

THE DEVELOPMENT OF AN INTEGRATED BATTERY MANAGEMENT SYSTEM

AND CHARGER

A Thesis

Presented to

The Graduate Faculty of the University of Akron

In Partial Fulfillment

 of the Requirements for the Degree

Master of Science

Thomas V. Vo

August, 2014

ii

THE DEVELOPMENT OF AN INTEGRATED BATTERY MANAGEMENT SYSTEM

AND CHARGER

Thomas V. Vo

Thesis

Approved

Advisor

Dr. Tom T. Hartley

Committee Member

Dr. Seungdeog Choi

Committee Member

Dr. Yilmaz Sozer

Accepted

Department Chair

Dr. Abbas Omar

Dean of the College

Dr. George K. Haritos

Dean of the Graduate School

Dr. George R. Newkome

Date

iii

ABSTRACT

An investigation into battery management for lithium-based battery packs was

performed. Out of the investigation of the various management/balancing methodologies

came a proposed management methodology that is integrated with a charging system and

utilizes cost-effective, lossy, bypass resistors for cell balancing. This integration allows the

management system to cater the charging current to the needs of the battery pack and

overcome the limitations of the lossy bypass on its own. To first investigate this concept,

a LiFePO4 cell model was obtained. This was done using a cell discharging procedure and

characterization process that provides a mathematical first-principles cell model. The

obtained model was then used to simulate various pack configurations, battery

management configurations, including the proposed management method. The results from

these simulations demonstrated that the proposed management methodology balanced cell

voltages within a battery pack in as little as a single charge cycle. To confirm this concept

a manually hand-controlled experiment, consisting of voltmeter monitoring cell voltages,

manual activation of lossy bypass resistors, and manual adjustments of charging current,

was performed. The results from this experiment confirmed the ability to balance the cell

voltages within a single cycle. Hardware and software was developed to automate the

proposed management methodology. Data collected from the automated implementation

was in agreement with the performed simulations and successfully demonstrated a

iv

functional automated version of the proposed integrated battery management system and

charger.

v

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Tom T. Hartley for sharing his methods,

knowledge, his patience, and believing in me. Graduate school and life in general for that

matter, is a non-linear system, hard to model and even harder yet to control. I’m grateful

for having such a great role model during my undergraduate and graduate years to help

optimize my output from this system.

Thanks to Matt Taschner for helping me along the journey as well. We learned,

developed, discussed many things together and the experience would not have been the

same without him. He pushed through getting his thesis done and was an inspiration for

me to do the same.

A big thanks goes out to Erik Rinaldo for all of the practical knowledge he passed

on in an endless number of projects/tasks he always was willing to help me with. Thanks

to both Erik Rinaldo and Greg Lewis for the support in ordering the endless amount of

items we had purchased for all research purposes. Also a huge thanks goes out to Gay

Boden for helping me push through the massive amount of logistics, forms, and paper-

work to be able to complete my thesis and work.

Last and not least, I would like to thank my family and friends for their unending

support as I pursue my interests. Without a great support network this whole process would

vi

have been all the more challenging on my own. No matter the contribution, large or small,

thank you all for your kind words of support and help.

