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ABSTRACT

An investigation into battery management for lithium-based battery packs was 

performed. Out of the investigation of the various management/balancing methodologies 

came a proposed management methodology that is integrated with a charging system and 

utilizes cost-effective, lossy, bypass resistors for cell balancing. This integration allows the 

management system to cater the charging current to the needs of the battery pack and 

overcome the limitations of the lossy bypass on its own. To first investigate this concept, 

a LiFePO4 cell model was obtained. This was done using a cell discharging procedure and 

characterization process that provides a mathematical first-principles cell model. The 

obtained model was then used to simulate various pack configurations, battery 

management configurations, including the proposed management method. The results from 

these simulations demonstrated that the proposed management methodology balanced cell 

voltages within a battery pack in as little as a single charge cycle. To confirm this concept 

a manually hand-controlled experiment, consisting of voltmeter monitoring cell voltages, 

manual activation of lossy bypass resistors, and manual adjustments of charging current, 

was performed. The results from this experiment confirmed the ability to balance the cell 

voltages within a single cycle. Hardware and software was developed to automate the 

proposed management methodology. Data collected from the automated implementation 

was in agreement with the performed simulations and successfully demonstrated a 
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functional automated version of the proposed integrated battery management system and 

charger. 
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CHAPTER I  

INTRODUCTION 

 

 

Portable battery applications today can consist of either a single electrochemical 

cell (which will further be referred to simply as a “cell”) or a battery pack that consists of 

a combination of two or more cells. However, in industry, the term battery is often 

interchangeably used to describe both an individual cell as well as a battery pack. A cell 

that is designed such that it only is discharged once, and not recharged, is referred to as a 

primary cell. A cell that is designed such that it can be discharged and recharged multiple 

times is known as a secondary cell. It is the secondary cells and their applications that are 

the focus of this research. When using these secondary cells, special care must be taken to 

ensure the cells’ voltage, temperature, and maximum current remains within the 

manufacturer’s specified operating range. Maintaining this range will help to ensure that 

the manufacturer’s specified cell capacity, the total possible amount of charge before 

damage occurs, stays consistent with each charge and discharge cycle. This number of 

charge and discharge cycles is also referred to as the cells’ cycle life. Cell manufacturer’s 

specifications often provide a minimum cycle life to which the cell should be capable of 

maintaining a specified storage capacity. That is, provided there are not manufacturing 

defects and the cells are properly used and maintained. In general, this minimum cell cycle 
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life can increase or decrease with more aggressive or lower demanding deviations from the 

cell manufacturer’s recommended voltage operating ranges (Hartmann, 2008).  

1.1 Types of Cell Combinations (Battery Packs) 

In applications where a single cell is utilized, monitoring and maintaining the 

recommended manufacturer’s operating range is straightforward. This is because the 

charging device and load can be controlled to cater to that individual cell’s operation. On 

the other hand, in applications where there is a battery consisting of multiple cells, ensuring 

each individual cell stays inside the required voltage range can become more challenging. 

Battery packs can consist of two cells (i.e. handheld portable consumer products) to several 

thousand (i.e. electric vehicle applications). Battery packs can be constructed such that they 

are connected in series, parallel, or a combination of series and parallel. The various 

combinations of cells and the challenges of monitoring and managing them will be 

discussed in the following paragraphs.  

1.1.1 Series-Connected Cells 

In applications that demand higher voltages than an individual cell can provide, a 

number of cells can be connected in series to create a battery pack with the required higher 

voltage. This type of battery pack configuration is referred to as series-connected or simply 

as a series string. During operation of this battery configuration type, the current during 

charging and discharging is the same current through each cell within the string. This is 

advantageous when measuring current as only a single current measurement is required. 

However, when it comes to monitoring cell voltages, circuitry is required for each 

individual cell. In addition, due to the fact that a single current charges and discharges these 

cells, how well balanced the stored energy in each cell is becomes an issue. Depending on 
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the balance of energy within the pack and individual cell construction variations, cells may 

finish charging and discharging at different times. Variations between the cells is what 

causes the individual cell voltages to go outside the manufacturer’s specified range, and 

cause damage to individual cells. As will be discussed later in this document, several 

methods exist that allow the cells in the string to be balanced.  

In general, it is possible for one or more cells to fail in an open-circuit state or in a 

short-circuit state. If a cell fails in an open-circuit condition, there is no longer a current 

path. This renders the series-connected battery pack unusable. On the other hand, a short-

circuit cell failure condition, while not ideal, will still allow for current to be drawn from 

the battery pack.  The short-circuit condition will reduce the voltage of the overall battery 

pack by the voltage that was once provided from the short-circuited cell.  

1.1.2 Parallel-Connected Cells 

In applications that demand higher current than an individual cell can provide, 

multiple cells may be connected in parallel to provide higher current draw.  Since the cells 

are connected in parallel, all of the cells’ voltages are equal. If there is voltage difference 

before the cells are connected in parallel, the higher potential cells will transfer energy to 

the lower potential cells until the voltages balance (to prevent a large surge of current the 

cells should be relatively balanced). In terms of monitoring circuitry, paralleling cells is 

beneficial in that only one circuit is needed to measure the whole parallel group’s voltage. 

However, the exact individual currents provided by each cell are unknown unless the 

individual cell currents are measured. In terms of cell failures in this configuration, unlike 

the series configuration, the open-circuit fault condition does not render this pack 

configuration useless. However, with this type of failure the application will draw higher 
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currents from the remaining cells. If the remaining parallel cells cannot handle the new 

current demand, they could also be damaged. In the case of the short-circuit fault condition, 

this will cause all of the other parallel connected cells to discharge through the faulted cell 

and render the battery pack un-useable. 

1.1.3 Series and Parallel Connected Cells 

In applications that require both higher voltages and higher current, a combination 

of series-connected and parallel-connected cells is required to form the battery pack. There 

are two common combinations that exist. The first combination is paralleled-series-

connected cell strings. This combination consists of several cells connected to form series 

strings, which in turn are connected in parallel. The second combination is “series-

connected parallel groupings”. This combination consists of several cells connected to 

form parallel cell groupings. These parallel cell groupings are in turn connected in series. 

Based upon the previous discussion, the configuration that stands out in terms of reliability 

is the first combination of paralleled-series-connected cell strings. In this configuration, the 

fault that rendered the original independent series string unusable, has less of an impact 

and improves overall reliability (McDowall, 2005). This is because an open-circuit failure 

results in only one-of-the-many strings to become unusable. The remaining strings can still 

provide energy to allow the application to continue. In the second configuration, the fault 

that renders the series-connected-parallel groupings unusable still poses an issue. If a cell 

fails in a short-circuit condition, it will still drain energy from the remaining cells within 

that entire grouping.   
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1.2 Goals of Research 

The focus of this research is to monitor and protect cells within a battery pack that 

are connected in a series-connected configuration. To ensure that the cells stay balanced 

within a series-connected configuration, the use of a cost-effective, lossy, cell bypass is 

investigated. Although only a single series-string is investigated, the principles of this 

research can be carried over to paralleled-series-string battery packs.  In terms of cell 

chemistry, lithium-based chemistries are of focus in this research due to their high energy 

density, lower costs, and the traction it is gaining within the market place (Krieger, 2103) 

(Vincent, 2000). To perform this research a first-principles cell model is obtained via data 

collected through a given procedure. This model obtained in turn is then used to simulate 

the cell balancing circuitry and its effectiveness. In order to further improve the utility of 

the cost-effective, lossy, cell-bypass, a concept of integrating the cell balancing system and 

the charging device is proposed and investigated.  

1.3 Thesis Outline 

The research performed is provided over seven chapters. Chapter I is an 

introduction to cells and batteries. Chapter II provides a history of cells as well as 

background information on cells, cell balancing methods, and a proposed balancing method 

and charging system is provided. Chapter III provides details on a procedure that is 

performed to collect data used to determine a cell model. Chapter IV uses the obtained 

model to demonstrate the effectiveness of a passive bypass for balancing a series-connected 

battery pack. Also simulated in Chapter IV is the proposed balancing system. Chapter V 

and Chapter VI provides a summary of the software and hardware, respectively, used to 

implement an interactive charger and passive bypass balancing battery management 
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system. Chapter VII provides results from experiments performed to test the proposed 

method. Chapter VIII concludes the thesis along with recommendations for future work in 

this area. 
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CHAPTER II  

BACKGROUND AND RELATED WORK 

 

 

This chapter discusses the history of electrochemical cells and battery packs. A 

description of the inner working of electrochemical cells is given along with the various 

cell chemistries. This section ends with operational considerations when using electro-

chemical cells, a summary on charging techniques, and a summary on cell-balancing 

techniques.  

2.1 The History of Electrochemical Cells 

Although the earliest electric cells were in existence over 2,000 years ago, the 

history of the battery truly begins in the 18th and 19th centuries. People like Alessandro 

Volta (1745 – 1827) and Luigi Galvani (1737 – 1798) carried out the groundwork that led 

to an electrochemical energy storage device, and their names live on in terms such as 

"volts” and the "galvanic cell" (Bergveld, 2001). 

Around the 1800s the voltaic column, the world's first working battery was created. 

This battery consisted of alternate copper and zinc plates, separated by scraps of cloth 

saturated with acid. Using this first battery, Volta discovered that certain liquids initiated 

chemical reactions between metals, thereby generating electrical energy (Bergveld, 2001). 
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In the early 19th century, Volta worked in close collaboration with the French 

National Institute to further develop the battery. The first battery suitable for mass 

production was developed in 1802 by the chemist Dr. William Cruickshank (Anders, 

2003). He stacked alternating layers of copper and zinc sheets of equal dimensions. This 

stack was then placed in a sealed wooden chest and sealed with cement. This chest in turn 

was then filled with a saline lye. 

In 1859 the French physicist Gaston Planté used conductor plates in dilute sulphuric 

acid, which led to the first rechargeable battery (Bergveld, 2001). Previous batteries 

developed up to this point were all primary cells and were not re-charged. Planté’s 

invention led to the first rechargeable secondary battery, which was a lead-acid chemistry 

that is used to this day. 

Over the following decades the lead battery underwent a number of significant 

further developments. By introducing a variety of alloys, battery performance was greatly 

improved which then minimized the need for maintenance. Experimentation with lithium 

batteries began in 1912 under G.N. Lewis, and in the 1970s the first non-rechargeable 

lithium batteries were sold. A research team managed by Akira Yoshino of Asahi 

Chemical, Japan built the first lithium ion battery prototype in 1985, a rechargeable and 

more stable version of the lithium battery; followed by Sony that commercialized the 

lithium ion battery in 1991 (Vincent, 2000) (The Economist, 2008). The next section will 

discuss the inner workings of these cells.  
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2.2 Electrochemical cells 

Electrochemical cells are aptly named because they can provide electrical energy 

stored in the form of chemical energy. This energy can then be utilized at a later time by 

conversion of the chemical energy back to electrical energy. At a high level, a cell is 

comprised of two metal electrodes suspended in an electrolyte. At the interfaces between 

the electrodes and electrolyte are where chemical reactions take place allowing for the 

conversion to and from electrical energy (depending on whether the cell is being used as a 

load or if it is being charged, respectively). The two electrodes switch roles as anodes or 

cathodes, depending on whether they are being charged or discharged. The two electrodes 

will be designated as PE and NE, for the positive electrode and negative electrode, 

respectively. In the case of charging, the PE and NE are designated as the anode and 

cathode, respectively. During charging, at the interface between the electrolyte and the PE, 

an oxidation reaction occurs. As a result of this, electrons are free to flow out to the external 

charging circuitry.  Simultaneously, at the electrolyte and the NE interface, a chemical 

reduction process occurs that accepts electrons from the external charge circuitry. Inside 

the electrolyte, negatively charged ions produced from the reduction reaction occurring at 

the NE, move towards the PE. Similarly within the electrolyte, positively charged ions 

produced by the oxidation reaction at the PE move towards the NE. Thus, the flow of 

current is possible because of the electrons, which travel in and out of the cell, use the 

electrodes as a medium to travel through. The availability of free electrons in the PE and 

the “room” to accept electrons in the NE is made possible through the chemical reactions 

made at the electrolyte and electrode interface. These reactions can continue because the 

positive and negative ions use the electrolyte as a medium to travel through.  
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 The discharge process through a cell is the reverse of the charging process. By 

definition, the PE and NE switch roles as the anode and cathode. The location of the 

reactions and direction of movements for the electrons and ions are also switched. This can 

be more clearly seen by comparing Figure 2.1 and Figure 2.2.  Pictured within in the figure, 

in between the PE and the NE, is an electrically isolating separator. The separator is 

typically a porous material that still allows the ions to easily travel through, but not so 

porous that it does not behave well as an electrical insulator (Kumar et al., 2010) (Bergveld, 

2001).

 

Figure 2.1: Electrochemical Cell pictured during charge process and electrons and ion 

travel paths. 
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Figure 2.2: Electrochemical Cell pictured during discharge process and electrons and ion 

travel paths. 

2.3 Cell Chemistries 

Although the focus of this research is on rechargeable Lithium Ion (Li-Ion) battery 

cells, a brief overview of other battery chemistries is given in the following sections. For 

reference, a comparison of multiple cell chemistries and storage technologies are given in 

the Ragone Plot in Figure 2.3 (Kalhammer, 2007). As can be seen, the various types of 

lithium-based energy storage devices, outperform the other storage devices in terms of 

energy storage and instantaneous power per kilogram of material.   
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Figure 2.3: Ragone plot comparing several types of cell chemistries and other energy 

storage devices (Kalhammer, 2007). 

2.3.1 Lead-Acid 

The oldest form of rechargeable battery is the lead-acid battery.  The lead-acid 

battery was developed into two main designations. The first being sealed lead-acid (SLA) 

and the second being large valve regulated lead-acid (VRLA). Both battery types should 

not be operated at high depths of discharge to preserve cycle life. An advantage of the lead-

acid battery is that cells may be balanced by charging the battery pack with a slow, trickle 

charge for long durations. Typical charge times are 8-16 hours, and typical cycle life is 

200-300 cycles. This short cycle life is due to the corrosion that occurs for the positive 

electrode which causes depletion of the active material and expansion of the plates.  The 

optimum operating temperature for lead-acid is 25 degrees C, and as a general rule, a 

change of 8 degrees C will cut the cycle life in half.  The lead-acid battery has the lowest 
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energy density of rechargeable cells, making it unsuitable for smaller consumer electronics 

(Buchmann, 2011). 

2.3.2 Nickel-Cadmium 

The Nickel-Cadmium (NiCd) battery has advantages in that it is well-suited for fast 

charging and rigorous discharge conditions. NiCd batteries have a typical cycle life of 

1,000 cycles, and offer good performance at low temperatures without significant impact 

to cycle life. The NiCd has a decent shelf life as compared with other rechargeable cells, 

and is the lowest-cost battery in terms of cost per cycle. Unfortunately, the NiCd battery 

suffers from the memory effect, and relatively low energy density. The memory effect 

occurs when NiCd cells are charged after being only partially discharged several times. 

This effect causes the cell to lose some of its prior capacity and it “remembers” the new 

smaller capacity (Buchmann, 2011). To prevent this, the NiCd cell simply has to be 

discharged to its full rated capacity.  

2.3.3 Nickel-Metal Hydride 

The Nickel-Metal Hydride (NiMH) battery offers 30-40 percent higher energy 

density as compared to NiCd, and is less prone to the memory effect. The disadvantages of 

the NiMH are related to its performance which is depleted if cycled at high discharge rates. 

Additionally, the NiMH requires a more complex charging algorithm, and more frequent 

maintenance to prevent crystalline formation. This higher-cost battery has a high self-

discharge rate (50% higher than NiCd), and is sensitive to high temperatures.  
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2.3.4 Lithium Based Chemistries 

The Lithium-Ion (Li-Ion) battery is probably the most well-known chemistry on the 

market today. Original development for this battery began in 1912, but was not 

commercially available until 1991 due to concerns of safety. The energy density of Li-ion 

cells are twice that of NiCd, while also offering a low self-discharge rate and low-

maintenance with a high cycle life. Because of safety concerns, the Li-ion cells require 

protective circuits (such as those discussed in this thesis), and are still relatively expensive 

to manufacture. The cells support higher voltages, and also offer moderate discharge 

currents. There are several types of lithium-based cell chemistries as will be discussed in 

the following sections (Buchmann, 2011). 

2.3.4.1 Lithium Cobalt Oxide (LiCoO2) 

This chemistry is used in small portable electronics such as cameras, phones, 

tablets, and some laptops. The positive electrode is derived from cobalt oxide and the 

negative electrode is graphite carbon. Typical charge and discharge current maximum’s 

are relatively small. Anything higher causes overall cell life to decrease. While the specific 

energy, the cells’ ability to store energy per unit of weight, of this chemistry is high, the 

specific power is low. The specific power is a measure of how much instantaneous power 

the cell can provide in a short period of time (Buchmann, 2011).  

2.3.4.2 Lithium Manganese Oxide (LiMnO2) 

This chemistry was first introduced in 1996 and had a positive electrode made of 

lithium manganese oxide. Due to the architecture, a three-dimensional spinel structure, ions 

can flow more freely, decreasing internal resistance. This allows for high currents which 

make this chemistry suitable for applications such as power tools, medical equipment, and 
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electric vehicles. Compared to lithium cobalt, lithium manganese has a capacity roughly 

one-third the size of lithium cobalt’s storage capacity (Buchmann, 2011).  

2.3.4.3 Lithium Iron Phosphate (LiFePO4) 

In 1996, researchers at the University of Texas implemented phosphate as a positive 

electrode for a lithium based cell. This material which can be designed with nano-scale 

phosphate which offers low resistance, high current rating, and long cycle life. Along with 

the aforementioned benefits and a relatively higher abuse tolerance, this technology finds 

applications also in power tools, electric vehicles, and back-up power applications. In 

comparison to the LiMnO2 chemistry, due to LiFePO4’s lower 3.2-3.3V nominal voltage, 

it has a slightly lower specific energy (Buchmann, 2011) (Padhi et. al, 1996).   

2.3.4.4 Lithium-Titanate (Li2TiO3) 

This chemistry has been around since the 1980s. In this cell chemistry Lithium-

titanate, as opposed to carbon, is used for the negative electrode. This also forms a spinel 

structure as with the LiMnO2 cell chemistry, enabling lower internal resistance. This allows 

this chemistry to safely charge and discharge quickly at high currents, and has low-

temperature discharge characteristics (down to -30oC). Due to the fact that a single cell 

provides 2.4V nominally, its specific energy is relatively low (Buchmann, 2011). 

2.4 Charging  

There are several cell charging methods that can be used when it comes to cell 

charging. A few of these modes are constant-current charging, constant-voltage charging, 

trickle-charging, float-charging, and pulse-charging. Since the focus of this research is on 

lithium-based cell technologies, the commonly used constant-current, constant-voltage 
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method will be discussed in greater detail. The other methods will be briefly discussed in 

the following sections.  

2.4.1 Lithium-based Battery Charging 

A lithium-based battery charger is typically a fixed voltage source that is current 

limited. The charger will charge the battery at a constant current (CC) until the battery 

voltage reaches a pre-set value, the set-point voltage. This charging current is typically 

limited to a 1C charge rate, however, higher or lower charge rates may be possible 

depending on the recommendation of the manufacturer. The “C rate” is a relative 

specification based upon the Ah rating of the cell. This is easily explained in the form of 

an example. If a cell has a rated capacity of 2Ah, 1C, 2C, and 3C corresponds with charge 

(or discharge) currents of 2 amps, 4 amps, and 6 amps.  About 65% of the total charge is 

delivered to the battery during the constant current phase of charging.  

Once the set-point voltage is reached during the CC phase, the charger will begin 

to decrease current to maintain the set-point voltage on the battery. This is known as the 

constant voltage (CV) phase of charging. Most major Li-ion cell manufacturers 

recommend 4.200V +/- 50 mV as the ideal set point voltage. The constant-voltage cut-off 

time is typically given by the manufacturer with a desired degree of accuracy to ensure the 

specified cell cycle-life and capacity can be met. It is important to note that this value is 

specified for the voltage available at the cell’s terminals. When current is actively charged 

or discharged from the cell, the series resistance in the form of terminal connections and/or 

wiring provides measurement offsets from the true cell’s terminal voltage. A method to 

overcome this may be accomplished by providing two high impedance measurement wires 

connected directly to the cell’s terminals. Since these two wires are high impedance and 
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are not part of the cell’s main current path, the offset voltage measurement issues are 

overcome (Bergveld, 2001). 

 

 

Figure 2.4: A CC/CV charger first applies constant current rate until the battery reaches a 

set-point voltage, charging current is then reduced to maintain the set-point voltage 

(Simpson, 2011). 

2.4.2 Floating/Trickle Charging 

When charging battery packs with chemistries of lead-acid, NiCd, or NiMH, float 

charging and/or trickle charging is performed. This type of charging is utilized after a 

charge cycle has already completed, and while the battery or cell is unused. The charge 

current is typically small (less than 0.05 C) and is used to both compensate for the self-

discharge of the battery pack as well as balance the pack at the end of charge. This is 

important in the case of lead-acid especially as sulfation occurs more readily at lower 

discharge states, leading to poor battery performance.  
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In terms of lithium based chemistries, holding this chemistry at higher voltages for 

long durations instead leads to lower cycle life. Some possible causes attributing to the 

lowering of cycle life are electrolyte decomposition, formation of a passivation layer on 

the negative electrode, and dendrite formation. Each of these conditions can decrease cycle 

life as the available active materials required for charging/discharging decreases. In the 

extreme case, the dendrites can grow so that a short is formed between the positive and 

negative electrodes (Bergveld, 2001).   

2.4.3 Lithium Ion Battery Discharging 

The end-of-discharge voltage for a Li-ion cell is typically 2.5V on average. At this 

point, approximately 95% of the energy is depleted, and from there, the cell voltage drops 

rapidly if discharging were allowed to continue. To protect the cell from overdischarging, 

most battery management systems will prevent operation beyond this low-voltage cutoff.  

When a load is removed from a battery after discharge, the voltage will gradually recover 

by a small amount.  

In terms of choice of discharge rates and overall cell cycle life, higher discharge 

rates lead to faster capacity fade as can be seen in Figure 2.5 (Ning et al, 2003).    
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Figure 2.5: Initial capacity of LiCoO2 cells before and after 300 cycles at varying 

discharge currents. The capacity fade increases with higher c-rates (Ning et al, 2003).    

 Historically, Li-ion cells had been considered unsuitable for high current loads. In 

recent years, however, many Li-ion systems permit discharge rates upwards of 50C. This 

means that a cell rated at 1.5Ah can provide a steady load of 45 amps, and this is being 

achieved primarily by lowering the internal resistance through optimizing the surface area 

between the active cell materials (Choi et. al, 2002). 

2.5 Need for Cell Balancing and Battery Management 

Chargers for series-connected packs often look at the battery pack’s overall voltage 

for controlling the charging current. If each cell is identical and evenly charged, it could be 

assumed that each cell is at the same voltage. However, in practice individual cells’ state-

of-charge (SoC), or the amount of stored energy within in a cell, is likely to be unequal. 

During charging, this can cause cells with higher SoC to reach higher than recommended 
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operating voltages. Similarly, during discharge, cells with lower SoC will reach lower than 

recommended operating voltages.   

The choice of what voltage to charge a cell to and what voltage to discharge a cell 

to ultimately affect the number of charge/discharge cycles that can be achieved with that 

cell (Hartmann, 2008). In a series-connected battery pack without a method to balance cell 

SoC, all SoC’s are hard to regulate if the individual cell voltages are very different.  Again, 

this is due to the fact that the same current is used to charge each cell. This will cause one 

or more cells to become fully-charged faster than others. An option at this point is to simply 

stop charging the series string and leave the remaining cells not fully charged. However, 

during discharge, the lowest charged cells will discharge the quickest and then energy in 

the higher charged cells will go unused. This is non-ideal since the full-capacity of the 

battery pack is not being utilized.  

The main causes of cell imbalance are variations in an individual cell’s impedance, 

capacity, and self-discharge rate. These factors will cause divergence in the cells’ voltage 

over time. Since most battery chargers detect full charge by checking whether the voltage 

of the entire string of cells has reached the voltage-regulation point, individual cell voltages 

can vary as long as they do not exceed the limits for overvoltage protection. However, both 

weak cells (i.e., cells with lower capacity or higher internal impedance) and warm cells 

tend to exhibit higher voltage than the rest of the series cells at full charge termination. 

These cells are weakened further by continuous overcharge cycles (Andrea, 2010).   
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2.6 Cell Balancing Methods Summary 

The impact of cell imbalance on run-time performance and battery life in 

applications using series-connected cells is certainly undesirable. The fundamental solution 

of cell balancing equalizes the voltages and SoCs among the cells when they are at full 

charge. Cell balancing is usually categorized into two types, passive and active. With 

passive balancing, excess energy is dissipated as heat. Active-balancing, on the other hand, 

is more energy efficient as it attempts to transfer energy conservatively from cell to cell.  

The fact that 100% of the excess energy from a higher-energy cell is dissipated as 

heat makes the passive method less preferable to use during discharge because of the 

obvious impact on battery run time. Active cell balancing, which utilizes capacitive or 

inductive charge shuttling to transfer charge between battery cells, is significantly more 

efficient because energy is transferred to where it is needed instead of being bled off. Of 

course, the trade-off for this improved efficiency is the need for additional components and 

complexity at higher cost. 

2.6.1 Passive Balancing 

The easiest approach to cell balancing is to equalize cell voltages. This can be done 

by comparing cell voltages with programmable thresholds to determine if cell balancing is 

needed. If any particular cell hits the threshold, a resistive bypass is enabled. The main 

disadvantage of this method is the energy lost through the bypassing. This method is known 

as passive cell balancing (Moore, 2009) (Andrea, 2010). Passive balancing is a cost-

effective, lossy, option to reduce the disparity between the SoC of each cell. The bypass 

resistor allows higher charged cells to burn-off excess energy in the form of heat (Figure 

2.6). It also creates a path to allow energy to shunt around a cell in a series-connected 
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string. The limitation that comes from utilizing a bypass is the amount of heat that is 

generated from the bypass device itself. One strategy for utilizing a bypass is to simply 

turn on the bypass device once the cell hits a specific voltage. This allows the rate-of-

charge to the highest charged cells to be reduced and allows current to be shunted around 

that particular cell.  

Based upon the charging current and bypass resistance, there are three conditions 

that can exist when a bypass is implemented. One condition is if the bypass resistor is 

designed such that it bypasses less than the charging current. This implies that the 

remaining charging current that is not bypassed continues to charge the cell. The second 

condition is if the bypass resistor is selected such that it bypasses approximately the same 

value of the charging current. In this condition, the cell stops charging and the cell’s voltage 

will stay constant. This is because if the cell’s voltage goes up, the fixed-resistance bypass 

will bypass a little more current as well. If the cell’s voltage goes down, the fixed-resistance 

bypass also bypasses less current. The third condition is if the bypass resistor is selected 

such that it bypasses all of the charging current and also draws additional current from the 

cell. This allows higher charged cells to decrease their SoC while allowing other cells to 

increase their SoC.  
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Figure 2.6: Passive Resistive Bypass (Moore, 2009). 

2.6.2 Active Balancing 

Another approach is active cell balancing. This method overcomes the energy loss 

of the passive method by using capacitive or inductive charge storage and shuttling to 

deliver energy to where it is needed most, and with little loss. The disadvantage to this 

method is in component count, cost, and complexity. Active balancing techniques fall into 

four main groups (Yevgen, 2009) (Moore, 2001): 

1. Cell to cell: energy is transferred between neighboring cells. 

2. Cell to battery: energy is removed from cells with highest SoC and dumped to 

the whole battery. 

3. Battery to cell: Energy is removed from the battery pack and transferred to the 

cells with least SoC. 
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4. Bidirectional: Based on needs, energy is transferred from cell to battery or vice 

versa. 

These methods may be implemented in a variety of ways. A simple approach to 

redistribute the energy between the cells is to connect a capacitor first to higher voltage 

cell, than to lower voltage cell, as shown Figure 2.7.  

 

Figure 2.7: Capacitor-Based Shuttle (Yevgen, 2009). 

More complicated implementations allow the connection of not only two nearby 

cells, but also cells for far away in the stack for faster equilibration Figure 2.8.  
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Figure 2.8: Shuttle circuit with remote cells connection capability (Yevgen, 2009). 

The main problem with this method is that significant energy losses occur during 

capacitor charging, due to high currents because of high voltage mismatch. Another 

problem is that high voltage differences between the unbalanced cells exist only in highly 

discharged states. Because this method’s transfer rate is proportional to cell voltage 

differences, it only becomes efficient near the end of discharge so that the total amount of 

unbalance that can be removed during one cycle is low.  

Another active balancing method, depicted in Figure 2.9, is implemented by taking 

energy from the battery pack as a whole and redistributing it to a single cell. This is done 

by directing the battery pack current through a transformer which is then switched to one 

of the cells that needs additional charge. However, the efficiency of such a converter is 

limited, and the need to use a transformer results in increased price and size of the overall 

solution (Moore, 2001).  
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Figure 2.9: Inductive converter cell balancing circuit (Moore, 2001). 

2.7 A Proposed Integrated Charger and Battery Management System 

A study performed in 2011 compared several balancing methods consisting of both 

passive and active circuitry (Daowd et al, 2011). In the investigation, each method was 

evaluated and simulated within MATLAB/Simulink. Each method was graded upon its 

equalization speed, complexity, size, cost, and efficiency. The method that outperformed 

others in terms of simplicity, and cost-effectiveness, was the passive resistive shunt bypass. 

In terms of speed and efficiency, the resistive shunt bypass received average to less-than-

average ratings. In the case of many high volume commercial applications, cost and 

development time is often of great concern. In fact, many available battery management 

integrated circuit manufacturers, such as Texas Instruments, utilize passive resistive shunts 

for balancing (Texas Instruments, 2012). In this research, the resistive shunt bypass is used 

due its popularity, cost-effectiveness, and minimal amount of components. A proposed 
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method to further improve the speed of balancing with passive resistive shunts and reduce 

the number of cycles a battery pack stays unbalanced is discussed next. 

The proposed battery system will use a BMS that interfaces directly with the 

charging system as shown in Figure 2.10. The BMS consists of one Individual Cell 

Management Unit (ICMU) per a cell and a single Battery Pack Master Unit (BPMU) for 

the entire battery pack. The block diagram of Figure 2.11 depicts an ICMU which consists 

of circuitry that at a high level, includes a voltage, current and temperature monitor, and 

an adjustable bypass current device. In terms of the adjustable passive bypass device, this 

will be achieved by a MOSFET driven in its linear region. In doing so this causes the 

MOSFET to behave as a voltage-controlled resistor. The adjustability of the bypass current 

as well as the adjustability of the charging current allows the system to have more 

flexibility when it comes to equalizing the energy within battery pack’s cells. 

 

Figure 2.10: High Level Block Diagram for Integrated BMS and Charger System.  
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Figure 2.11: Detailed block diagram for Individual Cell Manager Unit within BMS. 

The BPMU, shown in Figure 2.12, processes data from each ICMU for monitoring 

of the battery pack as a whole. The BPMU will communicate battery pack issues during 

charge and discharge. In addition, the BPMU will also have a communication interface to 

the charging system. This interface will allow the BPMU to directly control the charging 

current profile as it demands from the charger. A block diagram of the integrated charger 

is shown in Figure 2.13. 
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Figure 2.12: Detailed block diagram for Battery Pack Manager Unit within BMS. 

 

Figure 2.13: Detailed block diagram for Charger for integrated BMS concept.  

The sequence of steps for the proposed method of charging and balancing will be 

discussed next. First, the charging device will initially charge the battery pack at the 

maximum constant current rate that the battery pack application can accept. When the 

highest charged cell is nearing its full charge voltage, the BMS can request the charger to 
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decrease its current as desired. Simultaneously, the BMS can activate bypass current 

devices on each cell as necessary, shunting as much current as possible around the highest 

charged cells. In doing so, this allows the remaining lower charged cells to continue 

charging at a higher rate. If the highest charged cells continue to charge too quickly (even 

with the bypasses on), the BMS can then request the charging device to lower its charging 

current as necessary. This continues until the bypass devices can shunt all of the charging 

current around a given cell and discontinue the charging to any individual cell.   

2.8 Summary  

This chapter provided a brief history on the discovery and the development of cells. 

Also provided was background information on cells and how they function electrically and 

chemically during the charge and discharge processes. Next, an overview of cell 

chemistries used most in industry was provided. This led to a discussion of methods that 

can be used to perform cell balancing within a battery pack. Lastly, the chapter concluded 

with a proposed method for balancing using an integrated charger with a resistive-bypass 

based battery management system.  
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CHAPTER III  

BATTERY CELL MODELING 

 

 This chapter will discuss a procedure that can be used to obtain a mathematical cell 

model. The benefits of using a cell model and how a cell model may be used for various 

applications are also discussed.  

3.1 Introduction 

To be able to simulate the voltage behavior of a cell during usage, either on its own 

or within a battery pack, an accurate cell model may be used. Using a cell model allows 

simulations and investigations to be performed of how individual cells behave or multiple 

cells behave within a battery pack. This allows theories and concepts to be tested without 

actually spending time on a physical test set-up. This chapter will discuss a cell model and 

how the parameters for this model are obtained. In order to obtain parameters for the cell 

model, data must be collected from the cell of interest. The data collected must be obtained 

following a procedure that allows the cell’s dynamics of interest to be observed, as well as 

either a full charge cycle or a full discharge cycle. After collecting the data, the data is 

graphed and analyzed to obtain some of the model’s parameters. These parameters can vary 

from cell size, cell chemistry, and even from cell to cell within a manufacturing batch.  
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With regard to the variability within a manufacturing batch, battery packs designed 

for space applications go through categorizing newly manufactured cells in order to pick 

cells with well-matched characteristics. The goal and assumption is that these cells start 

out with the same SoC and have very similar charge/discharge characteristics as they are 

used throughout their lifetime. If this is indeed the case, the assumption is that such a 

battery pack no longer requires a battery management system (Pearson, 2004). 

