙2, ℎ} → {

{ 𝜀
𝜀′

{𝑡0, 𝑡1}
→ {

𝜀𝑑
𝜀𝑑
′ → 𝜀Σ,   (4-7) 
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where 

𝜀𝑑 =
ℎ2−ℎ1

𝑡1−𝑡0
    and   𝜀𝑑

′ =
ℎ2
′−ℎ1

′

𝑡1−𝑡0
.   (4-8) 

Using formulas in [86] or deriving trigonometric relations for angles 𝜒  and 𝜒′  from 

Figure 4-11 it is possible to calculate ℎ2 and ℎ2′ to find parallaxes 𝜀 and 𝜀1: 

tan 𝜒 =
ℎ−ℎ2

𝑙1
=

ℎ2−ℎ1

𝑙2
     and    tan 𝜒′ =

ℎ−ℎ2
′

𝑙1
=

ℎ2
′−ℎ1

′

𝑙2
,          (4-9) 

which yields: 

ℎ2 =
ℎ𝑙2−ℎ1𝑙1

𝑙1+𝑙2
    and    ℎ2

′ =
ℎ𝑙2−ℎ1

′ 𝑙1

𝑙1+𝑙2
.         (4-10) 

Substituting (4-10) into (4-6): 

𝜀 =
ℎ𝑙2−ℎ1(2𝑙1+𝑙2)

𝑙1+𝑙2
;  𝜀′ =

ℎ𝑙2−ℎ1
′ (2𝑙1+𝑙2)

𝑙1+𝑙2
.          (4-11) 

The partial derivatives of absolute error over the set of parameters are as follows: 

[
 
 
 
 
 
 
𝜕𝜀

𝜕𝑙1 
= −

(ℎ1+ℎ)𝑙2

(𝑙1+𝑙2)2
,    

𝜕𝜀

𝜕𝑙2 
=

(ℎ+ℎ1)𝑙1

(𝑙1+𝑙2)2
,

𝜕𝜀

𝜕ℎ1 
= −

2𝑙1+𝑙2

(𝑙1+𝑙2)
   

𝜕𝜀

𝜕ℎ 
=

𝑙2

(𝑙1+𝑙2)
,       

 and  

[
 
 
 
 
 
 
 
𝜕𝜀′

𝜕𝑙1 
= −

(ℎ+ℎ1
′ )𝑙2

(𝑙1+𝑙2)2
,    

𝜕𝜀′

𝜕𝑙2 
=

(ℎ+ℎ1
′ )𝑙1

(𝑙1+𝑙2)2
,

𝜕𝜀′

𝜕ℎ1
′  
= −

2𝑙1+𝑙2

(𝑙1+𝑙2)
,   

𝜕𝜀′

𝜕ℎ 
=

𝑙2

(𝑙1+𝑙2)
.       

   (4-12) 

These expressions represent two groups of four parameters each: 

𝑑 = {𝑙1, 𝑙2, ℎ 𝑎𝑛𝑑 ℎ1 or  ℎ1
′ } . Applying well-known relation for the uncertainty 

propagation, we have: 
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𝜀Σ1 = ∑ (𝜀𝑑𝑖
𝜕𝜀

𝜕𝑑𝑖 
)
2

4
𝑖=1 + 𝜙2;  𝜀Σ2 = ∑ (𝜀𝑑𝑖

′ 𝜕𝜀′

𝜕𝑑𝑖 
)
2

4
𝑖=1 + 𝜙2,          (4-13) 

where 𝜀𝑑𝑖  and 𝜀𝑑𝑖
′  are uncertainties determined for each parameter 𝑑𝑖  and 𝜙2 is omitted 

since each test case was set up individually for different liquid droplet or track sample.  

According to the National Institute of Standards and Technology, the metal ruler 

uncertainty used is: 

 𝜀𝑑𝑖 = (27 +  0.88𝑑𝑖)𝜇𝑚.          (4-14) 

The calculated distance from camera to the observation plane is  𝑙1 = 150  mm. 

Therefore, 𝜀𝑙1 = 2.713 ∙ 10−5m. Similarly, for 𝑙1 = 12.5 mm, the uncertainty for 𝑙2  as 

well as for the rest of length parameters measured with a metal ruler was found equal to 

𝜀𝑙2 ≈ 𝜀ℎ ≈ 𝜀ℎ1 ≈ 𝜀ℎ1′  = 2.7 ∙ 10
−5 m. Time measurement error for 𝑡0 and 𝑡1 falls within 

0.1s, and therefore 𝜀𝑡1 = 𝜀𝑡0 = 0.05𝑠. 

Combining (4-6) and (4-8), it is reasonable now to re-write the expressions for the rate of 

change of strain observation errors as follows: 

𝜀𝑑 =
ε

𝑡1−𝑡0
    and   𝜀𝑑

′ =
ε′

𝑡1−𝑡0
.    (4-15) 

Taking derivative of (4-15) one obtaines: 

[
 
 
 
 
 
𝜕𝜀𝑑

𝜕𝜀 
=

1

𝑡1−𝑡0
,    

𝜕𝜀𝑑

𝜕𝑡0 
=

𝜀

(𝑡1−𝑡0)2
,

𝜕𝜀𝑑

𝜕𝑡1 
= −

𝜀

(𝑡1−𝑡0)2      

 and  

[
 
 
 
 
 
𝜕𝜀𝑑

′

𝜕𝜀′
=

1

𝑡1−𝑡0
,    

𝜕𝜀𝑑
′

𝜕𝑡0 
=

𝜀′

(𝑡1−𝑡0)2
,

𝜕𝜀𝑑
′

𝜕𝑡1 
= −

𝜀′

(𝑡1−𝑡0)2
.

      

        (4-16) 
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Using the parallax determination uncertainties given in (4-13), the total uncertainty of 

measure and calculated droplet deformation height becomes: 

𝜀Σ = √(𝜀Σ1
𝜕𝜀𝑑

𝜕𝜀 
)
2

+ (𝜀𝑡0
𝜕𝜀𝑑

𝜕𝑡0 
)
2

+ (𝜀𝑡1
𝜕𝜀𝑑

𝜕𝑡1 
)
2

+ (𝜀Σ2
𝜕𝜀𝑑

𝜕𝜀′ 
)
2

+ (𝜀𝑡0
′ 𝜕𝜀𝑑

′

𝜕𝑡0 
)
2

+ (𝜀𝑡1
′ 𝜕𝜀𝑑

′

𝜕𝑡1 
)
2

(4-17) 

For PDMS droplet deformation experiment results presented in Figure 4-12, the 

parameter values were taken as follows: ℎ = 0.025 m, ℎ1 = 0.001 m, ℎ1
′ = 5 ∙ 10−4 m, 

𝑙1 = 0.15 m, 𝑙2 = 0.0125 m, 𝑡0 = 0, 𝑡1 = 2𝑠. Using these parameters in (4-16) and then 

plugging the resulting values into (4-13) together with (4-14) computed for each 

parameter yields 𝜀Σ = 5.012 ∙ 10
−2𝑚𝑚. 

It is seen that visualization of PDMS droplets and tracks deformation for this 

particular experimental set up has a significant parallax, which leads to total error 

reaching 50% and more. Therefore, the uncertainty analysis and error estimate of the 

visualized experimental results was based on computed ℎ2  and ℎ2
′  values representing 

real heights of droplet or track before and after experiment. This allows avoiding 

introduction of parallax into the general uncertainty and measurement error estimate. 

Numerical simulation results presented in Chapters V and VI is only compared 

qualitatively to the deformation profile images presented in this Chapter. The idea of this 

comparison is to demonstrate liquid surface development trends depending on the air 

flow orientation and to show capabilities of the proposed numerical algorithms to predict 

such deformations. 
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CHAPTER V 

APPLICATION OF THE BOUNDARY SINGULARITY METHOD TO QUASI-

STEADY TWO-DIMENSIONAL PROBLEMS OF VISCOUS DEFORMATION IN 

STOKES FLOWS 

 

The physics of NGJ ([87], Figures 1-1 and 1-2) is generally represented by 

turbulent flow about a viscous molten carbon mesophase pitch surface at a high 

temperature. According to the experimental data, this temperature was 30 – 50 ℃ higher 

than the pitch melting point [87]. The molten carbon mesophase pitch exemplifies a non-

Newtonian fluid in general. However, Dumont et al showed in [84] that carbon 

mesophase pitch may have nearly Newtonian properties for a certain range of shear rates 

at which viscosity remains almost the same. The experiments conducted in the Polymer 

Research & Engineering Center of the University of Akron [52] show that for the range 

of shear rates 30÷200 𝑠−1  Mitsubishi [84] and GrafTech carbon mesophase pitches 

exhibit Newtonian fluid properties at their respective operating temperatures. For the 

specified shear rates, the viscosity remains nearly constant. Furthermore, based on 

experiments in the NGJ lab, a shear-thinning effect for even higher shear rates (over 

100 𝑠−1) is predicted for GraphTech mesophase pitch. This improved spreading of the 

pitch flow across the fiber manufacturing rectangular nozzle and helped against 

deceleration of the pitch flow in supply channels, manifolds and nozzle clogging. The 
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assumption of quasi-Newtonian molten pitch properties represents basis of the physical 

model of deformation of droplet based on evaluation of shear stress for the considered 

problem. 

The proposed FVM and BSM coupling approach is presented and applied in 

Chapters V and VI for numerical simulation of a multiphase quasi-steady problem that 

represent idealized 2-D and 3-D models of the flow inside the reaction zone of the NGJ 

nozzle. 

 These models must be considered as a coarse attempt to describe a physically 

complex process associated with the deformation of a liquid surface under impinging 

high-speed jet discharged into a narrow channel. In fact, other sophisticated effects, such 

as recirculation in vicinity of the liquid surface perturbation, jet reflections and heat 

transfer problems across the boundary layer adjacent to the surface need to be accounted 

for. These effects, however, have been neglected in the simplified formulation presented 

here for limitation of the problem complexity. It is less likely to find Reynolds numbers 

less than 1 for high speed flows even in stagnation zones of the slit channel. Besides, the 

problems discussed in Chapters V and VI are solved for single liquid droplets and tracks 

settling on a rigid non-deformable surface, while in reality the droplet or track represent 

continuous wave or ripple on a liquid film surface, which is also constantly exposed to 

the air flow. 

Therefore, obtained numerical solution for the viscous deformation under 

impinging air flow in a stagnation zone of the channel where  𝑅𝑒 ≤ 1 may serve as a 

rough estimate of an evolution of a single liquid droplet or track surface shape for the 
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different flow impingement angles. However, they also represent a good opportunity to 

test numerical methods and to understand simplified basics of correlation between 

different flow conditions and corresponding changes in viscous deformation profiles 

using capabilities of BSM, the proposed coupling method and algorithms discussed here. 

 

5.1 Introduction of regularized BSM for the problems of the Stokes flow in a channel  

 

In order to validate the method applicability to more complex problems of the 

Stokes flow about deformable liquid surfaces, a 2-D problem of pressure-driven flow in 

the micro-channel was computed. 

The initial geometric and physical formulation of the problem is similar to the one 

presented by Cortez [34] and in semi-circle droplet viscous deformation problem 

formulated by Fry in Chapter 8 of [88]. For the problem presented in [34], the size of 2-D 

rectangular domain was taken 1-by-0.05 (Figure 5-1) and the semicircular obstacle radius 

was taken 0.0125. The problem setup for comparison with [88] is presented in Figure (5-

9). The same geometry was used for simulations in Section 5.2. 

 

Figure 5-1 Problem set up as per [34] 
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Henceforth, a quasi-steady algorithm for deformation simulations has been applied and 

the surface coordinates are updated at each time step as suggested later in Section 5.2 and 

used further in Chapters V and VI. 

Viscous deformations at a surface point induced by impinging air jet were found 

here from shear stress computed for a respective elementary surface area based on 

velocity solution. In Chapter V, 2-D class of viscous deformation problems was 

considered and solved using Stokeslet regularization technique for BSM presented in 

[34]:  

𝑢𝜖𝑗
(𝑘)
=−

1

4𝜋𝜇
∑ (𝐹𝑖

(𝑘) ln(√|𝑟̃|2+𝜖2+𝜖)−
(√|𝑟̃|2+𝜖2+2𝜖)(𝐹𝑖

(𝑘)(𝜖√|𝑟̃|2+𝜖2+𝜖2)+𝐹𝑖
(𝑚)𝑟̃𝑖𝑗

𝑘𝑟̃𝑖𝑗
𝑚)

(√|𝑟̃|2+𝜖2+𝜖)
2
√|𝑟̃|2+𝜖2

)𝑁
𝑖=1

𝑝𝜖𝑗=
1

2𝜋
∑ 𝐹𝑖

(𝑚)𝑟̃𝑖𝑗
𝑘 𝜖√|𝑟̃|2+𝜖2+2𝜖2+|𝑟̃|2

(√|𝑟̃|2+𝜖2+𝜖)
2
(|𝑟̃|2+𝜖2)

3
2

𝑁
𝑖=1

,       (5-1) 

where 𝑢𝜖𝑗
(𝑘)

 and  𝑝𝜖𝑗 are regularized velocity and pressure fundamental solutions in 2-D 

notation. F is a vector of Stokeslets, which is determined as discussed in the Section 2.1 

of the Chapter II. Shear stress can be found as a normal derivative of the velocity vector 

obtained with (5-1): 

𝜏̅ = −𝜇̅𝑙
𝜕𝑢⃗⃗ 

𝜕𝑛̂
= 𝜇̅𝑙

−4𝑢𝑟2+3𝑢̅𝑟1

2Δ𝑟̅
,                               (5-2) 

where 𝑢̅𝑟2 is a total normalized velocity magnitude at a two-layer distance 2Δ𝑟 from the 

surface and 𝑢̅𝑟1 is a velocity at one-layer distance surface, and 𝑢̅𝑟0 = 0 due to no-slip and 

no-penetrating boundary conditions. This formula represents  𝑂(Δ𝑟̅2)  accurate finite 

difference presented in [89]. 
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The resulting solution for velocity vector field, streamlines, shear and normal 

stresses was determined and compared to the one obtained with the Method of 

Regularized Stokslets by Cortez in [34] and by Gaver and Kute in [90] that solved the 

problem numerically applying boundary element method to algebraic relations derived 

from the governing equations in lubrication theory. Additional solution of the same 

problem was obtained with FV method in ANSYS Fluent and compared to the results 

derived with BSM with submerged Stokeslets and with the Method of Regularized 

Stokeslets. 