vii

TABLE OF CONTENTS

Page

LIST OF FIGURES ... xi

LIST OF TABLES .. xv

CHAPTER

I. INTRODUCTION .. 1

1.1 Types of Cell Combinations (Battery Packs)... 2

1.1.1 Series-Connected Cells .. 2

1.1.2 Parallel-Connected Cells.. 3

1.1.3 Series and Parallel Connected Cells .. 4

1.2 Goals of Research .. 5

1.3 Thesis Outline .. 5

II. BACKGROUND AND RELATED WORK... 7

2.1 The History of Electrochemical Cells .. 7

2.2 Electrochemical cells ... 9

2.3 Cell Chemistries ... 11

2.3.1 Lead-Acid .. 12

2.3.2 Nickel-Cadmium .. 13

2.3.3 Nickel-Metal Hydride .. 13

2.3.4 Lithium Based Chemistries .. 14

2.3.4.1 Lithium Cobalt Oxide (LiCoO2) .. 14

2.3.4.2 Lithium Manganese Oxide (LiMnO2) .. 14

viii

2.3.4.3 Lithium Iron Phosphate (LiFePO4) .. 15

2.3.4.4 Lithium-Titanate (Li2TiO3) .. 15

2.4 Charging ... 15

2.4.1 Lithium-based Battery Charging ... 16

2.4.2 Floating/Trickle Charging.. 17

2.4.3 Lithium Ion Battery Discharging ... 18

2.5 Need for Cell Balancing and Battery Management ... 19

2.6 Cell Balancing Methods Summary .. 21

2.6.1 Passive Balancing .. 21

2.6.2 Active Balancing.. 23

2.7 A Proposed Integrated Charger and Battery Management System 26

2.8 Summary .. 30

III. BATTERY CELL MODELING ... 31

3.1 Introduction .. 31

3.2 Battery Modeling ... 33

3.3 Procedure for Data Collection ... 39

3.4 Processing Collected Data ... 41

3.5 Obtained Cell Model Parameters ... 45

3.6 Cell Model Output and Equivalent Circuit Diagram for Cell Model 46

3.7 Summary .. 48

IV. CELL MODEL SIMULATIONS .. 49

4.1 Simulations of a 3-Cell Series Connected Battery Pack .. 49

4.1.1 Battery Pack without Passive Bypass .. 51

4.1.2 Battery Pack with Passive Bypass ... 55

ix

4.2 Simulations of 10-Cell Pack .. 57

4.2.1 Simulation with Non-Integrated Charger and without any BMS 57

4.2.2 Simulation with 2A Fixed Bypass and Non-Integrated Charger 60

4.2.3 Simulation with BMS and Integrated Charger .. 64

4.3 Summary .. 67

V. HARDWARE FOR BMS IMPLEMENTATION... 68

5.1 Overview of Hardware for Integrated Charger and BMS 69

5.1.1 Hardware for Individual Cell Management Unit (ICMU) 70

5.1.2 PCB Connection .. 71

5.1.3 ICMU Power Circuitry .. 74

5.1.4 ICMU Microcontroller ... 76

5.1.5 Implementation of Voltage and Current Monitoring 77

5.1.6 Implementation of Current Bypass Circuit .. 79

5.1.7 Implementation of Cell Temperature Monitoring 82

5.1.8 Implementation of LED displays for Status Indication 83

5.1.9 Implementation of Communication Circuits between BPMU and ICMU .. 86

5.1.10 Implementation of ICMU Address Hardware Identification 88

5.1.11 Hardware for BPMU/ICMU Hybrid .. 89

VI. SOFTWARE FOR BMS IMPLEMENTATION ... 91

6.1 ICMU Software Overview ... 91

6.1.1 Analog Voltage Reading .. 91

6.1.2 Read, Filter, Convert, and Process Analog Readings 92

6.1.3 Run Control Loop for Bypass Current ... 92

6.1.4 Package ICMU’s Data into a Communication Packet for BPMU 94

x

6.1.5 Update Status LEDs ... 95

6.2 ICMU Interrupts... 96

6.2.1 I2C Interrupt .. 96

6.2.2 Timer Interrupt ... 97

6.2.3 ADC Interrupt .. 97

6.3 BPMU/ICMU Hybrid Software Overview .. 98

6.3.1 Process ICMU Data Packets, Convert and Print out 98

6.3.2 Determine Cell Status and Take Corrective Action as Necessary 99

6.3.3 Implementation of I2C Communication Scheme 100

6.3.4 Implementation of Charger Control Interface ... 100

VII. SIMULATION VALIDATION AND RESULTS ... 104

7.1 Discharge and Charge Cycles Results from a 4-cell Battery 104

7.2 Results from the Integrated Charger and BMS on a 10-Cell Battery Pack 106

7.2.1 Discharge Cycle ... 106

7.2.2 Charge Cycle.. 108

7.3 Chapter Summary .. 113

VIII. CONCLUSIONS ... 115

BIBLIOGRAPHY ... 118

APPENDICES .. 121

APPENDIX A: MATLAB CODE FOR SIMULATIONS 122

APPENDIX B: ICMU CODE .. 148

APPENDIX C: ICMU/BPMU Hybrid Code ... 181

xi

LIST OF FIGURES

Figure Page

2.1 Electrochemical Cell pictured during charge process and electrons and ion travel

paths. .. 10

2.2 Electrochemical Cell pictured during discharge process and electrons and ion travel

paths. .. 11

2.3 Ragone plot comparing several types of cell chemistries and other energy storage

devices (Kalhammer, 2007). .. 12

2.4 A CC/CV charger first applies constant current rate until the battery reaches a set-

point voltage, charging current is then reduced to maintain the set-point voltage