Also, cell modeling improves accuracy estimates for a cell’s SoC. This is especially 

the case in applications where the power profile varies such that the electrochemistry 

dynamics are not able to reach a state of equilibrium. The cell voltage is dependent on 

multiple factors such as the charge/discharge current, temperature, and the cell’s age. This 

being the case, it can be difficult to provide an accurate estimate of a cell’s SoC solely upon 

its voltage. Also, a sensor cannot directly be employed to read the cell’s SoC directly, 

however with the use of a mathematic cell model/algorithm, this is possible. An exception 

for using a cell’s voltage as an estimate for its current SoC is when the current (and power) 

is relatively low such that the open-circuit voltage is close to the running voltage. In cases 

such as these, it is possible to utilize a table that correlates the SoC with open-circuit 

voltage (Plett, 2004).  

Accuracy of the SoC is important in applications where aggressive power profiles 

demanded from the battery pack are required. The accuracy also allows more aggressive 

use of energy available within the battery, as the true SoC of each cell is known. To make 

this concept clearer, take the following example. In a hypothetical application where the 

cell’s voltage is close to the manufacturer’s recommended cut-off voltage, the cell’s 

voltage may not be accurately reflected when a large current is drawn from the cell. Due 
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to the cell’s internal impedance, an internal voltage drop may occur that is correlated with 

the current draw from the cell. This is an offset from the true cell voltage, and causes an 

external voltage measurement to appear as if it were below the cut-off voltage. This issue 

may be alleviated from more accurate SoC estimates via real-time cell models.  

3.2 Battery Modeling  

The cell model used in this research is derived from a first-principles based 

structure (Hartley & Jannette, 2005). In other words, the model is based upon established 

laws of physics. This model is a generalized structure with parameters that are acquired 

through data collection consisting of voltage, current, and temperature measurements from 

a cell as it is discharged through a low-resistive load. To model the charge diffusion 

characteristics of the cell, during the discharge cycle, the load is temporarily removed from 

the cell in order to observe the resulting transient response. An example of a complete 

discharge cycle with charge diffusion transient (small transient towards middle of plot) can 

be observed in Figure 3.1.  
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Figure 3.1: Measured Battery Voltage for full cell discharge cycle.  

The model obtained will generate a voltage as a function of the stored charge, 

diffusing charge, and the amount of current flowing in or out of a given cell at any given 

time, which are denoted by ��(�),	��(�), and �(�), respectively. 

The state equations of the cell model are the stored-charge rate given by 

�	�(�) = �(�) (1) 

and the diffusing-charge rate given by 

�	�(�) = �
�

�(�) − �

�
�

��(�) (2) 
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where �� 	is the diffusion capacitance and �� is the diffusion resistance  (Hartley & 

Jannette, 2005). The values for the diffusion parameters are obtained by analyzing the 

diffusion transient response. In order to obtain the stored charge and the diffusing-charge 

states, equations (1) and (2) are integrated with the measured current during the discharge 

cycle.  

Using only a linear combination of the integrated states	��(�),	��(�), and the 

current, �(�), the linear portion of the voltage curve of Figure 3.1 can be accurately 

modeled. In order to represent the non-linear portions of the voltage curve in the beginning 

and end of the discharge cycle, two additional exponential terms dependent on ��(�) are 

incorporated. System identification is performed on the data collected using batch least 

squares to acquire the following parameters 

 � = ���			�� 			 ��� 			��		��		���
�

 (3) 

each of which corresponds to an element of 

�(�) = �1		�(�)		��(�)		��(�)		� !"#$(%)		�!&#$(%)' (4) 

such that the battery voltage is given by  

 ()(�) = �(�)� (5) 

  = (1)(��) + (�(�))(��) + +��(�), - ���. 

 ++��(�),(��	) + +� !"#$(%),(��) + +�!&#$(%),(��)	. 
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Based upon the state ��(�), the SoC is calculated as follows 

 /0��(�) = #$(%)
#$,123

100% (6) 

where ��,678 is the rated full capacity of a given cell. 

The scope of the research did not implement this model in real-time, however, a 

brief discussion of such an implementation follows. A real-time implementation allows an 

application to track cell parameters, usually not directly measureable, that provide more 

information about a cell’s condition. For example, the (SoC) can be extracted from the data 

with higher accuracy than directly measuring the cell’s voltage alone (Hartmann, 2008) 

(Bergveld, 2001). This is especially useful in cases where the cell’s current consumption 

is dynamically changing, which causes voltage measurements alone to be misleading when 

it is used for SoC estimation. By implementing a cell model on a computing device (e.g. 

microcontroller, computer, etc...) in real-time, this allows real-time access to information 

about the aforementioned non-direct measurements.  

There are several additional benefits to be gained from a real-time model. Self-

discharge can be modeled by measuring a cell’s remaining capacity after being stored for 

a long period of time. With an accurate self-discharge model, it can be determined that a 

cell is failing by detecting a fast self-discharge rate.  

In terms of accuracy of a real-time cell model, it is vital in the case of aggressive 

designs and high-power usage of battery packs.  The ability to accurately predict remaining 

SoC in a battery pack allows for maximum power draw, and may be estimated without 

overdischarging a cell or causing it damage. This could also allow a smaller battery pack 
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be utilized for a given application. This is as opposed to sizing the battery pack with a large 

design margin and higher cost (Plett, 2004). 

 

Figure 3.2: Control block diagram of open-loop cell model. 

 In order to improve accuracy of the model’s states, a real-time observer can be 

implemented to supplement the model running on the computing device. The real-time 

observer will compare the model’s output voltage with an actual measured voltage of the 

cell of interest by calculating the error, 

 �(�) = ((�) − ()(�), (7) 

where ((�) is the cell’s measured voltage and ()(�) is the model’s estimated voltage given.  
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Equations (1) and (2) become  

 �	�(�) = �(�) + 9��(�), (8) 

 �	�(�) = �
�

�(�) − �

�
�

��(�) + 9��(�), (9) 

where 9�	and 9� are observer gains that are multiplied by the error, �(�), to correct the state 

estimates, for ��(�) and ��(�), respectively, (Plett, 2004) (Vamsi et. al, 2007) (Bergveld, 

2001).  

Figure 3.3: Control block diagram of closed-loop cell model with observer. 

To further improve estimates, there are additional methods that can be 

implemented. This includes providing the ability for the cell model’s internal parameters 

to adapt such that it tracks the aging effects of the cell. This is opposed to determining the 
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cell’s parameters from a single set of data and keeping the internal model parameters at 

fixed values indefinitely. Also, taking operating cell temperatures into the real-time model 

allows for more accurate cell-model estimates. A possible approach for adapting cell 

parameters with temperatures is to gather cell operation data at specific temperatures of 

interest. A polynomial fit may then be used to match temperatures to correlating 

coefficients (Plett, 2004) (Hartmann, 2008).   

3.3 Procedure for Data Collection 

In order to get a cell model, data must be collected from the cell during its operation. 

In this research a fully charged LiFePO4, 3.3V nominal, 60Ah cell was used. The cell was 

charged per the cell manufacturer’s recommendations using a power supply with settings 

for constant current and constant voltage.  The cell was first charged in constant current 

mode at 20A per the manufacturer’s recommended charging current of C/3. The power 

supply was set for a constant voltage of 4.2V, at which point the charger automatically 

tapered the charging current to maintain the desired 4.2V. The charge process was stopped 

when the charging current fell below C/6. The cell was then left to rest several hours to 

allow the cell’s voltage to settle after the charging process.  

Next, the cell was discharged via a fixed load resistor bank.  The equivalent 

resistance used during the discharge was ~0.21 ohms which provided a nominal discharge 

current of ~16A. Both the cell’s discharging current and the cell’s voltage was logged using 

a microprocessor development board. These measurements were done via a resistive shunt 

and voltage divider, respectively. The discharging procedure consisted of connecting the 

load to the cell, removing the load, re-applying the load, and stopping the discharge 

process. The step of removing the load was performed in order to capture the dynamics 
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associated with the cell’s charge diffusion. The load was removed long enough until the 

cell’s voltage increased and reached a steady-state. At that point, the load was re-applied 

until the cell’s voltage hit the manufacturer’s stated cell cut-off voltage. The data collected 

in this process is graphed in Figure 3.5.  

 

 

Figure 3.4: Diagram of circuit used to collect cell discharge data. 
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Figure 3.5: Graph of collected discharge data (time axis is in seconds) 

3.4 Processing Collected Data  

Using the graphed data in Figure 3.5, measurements are made from specific features 

from the plot. These measurements are then used to calculate and obtain values for the cell 

model’s parameters. The following are the parameters and how they are extracted from the 

graph.   
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1. ��: To determine this value, two other values must be obtained beforehand.  

o The current before load removal (BLR), :;<�, which can visually be determined 

from the plot.   

o The “instantaneous” change in voltage observed directly after removal of the 

load. This is designated as the voltage after load removal, �!<�,=. In terms of 

the “instantaneous” change in voltage, what should be observed upon load 

removal is a sudden jump in voltage due to the lack of a voltage drop across the 

cell’s internal impedance (because of the sudden stop in load current). It is 

noteworthy to distinguish between the “instantaneous” voltage change and the 

exponential voltage change due to the cell’s diffusion properties (of which the 

parameters are obtained in the next section), because they occur very closely 

one after the other in the graph.  

o To calculate ��  the following equation is used: �� = >?@A,B
CD@A

 

2. Diffusion Time Constant: To determine the Diffusion Time Constant, E� , the cell 

dynamics associated with load removal are analyzed. The following steps are used to 

determine the time constant: 

o Determine the initial voltage,  �FGHH,GIG%G7J, immediately after the removal of the 

load.  

o Next, determine the time, KFGHH,GIG%G7J, at which the load was removed.  

o Determine steady-state voltage, �FGHH,00, after load removal (this requires that 

during data collection the cell voltage was allowed to reach a steady-state after 

the load was removed).  
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o Calculate the voltage that corresponds with 63% of the voltage difference 

between the initial voltage and steady-state voltage. This value is the diffusion 

voltage after one time constant which will be designated as �FGHH,�" ,	This step 

is summarized by the following:  

�FGHH,�" 	= 	 (�FGHH,00 − �FGHH,GIG%G7J) 	× 	0.63. 

o Visually determine the time, KFGHH,�", at which the time at which �FGHH,�" 	occurs. 

o Finally, E�  can be calculated with: 

E� = KFGHH,�" − KFGHH,CIG%G7J  

3. ��: To determine ��the following steps can be followed: 

o Visually determine the current, :FGHH,GIG%G7J	, right before the load is removed.  

o Use �FGHH,P to determine the current right before the load is removed. 

o �F may be calculated with: 

�
�	Q >RSTT,U

	CRSTT,SVSWS2X	
 

4. ��: may simply be calculated with the obtained values of �� and E� 	using the 

following: 

�� =
��
E� 	

 

5. To determine	��, two parameters are required, the change in voltage after the load 

removal and the voltage at the end of the end of the linear region of cell.  

�� = �!<�,=+ end of linear region voltage.  

6. The next step calculates the stored charged and charge diffusion given in Equation (1) 

and Equation (2), respectively. In order to solve these first order ordinary differential 
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equations, a numerical method was utilized namely, the Euler method (Hartley et. al, 

1994).  For each time step during the sampled discharge cycle: 

o The stored charge �� is approximated with the Euler method with a 1s time step 

(K�76YJZ = 1	[�\]^_). Also for the approximation to be accurate it is important 

that the initial condition, ��[0], must be initialized with the estimated SoC of 

the cell.  

��[^ + 1] = ��[^] + :[^] × K�76YJZ  

where K�76YJZ is the sampling time of the logged data.  

o Likewise, the diffusion charge is approximated using the same numerical 

method, with the parameters �� and �� obtained from steps 2, 3, and 4: 

��[^ + 1] = ��[^] + -C
[I]
�

− #
[I]
�
�


. × K�76YJZ   

 

7. Next, a trial and error method is used to determine b� and b� of equation 4. These 

values are chosen based upon the sharpness of the non-linear regions towards the 

beginning and the end of the discharge curve. This corresponds with the curves at the 

far left and far right of the voltage plot of Figure 3.5. Step 8 provides a metric which 

provides feedback on the selection of the values of b� and	b�.  
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8. Next, batch least squares is performed using the collected and calculated data. An array 

is formed using the parameters from equation 4. Each row in the array corresponds with 

either the data sampled or calculated values for each time step in the discharge cycle. 

o Theta  is solved for in equation 3 using batch least squares 

o � = (���) ���((�) 

o Once theta is obtained the Butler-Volmer equation is calculated with the solved 

parameters and the measured cell current measured during the discharge cycle. 

This is to grade how well the model predicts the cell voltage.  

o ()(�) = � ∙ � 

o The sum of the square of the difference between the model’s estimated 

voltage,	()(�) and the measured data, ((�), is calculated to determine a metric 

for the accuracy of the model. This metric can be used for the trial and error 

selection of the terms in Step 7. The smaller the sum becomes with the choice 

of b� and b�, the more accurate the model is in predicting the cell voltages.  

3.5 Obtained Cell Model Parameters 

The values obtained for the model are given in Table 3.1.  
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Table 3.1: Values for obtained parameters for LiFePO4 cell model.  

Parameter Value Units 

b� 22/24000 coloumb-1 

b� −10.14/240000 coloumb-1 

�� ~0 ohm 

�� 25052 farad 

�� 0.00243 ohm 

E 61 second 

�� 3.122 volt 

1
��

 4.345E − 7 

 

farad-1 

�� 1.793 volt 

�� −1.0696 volt 

�� 4.21Ε − 11 volt 

 

3.6 Cell Model Output and Equivalent Circuit Diagram for Cell Model 

After the cell model parameters were obtained, the cell model response was plotted 

over the measured battery data. As can be seen Figure 3.6, the model output (shown in red), 

was in good agreement with the collected battery data. In fact, in the figure, it is hard to 

distinguish since the line lies directly over the measured data.  
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For reference, an equivalent circuit diagram representing the cell model is shown 

in Figure 3.7. This is similar to equivalent circuit models available provided in the 

literature, however, there is an addition of a dependent voltage source to model the non-

linear voltage behavior of the cell near full charge and full discharge (Hartmann, 2008).  In 

the circuit model, the cell voltage ()(�) is a sum of the fixed dc voltage,	��, the storage 

voltage,	��(�), the diffusion voltage,	��(�), the dependent source that captures the non-

linear voltage dynamics (dependent upon the level of charge, ��(�)), 	�I�I JGIZ7m,mZnG�I(�), 

minus the current-dependent voltage drop across 	��.   

 

Figure 3.6: Measured battery data (black) with cell model output plotted over measured 

data (Red). To the right of the picture is a zoomed view of the temporary load removal.   
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Figure 3.7: Equivalent circuit diagram for cell model with a dependent source used to 

represent non-linearity characteristics of cell. 

3.7 Summary  

In this Chapter, the background for a cell model and its various parameters were 

discussed. In addition, methods for implementing real-time cell models for real-time cell 

parameter estimates was discussed. Although such an implementation was not in the scope 

of this research, the benefits and abilities gained from a real-time cell model 

implementation were also provided.  Next, the method and steps used to collect necessary 

cell data required to obtain parameters of the cell model were discussed. Lastly, the 

parameters obtained from the actual collected cell data were provided.  
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CHAPTER IV  

CELL MODEL SIMULATIONS 

 

 

This chapter will discuss the use of the cell model obtained from actual measured data. 

Simulations of virtual battery packs were performed and using multiple instances of the 

obtained cell model. First, an investigation into a hypothetical battery pack consisting of 3 

cells connected in series is discussed. The purpose of the investigation is to demonstrate 

the effectiveness of passive bypasses in a battery pack versus a battery pack without any 

equalization. The end of the chapter concludes with a simulation to test the concepts of an 

integrated battery management and charging system. This simulation serves as a pre-cursor 

of which the remainder of the research was focused.  

4.1 Simulations of a 3-Cell Series Connected Battery Pack 

A simulation was performed on a virtual 3-cell series battery pack that consisted of 

several discharge and charge cycles. In this example, no bypass circuits were utilized. The 

goal of this simulation was to verify that without any bypass circuitry, the cells’ SoC 

diverges over time. Since voltage depends upon the SoC, this also leads to the cells’ 

voltages diverging over time.  

The cell model parameters used to simulate the cells were kept all the same. The 

only difference in each cell was the initial SoC assigned to each one. Cell One was provided 
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a SoC 2% above Cell Two and Cell Three was provided an SoC 2% below Cell Two. It is 

important to note that the conditions in the simulation were chosen to demonstrate how un-

balanced cell voltages within a battery pack behave. Of particular interest is whether all of 

the cells’ voltages diverge or converge relative to one another. Also, worth mentioning is 

that in practice, there will be some slight variation between each individual cells’ 

parameters (which in actual cells is due to variations in the cell manufacturing process). 

However, these variations will most likely only make the cells even more likely to diverge. 

It will be shown that just the variation in the cells’ initial SoC is enough to cause 

divergence.  

The following discussion outlines the simulation of a charging device and the 

simulation of a monitored discharge load. At a high-level, chargers typically provide a 

constant current into the battery pack being charged. The charger then monitors the overall 

voltage of the pack until it reaches a pre-designed constant voltage state. At this point it 

decreases the current to maintain a designated constant voltage. Following this, the charger 

either shuts off after a given period of time or waits until the charging current falls below 

a certain threshold. Similarly, the discharge monitoring circuitry typically monitors the 

voltage of the overall pack voltage until it reaches a low threshold. At this point the 

circuitry discontinues running the application.  

Charge Cycle, Simulated Charger 

o Constant current: The pack was charged at a constant current of 20A until 

the pack voltage reached 11.4V (occurring ideally when each cell is 3.8V).   
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o Constant voltage: At this point the charger maintained the constant voltage 

of 11.4V by reducing the current until it reached 6A.  

o End of charge cycle: This point marks the end of the charge cycle and the 

discharge cycle starts shortly after.  

Discharge Cycle, Simulated Monitored Load 

o Constant Discharge Current: The battery pack is discharged at 60A until 

the pack voltage reaches 7.5V (occurring when each cell reaches 2.5V). 

o End of discharge cycle: This point marks the end of the discharge cycle and 

the charge cycle begins again.  

4.1.1 Battery Pack without Passive Bypass 

Figure 4.1 shows the packs’ voltage over 916 charge/discharge cycles (or 

approximately 4000 hours continuously running the aforementioned Charge and Discharge 

Cycles). A closer view of the first 10 hours of the simulation are provided in Figure 4.2. 

This simulation represents what is seen if only the overall battery pack voltage is 

monitored. Obviously, the exact voltages of the individual cells within the battery pack 

cannot be determined from this graph. Although the battery pack’s total voltage never 

reached over 11.4V (3.8V x 3 cells if cells are balanced) or went below 7.5V (2.5V x 3 

cells if cells are balanced), the individual cells in the pack did not stay balanced as 

demonstrated in Figure 4.3.  
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Figure 4.1: 3-cell series battery pack voltage over 916 charge/discharge cycles. 

 

Figure 4.2: Zoomed in view of the beginning cycles of the 3-cell series battery pack 

simulations. The final cycles of the simulation also look similar to these.  

Figure 4.3 shows the 3 individual cell voltages over the 916 charge/discharge cycles 

performed. The number of cycles was chosen arbitrarily in order to demonstrate the 

individual cell voltages of the pack diverging. Clearly, it can be seen that the cells diverge 

enough to allow Cell 1 and Cell 2 to reach voltages outside their manufacturer 
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recommended voltage operating ranges during charge and discharge, respectively. Cell 2 

reaches voltages near 4.4V, while Cell 1 reaches close to 2V. To further demonstrate how 

the cell voltages diverged, provided are Figure 4.4 and Figure 4.5. These figures show the 

first few hours of the simulation and the last few hours of the simulation, respectively.  

 

Figure 4.3: 3-cell series battery pack initially unbalanced, without balancing circuits after 

916 charge/discharge cycles. 
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Figure 4.4: Zoomed in view of initial cycles of 3-cell simulation without bypasses.  

 

 

Figure 4.5: Zoomed in view of final cycles of 3-cell simulation without bypasses. 

 



 

55 

 

4.1.2 Battery Pack with Passive Bypass 

 Figure 4.6 shows the same simulation with the addition of a resistor-based current 

bypass on each cell. When any individual cell reached a voltage of 3.8 V, the current bypass 

was enabled allowing 1 amp to shunt around the bypass’s corresponding cell. This provided 

a means to allow the higher charged cells to continue charging at a reduced charge rate and 

allow the lower charged cells to continue at the full rate. As can be seen, the results 

demonstrate the cells converged within the first 250 hours of continuously running the 

simulation charge and discharge cycles. Again the initial cycles of the simulation, Figure 

4.7, and the final cycles of the simulation, Figure 4.8, demonstrate that the cell voltages 

converged.  The MATLAB code for the 3-Cell pack simulations with and without bypasses 

can be seen in Appendix A.1.  

 

Figure 4.6: Simulations performed with the same initial conditions as the previous 

simulation and cell parameters but with the addition of balancing circuitry being 

simulated. 
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Figure 4.7: Zoomed in view of the initial cycles of the 3-cell simulation with bypasses. 

 

 

Figure 4.8: Zoomed in view of final cycles of the 3-cell simulation with bypasses. 
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4.2 Simulations of 10-Cell Pack  

The following sections were simulations performed to determine the behavior of a 10-

cell battery pack using different configurations for management. The three sets of 

simulations performed consisted of: 

1. 10-Cell Battery Pack without any BMS and simple Charger. 

2. 10-Cell Battery Pack with simple BMS and a simple Charger. 

3. 10-Cell Battery Pack with BMS and integrated Charger. 

The details of each of these individual simulations will be covered in the following 

sections. In all three of these simulations, the cells are all initialized with an idealized set 

of identical parameters as given in Section 3.5 (this condition is ideal in the sense that these 

hypothetical cells have the same exact properties which in practice may be different due to 

cell manufacturing tolerances). The one exception to the choice of identical parameters was 

the initial SoC for each cell pack arbitrarily chosen to be different. However, the values 

chosen for each of the cells’ initial SoC are the same for each simulation set. This allows 

for an apples-to-apples comparison to be made on the effectiveness of the simulated 

management scheme. The initial SoC of each cell within the battery pack given in 

percentage are, 8%, 13%, 14%, 15%, 16%, 14%, 15%, 15%, 17%, and 16%. Lastly, in each 

of the simulations a constant-current 60A load is used during the discharge cycle.  

4.2.1 Simulation with Non-Integrated Charger and without any BMS 

This section discusses the simulation of the 10-Cell series-connected battery pack 

without a BMS and a simple charger. The simple charger charges the battery pack in 

constant current mode at a current of 12A. The simple charger looks at the overall voltage 

of the battery pack without any consideration of the individually charged cells. When the 
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overall voltage of the battery pack hits 42V (4.2V x 10 cells), the discharge cycle is started. 

The discharge cycle is complete when the voltage of the overall pack is less than 25V (2.5V 

x 10 Cells).  This simulation reinforces the results seen in Figure 4.1 (simulation results of 

the overall voltage of the series-connected 3-cell battery pack) and Figure 4.3 (simulation 

results of the individual cell voltages of the series-connected 3-cell battery pack). The 

results, plotted in Figure 4.9, of this simulation will serve as a baseline for performance 

comparison with the other simulated methods (a closer view of a single cycle is shown 

Figure 4.10). Figure 4.9 shows the cell voltages and the battery pack current over 14 full 

charge and discharge cycles. Due to the fact that the cells are unbalanced, it is clear that 

specific cells are being charged such that their voltages go above the plotted threshold lines 

of 4.2V and 2.5V. The cell model simulations do not take into account the damage and how 

this alters the cell’s operation, however, it is clear that each charge and discharge cycle 

continues to undesirably push the cell voltages outside of these bounds. The MATLAB 

simulation code for this simulation is provided in Appendix A.4. 
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Figure 4.9: Simulations performed with the same initial conditions and cell parameters 

and without an integrated charger or any BMS. 
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Figure 4.10: Zoomed in view of the initial cycles of 10-cell pack without bypasses. 

 

4.2.2 Simulation with 2A Fixed Bypass and Non-Integrated Charger 

This section shows results of simulations with the same 10-cell series-connected 

battery pack, the same simple charger, and the same load as in the previous simulation. The 

main difference is that constant-current 2A bypasses are simulated on each cell that turn 

on when the cells reach 3.8V. Figure 4.11 shows the individual cell voltages, battery pack 

current, and the bypass currents for each cell over 17 full charge and discharge cycles. The 

results are similar to the results seen in the 3-cell series-connected pack simulations. The 
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cells initially started off-balanced in the first few charge/discharge cycles, going outside 

the 4.2V and 2.5V threshold lines. However, as the bypasses are able to provide more 

balancing during each charge cycle, the cell voltages begin to converge. Towards the end 

of the simulation as the cells become more balanced, the cell voltages are able to stay within 

the threshold lines. A comparison between the unbalanced cell voltages at the beginning of 

the simulation and the balanced cell voltages at the end of the simulation can be seen in 

Figure 4.12 and Figure 4.13, respectively. The MATLAB simulation code for this 

simulation is provided in Appendix A.2. 
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Figure 4.11: Simulations performed with the same initial conditions and cell parameters 

but with the passive bypass and non-integrated charger.  
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Figure 4.12: Zoomed in view of the initial cycles of the passive bypasses-only-

simulations. 

 

Figure 4.13: Zoomed in view of the final cycles of the passive bypasses-only-simulations.  
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4.2.3 Simulation with BMS and Integrated Charger 

This section discusses the simulation of the proposed 10-Cell series-connected 

battery pack with BMS and integrated charging system as discussed in Section 2.7. The 

integrated charging system is simulated to charge at 12A. This constant current mode 

continues until any cell reaches 3.8V. Upon this event, the simulation will begin to shunt 

current around that cell to try to maintain the 3.8V. If the shunting current reaches 2A for 

any given cell, the max shunt current value, the simulation reduces the charging current by 

2A. This effectively reduces the charging current for the cell that originally reached 3.8V 

to a charging current that is 2A less, with an additional possible reduction of up to 2A 

shunted via the simulated bypass circuitry. Shortly after decreasing the charging current by 

2A and with the additional shunt current of 2A, this caused the cell’s voltage to decrease. 

The simulated shunt current will be controlled and decreased to try to maintain 3.8V. After 

enough charging time has elapsed at the new lower charging current, the cell voltage will 

begin to increase again. This in turn will cause the shunt current to increase again in attempt 

to maintain the 3.8V. Once again upon the cell reaching its maximum shunt current of 2A, 

the whole cycle repeats beginning with the BMS communicating to the charger to reduce 

its current by 2A. This will continue until the charging current is reduced to 1.8A. At this 

value, the maximum shunt current is larger than the charging current, and the BMS can 

easily maintain each cell at the voltage of 3.8V via the bypasses.  

The goal of the aforementioned charging method is to allow the charging current to 

remain as large as possible throughout the charging process. This allows the lowest charged 

cells to continue charging at the highest possible rate, and only reducing it as necessary, to 

protect the highest charged cell.  
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 The results in Figure 4.14 show the individual cell voltages, battery pack current, 

and the bypass currents for each cell over 7 full charge and discharge cycles. A closer view 

of the first cycle and the balancing of Figure 4.14 is shown in Figure 4.15. The cell voltages 

are able to stay within the thresholds of 4.2V and 2.5V much better than the previous 

simulated methods. This is due to the BMS’s ability to control the charger such that the 

BMS can continue its cell balancing operations as desired. The MATLAB simulation code 

for this simulation is provided in Appendix A.1. 

 

Figure 4.14: Simulations performed with the same initial conditions and cell parameters 

but with the integrated charger and with BMS. 
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Figure 4.15: Zoomed in view of the first cycle of integrated charger and BMS simulation. 
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4.3 Summary 

This section discussed battery pack simulations performed with the cell model 

obtained in CHAPTER III.  The simulations were done to compare a hypothetical 3-cell 

battery pack with and without passive bypasses. The battery packs were cycled multiple 

times in the simulation to demonstrate that without passive bypasses the cells drift further 

and further out of balance from one another. The pack with the passive bypasses initially 

went slightly out of the desired voltage range, but then converged over time.  

Also simulated in this section were 3 different management schemes for a 10-cell 

series-connected battery pack. The 3 different schemes simulated consisted of: a system 

without any management and a simple charger, a system with a fixed 2A bypass and simple 

charger, and lastly, a system with an integrated charger and BMS. These simulations were 

conducted to show the benefits gained from integrating the charger and BMS over other 

simulated methods. The main benefit is that the BMS may use the integrated charger 

interface to support cell balancing. The simulations show that by analyzing each cells’ 

voltage and reducing the overall charging current as needed, the BMS can better maintain 

cell operating voltages and better equalize the SoC of each cell within the battery pack.  
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CHAPTER V  
 

 

HARDWARE FOR BMS IMPLEMENTATION

 

This chapter will discuss the hardware designed and implemented for the integrated 

charger and BMS. The battery pack, which the proposed battery management system was 

implemented on, consisted of 10 series-connected LiFePO4, 60Ah, 3.3V (nominal) cells. 

One of these cells is shown in Figure 5.1. The resulting battery pack formed from these 

cells creates a 33.3V, 60Ah pack. This is roughly 2kWh, which for reference is enough 

energy to run a 60W bulb continuously for 33.3 hours.  

 

Figure 5.1:  Single 60Ah LiFePO4 Cell. 
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5.1 Overview of Hardware for Integrated Charger and BMS 

The proposed BMS for this battery pack system consisted of 10 PCBs: 9 ICMU and 

1 ICMU/BPMU hybrid. The ICMU’s main function is to monitor and provide equalization 

capability for one specific cell. In addition to these tasks, each ICMU is also responsible 

for communicating information to the BPMU. This information includes cell voltage, cell 

temperature, and any fault detections such as overvoltage or undervoltage conditions. The 

BPMU simply compiles all this information, and based upon the individual cells’ 

conditions, makes decisions about how the charger and load controller interact with the 

battery pack. 

Each of these printed circuit boards (PCBs) were mounted directly onto one of the 

10 cells in the battery pack.  The placement of each PCB onto a given cell was arbitrary 

with the exception of the ICMU/BPMU hybrid PCB. The ICMU/BPMU hybrid PCB was 

placed on the cell at the lowest voltage potential with respect to the negative terminal of 

the entire battery pack. The reasoning behind this was to allow the BPMU to be at the same 

ground potential of the charger when the battery pack was connected to the charger device. 

This allowed the BPMU to communicate with the charging device without the requirement 

of electrical isolation in between the systems. Although it was not necessary for 

functionality, isolation between the BMS and charger is ideal. The benefits of isolation 

include mitigation of electrical noise being transmitted between the two circuits, as well as 

provision for a level of fault protection for the logic circuitry.  
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Figure 5.2: Individual Cell Management Unit pictured mounted on a single LiFePO4 Cell. 

5.1.1 Hardware for Individual Cell Management Unit (ICMU)  

In this BMS implementation, the ICMUs measure the cells’ voltage, current, and 

temperature. Powering the ICMUs was accomplished by designing PCBs that mounted 

directly onto each of the individual cells’ terminals. Each ICMU is responsible for 

monitoring its own cell and detecting if an undesirable condition or use of the cell will 

cause damage to it.  Such conditions as discussed earlier are overvoltage, undervoltage, 

and overtemperature.   

The ICMU periodically transmits its own cell’s information (estimated SoC, 

voltage, current, and temperature) to the BPMU via an isolated serial communication bus. 

In addition to this information, the ICMU also transmits information regarding to if any 

overvoltage, undervoltage, or overtemperature conditions exists. The BPMU then compiles 

all information from all the individual ICMUs and monitors for any cell damaging 

conditions. If a condition is detected, the BPMU will take action to either stop the charging 

or discharging process or provide fault indication to a user.   
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In the event of an overvoltage condition during charging of the battery pack, the 

ICMU also has the ability to bypass up to 2A of current around its respective cell. In doing 

so, this allowed the ICMU to slow down the charge rate of the cell it was managing. This 

allowed the other cells in the series-connected pack to continue charging at a faster 

charging rate and therefore provide a means of balancing the cells.  

5.1.2 PCB Connection 

PCBs were mounted on top of the LiFePO4 cells via the positive and negative 

threaded terminals. The PCB’s Top copper pour is shown in Figure 5.3 and the Bottom 

copper is shown in Figure 5.4. Further details and schematics of this PCB’s implementation 

will be further covered in the following sections. However, the connections of the PCBs to 

the cells will be discussed here first. Proper mechanical connections to the cells were vital 

for safe usage of the cells. If the connections are not made such that they are tight and 

secure, they may become loose with mechanical vibrations overtime. This in turn causes 

the connections themselves to become a high impedance during the cell’s usage. This will 

result in high power loss to occur at these loose connections in the form of heat. The heat 

generated can be enough to melt both the cell’s outer enclosure and also damage the PCB.  

In order to allow the boards to be mounted, M6 threaded rods are screwed into each 

of the cell’s terminals. To allow the bolt to be tightened further a nut was placed on the 

threaded shaft and tightened with a crescent wrench until it was flat against the cell’s outer 

terminal Figure 5.5.  Figure 5.6 shows the same PCB from the top view.   
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Figure 5.3: Top side of ICMU PCB. 

 

 

Figure 5.4: Bottom side of ICMU PCB. 
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Figure 5.5: Cell with M6 threaded bolt inserted with nut. 

 

Figure 5.6:  Top View of ICMU board on a single LiFePO4 Cell before being tightened 

down with nuts on the threaded shafts. 
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Figure 5.7:  Circuit board tightened down onto battery terminals and also shown are 

connections to adjacent cells in the series connected cells. 