The resulting velocity magnitude contours obtained with BSM and FV methods 

are shown at Figure 5-2. 

 

 

 

Figure 5-2 Velocity magnitude contours: a) BSM numerical solution, b) finite-volume 

(ANSYS Fluent) solution 

 

a) 

b) 
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Figure 5-3 Numerical solution for normal stress: BSM with regularized Stokeslets (o) and 

Cortez (− ∙ −) [34] solutions. 

 

The good correspondence of normal stress and pressure numerical solution 

obtained with BSM and the solutions obtained with the original solution provided by 

Cortez in [34] and with the finite-volume method are shown at Figures 5-3 and 5-4. 

 

 

Figure 5-4 Pressure numerical solutions with FVM (−o−) and regularized BSM (− ∗ −) 

methods. 

 

The difference in pressure between finite-volume and BSM numerical solutions in 

the figure above is associated with numerical errors and solution of different sets of 

    o    -  Present regularized BSM solution 

 
− ∙ − - Cortez [34] 
 

−x −  - Present regularized BSM solution 

 
−o − - FVM solution 
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equations: BSM is used to solve Stokes equations while finite-volume method in ANSYS 

Fluent solves Navier-Stokes equations, even though Reynolds number is small in both 

cases (𝑅𝑒 ≤ 1). It may also be noticed that finite-volume solution smears away pressure 

jumps in vicinity of cylindrical protrusion. Those jumps are, however, preserved and 

clearly seen in Figures 5-3 and 5-4. 

 

Figure 5-5 Shear stress numerical solutions with FVM (−o−) and BSM (− × −) 

methods. 

 

The shear stress numerical solutions obtained with BSM also show good correspondence 

with the finite-volume solution (Figure 5-5), as well as with the solution provided by 

Gaver and Kute in [90] (Figure 5-6). They used boundary integral representations of the 

flow described with the Stokes and continuity equations. Both graphs represent quite a 

smooth solution transition for the regions adjacent to the channel protrusion. The only 

major difference is smaller shear stress amplitudes in those regions shown at both Figures 

− ×−  - Submerged Stokeslets BSM  

 
−o − - FVM 
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5-5 and 5-6. This, however, is not the case when comparing solution with the [34] (Figure 

5-7). The shear stress jumps present there for the solution obtained by Cortez. 

 

Figure 5-6 Shear stress solutions: BSM with submerged Stokeslets (− ∗ −) and Gaver-

Kute solution (− ∙ −) [90]. 

 

Figure 5-7 Normalized shear stress: BSM with submerged Stokeslets (− ∗ −) and Cortez 

solution [34] (− ∙ −). 

In the present solution, regularization as per Cortez in [34] was used. However, the 

results shown in Figures 5-3 and 5-7 are not identical. This may be caused by different 

computational algorithms used in modern solver of linear systems of equation, different 

round-off errors. Also, shear stress was derived from velocity solution using FDM. 

− ∗ − - Present regularized BSM solution 

 
− ∙ −  - Gaver-Kute [90] 

− ∗ − - Present regularized BSM solution 

 
− ∙ −  - Cortez [34] 
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5.2 Deformation of semi-circular geometry in 2-D Stokes flow 

 

The study of the simplified version of a viscous pitch surface deformation near 

the stagnation region of the NGJ nozzle is considered in the present Section (see Figure 

1-1). 

Despite of the inaccuracy in pressure and total stress solution discussed in Chapter 

II, proper Stokeslet regularization parameter 𝜖 =
Δ𝑠

4
 as suggested in [34] and discussed in 

Section 5.3.1 allows for its’ significant reduction. Besides, derivation of shear stress from 

velocity vector field solution allows diminishing of this inaccuracy during viscous 

surface deformation simulations. The advantage of regularized Stokeslets in BSM for 

quasi-steady problems allows avoiding reallocation of Stokeslets under the surface at 

each time step. They coincide with respective collocation points at each time step, which 

saves total computation time for surface re-parametrization. 

The surface coordinate change is calculated using the following formula: 

𝑥̅𝑖
𝑛𝑒𝑤 = 𝑥̅𝑖

𝑜𝑙𝑑 +
(−𝜎̅𝑖+𝜏̅𝑠𝑖)𝑡̂𝑖

𝜇̅𝑙
Δ𝑠𝑖Δ𝑡̅,                     (5-3) 

where  𝑥𝑖
𝑛𝑒𝑤 is a 2-component coordinate vector of a droplet shape at each iteration;  𝑡̂𝑖 is 

a local tangential direction vector, 𝜎𝑖 − normalized local surface tension component for 

the i-the Stokeslet; 𝜇̅𝑙 is an equivalent of Young’s modulus in constitutive equation for 

solid matters, which has a dimension of dynamic viscosity here. In the present problem, 

there are two droplet viscosity values have been tested to compare droplet deformation 
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profiles: 𝜇̅𝑙 =
𝐻2

8𝐿2
 and 𝜇̅𝑙 = 1 as per [34] and [88] respectively. 𝜏𝑠̅𝑖 is a shear stress in a 

respective surface point. The specified stress component values were normalized by 𝜌𝑈∞
2 . 

  

5.2.1 Validation of the proposed quasi-steady viscous deformation algorithm 

 

A well-known test case of deformation of an infinitesimal cube in a shear 

horizontal flow [91] has been considered. For simplicity, all properties of an air flow and 

deformable surface media are taken normalized to unity. The side of the cube was also 

taken equal to 1. The velocity of the horizontal air has linear distribution with magnitude 

from 0 to 1. The shear deformation time step here was taken equal to Δ𝑡 = 0.1𝑠. 

 

 

           

Figure 5-8 Incremental infinitesimal 1x1 cube deformations in a horizontal shear flow: a) 

after t = 1s, b) after t = 2s. 

b) 

a) 
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The results of quasi-steady incremental cube deformation simulation applying 

proposed quasi-steady algorithm is presented at Figure 5-8. Blue circles designate initial 

cube boundaries, while red circles represent new location of the dots after respective time 

of the shear flow action on the surface of the cube. Black arrows show velocity vector 

field at the boundaries. 

The test case of infinitesimal cube deformation in a shear flow has shown validity 

of the viscous deformation algorithm quasi-steady algorithm and will be implemented in 

the Matlab solver. 

 

5.2.2 Validation of the BSM with regularized Stokeslets to flow in the protruded channel 

 

The initial set up of the problem is illustrated in Figure 5-9. The inlet uniform 

velocity flow field with no-slip and no penetrating boundary conditions at the surface of 

the wall and droplet were assumed. The uniform allocation scheme with regularized 

Stokeslet was used for BSM simulations of the latter flow stages and subsequent viscous 

deformations. 

 

Figure 5-9 Semi-circle viscous deformation problem 

𝑈∞ 
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 The essential feature of the selected scheme for regularized Stokeslets’ allocation 

is that they coincide with the collocation points. Therefore, uniform similar shape  

allocation scheme was applied to both Stokeslets and collocation points and updated at 

each time step forming the resulting shape. 

 

Figure 5-10 Deformation of droplet in a Stokes flow boundary layer: a) BSM solution for 

semi-circular droplet and viscosity normalized to 𝜇̅ =
𝐻2

8𝐿2
= 0.002; b) parabolic surface 

deformation (subfigure taken from [88]). 

 

 

Figure 5-11 Deformation of droplet in a Stokes flow boundary layer with the center 

located 0.2 specific length units away from the flow entrance at viscosity equal to 𝜇̅ = 1; 

b) deformation of semi-circular droplet (subfigure taken from [88]). 

 

a) b) 

a) b) 
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Once simulations were performed, the resulting deformation profiles of semi-circular 

shapes have been obtained (Figures 5-10 and 5-11). The viscous properties of deformed 

surface remained unchanged for the sake of solution validation. 

Figures 5-10 and 5-11 designate surface deformation for two different cases: Figure 5-3 

represents the case 
𝜇𝑔

𝜇𝑙
= 1 as per [88] and Figure 5-11 show simulation results for 

𝜇𝑔

𝜇𝑙
=

𝐻2

8𝐿2
 as per [34] discussed in the Chapter III. 

Despite the differences in problem formulation and initial shapes presented in 

Figures 5-10 and 5-11, the resulting show significant qualitative resemblance of viscous 

surface deformation. In the next Sections the surface tension component is included in the 

constitutive equation of deformation simulation. 

For the future validation of a solution for viscous deformation simulations for 3-D 

semi-spherical droplet on a flat surface it is interesting to compare BSM results with the 

ones provided in the paper by Dimitrakopoulos [92]. 

 

5.3 Deformation of parabolic shape obstacle in 2-D Stokes flow 

 

In the present Section, a parabolic curve described with (5-12) was used as a 

representative shape for 2-D numerical modeling using BSM. This family of shapes can 

be introduced to simulate viscous droplets and tracks having large contact area with the 

surface, which is characterized by highly intense surface wetting. 
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5.3.1 Validation of BSM for two-dimensional problems of viscous deformation of non-

circular obstacle in a horizontal Stokes flow. 

 

The problem solved here was used for further validation of BSM applied to 2-D 

quasi-steady viscous deformation under low-Reynolds number flows. The BSM solution 

was compared to the one presented by H.Fry [88] in her dissertation, who solved the 

problem with the particular assumption of the perfect slip of the droplet. It has been 

extended here and split into two cases of viscous 2-D parabolic droplet deformation in 

Stokes flow that solved using BSM with regularized Stokeslets: 

1) deformation of the liquid droplet in the Stokes flow through a rectangular 

channel; 

2) deformation of a liquid droplet in the Stokes flow along the plate in semi-infinite 

domain. 

The geometrical model presented in Figure 5-12 and physical assumptions are given as 

follows: 

1) The problem is physically formulated as a Stokes flow over the horizontal flat 

plate or in the rectangular channel with a settling water droplet. No-penetrating 

and no-slip boundary conditions are assumed at the wall and the water droplet 

surface. The gravity is neglected. 

2) The initial droplet shape is described with the following governing equations: 

{
𝑦̅(𝑥̅) = 𝑔(1 − 𝑥̅2)4,   |𝑥̅| < 1

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,         (5-4) 
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where g factor in this Section was equal to 0.1 to match the geometry in [88]. 

3) Following test case formulation in [88] for the parabolic shape droplet, the ratio of  

viscosities of droplet liquid and surrounding gas has been taken 
𝜈𝑔

𝜈𝑙
= 1 (densities 

are assumed equal to unity). 

The initial velocity boundary conditions of a horizontal Stokes flow were normalized 

to unity, which yields 𝑢̅ = 1, 𝑣̅ = 0. The actual size of the considered part of the flow 

field is also normalized to the droplet shape coordinate units (5-4) and represents a 4-by-

0.4 rectangular domain. Corresponding normalized spatial coordinates are introduced as 

follows. 

{𝑥̅, 𝑦̅, 𝑧̅} =
1

𝐿
{𝑥, 𝑦, 𝑧} ,            (5-5) 

where 𝐿 = 1116 𝜇𝑚, and x, 𝑦 and 𝑧 are actual domain coordinates in 𝜇𝑚. 

For the purpose of validation of BSM, the solution of the problem was obtained by 

using regularized Stokeslets. A characteristic spatial discretization parameter – distance 

between neighboring Stokeslets - was selected equal to Δ𝑠 = 0.0113, and the optimal 

regularization parameter value (according to Cortez) was computed as 𝜖 =
max (Δ𝑠)

4
. The 

number of Stokeslets for the overall problem domain was equal to 1681. 

As it was discussed in the first two Chapters, contrary to the FD and FV methods, 

BSM does not imply usage of stability numbers as Courant-Friedrichs-Lewy number. 

BSM solution convergence is controlled by selection of appropriate Stokeslet allocation 
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scheme, allocation depth or regularization parameter value and the number of Stokeslets, 

which in its’ turn prescribes the distance between neighboring points Δ𝑠. 

The time step in present simulations was Δ𝑡̅ ≅ 0.01. Normalized dimensionless time for 

the droplet deformation simulations has been calculated based on the condition of shear 

stress equity at the interface that has been found from (4-3). 

Finally, the surface coordinates are updated at each time step using the proposed 

discretized constitutive equation for viscous fluid deformation (5-3). 

Surface tension in point can be found from Young-Laplace equation. It is 

reciprocal to a local surface curvature radius multiplied by the surface tension coefficient 

for the particular gas-liquid interface [93]: 

𝜎𝑖 =
𝛾𝑓

𝑟𝑖
= 𝛾𝑓𝜅𝑖 ,           (5-6) 

where 𝜅𝑖 is a principal curvature in i-th collocation point. For 2-D case problems in this 

Section principal curvature was determined numerically using central finite-difference 

scheme: 

 

𝜅𝑖 ≈
𝑦̅𝑖+1−2𝑦̅𝑖+𝑦̅𝑖−1
1

4
(𝑥̅𝑖+1 −𝑥̅𝑖−1)

2
,                      (5-7) 

where 𝑥̅𝑖−1, 𝑥̅𝑖+1, 𝑦̅𝑖−1, 𝑦̅𝑖, 𝑦̅𝑖+1  are normalized coordinates of collocation points at a 

boundary surface. 
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Figure 5-12 Problem domain and boundary conditions set up: a) Stokes flow over droplet 

settling in rectangular channel; b) free-surface Stokes flow along the flat plate with a 

droplet settling on it. 