(Simpson, 2011). .. 17

2.5 Initial capacity of LiCoO2 cells before and after 300 cycles at varying discharge

currents. The capacity fade increases with higher c-rates (Ning et al, 2003). 19

2.6 Passive Resistive Bypass (Moore, 2009). .. 23

2.7 Capacitor-Based Shuttle (Yevgen, 2009). ... 24

2.8 Shuttle circuit with remote cells connection capability (Yevgen, 2009). 25

2.9 Inductive converter cell balancing circuit (Moore, 2001). 26

2.10 High Level Block Diagram for Integrated BMS and Charger System 27

2.11 Detailed block diagram for Individual Cell Manager Unit within BMS. 28

2.12 Detailed block diagram for Battery Pack Manager Unit within BMS. 29

2.13 Detailed block diagram for Charger for integrated BMS concept. 29

3.1 Measured Battery Voltage for full cell discharge cycle... 34

3.2 Control block diagram of open-loop cell model. ... 37

xii

3.3 Control block diagram of closed-loop cell model with observer. 38

3.4 Diagram of circuit used to collect cell discharge data. .. 40

3.5 Graph of collected discharge data (time axis is in seconds) 41

3.6 Measured battery data (black) with cell model output plotted over measured data

(Red). To the right of the picture is a zoomed view of the temporary load removal.

.. 47

3.7: Equivalent circuit diagram for cell model with a dependent source used to represent

non-linearity characteristics of cell. ..48

4.1 3-cell series battery pack voltage over 916 charge/discharge cycles. 52

4.2 Zoomed in view of the beginning cycles of the 3-cell series battery pack simulations.

The final cycles of the simulation also look similar to these. 52

4.3 3-cell series battery pack initially unbalanced, without balancing circuits after 916

charge/discharge cycles. .. 53

4.4 Zoomed in view of initial cycles of 3-cell simulation without bypasses. 54

4.5 Zoomed in view of final cycles of 3-cell simulation without bypasses. 54

4.6 Simulations performed with the same initial conditions as the previous simulation

and cell parameters but with the addition of balancing circuitry being simulated. . 55

4.7 Zoomed in view of the initial cycles of the 3-cell simulation with bypasses 56

4.8 Zoomed in view of the final cycles of the 3-cell simulation with bypasses 56

4.9 Simulations performed with the same initial conditions and cell parameters and

without an integrated charger or any BMS. ... 59

4.10 Zoomed in view of the initial cycles of 10-cell pack without bypasses.. 60

4.11 Simulations performed with the same initial conditions and cell parameters but with

the passive bypass and non-integrated charger. ... 62

4.12 Zoomed in view of the initial cycles of the passive bypasses-only-simulations.. . 63

4.13 Zoomed in view of the final cycles of the passive bypasses-only-simulations 63

xiii

4.14 Simulations performed with the same initial conditions and cell parameters but with

the integrated charger and with BMS. .. 65

4.15 Zoomed in view of the first cycle of integrated charger and BMS simulation. 66

5.1 Single 60Ah LiFePO4 Cell. ... 68

5.2 Individual Cell Management Unit pictured mounted on a single LiFePO4 Cell. .. 70

5.3 Top side of ICMU PCB. .. 72

5.4 Bottom side of ICMU PCB. ... 72

5.5 Cell with M6 threaded bolt inserted with nut. ... 73

5.6 Top View of ICMU board on a single LiFePO4 Cell before being tightened down

with nuts on the threaded shafts. .. 73

5.7 Circuit board tightened down onto battery terminals and also shown are connections

to adjacent cells in the series connected cells. .. 74

5.8 Schematic: Single LiFePO4 Cell and 3.3 volt bus derived from charge pump. 75

5.9 Schematic: 5 volt bus derived from charge pump. ... 75

5.10 Schematic: Microcontroller schematic for ICMU PCB. .. 77

5.11 Schematic: Voltage divider to scale cell voltage for microcontroller's ADC on

ICMU PCB and measure the current going in and out of the managed cell. 79

5.12 Current Shunt used to measure system current is pictured in red box. 79

5.13 Schematic: Bypass MOSFET circuit and bypass’s overtemperature sensor on ICMU

PCB. ... 81

5.14 The red box shows the location of bypass resistor and MOSFET configured to be a

voltage-controlled resistor (underneath silver heat-sink). 81

5.15 Location of cell temperature sensor near cell terminal bolt (small black integrated

circuit identified by arrow). .. 83

5.16 Schematic: Temperature sensor to measure cell temperature on ICMU PCB. 83

5.17 Schematic: Status LEDs on ICMU PCB. ... 85

5.18 Actual Implementation of dual color LEDs. .. 85

xiv

5.19 Battery Pack with ICMUs displaying various LED colors to demonstrate cell

condition. ... 86

5.20 Schematic: Isolated communication I2C Bus on ICMU PCB. 87

5.21 I2C connections shown from daisy chaining ICMU to ICMU. 88

5.22 I2C connections for BPMU. .. 90

6.1 MOSFET operating regions based upon gate voltage, drain current and drain to

source voltage. ... 94

6.2: A high-level schematic of the charging device (Taschner, 2011).. 101

6.3: Photo of charging device (Taschner, 2011). .. 101

7.1 Data plotted from a 4-Cell series-connected battery pack manually-controlled

experiment.. 106

7.2 Discharge cycle of 10 Cell Series Connected LiFePO4 Battery Pack 108

7.3 Battery Pack with ICMU and ICMU/BMPU Hybrid attached to each cell. As pictured

here each cell is charging and is not bypassing any current. 109

7.4 Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As pictured

here, 4 cells are bypassing current since they have reached a voltage of at least 3.8V.