5.1.3 ICMU Power Circuitry 

The ICMU circuitry is powered with 3.3 volt and 5 volt power rails. These are 

provided via two MCP1253 charge pump integrated circuit chips. Both of these chips are 

directly powered off the cell the ICMU is connected to. As can be seen with the schematics 

pictured in Figure 5.8 and Figure 5.9, either a 3.3 volt or 5 volt output may be generated 

from the chip by either pulling the SELECT pin on the chip high or low, respectively.  The 

3.3 volt source is used to power the ICMU microcontrollers, two temperature sensors, and 

an isolated I2C chip. The 5 volt source is used to power a MOSFET gate driver integrated 

chip. These devices will be covered further in the sections to follow. 
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Figure 5.8: Schematic: Single LiFePO4 Cell and 3.3V bus derived from charge pump. 

 

 

Figure 5.9: Schematic: 5 volt bus derived from charge pump. 
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5.1.4 ICMU Microcontroller 

The Atmel ATXMEGA16A4 is a 16-bit processor that was selected primarily for 

its ADC features and low power capabilities (Figure 5.10). The ADC is capable of 

differential analog measurements. Once the differential measurements are brought into the 

device, the output from the differential measurement can then be applied to an internal 

programmable gain amplifier. The microcontroller’s ADC device was implemented with 

an external 2.048 volt shunt reference. Utilizing a 2.048 volt reference and placing the 

ADC in “signed differential mode” with 12-bit resolution conveniently results in analog 

conversions that correlate with 1mV per 1-ADC unit. In other words, an ADC reading of 

2047 (decimal value) from the ADC unit corresponds with a voltage of 2.047V. An ADC 

reading of -2048 in turn correlates with a -2.048V differential measurement.  The interface 

to the microcontroller consists of I2C communication, multiple analog readings, in-circuit 

programming port, and a digital PWM output. These interfaces will be individually covered 

in the sections to follow.  
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Figure 5.10: Schematic: Microcontroller schematic for ICMU PCB. 

5.1.5 Implementation of Voltage and Current Monitoring 

The voltage monitoring is implemented with a pair of relatively high impedance 

voltage dividers as show in Figure 5.11. Two identical dividers are used to ensure that the 

differential measurement is scaled to each input of the differential amplifier. The inputs to 

these voltage dividers are the positive and negative terminals of the cell that the ICMU is 

connected to. The resistor values of the divider was chosen to scale the cells’ maximum 

expected voltage down to the maximum voltage of the microprocessor’s ADC (the value 

of the external voltage reference of 2.048V).  In addition, a 0.1uF ceramic capacitor is 
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placed across the stepped down voltage to serve as a low pass filter. An undesirable effect 

of this implementation method is that it requires a constant current to be drawn from the 

cell at all times. Since the cells have a relatively large capacity compared to the current that 

is drawn from the divider, it can be considered negligible. This is under the assumption 

that battery pack will be charged on a regular basis and not stored for a long period of time. 

Storage for a long period of time with any additional current draw will certainly bring the 

SoC of the battery pack down faster.  

 Also pictured in Figure 5.11, is a resistive shunt that was utilized to measure the 

current in and out of the cell. As can be seen in Figure 5.7, the PCB has a third terminal in 

the center. This third terminal has a shunt connected to it, which in turn is connected to the 

cell’s negative terminal. This extra terminal and the placement of the shunt allows the 

current to be measured going in and out of the cell’s negative terminal. In the schematic of 

Figure 5.11 the value of 2 milli-ohms is shown as the original designed value, but after 

testing, a 6 milli-ohm shunt was used to scale the maximum current measuring range to a 

more preferable value. This shunt was utilized to create a voltage drop that correlates with 

the current going in and out of the cell. To get the voltage measurement on the shunt, a 

differential analog measurement was taken across the shunt. This differential measurement 

was then sent through the programmable gain amplifier with a gain of 8. Utilizing the 

programmed gain and the chosen 6 milli-ohm shunt, provided a maximum theoretical 

reading range of -42 to 42 amps correlating with the range of voltages coming out of the 

programmable gain amplifier of -2.048 to 2.048V. Figure 5.12 shows the actual 

implementation of the PCB.   
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Figure 5.11:  Schematic: Voltage divider to scale cell voltage for microcontroller's ADC 

on ICMU PCB and measure the current going in and out of the managed cell. 

 

Figure 5.12: Current Shunt used to measure system current is pictured in red box.  

5.1.6 Implementation of Current Bypass Circuit 

The main components of the bypass circuitry consisted of a MOSFET switch in 

series with a 1 ohm, 25 watt power resistor.  This circuitry, shown in Figure 5.13, was used 

when an overvoltage condition was detected during a charge cycle. 

The current bypass circuitry was designed to allow current to be bypassed around 

a cell in the range of 1-to-2 amps.  This was implemented by operating the MOSFET in its 
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linear region. In other words, the MOSFET was used as a voltage controlled resistor. In 

order to measure how much of the current was bypassed, the differential voltage drop 

across the 1-ohm power resistor was measured with the ICMUs microcontroller’s ADC.  

The voltage control on the gate of the MOSFET was implemented using the output 

from a 20.8 kHz PWM signal fed into a low-pass RC filter. The PWM was generated from 

the ICMU’s microcontroller PWM peripheral. The RC filter consisted of a 10kohm resistor 

and 0.1uF ceramic capacitor as seen at the MOSFETs gate in Figure 5.13. These two 

provide a cut-off frequency of 159 Hz with the transfer function  

G(s) = 1000/(s+1000) 

To control the amount of current to be bypassed, a proportional controller was 

implemented. The controller’s reference input was the desired maximum voltage the cell 

being protected was allowed to reach. If the voltage of the cell increased beyond the 

maximum desired voltage the ICMU’s microcontroller increases the PWM duty cycle. This 

increases the voltage on the capacitor in the low-pass filter, which in turn decreases the 

MOSFET’s drain to source resistance.   

The heat generated from using the MOSFET as a voltage-controlled resistive 

bypass, was dissipated via a heat-sink. To ensure that the heat generated did not rise to an 

excessive level, a temperature sensor was used. The temperature sensor was simply a 

thermistor placed near the bypass MOSFET that was placed within a voltage divider with 

a fixed resistance. The actual implementation of this is shown in Figure 5.14. 
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Figure 5.13: Schematic: Bypass MOSFET circuit and bypass’s overtemperature Sensor 

on ICMU PCB. 

 

Figure 5.14: The red box shows the location of bypass resistor and MOSFET configured 

to be a voltage-controlled resistor (underneath silver heat-sink). 
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5.1.7 Implementation of Cell Temperature Monitoring 

An ideal place to monitor the temperature of the cell is inside of the cell itself.  

However, since placing a sensor inside is not feasible for an end-user of a cell, the only 

option was to make an external measurement.  The temperature sensor was placed near one 

of the cell’s terminals.  The reasoning for this placement was that it was assumed that the 

thermal transfer from inside the cell is faster through the cell’s terminals and not through 

the plastic casing of the cell. The choice of which terminal to place the temperature sensor 

was chosen arbitrarily. The actual temperature sensor and location on the ICMU board is 

shown in Figure 5.15. A more accurate linear voltage output temperature sensor was 

utilized, namely the LM20. The circuit utilized is shown in Figure 5.16. The only high 

temperatures observed during battery pack use were while the board was bypassing current 

and dissipating heat through the bypass circuitry. This implies the board design is such that 

the heat distributed from the bypass circuitry influences the cell temperature measurement. 

This could be considered and possibly corrected for in software but for a future design, 

ideally better heat sinking of the bypass circuitry could decrease the influence on cell 

temperature measurements.  
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Figure 5.15: Location of cell temperature sensor near cell terminal bolt (small black 

integrated circuit identified by arrow). 

 

 

Figure 5.16:  Schematic: Temperature sensor to measure cell temperature on ICMU PCB. 

5.1.8 Implementation of LED displays for Status Indication 

LEDs were placed onto each ICMU board to provide feedback information on the 

current status of the cell being managed by the ICMU as well as the battery pack as a whole. 

As pictured in the schematic of Figure 5.17, six dual colored LEDs were provided per each 
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ICMU. The actual implementation of a single ICMU can be seen in Figure 5.18. Although 

six dual colored LEDs were not necessary for display purposes, during the design process, 

the microcontroller had additional I/O open and so the number six was arbitrarily chosen 

for the number of dual LEDs. For display purposes only, when all cells were lined up, a 

“Knight Rider” (1982 TV Series) light effect was displayed. The BPMU broadcasted a 

command to turn on specific LEDs on each ICMU’s individual LEDs. The commands were 

sent in such a way that it gave the appearance of a single lit LED traversing through all 

ICMUs from ICMU to ICMU. This provided a visual as to whether or not the 

communication between each ICMU and the BPMU was active.  

A single dual LED, PD0 and PD1 (see Figure 5.17), was used to show the status of 

the onboard current bypass. Green indicated no bypass was active, Amber indicated that 

some current bypass was active, and Red indicated the maximum bypass current was being 

shunted around the cell.  

In the event of an overtemperature, overvoltage, or undervoltage condition, all 

ICMUs were told to flash all 6 of their LEDs red by the BPMU. This was simply used to 

provide a visual for the battery pack user so that proper action could be performed (i.e. stop 

using the battery pack, or remove charger and end the charging process).  
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Figure 5.17:  Schematic: Status LEDs on ICMU PCB. 

 

 

Figure 5.18: Actual Implementation of dual color LEDs. 
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Figure 5.19: Battery Pack with ICMUs displaying various LED colors to demonstrate cell 

condition. 

5.1.9 Implementation of Communication Circuits between BPMU and ICMU  

In order to directly communicate from ICMU to the BPMU, isolation circuitry was 

required. This was done mainly because each cell was connected in series and so inherently 

the communication signal voltage is level shifted. For example between the lowest cell and 

highest cell within a series string, a serial digital output on the highest cell could have been 

as high as +30V higher than a serial digital output on the lowest cell. Therefore simply 

connecting the digital grounds between the highest cell and lowest cell was not possible as 

that essentially is a direct short from +30V to the pack ground. This is why the ADUM1250 

I2C isolated digital bus IC was utilized. I2C is a serial communication protocol that is 

implemented with a Clock line, a bi-directional Data Line, and a Ground. The clock line 

and data lines are typically pulled high via pull-up resistors to the digital bus voltage. 

Therefore the clock and data lines get simply pulled down to assert an active signal. The 
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ADUM1250 simply allows the I2C communication to be done through specialized optical-

isolated circuitry that allows bi-directional data on a single line as well as a bi-directional 

drive for the clock line as well. On the ICMUs on one side of the isolation barrier the 

ADUM1250 is supplied power from the cell the ICMU is attached to. On the other side of 

the isolation barrier the ADUM1250 is supplied power via the BPMU. To make 

connections from the ICMU to BPMU, a daisy-chain style connection is utilized on each 

ICMU. There are two paralleled RJ-11 4-PIN telephone jack style to achieve this. The 

circuit and actual implementation for this is pictured in Figure 5.20 and Figure 5.21, 

respectively.  

 

Figure 5.20: Schematic: Isolated communication I2C Bus on ICMU PCB. 
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Figure 5.21: I2C connections shown from daisy chaining ICMU to ICMU. 

5.1.10 Implementation of ICMU Address Hardware Identification 

Each ICMU node was provided an identifying address that was provided with a 4-

bit value that was determined by the value of 4 available digital input pins on the processor.  

The initial envisioned method to assign each ICMU’s address was to simply program a 

unique address in each devices’ memory, however, there were difficulties encountered with 

this method. Since the decision was made after the PCB was designed and made, the idea 

of taking 4 available pins on the processor was considered. By simply soldering each of 

these 4 pins either high or low (either shorting to a nearby low-ground or high-microchip 

operating voltage) each board could be assigned its own unique address with various 

combinations on these pins. Although up to 16 possible addresses could be used, only 10 

were required for all ICMUs.  
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Upon initialization, each ICMU read these 4 pins to determine its own address.  

After determining its own address, the ICMU flashed a LED the value of its address to 

provide visual indication of the address value. Using these addresses the BPMU could 

individually poll each of the ICMU nodes over the I2C bus.  

5.1.11 Hardware for BPMU/ICMU Hybrid  

The hardware for the BPMU/ICMU are exactly the same since the BPMU/ICMU 

hybrid must be able to perform all the functionality of just a single ICMU board. The only 

differences are the BPMU has special connections for the I2C interface and the BPMU has 

an extra serial port output to communicate to the charger device. Figure 5.22 demonstrates 

the different connections used for BPMU. On the BPMU, instead of using the I2C isolator 

ADUM1250 integrated chip, the BPMU simply shorts the I2C data and clock lines pins 2 

to 7, and pins 3 to 4, respectively.  Zero ohm resistors are populated on R27 and R28 to 

connect the isolated side of the I2C Bus on all ICMUs to the BPMU’s operating voltage 

Vcc and Gnd, respectively. In other words, the BPMU powers the right hand side of all the 

ADUM1250 devices on each ICMU. As for the left side of each ICMU’s ADUM1250, 

each ICMU powers this side on its own.  
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Figure 5.22: I2C connections for BPMU. 
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CHAPTER VI  

SOFTWARE FOR BMS IMPLEMENTATION

This chapter discusses the software implemented for the integrated charger and 

BMS platform.  Since 1 of the 10 ICMUs served both as an ICMU and the BMPU, two 

sets of software were written. The first set was used to control the 9 ICMU slave boards 

and the second set was for the ICMU/BPMU Hybrid.  

6.1 ICMU Software Overview  

During operation, a high-level view of the operations that each ICMU performs every 

4ms is listed below: 

1. Read Analog Values 

2. Filter, Convert, and Process Analog Readings 

3. Run control loop for Bypass  

4. Package ICMU’s Data into Communication Packet for BPMU  

5. Update Status LEDs 

6.1.1 Analog Voltage Reading 

The analog-to-digital converter (ADC) measurement is performed with the 

XMEGA A4 processor’s onboard 12-bit measurement. An interrupt is setup that rapidly 

and automatically sweeps through the four desired measurements. In the ADC interrupt the 
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four desired measurements are over-sampled with 16 fast samples and averaged to reduce 

sampling noise. The XMEGA A4 processor also has a programmable gain amplifier block 

that can be used to amplify the signal (either differentially or single-ended) before being 

sampled by the ADC. The available gain selections are 1, 8, 16, and 64. The cell voltage 

measurement is performed with gain of 1 on the programmable gain amplifier. The cell 

current measurement is performed differentially with a gain of 8. The bypass current 

measurement is performed differentially and also with a gain of 1. Lastly, the temperature 

measurement is performed single-ended with a gain of 1.   

6.1.2 Read, Filter, Convert, and Process Analog Readings 

After each analog measurement is averaged from the 16, samples each is placed 

into its own 64-element ring buffer every 4ms. This buffer is used to calculate a 64-sample 

moving average to filter out any high frequency noise.  Each value is converted from the 

raw ADC value to scientific units (e.g. volts, amps, degrees Fahrenheit, etc…). Each of 

these conversions used linear equations consisting of a gain and offset.  

Using the converted data, cell voltages were checked to determine the state of a cell 

and to detect overdischarge (under 2.5V) or overcharge (larger than 4.2V). Also calculated 

was the integral of the current measurement. This provided a rough SoC estimate. The 

integral was performed simply by accumulating the sum of the currents multiplied by the 

sampling time of 4ms.  

6.1.3 Run Control Loop for Bypass Current  

After the measurements were taken, the cell voltage was checked to determine if it 

was higher than 3.8V. If it was, the bypass current controller was activated; otherwise this 
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section of code itself was skipped. However when it was activated, an integral control loop 

ran to determine how much current should be bypassed to keep the cell at a nominal 3.8V. 

The control loop’s output was the duty-cycle value that was used to drive the low-pass 

filter coupled to the gate and source of the aforementioned bypass MOSFET of Figure 5.13. 

The PWM peripheral used to control this duty-cycle was set-up for a frequency of 

approximately 20.8 kHz (chosen simply to ensure the frequency was not audible and higher 

than the low-pass RC filter). Provided that the voltage applied to the MOSFET’s gate and 

source was slowly increased, this causes MOSFET’s operating region to be placed into its 

linear region of which the MOSFET behaves as a voltage-controlled resistor. Once the 

controller increases the duty-cycle beyond the MOSFET’s gate threshold, the MOSFET 

reaches its saturation region and becomes relatively low impedance compared to its linear 

region operation.  At this point, the MOSFET’s impedance becomes relatively negligible. 

The 2.1 ohm resistor connected in series with the MOSFET, is now the only current 

limiting impedance. As will be discussed later, the BPMU will need to take action once the 

maximum current is bypassed and the cell voltage can no longer be maintained at 3.8V.  
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Figure 6.1: MOSFET operating regions based upon gate voltage, drain current and drain 

to source voltage.  

Since the cell’s dynamics were not rapidly changing, the tuning of the controller for high 

performance was not critical. The controller’s integral gain was chosen through an offline 

manual iterative tuning process. This process consisted of starting with low gains and 

increasing them in small incremental steps.  The final integral gain was chosen 

conservatively to prevent the bypass current value from overshooting and varying wildly. 

However, it was just enough speed to increase or decrease the bypass current to maintain 

the cell’s 3.8V. 

6.1.4 Package ICMU’s Data into a Communication Packet for BPMU 

Next, after the various measurements were sampled, calculated, and/or converted, 

it was placed into a fixed communication packet. Each ICMU stored this packet in 

anticipation of a data update request from the BPMU. The communication packet formed 

consisted of the Cell Current, Cell Voltage, Bypass Current, estimated SoC, and the 
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following status bits: bypass on/off, bypass is/is not at maximum duty-cycle, cell is/is not 

overdischarged, and temperature is/is not over maximum threshold. In terms of size, the 

packet consisted of a total of 10 bytes, 2 bytes for each of the 4 analog readings, and 2 

additional bytes for the SoC and the 4 status bits.  

6.1.5 Update Status LEDs 

The last portion of the ICMU’s operation loop was used to update the ICMU’s dual 

color status LEDS. One of the six LEDs served as an indicator for the state of the ICMU’s 

bypass circuit. The other five LEDs were used to indicate active communication with the 

BPMU as well as system status. Not all five dual color LEDs were necessary and were 

merely placed originally on the ICMU PCB for debugging purposes. However, since they 

were available on the board they were creatively utilized.  

The single dual-color LED was used to provide the ICMU’s bypass with the 

following color configuration:  In order to indicate that the Bypass was off, the Green LED 

was individually lit. In order to indicate some current was being bypassed and less than the 

maximum, the Green and Red LEDs were lit (creating Amber). Lastly, if the maximum 

current of 1.9A was being shunted around the cell by the bypass circuit, the Red LED was 

individually lit. 

All display LEDs were updated with values from the BPMU for the “Night Rider 

effect”, and as aforementioned, this concept was used to display the battery pack status and 

also as a visual indication that the communication between the BPMU and all ICMUs was 

active. 
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6.2 ICMU Interrupts 

There were three interrupts that ran as needed over the ICMU’s operation loop, the 

I2C Interface Interrupt, Timer Interrupt, and the ADC Interrupt. Each of these will be 

discussed in the following sections.  

6.2.1 I2C Interrupt 

The I2C Interrupt was used for communication between the BPMU and each 

ICMU.  The BPMU/ICMU hybrid and the other 9 ICMUs were all placed onto the same 

I2C bus via the I2C isolation chips mentioned in the hardware design section. Each ICMU’s 

I2C peripheral interface was setup as a slave module with the address determined by the 

four address selection pins as aforementioned. The ICMU then only responds to I2C 

requests provided with its matching address from the BPMU. The BPMU performed two 

operations in regards to the I2C interface; a data packet update read sequence or a 

communication status write sequence.  

The read sequence simply consisted of the BPMU commanding data to be given 

from a specific addressed ICMU. Upon the request and verification of the address match 

the I2C interrupt was triggered. Inside the interrupt the slave firsts acknowledges the 

BPMU’s request for a packet update indicating it had at least one byte of data to send. 

Next, the slave starts providing the packet data byte by byte and continues to acknowledge 

that it had data to send. When the ICMU reached the end of its 10-byte communication 

data packet, it simply ignores the acknowledgement and the BPMU stops the I2C read 

sequence.  
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During the write sequence the BPMU broadcasts a message to all ICMUs. This 

message was a number that corresponded to one of the 60 Green LEDs available from each 

ICMU. This number was updated every time the BPMU finished a read sequence with an 

ICMU. The pattern the BPMU followed to update the number consisted of incrementing 

the number from 1 to 60 and then decrementing from 60 back down to 1. This is what 

provided the “Night Rider Effect” as mentioned earlier. Since this message was 

broadcasted to all ICMUs, provided the ICMU’s green LED corresponded with the 

broadcasted value, it turned on that specific LED. This visually provided a means to see 

when a message request was dropped if the “Night Rider Effect” pattern was not consistent 

(i.e. if the LED stopped on a single LED for inconsistent period of time from the others, or 

if LEDs were skipped in the pattern, etc…). In addition to providing communication status 

using the write sequence, the BPMU also used this write sequence to provide all ICMUs 

with a message to blink their RED LEDs. This was reserved for the event when the BPMU 

processed the data it received from all ICMUs and detected a cell with an overcharged, 

overdischarged, or overtemperature condition. This provided a visual indicator for the user 

to be able to take action with the system.  

6.2.2 Timer Interrupt 

This interrupt was setup to occur approximately every 4ms. The only purpose for 

this timer was simply to perform the integration of the current for the SoC integration.  

6.2.3 ADC Interrupt 

The ADC was setup to read a sweep of the four ADC measurements mentioned 

previously. The interrupt occurred at the completion of the fourth ADC conversion. In the 

interrupt, each individual conversion was summed up over 16 samples and then averaged. 
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It is this 16 sample average that was used each time the ICMU operation loop was run.  

This 16 sample average was implemented to reduce sampling noise. 

6.3 BPMU/ICMU Hybrid Software Overview 

Since the BPMU is actually a hybrid BPMU/ICMU in this BMS implementation, 

the BPMU performs the same functions of the ICMU. Therefore, the discussion of software 

for the BPMU/ICMU hybrid will only focus on the differences between the code sets used 

to implement the stand-alone ICMU versus the code for the BPMU/ICMU hybrid.  

In terms in the functionality of the ICMU portion of the BPMU/ICMU hybrid, there 

is only one main difference, the I2C communication. The BPMU/ICMU hybrid does not 

send any information out on the I2C bus about the cell it is managing like the other ICMUs. 

It simply just stores its own information internally and then it gathers the rest of the battery 

pack’s cell information from other ICMUs via the I2C bus. All other steps mentioned in 

the ICMU software overview behave the same in the hybrid device. The operation for the 

BPMU portion of the BPMU/ICMU hybrid consist of the following: All steps for ICMU 

portion are executed first. Next data from ICMUs are processed, converted, and printed 

out. Next, cell status is determined and any necessary actions are taken. Lastly, charger 

detection, charge current selection logic, and charger communication is performed.  

6.3.1 Process ICMU Data Packets, Convert and Print out 

After the BPMU requests data from a particular ICMU on the I2C bus, an interrupt 

processes all the data received (this interrupt will be discussed further in a later section).  

Once an entire packet is received from the ICMU a flag is set indicating there is new data 

to be processed. The BPMU takes the data from the packet and decodes it back to the 
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individual measurements and status bits cell current, cell voltage, cell’s bypass current, 

cell’s estimates SoC, temperature, bypass status bit, bypass at max bit, overtemperature 

detection bit, and the overdischarge detection bit. This data is then sent out from a BPMU’s 

information serial port at a baud rate of 19200. This process is repeated until all information 

is received from all of the other 9 ICMUs. 

The collection of all data from each ICMU occurs in 100 milliseconds. This means 

that the acquisition of data from all ICMUs is complete once every second.  When a full 

round of data is received from all ICMUs, the BPMU then calculates the overall pack 

voltage, current and the SoC. The pack voltage is determined by summing the individual 

cell voltage measurements received. The pack current is determined by taking an average 

of all the cell currents measured (since all cells are connected in series). The SoC is simply 

given as the lowest SoC of the lowest charged cell (again since all cells are in series, to 

protect the lowest charged cell from overdischarge, the lowest SoC percentage is given). 

Next, all ICMU data is analyzed for various conditions and action is taken as necessary. 

6.3.2 Determine Cell Status and Take Corrective Action as Necessary 

The BPMU takes all the data and analyzes each ICMU to see if any of the following 

conditions: undervoltage, overvoltage, overtemperature, and bypass at max current. 

To detect the overdischarge condition, the overdischarge status bit sent from each 

ICMU is evaluated. If this bit is received with a positive for an overdischarge condition for 

two consecutive messages for the same ICMU, action is taken. Since there is no load shut-

off in this BMS implementation, the only action that is taken is to indicate to the user that 
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the condition exists. To do so, the BPMU simply tells all ICMUs to flash their red LEDs 

in sync. This leaves it up to the user to stop the use of battery pack.  

In order to detect an overvoltage condition, the BPMU evaluates the level of each 

ICMU’s cell voltage during the charging process.  If the BPMU detects that any cell’s 

voltage is larger than 4.2V after 2 seconds, the BPMU sends a command to charger telling 

it to shut-off.  

As for the overtemperature condition, again the BPMU simply scans each 

individual ICMU’s overtemperature status bit. If any device stays in the overtemperature 

condition over 2 seconds, the BPMU sends a command to the charger telling it to also shut-

off in this case.  

Given that none of the aforementioned condition exist the charging process runs 

until all cells are charged equally as will be discussed in the following section.  

6.3.3 Implementation of I2C Communication Scheme   

The BPMU polled one ICMU node every 10ms. In other words, to poll and then 

receive all 10 ICMU nodes’ cell information, this required a total of 100ms. This sampling 

time was chosen to ensure any fast transient current pulses were captured during discharge.  

6.3.4 Implementation of Charger Control Interface 

The charging device used to implement the proposed method was developed in 

conjunction with an electric vehicle project (Taschner, 2011). Shown in Figure 6.2, is a 

high-level schematic of the charging device.  It consists of a bridge rectifier, a smoothing 

capacitor, and a buck-regulator block. Not pictured are additional electronics that provide 

the monitoring, measurements, controls, and serial interface for the charging device. An 
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actual photo of the hardware is shown in Figure 6.3. Next, the serial interface will be 

discussed in more detail.  

 

Figure 6.2: A high-level schematic of the charging device (Taschner, 2011). 

 

Figure 6.3: Photo of charging device (Taschner, 2011). 
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The serial communication interface between the BMS and the charger consisted of 

three wires. Two of these were signals and the last wire was used to establish a common 

ground. One of the signal wires was used to detect whether or not the charger was presently 

connected to the BPMU. The other signal wire allowed the BPMU to transmit commands 

to the charger.  

In order to detect the presence of the charger, the BPMU used a digital input with 

a high impedance pull-up resistor. When the three-wire connection was made between the 

charger and the BPMU, the digital input was pulled to ground.  

The command packet transmitted by the BPMU to the charger consisted of 6 bytes 

as summarized in Table 6.2.  This packet was designed to transmit a new desired charging 

current from the BPMU to the charger. Error detection capabilities were built into the 

packet. The desired current will have two integer digits and two decimal digits.  A variable 

representation of this format can be viewed as “II.DD”.  

The starting character (Byte 0) and an ending character (Byte 5) envelops the packet 

to allow for synchronization of the messages between the BPMU and charger. The integer 

portion (Bytes 1 and 3) and decimal portion (Bytes 2 and 4) of the current is redundantly 

sent within the packet. This is to allow the charger to receive both sets of bytes and check 

if any bits were changed during the transmission. To provide an additional measure of error 

checking, the BPMU sends this entire packet 5 times repeatedly to the charger. The charger 

then ensures all packets are consistent before updating the actual charging current to the 

new desired value.  
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Table 6.2: Communication packet sent from the BPMU to the charger. 

BYTE # DATA DESCRIPTION 

0 0xAA Starting character 

1 II Integer Portion of Current 

2 DD Decimal Portion of Current 

3 II Integer Portion of Current 

4 DD Decimal Portion of Current 

5 0x55 Ending character 
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CHAPTER VII  
 

SIMULATION VALIDATION AND RESULTS  

 

This chapter will discuss the results obtained from a battery pack discharge and 

charge cycle with the proposed integrated charger and BMS implementation. Plots of the 

data collected during both cycles will be shown. In addition, some images collected of the 

BMS system during the charging process will be displayed. 

7.1 Discharge and Charge Cycles Results from a 4-cell Battery  

The positive results from the simulations of the integrated BMS and Charger of 

Section 4.2.3 were used to perform a quick manually-controlled experiment on a series 

connected 4-cell battery pack. The cells consisted of four 26650 LiFePO4 cells, each with 

a 2.5Ah capacity. A power supply was used for the charging cycle and a programmable 

load was used for the discharge. The power supply was set for a constant-current of 4A and 

a constant-voltage of 14.8V (3.7V x 4 cells). The programmable load on the other hand 

was set for a fixed discharge of 4A. On each cell a resistive bypass was implemented 

consisting of an 8.2 ohm resistor that turned on at 3.5V.  

The experiment started with all cells individually charged with the same CC and 

CV profile.  For the constant-current mode 4A continuous was maintained until the cell 

voltage reached 3.7V. In the constant-voltage mode, the cell voltage of 3.7V was 
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maintained until the cell reached 50mA. At this point the charging was complete and the 

cells were allowed to rest.  

The purpose of the experiment was to demonstrate that the cell balancing could be 

more effective if the charging current was controllable. This could be accomplished by 

manually watching the cell voltages and reducing the power supplies charging current as 

necessary.  

The experiment started with cycling the pre-balanced cells for two cycles. As can 

be seen in Figure 7.1, the first two cycles show that the cell voltages stayed relatively 

balanced during the charge cycle (note that the second cycle appears different after the 

charge cycle only because the pack was allowed to rest longer). After the second discharge 

cycle, a single cell was individually charged at 4A on its own for 10 minutes to purposefully 

unbalance the pack (unbalance marker in yellow in figure). After this, the cells were 

allowed to rest again and then the third charge cycle was started. As can be seen, the higher 

charged cell quickly reached 3.7V before the other cells. Even with the bypass on, the cell 

voltage increased significantly more as observed in the simulations of Chapter 4. At this 

point, the charger current was turned down to a constant-current of 0.4A. This allowed the 

bypass to completely shunt the current around the highest charged cell while the other cells 

remained charging. Once all cells reached the bypass activation voltage, the current was 

increased to 0.6A to allow all the cells to continue charging. The next charge and discharge 

cycle show that the charging stays well balanced. After a long rest, an additional charge 

cycle was performed to demonstrate the cells remained balanced. 
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Figure 7.1:  Data plotted from a 4-Cell series-connected battery pack manually-controlled 

experiment. 

7.2 Results from the Integrated Charger and BMS on a 10-Cell Battery Pack  

The results of data collected from the 10-Cell series-connect integrated Charger is 

given in the next few sections. The data collected from the discharge cycle is provided 

followed by the charging and balancing results.  

7.2.1 Discharge Cycle 

A fixed high power resistive load with a resistance of approximately 1.67 ohms was 

used to discharge the battery pack at a nominal discharge current of 20A.  The discharge 
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was stopped when at least one of the cells dropped below the 2.5V threshold.  The BPMU 

visually indicated this to the users by notifying the ICMU boards to flash their red indicator 

LEDs.  As can be seen in Figure 7.2, Cell 10 reached a low voltage of 2.5V. At this point 

the red LED indicators were asserted and removal of the load completed the discharge 

cycle. Also worth noting is that the cell voltages have different discharge characteristics. 

As can be seen in the figure, initially in the discharge cycle cell 4 is at a lower voltage. 

However, towards the end of the discharge, cell 10 reaches 2.5V first. 

Also shown at the bottom of Figure 7.2 was the discharge current. Since the 

resistance was a fixed resistive load, the cell discharge current started out higher as the cell 

voltages were higher earlier on during the discharge cycle. The linear cell voltage region, 

where the cells stays relatively constant, can be seen from approximately 0.5 to the 2 hour 

mark of the discharge cycle. Towards the end of the discharge cycle (2.5 hours and after), 

the cell voltages move out of the linear region and began to drop steeply. As can be 

observed and expected, a decrease in discharge current occurs. At the end of the cycle, the 

removal of the load is seen and the measured cell discharge current drops to zero. 
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Figure 7.2: Discharge cycle of 10 Cell Series Connected LiFePO4 Battery Pack. 

7.2.2 Charge Cycle 

This charge cycle occurred after the aforementioned discharge cycle was 

completed. Once the BPMU was connected to the charger, it communicated to the charger 

and requested a charging current of 12A. After the start button was pressed on the charger, 

the BPMU continuously polled each of the ICMUs for information about their respective 

cells.  Figure 7.3 shows the visual LED feedback from each ICMU early on during the 

charging process. Since no cells are in bypass all feedback LEDs are green.  
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Figure 7.3:  Battery Pack with ICMU and ICMU/BMPU Hybrid attached to each cell. As 

pictured here each cell is charging and is not bypassing any current. 

The ICMUs on each board watch over its own cell and begin bypassing current 

around the cell if necessary. When an ICMU begins bypassing current, the feedback LED 

on the ICMU changes to amber. When an ICMU begins bypassing current close to its 

maximum allowable current of 2A, the feedback LED changes to RED.  Figure 7.4 shows 

the system later in the discharge cycle with some ICMUs in bypass. As can be seen, some 

LEDs are currently in bypass and amber. One LED is red since that bypass has reached the 

maximum shunt current and can no longer keep the cell at the desired cut-off voltage. At 

this point, the BPMU will communicate to the charger that it needs to reduce its charging 

current by 2A.  
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Figure 7.4: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As 

pictured here, 4 cells are bypassing current since they have reached a voltage of at least 

3.8V. 