 

In case of flow inside the boundary layer about deformable obstacles of various 

shapes presented in Chapter 8 of [88], finite difference method with the explicit in time 

numerical scheme was applied to solve nonlinear partial differential equation 

incorporating shear and surface tension components. 

The discretized governing differential equation for the droplet interface coordinate 

change presented in [88] was derived from the continuity equation and kinematic 

condition resulting in Reynolds lubrication type equation for the deformable interface 

coordinate. The grid cell size of the domain in the discretized solution of the equation 

was selected Δ𝑥̅ = 0.01  and the time step was Δ𝑡̅ = 0.01.  The presented solution, 

a) 

b) 
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however, does not assume horizontal droplet displacement due to shear stress exerted at 

its’ surface. 

The initial Stokes flow boundary conditions for both problems are set up as presented 

in Figure 5-12. They are only different with the upper boundary conditions. 

 

 

Figure 5-13 Velocity vector field, magnitude contours and the flow streamlines about 

droplet model presented in [88]: a) flow over a flat plate; b) flow in a rectangular 

channel. 

 

The resulting velocity vector field and magnitude contours for the problem of droplet 

deformation in a horizontal Stokes flow in the rectangular channel and at the flat plate are 

presented in Figure 5-13. Coordinates were normalized as per (5-5) and velocity was 

normalized over the maximum value at the boundaries of the domain. 

 

b) 

a) 
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Figure 5-14 Normalized pressure (a) and shear stress (b) about parabolic pitch ripple in 

the rectangular channel. 

  

a) 

b) 
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Figure 5-15 Comparison of viscous droplet deformation profiles for the Stokes flow: a) in 

rectangular channel; b) along the plate with the settling droplet (Fry model [88] and BSM 

solution). 

 

a) 

b) 
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The flow velocity magnitude and pressure depend on the channel dimensions. In fact, for 

very narrow channel boundary conditions start affecting the solution. Therefore, it was 

chosen to use 
𝐻2

𝐿2
 ratio in the stress normalization in Chapters V (Figures 5-14, 5-18 and 

5-19), as well as in the Chapter VI for 3-D problem of the viscous droplet deformation in 

the channel. 

Figure 5-14 shows slightly higher pressure and shear rate gradients for the flow past a 

droplet in a 2-D rectangular channel than for the flow over droplet sitting on a flat plate. 

This causes slightly higher amplitude deformations of droplet in a Stokes flow in the 

channel compared to the same droplet deformation sitting on a flat wall in semi-infinite 

domain. 

One may evaluate deformation profiles of highly viscous droplet obtained with the BSM 

at a given dimensionless time. The simulation times were particularly selected to 

compare the resulting droplet deformation shape profiles to the ones presented in [88]. 

The results are presented in Figure 5-15. 

One may observe significant resemblance between Figures 5-15a and 5-15b in the 

part of BSM solution corresponding to cases of a Stokes flow about parabolic droplet 

settling in the rectangular channel and at the flat plate respectively. However, larger 

viscous deformation at 𝑡̅  =  3 are noticeable for the first case due to higher shear rates in 

the domain area adjacent to the droplet surface, especially in vicinity of its’ top part. 
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5.3.2 Validation of BSM solution in two-dimensional problems of non-circular droplet 

viscous deformation under non-horizontal Stokes flow. 

 

The following data were taken to formulate and solve the problem of Stokes flow 

impinging viscous surface of parabolic pitch ripple in rectangular channel (Table 5-1). 

Table 5-1 Number of Stokeslets and velocity magnitude in boundary conditions 

Flow angle, degrees: Number of Stokeslets Velocity boundary conditions: 

x-component y-component 

0 1681 1 0 

30 - // - 0.866 -0.5 

45 - // - 0.707 -0.707 

 

The velocity components presented in Table 5-1 for each particular flow orientation 

designate uniform far field flow direction at boundaries of the computational domain 

presented in Figure 5-16: 

{
𝑢𝑥 = 𝑈∞𝑐𝑜𝑠𝛼
𝑢𝑦 = 𝑈∞𝑠𝑖𝑛𝛼

,                 (5-10) 

For comparison, regular Stokeslet allocation scheme was used to compute velocity vector 

field, pressure and shear stress. The Stokeslet allocation depth was selected 𝐷̅ = 0.001 

around the computational domain. It was normalized by the length of the domain and 

presented in Figure 5-16 and the resulting solution of the flow field is shown in Figure 5-

17. 
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Figure 5-16 Problem formulation. 

 

     

    

Figure 5-17 Velocity magnitude contours and vector field in rectangular channel: a) flow 

at 30 degrees; b) flow at 45 degrees. 

 

Numerical experiments show that condition numbers of Stokeslet matrices for BSM with 

regular Stokeslets (Table 5-2) for all three air flow orientation cases do not differ by 

b) 

a) 
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much. Therefore, for this particular problem the angle of velocity in boundary conditions 

presented above does not have significant influence on computational matrix condition 

number and, consequently, the solution accuracy in all three cases is the same. 

 

Table 5-2 Condition numbers of velocity Stokeslets computational matrix 

Flow angle, deg: Velocity matrix condition number 

0 1.234 ∙ 1020 

30 1.676 ∙ 1020 

45 8.495 ∙ 1019 

 

 

Figure 5-18 Normalized pressure about parabolic pitch ripple in the rectangular channel. 
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Velocity vector field and magnitude contours presented in Figure 5-17 show 

initial velocity profile about parabolic shape viscous deformable droplet surface at 𝑡̅ = 0 

solving for the uniform far-field velocity at the domain boundaries. 

 

Figure 5-19 Normalized shear stress about parabolic pitch ripple in the rectangular 

channel. 

 

Figures 5-18 and 5-19 depict normalized pressure and shear stress distribution along the 

plate versus the flow orientation angle. It is possible to notice that shear stress in the 

proximity of the droplet becomes smaller with the increase of the flow angle. The 

normalized total pressure in the areas adjacent to the droplet (Figure 5-18) is growing 

with the flow angle, which is inherent to the flow stagnation zones.  

It was mentioned before that the shear stress solution was obtained during post-

processing procedure using biased finite-difference 𝑂(Δ𝑟̅2) scheme as per (5-3), where 
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Δ𝑟̅𝑖 is a normalized distance from the respective point of the flow field to the nearest 

collocation point and normal to a liquid surface. Computation of shear stress as per (5-3) 

requires velocity solution at two layers away from the boundary: Δ𝑟̅1𝑖 = 0.001|𝑟 𝑖| and 

Δ𝑟2𝑖 = 0.002|𝑟 𝑖|, where 𝑟 𝑖 is a coordinate in respective droplet surface point. 

 

5.4 Application of BSM to the problems of viscous deformation in stagnation flow in 

NGJ nozzle 

The following problem represents 2-D simulation of inclined air stream impinging 

deformable liquid track at the bottom of a rectangular channel. It is physical model of 

prototype interaction between air jet and liquid mesophase pitch surface ripple in NGJ 

nozzle reaction zone and is aimed at better understanding of aerodynamic interaction 

pertaining to nanofiber “birth” and further growth process. 

 

5.4.1 Formulation of the problem 

 

In the present sub-section, initial velocity boundary condition profile is imported 

from preliminary velocity vector field calculated using FV method in ANSYS Fluent for 

the entire rectangular nozzle domain. Then the low-Reynolds number flow regions have 

been determined in vicinity of liquid mesophase pitch ripple formation.  

The problem considered in this Section is formulated the same way as in Section 

4.1 and Figure 1-1. Normalization of the spatial coordinates and flow properties is 
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performed as prescribed by (5-3) - (5-5). The resulting velocity magnitude contours are 

presented in Figure 4-2 of the previous Chapter. 

 

5.4.2 Proposed FV-BSM solution algorithm for 2-D Stokes flow problem in stagnation 

flow region 

 

Like in the previous case, the deformable surface of liquid ripple/track has 2-D 

parabolic shape and has been incorporated into the BSM computational domain. 

A multiple scale problem of a turbulent air flow in the channel and Stokes flow 

proximity of the stagnation point is considered. The air jet discharged into the channel 

and impinging surface of a molten mesophase pitch 2-D track on a flat plate in 

rectangular channel is simulated using FVM and BSM methods coupled with a Stokeslet 

regularization technique [34]. The detailed method algorithm is shown in Figure 5-20. 

 

Figure 5-20 Multi-scale solution algorithm for solving quasi-steady problem of viscous 

deformation of liquid ripple by coupling FVM (for Navier-Stokes (N-S) equations) and 

BSM (for Stokes equation) with imported boundary conditions (BC). 
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5.4.3 Modeling of viscous deformation of 2-D shapes in Stokes flow with imported 

velocity boundary conditions using BSM 

 

The molten viscous pitch 2-D track on the flat surface model is represented by a 

parabolic profile on a long rectangular surface.  

 

 

Figure 5-21 Low-Reynolds number flow region domain with imported velocity boundary 

conditions for air flow orientation: a) 45 degrees; b) 30 degrees. 

a) 

b) 



 

114 

 

 

The flow field in the domain of stagnation region is considered to be isothermal and heat 

transfer is neglected. Therefore no energy equation incorporated into the physical model 

describing the process. The liquid track is placed in the center of the stagnation region 

(Figure 5-21). 

In order to apply quasi-steady algorithm (5-3) to the problem of viscous 

deformations, the linear system is solved for unknown strength of Stokeslets and then 

velocity, pressure and shear stress are computed by using obtained Stokeslets (2-2)-(2-4). 

Then shear stress and surface tension components were used to calculate corresponding 

displacement in the respective direction, multiplying it by the projected area of the 

deformable surface, where every collocation point is a centroid of respective surface 

element.  

Once completed, the coordinates are updated and used as new collocation points 

reshaping the surface for subsequent iteration, which concludes the algorithm. 

After the preliminary flow field solution was obtained with FVM in ANSYS 

Fluent for the entire channel domain (Figure 4-2), the velocity vector field at nodes of 

inflation zone for a low-Reynolds number flow region has been determined. The resulting 

values were interpolated over rectangular boundaries of the droplet-scale domain for 

subsequent BSM simulation (Figure 5-21). The new boundary velocity vector field was 

then used to allow more accurate BSM solution for velocity vector field and evaluate 

stress components induced by the air flow over the modeled parabolic shape droplet 

assuming no-slip and no-penetrating boundary condition. The velocity at the bottom 
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surface and at the droplet placed inside the microscale domain was set equal to zero. 

Spatial coordinates were normalized to the size of the resulting domain. 

The parabolic droplet shape in the channel is described as follows: 

{
𝑦̅(𝑥̅) = 𝑔(1 − 𝑥̅2)2,   |𝑥̅| < 1

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,        (5-11) 

where 𝑔 = 0.4.  

The resulting boundary condition velocity components have been normalized as 

follows: 

{
 
 

 
 𝑢̅𝑖 =

𝑢𝑖𝐹𝐿

𝑚𝑎𝑥√𝑢𝑖𝐹𝐿
2 +𝑣̅𝑖𝐹𝐿

2

𝑣̅𝑖 =
𝑣̅𝑖𝐹𝐿

𝑚𝑎𝑥√𝑢𝑖𝐹𝐿
2 +𝑣̅𝑖𝐹𝐿

2

 ,             (5-12) 

where 𝑢̅𝑖𝐹𝐿  and 𝑣̅𝑖𝐹𝐿  are normalized components of 2-D boundary condition velocity 

vector field imported from ANSYS Fluent. 

Figure 5-20b) shows the resemblance between boundary condition velocity vector field 

imported from the solution obtained using FVM in ANSYS Fluent for the case of air jet 

impinging the wall at 30
o
 and boundary conditions presented in Chapter 8 of [88] for the 

same problem. The difference is the length-to-height ratio of the domain boundaries. It is, 

therefore, reasonable to expect similar deformation profiles for the parabolic droplet 

computed with BSM for a 30
o
 case to the solution presented in [88]. Similarly to the 

resulting solution for the horizontal flow field presented in Figure 5-17, the velocity 



 

116 

 

 

vector fields solved for the boundary conditions imported from ANSYS Fluent (Figure 4-

2) and magnitude contours are shown in Figure 5-22. 

 

 

 

Figure 5-22 Initial velocity magnitude contours and vector field in rectangular channel 

with imported boundary conditions for the cases of air jet discharged into the channel at: 

a) 45 degrees; b) 30 degrees. 

a) 

b) 
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They represent the velocity profile about the parabolic profile at 𝑡̅ = 0 solving for 

the low-Reynolds number region in the “air-liquid” reaction zone. 

 

 

 

Figure 5-23 Normalized pressure about parabolic pitch ripple for the air jet flow 

orientation flowing into the rectangular channel: a) 45 degrees; b) 30 degrees. 

b) 

a) 
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Figure 5-24 Normalized shear stress about parabolic pitch ripple for the air jet flow 

orientation flowing into the rectangular channel: a) 45 degrees; b) 30 degrees. 

b) 

a) 
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It is easy to notice both the qualitative and magnitude difference in pressure at the 

droplet surface computed for the jet discharged into the rectangular channel at 45
o
 and 

30
o
 are observed in Figure 5-23. 

  

Figure 5-25 Parabolic ripple deformation shape with regularized Stokeslets solution using 

imported BC for the case of air jet impinging parabolic pitch ripple at: a) 45 degrees; b)  

at 30 degrees. 

a) 

b) 
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Comparing pressure magnitude with shear stress for the respective cases, one may 

conclude that the droplet shape at the 30-degree flow is changed inherently by shear 

stress, while at 45 degrees the pressure in vicinity of the droplet peak is larger. Shear 

stress is smearing it apart from the center (see Figure 5-18). In the present problem BSM 

solution for velocity vector field and stress components were obtained using regularized 

Stokeslets. 

 

 

Figure 5-26 Deformation of viscous droplet in the rectangular channel under air jet 

impinging at 45 degrees: a) experiment b) BSM. 