.. 110

7.5 Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As pictured

here, all cells are in bypass with the exception of the ICMU/BPMU Hybrid. 111

7.6 Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As pictured

here, all cells are in bypass. Shortly after this picture was taken, the BPMU

commanded the Charger to discontinue the charging process. 111

7.7 Charge cycle with integrated charger and BMS for a 10 cell series-connected battery

pack. ... 114

xv

LIST OF TABLES

Table Page

3.1 Values for obtained parameters for LiFePO4 cell model.. 46

6.1 Communication packet sent from the BPMU to the charger. 103

1

CHAPTER I

INTRODUCTION

Portable battery applications today can consist of either a single electrochemical

cell (which will further be referred to simply as a “cell”) or a battery pack that consists of

a combination of two or more cells. However, in industry, the term battery is often

interchangeably used to describe both an individual cell as well as a battery pack. A cell

that is designed such that it only is discharged once, and not recharged, is referred to as a

primary cell. A cell that is designed such that it can be discharged and recharged multiple

times is known as a secondary cell. It is the secondary cells and their applications that are

the focus of this research. When using these secondary cells, special care must be taken to

ensure the cells’ voltage, temperature, and maximum current remains within the

manufacturer’s specified operating range. Maintaining this range will help to ensure that

the manufacturer’s specified cell capacity, the total possible amount of charge before

damage occurs, stays consistent with each charge and discharge cycle. This number of

charge and discharge cycles is also referred to as the cells’ cycle life. Cell manufacturer’s

specifications often provide a minimum cycle life to which the cell should be capable of

maintaining a specified storage capacity. That is, provided there are not manufacturing

defects and the cells are properly used and maintained. In general, this minimum cell cycle

2

life can increase or decrease with more aggressive or lower demanding deviations from the

cell manufacturer’s recommended voltage operating ranges (Hartmann, 2008).

1.1 Types of Cell Combinations (Battery Packs)

In applications where a single cell is utilized, monitoring and maintaining the

recommended manufacturer’s operating range is straightforward. This is because the

charging device and load can be controlled to cater to that individual cell’s operation. On

the other hand, in applications where there is a battery consisting of multiple cells, ensuring

each individual cell stays inside the required voltage range can become more challenging.

Battery packs can consist of two cells (i.e. handheld portable consumer products) to several

thousand (i.e. electric vehicle applications). Battery packs can be constructed such that they

are connected in series, parallel, or a combination of series and parallel. The various

combinations of cells and the challenges of monitoring and managing them will be

discussed in the following paragraphs.

1.1.1 Series-Connected Cells

In applications that demand higher voltages than an individual cell can provide, a

number of cells can be connected in series to create a battery pack with the required higher

voltage. This type of battery pack configuration is referred to as series-connected or simply

as a series string. During operation of this battery configuration type, the current during

charging and discharging is the same current through each cell within the string. This is

advantageous when measuring current as only a single current measurement is required.

However, when it comes to monitoring cell voltages, circuitry is required for each

individual cell. In addition, due to the fact that a single current charges and discharges these

cells, how well balanced the stored energy in each cell is becomes an issue. Depending on

3

the balance of energy within the pack and individual cell construction variations, cells may

finish charging and discharging at different times. Variations between the cells is what

causes the individual cell voltages to go outside the manufacturer’s specified range, and

cause damage to individual cells. As will be discussed later in this document, several

methods exist that allow the cells in the string to be balanced.

In general, it is possible for one or more cells to fail in an open-circuit state or in a

short-circuit state. If a cell fails in an open-circuit condition, there is no longer a current

path. This renders the series-connected battery pack unusable. On the other hand, a short-

circuit cell failure condition, while not ideal, will still allow for current to be drawn from

the battery pack. The short-circuit condition will reduce the voltage of the overall battery

pack by the voltage that was once provided from the short-circuited cell.