This process continues until all cells have reached the same charge cut-off voltage. 

Figure 7.5 shows the battery pack late in the charging cycle. As can be seen, all but one 

cell is bypassing current except the ICMU/BPMU hybrid. This is because the 

ICMU/BPMU hybrid powers the isolated I2C bus for all of the other ICMU cells. This is 

in addition to the additional processing it must perform than the other ICMU cells. The last 

figure of interest, Figure 7.6, shows the battery pack moments before it discontinues the 

charging process as the ICMU/BPMU hybrid gets to the desired charge cut-off voltage.  
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Figure 7.5: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As 

pictured here, all cells are in bypass with the exception of the ICMU/BPMU Hybrid. 

 

Figure 7.6: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As 

pictured here, all cells are in bypass. Shortly after this picture was taken, the BPMU 

commanded the Charger to discontinue the charging process. 

The data collected from the charging cycle is shown in Figure 7.7. Pictured in the 

figure are each of the individual cells’ voltage, the charging current, and each cell’s bypass 
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current as measured by each cells’ ICMU board.  During the initial phase of the charge 

cycle, a wide range of cell voltages was present after the discharge. However, as the 

charging commenced, the cell voltages converged when they each reached the nominal 

voltage plateau of 3.3V. However, as the cells neared their full charge capacity, the cell 

voltages began to slightly diverge.  However, the BPMU and ICMU circuitry mitigated 

damaging cell conditions by cooperating to ensure that no cells reached an overvoltage 

state.   

As can be seen in the bypass current measurement plots, once a cell reached 3.8V, 

its ICMU activated the bypass circuitry for that given cell.  The bypass circuitry continued 

to bypass the necessary amount of current in order to maintain the cell’s voltage at 3.8V if 

possible. However, once the maximum amount of current was bypassed, the cell continued 

to charge. This increased the highest charged cell’s voltage to the maximum voltage of 

4.2V. At this point, the BPMU told the charger to decrease its charging current to 1.8A. At 

this charging current, the ICMUs individually control their cell’s charging current by 

controlling the bypass circuitry. Once all cells reached their full bypass current, the BPMU 

requested the charger to end the charging process.  

In summary, the method of modifying charging current during balancing allows 

cells to balance in fewer cycles. In fact, the manually-controlled experiment from Section 

7.1 used this method and demonstrated the battery pack’s cell voltages converging within 

a single cycle. The automated implementation of this method also demonstrated similar 

results. It can be seen that this balancing cycle resembles the simulated balancing cycle of 

Figure 4.15. Following the balancing cycle of Figure 7.7, the cells in the pack became 

balanced similar to those shown in the simulations of Figure 4.14.  
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7.3 Chapter Summary 

This chapter provided results from a quick manually-controlled experiment, to 

demonstrate the benefit of providing an interface to the charger from the BMS. This allows 

the cost-effective method of resistive bypassing to be implemented at a faster rate as 

opposed to over a period of several charge/discharge cycles.  Also discussed in this chapter 

were the results from the actual implementation of the proposed BMS with the charger 

interface. This implementation automates the same concept performed in the manually-

controlled experiment. The results obtained were in-line with the methods outlined in the 

performed simulations. The results demonstrated the ability to charge and balance a 

relatively unbalanced pack in less cycles than using an independent charger and 

independent BMS with bypasses alone.  



 

114 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 7.7: Charge cycle with integrated charger and BMS for a 10 cell series-connected 

battery pack. 
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CHAPTER VIII  

CONCLUSIONS  

 

 

In this thesis, and investigation into battery management systems and monitoring 

systems was performed. The investigation looked at the available methods of balancing 

cells within a battery pack and identified a cost-effective method, namely, the lossy passive 

bypass. It was proposed, to improve this method, to integrate the BMS with the charging 

device. Next, a summary of the process followed to simulate and test this method is 

provided along with the results.  

Before being able to test the proposed method, a first-principles cell model was 

obtained. This was done by following a procedure that allowed the required cell dynamics 

to be observed.  Following this procedure, the collected data was analyzed and additional 

data sets were made from additional calculations. A combination of the collected data set 

and new calculations data set were used to obtain the cell model’s unknown parameters.  

This was done by performing batch least squares on the data sets.  

Next, using this cell model and the parameters obtained, battery pack simulations 

were performed. These simulations were performed to understand how cells in a series-

connected battery pack behave under various configurations. The main battery pack 

configurations tested were a: 1) battery pack with no cell balancing, 2) battery pack with 
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resistive bypasses and a BMS, and 3) a battery pack with resistive bypasses, BMS, and 

integrated charger.  

The battery packs with no balancing had cells where their voltages diverged as the 

cells went through several charge and discharge cycles. In a practical application, the cells 

in this battery pack would get damaged by straying from their recommended manufacturing 

voltage operating range.   

The battery pack with balancing circuitry on each cell had better results in terms of 

maintaining the desired voltage operating range. The cell voltages in this configuration 

converged with one another as the pack was cycled. Depending on how poorly balanced 

each cell was with respect to the others, the initial charge and discharge cycles could also 

force the cells to work outside the desired operating voltage range. However, as the charge 

and discharge cycles continued, the cells eventually became balanced.  

The last configuration simulated, Configuration 3, had the best results in terms of 

the number of cycles it took to balance the battery pack. It allowed the cells to be balanced 

in a single cycle which prevented the cells from going outside the desired voltage range in 

the subsequent charge cycles. In order to demonstrate a physical implementation of this 

concept, hardware and software was developed. 

The actual battery pack used for the demonstration was comprised of ten 60Ah 

LiFePO4 cells connected in series.  Circuit boards with a microcontroller and additional 

supporting electronics were designed to directly connect to each cell individually. Using 

the microcontroller and supporting electronics, code was written to monitor the cell’s 

voltage, current, and temperature. In addition, the circuit could control bypass current 
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around the cell up to a maximum of 2A. Furthermore, serial communication circuitry 

allowed each cell to communicate information as well as receive commands from a single 

master device. This master device processed information from each cell and performed 

necessary actions to protect the battery pack. During a discharge cycle, the master provided 

visual feedback to a user if one or more cells reached a low SoC. During a charge cycle, 

the master interfaced to an integrated charger. The interface between the two devices 

allowed the master to change the charger’s charging current in response to the battery 

pack’s condition.  

Lastly, results were provided from a manual experiment to demonstrate the 

balancing of the battery pack with the ability to change the charging current as necessary. 

In addition, data was collected from a discharge and charge cycle using the designed 

software and hardware that automated the concepts demonstrated in the manual 

experiment. It was demonstrated that an integrated BMS and charger could balance a 

battery pack in as little as a one cycle, thus providing a significant improvement over a 

non-integrated BMS-charter combination. 
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APPENDIX A 

MATLAB CODE 

 

 The following are MATLAB Simulations for various battery pack configurations. 

A.1  3-Cells Bypasses Vs 3-Cells w/o Bypasses 

%% Charge/Discharge with No Bypass 

  

clc;  

clear all;  

close all; 

  

initialCharge = 65;        % Initial Charge in AmpHours 

Ro = -1.09287007554604e-05; 

C = 1222821.68974733; 

a1 = 15; 

a2 = -10.14; 

Cd = 25052.2307692307; 

Rd = 0.00243491290503841; 

tau = 61; 

  

ConstV = 0;  

current=0;  

chargingTimeHr=4000; %hours 

chargingTimeSec = chargingTimeHr*3600;  

dischargeCnt=0;  

turnOnLoad = 0;  

  

Tsamp = 1; %one sec 

x=[ 3.14011797411029       3.14011797411029*0.99         

3.14011797411029*1.01;  

    3.82610318626407e-07   3.82610318626407e-07*1.01     

3.82610318626407e-07*0.99;  

    1.53543639979267       1.53543639979267*0.99         

1.53543639979267*0.99; 

   -1.08581425643197      -1.08581425643197*1.01        -

1.08581425643197*1.01; 

    3.76948681201294e-08   3.76948681201294e-08*0.99     

3.76948681201294e-08*1.01]; 
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%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) 

ones(1,3600*3)*20 zeros(1,1800)];  

  

qs = zeros(chargingTimeSec,3); 

qd = zeros(chargingTimeSec,3); 

v = zeros(chargingTimeSec,3); 

I = zeros(chargingTimeSec,1); 

  

qs(1,1) = initialCharge*3600*1.02; %Coloumb * Amps*Sec 

qd(1,1) = 0; 

qs(1,2) = initialCharge*3600; %Coloumb * Amps*Sec 

qd(1,2) = 0; 

qs(1,3) = initialCharge*3600*0.98; %Coloumb * Amps*Sec 

qd(1,3) = 0; 

  

I(1)=0;  

v(1,1) =  x(1,1) + x(2,1)*qs(1,1) + x(3,1)*qd(1,1) + 

x(4,1)*exp(a2*qs(1,1)/240000)  + x(5,1)*exp(a1*qs(1,1)/240000) + 

I(1)*Ro;  

v(1,2) =  x(1,2) + x(2,2)*qs(1,2) + x(3,2)*qd(1,2) + 

x(4,2)*exp(a2*qs(1,2)/240000)  + x(5,2)*exp(a1*qs(1,2)/240000) + 

I(1)*Ro;  

v(1,3) =  x(1,3) + x(2,3)*qs(1,3) + x(3,3)*qd(1,3) + 

x(4,3)*exp(a2*qs(1,3)/240000)  + x(5,3)*exp(a1*qs(1,3)/240000) + 

I(1)*Ro;  

  

  

  

for n = 1:1:chargingTimeSec  

    for k = 1:3 

        if (((v(n,1)+v(n,2)+v(n,3)) < 3.8*3) && ConstV==0) 

            current = 20; %%Const. Current 

        else  

            ConstV = 1;  

        end 

         

        if ConstV==1  

           vtot = v(n,1)+v(n,2)+v(n,3); 

           err = 3.8*3-vtot;  

           current = current + 2*err;  

           if (current <= 6) 

               current = 0; 

               turnOnLoad=1;  

               ConstV=0;  

           end 

        end 

          

        if turnOnLoad==1  

            I(n) = -60; 

            if v(n,1)+v(n,2)+v(n,3)<2.5*3 

                turnOnLoad = 0;  

                dischargeCnt=dischargeCnt+1; 

            end 

        else 
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            I(n) = current;  

        end 

         

        

        qs(n+1,k) = qs(n,k)+I(n)*Tsamp; 

        qd(n+1,k) = qd(n,k)+((I(n)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp; 

        v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) + 

x(4,k)*exp(a2*qs(n,k)/240000)  + x(5,k)*exp(a1*qs(n,k)/240000) + 

I(n)*Ro;   

    end 

end 

  

figure(3) 

hold all 

plot([0:1:chargingTimeSec]/3600,v(:,1),'r') 

plot([0:1:chargingTimeSec]/3600,v(:,2),'g') 

plot([0:1:chargingTimeSec]/3600,v(:,3),'c') 

  

xlabel('Time [Hours]') 

ylabel('Voltage') 

legend({'Cell 1' 'Cell 2' 'Cell 3'}) 

  

  

figure(4) 

plot([0:1:chargingTimeSec-1]/3600, I) 

  

xlabel('Time [Hours]') 

ylabel('Current') 

  

figure(5) 

plot([0:1:chargingTimeSec]/3600, v(:,1)+v(:,2)+v(:,3)) 

xlabel('Time [Hours]') 

ylabel('Voltage') 

  

disp('Discharge cnt is: ') 

disp(dischargeCnt) 

  

%% Charge/Discharge with Bypass 

clc;  

clear all; 

close all; 

  

  

initialCharge = 65;        % Initial Charge in AmpHours 

Ro = -1.09287007554604e-05; 

C = 1222821.68974733; 

a1 = 15; 

a2 = -10.14; 

Cd = 25052.2307692307; 

Rd = 0.00243491290503841; 

tau = 61; 

  

ConstV = 0;  

current=0;  
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chargingTimeHr = 4000; %hours 

chargingTimeSec = chargingTimeHr*3600;  

dischargeCnt=0;  

turnOnLoad = 0;  

  

Tsamp = 1; %one sec 

x=[ 3.14011797411029       3.14011797411029*0.99         

3.14011797411029*1.01;  

    3.82610318626407e-07   3.82610318626407e-07*1.01     

3.82610318626407e-07*0.99;  

    1.53543639979267       1.53543639979267*0.99         

1.53543639979267*0.99; 

   -1.08581425643197      -1.08581425643197*1.01        -

1.08581425643197*1.01; 

    3.76948681201294e-08   3.76948681201294e-08*0.99     

3.76948681201294e-08*1.01]; 

  

  

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) 

ones(1,3600*3)*20 zeros(1,1800)];  

  

qs = zeros(chargingTimeSec,3); 

qd = zeros(chargingTimeSec,3); 

v = zeros(chargingTimeSec,3); 

I = zeros(chargingTimeSec,3); 

  

qs(1,1) = initialCharge*3600*1.02; %Coloumb * Amps*Sec 

qd(1,1) = 0; 

qs(1,2) = initialCharge*3600; %Coloumb * Amps*Sec 

qd(1,2) = 0; 

qs(1,3) = initialCharge*3600*0.98; %Coloumb * Amps*Sec 

qd(1,3) = 0; 

  

  

I(1,1)=0;  

I(1,2)=0;  

I(1,3)=0;  

  

v(1,1) =  x(1,1) + x(2,1)*qs(1,1) + x(3,1)*qd(1,1) + 

x(4,1)*exp(a2*qs(1,1)/240000)  + x(5,1)*exp(a1*qs(1,1)/240000) + 

I(1)*Ro;  

v(1,2) =  x(1,2) + x(2,2)*qs(1,2) + x(3,2)*qd(1,2) + 

x(4,2)*exp(a2*qs(1,2)/240000)  + x(5,2)*exp(a1*qs(1,2)/240000) + 

I(1)*Ro;  

v(1,3) =  x(1,3) + x(2,3)*qs(1,3) + x(3,3)*qd(1,3) + 

x(4,3)*exp(a2*qs(1,3)/240000)  + x(5,3)*exp(a1*qs(1,3)/240000) + 

I(1)*Ro;  

  

  

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES  

% SYSTEM STARTS WITH CHARGING 

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS 

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH INDVIDUAL CELL 

VOLTAGE)  
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% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT VOLTAGE 

MODE 

  

for n = 1:1:chargingTimeSec  

  

    for k = 1:3   %REPEAT SIMULATION CALCUATIONS FOR EACH CELL 

(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL) 

     

        % CHARGING PROCESS: CONSTANT CURRENT 

        % THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO CONSTANT 

VOLTAGE MODE 

        if (((v(n,1)+v(n,2)+v(n,3)) < 3.8*3) && ConstV==0) 

            current = 20; % MAINTAIN CONSTANT CURRENT 

        else  

            ConstV = 1;   % START CONSTANT VOLTAGE MODE 

        end 

         

        % CHARGING PROCESS: CONSTANT VOLTAGE 

        % CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT VOLTAGE 

MODE 

        % IF SO, SWITCHES ON LOAD 

        if ConstV==1  

           vtot = v(n,1)+v(n,2)+v(n,3); 

           err = 3.8*3-vtot;  

           current = current + 2*err;  

           if (current <= 6) 

               current = 0; 

               turnOnLoad=1;  

               ConstV=0;  

           end 

        end 

          

        % LOAD ACTIVE: 60 AMP LOAD 

        % IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING PROCESS 

STOPS 

        if turnOnLoad==1  

            I(n,k) = -60; 

            if v(n,1)+v(n,2)+v(n,3)<2.5*3 

                turnOnLoad = 0;  

                dischargeCnt=dischargeCnt+1; 

            end 

        else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON 

BYPASS WHEN NECESSARY 

            % IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP CONSTANT 

CURRENT BYPASS) 

            % ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS 

            if v(n,k) > 3.8  

                I(n,k) = current-1; 

            else  

                I(n,k) = current; 

            end 

        end 

         

        % CALCULATE NEXT TIME-STEP USING CELL MODELS 
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        qs(n+1,k) = qs(n,k)+I(n,k)*Tsamp; 

        qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp; 

        v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) + 

x(4,k)*exp(a2*qs(n,k)/240000)  + x(5,k)*exp(a1*qs(n,k)/240000) + 

I(n,k)*Ro;   

    end 

end 

  

figure(5) 

hold all 

plot([0:1:chargingTimeSec]/3600,v(:,1),'r') 

plot([0:1:chargingTimeSec]/3600,v(:,2),'g') 

plot([0:1:chargingTimeSec]/3600,v(:,3),'c') 

  

xlabel('Time [Hours]') 

ylabel('Voltage') 

  

figure(6) 

plot([0:1:chargingTimeSec-1]/3600, I(:,1)) 

  

xlabel('Time [Hours]') 

ylabel('Current') 

  

disp('Discharge cnt is: ') 

disp(dischargeCnt) 
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A.2 MATLAB Simulations: 10-Cells & Integrated Charger & Battery Pack w/ 

Bypasses 

%% Charge/Discharge with Bypass 10 Cells Integrated charger 

clc;  

clear all; 

%close all; 

  

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED 

CHARGING CURRENT  

% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10) 

  

% ampHour = 

%           53.4478888888888 

%           52.4618888888889 

%           51.3797222222222 

%           51.1152222222222 

%           50.5888333333333 

%           51.4822499999999 

%           51.1220555555555 

%           50.7726944444444 

%           49.8306944444444 

%           50.1831111111111 

  

% SOC_Percent = 

%           89.0798148148147 

%           87.4364814814814 

%           85.6328703703704 

%           85.192037037037 

%           84.3147222222221 

%           85.8037499999999 

%           85.2034259259258 

%           84.6211574074073 

%           83.0511574074073 

%           83.6385185185185 

  

% Initial_Charge_SOC_Percent = 

%           10.9201851851853 

%           12.5635185185186 

%           14.3671296296296 

%            14.807962962963 

%           15.6852777777779 
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%           14.1962500000001 

%           14.7965740740742 

%           15.3788425925927 

%           16.9488425925927 

%           16.3614814814815 

           

initialCharge = 60;        % Initial Charge in AmpHours 

Ro = -1.09287007554604e-05; 

C = 1222821.68974733; 

a1 = 15; 

a2 = -10.14; 

Cd = 25052.2307692307; 

Rd = 0.00243491290503841; 

tau = Cd*Rd; 

  

ConstV = 0;  

current=0;  

chargingTimeHr = 50; %Simulation hours 

chargingTimeSec = chargingTimeHr*3600;  

dischargeCnt=0;  

turnOnLoad = 0;  

  

Tsamp = 1; %one sec 

  

x=[ 3.14011797411029;  

    3.82610318626407e-07;  

    1.53543639979267; 

   -1.08581425643197; 

    3.76948681201294e-08]; 

  

x = [x x x x x x x x x x]; 

  

  

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) ones(1,3600*3)*20 

zeros(1,1800)];  

  

qs = zeros(chargingTimeSec,10); 

qd = zeros(chargingTimeSec,10); 

v = zeros(chargingTimeSec,10); 

I = zeros(chargingTimeSec,10); 

  

  

%           10.9201851851853 

%           12.5635185185186 

%           14.3671296296296 

%            14.807962962963 



 

130 

 

%           15.6852777777779 

%           14.1962500000001 

%           14.7965740740742 

%           15.3788425925927 

%           16.9488425925927 

%           16.3614814814815 

  

qs(1,1) = initialCharge*3600*0.08; %Coloumb * Amps*Sec 

qd(1,1) = 0; 

qs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec 

qd(1,2) = 0; 

qs(1,3) = initialCharge*3600*0.144; %Coloumb * Amps*Sec 

qd(1,3) = 0; 

qs(1,4) = initialCharge*3600*0.148; %Coloumb * Amps*Sec 

qd(1,4) = 0; 

qs(1,5) = initialCharge*3600*0.157; %Coloumb * Amps*Sec 

qd(1,5) = 0; 

qs(1,6) = initialCharge*3600*0.142; %Coloumb * Amps*Sec 

qd(1,6) = 0; 

qs(1,7) = initialCharge*3600*0.148; %Coloumb * Amps*Sec 

qd(1,7) = 0; 

qs(1,8) = initialCharge*3600*0.154; %Coloumb * Amps*Sec 

qd(1,8) = 0; 

qs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec 

qd(1,9) = 0; 

qs(1,10) = initialCharge*3600*0.164; %Coloumb * Amps*Sec 

qd(1,10) = 0; 

  

I(1,1)=0;  

I(1,2)=0;  

I(1,3)=0;  

I(1,4)=0;  

I(1,5)=0;  

I(1,6)=0;  

I(1,7)=0;  

I(1,8)=0;  

I(1,9)=0;  

I(1,10)=0;  

  

  

v(1,1)  =  x(1,1)  + x(2,1) *qs(1,1)  + x(3,1)*qd(1,1)   + x(4,1) 

*exp(a2*qs(1,1)/240000)  + x(5,1) *exp(a1*qs(1,1)/240000)  + I(1)*Ro;  

v(1,2)  =  x(1,2)  + x(2,2) *qs(1,2)  + x(3,2)*qd(1,2)   + x(4,2) 

*exp(a2*qs(1,2)/240000)  + x(5,2) *exp(a1*qs(1,2)/240000)  + I(1)*Ro;  

v(1,3)  =  x(1,3)  + x(2,3) *qs(1,3)  + x(3,3)*qd(1,3)   + x(4,3) 

*exp(a2*qs(1,3)/240000)  + x(5,3) *exp(a1*qs(1,3)/240000)  + I(1)*Ro;  
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v(1,4)  =  x(1,4)  + x(2,4) *qs(1,4)  + x(3,4)*qd(1,4)   + x(4,4) 

*exp(a2*qs(1,4)/240000)  + x(5,4) *exp(a1*qs(1,4)/240000)  + I(1)*Ro;  

v(1,5)  =  x(1,5)  + x(2,5) *qs(1,5)  + x(3,5)*qd(1,5)   + x(4,5) 

*exp(a2*qs(1,5)/240000)  + x(5,5) *exp(a1*qs(1,5)/240000)  + I(1)*Ro;  

v(1,6)  =  x(1,6)  + x(2,6) *qs(1,6)  + x(3,6)*qd(1,6)   + x(4,6) 

*exp(a2*qs(1,6)/240000)  + x(5,6) *exp(a1*qs(1,6)/240000)  + I(1)*Ro;  

v(1,7)  =  x(1,7)  + x(2,7) *qs(1,7)  + x(3,7)*qd(1,7)   + x(4,7) 

*exp(a2*qs(1,7)/240000)  + x(5,7) *exp(a1*qs(1,7)/240000)  + I(1)*Ro;  

v(1,8)  =  x(1,8)  + x(2,8) *qs(1,8)  + x(3,8)*qd(1,8)   + x(4,8) 

*exp(a2*qs(1,8)/240000)  + x(5,8) *exp(a1*qs(1,8)/240000)  + I(1)*Ro;  

v(1,9)  =  x(1,9)  + x(2,9) *qs(1,9)  + x(3,9)*qd(1,9)   + x(4,9) 

*exp(a2*qs(1,9)/240000)  + x(5,9) *exp(a1*qs(1,9)/240000)  + I(1)*Ro;  

v(1,10) =  x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) + 

x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(a1*qs(1,10)/240000) + I(1)*Ro;  

  

  

hold_balancing_current = 0; 

  

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES  

% SYSTEM STARTS WITH CHARGING 

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS 

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH 

INDVIDUAL CELL VOLTAGE)  

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT 

VOLTAGE MODE 

  

bypass_current = zeros(chargingTimeSec,10); 

previous_bypass_current = zeros(10,1); 

bypass_begun = zeros(10,1); 

  

for n = 1:1:chargingTimeSec  

  

    for k = 1:10   %REPEAT SIMULATION CALCUATIONS FOR EACH CELL 

(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL) 

     

        % CHARGING PROCESS: CONSTANT CURRENT 

        % THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO 

CONSTANT VOLTAGE MODE 

        if (max(v(n,:)) <= 3.8 && ConstV==0) 

            charge_current = 12; % MAINTAIN CONSTANT CURRENT 

        else  

            ConstV = 1;   % START CONSTANT VOLTAGE MODE 

        end 

         

        % CHARGING PROCESS: CONSTANT VOLTAGE 
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        % CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT 

VOLTAGE MODE 

        % IF SO, SWITCHES ON LOAD 

        if ConstV==1  

           %vtot = 

v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10); 

           if max(v(n,:)) >= 4.2 

               if charge_current > 2 && (hold_balancing_current ~= 1) 

                    charge_current = charge_current-2; 

               else  

                    charge_current = 2.0; 

                    hold_balancing_current = 1; 

               end  

           end 

          

           if (min(v(n,:)) >= 3.79) 

               current = 0; 

               turnOnLoad=1;  

               ConstV=0;  

           end 

        end 

          

        % LOAD ACTIVE: 60 AMP LOAD 

        % IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING 

PROCESS STOPS 

        if turnOnLoad==1  

            I(n,k) = -60; 

            if 

(v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) < 

(2.5*10) 

                turnOnLoad = 0;  

                dischargeCnt=dischargeCnt+1; 

                charge_current = 12.0; 

                hold_balancing_current=0;  

                bypass_begun = zeros(10,1); 

            end 

        else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON 

BYPASS WHEN NECESSARY 

            % IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP 

CONSTANT CURRENT BYPASS) 

            % ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS 

            if v(n,k) > 3.8 && (bypass_begun(k) ~= 1)  

                bypass_begun(k) = 1;  

                error = 3.8-v(n,k); 

                kp = 100;  

                bypass_current(n,k) = bypass_current(n-1,k) - error*kp; 
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                if bypass_current(n,k) > 2 

                    bypass_current(n,k) = 2; 

                end 

                 

                I(n,k) = charge_current - bypass_current(n,k); 

                 

            elseif bypass_begun(k)==1 

                %I(n,k) = charge_current-2; 

                bypass_current(n,k) = 2;  

                I(n,k) = charge_current - bypass_current(n,k);              

            else 

                I(n,k) = charge_current; 

            end 

        end 

         

        if v(n,:) >= 3.8 

            break 

        end 

         

        % CALCULATE NEXT TIME-STEP USING CELL MODELS 

        qs(n+1,k) = qs(n,k)+I(n,k)*Tsamp; 

        qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp; 

        v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) + 

x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(a1*qs(n,k)/240000) + I(n,k)*Ro;   

    end 

end 

  

figure(4) 

subplot(3,1,1) 

hold all 

plot([0:1:chargingTimeSec]/3600,v(:,1)) 

plot([0:1:chargingTimeSec]/3600,v(:,2)) 

plot([0:1:chargingTimeSec]/3600,v(:,3)) 

plot([0:1:chargingTimeSec]/3600,v(:,4)) 

plot([0:1:chargingTimeSec]/3600,v(:,5)) 

plot([0:1:chargingTimeSec]/3600,v(:,6)) 

plot([0:1:chargingTimeSec]/3600,v(:,7)) 

plot([0:1:chargingTimeSec]/3600,v(:,8)) 

plot([0:1:chargingTimeSec]/3600,v(:,9)) 

plot([0:1:chargingTimeSec]/3600,v(:,10)) 

plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r') 

plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r') 

% legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10') 

xlabel('Time [Hours]') 

ylabel('Voltage') 
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subplot(3,1,2) 

hold all 

plot([0:1:chargingTimeSec-1]/3600, I(:,1)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,2)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,3)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,4)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,5)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,6)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,7)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,8)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,9)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,10)) 

  

xlabel('Time [Hours]') 

ylabel('Current') 

disp('Discharge cnt is: ') 

disp(dischargeCnt) 

  

subplot(3,1,3) 

hold all 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,1)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,2)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,3)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,4)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,5)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,6)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,7)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,8)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,9)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,10)) 

  

xlabel('Time [Hours]') 

ylabel('Bypass Current') 
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A.3 MATLAB Simulations: 10-Cells, Simple Charger, and with Bypasses 

%% Charge/Discharge with Bypass 10 Cells 

clc;  

clear all; 

%close all; 

  

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED 

CHARGING CURRENT  

% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10) 

  

% ampHour = 

%           53.4478888888888 

%           52.4618888888889 

%           51.3797222222222 

%           51.1152222222222 

%           50.5888333333333 

%           51.4822499999999 

%           51.1220555555555 

%           50.7726944444444 

%           49.8306944444444 

%           50.1831111111111 

  

% SOC_Percent = 

%           89.0798148148147 

%           87.4364814814814 

%           85.6328703703704 

%           85.192037037037 

%           84.3147222222221 

%           85.8037499999999 

%           85.2034259259258 

%           84.6211574074073 

%           83.0511574074073 

%           83.6385185185185 

  

% Initial_Charge_SOC_Percent = 

%           10.9201851851853 

%           12.5635185185186 

%           14.3671296296296 

%            14.807962962963 

%           15.6852777777779 

%           14.1962500000001 

%           14.7965740740742 

%           15.3788425925927 
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%           16.9488425925927 

%           16.3614814814815 

           

initialCharge = 60;        % Initial Charge in AmpHours 

Ro = -1.09287007554604e-05; 

C = 1222821.68974733; 

a1 = 15; 

a2 = -10.14; 

Cd = 25052.2307692307; 

Rd = 0.00243491290503841; 

%Cd = 7000; 

%Rd = 0.005; 

tau = Cd*Rd; 

  

ConstV = 0;  

current=0;  

chargingTimeHr = 120; %Simulation hours 

chargingTimeSec = chargingTimeHr*3600;  

dischargeCnt=0;  

turnOnLoad = 0;  

  

Tsamp = 1; %one sec 

  

x=[ 3.14011797411029;  

    3.82610318626407e-07;  

    1.53543639979267; 

   -1.08581425643197; 

    3.76948681201294e-08]; 

  

x = [x x x x x x x x x x]; 

  

  

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) ones(1,3600*3)*20 

zeros(1,1800)];  

  

qs = zeros(chargingTimeSec,10); 

qd = zeros(chargingTimeSec,10); 

v = zeros(chargingTimeSec,10); 

I = zeros(chargingTimeSec,10); 

  

  

%           10.9201851851853 

%           12.5635185185186 

%           14.3671296296296 

%            14.807962962963 

%           15.6852777777779 
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%           14.1962500000001 

%           14.7965740740742 

%           15.3788425925927 

%           16.9488425925927 

%           16.3614814814815 

  

qs(1,1) = initialCharge*3600*0.08; %Coloumb * Amps*Sec 

qd(1,1) = 0; 

qs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec 

qd(1,2) = 0; 

qs(1,3) = initialCharge*3600*0.144; %Coloumb * Amps*Sec 

qd(1,3) = 0; 

qs(1,4) = initialCharge*3600*0.148; %Coloumb * Amps*Sec 

qd(1,4) = 0; 

qs(1,5) = initialCharge*3600*0.157; %Coloumb * Amps*Sec 

qd(1,5) = 0; 

qs(1,6) = initialCharge*3600*0.142; %Coloumb * Amps*Sec 

qd(1,6) = 0; 

qs(1,7) = initialCharge*3600*0.148; %Coloumb * Amps*Sec 

qd(1,7) = 0; 

qs(1,8) = initialCharge*3600*0.154; %Coloumb * Amps*Sec 

qd(1,8) = 0; 

qs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec 

qd(1,9) = 0; 

qs(1,10) = initialCharge*3600*0.164; %Coloumb * Amps*Sec 

qd(1,10) = 0; 

  

I(1,1)=0;  

I(1,2)=0;  

I(1,3)=0;  

I(1,4)=0;  

I(1,5)=0;  

I(1,6)=0;  

I(1,7)=0;  

I(1,8)=0;  

I(1,9)=0;  

I(1,10)=0;  

  

  

v(1,1)  =  x(1,1)  + x(2,1) *qs(1,1)  + x(3,1)*qd(1,1)   + x(4,1) 

*exp(a2*qs(1,1)/240000)  + x(5,1) *exp(a1*qs(1,1)/240000)  + I(1)*Ro;  

v(1,2)  =  x(1,2)  + x(2,2) *qs(1,2)  + x(3,2)*qd(1,2)   + x(4,2) 

*exp(a2*qs(1,2)/240000)  + x(5,2) *exp(a1*qs(1,2)/240000)  + I(1)*Ro;  

v(1,3)  =  x(1,3)  + x(2,3) *qs(1,3)  + x(3,3)*qd(1,3)   + x(4,3) 

*exp(a2*qs(1,3)/240000)  + x(5,3) *exp(a1*qs(1,3)/240000)  + I(1)*Ro;  
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v(1,4)  =  x(1,4)  + x(2,4) *qs(1,4)  + x(3,4)*qd(1,4)   + x(4,4) 

*exp(a2*qs(1,4)/240000)  + x(5,4) *exp(a1*qs(1,4)/240000)  + I(1)*Ro;  

v(1,5)  =  x(1,5)  + x(2,5) *qs(1,5)  + x(3,5)*qd(1,5)   + x(4,5) 

*exp(a2*qs(1,5)/240000)  + x(5,5) *exp(a1*qs(1,5)/240000)  + I(1)*Ro;  

v(1,6)  =  x(1,6)  + x(2,6) *qs(1,6)  + x(3,6)*qd(1,6)   + x(4,6) 

*exp(a2*qs(1,6)/240000)  + x(5,6) *exp(a1*qs(1,6)/240000)  + I(1)*Ro;  

v(1,7)  =  x(1,7)  + x(2,7) *qs(1,7)  + x(3,7)*qd(1,7)   + x(4,7) 

*exp(a2*qs(1,7)/240000)  + x(5,7) *exp(a1*qs(1,7)/240000)  + I(1)*Ro;  

v(1,8)  =  x(1,8)  + x(2,8) *qs(1,8)  + x(3,8)*qd(1,8)   + x(4,8) 