 

The results of BSM simulations of the pitch ripple profile deformations are 

presented in Figure 5-25. It is easy to notice that at higher y-component velocity 

magnitude and pressure for the case of air jet impinging the wall of the rectangular 

channel at the angle of 45o, pitch ripple deformations are more intense than for the case 

of 30o. The 30o flow case exhibits smoother transitions and lower pressure magnitude 

resulting in growth of pitch ripple that will eventually be exposed to the higher Reynolds 

number region with the drag increased. 

a) b) 
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Analyzing droplet deformation profile for the case of air jet oriented at 45o with 

respect to the channel bottom surface and comparing it to the 30oorientation case a 

qualitative difference is observed.  

A comparison of numerical simulations discussed above with the experiment (see 

Chapter IV) is presented in Figures 5-26 and 5-27.  

 

 

Figure 5-27 Deformation of viscous droplet in the rectangular channel under air 

jet impinging at 30 degrees: a) experiment; b) BSM. 

 

The numerical simulation of viscous deformation of 2-D PDMS tracks under 

impinging air flow has a good qualitative correspondence with the experimental results 

presented in Chapter IV. The deformation profiles were compared for both air flow 

orientation cases – 30o and 45o – at respective times. 

b) a) 
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The next Chapter is dedicated to the discussion of BSM simulation results of 

viscous deformation of 3-D parabolic droplets placed in the same air flow conditions in 

the stagnation region and their comparison with the respective experimental results. 
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CHAPTER VI 

APPLICATION OF THE BOUNDARY SINGULARITY METHOD TO QUASI-

STEADY THREE-DIMENSIONAL PROBLEMS OF VISCOUS DEFORMATION IN 

STOKES FLOWS 

 

In the present Chapter application of the BSM to 3-D problems of viscous deformation in 

Stokes flows will be discussed. The first Section is dedicated to a validation of BSM with 

regular Stokeslets and comparison of the resulting computed spherical droplet 

deformation with the results of experimental research [93-95] including deformation of 

PDMS spherical droplet in shear flow of viscous media at low-Reynolds numbers. 

Section 6.2 introduces the results of BSM application to 3-D quasi-steady problem of 

parabolic shape droplet deformation in Stokes flow. Similarly to 2-D problems in Chapter 

V, the problem was solved for imported velocity boundary conditions obtained with 

FVM for the overall flow channel domain in ANSYS Fluent for two different air flow 

impingement angles - 30o and 45o. 
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6.1 Validation of BSM for problems of viscous deformation of a spherical PDMS droplet 

in a horizontal Stokes flow 

 Viscous droplet deformation in Stokes flow is a popular computational fluid 

dynamics [ 93 , 94 ] and experimental research problem [ 95 , 96 ]. It is also a useful 

validation test case for the solutions of more complicated problems of viscous 

deformation in quasi-steady and unsteady multiphase problems. It has been selected to 

evaluate the solution algorithm provided in Chapter VI for a 3-D problem of a gas jet 

flow in a low-Reynolds number region about a molten pitch surface. The problem 

discussed here has been solved assuming constant air flow in the overall channel domain. 

Thus, steady-state velocity and pressure fundamental solutions (2-1) – (2-4) were used to 

solve quasi-steady problem of viscous deformation. 

 In the present Chapter submerged Stokeslets are used in the BSM algorithm 

compared to the previous Chapter where Method of Regularized Stokeslets has been 

employed. This is made in order to apply uniform and local normal Stokeslet allocation 

schemes discussed in Chapter II for the 3-D droplet surface obtained by rotation of 2-D 

profile presented in Chapter V about vertical axis. For 2-D Stokeslets these allocation 

techniques were unnecessary and we can use regularization to save computational time 

for separate re-allocation of Stokeslets and collocation points. 

 The geometrical set up and the initial flow field velocity profile is presented at 

Figure 6-1, which is similar to the one presented in [94]. 
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Figure 6-1 Problem set up. 

Simplified model of viscous deformation is similar to [95] and represents 

boundary points’ displacement due to shear stress and tangential surface tension exerted 

by low-Reynolds number air flow. 

The resulting shape of the liquid surface is calculated based on the principle that 

the rate of deformation at every point is proportional to the sum of tangential stresses 

acting on the respective elementary surface. Similarly to 2-D case, viscous deformation 

of a spherical droplet is computed as per (5-3) in 3-D notation, where  𝑥̅𝑖
𝑛𝑒𝑤 becomes a 3-

component coordinate vector of a droplet shape at each iteration; here  t̂i is a tangential 

direction vector to the 3-D surface in point respectively, 𝑠𝑖 −  local surface tension 

component for the i-th Stokeslet; and the time step was selected 𝛥𝑡̅ = 0.01. 

The matrix system of equation (2-1) in 3-D notation is solved with no-slip and no-

penetrating velocity boundary conditions set at the channel walls and a droplet surface. 

For simplicity, the present mathematical model does not presume finding fundamental 

solution of non-linear Stokes equation with a tangential surface tension as an external 
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force source term. It rather incorporates surface tension into the balance with the shear 

stress equation for each surface point after velocity fundamental solution of the linear 

steady-state Stokes equation is found. 

 The surface tension in the 3-D case problem of spherical droplet deformation was 

determined based on the local mean curvature of deformed droplet. It was updated at 

each time-step using expressions for the first fundamental form of the derived surface: 

𝐺11 = 1 + (
𝜕𝑧̅

𝜕𝑥̅
)
2

, 𝐺22 = 1 + (
𝜕𝑧̅

𝜕𝑦̅
)
2

, 𝐺12 = 𝐺21 =
𝜕2𝑧̅

𝜕𝑥̅𝜕𝑦̅
,     (6-1) 

where 𝐺𝑖𝑗  are first fundamental forms of the 3-D surface. Then local curvature is 

determined as follows: 

𝜅 = √𝐺11𝐺22 − 𝐺12
2             (6-2) 

and then incorporated into the formula (5-6) of the previous Chapter.  

Finally, shear stress component acting on a liquid droplet is found based on the following 

conditions at “gas-liquid” interface: 

{
𝑢𝑟|𝑟=𝑅 = 𝑢𝜏|𝑟=𝑅 = 0

𝜏𝑎𝑖𝑟|𝑟=𝑅 = 𝜏𝑑𝑟𝑜𝑝𝑙𝑒𝑡|𝑟=𝑅
          (6-3) 

It is possible to express the second condition in terms of shear rates: 

−𝜇𝑎𝑖𝑟
𝜕𝑢𝑎𝑖𝑟

𝜕𝑛̂
|
𝑟=𝑅

= −𝜇𝑑𝑟𝑜𝑝𝑙𝑒𝑡
𝜕𝑢𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝜕𝑛̂
|
𝑟=𝑅

       (6-4) 
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Then 𝛾̇𝑑𝑟𝑜𝑝𝑙𝑒𝑡  can be found from (6-5) through the ratio of air and droplet liquid 

viscosities: 

𝜕𝑢𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝜕𝑛̂
|
𝑟=𝑅

=
𝜇𝑎𝑖𝑟

𝜇𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝜕𝑢𝑎𝑖𝑟

𝜕𝑛̂ 𝑟=𝑅
        (6-5) 

In the present computation the ratio of fluids’ viscosities was taken equal to 0.0012 as in 

[95]. 

In the test case formulation, a PDMS-water contact coefficient used in a surface tension 

component computation is given at a room temperature (𝑇 = 20℃) and was taken equal 

to 𝛾𝑓 = 1.9 ∙ 10−2
N

m
 [ 97 ]. In the present problem it was normalized by 

 𝜌〈𝑈𝑙𝑜𝑐𝑎𝑙2〉
2𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡 . The dimensionless simulation time in Figure 6-2 was calculated 

using (4-3). 

 

 

Figure 6-2 Spherical droplet deformation in shear flow at 𝑡̅ = 1: a) corresponding to 

shear rate 42.7 s
-1

; b) corresponding to shear rate 14.53 s
-1

. Photos of deformed droplet 

images are taken from [95].  

 

a) b) 
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Figure 6-3 Surface stress components in the middle longitudinal section: a), b) surface 

tension, c), d) shear stress and e), f) pressure corresponding to air flow shear rate 42.74 s
-1

 

b) surface tension, d) shear stress and f) pressure corresponding to air flow shear rate 

14.53 s
-1

 at 𝑡̅ = 0.1 and 𝑡̅ = 1 respectively. 

b) 

c) d) 

e) f) 

a) 
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As it is shown in experiment in [95], the greater shear rates and smaller surface 

tension result in larger deformation with more intense surface reshaping (Figure 6-2). The 

shear stress for the purely shear flow about droplet during its’ deformation does not differ 

by much (Figures 6-3c and 6-3d), while surface tension component changes significantly 

(Figure 6-3a and b). 

According to formula (4-3), the maximum dimensionless time determined for 

simulations validity may be expressed in terms of stress components for pitch droplet was 

computed in Chapter IV and equal to 𝑡̅ = 5. 

 

Figure 6-4 Comparison of BSM solution with the experimental data: a) BSM solution at 

𝑡 = 1 and flow shear rate 42.74 s
-1

; b) BSM solution at 𝑡 = 0.1 and flow shear rate 14.53 

s
-1

. Images of deformed droplet were taken from [95]. 

 

In order to determine maximum physical simulation time of viscous droplet deformation, 

von-Neumann boundary conditions at the interface has been used (6-6). This interface 

condition is used to evaluate qualitatively viscous deformation of a spherical droplet in 

shear flow and helps to validate BSM applicability. 

a) b) 
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Figures 6-2 and 6-4 represent comparison of the BSM numerical simulation and 

experimental results between droplet deformations at different time and shear rates in the 

Stokes flow. 

From the principle of equality of shear stress between two media, the boundary condition 

at the air-pitch interface is: 

−𝜇𝑎𝑖𝑟
𝜕𝑢𝑎𝑖𝑟

𝜕𝑛̂
|
𝑟=𝑅

= −𝜇𝑝𝑖𝑡𝑐ℎ
𝜕𝑢𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝜕𝑛̂
|
𝑟=𝑅

         (6-6) 

and the principal deformation is determined by: 

𝑚𝑎𝑥|Δ𝑙| =
𝑚𝑎𝑥|𝜏𝑓+𝜎|

𝜇𝑝𝑖𝑡𝑐ℎ
𝑑𝑡,    (6-7) 

The assumption was made that the surface tension contributes to the shape of the 

deformed droplet and has no sufficient contribution to elongation at small deformation 

rates, which yields: 

𝑚𝑎𝑥|Δ𝑙| ≅ 𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡
𝑚𝑎𝑥|𝜏𝑓|

𝜇𝑝𝑖𝑡𝑐ℎ
𝑑𝑡,       (6-8) 

Then total droplet elongation will be: 

∑ 𝑚𝑎𝑥|Δ𝑙| =
𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝜇𝑝𝑖𝑡𝑐ℎ
∑ 𝑚𝑎𝑥|𝜏𝑓|𝑑𝑡
𝑛
𝑖=1

𝑛
𝑖=1 ,            (6-9) 

here n is a number of time steps. Applying summation of (6-9) over the droplet boundary 

surface yields: 

|𝛥𝑙| = 𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡 ∑ 𝑚𝑎𝑥|𝛾̇𝑝𝑖𝑡𝑐ℎ|𝑑𝑡
𝑛
𝑖=1 ,     (6-10) 
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|𝛥𝑙| = 𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡 ∑  𝑚𝑎𝑥 |
𝜇𝑎𝑖𝑟

𝜇𝑝𝑖𝑡𝑐ℎ
𝛾̇𝑎𝑖𝑟| 𝑑𝑡

𝑛
𝑖=1 = 𝑛 ∙ 𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑚𝑎𝑥 |

𝜇𝑎𝑖𝑟

𝜇𝑝𝑖𝑡𝑐ℎ
𝛾̇𝑎𝑖𝑟| 𝑑𝑡 =

                                                        𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑚𝑎𝑥 |
𝜇𝑎𝑖𝑟

𝜇𝑝𝑖𝑡𝑐ℎ
𝛾̇𝑎𝑖𝑟| 𝑡,        (6-11) 

where 𝛥𝑙 is a droplet elongation at time t. 

Using molten mesophase pitch and air viscosity (Figure 4-7, [84] and [98]), the shear rate 

of the first can be obtained as follows: 

𝛾̇𝑝𝑖𝑡𝑐ℎ =
𝜇𝑎𝑖𝑟

𝜇𝑝𝑖𝑡𝑐ℎ
𝛾̇𝑎𝑖𝑟 =

3.4∙10−5𝑃𝑎∙𝑠

100 𝑃𝑎∙𝑠
∙
6.6

𝑚

𝑠

10−6𝑚
≅ 2.25𝑠−1  

In order to satisfy the condition 𝑅𝑒 ≤ 1 for the following must be true:|𝛥𝑙| ≤
𝐿

2
, where 𝐿 

is a width of low-Reynolds number region. In the present case, 𝐿 = 51𝜇𝑚 and thus: 

|𝛥𝑙| ≤ 2.55 ∙ 10−5𝑚;  

Finally, the maximum physical droplet deformation time of 1 mm droplet at a 6.6 m/s 

before it leaves the region satisfying 𝑅𝑒 ≤ 1 condition becomes: 

𝑡𝑚𝑎𝑥 =
𝑚𝑎𝑥|𝛥𝑙|

𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑚𝑎𝑥|
𝜇𝑎𝑖𝑟
𝜇𝑝𝑖𝑡𝑐ℎ

𝛾̇𝑎𝑖𝑟|

= .346 𝑠  

 It is interesting to compare the BSM solution with the numerical simulation 

results discussed in [99]. The collocation points placed at the 3-D droplet surface then 

would designate nanoparticles tracing viscous droplet deformations. 
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6.2 Boundary singularity method solution of 3-D flow for the range of inclinations of jet 

over the channel bottom 

In continuation of the research, a family of 3-D multiphase Stokes flow problems 

with viscous droplet settling in the channel deformation is considered.  