1.1.2 Parallel-Connected Cells

In applications that demand higher current than an individual cell can provide,

multiple cells may be connected in parallel to provide higher current draw. Since the cells

are connected in parallel, all of the cells’ voltages are equal. If there is voltage difference

before the cells are connected in parallel, the higher potential cells will transfer energy to

the lower potential cells until the voltages balance (to prevent a large surge of current the

cells should be relatively balanced). In terms of monitoring circuitry, paralleling cells is

beneficial in that only one circuit is needed to measure the whole parallel group’s voltage.

However, the exact individual currents provided by each cell are unknown unless the

individual cell currents are measured. In terms of cell failures in this configuration, unlike

the series configuration, the open-circuit fault condition does not render this pack

configuration useless. However, with this type of failure the application will draw higher

4

currents from the remaining cells. If the remaining parallel cells cannot handle the new

current demand, they could also be damaged. In the case of the short-circuit fault condition,

this will cause all of the other parallel connected cells to discharge through the faulted cell

and render the battery pack un-useable.

1.1.3 Series and Parallel Connected Cells

In applications that require both higher voltages and higher current, a combination

of series-connected and parallel-connected cells is required to form the battery pack. There

are two common combinations that exist. The first combination is paralleled-series-

connected cell strings. This combination consists of several cells connected to form series

strings, which in turn are connected in parallel. The second combination is “series-

connected parallel groupings”. This combination consists of several cells connected to

form parallel cell groupings. These parallel cell groupings are in turn connected in series.

Based upon the previous discussion, the configuration that stands out in terms of reliability

is the first combination of paralleled-series-connected cell strings. In this configuration, the

fault that rendered the original independent series string unusable, has less of an impact

and improves overall reliability (McDowall, 2005). This is because an open-circuit failure

results in only one-of-the-many strings to become unusable. The remaining strings can still

provide energy to allow the application to continue. In the second configuration, the fault

that renders the series-connected-parallel groupings unusable still poses an issue. If a cell

fails in a short-circuit condition, it will still drain energy from the remaining cells within

that entire grouping.

5

1.2 Goals of Research

The focus of this research is to monitor and protect cells within a battery pack that

are connected in a series-connected configuration. To ensure that the cells stay balanced

within a series-connected configuration, the use of a cost-effective, lossy, cell bypass is

investigated. Although only a single series-string is investigated, the principles of this

research can be carried over to paralleled-series-string battery packs. In terms of cell

chemistry, lithium-based chemistries are of focus in this research due to their high energy

density, lower costs, and the traction it is gaining within the market place (Krieger, 2103)

(Vincent, 2000). To perform this research a first-principles cell model is obtained via data

collected through a given procedure. This model obtained in turn is then used to simulate

the cell balancing circuitry and its effectiveness. In order to further improve the utility of

the cost-effective, lossy, cell-bypass, a concept of integrating the cell balancing system and

the charging device is proposed and investigated.

1.3 Thesis Outline

The research performed is provided over seven chapters. Chapter I is an

introduction to cells and batteries. Chapter II provides a history of cells as well as

background information on cells, cell balancing methods, and a proposed balancing method

and charging system is provided. Chapter III provides details on a procedure that is

performed to collect data used to determine a cell model. Chapter IV uses the obtained

model to demonstrate the effectiveness of a passive bypass for balancing a series-connected

battery pack. Also simulated in Chapter IV is the proposed balancing system. Chapter V

and Chapter VI provides a summary of the software and hardware, respectively, used to

implement an interactive charger and passive bypass balancing battery management

6

system. Chapter VII provides results from experiments performed to test the proposed

method. Chapter VIII concludes the thesis along with recommendations for future work in

this area.

7

CHAPTER II

BACKGROUND AND RELATED WORK

This chapter discusses the history of electrochemical cells and battery packs. A

description of the inner working of electrochemical cells is given along with the various

cell chemistries. This section ends with operational considerations when using electro-

chemical cells, a summary on charging techniques, and a summary on cell-balancing

techniques.

2.1 The History of Electrochemical Cells

Although the earliest electric cells were in existence over 2,000 years ago, the

history of the battery truly begins in the 18th and 19th centuries. People like Alessandro

Volta (1745 – 1827) and Luigi Galvani (1737 – 1798) carried out the groundwork that led

to an electrochemical energy storage device, and their names live on in terms such as

"volts” and the "galvanic cell" (Bergveld, 2001).

Around the 1800s the voltaic column, the world's first working battery was created.

This battery consisted of alternate copper and zinc plates, separated by scraps of cloth

saturated with acid. Using this first battery, Volta discovered that certain liquids initiated

chemical reactions between metals, thereby generating electrical energy (Bergveld, 2001).