*exp(a2*qs(1,8)/240000)  + x(5,8) *exp(a1*qs(1,8)/240000)  + I(1)*Ro;  

v(1,9)  =  x(1,9)  + x(2,9) *qs(1,9)  + x(3,9)*qd(1,9)   + x(4,9) 

*exp(a2*qs(1,9)/240000)  + x(5,9) *exp(a1*qs(1,9)/240000)  + I(1)*Ro;  

v(1,10) =  x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) + 

x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(a1*qs(1,10)/240000) + I(1)*Ro;  

  

  

hold_balancing_current = 0; 

  

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES  

% SYSTEM STARTS WITH CHARGING 

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS 

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH 

INDVIDUAL CELL VOLTAGE)  

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT 

VOLTAGE MODE 

  

bypass_current = zeros(chargingTimeSec,10); 

previous_bypass_current = zeros(10,1); 

bypass_begun = zeros(10,1); 

  

for n = 1:1:chargingTimeSec  

  

    for k = 1:10   %REPEAT SIMULATION CALCUATIONS FOR EACH CELL 

(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL) 

     

        % CHARGING PROCESS: CONSTANT CURRENT 

        % THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO 

CONSTANT VOLTAGE MODE 

        if (max(v(n,:)) <= 3.8 && ConstV==0) 

            charge_current = 12; % MAINTAIN CONSTANT CURRENT 

        else  

            ConstV = 1;   % START CONSTANT VOLTAGE MODE 

        end 

         

        % CHARGING PROCESS: CONSTANT VOLTAGE 
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        % CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT 

VOLTAGE MODE 

        % IF SO, SWITCHES ON LOAD 

        if ConstV==1  

           vtot = 

v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10); 

            

           if vtot >= 4.2*10 

               current = 0; 

               turnOnLoad=1;  

               ConstV=0;  

           end 

        end 

          

        % LOAD ACTIVE: 60 AMP LOAD 

        % IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING 

PROCESS STOPS 

        if turnOnLoad==1  

            I(n,k) = -60; 

            if 

(v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) < 

(2.5*10) 

                turnOnLoad = 0;  

                dischargeCnt=dischargeCnt+1; 

                charge_current = 12.0; 

                bypass_begun = zeros(10,1); 

            end 

        else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON 

BYPASS WHEN NECESSARY 

            % IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP 

CONSTANT CURRENT BYPASS) 

            % ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS 

            if v(n,k) > 3.8 && (bypass_begun(k) ~= 1)  

                bypass_begun(k) = 1;  

                error = 3.8-v(n,k); 

                kp = 100;  

                bypass_current(n,k) = bypass_current(n-1,k) - error*kp; 

                 

                if bypass_current(n,k) > 2 

                    bypass_current(n,k) = 2; 

                end 

                 

                I(n,k) = charge_current - bypass_current(n,k); 

                 

            elseif bypass_begun(k)==1 

                %I(n,k) = charge_current-2; 
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                bypass_current(n,k) = 2;  

                I(n,k) = charge_current - bypass_current(n,k);              

            else 

                I(n,k) = charge_current; 

            end 

        end 

  

         

        % CALCULATE NEXT TIME-STEP USING CELL MODELS 

        qs(n+1,k) = qs(n,k)+I(n,k)*Tsamp; 

        qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp; 

        v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) + 

x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(a1*qs(n,k)/240000) + I(n,k)*Ro;   

    end 

end 

  

figure(5) 

subplot(3,1,1) 

hold all 

plot([0:1:chargingTimeSec]/3600,v(:,1)) 

plot([0:1:chargingTimeSec]/3600,v(:,2)) 

plot([0:1:chargingTimeSec]/3600,v(:,3)) 

plot([0:1:chargingTimeSec]/3600,v(:,4)) 

plot([0:1:chargingTimeSec]/3600,v(:,5)) 

plot([0:1:chargingTimeSec]/3600,v(:,6)) 

plot([0:1:chargingTimeSec]/3600,v(:,7)) 

plot([0:1:chargingTimeSec]/3600,v(:,8)) 

plot([0:1:chargingTimeSec]/3600,v(:,9)) 

plot([0:1:chargingTimeSec]/3600,v(:,10)) 

plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r') 

plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r') 

% legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10') 

xlabel('Time [Hours]') 

ylabel('Voltage') 

  

subplot(3,1,2) 

hold all 

plot([0:1:chargingTimeSec-1]/3600, I(:,1)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,2)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,3)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,4)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,5)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,6)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,7)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,8)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,9)) 
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plot([0:1:chargingTimeSec-1]/3600, I(:,10)) 

  

xlabel('Time [Hours]') 

ylabel('Current') 

% legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10') 

disp('Discharge cnt is: ') 

disp(dischargeCnt) 

  

subplot(3,1,3) 

hold all 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,1)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,2)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,3)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,4)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,5)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,6)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,7)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,8)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,9)) 

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,10)) 

  

xlabel('Time [Hours]') 

ylabel('Bypass Current') 

% legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10') 
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A.4 MATLAB Simulations: 10-Cells, Simple Charger, and No Bypasses 

%% Charge/Discharge with No Bypass 10 Cells 

clc;  

clear all; 

%%close all; 

  

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED 

CHARGING CURRENT  

% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10) 

  

% ampHour = 

%           53.4478888888888 

%           52.4618888888889 

%           51.3797222222222 

%           51.1152222222222 

%           50.5888333333333 

%           51.4822499999999 

%           51.1220555555555 

%           50.7726944444444 

%           49.8306944444444 

%           50.1831111111111 

  

% SOC_Percent = 

%           89.0798148148147 

%           87.4364814814814 

%           85.6328703703704 

%           85.192037037037 

%           84.3147222222221 

%           85.8037499999999 

%           85.2034259259258 

%           84.6211574074073 

%           83.0511574074073 

%           83.6385185185185 

  

% Initial_Charge_SOC_Percent = 

%           10.9201851851853 

%           12.5635185185186 

%           14.3671296296296 

%            14.807962962963 

%           15.6852777777779 

%           14.1962500000001 

%           14.7965740740742 

%           15.3788425925927 
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%           16.9488425925927 

%           16.3614814814815 

           

initialCharge = 60;        % Initial Charge in AmpHours 

Ro = -1.09287007554604e-05; 

C = 1222821.68974733; 

a1 = 15; 

a2 = -10.14; 

Cd = 25052.2307692307; 

Rd = 0.00243491290503841; 

%Cd = 7000; 

%Rd = 0.005; 

tau = Cd*Rd; 

  

ConstV = 0;  

current=0;  

chargingTimeHr = 100; %Simulation hours 

chargingTimeSec = chargingTimeHr*3600;  

dischargeCnt=0;  

turnOnLoad = 0;  

  

Tsamp = 1; %one sec 

  

x=[ 3.14011797411029;  

    3.82610318626407e-07;  

    1.53543639979267; 

   -1.08581425643197; 

    3.76948681201294e-08]; 

  

x = [x x x x x x x x x x]; 

  

  

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) ones(1,3600*3)*20 

zeros(1,1800)];  

  

qs = zeros(chargingTimeSec,10); 

qd = zeros(chargingTimeSec,10); 

v = zeros(chargingTimeSec,10); 

I = zeros(chargingTimeSec,10); 

  

  

%           10.9201851851853 

%           12.5635185185186 

%           14.3671296296296 

%           14.807962962963 

%           15.6852777777779 
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%           14.1962500000001 

%           14.7965740740742 

%           15.3788425925927 

%           16.9488425925927 

%           16.3614814814815 

  

qs(1,1) = initialCharge*3600*0.08; %Coloumb * Amps*Sec 

qd(1,1) = 0; 

qs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec 

qd(1,2) = 0; 

qs(1,3) = initialCharge*3600*0.144; %Coloumb * Amps*Sec 

qd(1,3) = 0; 

qs(1,4) = initialCharge*3600*0.148; %Coloumb * Amps*Sec 

qd(1,4) = 0; 

qs(1,5) = initialCharge*3600*0.157; %Coloumb * Amps*Sec 

qd(1,5) = 0; 

qs(1,6) = initialCharge*3600*0.142; %Coloumb * Amps*Sec 

qd(1,6) = 0; 

qs(1,7) = initialCharge*3600*0.148; %Coloumb * Amps*Sec 

qd(1,7) = 0; 

qs(1,8) = initialCharge*3600*0.154; %Coloumb * Amps*Sec 

qd(1,8) = 0; 

qs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec 

qd(1,9) = 0; 

qs(1,10) = initialCharge*3600*0.164; %Coloumb * Amps*Sec 

qd(1,10) = 0; 

  

I(1,1)=0;  

I(1,2)=0;  

I(1,3)=0;  

I(1,4)=0;  

I(1,5)=0;  

I(1,6)=0;  

I(1,7)=0;  

I(1,8)=0;  

I(1,9)=0;  

I(1,10)=0;  

  

  

v(1,1)  =  x(1,1)  + x(2,1) *qs(1,1)  + x(3,1)*qd(1,1)   + x(4,1) 

*exp(a2*qs(1,1)/240000)  + x(5,1) *exp(a1*qs(1,1)/240000)  + I(1)*Ro;  

v(1,2)  =  x(1,2)  + x(2,2) *qs(1,2)  + x(3,2)*qd(1,2)   + x(4,2) 

*exp(a2*qs(1,2)/240000)  + x(5,2) *exp(a1*qs(1,2)/240000)  + I(1)*Ro;  

v(1,3)  =  x(1,3)  + x(2,3) *qs(1,3)  + x(3,3)*qd(1,3)   + x(4,3) 

*exp(a2*qs(1,3)/240000)  + x(5,3) *exp(a1*qs(1,3)/240000)  + I(1)*Ro;  
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v(1,4)  =  x(1,4)  + x(2,4) *qs(1,4)  + x(3,4)*qd(1,4)   + x(4,4) 

*exp(a2*qs(1,4)/240000)  + x(5,4) *exp(a1*qs(1,4)/240000)  + I(1)*Ro;  

v(1,5)  =  x(1,5)  + x(2,5) *qs(1,5)  + x(3,5)*qd(1,5)   + x(4,5) 

*exp(a2*qs(1,5)/240000)  + x(5,5) *exp(a1*qs(1,5)/240000)  + I(1)*Ro;  

v(1,6)  =  x(1,6)  + x(2,6) *qs(1,6)  + x(3,6)*qd(1,6)   + x(4,6) 

*exp(a2*qs(1,6)/240000)  + x(5,6) *exp(a1*qs(1,6)/240000)  + I(1)*Ro;  

v(1,7)  =  x(1,7)  + x(2,7) *qs(1,7)  + x(3,7)*qd(1,7)   + x(4,7) 

*exp(a2*qs(1,7)/240000)  + x(5,7) *exp(a1*qs(1,7)/240000)  + I(1)*Ro;  

v(1,8)  =  x(1,8)  + x(2,8) *qs(1,8)  + x(3,8)*qd(1,8)   + x(4,8) 

*exp(a2*qs(1,8)/240000)  + x(5,8) *exp(a1*qs(1,8)/240000)  + I(1)*Ro;  

v(1,9)  =  x(1,9)  + x(2,9) *qs(1,9)  + x(3,9)*qd(1,9)   + x(4,9) 

*exp(a2*qs(1,9)/240000)  + x(5,9) *exp(a1*qs(1,9)/240000)  + I(1)*Ro;  

v(1,10) =  x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) + 

x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(a1*qs(1,10)/240000) + I(1)*Ro;  

  

  

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES  

% SYSTEM STARTS WITH CHARGING 

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS 

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH 

INDVIDUAL CELL VOLTAGE)  

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT 

VOLTAGE MODE 

  

for n = 1:1:chargingTimeSec  

  

    for k = 1:10   %REPEAT SIMULATION CALCUATIONS FOR EACH CELL 

(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL) 

     

        % CHARGING PROCESS: CONSTANT CURRENT 

        % THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO 

CONSTANT VOLTAGE MODE 

        if (max(v(n,:)) <= 3.8 && ConstV==0) 

            charge_current = 12; % MAINTAIN CONSTANT CURRENT 

        else  

            ConstV = 1;   % START CONSTANT VOLTAGE MODE 

        end 

         

        % CHARGING PROCESS: CONSTANT VOLTAGE 

        % CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT 

VOLTAGE MODE 

        % IF SO, SWITCHES ON LOAD 

        if ConstV==1  

            vtot = 

v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10); 

            if vtot >= 4.2*10 



 

146 

 

               current = 0; 

               turnOnLoad=1;  

               ConstV=0;  

            end 

        end 

          

        % LOAD ACTIVE: 60 AMP LOAD 

        % IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING 

PROCESS STOPS 

        if turnOnLoad==1  

            I(n,k) = -60; 

            if 

(v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) < 

(2.5*10) 

                turnOnLoad = 0;  

                dischargeCnt=dischargeCnt+1 

                charge_current = 12;             

            end 

        else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON 

BYPASS WHEN NECESSARY 

  

            I(n,k) = charge_current; 

        end 

         

  

        % CALCULATE NEXT TIME-STEP USING CELL MODELS 

        qs(n+1,k) = qs(n,k)+I(n,k)*Tsamp; 

        qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp; 

        v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) + 

x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(a1*qs(n,k)/240000) + I(n,k)*Ro;   

    end 

end 

  

  

figure(6) 

subplot(2,1,1) 

hold all 

plot([0:1:chargingTimeSec]/3600,v(:,1)) 

plot([0:1:chargingTimeSec]/3600,v(:,2)) 

plot([0:1:chargingTimeSec]/3600,v(:,3)) 

plot([0:1:chargingTimeSec]/3600,v(:,4)) 

plot([0:1:chargingTimeSec]/3600,v(:,5)) 

plot([0:1:chargingTimeSec]/3600,v(:,6)) 

plot([0:1:chargingTimeSec]/3600,v(:,7)) 

plot([0:1:chargingTimeSec]/3600,v(:,8)) 

plot([0:1:chargingTimeSec]/3600,v(:,9)) 
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plot([0:1:chargingTimeSec]/3600,v(:,10)) 

plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r') 

plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r') 

xlabel('Time [Hours]') 

ylabel('Voltage') 

  

subplot(2,1,2) 

hold all 

plot([0:1:chargingTimeSec-1]/3600, I(:,1)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,2)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,3)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,4)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,5)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,6)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,7)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,8)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,9)) 

plot([0:1:chargingTimeSec-1]/3600, I(:,10)) 

  

xlabel('Time [Hours]') 

ylabel('Current') 

disp('Discharge cnt is: ') 

disp(dischargeCnt) 
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APPENDIX B 

ICMU CODE 

 

/***************************************************** 

This program was produced by the 

CodeWizardAVR V2.04.8 Standard 

Automatic Program Generator 

 Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l. 

http://www.hpinfotech.com 

 

Project : Battery Board Slave 

Version : .9 

Date    : 10/15/2010 

Author  :  

Company : University of Akron 

Comments:  

 

 

Chip type               : ATxmega16A4 

Program type            : Application 

AVR Core Clock frequency: 32.000000 MHz 

Memory model            : Small 

Data Stack size         : 512 

*****************************************************/ 

 

#include <io.h> 

//#include <delay.h> 

#include <math.h> 

#include <stdio.h> 

#include <avr_compiler.h> 

 

#define MAX_AMP_SEC 216000.00   

#define STOP_CHARGE_VOLT 3.8 

#define OVERDISCHARGE_VOLT 2.5 

 

//Equivalent to a voltage of 3.5V 
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#define DUTY_CYC_MAX 1330 //Limits Max Bypass Current to ~2 Amps at 3.8 

Volts 

  

//Current Integrating time in seconds 

#define TSamp_TCD1 0.0039996  

 

//Count to wait until MOSFET locks on after battVolt>3.8V mosCurrent>1.95A 

and battCurr<1A 

#define MAX_LOCK_MOS_CURRENT_CNT 700 

 

//Count to wait until Duty Cycle Shuts off after seeing current out of battery 

#define MAX_DUTY_OFF_CNT 700 

 

//Number of bytes to be sent to MASTER 

#define MAX_DATA_BYTES 10    

 

//Address for all slave boards to respond to 

#define allCallAddress 100  

 

#define READ 1 

#define WRITE 0  

 

//LED Colors  

#define GREEN 0b10 

#define RED 0b01 

#define AMBER 0b11   

 

#define LOW_SOC 70 //Picked a value then the largest ledValue 

  

#define IS_CHARGING_AT_2_MSG 0xF0 

#define IS_NOT_CHARGING_AT_2_MSG 0xFA 

 

static float battVolt;  

static float battCurr; 

static float mosCurr;  

static float temp; 

//static float prevBattCurr; 

static float AmpSec=MAX_AMP_SEC;  

 

signed long ADCtemp[4]; 

signed int ADCvalues[4]; 

char ADCsamplecount  = 0; // we're supersampling 

signed int ADCbuffer; 

char stepready = 0; 
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unsigned int voltCntrlCnt = 0; 

 

unsigned char dataInTWIC=0; 

unsigned char ledVal=0; 

 

signed long OFFSET_CH0_TOTAL=0; 

signed long OFFSET_CH1_TOTAL=0; 

signed long OFFSET_CH2_TOTAL=0; 

 

signed int OFFSET_CH0_DIFF=0; 

signed int OFFSET_CH1_DIFF=0; 

signed int OFFSET_CH2_DIFF=0; 

 

//unsigned char lockMosCurr = 0;  

unsigned int dutyOffCnt=0;  

 

unsigned char battData[MAX_DATA_BYTES];  

   

unsigned char dataByteCnt=0; 

 

unsigned char slaveAddress = 0x00;  

signed int offset=0; 

 

unsigned char ledColor=GREEN;  

unsigned char chargingAtTwoAmps=0;  

 

//ADC OFFSET for each of the 10 boards OFFSET=M*RAWADC+B calibrated 

manually  

float const ADC_OFFSET_M[10]={-0.011107,-0.013504,-0.015376,-0.017009,-

0.015646,-0.013056,-0.015416,-0.015210,-0.013949,-0.012555}; 

float const ADC_OFFSET_B[10]={ 6.366141, 6.417454, 6.556141, 7.638119, 

6.499410, 5.792097, 5.235612, 3.654257, 5.374430, 5.624966}; 

  

 

signed int bound(signed int value, signed int min, signed int max){ 

    if(value > max) 

        return max; 

    if(value < min) 

        return min; 

    return value; 

} 
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#pragma warn- 

char nvm_cmd_read( char *nvm_cmd_addr, char index ){ 

    #asm 

        LDD  R30,Y+0    ; Z = index 

        LDI  R31,0 

         LDD  R26,Y+1    ; X = &NVM.CMD 

         LDD  R27,Y+2 

        LDI  R25,2      ; NVM.CMD = NVM_CMD_READ_CALIB_ROW_gc 

        ST   X,R25 

        LPM             ; read the data in R0 

                         ; Clean up NVM Command register. */ 

        LDI  R25,0      ; NVM.CMD = NVM_CMD_NO_OPERATION_gc 

        ST   X,R25 

        MOV  R30,R0     ; return result 

    #endasm 

} 
#pragma warn+ 

 

char SP_ReadCalibrationByte( char index ){ 

    return nvm_cmd_read(&NVM.CMD,index); 

} 
 

 

// System Clocks initialization 

void system_clocks_init(void) 

{ 
unsigned char n,s; 

 

// Optimize for speed 

#pragma optsize-  

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 

#asm("cli") 

 

// Internal 32 kHz RC oscillator initialization 

// Enable the internal 32 kHz RC oscillator 

OSC.CTRL|=OSC_RC32KEN_bm; 

// Wait for the internal 32 kHz RC oscillator to stabilize 

while ((OSC.STATUS & OSC_RC32KRDY_bm)==0); 

 

// Internal 32 MHz RC oscillator initialization 

// Enable the internal 32 MHz RC oscillator 

OSC.CTRL|=OSC_RC32MEN_bm; 
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// System Clock prescaler A division factor: 1 

// System Clock prescalers B & C division factors: B:1, C:1 

// ClkPer4: 32000.000 kHz 

// ClkPer2: 32000.000 kHz 

// ClkPer:  32000.000 kHz 

// ClkCPU:  32000.000 kHz 

n=(CLK.PSCTRL & (~(CLK_PSADIV_gm | CLK_PSBCDIV1_bm | 

CLK_PSBCDIV0_bm))) | 

    CLK_PSADIV_1_gc | CLK_PSBCDIV_1_1_gc; 

CCP=CCP_IOREG_gc; 

CLK.PSCTRL=n; 

 

// Internal 32 MHz RC osc. calibration reference clock source: 32.768 kHz Internal 

Osc. 

OSC.DFLLCTRL&= ~(OSC_RC32MCREF_bm | OSC_RC2MCREF_bm); 

// Enable the autocalibration of the internal 32 MHz RC oscillator 

DFLLRC32M.CTRL|=DFLL_ENABLE_bm; 

 

// Wait for the internal 32 MHz RC oscillator to stabilize 

while ((OSC.STATUS & OSC_RC32MRDY_bm)==0); 

 

// Select the system clock source: 32 MHz Internal RC Osc. 

n=(CLK.CTRL & (~CLK_SCLKSEL_gm)) | CLK_SCLKSEL_RC32M_gc; 

CCP=CCP_IOREG_gc; 

CLK.CTRL=n; 

 

// Disable the unused oscillators: 2 MHz, external clock/crystal oscillator, PLL 

OSC.CTRL&= ~(OSC_RC2MEN_bm | OSC_XOSCEN_bm | OSC_PLLEN_bm); 

 

// Peripheral Clock output: Disabled 

PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT & 

(~PORTCFG_CLKOUT_gm)) | PORTCFG_CLKOUT_OFF_gc; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

 

} 
 

// Watchdog Timer initialization 

void watchdog_init(void) 

{ 
unsigned char s,n; 
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// Optimize for speed 

#pragma optsize-  

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 

#asm("cli") 

 

// Watchdog Timer: Off 

n=(WDT.CTRL & (~WDT_ENABLE_bm)) | WDT_CEN_bm; 

CCP=CCP_IOREG_gc; 

WDT.CTRL=n; 

// Watchdog window mode: Off 

n=(WDT.WINCTRL & (~WDT_WEN_bm)) | WDT_WCEN_bm; 

CCP=CCP_IOREG_gc; 

WDT.WINCTRL=n; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

 

} 
 

// Event System initialization 

void event_system_init(void) 

{ 
// Event System Channel 0 source: Port D, Pin0 

EVSYS.CH0MUX=EVSYS_CHMUX_PORTD_PIN0_gc; 

// Event System Channel 1 source: Port D, Pin0 

EVSYS.CH1MUX=EVSYS_CHMUX_OFF_gc; 

 

// Event System Channel 2 source: None 

EVSYS.CH2MUX=EVSYS_CHMUX_PORTD_PIN1_gc; 

// Event System Channel 3 source: None 

EVSYS.CH3MUX=EVSYS_CHMUX_OFF_gc; 

// Event System Channel 4 source: None 

EVSYS.CH4MUX=EVSYS_CHMUX_OFF_gc; 

// Event System Channel 5 source: None 

EVSYS.CH5MUX=EVSYS_CHMUX_OFF_gc; 

// Event System Channel 6 source: None 

EVSYS.CH6MUX=EVSYS_CHMUX_OFF_gc; 

// Event System Channel 7 source: None 

EVSYS.CH7MUX=EVSYS_CHMUX_OFF_gc; 

 

// Event System Channel 0 Digital Filter Coefficient: 4 Samples 

EVSYS.CH0CTRL=0b00001011; 
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// Event System Channel 1 Digital Filter Coefficient: 1 Sample 

EVSYS.CH1CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 2 Digital Filter Coefficient: 1 Sample 

EVSYS.CH2CTRL=0b00001011; 

// Event System Channel 3 Digital Filter Coefficient: 1 Sample 

EVSYS.CH3CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 4 Digital Filter Coefficient: 1 Sample 

EVSYS.CH4CTRL=(EVSYS.CH4CTRL & (~(EVSYS_QDIRM_gm | 

EVSYS_QDIEN_bm | EVSYS_QDEN_bm | EVSYS_DIGFILT_gm))) | 

    EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 5 Digital Filter Coefficient: 1 Sample 

EVSYS.CH5CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 6 Digital Filter Coefficient: 1 Sample 

EVSYS.CH6CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 7 Digital Filter Coefficient: 1 Sample 

EVSYS.CH7CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

 

// Event System Channel 0 output: Disabled 

// Note: the correct direction for the Event System Channel 0 output 

// is configured in the ports_init function 

PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT & 

(~PORTCFG_EVOUT_gm)) | PORTCFG_EVOUT_OFF_gc; 

 

} 
 

// Ports initialization 

void ports_init(void) 

{ 
// PORTA initialization 

// OUT register 

PORTA.OUT=0x00; 

 

// Bit0: Input 

// Bit1: Input 

// Bit2: Input 

// Bit3: Input 

// Bit4: Input 

// Bit5: Input 

// Bit6: Input 

// Bit7: Input 

PORTA.DIR=0x00; 

 

// Bit0 Output/Pull configuration: Totempole/No 

// Bit0 Input/Sense configuration: Input buffer disabled 
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// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTA.PIN0CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit1 Output/Pull configuration: Totempole/No 

// Bit1 Input/Sense configuration: Input buffer disabled 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTA.PIN1CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit2 Output/Pull configuration: Totempole/No 

// Bit2 Input/Sense configuration: Input buffer disabled 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTA.PIN2CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit3 Output/Pull configuration: Totempole/No 

// Bit3 Input/Sense configuration: Input buffer disabled 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTA.PIN3CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit4 Output/Pull configuration: Totempole/No 

// Bit4 Input/Sense configuration: Input buffer disabled 

// Bit4 inverted: Off 

// Bit4 slew rate limitation: Off 

PORTA.PIN4CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit5 Output/Pull configuration: Totempole/No 

// Bit5 Input/Sense configuration: Input buffer disabled 

// Bit5 inverted: Off 

// Bit5 slew rate limitation: Off 

PORTA.PIN5CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit6 Output/Pull configuration: Totempole/No 

// Bit6 Input/Sense configuration: Input buffer disabled 

// Bit6 inverted: Off 

// Bit6 slew rate limitation: Off 

PORTA.PIN6CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit7 Output/Pull configuration: Totempole/No 

// Bit7 Input/Sense configuration: Input buffer disabled 

// Bit7 inverted: Off 

// Bit7 slew rate limitation: Off 
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PORTA.PIN7CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

PORTA.INTCTRL=(PORTA.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

// Bit4 pin change interrupt 0: Off 

// Bit5 pin change interrupt 0: Off 

// Bit6 pin change interrupt 0: Off 

// Bit7 pin change interrupt 0: Off 

PORTA.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

// Bit4 pin change interrupt 1: Off 

// Bit5 pin change interrupt 1: Off 

// Bit6 pin change interrupt 1: Off 

// Bit7 pin change interrupt 1: Off 

PORTA.INT1MASK=0x00; 

 

// PORTB initialization 

// OUT register 

PORTB.OUT=0x00; 

// Bit0: Input 

// Bit1: Input 

// Bit2: Input 

// Bit3: Input 

PORTB.DIR=0x00; 

// Bit0 Output/Pull configuration: Totempole/No 

// Bit0 Input/Sense configuration: Input buffer disabled 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTB.PIN0CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit1 Output/Pull configuration: Totempole/No 

// Bit1 Input/Sense configuration: Input buffer disabled 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 
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PORTB.PIN1CTRL=PORT_OPC_TOTEM_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit2 Output/Pull configuration: Totempole/No 

// Bit2 Input/Sense configuration: Input buffer disabled 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTB.PIN2CTRL=PORT_OPC_PULLUP_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Bit3 Output/Pull configuration: Totempole/No 

// Bit3 Input/Sense configuration: Input buffer disabled 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTB.PIN3CTRL=PORT_OPC_PULLUP_gc | 

PORT_ISC_INPUT_DISABLE_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

PORTB.INTCTRL=(PORTB.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

PORTB.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

PORTB.INT1MASK=0x00; 

 

// PORTC initialization 

// OUT register 

PORTC.OUT=0x00; 

 

// Bit0: Output 

// Bit1: Output 

// Bit2: Input 

// Bit3: Input 

// Bit4: Output 

// Bit5: Input 

// Bit6: Input 

// Bit7: Output 

PORTC.DIR=0x93; 

 



 

158 

 

// Bit0 Output/Pull configuration: WIRED-AND (on input) 

// Bit0 Input/Sense configuration: Sense both edges 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTC.PIN0CTRL=PORT_OPC_WIREDAND_gc | 

PORT_ISC_BOTHEDGES_gc; 

// Bit1 Output/Pull configuration: WIRED-AND (on input) 

// Bit1 Input/Sense configuration: Sense both edges 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTC.PIN1CTRL=PORT_OPC_WIREDAND_gc | 

PORT_ISC_BOTHEDGES_gc; 

// Bit2 Output/Pull configuration: Totempole/No 

// Bit2 Input/Sense configuration: Sense both edges 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTC.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit3 Output/Pull configuration: Totempole/No 

// Bit3 Input/Sense configuration: Sense both edges 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTC.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit4 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit4 Input/Sense configuration: Sense both edges 

// Bit4 inverted: Off 

// Bit4 slew rate limitation: Off 

PORTC.PIN4CTRL=PORT_OPC_PULLDOWN_gc | 

PORT_ISC_BOTHEDGES_gc; 

// Bit5 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit5 Input/Sense configuration: Sense both edges 

// Bit5 inverted: Off 

// Bit5 slew rate limitation: Off 

PORTC.PIN5CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit6 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit6 Input/Sense configuration: Sense both edges 

// Bit6 inverted: Off 

// Bit6 slew rate limitation: Off 

PORTC.PIN6CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit7 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit7 Input/Sense configuration: Sense both edges 

// Bit7 inverted: Off 

// Bit7 slew rate limitation: Off 

PORTC.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Interrupt 0 level: Disabled 
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// Interrupt 1 level: Disabled 

PORTC.INTCTRL=(PORTC.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

// Bit4 pin change interrupt 0: Off 

// Bit5 pin change interrupt 0: Off 

// Bit6 pin change interrupt 0: Off 

// Bit7 pin change interrupt 0: Off 

PORTC.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

// Bit4 pin change interrupt 1: Off 

// Bit5 pin change interrupt 1: Off 

// Bit6 pin change interrupt 1: Off 

// Bit7 pin change interrupt 1: Off 

PORTC.INT1MASK=0x00; 

 

// PORTD initialization 

// OUT register 

PORTD.OUT=0x00; 

 

// Bit0: Output 

// Bit1: Output 

// Bit2: Output 

// Bit3: Output 

// Bit4: Output 

// Bit5: Output 

// Bit6: Output 

// Bit7: Output 

PORTD.DIR=0xFF; 

 

// Bit0 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit0 Input/Sense configuration: Sense low level 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTD.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc; 

 

// Bit1 Output/Pull configuration: Totempole/Pull-up (on input) 
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// Bit1 Input/Sense configuration: Sense low level 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTD.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc; 

// Bit2 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit2 Input/Sense configuration: Sense both edges 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTD.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit3 Input/Sense configuration: Sense both edges 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTD.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit4 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit4 Input/Sense configuration: Sense both edges 

// Bit4 inverted: Off 

// Bit4 slew rate limitation: Off 

PORTD.PIN4CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit5 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit5 Input/Sense configuration: Sense both edges 

// Bit5 inverted: Off 

// Bit5 slew rate limitation: Off 

PORTD.PIN5CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit6 Output/Pull configuration: Totempole/No 

// Bit6 Input/Sense configuration: Sense both edges 

// Bit6 inverted: Off 

// Bit6 slew rate limitation: Off 

PORTD.PIN6CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit7 Output/Pull configuration: Totempole/No 

// Bit7 Input/Sense configuration: Sense both edges 

// Bit7 inverted: Off 

// Bit7 slew rate limitation: Off 

PORTD.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

 

PORTD.INTCTRL=(PORTD.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 
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// Bit4 pin change interrupt 0: Off 

// Bit5 pin change interrupt 0: Off 

// Bit6 pin change interrupt 0: Off 

// Bit7 pin change interrupt 0: Off 

 

PORTD.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

// Bit4 pin change interrupt 1: Off 

// Bit5 pin change interrupt 1: Off 

// Bit6 pin change interrupt 1: Off 

// Bit7 pin change interrupt 1: Off 

PORTD.INT1MASK=0x00; 

 

// PORTE initialization 

// OUT register 

PORTE.OUT=0x00; //Initial Output Value 

 

// Bit0: Output 

// Bit1: Output 

// Bit2: Output 

// Bit3: Output 

PORTE.DIR=0x0F; 

 

// Bit0 Output/Pull configuration: Totempole/No 

// Bit0 Input/Sense configuration: Sense both edges 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTE.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

 

// Bit1 Output/Pull configuration: Totempole/No 

// Bit1 Input/Sense configuration: Sense both edges 

// Bit1 inverted: On 

// Bit1 slew rate limitation: Off 

PORTE.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

 

// Bit2 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit2 Input/Sense configuration: Sense both edges 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTE.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

 



 

162 

 

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit3 Input/Sense configuration: Sense both edges 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTE.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

 

PORTE.INTCTRL=(PORTE.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

PORTE.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

PORTE.INT1MASK=0x00; 

 

// PORTR initialization 

// OUT register 

PORTR.OUT=0x00; 

// Bit0: Input 

// Bit1: Input 

PORTR.DIR=0x00; 

// Bit0 Output/Pull configuration: Totempole/No 

// Bit0 Input/Sense configuration: Sense both edges 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTR.PIN0CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit1 Output/Pull configuration: Totempole/No 

// Bit1 Input/Sense configuration: Sense both edges 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTR.PIN1CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

PORTR.INTCTRL=(PORTR.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 
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// Bit1 pin change interrupt 0: Off 

PORTR.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

PORTR.INT1MASK=0x00; 

} 
 

/* 

// Virtual Ports initialization 

void vports_init(void) 