 

 

Figure 6-5 Uniform Stokeslets allocation scheme and velocity boundary 

conditions imported from ANSYS FLUENT (similar to 2-D problems) at different air jet 

orientation: a) 30 degrees; b) 45 degrees. 

a) 

b) 
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As in Chapter V, normalization of each of three coordinates of the Stokeslets and 

collocation points shown in Figure 6-5 was made by the size of the domain using (5-5). 

The number of Stokeslets was 𝑁 = 1521 for both flow case problems, as depicted in 

Figure 6-5.  

3-D parabolic droplet model was used in order to simulate smaller scattered pitch 

film surface perturbations exposed to the surface air flow and causing development of 

separate nanofiber “embryos”.  

In order to model 3-D flow over the droplet surface, the flow is considered to be 

uniform across the channel (in y-direction), therefore planar boundary conditions were 

imported from ANSYS Fluent solution (Section 5.3) for 2-D velocity vector field in XOZ 

coordinate plane and replicated into 10 layers generated along y-axis (see Figure 6-5). 

The size of the domain was selected 4 × 4 × 2 normalized by the length of the 

low-Reynolds number region (𝐿 = 21𝜇𝑚). To better represent the initial PDMS droplet 

shape in the experiment, another parabolic geometry described with the following 

equation describing the height of a droplet using polar coordinates was adopted: 

{

𝑥̅(𝑟̅, 𝜃) = 𝑟̅𝑐𝑜𝑠(𝜃);
𝑦(𝑟, 𝜃) = 𝑟̅𝑠𝑖𝑛(𝜃);

𝑧̅(𝑟̅, 𝜃) = 𝑚(1 − 𝑟̅2)3,   𝑥̅2 + 𝑦̅2 < 1  𝑎𝑛𝑑 0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (6-12) 

where 𝑚 = 0.36. 𝑟̅, 𝜃 are polar coordinates first normalized by the size of the domain and 

introduced in (2-8) of Chapter II for regular and modified Cassini ovals. 
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The physical problem formulation is identical to 2-D case problems discussed in the 

Section above. 

  

 

 

Figure 6-6 Pressure computed with BSM for Stokes flow about 3-D parabolic droplet: a) 

45 degrees air flow; b) 30 degrees air flow 

 

a) 

b) 
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Following recommendation given in Chapter II, the Stokeslet allocation depth 

parameter was taken equal to D̅ = 0.001 for the domain boundary points based on the 

considered flow domain length, and D̅ = 0.03 is the Stokeslet allocation depth selected 

for the droplet based on its’ radius. 

 

 

Figure 6-7 Shear stress computed with BSM for Stokes flow about 3-D parabolic droplet: 

a) 30 degrees air flow; b) 45 degrees air flow 

a) 

b) 
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 Like in the previous cases, the solution includes the velocity vector field in the 

middle section of the specified microscale domain surface tension and shear stress.  

The resulting middle section velocity vector fields for both 30 and 45 degrees flow cases 

look very similar to the ones computed for the respective 2-D flow cases (see Figure 5-

22). For that reason they are omitted here assuming the domain and the droplet profiles 

are identical to the ones presented in 2-D model. 

For the 30o  flow case one may notice larger pressure and stress magnitude 

changes along the surface. The smaller stress gradients about droplet surface for 45o  

flow case result in less intensive deformations and shape changes.  

 

    

Figure 6-8 Deformation of PDMS droplet and BSM simulation results for 3-D parabolic 

droplet model in case of 30 degrees air flow at 𝑡 = 1. 

 

This is also demonstrated with the experimental deformation profiles of 3-D droplet after 

𝑡̅ = 5  (Figures 6-8a and 6-9a) and deformation simulation results for the parabolic 

a) b) 
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droplet after 𝑡̅ = 1 computed with BSM (Figures 6-8b and 6-9b). Normalization of 

coordinates was made by the size of the domain using (5-5). 

 

     

Figure 6-9 Deformation of PDMS droplet and BSM simulation results for 3-D parabolic 

droplet model in case of 45 degrees air flow 𝑡 = 1. 

 

The scattered dots in Figures 6-8 and 6-9 depict collocation points that track respective 

displacement of the boundary points after droplet deformation. In Figure 6-8 one can see 

denser package of points in the trailing (left) part of the droplet along the flow and the 

leading part of the droplet, while middle part point distribution is rarified. It allows for 

tracking redistribution of liquid over the droplet and estimate relative deformation around 

droplet. 

It is easy to see that pressure and shear stress components for the 2-D case shown 

in Figures 5-22 and 5-23 of the previous Chapter exhibit larger gradients over the track 

surface than those presented in Figures 6-6 and 6-7 for the 3-D droplet. This leads to 

smoother transitions of deformation profile in the case of droplet as it can be seen in 

Figures 6-8 and 6-9 compared to the Figures 5-25 and 5-26. 

a) b) 
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This effect can also be observed comparing the 3-D droplet and the 2-D PDMS track 

experimental deformation images and simulation results in case of 45 degrees air flow. 

The comparison of the droplet and track deformation profiles reveals the difference in 

deformation amplitude for the 3-D droplet and the 2-D track. The deformation of the 3-D 

droplet is smaller than it is observed for the 2-D track (see Figures 5-26 and 5-27). Total 

surface area of the latter and consequently drag induced by air stream is greater. 

After BSM with a quasi-steady algorithm was applied and the resulting deformed 

surface 3-D coordinates are found, the following procedure to obtain FV solution can be 

used to compute further deformations at higher Reynolds number regions where BSM is 

not applicable: 

1) The resulting surface 3-D coordinates are exported from Matlab BSM code to 

an AutoCAD-readable format data file; 

2) File with coordinates is split into multiple files representing coordinates of 

cross-sections, with coordinates of each "slice" of the surface and finally constructing a 

3D pitch wiggle surface and body; 

3) Constructed AutoCAD 3D-model is exported as *.iges file, which is readable 

by ANSYS DesignModeler application; 

4) Finally, obtained geometry *.iges data file was uploaded into ANSYS® 

FLUENT and the simulation were performed as described above. 

The proposed 4-step procedure may be used to perform simulations of the liquid pitch 

surface perturbation propagation at higher Reynolds number when it leaves the stagnation 
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flow region. The new coordinates after the last iteration in BSM quasi-steady solution 

algorithm are used to generate surface 3-D model in ANSYS Fluent and perform 

respective flow simulations to simulate multiphase flow and trace fiber growth inside and 

nozzle. 

Further extension of the problem both in 2-D and 3-D formulation is possible 

assuming high frequency pulsating flow and non-stationary flow field redistribution in 

vicinity of liquid surfaces in flow stagnation regions. This requires application of 

unsteady velocity and pressure fundamental solutions (Appendix B).  
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CHAPTER VII 

 

CONCLUDING REMARKS 

In the present Dissertation the Boundary Singularity Method (BSM) was 

optimized in terms of needed computational resources and convergence and then applied 

to problems of determination of drag force exerted on non-spherical particles and on 

particle interacting with fiber in filtration problem. BSM was combined with FVM for the 

first time and applied to deformation of liquid droplets in synthesis of submicron fibers. 

Location of singularities is crucial for obtaining a Stokes flow solution using 

BSM with moderate number of singularities. Optimization of Stokeslets' allocation 

substantially reduces computational time for Stokes flows about geometrical shapes 

typical for merging particles in multi-phase flows. 

First, allocation of Stokeslets was considered at submerged surfaces geometrically similar 

to the shapes of pairs of particles. Non-uniform and uniform distributions of Stokeslets 

and collocation points at these surfaces were compared. For non-uniform distributions the 

number of Stokeslets and collocation points per cross-section remains the same while for 

uniform distributions the number of singularities and collocation points per unit area 

remains the same. The former scheme is particularly simple in implementation while the 

latter shows convergence in terms of Stokes force for approximately halved number of 

Stokeslets. 
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To further reduce the needed number of Stokeslets, new Stokeslet allocation schemes 

were proposed and implemented to Stokes flows about merging particles. New 

Stokeslets' allocation method was denoted as the local normal scheme in which 

singularities are located at straight lines connecting the particle dividing line (symmetry 

line for symmetric particles) with the points at this surface. These lines are locally normal 

to the particle surface. The depth of submergence of Stokeslets along these lines serves as 

a parameter of the scheme.  

To improve the efficiency of local normal scheme, combined scheme was proposed that 

uses the local normal approach for convex regions and similar shape scheme with 

uniform allocation of singularities for concave regions near inflexion points. The 

combined scheme allows for different depth of submergence of a surface formed with 

Stokeslets' for convex and concave regions.  

For proposed Stokeslet allocation schemes (local normal and combined), the required 

CPU time to solve a Stokes flow reduces  6 to 30 times depending on the considered 

shape of cluster of particles, with a needed number of singularities reduced  4 to 6 times 

compared to traditional allocation of Stokeslets at geometrical surface similar to the 

particle surface. 

To apply the proposed approach, Stokes flows were computed about pairs of particles 

ranging from longitudinal to transversal orientations with respect to flow. For pair of 

separated spherical particles, the solution was verified using computational and analytical 

results obtained in previous studies. The proposed approach is shown to be instrumental 
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to obtain Stokes force and flow field around fused particles at different stages of their 

merging using moderate number of Stokeslets. 

In the future research the approach will be extended to efficient computation of Stokes 

force for transient 3-D problems of particles' dynamics with partial slip boundary 

conditions. 

Simulation of a Stokes flow about droplet sticking to cylindrical fiber and about “peanut-

shape” cluster of merging droplets was performed and comparison of traditional versus 

proposed Stokeslet allocation schemes was presented. Traditional Stokeslet allocation 

schemes combine non-uniform similar-shape scheme for spherical droplet and “peanut-

shape” cluster and “equidistant” scheme for cylindrical fiber, while proposed scheme 

include “non-equidistant” (exponential) submergence depth for cylindrical fiber and 

uniform similar-shape scheme for spherical droplet and “peanut-shape” cluster. The large 

condition number of the computational matrix 𝑀 and consequent inaccuracy in solution 

at the point of contact and adjacent areas has been cured with smaller Stokeslets 

allocation depth at those areas. 

The resulting solution using BSM together with the proposed scheme of allocation of 

singularities shows growth of total drag with the increase of settling droplet radius. 

Evaluation of the results obtained for a Stokes flow about the droplet-fiber system shows 

that the maximum drag is achieved when the angle between the far-field flow vector and 

direction from the fiber axis to droplet center is 45o. 



 

143 

 

 

In the simplified problem of air flow in the channel over viscous deformable 

surface describing one of processes inside NGJ nozzle, Stokes flow problem in stagnation 

regions has been solved using overall domain velocity vector field as the boundary 

conditions (BC). The BC velocity vector field was obtained by solving Navier-Stokes 

equations using FVM for the entire channel domain. The quasi-steady algorithm was 

introduced for a surface reshaping after each time step during viscous deformation 

derived from the sum of tangential stresses. 

Simulation of 2-D tracks and 3-D parabolic droplet deformations show good 

qualitative correspondence with experimental results for PDMS tracks and droplets 

presented in Chapter IV. The experiment was attempted to physically model essential 

features of pitch deformation and elongation in particular locations of air-liquid reaction 

zone of NGJ nozzle in terms of geometry, air-liquid viscosity ratios and air flow 

Reynolds number in vicinity of liquid droplets and tracks.  

Further BSM simulations of viscous deformation of liquids in low-Reynolds 

number flows are planned with application of complete solution of unsteady Stokes 

equation presented in Appendix B. 
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APPENDIX A 

 

BASIC RELATIONS IN STOKES FLOW PROBLEMS USED IN THE RESEARCH 

 

Analytical solution for the Stokes force about the sphere with radius R is well known: 

𝐹𝑆𝑡𝑜𝑘𝑒𝑠 = 6𝜋𝜇𝑅𝑈∞          (A-1) 

where 𝜇 is a dynamic viscosity of the flow media and 𝑈∞ is a far-field uniform velocity. 

For normalized values of 𝜇, 𝑅, and 𝑈∞ equal to unity, the  𝐹𝑆𝑡𝑜𝑘𝑒𝑠 = 6𝜋. Here 𝐹𝑆𝑡𝑜𝑘𝑒𝑠  is a 

force exerted at the sphere surface exposed to the uniform by φ flow (see Figure  A-1b) 

and can be calculated a sum of surface integrals of normal stress and shear stress: 

 
𝜏 = −𝜇 (𝑟

𝑑

𝑑𝑟
(
𝑢𝜃

𝑟
) +

1

𝑟

𝑑𝑢𝑟

𝑑𝑟
) =

3

2

𝜇𝑈∞𝑠𝑖𝑛𝜃

𝑅
,    𝐹𝑠ℎ𝑒𝑎𝑟 = 2𝜋 ∫ 𝜏 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑅2𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0
    

−𝑝 + 2𝜇
𝑑𝑢𝑟

𝑑𝑟
=

3

2

𝜇𝑈∞𝑐𝑜𝑠𝜃

𝑅
, 𝐹𝑛𝑜𝑟𝑚𝑎𝑙 = 2𝜋 ∫ 𝜎 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑅2𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0

   (A-2) 

where 𝑟 is a radial coordinate and 𝜃 is an angular coordinate of the spherical coordinate 

system (Figure A - 1),  𝑢𝜃 and  𝑢r are velocity vector components, 𝜏 is a shear stress and 

𝜎 is a normal stress at the sphere surface.  

Flow field velocity is given by: 

{
𝑢𝑟 = 𝑈∞ cos 𝜃 ∙ (1 −

3𝑅

2𝑟
+

𝑅3

2𝑟3
)

𝑢𝜃 = 𝑈∞ sin 𝜃 ∙ (1 −
3𝑅

4𝑟
−

𝑅3

4𝑟3
)
,               (A-3) 
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where 𝑢𝑟 and 𝑢𝜃 are radial and tangential velocity vector components in spherical 

coordinate system (Figure A-1). 

   

Figure A-1 Stokes flow problem: a) spherical coordinate system and b) geometrical 

formulation of flow about sphere. 