8

In the early 19th century, Volta worked in close collaboration with the French

National Institute to further develop the battery. The first battery suitable for mass

production was developed in 1802 by the chemist Dr. William Cruickshank (Anders,

2003). He stacked alternating layers of copper and zinc sheets of equal dimensions. This

stack was then placed in a sealed wooden chest and sealed with cement. This chest in turn

was then filled with a saline lye.

In 1859 the French physicist Gaston Planté used conductor plates in dilute sulphuric

acid, which led to the first rechargeable battery (Bergveld, 2001). Previous batteries

developed up to this point were all primary cells and were not re-charged. Planté’s

invention led to the first rechargeable secondary battery, which was a lead-acid chemistry

that is used to this day.

Over the following decades the lead battery underwent a number of significant

further developments. By introducing a variety of alloys, battery performance was greatly

improved which then minimized the need for maintenance. Experimentation with lithium

batteries began in 1912 under G.N. Lewis, and in the 1970s the first non-rechargeable

lithium batteries were sold. A research team managed by Akira Yoshino of Asahi

Chemical, Japan built the first lithium ion battery prototype in 1985, a rechargeable and

more stable version of the lithium battery; followed by Sony that commercialized the

lithium ion battery in 1991 (Vincent, 2000) (The Economist, 2008). The next section will

discuss the inner workings of these cells.

9

2.2 Electrochemical cells

Electrochemical cells are aptly named because they can provide electrical energy

stored in the form of chemical energy. This energy can then be utilized at a later time by

conversion of the chemical energy back to electrical energy. At a high level, a cell is

comprised of two metal electrodes suspended in an electrolyte. At the interfaces between

the electrodes and electrolyte are where chemical reactions take place allowing for the

conversion to and from electrical energy (depending on whether the cell is being used as a

load or if it is being charged, respectively). The two electrodes switch roles as anodes or

cathodes, depending on whether they are being charged or discharged. The two electrodes

will be designated as PE and NE, for the positive electrode and negative electrode,

respectively. In the case of charging, the PE and NE are designated as the anode and

cathode, respectively. During charging, at the interface between the electrolyte and the PE,

an oxidation reaction occurs. As a result of this, electrons are free to flow out to the external

charging circuitry. Simultaneously, at the electrolyte and the NE interface, a chemical

reduction process occurs that accepts electrons from the external charge circuitry. Inside

the electrolyte, negatively charged ions produced from the reduction reaction occurring at

the NE, move towards the PE. Similarly within the electrolyte, positively charged ions

produced by the oxidation reaction at the PE move towards the NE. Thus, the flow of

current is possible because of the electrons, which travel in and out of the cell, use the

electrodes as a medium to travel through. The availability of free electrons in the PE and

the “room” to accept electrons in the NE is made possible through the chemical reactions

made at the electrolyte and electrode interface. These reactions can continue because the

positive and negative ions use the electrolyte as a medium to travel through.

10

 The discharge process through a cell is the reverse of the charging process. By

definition, the PE and NE switch roles as the anode and cathode. The location of the

reactions and direction of movements for the electrons and ions are also switched. This can

be more clearly seen by comparing Figure 2.1 and Figure 2.2. Pictured within in the figure,

in between the PE and the NE, is an electrically isolating separator. The separator is

typically a porous material that still allows the ions to easily travel through, but not so

porous that it does not behave well as an electrical insulator (Kumar et al., 2010) (Bergveld,

2001).

Figure 2.1: Electrochemical Cell pictured during charge process and electrons and ion

travel paths.

11

Figure 2.2: Electrochemical Cell pictured during discharge process and electrons and ion

travel paths.

2.3 Cell Chemistries

Although the focus of this research is on rechargeable Lithium Ion (Li-Ion) battery

cells, a brief overview of other battery chemistries is given in the following sections. For

reference, a comparison of multiple cell chemistries and storage technologies are given in

the Ragone Plot in Figure 2.3 (Kalhammer, 2007). As can be seen, the various types of

lithium-based energy storage devices, outperform the other storage devices in terms of

energy storage and instantaneous power per kilogram of material.

12

Figure 2.3: Ragone plot comparing several types of cell chemistries and other energy

storage devices (Kalhammer, 2007).

2.3.1 Lead-Acid

The oldest form of rechargeable battery is the lead-acid battery. The lead-acid

battery was developed into two main designations. The first being sealed lead-acid (SLA)

and the second being large valve regulated lead-acid (VRLA). Both battery types should

not be operated at high depths of discharge to preserve cycle life. An advantage of the lead-

acid battery is that cells may be balanced by charging the battery pack with a slow, trickle

charge for long durations. Typical charge times are 8-16 hours, and typical cycle life is

200-300 cycles. This short cycle life is due to the corrosion that occurs for the positive

electrode which causes depletion of the active material and expansion of the plates. The

optimum operating temperature for lead-acid is 25 degrees C, and as a general rule, a

change of 8 degrees C will cut the cycle life in half. The lead-acid battery has the lowest

13

energy density of rechargeable cells, making it unsuitable for smaller consumer electronics

(Buchmann, 2011).