{ 

// PORTA mapped to VPORT0 

// PORTB mapped to VPORT1 

PORTCFG.VPCTRLA=PORTCFG_VP1MAP_PORTB_gc | 

PORTCFG_VP0MAP_PORTA_gc; 

// PORTC mapped to VPORT2 

// PORTD mapped to VPORT3 

PORTCFG.VPCTRLB=PORTCFG_VP3MAP_PORTD_gc | 

PORTCFG_VP2MAP_PORTC_gc; 

} 

*/ 

 

// Disable a Timer/Counter type 0 

void tc0_disable(TC0_t *ptc) 

{ 
// Timer/Counter off 

ptc->CTRLA=(ptc->CTRLA & (~TC0_CLKSEL_gm)) | TC_CLKSEL_OFF_gc; 

// Issue a reset command 

ptc->CTRLFSET=TC_CMD_RESET_gc; 

}   
 

// Disable a Timer/Counter type 1 

void tc1_disable(TC1_t *ptc) 

{ 
// Timer/Counter off 

ptc->CTRLA=(ptc->CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_OFF_gc; 

// Issue a reset command 

ptc->CTRLFSET=TC_CMD_RESET_gc; 

} 
 

 

 

// Timer/counter TCC1 Overflow/Underflow interrupt service routine 

interrupt [TCC0_OVF_vect] void tcc0_overflow_isr(void) 
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{ 
// write your code here 

 

} 
 

 

// Timer/Counter TCD0 initialization 

void tcd0_init(void) 

{ 
unsigned char s; 

 

// Note: the correct PORTD direction for the Compare Channels outputs 

// is configured in the ports_init function 

 

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 

#asm("cli") 

 

// Disable and reset the timer/counter just to be sure 

tc0_disable(&TCD0); 

// Clock source: Peripheral Clock/1 

TCD0.CTRLA=0; 

TCD0.CTRLB=0b00000000; 

TCD0.CTRLC=0b00000000; 

TCD0.CTRLD=0b01101010; 

TCD0.CTRLE=0b00000000; 

 

// Overflow interrupt: Medium Level 

// Error interrupt: Disabled 

TCD0.INTCTRLA=(TCD0.INTCTRLA & (~(TC0_ERRINTLVL_gm | 

TC0_OVFINTLVL_gm))) | 

    TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc; 

 

 

// Compare/Capture channel A interrupt: Disabled 

// Compare/Capture channel B interrupt: Disabled 

// Compare/Capture channel C interrupt: Disabled 

// Compare/Capture channel D interrupt: Disabled 

TCD0.INTCTRLB=(TCD0.INTCTRLB & (~(TC0_CCDINTLVL_gm | 

TC0_CCCINTLVL_gm | TC0_CCBINTLVL_gm | TC0_CCAINTLVL_gm))) | 

    TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc | 

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc; 
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// High resolution extension: Off 

HIRESD.CTRL&= ~HIRES_HREN0_bm; 

 

// Clear the interrupt flags 

TCD0.INTFLAGS=TCD0.INTFLAGS; 

// Set counter register 

TCD0.CNT=0x0000; 

// Set period register 

TCD0.PER=20719; 

// Set channel A Compare/Capture register 

TCD0.CCA=0x0000; 

// Set channel B Compare/Capture register 

TCD0.CCB=0x0000; 

// Set channel C Compare/Capture register 

TCD0.CCC=0x0000; 

// Set channel D Compare/Capture register 

TCD0.CCD=0x0000; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

 

TCD0.CTRLA=0b00000001; 

} 
 

 

// Timer/counter TCD0 Overflow/Underflow interrupt service routine 

interrupt [TCD0_OVF_vect] void tcd0_overflow_isr(void) 

{         
 

} 
 

 

 

// Timer/Counter TCD1 initialization 

void tcd1_init(void) 

{ 
unsigned char s; 

 

// Note: the correct PORTD direction for the Compare Channels outputs 

// is configured in the ports_init function 

 

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 
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#asm("cli") 

 

// Disable and reset the timer/counter just to be sure 

tc1_disable(&TCD1); 

// Clock source: Peripheral Clock/2 

TCD1.CTRLA=(TCD1.CTRLA & (~TC1_CLKSEL_gm)) | 

TC_CLKSEL_DIV2_gc; 

 

// Mode: Normal Operation, Overflow Int./Event on TOP 

// Compare/Capture on channel A: Off 

// Compare/Capture on channel B: Off 

TCD1.CTRLB=(TCD1.CTRLB & (~(TC1_CCAEN_bm | TC1_CCBEN_bm | 

TC1_WGMODE_gm))) | 

    TC_WGMODE_NORMAL_gc; 

 

// Capture event source: None 

// Capture event action: None 

TCD1.CTRLD=(TCD1.CTRLD & (~(TC1_EVACT_gm | TC1_EVSEL_gm))) | 

    TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc; 

 

// Overflow interrupt: Low Level 

// Error interrupt: Enabled 

TCD1.INTCTRLA=(TCD1.INTCTRLA & (~(TC1_ERRINTLVL_gm ))) | 

    TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_LO_gc | 

TC1_OVFINTLVL_gm; 

 

// Compare/Capture channel A interrupt: Disabled 

// Compare/Capture channel B interrupt: Disabled 

TCD1.INTCTRLB=(TCD1.INTCTRLB & (~(TC1_CCBINTLVL_gm | 

TC1_CCAINTLVL_gm))) | 

    TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc; 

 

// High resolution extension: Off 

HIRESD.CTRL&= ~HIRES_HREN1_bm; 

 

// Clear the interrupt flags 

TCD1.INTFLAGS=TCD1.INTFLAGS; 

// Set counter register 

TCD1.CNT=0x0000; 

// Set period register 

TCD1.PER=64000; 

// Set channel A Compare/Capture register 

TCD1.CCA=0x0000; 

// Set channel B Compare/Capture register 
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TCD1.CCB=0x0000; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

} 
 

// Timer/counter TCD1 Overflow/Underflow interrupt service routine 

interrupt [TCD1_OVF_vect] void tcd1_overflow_isr(void){ 

    stepready = 1; 

 

    if (battCurr>0.1 || battCurr<-0.35){ 

        AmpSec = AmpSec + battCurr*TSamp_TCD1;    

    }else if( battCurr>-0.35 && battCurr<0.0){ 

        AmpSec = AmpSec + (battCurr+.05)*TSamp_TCD1;        

    } 
 

    if(AmpSec<=0) AmpSec=0; 

    else if(AmpSec>MAX_AMP_SEC) AmpSec=MAX_AMP_SEC; 

 

} 
 

 

 

 

// Timer/Counter TCE0 initialization 

void tcc1_init(void) 

{ 
unsigned char s; 

 

// Note: the correct PORTC direction for the Compare Channels outputs 

// is configured in the ports_init function 

 

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 

#asm("cli") 

 

// Disable and reset the timer/counter just to be sure 

tc1_disable(&TCC1); 

// Clock source: Peripheral Clock/1 

TCC1.CTRLA=(TCC1.CTRLA & (~TC1_CLKSEL_gm)) | 

TC_CLKSEL_DIV1_gc; 

 

// Mode: Dual Slope PWM Gen., Overflow Int./Event on TOP & BOTTOM 
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// Compare/Capture on channel A: Off 

// Compare/Capture on channel B: On 

// Compare/Capture on channel C: Off 

// Compare/Capture on channel D: Off 

//TCC0.CTRLB=(TCC0.CTRLB & (~(TC0_CCAEN_bm | TC0_CCBEN_bm | 

TC0_CCCEN_bm | TC0_CCDEN_bm | TC0_WGMODE_gm))) | 

//    TC0_CCBEN_bm | TC0_CCAEN_bm| 

//    TC_WGMODE_DS_TB_gc; 

 

TCC1.CTRLB = 0b00000011; //W 

TCC1.CTRLB = TCC1.CTRLB | 0b00010000; 

 

  

// Capture event source: None 

// Capture event action: None 

TCC1.CTRLD=(TCC0.CTRLD & (~(TC0_EVACT_gm | TC0_EVSEL_gm))) | 

TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc; 

 

// Overflow interrupt: Medium Level 

// Error interrupt: Disabled 

// TCC0.INTCTRLA=(TCC0.INTCTRLA & (~(TC0_ERRINTLVL_gm | 

TC0_OVFINTLVL_gm))) | 

//    TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc; 

 

// Compare/Capture channel A interrupt: Disabled 

// Compare/Capture channel B interrupt: Disabled 

 

//TCC0.INTCTRLB=(TCC0.INTCTRLB & (~(TC0_CCDINTLVL_gm | 

TC0_CCCINTLVL_gm | TC0_CCBINTLVL_gm | TC0_CCAINTLVL_gm))) | 

//    TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc | 

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc; 

 

// High resolution extension: Off 

HIRESC.CTRL&= ~HIRES_HREN0_bm; 

 

// Clear the interrupt flags 

TCC1.INTFLAGS=0; 

 

// Set counter value 

TCC1.CNT=0x0000; 

 

// Set period register 

TCC1.PER=1600-1; 
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// Set channel A Compare/Capture register 

TCC1.CCA=0; 

// Set channel B Compare/Capture register 

TCC1.CCB=0x0000; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

} 
 

// Disable an USART 

void usart_disable(USART_t *pu) 

{ 
// Rx and Tx are off 

pu->CTRLB=0; 

// Ensure that all interrupts generated by the USART are off 

pu->CTRLA=0; 

} 
 

void adc_init(void){ 

 

    ADCA.CALL = SP_ReadCalibrationByte( PROD_SIGNATURES_START + 

ADCACAL0_offset ); 

    ADCA.CALH = SP_ReadCalibrationByte( PROD_SIGNATURES_START + 

ADCACAL1_offset ); 

 

     

    ADCA.CTRLA = 0b00111101; // set up with a four channel sweep 

    ADCA.CTRLB = 0b00010000; // signed 

    ADCA.REFCTRL =0b00110000;     //portb reference, temp and bandgap 

disabled 

    ADCA.EVCTRL = 0b11000000;  // no events 

    ADCA.PRESCALER = 0b00000101; // div 128, 250kHz 

    //ADCA.PRESCALER = 0b00000110; // div 256, 125kHz    

    //ADCA.PRESCALER = 0b00000011; // div 32 

    //ADCA.PRESCALER = 0b00000111; // div 512, 62.5kHz 

     

    ADCA.CH0.CTRL =0b10000011; // start channel 0, differential w/gain 1 

    ADCA.CH0.MUXCTRL = 0b00000011; // Differential POS=A0 and NEG=A7, 

Battery Voltage 

    ADCA.CH0.INTCTRL = 0b00000000; // no interrupt on channel 0; 

 

    //ADCA.CH1.CTRL =0b10011011; // start channel 1, differential w/gain 64 

    //ADCA.CH1.CTRL =0b10010011; // start channel 1, differential w/gain 16 

    ADCA.CH1.CTRL =0b10001111; // start channel 1, differential w/gain 8 
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    ADCA.CH1.MUXCTRL = 0b00010010;  // Differential POS=A2 and NEG=A6, 

Battery Current    

    //ADCA.CH1.MUXCTRL = 0b00110010;  // Differential POS=A6 and 

NEG=A6, Battery Current 

    ADCA.CH1.INTCTRL = 0b00000000; // no interrupt on channel 1; 

 

    //ADCA.CH2.CTRL = 0b10011011; // start channel 2, differential w/gain 64   

    ADCA.CH2.CTRL = 0b10000011;   // start channel 2, differential w/gain 1   

    ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and NEG=A5, 

MOSFET Current      

    //ADCA.CH2.CTRL = 0b10000011;                                  

    //ADCA.CH2.MUXCTRL = 0b00101001; // Differential POS=A4 and 

NEG=A5, MOSFET Current      

    ADCA.CH2.INTCTRL = 0b00000000; // no interrupt on channel 2; 

 

    ADCA.CH3.CTRL = 0b10000001; // start channel 3, single-ended  

    ADCA.CH3.MUXCTRL = 0b00011000; // Batt temp 

    ADCA.CH3.INTCTRL = 0b00000001; // low interrupt on channel 3; 

} 
 

// ADC interrupt service routine 

interrupt [ADCA_CH3_vect] void ADCA_CH3_isr(void){ 

    char i; 

    // the ADC does not seem to bounds check properly, so I'll have to do it 

    ADCbuffer = ADCA.CH0.RES-OFFSET_CH0_DIFF;      

    ADCtemp[0] += bound(ADCbuffer, 0, 2047); 

         

    ADCbuffer = ADCA.CH1.RES-OFFSET_CH1_DIFF; 

    ADCtemp[1] += bound(ADCbuffer, -2048, 2047); 

    

    ADCbuffer = ADCA.CH2.RES-OFFSET_CH2_DIFF; 

    ADCtemp[2] += bound(ADCbuffer, -2048, 2047); 

 

    ADCbuffer = ADCA.CH3.RES; 

    ADCtemp[3] += bound(ADCbuffer, 0, 2047); 

 

    ADCsamplecount++; //16 super sample 

    if(ADCsamplecount > 16){       

        //store the values 

        ADCvalues[0] = ADCtemp[0]>>4; 

        ADCvalues[1] = ADCtemp[1]>>4; 

        ADCvalues[2] = ADCtemp[2]>>4; 

        ADCvalues[3] = ADCtemp[3]>>4;       

 



 

171 

 

        for(i = 0; i<4; i++){ 

            ADCtemp[i] = 0; 

        }   
             

        ADCsamplecount = 0;   

    }      
     

    //Initiate next samples 

    ADCA.CH0.CTRL |=0b10000000; 

    ADCA.CH1.CTRL |=0b10000000; 

    ADCA.CH2.CTRL |=0b10000000; 

    ADCA.CH3.CTRL |=0b10000000; 

} 
 

 

interrupt [TWIC_TWIS_vect] void TWIC_TWIS_isr(void){ 

        

       if ((TWIC.SLAVE.STATUS & 

TWI_SLAVE_APIF_bm)>>TWI_SLAVE_APIF_bp){           

            //if ((TWIC.SLAVE.STATUS & 

TWI_SLAVE_DIR_bm)>>TWI_SLAVE_DIR_bp){ //CASE M1 

                //MASTER READ OPERATION, SEND ACK   

                  TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB & 

~TWI_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) | 

TWI_SLAVE_CMD_RESPONSE_gc;  

                  dataByteCnt=0;             

       }else if ((TWIC.SLAVE.STATUS & 

TWI_SLAVE_DIF_bm)>>TWI_SLAVE_DIF_bp){ 

        

             if ((TWIC.SLAVE.STATUS & 

TWI_SLAVE_DIR_bm)>>TWI_SLAVE_DIR_bp){  

                  if(dataByteCnt<MAX_DATA_BYTES){      

                    TWIC.SLAVE.DATA =  battData[dataByteCnt++];  

                    TWIC.SLAVE.STATUS |= TWI_SLAVE_DIF_bm;  

                  }else{      
                    //Automatically clears DIF with command being sent 

                    TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB & 

~TWI_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) | 

TWI_SLAVE_CMD_COMPTRANS_gc | TWI_SLAVE_ACKACT_bm; 

                    PORTE.OUTCLR = 0b00001010;    

                    PORTD.OUTCLR = 0b10101010; 

                  }   

             }else{ 

                //MASTER WRITE OPERATION 
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                dataInTWIC = TWIC.SLAVE.DATA;  

                if(dataInTWIC == LOW_SOC){ 

                    ledVal=LOW_SOC;  

                }else{  
                    if(dataInTWIC>slaveAddress*6){ 

                        ledVal=7;              

                    }else{         
                        ledVal=dataInTWIC-(slaveAddress-1)*6;  

                        if(ledVal>6) ledVal=7;   

                    }  

                }   
                TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB & 

~TWI_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) | 

TWI_SLAVE_CMD_COMPTRANS_gc;               

             }   

       }    

}  
 

 

void init_I2C_Slave(){ 

         

    //BIT 7:3 RESERVED 

    //BIT 2, ACKACT, 0=SEND ACK, 1= SEND NACK 

    //BIT 1:0, cmd  

    TWIC.SLAVE.CTRLB = 0b00000000;  

     

    //BIT 7 DIF: Data Interrupt Flag 

    //BIT 6 APIF: Address/Stop Interrupt Flag 

    //BIT 5 CLKHOLD: Clk Hold Flag 

    //BIT 4 RXACK: Received Ack flag 

    //BIT 3 COLL: collision 

    //BIT 2 BUSERR: Twi slave bus error 

    //BIT 1 DIR: Read/Write Direction bit 1=Master Read, 0=Write 

    //BIT 0 Slave Address or Stop Flag WHY APIF WAS SET, 0=STOP 

1=ADDRESS 

    TWIC.SLAVE.STATUS = 0b11001100;    

     

    TWIC.SLAVE.ADDR = slaveAddress<<1; 

    TWIC.SLAVE.DATA = 0b00000000;        

                                 

    //Mask Off 

    TWIC.SLAVE.ADDRMASK = allCallAddress<<1|1; //Second address all 

slaves listen for messages on 

     



 

173 

 

    //BIT 7:6 Slave interrupt level?  

    //BIT 5, DIE Data interrupt enable, 1=ON 

    //BIT 4, APIEN, Address/Stop Interrupt Enable, 1=ON  

    //BIT 3, ENABLE TWI SLAVE, 1=ON  

    //BIT 2, PIEN, Stop Interrupt Enable, 1=ON 

    //Bit 1, PMEN, Promiscuous Mode Enable, 0=OFF 

    //BIT 0, SMEN, Smart mode enable, ? 

    TWIC.SLAVE.CTRLA = 0b01111000;        

      

 

}     
 

void main(void) 

{ 
 

// Declare your local variables here 

unsigned char byPassOn=0;  

unsigned char byPassMax=0;  

unsigned char overTemp=0;  

unsigned char overDischarge=0;  

 

 

int movAvgValues[3][64];  

long movAvgTotal[3]={0,0,0}; 

int newAdcVal[3]; 

unsigned int initSamples=0; 

unsigned int sampleIdxOldest=0; 

 

unsigned char n; 

 

 

int mosCurrRaw;  

int battCurrRaw;  

int battVoltRaw; 

unsigned int socRaw=0x0700;  

unsigned int tempRaw=0;  

                

unsigned int i=0; 

 

unsigned int duty=0; 

 

float error = 0.0;  

float refV = 0.0;  

float KpV = 0; 
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//float KpI = 0; 

//float refI = 0.0;  

 

//float Ki = 0;  

//float integral_I = 0;  

float integral_V = 0;  

//float T = 0;      

 

 

// Make sure the interrupts are disabled 

#asm("cli") 

// Low level interrupt: On 

// Round-robin scheduling for low level interrupt: Off 

// Medium level interrupt: On 

// High level interrupt: On 

// The interrupt vectors will be placed at the start of the Application FLASH section 

n=(PMIC.CTRL & (~(PMIC_RREN_bm | PMIC_IVSEL_bm | 

PMIC_HILVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_LOLVLEN_bm))) | 

    PMIC_LOLVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_HILVLEN_bm; 

CCP=CCP_IOREG_gc; 

PMIC.CTRL=n; 

// Set the default priority for round-robin scheduling 

PMIC.INTPRI=0x00; 

 

// Watchdog timer initialization 

watchdog_init(); 

 

// System clocks initialization 

system_clocks_init(); 

 

// Event system initialization 

event_system_init(); 

 

// Virtual Ports initialization 

//vports_init(); 

 

ports_init(); 

 

delay_ms(1000);  

// Timer/Counter TCC1 initialization 

tcc1_init(); 

 

// Timer/Counter TCD0 is disabled 

//tcd0_init(); 
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// Timer/Counter TCD1 is enabled 

tcd1_init(); 

 

// Timer/Counter TCE0 initialization 

//tce0_init(); 

 

// RTC initialization 

//rtcxm_init(); 

 

// USARTC0 is disabled 

usart_disable(&USARTC0); 

 

// USARTC1 is disabled 

usart_disable(&USARTC1); 

 

// USARTD0 is disabled 

usart_disable(&USARTD0); 

 

// USARTD1 is disabled 

usart_disable(&USARTD1); 

 

// USARTE0 is disabled 

usart_disable(&USARTE0); 

 

// ADC Initilization 

adc_init(); 

//usart_init();  

 

 

delay_ms(1000);  

//Get Address for slave from hardware pins (they were shorted)  

//PB2 = BIT 0 

//PB3 = BIT 1 

//PR0 = BIT 2 

//PR1 = BIT 3 

slaveAddress=0;  

if((PORTB.IN&PIN2_bm)>>PIN2_bp) slaveAddress |= 1;  

if((PORTB.IN&PIN3_bm)>>PIN3_bp) slaveAddress |= (1<<1);  

if((PORTR.IN&PIN0_bm)>>PIN0_bp) slaveAddress |= (1<<2);  

if((PORTR.IN&PIN1_bm)>>PIN1_bp) slaveAddress |= (1<<3);  

slaveAddress = slaveAddress+1; //Offset by 1 since addresses cannot be 0 

 

for(i=0;i<slaveAddress;i++){ 
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    PORTD.OUTTGL = 0b00000010;  

    delay_ms(200);  

    PORTD.OUTTGL = 0b00000010;  

    delay_ms(200);  

} 

 

 

//Initialize Slave 

init_I2C_Slave();  

 

ADCA.CH0.MUXCTRL = 0b00110010;  // Differential POS=A6 and NEG=A6 

ADCA.CH1.MUXCTRL = 0b00110010;  // Differential POS=A6 and NEG=A6 

ADCA.CH2.MUXCTRL = 0b00110010;  // Differential POS=A6 and NEG=A6 

 

//Calibrate Differential Gain Offset 

for (i=0; i<64; i++){ 

    ADCA.CH0.CTRL |=0b10000000; 

    ADCA.CH1.CTRL |=0b10000000; 

    ADCA.CH2.CTRL |=0b10000000; 

    while((ADCA.CH2.INTFLAGS&0x01)!=1);      

    ADCA.CH2.INTFLAGS |= 0x01;  //clear flag 

     

    OFFSET_CH0_DIFF += ADCA.CH0.RES; 

    OFFSET_CH1_DIFF += ADCA.CH1.RES; 

    OFFSET_CH2_DIFF += ADCA.CH2.RES; 

} 

 

    OFFSET_CH0_DIFF = OFFSET_CH0_TOTAL>>6;  

    OFFSET_CH1_DIFF = OFFSET_CH1_TOTAL>>6;  

    OFFSET_CH2_DIFF = OFFSET_CH2_TOTAL>>6;   

      

  ADCA.CH0.MUXCTRL = 0b00000011; // Differential POS=A0 and NEG=A7, 

Battery Voltage 

  ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and NEG=A6, 

Battery Current    

  ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and NEG=A5, 

MOSFET Current      

       

// Globaly enable interrupts 

#asm("sei") 

 

 

//Battery Voltage Control 

KpV = -200;  
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refV = STOP_CHARGE_VOLT; 

 

while (1) 

      {     

           if(stepready){ //EVERY 4 ms 

               stepready=0;      

                

               //READ NEW OVERSAMPLED ANALOG VALUES 

               newAdcVal[0] = ADCvalues[0]; //Raw Batt Voltage 

               newAdcVal[1] = ADCvalues[1]; //Raw Batt Current 

               newAdcVal[2] = ADCvalues[2]; //Raw MOSFET Current                          

                

               //PLACE INTO RING BUFFER LAST 64 SAMPLES 

               if(initSamples<64){ //Grabs first 64 samples to start off average filter, this 

all occurs during INIT MODE so battVoltageFilt can be wrong during this time 

                   for (i=0; i<3; i++){ 

                        movAvgValues[i][initSamples] = newAdcVal[i]; 

                        movAvgTotal[i] = movAvgTotal[i] + 

movAvgValues[i][initSamples]; //Eventually will hold total of first 128 samples 

                   } 

                   initSamples++;     

               }else{  

                   for (i=0; i<3; i++){ 

                        movAvgTotal[i] = movAvgTotal[i] - 

movAvgValues[i][sampleIdxOldest]; //Subtracts out oldest sample 

                        movAvgValues[i][sampleIdxOldest] = newAdcVal[i]; //Replace 

oldest sample value with a new value  

                        movAvgTotal[i] = 

movAvgTotal[i]+movAvgValues[i][sampleIdxOldest]; //Add in newest value, 

movAvgTotal is now last 128 values, increment oldest index  

                   }                

                   sampleIdxOldest++; 

                   sampleIdxOldest&=0x3F; //Wraps around Oldest Index value in case it 

"overflows" out of range of movAvgValues[] array 

               }   

                

               //CALCULATE AVERAGE WITH BITSHIFT 

               battVoltRaw = movAvgTotal[0]>>6;  

               battCurrRaw = movAvgTotal[1]>>6; 

               mosCurrRaw = movAvgTotal[2]>>6; 

               tempRaw = ADCvalues[3]; 

                           

               //CORRECT READINGS WITH CALIBRATED VALUES            
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               offset = (signed int)(ADC_OFFSET_M[slaveAddress-1]*mosCurrRaw + 

ADC_OFFSET_B[slaveAddress-1]);  

               mosCurrRaw = mosCurrRaw+offset;  

                

               offset = (signed int)(ADC_OFFSET_M[slaveAddress-1]*battVoltRaw + 

ADC_OFFSET_B[slaveAddress-1]);  

               battVoltRaw = battVoltRaw+offset;                                     

                

               //CONVERT RAW ADC VALUES TO SCIENTIFIC NOTATION 

               battVolt =  battVoltRaw*0.0025;  

               battCurr = battCurrRaw*0.020833333; //6 mOhm, gain 8      

               mosCurr = mosCurrRaw*.001; //1 ohm, gain 1                       

               temp = -1481.96 + sqrt(2196200 + (1863.9-tempRaw)*257.732);           

               tempRaw = (unsigned int)(temp*100);        

               socRaw = (unsigned 

int)((float)4095.0*(float)((float)AmpSec/(float)MAX_AMP_SEC));  

                

               //SATURATE MOSFET CURRENT VALUE FOR NOISE REASONS 

               if (mosCurr<0) mosCurr=0; 

 

               //CREATE PACKET FOR DATA TO BE SENT TO MASTER 

               battData[0] = (unsigned char)(battCurrRaw & 0x00FF);  

               battData[1] = (unsigned char)(battCurrRaw >> 8);        

               battData[2] = (unsigned char)(battVoltRaw & 0x00FF);  

               battData[3] = (unsigned char)(battVoltRaw >> 8);  

               battData[4] = (unsigned char)(mosCurrRaw & 0x00FF);  

               battData[5] = (unsigned char)(mosCurrRaw >> 8);  

               battData[6] = (unsigned char)(tempRaw & 0x00FF);  

               battData[7] = (unsigned char)(tempRaw >> 8);  

               battData[8] = (unsigned char)(socRaw & 0x00FF);  

               battData[9] = (unsigned char)(((socRaw >> 8)&0x0F) | byPassOn<<7 | 

byPassMax<<6 | overDischarge<<5 | overTemp<<4);  

 

               //UPDATE SINGLE BYPASS STATUS LED TO REFLECT BYPASS 

STATE 

               if(mosCurr>1.90){ 

                    ledColor=RED; 

                    byPassMax=1;   

               }else if(mosCurr>0.05){ 

                    ledColor=AMBER;  

                    byPassOn=1;  

               }else{ 

                    ledColor=GREEN; 

                    byPassOn=0; 
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                    byPassMax=0;   

               }                              

                 

               //BATTERY OVERDISCHARGE STATUS  

               if(battVolt<OVERDISCHARGE_VOLT){ 

                    overDischarge=1;  

               }else{ 

                    overDischarge=0; 

               }              

                

               //BYPASS ACTIVATION LOGIC AND CONTROL LOOP  

               voltCntrlCnt++;  

                if(voltCntrlCnt>75){   

                    voltCntrlCnt=0;              

                    error = (refV-battVolt);   

                    if (error>=0){ //if batteryVoltage <3.8 means error is positive 

                        if((duty+error*KpV)<=0){  //prevent controller from causing duty 

from rolling over 

                            duty=0; 

                        }else{ 

                            duty=duty+KpV*error; 

                        } 

                    }else{ 

                        duty=duty+KpV*error;   

                    } 

                } 

 

                                                    

               //SATURATE MAX DUTY CYCLE 

               if(duty>DUTY_CYC_MAX) duty=DUTY_CYC_MAX;  

                                                            

               //Ensure mosfet stays off if battery is not charging and battery voltage is 

less than max 

               if(battCurr<=0.05 && battVolt<STOP_CHARGE_VOLT) { 

                    if(dutyOffCnt<=MAX_DUTY_OFF_CNT) dutyOffCnt++; 

                          

                    if(dutyOffCnt>=MAX_DUTY_OFF_CNT){ 

                        //duty=0; 

                        //dutyOffCnt=0;     

                        TCC1.CCA=0; 

                    }  

               }else{ 

                    TCC1.CCA=duty;       

               }     
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           }  

                       

           switch(ledVal){ 

                case 1:   

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0;           

                    PORTD.OUTSET = ledColor; //0b00000010==2   

                    break; 

                case 2:    

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0; 

                    PORTD.OUTSET = ledColor<<2; //0b00001000==8 

                    break; 

                case 3:    

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0; 

                    PORTD.OUTSET = ledColor<<4; //0b00100000==32   

                    break; 

                case 4:    

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0; 

                    PORTD.OUTSET = ledColor<<6; //0b10000000==128      

                    break; 

                case 5:  

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0;        

                    PORTE.OUTSET = ledColor; //0b00000010==2     

                    break;  

                case 6:      

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0; 

                    PORTE.OUTSET = ledColor<<2; //0b00001000==8     

                    break; 

                case LOW_SOC: 

                    PORTD.OUTTGL = 0b01010101;   

                    PORTE.OUTTGL = 0b00000101;  

                    break; 
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APPENDIX C 

ICMU/BPMU HYBRID CODE 

/***************************************************** 

This program was produced by the 

CodeWizardAVR V2.04.8 Standard 

Automatic Program Generator 

 Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l. 

http://www.hpinfotech.com 

 

Project : Battery Board Slave 

Version : .9 

Date    : 10/15/2010 

Author  :  

Company : University of Akron 

Comments:  

 

 

Chip type               : ATxmega16A4 

Program type            : Application 

AVR Core Clock frequency: 32.000000 MHz 

Memory model            : Small 

Data Stack size         : 512 

*****************************************************/ 

 

#include <io.h> 

#include <math.h> 

#include <stdio.h> 

#include <avr_compiler.h> 

 

// Declare your global variables here 

 

#define MAX_AMP_SEC 216000.00   

#define STOP_CHARGE_VOLT 3.8 

#define OVERDISCHARGE_VOLT 2.5 

//Equivalent to a voltage of 3.5V 

#define TSamp_TCD1 0.0039996 //Current Integrating time in seconds 

 

#define DUTY_CYC_MAX 1330 //Limits Max Bypass Current to ~2 Amps at 

3.8 Volts 

#define WAIT_BEFORE_CHANGE_CNT 50000 //2500 COUNTS per 

second...Roughly 20 seconds 

#define MAX_TURNOFF_CNT 5000 //2500 COUNTS per second seconds 
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#define MAX_BYPASS_CURRENT 1.9 

 

//Count to wait until MOSFET locks on after battVolt>3.8V 

mosCurrent>1.95A and battCurr<1A 

#define MAX_LOCK_MOS_CURRENT_CNT 700 

 

//Count to wait until Duty Cycle Shuts off after seeing current out 

of battery 

#define MAX_DUTY_OFF_CNT 700 

 

//Address for all slave boards to respond to 

#define allCallAddress 100  

 

#define READ 1 

#define WRITE 0   

 

#define MAX_BATT_CNT 10 

 

unsigned int dutyOffCnt=0;  

 

//LED Colors  

#define GREEN 0b10 

#define RED 0b01 

#define AMBER 0b11  

 

#define LOW_SOC 70 //Picked a value then the largest ledValue 

 

//#define IS_CHARGING_AT_2_MSG 0xF0 

//#define IS_NOT_CHARGING_AT_2_MSG 0xFA 

 

unsigned char ledColor=GREEN;  

  

unsigned char underVoltCond=0;  

 

unsigned int waitToChangeCnt=65531; //No waiting initially 

unsigned char sendDesiredCurrent=1;  

//unsigned char lockMosCurr = 0;  

 

unsigned char allBypassOn=1;  

unsigned int turnOffChargerCnt=0; 

   

unsigned char overVoltageShutoff=0;  

unsigned int turnOffChargerCnt2=0;  

 

unsigned int overTemperatureShutoff=0;  

unsigned int turnOffChargerCnt3=0;  

 

unsigned int underVoltCondCnt=0;  

                            

float temp[14];  

float battVolt[14];  

float battCurr[14]; 

float mosCurr[14]; 

float soc[14];  
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unsigned char byPassOn[14]; 

unsigned char byPassMax[14]; 

unsigned char overDischarge[14]; 

unsigned char overTemp[14]; 

 

//unsigned char chargeStatus;  

unsigned char twiLock = 0;  

 

float packCurr=0; 

float packSoc=100;            

float packVolt=0;  

 

//float prevBattCurr; 

float AmpSec=MAX_AMP_SEC; 

 

unsigned int voltCntrlCnt=0; 

unsigned int decreaseCurrentCnt=0;  

 

unsigned char currentPkt[6];  

 

unsigned char battBypassId=0;  

unsigned char prevBattBypassId=0; 

                 

eeprom unsigned char desiredCurrentIntEE=10;  

eeprom unsigned char desiredCurrentDecEE=0;  

 

unsigned char desiredCurrentInt=0;  

unsigned char desiredCurrentDec=0; 

 

signed long OFFSET_CH0_TOTAL=0; 

signed long OFFSET_CH1_TOTAL=0; 

signed long OFFSET_CH2_TOTAL=0; 

 

signed int OFFSET_CH0_DIFF=0; 

signed int OFFSET_CH1_DIFF=0; 

signed int OFFSET_CH2_DIFF=0; 

 

signed long ADCtemp[4]; 

signed int ADCvalues[4]; 

char ADCsamplecount  = 0; // we're supersampling 

signed int ADCbuffer; 

char stepready = 0; 

 

unsigned char increment=1;  

unsigned char dataCnt=0;  

unsigned char dataOutTWIC=0; 

 

unsigned char slaveAddress=0;  

unsigned char currAddress=0; 

 

unsigned char newData = 0;  

unsigned char dataRdy = 0;  

 

unsigned char battIdx=0;  

unsigned char dataIdx=0;  
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unsigned char battData[14][10]; 

 

//ADC OFFSET for each of the 10 boards OFFSET=M*RAWADC+B calibrated 

manually  

float const ADC_OFFSET_M[10]={-0.011107,-0.013504,-0.015376,-

0.017009,-0.015646,-0.013056,-0.015416,-0.015210,-0.013949,-

0.012555}; 

float const ADC_OFFSET_B[10]={ 6.366141, 6.417454, 6.556141, 

7.638119, 6.499410, 5.792097, 5.235612, 3.654257, 5.374430, 

5.624966}; 

  

signed int offset=0;  

 

signed int bound(signed int value, signed int min, signed int max){ 

    if(value > max) 

        return max; 

    if(value < min) 

        return min; 

    return value; 

} 

 

 

#pragma warn- 

char nvm_cmd_read( char *nvm_cmd_addr, char index ){ 

    #asm 

        LDD  R30,Y+0    ; Z = index 

        LDI  R31,0 

         LDD  R26,Y+1    ; X = &NVM.CMD 

         LDD  R27,Y+2 

        LDI  R25,2      ; NVM.CMD = NVM_CMD_READ_CALIB_ROW_gc 

        ST   X,R25 

        LPM             ; read the data in R0 

                         ; Clean up NVM Command register. */ 

        LDI  R25,0      ; NVM.CMD = NVM_CMD_NO_OPERATION_gc 

        ST   X,R25 

        MOV  R30,R0     ; return result 

    #endasm 

} 

#pragma warn+ 

 

char SP_ReadCalibrationByte( char index ){ 

    return nvm_cmd_read(&NVM.CMD,index); 

} 

 

 

// System Clocks initialization 

void system_clocks_init(void) 

{ 

unsigned char n,s; 

 

// Optimize for speed 

#pragma optsize-  

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 
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#asm("cli") 

 

// Internal 32 kHz RC oscillator initialization 

// Enable the internal 32 kHz RC oscillator 

OSC.CTRL|=OSC_RC32KEN_bm; 

// Wait for the internal 32 kHz RC oscillator to stabilize 

while ((OSC.STATUS & OSC_RC32KRDY_bm)==0); 

 

// Internal 32 MHz RC oscillator initialization 

// Enable the internal 32 MHz RC oscillator 

OSC.CTRL|=OSC_RC32MEN_bm; 

 

// System Clock prescaler A division factor: 1 

// System Clock prescalers B & C division factors: B:1, C:1 

// ClkPer4: 32000.000 kHz 

// ClkPer2: 32000.000 kHz 

// ClkPer:  32000.000 kHz 

// ClkCPU:  32000.000 kHz 

n=(CLK.PSCTRL & (~(CLK_PSADIV_gm | CLK_PSBCDIV1_bm | 

CLK_PSBCDIV0_bm))) | 

    CLK_PSADIV_1_gc | CLK_PSBCDIV_1_1_gc; 

CCP=CCP_IOREG_gc; 

CLK.PSCTRL=n; 

 

// Internal 32 MHz RC osc. calibration reference clock source: 

32.768 kHz Internal Osc. 