 

Figure A-2 Stress tensor components on infinitesimal cube 

 

a) 
b) 
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APPENDIX B 

 

COMPLETE FUNDAMENTAL SOLUTION OF THE UNSTEADY STOKES 

EQUATION 

 

Appendix B introduces derivation of a complete solution of the system of 3-D unsteady 

Stokes and a continuity equations and its’ validation with 2-D and 3-D Stokes first 

problem. 

 

B-1 Derivation of 3-D Steady-state Stokeslets 

 

Figure B-1 Stokeslets and collocation points in unsteady circular domain 

𝛤 

𝛤𝑆 
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Consider Cauchy problem for unsteady Stokes equation in ℛ3 . The solution of the 

problem represents generalized solution of the partial differential equation with invariable 

RHS, which nulls at 𝑡 < 0, 

{
1

𝜌

𝜕𝑢𝑘(𝑥,𝜉;𝑡,𝜏)

𝜕𝑡
− 𝜈∇2𝑢𝑘(𝑥, 𝜉; 𝑡, 𝜏) = −

1

𝜌
𝑔𝑟𝑎𝑑 𝑝𝑘(𝑢(𝑥, 𝜉; 𝑡, 𝜏))

𝑑𝑖𝑣(𝑢𝑘) = 0;
,   (B-1) 

where 𝑥, 𝜉 designate spatial coordinates and 𝑡, 𝜏  are time variables associated with 

Stokeslets and collocation points respectively (Figure B-1). 𝑢𝑘 and 𝑝𝑘 represent velocity 

and pressure components and 𝜌 is a fluid density. 𝑢𝑘 and 𝑝𝑘 are taken such that 𝑢𝑘, 𝑝𝑘 →

0 as 𝑥 → ∞, 𝑘 denotes a dimension index of the spatial coordinate. 

Tsai, Young, Fan and Chen have presented unsteady Stokeslets for both 2-D and 3-D 

cases in [2]. They, however, only represent unsteady parts of unsteady Stokes and 

continuity equations solutions (or the case of steady-state component identically equal to 

zero). 

The analysis of (B-1) shows that a complete fundamental solution to this system of 

equations is constituted from: 

1) unsteady solution - fundamental solution of diffusion equation; 

2) steady-state solution of Laplace equation, which represents a limit the solution 

tends to. 

After Fourier transform, representing pressure gradient in a pressure driven flow with 

delta functions, governing equations (B-1) can be written as follows: 
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{
𝑖
𝜕

𝜕𝑡
𝑢̃𝑘 + 𝜇𝛼2𝑢̃𝑘 = [𝛿(𝑥𝑘 − 𝜉𝑘) ∙ 𝛿(𝑡 − 𝜏) + 𝛿(𝑥𝑘 − 𝜉𝑘)]

𝑖𝛼𝑗𝑢̃
𝑘 = 0;

   (B-1a) 

where 𝛼 and 𝛼𝑗 designate spatial components of Stokeslet strength. 

A complete solution for the velocity also satisfies continuity equation. The general and 

complete solutions of (B-1) can then be written in the form: 

Φ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑥, 𝜉; 𝑡, 𝜏) = Φ𝐻(𝑥, 𝜉; 𝑡, 𝜏) + Φ𝑃(𝑥, 𝜉; 𝑡, 𝜏) + Φ𝑆𝑆(𝑥, 𝜉),     (B-2) 

where Φ𝐻(𝑥, 𝜉; 𝑡, 𝜏) is a homogeneous solution and Φ𝑃(𝑥, 𝜉; 𝑡, 𝜏) are particular unsteady 

solutions of the equations (B-1) without RHS and Φ𝑆𝑆(𝑥, 𝜉) is a solution to a steady-state 

Stokes equations and 𝐻(𝑡 − 𝜏) is a Heaviside step function. One can easily prove that by 

removing time derivative from unsteady Stokes equation (time derivative of steady-state 

Stokes equation is identically zero), the steady-state solution component is: 

Φ𝑆𝑆(𝑥, 𝜉) = 𝑢𝑗
𝑘(𝑥, 𝜉) = −

1

8𝜋𝜈
[
𝛿𝑗
𝑘

|𝑥−𝜉|
+
(𝑥𝑗−𝜉𝑗)(𝑥𝑘−𝜉𝑘)

|𝑥−𝜉|3
 ] ,

𝑎𝑛𝑑

𝑝𝑗
𝑘(𝑥, 𝜉) = −

𝑥𝑘−𝜉𝑘

4𝜋|𝑥−𝜉|3
,

           (B-3) 

Applying Fourier ℱ𝑥 transform to the unsteady Stokes equation, one obtains: 

ℱ𝑥 [
𝜕𝑢𝑘

𝜕𝑡
] − 𝜈ℱ𝑥[Δ𝑢

𝑘] = ℱ𝑥[𝛿(𝑥 − 𝜉) ∙ 𝛿(𝑡 − 𝜏)],       (B-4) 

𝑢𝑘(𝑥, 𝜉) =
1

(4𝜋)
3
2

∫ 𝑢̃𝑘(𝑥̃, 𝜉)𝑑|𝑥̃ − 𝜉|;

 ∞

−∞
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𝑢̃𝑘(𝑡, 𝜏) = 𝜃(𝜏)𝑒−𝑣𝑡̃  is a fundamental solution of diffusion-type operator 𝐿(𝐷) =
𝜕

𝜕𝑡
−

𝜈Δ. Applying Fourier transform operator to the function 𝑢𝑘(𝑥, 𝜉, 𝑡, 𝜏),  

𝑢𝑘(𝑥, 𝜉; 𝑡, 𝜏) = −𝜈
1

(4𝜋)
3
2

∫ ∫ 𝜃(𝜏)𝑒−𝑣𝑡̃𝑢̃𝑘(𝑥, 𝜉)𝑑|𝑥̃ − 𝜉|𝑑(𝑡̃ − 𝜏̃)
|𝑥−𝜉|

0
.

 (𝑡−𝜏)

0
     (B-5) 

Setting 𝜃(𝜏̃) = 𝑒𝜈𝜏̃, the homogeneous solution by definition: 

Φ̃𝐻(𝑥, 𝜉; 𝑡, 𝜏) = 𝑢̃𝑘(𝑥, 𝜉; 𝑡, 𝜏) =
𝑒
−
|𝑥̃−𝜉̃|

2

4𝜈(𝑡̃−𝜏̃)

(4𝜋𝜈(𝑡̃−𝜏̃))
3
2

 ,    (B-6) 

In [4] (§4, p.94) Ladyzhenskaya used fundamental singular solutions of Laplace and heat 

equation to obtain expression of the velocity Laplacian: 

Δ𝑢0
𝑘(𝑥, 𝜉; 𝑡, 𝜏) = −

1

(4𝜋𝜈(𝑡−𝜏))
3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)e𝑘,    (B-7) 

where e𝑘 is a respective unity-vector defining the basis of coordinate system.  

Taking Cauchy integral of Laplacian over the surface Ω [3] and changing variables, one 

obtains the expression for the unsteady solution: 

𝑢0
𝑘(𝑥, 𝜉, 𝑡, 𝜏) =

1

4𝜋(4𝜋𝜈(𝑡̃−𝜏̃))
3
2

∫
1

|𝑥̃−𝜓̃|
𝑒
−
|𝜓̃−𝜉̃|

2

4𝜈(𝑡̃−𝜏̃)𝑑𝜓 ∙ e𝑘
Ω

=

 =
1

4𝜋
3
2√𝜈(𝑡̃−𝜏̃)|𝑥̃−𝜉̃|

∫ 𝑒
−

|𝑟|2

4𝜈(𝑡−𝜏)𝑑𝑟 ∙ e𝑘
|𝑥̃−𝜉̃|

0

            (B-8) 

One may now introduce a new variable: 𝜂 =
|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
,  

The derivative of error function yields: 
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𝑑

𝑑𝜂
erf(𝜂) =

2

√𝜋
𝑒−𝜂

2
,               (B-9) 

Moving square root in the denominator under the derivative in the integrand: 

Φ𝑃(𝑥, 𝜉; 𝑡, 𝜏) = 𝑢0
𝑘(𝑥, 𝜉, 𝑡, 𝜏) =

1

2𝜋
3
2|𝑥̃−𝜉̃|

∫ 𝑒
−

|𝑟|2

4𝜈(𝑡̃−𝜏̃)𝑑
𝑟

2√𝜈(𝑡̃−𝜏̃)
∙ e𝑘

|𝑥̃−𝜉̃|

0
=  

=
erf(

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
)

4𝜋|𝑥−𝜉|
∙ e𝑘                              (B-10) 

The expression above represents kernel of the unsteady part of the diffusion-type 

equation solution. The general solution for the Stokes equation includes unsteady 

diffusion equation and continuity equations, together with the steady state part: 

          𝐿(𝐷)[𝑢0(𝑥, 𝜉; 𝑡, 𝜏) + 𝑢(𝑥, 𝜉) ∙ 𝐻(𝑡 − 𝜏)] =    

= 𝐿(𝐷)𝑢(𝑥, 𝜉) ∙ 𝐻(𝑡 − 𝜏) + 𝐿(𝐷)𝑢0(𝑥, 𝜉, 𝑡, 𝜏) = 0;   (B-11) 

Introducing diffusion operator 3-D system of Stokes equations. That is using (B-10) it is 

possible to write down time derivative: 

𝜕

𝜕𝑡
𝑢𝑘(𝑥, 𝜉, 𝑡, 𝜏) =

𝜕

𝜕𝑡
[

1

(4𝜋𝜈(𝑡−𝜏))
3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)] =

−
3

(4𝜋𝜈(𝑡−𝜏))
3
2∙2(𝑡−𝜏)

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) +
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)2
1

(4𝜋𝜈(𝑡−𝜏))
3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) =

−
3

(4𝜋𝜈(𝑡−𝜏))
3
2∙2(𝑡−𝜏)

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) +
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)2
1

(4𝜋𝜈(𝑡−𝜏))
3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) = −
3

2(𝑡−𝜏)
𝑢𝑘(𝑥, 𝜉, 𝑡, 𝜏) +

         
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)2
𝑢𝑘(𝑥, 𝜉, 𝑡, 𝜏) = [

|𝑥−𝜉|2

4𝜈(𝑡−𝜏)2
−

3

2(𝑡−𝜏)
] 𝑢𝑘(𝑥, 𝜉, 𝑡, 𝜏)                    (B-12) 



      

160 

 

 

and Laplacian: 

∂2

∂2𝑥𝑘
𝑢𝑘(𝑥, 𝜉, 𝑡, 𝜏) =

∂2

∂2𝑥𝑘
[

1

(4𝜋𝜈(𝑡−𝜏))
3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)] =
𝜕

𝜕𝑥𝑖
[

−2|𝑥𝑘−𝜉𝑘|

4𝜈(𝑡−𝜏)∙(4𝜋𝜈(𝑡−𝜏))
3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)] =

[−
2

4𝜈(𝑡−𝜏)∙(4𝜋𝜈(𝑡−𝜏))
3
2

+
2|𝑥𝑘−𝜉𝑘|∙2|𝑥𝑘−𝜉𝑘||𝑥−𝜉|

16𝜈2(𝑡−𝜏)2∙(4𝜋𝜈(𝑡−𝜏))
3
2

] 𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) =

[
|𝑥𝑘−𝜉𝑘|

2

4𝜈2(𝑡−𝜏)2
− 

1

 2𝜈(𝑡−𝜏)
]

1

(4𝜋𝜈(𝑡−𝜏))
3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) = [
|𝑥𝑘−𝜉𝑘|

2

4𝜈2(𝑡−𝜏)2
−

1

2𝜈(𝑡−𝜏)
] 𝑢𝑘(𝑥, 𝜉, 𝑡, 𝜏)   (B-13) 

Δ𝑢𝑘 =
𝜕2𝑢1

𝜕𝑥1
2 +

𝜕2𝑢2

𝜕𝑥2
2 +

𝜕2𝑢3

𝜕𝑥3
2 = (

(𝑥−𝜉)1
2

4𝜈2(𝑡−𝜏)2
−

1

2𝜈(𝑡−𝜏)
) 𝑢1 + (

(𝑥−𝜉)2
2

4𝜈2(𝑡−𝜏)2
−

1

2𝜈(𝑡−𝜏)
) 𝑢2 +  

+(
(𝑥−𝜉)3

2

4𝜈2(𝑡−𝜏)2
−

1

2𝜈(𝑡−𝜏)
) 𝑢3,                        (B-14) 

where 

(𝑥1 − 𝜉1)
2 + (𝑥2 − 𝜉2)

2 + (𝑥3 − 𝜉3)
2 = |𝑥 − 𝜉|2 = |𝑟|2, 𝑢𝑘 = {𝑢1, 𝑢2, 𝑢3}   (B-15) 

Summing up (B-13) and (B-14) to obtain Laplacian, one ends up with: 

Δ𝑢 = (
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)2
−

3

2(𝑡−𝜏)
) 𝑢         (B-16) 

and therefore: 

𝜕𝑢

𝜕𝑡
− 𝜈Δ𝑢 = (

|𝑥−𝜉|2

4𝜈(𝑡−𝜏)2
−

3

2(𝑡−𝜏)
) 𝑢 − (

|𝑥−𝜉|2

4𝜈(𝑡−𝜏)2
−

3

2(𝑡−𝜏)
) 𝑢 = 0,  (B-17) 

which proves that 𝑢𝑘(𝑥, 𝜉; 𝑡, 𝜏) satisfies diffusion equation and gives identical zero. 
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Using the same principle, one may obtain the derivatives of the unsteady solution 

𝑢0  using kernel (B-10) of the equation with the RHS representing product of delta 

functions of time and space. 