2.3.2 Nickel-Cadmium

The Nickel-Cadmium (NiCd) battery has advantages in that it is well-suited for fast

charging and rigorous discharge conditions. NiCd batteries have a typical cycle life of

1,000 cycles, and offer good performance at low temperatures without significant impact

to cycle life. The NiCd has a decent shelf life as compared with other rechargeable cells,

and is the lowest-cost battery in terms of cost per cycle. Unfortunately, the NiCd battery

suffers from the memory effect, and relatively low energy density. The memory effect

occurs when NiCd cells are charged after being only partially discharged several times.

This effect causes the cell to lose some of its prior capacity and it “remembers” the new

smaller capacity (Buchmann, 2011). To prevent this, the NiCd cell simply has to be

discharged to its full rated capacity.

2.3.3 Nickel-Metal Hydride

The Nickel-Metal Hydride (NiMH) battery offers 30-40 percent higher energy

density as compared to NiCd, and is less prone to the memory effect. The disadvantages of

the NiMH are related to its performance which is depleted if cycled at high discharge rates.

Additionally, the NiMH requires a more complex charging algorithm, and more frequent

maintenance to prevent crystalline formation. This higher-cost battery has a high self-

discharge rate (50% higher than NiCd), and is sensitive to high temperatures.

14

2.3.4 Lithium Based Chemistries

The Lithium-Ion (Li-Ion) battery is probably the most well-known chemistry on the

market today. Original development for this battery began in 1912, but was not

commercially available until 1991 due to concerns of safety. The energy density of Li-ion

cells are twice that of NiCd, while also offering a low self-discharge rate and low-

maintenance with a high cycle life. Because of safety concerns, the Li-ion cells require

protective circuits (such as those discussed in this thesis), and are still relatively expensive

to manufacture. The cells support higher voltages, and also offer moderate discharge

currents. There are several types of lithium-based cell chemistries as will be discussed in

the following sections (Buchmann, 2011).

2.3.4.1 Lithium Cobalt Oxide (LiCoO2)

This chemistry is used in small portable electronics such as cameras, phones,

tablets, and some laptops. The positive electrode is derived from cobalt oxide and the

negative electrode is graphite carbon. Typical charge and discharge current maximum’s

are relatively small. Anything higher causes overall cell life to decrease. While the specific

energy, the cells’ ability to store energy per unit of weight, of this chemistry is high, the

specific power is low. The specific power is a measure of how much instantaneous power

the cell can provide in a short period of time (Buchmann, 2011).

2.3.4.2 Lithium Manganese Oxide (LiMnO2)

This chemistry was first introduced in 1996 and had a positive electrode made of

lithium manganese oxide. Due to the architecture, a three-dimensional spinel structure, ions

can flow more freely, decreasing internal resistance. This allows for high currents which

make this chemistry suitable for applications such as power tools, medical equipment, and

15

electric vehicles. Compared to lithium cobalt, lithium manganese has a capacity roughly

one-third the size of lithium cobalt’s storage capacity (Buchmann, 2011).

2.3.4.3 Lithium Iron Phosphate (LiFePO4)

In 1996, researchers at the University of Texas implemented phosphate as a positive

electrode for a lithium based cell. This material which can be designed with nano-scale

phosphate which offers low resistance, high current rating, and long cycle life. Along with

the aforementioned benefits and a relatively higher abuse tolerance, this technology finds

applications also in power tools, electric vehicles, and back-up power applications. In

comparison to the LiMnO2 chemistry, due to LiFePO4’s lower 3.2-3.3V nominal voltage,

it has a slightly lower specific energy (Buchmann, 2011) (Padhi et. al, 1996).

2.3.4.4 Lithium-Titanate (Li2TiO3)

This chemistry has been around since the 1980s. In this cell chemistry Lithium-

titanate, as opposed to carbon, is used for the negative electrode. This also forms a spinel

structure as with the LiMnO2 cell chemistry, enabling lower internal resistance. This allows

this chemistry to safely charge and discharge quickly at high currents, and has low-

temperature discharge characteristics (down to -30oC). Due to the fact that a single cell

provides 2.4V nominally, its specific energy is relatively low (Buchmann, 2011).