OSC.DFLLCTRL&= ~(OSC_RC32MCREF_bm | OSC_RC2MCREF_bm); 

// Enable the autocalibration of the internal 32 MHz RC oscillator 

DFLLRC32M.CTRL|=DFLL_ENABLE_bm; 

 

// Wait for the internal 32 MHz RC oscillator to stabilize 

while ((OSC.STATUS & OSC_RC32MRDY_bm)==0); 

 

// Select the system clock source: 32 MHz Internal RC Osc. 

n=(CLK.CTRL & (~CLK_SCLKSEL_gm)) | CLK_SCLKSEL_RC32M_gc; 

CCP=CCP_IOREG_gc; 

CLK.CTRL=n; 

 

// Disable the unused oscillators: 2 MHz, external clock/crystal 

oscillator, PLL 

OSC.CTRL&= ~(OSC_RC2MEN_bm | OSC_XOSCEN_bm | OSC_PLLEN_bm); 

 

// Peripheral Clock output: Disabled 

PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT & (~PORTCFG_CLKOUT_gm)) | 

PORTCFG_CLKOUT_OFF_gc; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

 

} 

 

// Watchdog Timer initialization 

void watchdog_init(void) 

{ 

unsigned char s,n; 



 

186 

 

 

// Optimize for speed 

#pragma optsize-  

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 

#asm("cli") 

 

// Watchdog Timer: On 

n=WDT_ENABLE_bm | WDT_CEN_bm | WDT_PER_256CLK_gc; 

CCP=CCP_IOREG_gc; 

WDT.CTRL=n; 

 

// Watchdog window mode: Off 

n=(WDT.WINCTRL & (~WDT_WEN_bm)) | WDT_WCEN_bm; 

CCP=CCP_IOREG_gc; 

WDT.WINCTRL=n; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

 

} 

 

// Event System initialization 

void event_system_init(void) 

{ 

// Event System Channel 0 source: Port D, Pin0 

EVSYS.CH0MUX=EVSYS_CHMUX_PORTD_PIN0_gc; 

// Event System Channel 1 source: Port D, Pin0 

EVSYS.CH1MUX=EVSYS_CHMUX_OFF_gc; 

 

// Event System Channel 2 source: None 

EVSYS.CH2MUX=EVSYS_CHMUX_PORTD_PIN1_gc; 

// Event System Channel 3 source: None 

EVSYS.CH3MUX=EVSYS_CHMUX_OFF_gc; 

// Event System Channel 4 source: None 

EVSYS.CH4MUX=EVSYS_CHMUX_OFF_gc; 

// Event System Channel 5 source: None 

EVSYS.CH5MUX=EVSYS_CHMUX_OFF_gc; 

// Event System Channel 6 source: None 

EVSYS.CH6MUX=EVSYS_CHMUX_OFF_gc; 

// Event System Channel 7 source: None 

EVSYS.CH7MUX=EVSYS_CHMUX_OFF_gc; 

 

// Event System Channel 0 Digital Filter Coefficient: 4 Samples 

EVSYS.CH0CTRL=0b00001011; 

// Event System Channel 1 Digital Filter Coefficient: 1 Sample 

EVSYS.CH1CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 2 Digital Filter Coefficient: 1 Sample 

EVSYS.CH2CTRL=0b00001011; 

// Event System Channel 3 Digital Filter Coefficient: 1 Sample 

EVSYS.CH3CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 4 Digital Filter Coefficient: 1 Sample 

EVSYS.CH4CTRL=(EVSYS.CH4CTRL & (~(EVSYS_QDIRM_gm | EVSYS_QDIEN_bm | 

EVSYS_QDEN_bm | EVSYS_DIGFILT_gm))) | 
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    EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 5 Digital Filter Coefficient: 1 Sample 

EVSYS.CH5CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 6 Digital Filter Coefficient: 1 Sample 

EVSYS.CH6CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

// Event System Channel 7 Digital Filter Coefficient: 1 Sample 

EVSYS.CH7CTRL=EVSYS_DIGFILT_1SAMPLE_gc; 

 

// Event System Channel 0 output: Disabled 

// Note: the correct direction for the Event System Channel 0 

output 

// is configured in the ports_init function 

PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT & (~PORTCFG_EVOUT_gm)) | 

PORTCFG_EVOUT_OFF_gc; 

//PORTCFG.CLKEVOUT=0b00000001; 

 

} 

 

// Ports initialization 

void ports_init(void) 

{ 

// PORTA initialization 

// OUT register 

PORTA.OUT=0x00; 

 

// Bit0: Input 

// Bit1: Input 

// Bit2: Input 

// Bit3: Input 

// Bit4: Input 

// Bit5: Input 

// Bit6: Input 

// Bit7: Input 

PORTA.DIR=0x00; 

 

// Bit0 Output/Pull configuration: Totempole/No 

// Bit0 Input/Sense configuration: Input buffer disabled 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTA.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit1 Output/Pull configuration: Totempole/No 

// Bit1 Input/Sense configuration: Input buffer disabled 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTA.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit2 Output/Pull configuration: Totempole/No 

// Bit2 Input/Sense configuration: Input buffer disabled 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTA.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit3 Output/Pull configuration: Totempole/No 

// Bit3 Input/Sense configuration: Input buffer disabled 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTA.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 
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// Bit4 Output/Pull configuration: Totempole/No 

// Bit4 Input/Sense configuration: Input buffer disabled 

// Bit4 inverted: Off 

// Bit4 slew rate limitation: Off 

PORTA.PIN4CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit5 Output/Pull configuration: Totempole/No 

// Bit5 Input/Sense configuration: Input buffer disabled 

// Bit5 inverted: Off 

// Bit5 slew rate limitation: Off 

PORTA.PIN5CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit6 Output/Pull configuration: Totempole/No 

// Bit6 Input/Sense configuration: Input buffer disabled 

// Bit6 inverted: Off 

// Bit6 slew rate limitation: Off 

PORTA.PIN6CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit7 Output/Pull configuration: Totempole/No 

// Bit7 Input/Sense configuration: Input buffer disabled 

// Bit7 inverted: Off 

// Bit7 slew rate limitation: Off 

PORTA.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

PORTA.INTCTRL=(PORTA.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

// Bit4 pin change interrupt 0: Off 

// Bit5 pin change interrupt 0: Off 

// Bit6 pin change interrupt 0: Off 

// Bit7 pin change interrupt 0: Off 

PORTA.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

// Bit4 pin change interrupt 1: Off 

// Bit5 pin change interrupt 1: Off 

// Bit6 pin change interrupt 1: Off 

// Bit7 pin change interrupt 1: Off 

PORTA.INT1MASK=0x00; 

 

// PORTB initialization 

// OUT register 

PORTB.OUT=0x00; 

// Bit0: Input 

// Bit1: Input 

// Bit2: Input 

// Bit3: Input 

PORTB.DIR=0x00; 

// Bit0 Output/Pull configuration: Totempole/No 

// Bit0 Input/Sense configuration: Input buffer disabled 

// Bit0 inverted: Off 
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// Bit0 slew rate limitation: Off 

PORTB.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit1 Output/Pull configuration: Totempole/No 

// Bit1 Input/Sense configuration: Input buffer disabled 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTB.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit2 Output/Pull configuration: Totempole/No 

// Bit2 Input/Sense configuration: Input buffer disabled 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTB.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Bit3 Output/Pull configuration: Totempole/No 

// Bit3 Input/Sense configuration: Input buffer disabled 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTB.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

PORTB.INTCTRL=(PORTB.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

PORTB.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

PORTB.INT1MASK=0x00; 

 

 

// Bit0: Output 

// Bit1: Output 

// Bit2: Input 

// Bit3: Input 

// Bit4: Output 

// Bit5: Input 

// Bit6: Input 

// Bit7: Output 

PORTC.DIR=0x93; 

 

// Bit0 Output/Pull configuration: WIRED-AND (on input) 

// Bit0 Input/Sense configuration: Sense both edges 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTC.PIN0CTRL=PORT_OPC_WIREDAND_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit1 Output/Pull configuration: WIRED-AND (on input) 

// Bit1 Input/Sense configuration: Sense both edges 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTC.PIN1CTRL=PORT_OPC_WIREDAND_gc | PORT_ISC_BOTHEDGES_gc; 

PORTC.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 
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// Bit3 Output/Pull configuration: Totempole/No 

// Bit3 Input/Sense configuration: Sense both edges 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTC.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit4 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit4 Input/Sense configuration: Sense both edges 

// Bit4 inverted: Off 

// Bit4 slew rate limitation: Off 

PORTC.PIN4CTRL=PORT_OPC_PULLDOWN_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit5 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit5 Input/Sense configuration: Sense both edges 

// Bit5 inverted: Off 

// Bit5 slew rate limitation: Off 

PORTC.PIN5CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit6 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit6 Input/Sense configuration: Sense both edges 

// Bit6 inverted: Off 

// Bit6 slew rate limitation: Off 

PORTC.PIN6CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit7 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit7 Input/Sense configuration: Sense both edges 

// Bit7 inverted: Off 

// Bit7 slew rate limitation: Off 

PORTC.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

PORTC.INTCTRL=(PORTC.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

// Bit4 pin change interrupt 0: Off 

// Bit5 pin change interrupt 0: Off 

// Bit6 pin change interrupt 0: Off 

// Bit7 pin change interrupt 0: Off 

PORTC.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

// Bit4 pin change interrupt 1: Off 

// Bit5 pin change interrupt 1: Off 

// Bit6 pin change interrupt 1: Off 

// Bit7 pin change interrupt 1: Off 

PORTC.INT1MASK=0x00; 

 

// PORTD initialization 

// OUT register 

PORTD.OUT=0x00; 

 

// Bit0: Output 

// Bit1: Output 



 

191 

 

// Bit2: Output 

// Bit3: Output 

// Bit4: Output 

// Bit5: Output 

// Bit6: Output 

// Bit7: Output 

PORTD.DIR=0xFF; 

 

// Bit0 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit0 Input/Sense configuration: Sense low level 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTD.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc; 

 

// Bit1 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit1 Input/Sense configuration: Sense low level 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTD.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc; 

// Bit2 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit2 Input/Sense configuration: Sense both edges 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTD.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit3 Input/Sense configuration: Sense both edges 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTD.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit4 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit4 Input/Sense configuration: Sense both edges 

// Bit4 inverted: Off 

// Bit4 slew rate limitation: Off 

PORTD.PIN4CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit5 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit5 Input/Sense configuration: Sense both edges 

// Bit5 inverted: Off 

// Bit5 slew rate limitation: Off 

PORTD.PIN5CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit6 Output/Pull configuration: Totempole/No 

// Bit6 Input/Sense configuration: Sense both edges 

// Bit6 inverted: Off 

// Bit6 slew rate limitation: Off 

PORTD.PIN6CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit7 Output/Pull configuration: Totempole/No 

// Bit7 Input/Sense configuration: Sense both edges 

// Bit7 inverted: Off 

// Bit7 slew rate limitation: Off 

PORTD.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

 

PORTD.INTCTRL=(PORTD.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 
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// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

// Bit4 pin change interrupt 0: Off 

// Bit5 pin change interrupt 0: Off 

// Bit6 pin change interrupt 0: Off 

// Bit7 pin change interrupt 0: Off 

 

PORTD.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

// Bit4 pin change interrupt 1: Off 

// Bit5 pin change interrupt 1: Off 

// Bit6 pin change interrupt 1: Off 

// Bit7 pin change interrupt 1: Off 

PORTD.INT1MASK=0x00; 

 

// PORTE initialization 

// OUT register 

PORTE.OUT=0x00; //Initial Output Value 

 

// Bit0: Output 

// Bit1: Output 

// Bit2: Input  //Charger Present Detection, Internal pullup, 

Yellow Wire 

// Bit3: Output //Serial Output PE3 

PORTE.DIR=0x0B;   

 

// Bit0 Output/Pull configuration: Totempole/No 

// Bit0 Input/Sense configuration: Sense both edges 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTE.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

 

// Bit1 Output/Pull configuration: Totempole/No 

// Bit1 Input/Sense configuration: Sense both edges 

// Bit1 inverted: On 

// Bit1 slew rate limitation: Off 

PORTE.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

 

// Bit2 Output/Pull configuration: Pull-up (on input) 

// Bit2 Input/Sense configuration: Sense both edges 

// Bit2 inverted: Off 

// Bit2 slew rate limitation: Off 

PORTE.PIN2CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc; 

 

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input) 

// Bit3 Input/Sense configuration: Sense both edges 

// Bit3 inverted: Off 

// Bit3 slew rate limitation: Off 

PORTE.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Interrupt 0 level: Disabled 
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// Interrupt 1 level: Disabled 

 

PORTE.INTCTRL=(PORTE.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

// Bit2 pin change interrupt 0: Off 

// Bit3 pin change interrupt 0: Off 

PORTE.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

// Bit2 pin change interrupt 1: Off 

// Bit3 pin change interrupt 1: Off 

PORTE.INT1MASK=0x00; 

 

// PORTR initialization 

// OUT register 

PORTR.OUT=0x00; 

// Bit0: Input 

// Bit1: Input 

PORTR.DIR=0x00; 

// Bit0 Output/Pull configuration: Totempole/No 

// Bit0 Input/Sense configuration: Sense both edges 

// Bit0 inverted: Off 

// Bit0 slew rate limitation: Off 

PORTR.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Bit1 Output/Pull configuration: Totempole/No 

// Bit1 Input/Sense configuration: Sense both edges 

// Bit1 inverted: Off 

// Bit1 slew rate limitation: Off 

PORTR.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc; 

// Interrupt 0 level: Disabled 

// Interrupt 1 level: Disabled 

PORTR.INTCTRL=(PORTR.INTCTRL & (~(PORT_INT1LVL_gm | 

PORT_INT0LVL_gm))) | 

    PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc; 

// Bit0 pin change interrupt 0: Off 

// Bit1 pin change interrupt 0: Off 

PORTR.INT0MASK=0x00; 

// Bit0 pin change interrupt 1: Off 

// Bit1 pin change interrupt 1: Off 

PORTR.INT1MASK=0x00; 

} 

 

// Disable a Timer/Counter type 0 

void tc0_disable(TC0_t *ptc) 

{ 

// Timer/Counter off 

ptc->CTRLA=(ptc->CTRLA & (~TC0_CLKSEL_gm)) | TC_CLKSEL_OFF_gc; 

// Issue a reset command 

ptc->CTRLFSET=TC_CMD_RESET_gc; 

} 

 

// Disable a Timer/Counter type 1 
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void tc1_disable(TC1_t *ptc) 

{ 

// Timer/Counter off 

ptc->CTRLA=(ptc->CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_OFF_gc; 

// Issue a reset command 

ptc->CTRLFSET=TC_CMD_RESET_gc; 

} 

 

 

 

// Timer/counter TCC1 Overflow/Underflow interrupt service routine 

interrupt [TCC0_OVF_vect] void tcc0_overflow_isr(void) 

{ 

// write your code here 

 

} 

 

 

// Timer/Counter TCD0 initialization 

void tcd0_init(void) 

{ 

unsigned char s; 

 

// Note: the correct PORTD direction for the Compare Channels 

outputs 

// is configured in the ports_init function 

 

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 

#asm("cli") 

 

// Disable and reset the timer/counter just to be sure 

tc0_disable(&TCD0); 

// Clock source: Peripheral Clock/1 

 

TCD0.CTRLB=0b00000000; 

TCD0.CTRLC=0b00000000; 

TCD0.CTRLD=0b00000000; 

TCD0.CTRLE=0b00000000; 

 

// Overflow interrupt: Medium Level 

// Error interrupt: Disabled 

TCD0.INTCTRLA=(TCD0.INTCTRLA & (~(TC0_ERRINTLVL_gm | 

TC0_OVFINTLVL_gm))) | 

    TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc; 

 

 

// Compare/Capture channel A interrupt: Disabled 

// Compare/Capture channel B interrupt: Disabled 

// Compare/Capture channel C interrupt: Disabled 

// Compare/Capture channel D interrupt: Disabled 

TCD0.INTCTRLB=(TCD0.INTCTRLB & (~(TC0_CCDINTLVL_gm | 

TC0_CCCINTLVL_gm | TC0_CCBINTLVL_gm | TC0_CCAINTLVL_gm))) | 
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    TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc | TC_CCBINTLVL_OFF_gc 

| TC_CCAINTLVL_OFF_gc; 

 

// High resolution extension: Off 

HIRESD.CTRL&= ~HIRES_HREN0_bm; 

 

// Clear the interrupt flags 

TCD0.INTFLAGS=TCD0.INTFLAGS; 

 

// Set counter register 

TCD0.CNT=0x0000; 

// Set period register 

TCD0.PER=312; 

// Set channel A Compare/Capture register 

TCD0.CCA=0x0000; 

// Set channel B Compare/Capture register 

TCD0.CCB=0x0000; 

// Set channel C Compare/Capture register 

TCD0.CCC=0x0000; 

// Set channel D Compare/Capture register 

TCD0.CCD=0x0000; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

 

TCD0.CTRLA=0b00000111; 

} 

 

 

// Timer/counter TCD0 Overflow/Underflow interrupt service routine 

interrupt [TCD0_OVF_vect] void tcd0_overflow_isr(void) 

{     

    dataIdx=0;        

    slaveAddress=battIdx+1;   

           

    if(slaveAddress==1){  

        newData=1;  

    }else{                           

        twiLock=1;  

        currAddress=slaveAddress<<1|READ;  

        TWIC.MASTER.ADDR = currAddress; //slave address 

    }          

            

} 

 

 

 

// Timer/Counter TCD1 initialization 

void tcd1_init(void) 

{ 

unsigned char s; 

 

// Note: the correct PORTD direction for the Compare Channels 

outputs 

// is configured in the ports_init function 
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// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 

#asm("cli") 

 

// Disable and reset the timer/counter just to be sure 

tc1_disable(&TCD1); 

// Clock source: Peripheral Clock/1 

TCD1.CTRLA=(TCD1.CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_DIV2_gc; 

 

// Mode: Normal Operation, Overflow Int./Event on TOP 

// Compare/Capture on channel A: Off 

// Compare/Capture on channel B: Off 

TCD1.CTRLB=(TCD1.CTRLB & (~(TC1_CCAEN_bm | TC1_CCBEN_bm | 

TC1_WGMODE_gm))) | 

    TC_WGMODE_NORMAL_gc; 

 

// Capture event source: None 

// Capture event action: None 

TCD1.CTRLD=(TCD1.CTRLD & (~(TC1_EVACT_gm | TC1_EVSEL_gm))) | 

    TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc; 

 

// Overflow interrupt: Low Level 

// Error interrupt: Enabled 

TCD1.INTCTRLA=(TCD1.INTCTRLA & (~(TC1_ERRINTLVL_gm ))) | 

    TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_LO_gc | TC1_OVFINTLVL_gm; 

 

// Compare/Capture channel A interrupt: Disabled 

// Compare/Capture channel B interrupt: Disabled 

TCD1.INTCTRLB=(TCD1.INTCTRLB & (~(TC1_CCBINTLVL_gm | 

TC1_CCAINTLVL_gm))) | 

    TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc; 

 

// High resolution extension: Off 

HIRESD.CTRL&= ~HIRES_HREN1_bm; 

 

// Clear the interrupt flags 

TCD1.INTFLAGS=TCD1.INTFLAGS; 

// Set counter register 

TCD1.CNT=0x0000; 

// Set period register 

TCD1.PER=64000; 

// Set channel A Compare/Capture register 

TCD1.CCA=0x0000; 

// Set channel B Compare/Capture register 

TCD1.CCB=0x0000; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

} 

 

// Timer/counter TCD1 Overflow/Underflow interrupt service routine 

interrupt [TCD1_OVF_vect] void tcd1_overflow_isr(void){ 

    stepready = 1; 
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    if (battCurr[0]>0.1 || battCurr[0]<-0.35){ 

        AmpSec = AmpSec + battCurr[0]*TSamp_TCD1; 

    } 

 

    if(AmpSec<=0) AmpSec=0; 

    else if(AmpSec>MAX_AMP_SEC) AmpSec=MAX_AMP_SEC; 

 

} 

 

 

// Timer/Counter TCE0 initialization 

void tcc1_init(void) 

{ 

unsigned char s; 

 

// Note: the correct PORTC direction for the Compare Channels 

outputs 

// is configured in the ports_init function 

 

// Save interrupts enabled/disabled state 

s=SREG; 

// Disable interrupts 

#asm("cli") 

 

// Disable and reset the timer/counter just to be sure 

tc1_disable(&TCC1); 

// Clock source: Peripheral Clock/1 

TCC1.CTRLA=(TCC1.CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_DIV1_gc; 

 

// Mode: Dual Slope PWM Gen., Overflow Int./Event on TOP & BOTTOM 

// Compare/Capture on channel A: Off 

// Compare/Capture on channel B: On 

// Compare/Capture on channel C: Off 

// Compare/Capture on channel D: Off 

//TCC0.CTRLB=(TCC0.CTRLB & (~(TC0_CCAEN_bm | TC0_CCBEN_bm | 

TC0_CCCEN_bm | TC0_CCDEN_bm | TC0_WGMODE_gm))) | 

//    TC0_CCBEN_bm | TC0_CCAEN_bm| 

//    TC_WGMODE_DS_TB_gc; 

 

TCC1.CTRLB = 0b00000011; //W 

TCC1.CTRLB = TCC1.CTRLB | 0b00010000; 

 

  

// Capture event source: None 

// Capture event action: None 

TCC1.CTRLD=(TCC0.CTRLD & (~(TC0_EVACT_gm | TC0_EVSEL_gm))) | 

TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc; 

 

// Overflow interrupt: Medium Level 

// Error interrupt: Disabled 

// TCC0.INTCTRLA=(TCC0.INTCTRLA & (~(TC0_ERRINTLVL_gm | 

TC0_OVFINTLVL_gm))) | 

//    TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc; 
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// Compare/Capture channel A interrupt: Disabled 

// Compare/Capture channel B interrupt: Disabled 

 

//TCC0.INTCTRLB=(TCC0.INTCTRLB & (~(TC0_CCDINTLVL_gm | 

TC0_CCCINTLVL_gm | TC0_CCBINTLVL_gm | TC0_CCAINTLVL_gm))) | 

//    TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc | 

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc; 

 

// High resolution extension: Off 

HIRESC.CTRL&= ~HIRES_HREN0_bm; 

 

// Clear the interrupt flags 

TCC1.INTFLAGS=0; 

 

// Set counter value 

TCC1.CNT=0x0000; 

 

// Set period register 

TCC1.PER=1600-1; 

 

// Set channel A Compare/Capture register 

TCC1.CCA=0; 

// Set channel B Compare/Capture register 

TCC1.CCB=0x0000; 

 

// Restore interrupts enabled/disabled state 

SREG=s; 

} 

 

 

 

// RTC initialization 

void rtcxm_init(void) 

{ 

 

// RTC 1.024kHz 

RTC.CTRL=(RTC.CTRL & (~RTC_PRESCALER_gm)) | RTC_PRESCALER_DIV1_gc; 

 

// RTC overflow interrupt: Off 

// RTC compare interrupt: Off 

RTC.INTCTRL=(RTC.INTCTRL & (~(RTC_OVFINTLVL_gm | 

RTC_COMPINTLVL_gm))) | 

    RTC_OVFINTLVL_OFF_gc | RTC_COMPINTLVL_OFF_gc;     

     

RTC.CNT=0; 

 

// 1.024kHz internal 32.768 RC oscilator, Enable RTC Clock 

CLK.RTCCTRL = 0b0101;  

 

} 

 

//Code given from  

    //http://blog.frankvh.com/2009/11/14/atmel-xmega-printf-howto/ 

 

// Init USART.  Transmit only (we're not receiving anything) 
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// We use USARTC1, transmit pin on PC7. 

// Want 9600 baud. Have a 32 MHz clock. BSCALE = 0 

// BSEL = ( 32000000 / (2^0 * 16*9600)) -1 = 103 

// Fbaud = 32000000 / (2^0 * 16 * (12+1))  = 9615 bits/sec 

 

void usartC1_init(void){ 

    // Set the TxD pin high - set PORTC DIR register bit 7 to 1 

    PORTC.OUTSET = PIN7_bm; 

    //PORTE.OUTSET = PIN3_bm; 

     

    // Set the TxD pin as an output - set PORTC OUT register bit 7 

to 1 

    //PORTE.DIRSET = PIN3_bm; 

    PORTC.DIRSET = PIN7_bm;          

     

    // Set baud rate & frame format 

    //USARTE0.BAUDCTRLB = 0;            // BSCALE = 0 as well, 

19200 

    //USARTE0.BAUDCTRLA = 0x67; 

     

     

    USARTC1.BAUDCTRLB = 0b11010000;     // BSCALE = -3 

    //USARTE0.BAUDCTRLB = 0b11010000;       // BSCALE = -3 

     

    USARTC1.BAUDCTRLA = 135; //115,200  

    //USARTE0.BAUDCTRLA = 63; //230,400 

    //USARTE0.BAUDCTRLA = 27; //460800 

    //USARTE0.BAUDCTRLA = 9; //921600 

    //USARTC1.BAUDCTRLA = 9; //921600 

     

    // Set mode of operation 

    USARTC1.CTRLA = 0;              // no interrupts please 

    USARTC1.CTRLC = 0x03;           // async, no parity, 8 bit 

data, 1 stop bit 

    //USARTE0.CTRLA = 0;                // no interrupts please 

    //USARTE0.CTRLC = 0x03;         // async, no parity, 8 bit 

data, 1 stop bit 

  

    // Enable transmitter only 

    USARTC1.CTRLB = 0b00001000;    

    //USARTE0.CTRLB = 0b00001000;    

     

} 

 

void usartE0_init(void){ 

    // Set the TxD pin high - set PORTC DIR register bit 7 to 1 

    PORTE.OUTSET = PIN3_bm; 

     

    // Set the TxD pin as an output - set PORTC OUT register bit 7 

to 1 

    PORTE.DIRSET = PIN3_bm; 

     

    // Set baud rate & frame format 

    USARTE0.BAUDCTRLB = 0;          // BSCALE = 0 as well, 19200 

    USARTE0.BAUDCTRLA = 0x67; 
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    // Set mode of operation 

    USARTE0.CTRLA = 0;              // no interrupts please 

    USARTE0.CTRLC = 0x03;           // async, no parity, 8 bit 

data, 1 stop bit 

  

    // Enable transmitter only 

    USARTE0.CTRLB = 0b00001000;    

     

} 

 

void uartE0_putchar (char c) 

{ 

 

    // Wait for the transmit buffer to be empty 

    while ( !( USARTE0.STATUS & USART_DREIF_bm) ); 

    // Put our character into the transmit buffer 

    USARTE0.DATA = c;  

} 

  

 

 

// Disable an USART 

void usart_disable(USART_t *pu) 

{ 

// Rx and Tx are off 

pu->CTRLB=0; 

// Ensure that all interrupts generated by the USART are off 

pu->CTRLA=0; 

} 

 

 

void adc_init(void){ 

 

    ADCA.CALL = SP_ReadCalibrationByte( PROD_SIGNATURES_START + 

ADCACAL0_offset ); 

    ADCA.CALH = SP_ReadCalibrationByte( PROD_SIGNATURES_START + 

ADCACAL1_offset ); 

 

     

    ADCA.CTRLA = 0b00111101; // set up with a four channel sweep 

    ADCA.CTRLB = 0b00010000; // signed 

    ADCA.REFCTRL =0b00110000;     //portb reference, temp and 

bandgap disabled 

    ADCA.EVCTRL = 0b11000000;  // no events 

    //ADCA.PRESCALER = 0b00000011; // div 32 

    //ADCA.PRESCALER = 0b00000111; // div 512, 62.5kHz 

    ADCA.PRESCALER = 0b00000101; // div 128, 250kHz 

    //ADCA.PRESCALER = 0b00000110; // div 256, 125kHz 

     

    ADCA.CH0.CTRL =0b10000011; // start channel 0, differential 

w/gain 1 

    ADCA.CH0.MUXCTRL = 0b00000011; // Differential POS=A0 and 

NEG=A7, Battery Voltage 

    ADCA.CH0.INTCTRL = 0b00000000; // no interrupt on channel 0; 
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    //ADCA.CH1.CTRL =0b10011011; // start channel 1, differential 

w/gain 64 

    //ADCA.CH1.CTRL =0b10010011; // start channel 1, differential 

w/gain 16 

    ADCA.CH1.CTRL =0b10001111; // start channel 1, differential 

w/gain 8 

    ADCA.CH1.MUXCTRL = 0b00010010;  // Differential POS=A2 and 

NEG=A6, Battery Current    

    //ADCA.CH1.MUXCTRL = 0b00110010;  // Differential POS=A6 and 

NEG=A6, Battery Current 

    ADCA.CH1.INTCTRL = 0b00000000; // no interrupt on channel 1; 

 

    //ADCA.CH2.CTRL = 0b10011011; // start channel 2, differential 

w/gain 64   

    ADCA.CH2.CTRL = 0b10000011;   // start channel 2, differential 

w/gain 1   

    ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and 

NEG=A5, MOSFET Current      

    //ADCA.CH2.CTRL = 0b10000011;                                  

    //ADCA.CH2.MUXCTRL = 0b00101001; // Differential POS=A4 and 

NEG=A5, MOSFET Current      

    ADCA.CH2.INTCTRL = 0b00000000; // no interrupt on channel 2; 

 

    ADCA.CH3.CTRL = 0b10000001; // start channel 3, single-ended  

    ADCA.CH3.MUXCTRL = 0b00011000; // Batt temp 

    ADCA.CH3.INTCTRL = 0b00000001; // low interrupt on channel 3; 

} 

 

 

// ADC interrupt service routine 

interrupt [ADCA_CH3_vect] void ADCA_CH3_isr(void){ 

    char i; 

    //sleep_disable();  

 

    // the ADC does not seem to bounds check properly, so I'll have 

to do it 

    ADCbuffer = ADCA.CH0.RES; 

    ADCtemp[0] += bound(ADCbuffer, 0, 2047); 

         

    ADCbuffer = ADCA.CH1.RES; 

    ADCtemp[1] += bound(ADCbuffer, -2048, 2047); 

    

    ADCbuffer = ADCA.CH2.RES; 

    ADCtemp[2] += bound(ADCbuffer, -2048, 2047); 

 

    ADCbuffer = ADCA.CH3.RES; 

    ADCtemp[3] += bound(ADCbuffer, 0, 2047); 

 

    ADCsamplecount++; //16 super sample 

    if(ADCsamplecount > 63){  

          

         

        //store the values 

        ADCvalues[0] = ADCtemp[0]>>6; 
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        ADCvalues[1] = ADCtemp[1]>>6; 

        ADCvalues[2] = ADCtemp[2]>>6; 

        ADCvalues[3] = ADCtemp[3]>>6;       

 

        for(i = 0; i<4; i++){ 

            ADCtemp[i] = 0; 

        }   

             

        ADCsamplecount = 0;   

        //printf("%4d, 

%4d\r\n",temp,battVolt,ADCvalues[1],ADCvalues[2]); 

    }      

     

    //Initiate next samples 

    ADCA.CH0.CTRL |=0b10000000; 

    ADCA.CH1.CTRL |=0b10000000; 

    ADCA.CH2.CTRL |=0b10000000; 

    ADCA.CH3.CTRL |=0b10000000; 

    //sleep_enable();   

    //idle();  

} 

 

 

interrupt [TWIC_TWIM_vect] void TWIC_TWIM_isr(void){ 

       //unsigned char x = 0; 

       if ((TWIC.MASTER.STATUS & 

TWI_MASTER_WIF_bm)>>TWI_MASTER_WIF_bp){ 

             

            if ((TWIC.MASTER.STATUS & 

TWI_MASTER_ARBLOST_bm)>>TWI_MASTER_ARBLOST_bp){ //CASE M1 

                //IF BUSY STATE -> MAKE IDLE  

                TWIC.MASTER.STATUS = (TWIC.MASTER.STATUS & 

~TWI_MASTER_BUSSTATE_gm) | TWI_MASTER_BUSSTATE_IDLE_gc; 

            }else if((TWIC.MASTER.STATUS & 

TWI_MASTER_RXACK_bm)>>TWI_MASTER_RXACK_bp){ //CASE M2    

                #asm("wdr") 

                 

                // This code makes the master skip any cells that 

are not responding... be sure to comment out "rewrite slave address 

below" too       

                 // if(/*slaveAddress==4 || slaveAddress==5 ||*/ 

slaveAddress==6){ 

                 //       battIdx++; 

                 //       dataIdx=0;        

                 //       slaveAddress=battIdx+1;  

                 //       currAddress=slaveAddress<<1|READ;  

                 //}else{ 

                    //PORTD.OUTCLR = 2;  

                    //for (x=0; x<slaveAddress; x++){                     

                    //    delay_ms(300);    

                    //    PORTD.OUTTGL = 4; 

                    //    delay_ms(300);  

                    //    PORTD.OUTTGL = 4; 

                    //}           

                    //delay_ms(1000); 
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                 //}      

                      

                 

                TWIC.MASTER.ADDR = currAddress;   //rewrite slave 

address  

                PORTD.OUTTGL = 4; //Toggle Red Led 1 if stuck.  