Taking time and partial derivatives of the error function, it is possible to apply 

chain rule to (B-9), which yields: 

𝜕

𝜕|𝑥−𝜉|
𝐹(𝜂(𝑥, 𝜉; 𝑡, 𝜏)) =

𝜕𝐹(𝜂)

𝜕𝜂

𝜕𝜂(𝑥,𝜉;𝑡,𝜏)

𝜕|𝑥−𝜉|
,         (B-18) 

𝜕

𝜕𝑡
𝑢0(𝑥, 𝜉; 𝑡, 𝜏) =

𝜕

𝜕𝑡

𝑒𝑟𝑓(
|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
)

4𝜋|𝑥−𝜉|
= −

1

4𝜋|𝑥−𝜉|

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)∙2(𝑡−𝜏)
𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)
2

√𝜋
=   

= −
1

𝜈
1
2(4𝜋(𝑡−𝜏))

3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏),      (B-19) 

𝜕2

𝜕𝑥𝑘
2 𝑢0

𝑘(𝑥, 𝜉; 𝑡, 𝜏) =
𝜕2

𝜕𝑥𝑘
2

𝑒𝑟𝑓(
|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
)

4𝜋|𝑥−𝜉|
=

𝜕

𝜕𝑥𝑘
[−

|𝑥𝑘−𝜉𝑘|

4𝜋|𝑥−𝜉|3
𝑒𝑟𝑓 (

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
) +

|𝑥𝑘−𝜉𝑘|

4𝜋|𝑥−𝜉|2
1

2√𝜈(𝑡−𝜏)

2

√𝜋
𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)] =

−
1

4𝜋|𝑥−𝜉|3
𝑒𝑟𝑓 (

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
) + +

3|𝑥𝑘−𝜉𝑘||𝑥𝑘−𝜉𝑘|

4𝜋|𝑥−𝜉|5
𝑒𝑟𝑓 (

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
) −

|𝑥𝑘−𝜉𝑘||𝑥𝑘−𝜉𝑘|𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)

4𝜋|𝑥−𝜉|4∙2√𝜈𝜋(𝑡−𝜏)
+

1

4𝜋|𝑥−𝜉|2√𝜋𝜈(𝑡−𝜏)
𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) −  
2|𝑥𝑘−𝜉𝑘||𝑥𝑘−𝜉𝑘|𝑒

−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)

4𝜋|𝑥−𝜉|4√𝜈𝜋(𝑡−𝜏)
−

2|𝑥𝑘−𝜉𝑘||𝑥𝑘−𝜉𝑘|𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)

4𝜋|𝑥−𝜉|2√𝜈𝜋(𝑡−𝜏) 4𝜋(𝑡−𝜏)
.          (B-20) 

In order to derive components of the resulting fundamental solution matrix, Kroneker 

delta definition is helpful: 

𝑥𝑗 = 𝑥𝑘𝛿𝑗
𝑘,             (B-21) 
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Combining terms in (B-20), multiplying by Kroneker delta and applying (B-21): 

𝜕2

𝜕𝑥𝑗
2𝑈0

𝑘(𝑥, 𝜉; 𝑡, 𝜏) =

𝛿𝑗
𝑘−3|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|

4𝜋|𝑥−𝜉|3
𝑒𝑟𝑓 (

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
) +

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)

4𝜋√𝜋|𝑥−𝜉|2√𝜈(𝑡−𝜏)
−
3|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|𝑒

−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)

4𝜋√𝜋|𝑥−𝜉|4∙2√𝜈(𝑡−𝜏)
−

−
|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|𝑒

−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)

8(𝜋𝜈(𝑡−𝜏))
3
2|𝑥−𝜉|2

=
|𝑥−𝜉|2−3|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|

4𝜋|𝑥−𝜉|3
𝑒𝑟𝑓 (

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
) +  

+
2𝜈(𝑡−𝜏)(|𝑥−𝜉|2−3|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|)−|𝑥𝑘−𝜉𝑘||𝑥𝑘−𝜉𝑘||𝑥−𝜉|

2

8(𝜋𝜈(𝑡−𝜏))
3
2|𝑥−𝜉|4

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏)    (B-22) 

Finally, evaluating (−
1

𝜈

𝜕

𝜕𝑡
+ Δ)𝑈0

𝑘(𝑥, 𝜉; 𝑡, 𝜏) diffusion-type operator: 

𝛿𝑗
𝑘

(4𝜋𝜈(𝑡−𝜏))
3
2

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) −
𝛿𝑗
𝑘|𝑥−𝜉|2−3|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|

4𝜋|𝑥−𝜉|3
𝑒𝑟𝑓 (

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
) +

2𝜈(𝑡−𝜏)(|𝑥−𝜉|2𝛿𝑗
𝑘−3|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|)−|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘||𝑥−𝜉|

2

8(𝜋𝜈(𝑡−𝜏))
3
2|𝑥−𝜉|4

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏) =

−
|𝑥−𝜉|2𝛿𝑗

𝑘−3|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|

4𝜋|𝑥−𝜉|3
𝑒𝑟𝑓 (

|𝑥−𝜉|

2√𝜈(𝑡−𝜏)
) +

2𝜈(𝑡−𝜏)(|𝑥−𝜉|2𝛿𝑗
𝑘−3|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘|)−|𝑥𝑗−𝜉𝑗||𝑥𝑘−𝜉𝑘||𝑥−𝜉|

2+|𝑥−𝜉|4𝛿𝑗
𝑘

8(𝜋𝜈(𝑡−𝜏))
3
2|𝑥−𝜉|4

𝑒
−
|𝑥−𝜉|2

4𝜈(𝑡−𝜏);   (B-23) 

or substituting (𝑥𝑘 − 𝜉𝑘) with 𝑥𝑘, (𝑥𝑗 − 𝜉𝑗) with 𝑥𝑗 , 𝑥 − 𝜉 with 𝑟 and (𝑡 − 𝜏) with 𝑡, it is 

possible to obtain simplified form of unsteady solution in the matrix form described       

in [2]: 

(−
1

𝜈

𝜕

𝜕𝑡
+ Δ)𝑈0

𝑘(𝑥; 𝑡) =
2𝜈𝑡(𝑟2𝛿𝑗

𝑘−3𝑥𝑗𝑥𝑘)− 𝑥𝑗𝑥𝑘𝑟
2 +𝑟4𝛿𝑗

𝑘

8(𝜋𝜈𝑡)
3
2𝑟4

𝑒−
𝑟2

4𝜈𝑡 −  
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−
𝑟2𝛿𝑗

𝑘−3𝑥𝑗𝑥𝑘

4𝜋𝑟3
𝑒𝑟𝑓 (

𝑟

2√𝜈𝑡
)         (B-24)   

 Accounting for Kroneker delta factor and applying j and k indices, matrix structure looks 

as follows: 

{

𝑢∗

𝑣∗

𝑤∗

𝑝∗

} =
1

4𝜋𝜌
[

𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33
𝐵41 𝐵42 𝐵43

] {
e1

e2

e3
},    (B-25) 

where: 

𝐵11 =
𝑒
−
|𝑟|2

4𝜈𝑡

2√𝜋(𝑡𝜈)
3
2𝑟4
(6𝜈𝑡 + 𝑟2)(𝑟2 − 𝑥1

2) − 4𝜈𝑡𝑟2) −
(𝑟2−3𝑥1

2)𝑒𝑟𝑓(
𝑟

2√𝜈𝑡
)

𝑟5

𝐵22 =
𝑒
−
|𝑟|2

4𝜈𝑡

2√𝜋(𝑡𝜈)
3
2𝑟4
(6𝜈𝑡 + 𝑟2)(𝑟2 − 𝑥2

2) − 4𝜈𝑡𝑟2) −
(𝑟2−3𝑥2

2)𝑒𝑟𝑓(
𝑟

2√𝜈𝑡
)

𝑟5

𝐵33 =
𝑒
−
|𝑟|2

4𝜈𝑡

2√𝜋(𝑡𝜈)
3
2𝑟4
(6𝜈𝑡 + 𝑟2)(𝑟2 − 𝑥3

2) − 4𝜈𝑡𝑟2) −
(𝑟2−3𝑥3

2)𝑒𝑟𝑓(
𝑟

2√𝜈𝑡
)

𝑟5

𝐵12 = 𝐵21 = −
𝑒
−
|𝑟|2

4𝜈𝑡

2√𝜋(𝑡𝜈)
3
2𝑟4
𝑥1𝑥2(6𝜈𝑡 + 𝑟

2) +
(3𝑥1𝑥2)𝑒𝑟𝑓(

𝑟

2√𝜈𝑡
)

𝑟5

𝐵13 = 𝐵31 = −
𝑒
−
|𝑟|2

4𝜈𝑡

2√𝜋(𝑡𝜈)
3
2𝑟4
𝑥1𝑥3(6𝜈𝑡 + 𝑟

2) +
(3𝑥1𝑥3)𝑒𝑟𝑓(

𝑟

2√𝜈𝑡
)

𝑟5

𝐵23 = 𝐵32 = −
𝑒
−
|𝑟|2

4𝜈𝑡

2√𝜋(𝑡𝜈)
3
2𝑟4
𝑥2𝑥3(6𝜈𝑡 + 𝑟

2) +
(3𝑥2𝑥3)𝑒𝑟𝑓(

𝑟

2√𝜈𝑡
)

𝑟5

𝐵41 = 𝜌
𝑥1

𝑟3
𝛿(𝑡) 

𝐵42 = 𝜌
𝑥2

𝑟3
𝛿(𝑡)

𝐵43 = 𝜌
𝑥3

𝑟3
𝛿(𝑡)

     (B-26) 

and 𝜌 is a fluid density. 

Applying elementary matrix multiplication of (B-26) and writing the resulting unsteady 

fundamental solution in matrix form: 
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𝑢𝑢(𝑟, 𝑡) =
1

4𝜋𝜌
[(

𝑒
−
|𝑟|2

4𝜈𝑡

2√𝜋𝜈𝑡|𝑟|2
 −

𝑒𝑟𝑓(
𝑟

2√𝜈𝑡
)

|𝑟|3
)(𝐼 − 3

𝑟⊗𝑟

|𝑟|2
) +

𝑒
−
|𝑟|2

4𝜈𝑡

2𝜋
1
2(𝜈𝑡)

3
2

(𝐼 −
𝑟⊗𝑟

|𝑟|2
)] 

𝑝𝑢(𝑟, 𝑡) =
𝑟

4𝜋|𝑟|3
𝛿(𝑡)

             (B-27) 

The steady-state solution in 3-D notation has been presented in Chapter III (2-2). 

Finally, coming back to a complete solution form (B-2) and putting both unsteady (B-27) 

and steady-state (B-3) solutions together, it becomes possible to write a complete velocity 

Stokeslet solution as: 

 

𝑢𝑐(𝑟, 𝑡) =
1

4𝜋𝜌
[(

𝑒
−
|𝑟|2

4𝜈𝑡

2√𝜋𝜈𝑡|𝑟|2
 −

𝑒𝑟𝑓(
𝑟

2√𝜈𝑡
)

|𝑟|3
) (𝐼 − 3

𝑟⊗𝑟

|𝑟|2
) +

𝑒
−
|𝑟|2

4𝜈𝑡

2𝜋
1
2(𝜈𝑡)

3
2

(𝐼 −
𝑟⊗𝑟

|𝑟|2
) +

1

2𝜈
(
𝐼

|𝑟|
+
𝑟⊗𝑟

|𝑟|3
)]  

𝑝𝑐(𝑟, 𝑡) =
𝑟

4𝜋|𝑟|3
(𝛿(𝜈𝑡) − 1);     (B-28)   

 

B-3 Uniqueness of the complete unsteady solution 

In order to prove the uniqueness of the proposed complete unsteady solution, we can do 

Dirichlet proof for the unsteady Stokes equations. Assume we have two solutions to (B-1) 

with specified Cauchy and Dirichlet data. Then the following conditions are true: 

{

𝑤𝑡  − 𝜈𝑤𝑟𝑟 = −
1

𝜌
grad𝑞, (𝑡, 𝑟) ∈  [0, 𝑅] × [0,∞],

𝑤(0, 𝑡) = 0, 𝑤(𝑅, 𝑡) = 0 𝑥 ∈  [0, 𝑅],                                            
𝑤(𝑟, 0) =  0, 𝑤(𝑟,∞) =  0, 𝑡 ∈  [0,∞].                     

   (B-29) 
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here 𝑤(𝑟, 𝑡)  and 𝑞(𝑟, 𝑡)  will designate the difference between complete and unsteady 

solutions of the unsteady Stokes equations: 𝑤1(𝑟, 𝑡) = 𝑢𝑐(𝑟, 𝑡) − 𝑢𝑢(𝑟, 𝑡) and 𝑞1(𝑟, 𝑡) =

𝑝𝑐(𝑟, 𝑡) − 𝑝𝑢(𝑟, 𝑡) (from B-27 and B-28). Then: 

{
𝑤1(𝑟) =

1

8𝜋𝜈𝜌
(
𝐼

|𝑟|
+
𝑟⊗𝑟

|𝑟|3
) ,

𝑞1(𝑟) =
𝑟

4𝜋|𝑟|3

           (B-30) 

It is important now to show that 𝑤(𝑟, 𝑡) = 0 at (𝑟, 𝑡) ∈ [0, 𝑅] × [0,∞]. Multiplying both 

sided of the first equation in (B-29) and integrating them r on [0, 𝑅], we obtain: 

∫ 𝑤𝑤𝑡𝑑𝑟
 

[0,𝑅]
− 𝜈 ∫ 𝑤𝑤𝑟𝑟𝑑𝑟

 

[0,𝑅]
= −

1

𝜌
∫ 𝑤𝑔𝑟𝑎𝑑(𝑞)𝑑𝑟
 

[0,𝑅]
      (B-31) 

For the first integral in (B-31) we have: 

∫ 𝑤𝑤𝑡𝑑𝑟
 

[0,𝑅]
=

1

2

𝑑

𝑑𝑡
∫ 𝑤2𝑑𝑟
 

[0,𝑅]
   (B-32) 

The second integral can be expressed in the following way applying integration by parts: 

−∫ 𝑤𝑤𝑟𝑟𝑑𝑟
 

[0,𝑅]
= −𝑤𝑤𝑟|𝑟=0

𝑟=𝑅 + ∫ 𝑤𝑟
2𝑑𝑟

 

[0,𝑅]
    (B-33) 

Combining all terms and substituting them into the first condition in (B-29): 

1

2

𝑑

𝑑𝑡
∫ 𝑤2𝑑𝑟
 

[0,𝑅]
+ 𝜈 ∫ 𝑤𝑟

2𝑑𝑟
 

[0,𝑅]
− 𝜈𝑤𝑤𝑟|𝑟=0

𝑟=𝑅 = −
1

𝜌
∫ 𝑤𝑔𝑟𝑎𝑑(𝑞)𝑑𝑟
 

[0,𝑅]
, (B-34) 

Now, it can be noticed that for the specified spatial boundary conditions 𝑤𝑤𝑟|𝑟=0
𝑟=𝑅 = 0. 