            }else{  //MASTER WRITE SEQUENCE       

               #asm("wdr") 

               /*if(dataCnt==0){   

                    dataCnt=1;  

                    TWIC.MASTER.DATA = chargeStatus;  

                    //TWIC.MASTER.DATA = dataOutTWIC; 

               }else if(dataCnt==1){ 

                    dataCnt=2;  

                    TWIC.MASTER.DATA = dataOutTWIC;   

               }else{             

                    TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC & 

~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc; 

                    dataCnt=0;         

               }*/       

               if(dataCnt==0){   

                    dataCnt=1;  

                    TWIC.MASTER.DATA = dataOutTWIC; 

               }else{             

                    TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC & 

~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc; 

                    dataCnt=0; 

                    twiLock=0;          

               }            

 

            }                               

             

       }else if ((TWIC.MASTER.STATUS & 

TWI_MASTER_RIF_bm)>>TWI_MASTER_RIF_bp){ //MASTER READ SEQUENCE 

               battData[battIdx][dataIdx++] = TWIC.MASTER.DATA;      

               if(dataIdx<10){                     

                    //Send Ack and Get Next Byte 

                    TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC & 

~TWI_MASTER_CMD_gm & ~TWI_MASTER_ACKACT_bm) | 

TWI_MASTER_CMD_RECVTRANS_gc;                      

               }else{  

                    //Send Nack and Stop Condition 

                    TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC & 

~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc | 

TWI_MASTER_ACKACT_bm;                   

                    newData=1;  

                    dataIdx=0;            

                    PORTD.OUTCLR = 4; //Ensure RED LED 1 Off if 

communicating 

                    #asm("wdr") 

               } 

       }    

}  
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void init_I2C_Mast() 

{ 

     

    //000000,  BIT 7:2 RESERVED 

    //0,  BIT 1 SDAHOLD, 1-ENABLE, 0-DISABLE 

    //0, BIT 0 EXTERNAL DRIVER ENABLE, 1=EXTERNAL ENABLE, 0=NORMAL 

TWI 

    TWIC.CTRL = 0b00000000;     

                                    

    //0000, BIT 7:4 RESERVED 

    //00,   BIT 3:2 TIMEOUT, INACTIVE BUS TIMEOUT, 00=DISABLED  

    //0,    BIT 1, QCEN, Quick Cmd enable  

    //0,    BIT 0, SMEN, Smart mode enable, ACK sent after data 

read 

    TWIC.MASTER.CTRLB = 0b00000000;   

     

    //00000, BIT 7:3 Reserved 

    //1, BIT 2, ACKACT Acknowledge Action bit, 1=Send Ack, 0=send 

Nack 

    //0, BIT 1:0, CMD BITS, 00=RESERVED, 01=execute ack w/ repeated 

start 

    //                      10=execute ack w/ byte receive 

    //                      11=execute ack w/ stop condition 

      

    TWIC.MASTER.CTRLC = 0b00000100;    

           

                                

    //Force busstate to idle clear all other bits.     

    TWIC.MASTER.STATUS = 0b11001101;  

     

    TWIC.MASTER.ADDR=0; 

    TWIC.MASTER.DATA=0;    

    //TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*75e3)-5 = 208 == 75kHz baud 

    //TWIC.MASTER.BAUD = 208; 

      

    //TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*100e3)-5 = 155 == 100kHz 

baud 

    //TWIC.MASTER.BAUD = 155;  

     

    //TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*25e3)-5 = 155 == 25kHz baud 

    TWIC.MASTER.BAUD = 255; 

                         

    //TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*300e3)-5 = 48 == 300kHz 

baud 

    //TWIC.MASTER.BAUD = 48; 

     

    //00, BIT 7:6, Interrupt Level, 11=HIGH, 10=MED, 01=LOW, 00=OFF 

    //0, BIT 5, RIEN, Read Interrupt  

    //0, BIT 4, WIEN, Write Interrupt Enable   

    //0, BIT 3, ENABLE, TWI MASTER 

    //0, BIT 2:0, RESERVED 

    TWIC.MASTER.CTRLA = 0b01111000; 

 

} 
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void main(void) 

{ 

// Declare your local variables here 

 

int movAvgValues[3][64];  

long movAvgTotal[3]={0,0,0}; 

int newAdcVal[3]; 

unsigned int initSamples=0; 

unsigned int sampleIdxOldest=0; 

 

unsigned char n; 

unsigned char ledVal; 

 

int mosCurrRaw;  

int battCurrRaw;  

int battVoltRaw; 

unsigned int socRaw=0x0700;  

unsigned int tempRaw=0;  

                

unsigned int i=0; 

 

unsigned int duty=0; 

 

float error = 0.0;  

float refV = 0.0;  

float KpV = 0; 

 

 

unsigned char currBattIdx=0;  

unsigned int chargerConnectedCnt=0;  

 

KpV = -200;  

refV = STOP_CHARGE_VOLT; 

 

// Make sure the interrupts are disabled 

#asm("cli") 

// Low level interrupt: On 

// Round-robin scheduling for low level interrupt: Off 

// Medium level interrupt: On 

// High level interrupt: On 

// The interrupt vectors will be placed at the start of the 

Application FLASH section 

n=(PMIC.CTRL & (~(PMIC_RREN_bm | PMIC_IVSEL_bm | PMIC_HILVLEN_bm | 

PMIC_MEDLVLEN_bm | PMIC_LOLVLEN_bm))) | 

    PMIC_LOLVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_HILVLEN_bm; 

CCP=CCP_IOREG_gc; 

PMIC.CTRL=n; 

// Set the default priority for round-robin scheduling 

PMIC.INTPRI=0x00; 

 

// Watchdog timer initialization 

watchdog_init(); 

 

// System clocks initialization 
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system_clocks_init(); 

 

// Event system initialization 

event_system_init(); 

 

// Ports initialization 

ports_init(); 

 

init_I2C_Mast();  

 

// Virtual Ports initialization 

//vports_init(); 

 

delay_ms(400);  

 

// Timer/Counter TCC1 initialization 

tcc1_init(); 

 

// Timer/Counter TCD0 is enabled, used to initiate talking to 

boards. 

tcd0_init(); 

 

// Timer/Counter TCD1 is enabled 

tcd1_init(); //stepready 

 

// Timer/Counter TCE0 initialization 

//tce0_init(); 

 

// RTC initialization 

rtcxm_init(); 

 

// USARTC0 is disabled 

usart_disable(&USARTC0); 

 

// USARTC1 is disabled 

usart_disable(&USARTC1); 

 

// USARTD0 is disabled 

usart_disable(&USARTD0); 

 

// USARTD1 is disabled 

usart_disable(&USARTD1); 

 

// USARTE0 is disabled 

usart_disable(&USARTE0); 

 

// SPIC initialization 

//spic_init(); 

 

// ADC Initilization 

adc_init(); 

usartC1_init();  

usartE0_init(); 

 

ADCA.CH0.MUXCTRL = 0b00110010;  // Differential POS=A6 and NEG=A6 
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ADCA.CH1.MUXCTRL = 0b00110010;  // Differential POS=A6 and NEG=A6 

ADCA.CH2.MUXCTRL = 0b00110010;  // Differential POS=A6 and NEG=A6 

 

//Calibrate Differential Gain Offset 

for (i=0; i<64; i++){ 

    ADCA.CH0.CTRL |=0b10000000; 

    ADCA.CH1.CTRL |=0b10000000; 

    ADCA.CH2.CTRL |=0b10000000; 

    while((ADCA.CH2.INTFLAGS&0x01)!=1);      

    ADCA.CH2.INTFLAGS |= 0x01;  //clear flag 

     

    OFFSET_CH0_DIFF += ADCA.CH0.RES; 

    OFFSET_CH1_DIFF += ADCA.CH1.RES; 

    OFFSET_CH2_DIFF += ADCA.CH2.RES; 

} 

 

OFFSET_CH0_DIFF = OFFSET_CH0_TOTAL>>6;  

OFFSET_CH1_DIFF = OFFSET_CH1_TOTAL>>6;  

OFFSET_CH2_DIFF = OFFSET_CH2_TOTAL>>6;   

      

ADCA.CH0.MUXCTRL = 0b00000011; // Differential POS=A0 and NEG=A7, 

Battery Voltage 

ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and NEG=A6, 

Battery Current    

ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and NEG=A5, 

MOSFET Current      

       

 

// Globaly enable interrupts 

#asm("sei") 

 

 

//Battery Voltage Control 

KpV = -100;  

refV = STOP_CHARGE_VOLT; 

 

watchdog_init(); 

desiredCurrentInt=desiredCurrentIntEE;  

desiredCurrentDec=desiredCurrentDecEE;  

 

    while (1) 

    {   

          if(stepready) 

          {  

 

                stepready=0;      

                newAdcVal[0] = ADCvalues[0]; //Raw Batt Voltage 

                newAdcVal[1] = ADCvalues[1]; //Raw Batt Current 

                newAdcVal[2] = ADCvalues[2]; //Raw MOSFET Current                          

                          

                if(initSamples<64) //Grabs first 128 samples to 

start off average filter, this all occurs during INIT MODE so 

battVoltageFilt can be wrong during this time 

                {    

                   for (i=0; i<3; i++) 
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                   { 

                        movAvgValues[i][initSamples] = 

newAdcVal[i]; 

                        movAvgTotal[i] = movAvgTotal[i] + 

movAvgValues[i][initSamples]; //Eventually will hold total of first 

128 samples 

                   } 

                   initSamples++;     

                } 

                else 

                {  

                   for (i=0; i<3; i++) 

                   { 

                        movAvgTotal[i] = movAvgTotal[i] - 

movAvgValues[i][sampleIdxOldest]; //Subtracts out oldest sample 

                        movAvgValues[i][sampleIdxOldest] = 

newAdcVal[i]; //Replace oldest sample value with a new value  

                        movAvgTotal[i] = 

movAvgTotal[i]+movAvgValues[i][sampleIdxOldest]; //Add in newest 

value, movAvgTotal is now last 128 values, increment oldest index  

                   }                

                   sampleIdxOldest++; 

                   sampleIdxOldest&=0x3F; //Wraps around Oldest 

Index value in case it "overflows" out of range of movAvgValues[] 

array 

                }   

                  

               battVoltRaw = movAvgTotal[0]>>6;  

               battCurrRaw = movAvgTotal[1]>>6; 

               mosCurrRaw = movAvgTotal[2]>>6; 

               tempRaw = ADCvalues[3];  

                           

               offset = (signed int)(ADC_OFFSET_M[0]*mosCurrRaw + 

ADC_OFFSET_B[0]);  

               mosCurrRaw = mosCurrRaw+offset;  

           

               offset = (signed int)(ADC_OFFSET_M[0]*battVoltRaw + 

ADC_OFFSET_B[0]);  

               battVoltRaw = battVoltRaw+offset;  

                

               battVolt[0] =  battVoltRaw*0.0025;  

               mosCurr[0] = mosCurrRaw*.001; //1 ohm, gain 1  

               battCurr[0] = battCurrRaw*0.020833333; //6 mOhm, 

gain 8             

                  

                  

               if (mosCurr[0]<0) mosCurr[0]=0; 

               temp[0] = -1481.96 + sqrt(2196200 + (1863.9-

tempRaw)*257.732);           

               socRaw = (unsigned 

int)((float)4095.0*(float)((float)AmpSec/(float)MAX_AMP_SEC));  

                

                

               soc[0] = socRaw*0.0244140625;   
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               if(AmpSec<=0) AmpSec=0;  

                 

                //Loop occurs at 4.32ms with printf statement  

                 

                if(mosCurr[0]>MAX_BYPASS_CURRENT) 

                { 

                    ledColor=RED; 

                    byPassMax[0]=1;   

                } 

                else if(mosCurr[0]>0.05) 

                { 

                    ledColor=AMBER;  

                    byPassOn[0]=1;  

                } 

                else 

                { 

                    ledColor=GREEN; 

                    byPassOn[0]=0; 

                    byPassMax[0]=0;   

                }   

                 

                if(battVolt[0]<OVERDISCHARGE_VOLT) 

overDischarge[0]=1;  

                else overDischarge[0]=0;       

               

                voltCntrlCnt++;  

                if(voltCntrlCnt>75) 

                {   

                    voltCntrlCnt=0;                        

                    error = (refV-battVolt[0]);   

                    if (error>=0)   //if batteryVoltage <3.8 means 

error is positive 

                    {  

                        if((duty+error*KpV)<=0) //prevent 

controller from causing duty from rolling over 

                        {   

                            duty=0; 

                        } 

                        else 

                        { 

                            duty=duty+KpV*error; 

                        } 

                    } 

                    else 

                    { 

                        duty=duty+KpV*error; // + 

KpV*250*integral_V;   

                    } 

                } 

                       

               //Cap duty cycle to a maximum value.  

               if(duty>DUTY_CYC_MAX) duty=DUTY_CYC_MAX; 

                     

                   //Ensure mosfet stays off if battery is not 

charging and battery voltage is less than max 
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               if(battCurr[0]<=0.05 && 

battVolt[0]<(STOP_CHARGE_VOLT))  

               { 

                    if(dutyOffCnt<=MAX_DUTY_OFF_CNT) dutyOffCnt++; 

                                            

                    if(dutyOffCnt>=MAX_DUTY_OFF_CNT) 

                    { 

                        TCC1.CCA=0; 

                    }  

               } 

               else 

               { 

                    TCC1.CCA=duty;       

               }         

                

          }  

 

           if(dataOutTWIC == LOW_SOC) 

           { 

                ledVal=LOW_SOC;  

           } 

           else 

           {  

                if(dataOutTWIC>6) 

                { 

                    ledVal=7;              

                } 

                else 

                {         

                   ledVal=dataOutTWIC; 

                   if(ledVal>6)ledVal=7;   

                }  

           }  

                 

           switch(ledVal) 

           { 

                case 1:   

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0;           

                    PORTD.OUTSET = ledColor; //0b00000010==2    

                    break; 

                case 2:    

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0; 

                    PORTD.OUTSET = ledColor<<2; //0b00001000==8 

                    break; 

                case 3:    

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0; 

                    PORTD.OUTSET = ledColor<<4; //0b00100000==32   

                    break; 

                case 4:    

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0; 

                    PORTD.OUTSET = ledColor<<6; //0b10000000==128      
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                    break; 

                case 5:  

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0;        

                    PORTE.OUTSET = 0b0011 & ledColor; 

//0b00000010==2     

                    break;  

                case 6:      

                    PORTD.OUT = 0;  

                    PORTE.OUT = 0; 

                    PORTE.OUTSET = 0b0011 & (ledColor<<2); 

//0b00001000==8     

                    break;      

                case LOW_SOC: 

                    PORTD.OUTTGL = 0b01010101;   

                    PORTE.OUTTGL = 0b00000001;   

                    break; 

                default: 

                    PORTD.OUT = ledColor;  

                    PORTE.OUT = 0;  

                    break; 

           }   

      

          //GRAB DATA FROM OTHER ICMU SLAVES 

          currBattIdx=battIdx; //HOLD BATTERY CELL INDEX VALUE 

WHILE RUNNING THE FOLLOWING LOOP IN CASE battIdx IS CHANGED IN 

INTERRUPT    

          if(newData) 

          {      

                if(currBattIdx!=0) //IF NOT THE MASTER, WE NEED TO 

CONVERT MEASURMENT DATA FROM PACKET BACK TO ACTUAL VALUE           

                { 

                    battCurrRaw = (signed int)((((unsigned 

int)battData[currBattIdx][1])<<8) | battData[currBattIdx][0]);  

                    battVoltRaw = (signed int)((((unsigned 

int)battData[currBattIdx][3])<<8) | battData[currBattIdx][2]);  

                    mosCurrRaw = (signed int)((((unsigned 

int)battData[currBattIdx][5])<<8) | battData[currBattIdx][4]); 

                    tempRaw = (unsigned int)((((unsigned 

int)battData[currBattIdx][7])<<8) | battData[currBattIdx][6]); 

                     

                    //NEED TO GRAB STATUS BITS FROM PACKET 

                    byPassOn[currBattIdx]=(battData[currBattIdx][9] 

& 0x80)>>7; 

                    

byPassMax[currBattIdx]=(battData[currBattIdx][9] & 0x40)>>6; 

                    overDischarge[currBattIdx] = 

(battData[currBattIdx][9] & 0x20)>>5; 

                    overTemp[currBattIdx] = 

(battData[currBattIdx][9] & 0x10)>>4; 

                     

                    //GRAB SOC DATA FROM CURRENT CELL INDEX SOC 

                    battData[currBattIdx][9] = 

battData[currBattIdx][9]&0x0F; 
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                    socRaw = (unsigned int)((((unsigned 

int)battData[currBattIdx][9])<<8) | battData[currBattIdx][8]); 

                     

                    //CONVERT RAW DATA TO SCIENTIFIC NOTATION 

                    battVolt[currBattIdx] =  battVoltRaw*0.0025;  

                    mosCurr[currBattIdx] = mosCurrRaw*.001; //1 

ohm, gain 1  

                    battCurr[currBattIdx] = 

battCurrRaw*0.020833333; //6 mOhm, gain 8                    

                    temp[currBattIdx] = tempRaw*0.01;           

                    soc[currBattIdx] = socRaw*0.02442; 

                }                

                 

                //PRINT OUT CURRENT CELL'S DATA ONLY IF THE BPMU'S 

MEASURED CURRENT IS ABOVE A CERTAIN THRESHOLD 

                if(battCurr[0]>0.08 || battCurr[0]<-0.08) 

                {                 

                    

printf("%05u,%02d,%03.2f,%03.3f,%+03.3f,%+03.2f,%03.2f,%1d,%1d,%1d,

%1d\r\n",RTC.CNT,currBattIdx+1,temp[currBattIdx],battVolt[currBattI

dx],battCurr[currBattIdx],mosCurr[currBattIdx],soc[currBattIdx],byP

assOn[currBattIdx],byPassMax[currBattIdx],overDischarge[currBattIdx

],overTemp[currBattIdx]);              

                } 

                 

                //CLEAR FLAG FOR newData AND WAIT FOR NEXT I2C 

MESSAGE, INCREMENT INDEX TO THE NEXT ICMU  

                newData=0;       

                battIdx++; 

               

                //CHECK TO SEE IF LAST ICMU'S INFORMATION HAS BEEN 

RECEIVED.  

                if(battIdx>=MAX_BATT_CNT) 

                { 

                        battIdx=0;    

                        dataRdy=1;    

                             

                        //CHECK IF ANY CELL IS IN AND UNDERVOLT 

CONDITION     

                        underVoltCond = 0;  

                        for(i=0;i<MAX_BATT_CNT;i++) 

                        {  

                           if(battVolt[i]<2.5 && soc[i]<0.1)  

                           { 

                                underVoltCond = 1;  

                                break; 

                           }    

                           underVoltCond = 0;                             

                        }  

                           

                        //COUNTER FILTER FOR DETECTING UNDERVOLTAGE 

CONDITION   

                        if(underVoltCond) 

                        { 
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                            if(underVoltCondCnt<65000) 

underVoltCondCnt++;  

                        }else 

                        { 

                            underVoltCondCnt=0;  

                        }   

                         

                        //ENSURE THAT CONDITION EXISTS FOR A 

CERTAIN COUNT BEFORE SETTING CONDITION 

                        if(underVoltCondCnt>1000) 

                        {   

                            //SEND OUT LOW SOC MESSAGE TO ALL ICMUs 

                            //ALL ICMUs WILL FLASH RED THEN 

                            dataOutTWIC=LOW_SOC;    

                        } 

                        else //NOT LOW SOC DETECTED, 

INCREMENT/DECREMENT NEXT NUMBER FOR "KNIGHT RIDER EFFECT" 

                        { 

                            if(increment)  

                            { 

                                dataOutTWIC++;   

                            } 

                            else  

                            { 

                                dataOutTWIC--;  

                            } 

                            if(dataOutTWIC>=MAX_BATT_CNT*6)  

                            { 

                                increment=0;   

                            }else if (dataOutTWIC==0){ 

                                increment=1;  

                            }  

                        }              

                         

                        //Writing current count to all slaves for 

cycling LED display pattern, data being written out is in 

dataOutTWIC 

                        currAddress=allCallAddress<<1|WRITE;   

                        TWIC.MASTER.ADDR = currAddress;            

                }  

          } 

           

          //ONCE ALL ICMU DATA HAS BEEN RECEIVED PRINT OUT 

INFORMATION ON BATTERY PACK AS WHOLE. 

          //SPECIFICALLY, PACK VOLTAGE, CURRENT, AND SOC (ZEROS ARE 

JUST PLACEHOLDERS).  

          if(dataRdy) 

          { 

                dataRdy=0;  

                packCurr=0;             

                packSoc=100.0; 

                packVolt=0;   

                //CALCULATE PACK VOLTAGE FROM SUM OF ALL ICMU's 

CELL VOLTAGE 

                for(i=0; i<MAX_BATT_CNT; i++) 
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                { 

                    packCurr=battCurr[i]+packCurr; //SUM CURRENT 

FOR CURRENT AVERAGE 

                    packVolt=battVolt[i]+packVolt; 

                    if(soc[i]<packSoc) packSoc=soc[i];          

                }                                       

                packCurr=packCurr/MAX_BATT_CNT;  //AVERAGE CURRENT 

FOR ALL CELLS (SHOULD BE SAME) 

                

printf("0,0,0,0,0,0,0,0,0,0,0,%03.3f,%+03.3f,%03.2f\r\n",packVolt,p

ackCurr,packSoc);  

          }                                 

                        

          if(waitToChangeCnt<65530) 

          { 

            waitToChangeCnt++; //Prevent Rollover 

          } 

           

           

           

          //************** BEGIN LOGIC FOR CHARGER 

CONTROL*******************/ 

           

          //DETECT THAT CHARGER IS CONNECTED  

          if(((PORTE.IN&PIN2_bm)>>PIN2_bp)==0) //Charger present if 

pin is low 

          { 

                //FLASH LED 2 TIMES AMBER IF CHARGER IS DETECTED 

                if(chargerConnectedCnt>2000) 

                { 

                    chargerConnectedCnt = 0; 

                    PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2     

                    delay_ms(500);   

                    PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2     

                    delay_ms(500);   

                    PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2     

                    delay_ms(500); 

                    PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2     

                    delay_ms(500); 

                } 

                 

                 

                //****CHECK: IS AN ICMU AT ITS MAXIMUM BYPASS 

CURRENT?  

                //LOGIC TO DETERMINE IF ANY ICMU IS AT MAX BYPASS 

                battBypassId=100;     

                for(i=0;i<MAX_BATT_CNT;i++) 

                {  

                    //BREAK OUT OF LOOP WHEN MAX IS DETECTED  

                    //KEEPING THE ICMU'S INDEX THAT IS AT MAX 

                    //IF NO CELL IS OVER BYPASS MAX CURRENT 

                    //THEN battBypassId REMAINS 100 WHICH NO  

                    //VALID ICMU WILL HAVE THAT VALUE IN THIS 

SYSTEM 

                    if(mosCurr[i]> MAX_BYPASS_CURRENT )  
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                    {    

                        battBypassId = i;  

                        break;  

                    } 

                }  

                 

                 

                //IF battBypassId IS NOT 100, AND THE SAME VALUE 

TWICE IN A ROW 

                //START COUNT FOR DECREASING CHARGER CURRENT 

                if ((battBypassId == prevBattBypassId) && 

(battBypassId != 100)) 

                { 

                    if(decreaseCurrentCnt<8000) 

                    {  

                        decreaseCurrentCnt++; 

                    } 

                } 

                else 

                { 

                    decreaseCurrentCnt=0;  

                }      

                 

                 

                //STORE PREVIOUS BYPASS ID FOR USE NEXT TIME AROUND 

                prevBattBypassId=battBypassId;          

                 

                        

                //****CHECK: ARE ALL BYPASSES ON?       

                //LOGIC TO DETECT THAT ALL ICMUs ARE BYPASSING SOME 

CURRENT         

                allBypassOn=1;   

                for(i=0;i<MAX_BATT_CNT;i++) 

                {  

                    allBypassOn &= (mosCurr[i]>0.05); //If 

bypassing some current, means it's at 3.8     

                }                   

                  

                //IF ALL BYPASSES ARE ON, SETUP BMS MASTER MESSAGE 

                //TO CHARGER TO SHUT-OFF 

                if(allBypassOn){ 

                    if(turnOffChargerCnt < MAX_TURNOFF_CNT){ 

                        turnOffChargerCnt++;          

                    } 

                    else 

                    {     

                        turnOffChargerCnt=0; 

                        desiredCurrentInt=0; 

                        desiredCurrentDec=0; 

                        sendDesiredCurrent=1;  

                        waitToChangeCnt=0;    

                    } 

                }               

                 

                //****CHECK: ANY CELL OVERVOLTAGE (>4.2V) 
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                //LOWER CHARGING CURRENT TO 1.8 AMPS IF ANY CELL IS 

DETECTED 

                //AS BEING HIGHER THAN 4.2V FOR A DETERMINED PERIOD 

OF TIME. 

                //NOTE: ICMUs CAN BYPASS 1.9 AMPS 

                overVoltageShutoff=0;   

                for(i=0;i<10;i++) 

                {  

                    overVoltageShutoff |= (battVolt[i]>4.2);     

                }                   

                 

                //COUNTER FOR FILTERING SHUT-OFF LOGIC FROM NOISE 

IN MEASUREMENTS 

                if(overVoltageShutoff) 

                { 

                    if(turnOffChargerCnt2 < MAX_TURNOFF_CNT) 

                    { 

                        turnOffChargerCnt2++;          

                    } 

                    else 

                    {     

                        turnOffChargerCnt2=0; 

                        desiredCurrentInt=2; 

                        desiredCurrentDec=2; 

                        sendDesiredCurrent=1;  

                        waitToChangeCnt=0;    

                    } 

                }     

                 

                //****CHECK: ANY CELL OVERTEMPERATURE 

                overTemperatureShutoff=0;   

                for(i=0;i<10;i++) 

                {  

                    overTemperatureShutoff |= overTemp[i];     

                }                   

                 

                //COUNTER FOR FILTERING SHUT-OFF LOGIC FROM NOISE 

IN MEASUREMENTS 

                if(overTemperatureShutoff) 

                { 

                    if(turnOffChargerCnt3 < MAX_TURNOFF_CNT) 

                    { 

                        turnOffChargerCnt3++;          

                    } 

                    else 

                    {     

                        turnOffChargerCnt3=0; 

                        desiredCurrentInt=0; 

                        desiredCurrentDec=0; 

                        sendDesiredCurrent=1;  

                        waitToChangeCnt=0;    

                    } 

                }     
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                //IF COUNTERS EXCEED AND ARE NOT RESET BY NORMAL 

OPERATION FROM CHECKS ABOVE 

                //CREATE MESSAGE TO CHARGER TO REDUCE CHARGING 

CURRENT 

                 

                if(decreaseCurrentCnt>5000 && 

waitToChangeCnt>WAIT_BEFORE_CHANGE_CNT) 

                {      

                    //IF CHARGING CURRENT IS 6 OR GREATER DECREASE 

CURRENT BY 2 

                    if(desiredCurrentInt>=6) 

                    { 

                        desiredCurrentInt=desiredCurrentInt-2;  

                        desiredCurrentDec=0;  

                    } 

                    else //OTHERWISE, SET CURRENT TO 1.8 A 

                    { 

                        desiredCurrentInt=1; 

                        desiredCurrentDec=8;     

                    }  

                    sendDesiredCurrent=1;  

                    waitToChangeCnt=0;      

                    decreaseCurrentCnt=0;  

                }                                           

                 

                //SEND MESSAGE TO CHARGER 

                if(sendDesiredCurrent==1) 

                {      

                    sendDesiredCurrent=0;    

                     

                    //CHECK THAT THE NEW VALUE IS NOT THE SAME AS 

WHAT IS CURRENTLY 

                    //IN THE BPMU'S EEPROM IF IT IS NEW, STORE IT 

IN BPMU's MEMORY 

                    if(desiredCurrentIntEE != desiredCurrentInt) 

                    { 

                        desiredCurrentIntEE = desiredCurrentInt;  

                        desiredCurrentDecEE = desiredCurrentDec;  

                    } 

                     

                    //CREATE PACKET 

                    //BYTE0: 0xAA IS START OF PACKET INDICATOR 

                    //BYTE1: DESIRED CURRENT INTEGER PORTION 

                    //BYTE2: DESIRED CURRENT DECIMAL PORTION 

                    //BYTE3: DESIRED CURRENT INTEGER PORTION 

                    //BYTE4: DESIRED CURRENT DECIMAL PORTION 

                    //0x55 IS END OF PACKET INDICATOR 

                    //BYTES 1&2 ARE REDUNDANT WITH BYTE 3&4 FOR 

TRANSMISSION ERROR CHECKING 

                    //ON CHARGER SIDE OF TRANSMISSION 

                    currentPkt[0]=0xAA; 

                    currentPkt[1]=desiredCurrentInt;    

                    currentPkt[2]=desiredCurrentDec; 

                    currentPkt[3]=desiredCurrentInt; 

                    currentPkt[4]=desiredCurrentDec;  
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                    currentPkt[5]=0x55;  

                                     

                    //SEND SAME PACKET 5 TIMES IN A ROW FOR CHARGER 

                    //IF CHARGER DOES NOT SEE THE SAME MESSAGE 5  

                    //IT WILL NOT CHANGE VALUE 

                    for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]);  

                    for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]); 

                    for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]); 

                    for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]); 

                    for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]);                  

                }                       

                 

          } 

          else //SYSTEM IS IN "CHARGER IS NOT CONNECTED" STATE 

          {       

                //NOISE FILTER: chargerConnected STARTS TO COUNT UP 

WHEN CHARGER IS DETECTED 

                //THIS VALUE IS RESET ABOVE WHEN THE CHARGER 

DETECTION PIN IS LOW 

                if(chargerConnectedCnt<3000)  

                { 

                    chargerConnectedCnt++;  

                } 

                //IF CHARGER IS DETECTED, SEND A MESSAGE TO CHARGER 

                //TO TELL IT TO START CHARGING AT 10 AMPS 

                if(chargerConnectedCnt>2000) 

                { 

                    desiredCurrentInt=10; //Integer 

                    desiredCurrentDec=0;  //Decimal Value   

                     

                    //CHECK IF NEW CHARGING CURRENT IS THE SAME AS 

WHAT 

                    //IS IN BPMU'S EEPROM MEMORY 

                    if(desiredCurrentIntEE != desiredCurrentInt) 

                    { 

                        //STORES 10A CHARGING CURRENT IN BPMU'S 

MEMORY 

                        //IN THE EVENT OF A RESET OCCURING 

                        desiredCurrentIntEE = desiredCurrentInt;  

                        desiredCurrentDecEE = desiredCurrentDec;  

                    }                    

                    sendDesiredCurrent=1; //TELL CHARGER 

COMMUNICATION LOGIC TO SEND A MESSAGE  

                } 

          }  

     } 

       

} 