We end up with the following integral expression to be satisfied according to (B-29): 

1

2

𝑑

𝑑𝑡
∫ 𝑤2𝑑𝑟
 

[0,𝑅]
+ 𝜈 ∫ 𝑤𝑟

2𝑑𝑟
 

[0,𝑅]
= −

1

𝜌
∫ 𝑤𝑔𝑟𝑎𝑑(𝑞)𝑑𝑟
 

[0,𝑅]
         (B-35) 
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We now have:  

 
1

2

𝑑

𝑑𝑡
∫ 𝑤2𝑑𝑟
 

[0,𝑅]
+ 𝜈 ∫ 𝑤𝑟

2𝑑𝑟
 

[0,𝑅]
= −

1

𝜌
∫ 𝑤𝑔𝑟𝑎𝑑(𝑞)𝑑𝑟
 

[0,𝑅]
,  (B-36) 

to be satisfied for the selected boundary conditions. Now introducing 𝑤𝑟
2 = (𝑤𝑤𝑟)𝑟 −

𝑤𝑤𝑟𝑟 into the first integral of (B-36) yields: 

 
1

2

𝑑

𝑑𝑡
∫ 𝑤2𝑑𝑟
 

[0,𝑅]
+ ∫ [(𝑤𝑤𝑟)𝑟 − 𝑤𝑤𝑟𝑟]𝑑𝑟

 

[0,𝑅]
= −

1

𝜇
∫ 𝑤𝑔𝑟𝑎𝑑(𝑞)𝑑𝑟
 

[0,𝑅]
, (B-37) 

or moving 
1

2

𝑑

𝑑𝑡
∫ 𝑤2𝑑𝑟
 

[0,𝑅]
− 𝑤𝑤𝑟𝑟 to the right-hand side (RHS) of (B-37) yileds: 

∫ (𝑤𝑤𝑟)𝑟𝑑𝑟 = −∫ 𝑤 [ 
𝑑

𝑑𝑡
𝑤 − 𝑤𝑟𝑟 +

1

𝜇
𝑔𝑟𝑎𝑑(𝑞)] 𝑑𝑟

 

[0,𝑅]

 

[0,𝑅]
  (B-38) 

It is now easy to notice that the factor [ 
𝑑

𝑑𝑡
𝑤 − 𝑤𝑟𝑟 +

1

𝜇
𝑔𝑟𝑎𝑑(𝑞)] of the integrand in the 

RHS is equal to zero, since it represents the initial governing unsteady Stokes equation in 

(B-1). Therefore: 

∫ (𝑤𝑤𝑟)𝑟𝑑𝑟 = 0,
 

[0,𝑅]

 

𝑤𝑤𝑟|𝑟=0
𝑟=𝑅 = 𝐶,     (B-39) 

Finally, from (B-34) it was already shown that 𝑤𝑤𝑟|𝑟=0
𝑟=𝑅 = 0. Then 𝐶 = 0, 𝑤(𝑟, 𝑡) = 0 

and this proves the uniqueness of the proposed complete solution under arbitrary 

Dirichlet boundary conditions. 
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B-3 Validation of 3-D unsteady complete Stokeslet for a Stokes flow over flat plate 

The simplest problem with analytical solution available to validate BSM solution 

of unsteady Stokes flow problem is a viscous flow over the flat plate, also known as 

Stokes first problem [100]. 

The resulting solution of the 2-D Stokes flow problem in the semi-infinite domain 

about stationary infinitely long flat plate with the following boundary conditions: 

1) no-slip (𝑢𝑥|𝑦=0 = 0), 

2) no-penetrating (𝑢𝑦|𝑦=0 = 0), 

and the impulse strength is unity at the moment of time 𝑡 = 0, 

where 𝑢𝑥 and 𝑢𝑦 are horizontal and vertical velocity vector components; |𝑡 − 𝜏| is 

the time moment defined with the 𝑡 and 𝜏 time coordinates associated with the 

collocation points and Stokeslets respectively. 

After 𝑡 = 0 the flow is assumed to be self-propagating until it reached steady-

state flow, which yields 𝑈|𝑟=∞ = 𝑐𝑜𝑛𝑠𝑡 = 1 for continuously moving plate. 

The analytical velocity solution presented in Figure B-2 is as follows: 

𝑈(𝑧) = 𝑈∞ (1 − erfc (
|𝑧−𝑧0|

2√𝜈𝑡
)) = 𝑈∞ erf (

|𝑧−𝑧0|

2√𝜈𝑡
),    (B-40) 

where |𝑧 − 𝑧0| designate vertical distance from the plate.  

 The flow field and velocity magnitude obtained with BSM though the complete 

solution of 3-D Stokes equations (B-29) for a flow past a long parallelepiped, was 
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compared to the 2-D Stokes first problem solution. The resulting velocity vector filed and 

distribution obtained with BSM was taken in the section plane passing through the 

middle of parallelepiped.  

The initial far-field velocity was taken 𝑈∞ = 1. Stokeslet spatial allocation depth 

was 𝐷̅ = 0.02 ÷ 0.05, while time allocation lag following [48] was equal to |𝑡 − 𝜏| =

Δ𝑥2

𝜈
. 

 

Figure B-2 Velocity magnitude distribution versus distance from the plate surface at: a) 

𝑡 = 0.02𝑠, 𝜈 = 0.1
𝑚2

𝑠
; b) 𝑡 = 1𝑠, 𝜈 = 0.5

𝑚2

𝑠
. 

 

Comparing Stokes first problem solution (B-40) and proposed full (unsteady plus 

steady-state) Stokes flow problem solution (B-28) presented in Figures B-2 and B-3, one 

may observe good correspondence of both velocity profiles and magnitude over the time. 

 

a) b) 
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Figure B-3 Velocity vector field over the plate. Complete solution as per (B-28) at: a) 

𝑡 = 0.02𝑠, 𝜈 = 0.1
𝑚2

𝑠
; b) 𝑡 = 1𝑠, 𝜈 = 0.5

𝑚2

𝑠
. 

 

The complete solution (B-28) for unsteady Stokes equation in the form (B-29) 

converges to the steady-state solution together with the sum of Stokeslets converging to 

the steady-state Stokes force. This topic is interesting for further application to unsteady 

multiphase microfluidic problems, unsteady particulate flow in microscale filtration 

systems and problems of viscoelastic surface deformation in Stokes flow to name a few. 

  

a) b) 
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APPENDIX C 

 

NOMENCLATURE 

A − view area 

Amid∥ , Amid⊥ = middle section of non-spherical body: longitudinal, transversal 

orientation 

Amid⊥ = middle section of transversally oriented non-spherical body 

𝑎 = Stokeslet allocation radius 

𝑎𝑖⃗⃗  ⃗ = i-th component of collocation point location radius-vector 

𝐶𝐷 = total drag coefficient 

𝑐, 𝑑 = Cassinian shape parameters 

𝐷 = Stokeslet allocation depth 

𝐷 = Stokeslet allocation depth near inflexion points and in concave regions 

𝑑𝑖 = {ℎ, ℎ1, ℎ1
′ , ℎ2, ℎ2

′ , 𝑙1, 𝑙2, 𝑡0, 𝑡1} = uncertainty spatial and time contributing parameters 

𝑒 = modified Cassinian shape factor 

ek = unit direction vector in 2-D or 3-D Cartesian coordinate basis 

𝐹 = Stokeslet vector = (𝐹(1), 𝐹(2), 𝐹(3))
𝑇
 in 3-D space or (𝐹(1), 𝐹(2))

𝑇
 in 2-D space 

𝐹𝑖
(𝑘) = i-th Stokeslet strength 

𝐹SC = Stokes force about cylindrical fiber 

𝐹𝑆𝑆 = Stokes force about spherical droplet or pair of merging droplets 

𝐹𝑠ℎ𝑒𝑎𝑟 = shear force 

𝐹𝑛𝑜𝑟𝑚𝑎𝑙 = normal force 
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𝐹𝛴 = Sum of total drag (Stokes force) about two merging particles/droplets 

𝐹2𝑠𝑝ℎ𝑒𝑟𝑒𝑠 = total drag (Stokes force) about two spheres contacting at a single point 

𝐹𝑆𝑡𝑜𝑘𝑒𝑠 = Stokes force = total loaded fiber drag 

𝑓+, 𝑓− = Cassinian stretching coefficient for positive and negative abscissa direction 

𝐺𝑖𝑗 = first fundamental form tensor component 

ℎ = depth of view at the droplet-fiber system 

ℎ1, ℎ1
′ = droplet/track initial height - calculated and parallax reading values 

ℎ2, ℎ2
′ = droplet/track height after deformation- calculated and parallax reading values 

𝐿 – distance between centers of two spherical particles 

𝑙1 = distance from camera to an observation plane crossing droplet/track surface 

𝑙2 = distance from observation plane to the scale 

𝛥𝑙 = local droplet elongation after Δ𝑡. 

𝑀 = Stokeslet computational matrix of size 3N × 3N in 3-D space, 2N × 2N in 2-D 

space 

𝑁 = number of Stokeslets = number of collocation points 

𝑛 = number of space dimensions 

𝑝 = pressure 

𝑝𝜖 = pressure regularized solution 

𝑞 = difference of pressure fundamental solutions of the unsteady Stokes equation 

𝑅 = 𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = radius of spherical particle or droplet 

𝑅𝑖 = 𝑟𝑖 = flow field point location radius 

𝑅𝑆𝐶 = radius of Stokeslet allocation for a cylinder 

𝑅𝑆𝑆 = radius of Stokeslet allocation for a sphere 

𝑅𝑒𝐷 = Reynolds number based on characteristic dimension 
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𝑅𝑒 = Reynolds number based on radius 

𝑟 = radius-vector in polar, cylindrical or spherical coordinates 

𝑟𝑖𝑗̃
𝑘 = k-th component of normalized radius-vector between i-th Stokeslet and j-th 

collocation point = 𝑟𝑗⃗⃗ − 𝑎𝑖⃗⃗  ⃗ 

𝑟𝑗⃗⃗ = j-th component of Stokeslet location radius-vector 

|𝑟𝑖𝑗̃| =distance between i-th Stokeslet and j-th collocation point = √∑ (𝑟𝑖𝑗̃
𝑘)
2𝑛

𝑘=1  

𝑆𝑏𝑜𝑑𝑦 = surface area of a non-spherical body 

𝑆𝑖 = elementary surface area 

ssph = sphere surface area 

𝑡 = time 

𝑡0, 𝑡1 = time reading before and after droplet/track deformation experiment 

𝛥𝑡 = time step 

𝑇 = temperature 

𝑈 = velocity solution vector = (U(1), U(2), U(3))
T
 in 3-D or (U(1), U(2))

T
 in 2-D space 

𝑈∞ = particle velocity or free stream velocity 

𝑢⃗ = velocity vector 

𝑢𝑗
(𝑘) = 𝑢𝑘𝑗 = j-th velocity component 

𝑢𝜖𝑗
(𝑘)
= j-th regularized solution velocity component 

𝑢𝑟 , 𝑢𝜃 , 𝑢𝜑 = radial, polar and azimuthal velocity components in spherical coordinates 

𝑢𝑟𝑖 = horizontal velocity in the point at distance 𝑟𝑖 away from a surface in 2-D 

Vp = volume of a single droplet 

𝑣𝑟𝑖 = vertical velocity in the point at distance 𝑟𝑖 away from a surface in 2-D  

𝑤 = difference of velocity fundamental solutions of the unsteady Stokes equation  
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𝑥𝑗
𝑜𝑙𝑑 , 𝑥𝑗

𝑛𝑒𝑤 = old and new coordinate of deformable viscous surface 

α = volume fraction (Chapter III); Fourier transform of spatial coordinate (Appendix B) 

α𝑡 = Fourier transform of time coordinate (Appendix B) 

𝛽 = inlet channel direction angle 

𝛤, 𝛤𝑆 = Stokeslet and collocation points surfaces 

𝛾𝑓 = surface tension coefficient 

𝛾̇ = shear rate 

𝛿 = 𝛿𝑗
𝑘 = delta-Dirac function 

𝜖 − regularization parameter 

𝜀, 𝜀′, 𝜀𝑑𝑖 , 𝜀Σ = uncertainties (Appendix C) 

𝜃, 𝜑 = polar and azimuthal angles in spherical coordinates 

𝜅𝑖 = local surface curvature 

λ = differentiation coefficient 

𝜇 = dynamic viscosity 

ν = kinematic viscosity 

𝜉𝑖 = Stokeslet spatial coordinate 

𝜌 = density 

σ − surface tension 

𝜏 = shear stress; time component associated with Stokeslet (Appendix B) 

𝜙 = sphericity factor 

ΦH, Φ̃H = homogeneous solution of unsteady Stokes equation and its’ Fourier transform 

ΦP, Φ̃P = particular solution of unsteady Stokes equation and its’ Fourier transform 

ΦSS = steady-state solution of Stokes equation 
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