2.4 Charging

There are several cell charging methods that can be used when it comes to cell

charging. A few of these modes are constant-current charging, constant-voltage charging,

trickle-charging, float-charging, and pulse-charging. Since the focus of this research is on

lithium-based cell technologies, the commonly used constant-current, constant-voltage

16

method will be discussed in greater detail. The other methods will be briefly discussed in

the following sections.

2.4.1 Lithium-based Battery Charging

A lithium-based battery charger is typically a fixed voltage source that is current

limited. The charger will charge the battery at a constant current (CC) until the battery

voltage reaches a pre-set value, the set-point voltage. This charging current is typically

limited to a 1C charge rate, however, higher or lower charge rates may be possible

depending on the recommendation of the manufacturer. The “C rate” is a relative

specification based upon the Ah rating of the cell. This is easily explained in the form of

an example. If a cell has a rated capacity of 2Ah, 1C, 2C, and 3C corresponds with charge

(or discharge) currents of 2 amps, 4 amps, and 6 amps. About 65% of the total charge is

delivered to the battery during the constant current phase of charging.

Once the set-point voltage is reached during the CC phase, the charger will begin

to decrease current to maintain the set-point voltage on the battery. This is known as the

constant voltage (CV) phase of charging. Most major Li-ion cell manufacturers

recommend 4.200V +/- 50 mV as the ideal set point voltage. The constant-voltage cut-off

time is typically given by the manufacturer with a desired degree of accuracy to ensure the

specified cell cycle-life and capacity can be met. It is important to note that this value is

specified for the voltage available at the cell’s terminals. When current is actively charged

or discharged from the cell, the series resistance in the form of terminal connections and/or

wiring provides measurement offsets from the true cell’s terminal voltage. A method to

overcome this may be accomplished by providing two high impedance measurement wires

connected directly to the cell’s terminals. Since these two wires are high impedance and

17

are not part of the cell’s main current path, the offset voltage measurement issues are

overcome (Bergveld, 2001).

Figure 2.4: A CC/CV charger first applies constant current rate until the battery reaches a

set-point voltage, charging current is then reduced to maintain the set-point voltage

(Simpson, 2011).

2.4.2 Floating/Trickle Charging

When charging battery packs with chemistries of lead-acid, NiCd, or NiMH, float

charging and/or trickle charging is performed. This type of charging is utilized after a

charge cycle has already completed, and while the battery or cell is unused. The charge

current is typically small (less than 0.05 C) and is used to both compensate for the self-

discharge of the battery pack as well as balance the pack at the end of charge. This is

important in the case of lead-acid especially as sulfation occurs more readily at lower

discharge states, leading to poor battery performance.

18

In terms of lithium based chemistries, holding this chemistry at higher voltages for

long durations instead leads to lower cycle life. Some possible causes attributing to the

lowering of cycle life are electrolyte decomposition, formation of a passivation layer on

the negative electrode, and dendrite formation. Each of these conditions can decrease cycle

life as the available active materials required for charging/discharging decreases. In the

extreme case, the dendrites can grow so that a short is formed between the positive and

negative electrodes (Bergveld, 2001).

2.4.3 Lithium Ion Battery Discharging

The end-of-discharge voltage for a Li-ion cell is typically 2.5V on average. At this

point, approximately 95% of the energy is depleted, and from there, the cell voltage drops

rapidly if discharging were allowed to continue. To protect the cell from overdischarging,

most battery management systems will prevent operation beyond this low-voltage cutoff.

When a load is removed from a battery after discharge, the voltage will gradually recover

by a small amount.

In terms of choice of discharge rates and overall cell cycle life, higher discharge

rates lead to faster capacity fade as can be seen in Figure 2.5 (Ning et al, 2003).

19

Figure 2.5: Initial capacity of LiCoO2 cells before and after 300 cycles at varying

discharge currents. The capacity fade increases with higher c-rates (Ning et al, 2003).

 Historically, Li-ion cells had been considered unsuitable for high current loads. In

recent years, however, many Li-ion systems permit discharge rates upwards of 50C. This

means that a cell rated at 1.5Ah can provide a steady load of 45 amps, and this is being

achieved primarily by lowering the internal resistance through optimizing the surface area

between the active cell materials (Choi et. al, 2002).

2.5 Need for Cell Balancing and Battery Management

Chargers for series-connected packs often look at the battery pack’s overall voltage

for controlling the charging current. If each cell is identical and evenly charged, it could be

assumed that each cell is at the same voltage. However, in practice individual cells’ state-

of-charge (SoC), or the amount of stored energy within in a cell, is likely to be unequal.

During charging, this can cause cells with higher SoC to reach higher than recommended

20

operating voltages. Similarly, during discharge, cells with lower SoC will reach lower than

recommended operating voltages.

The choice of what voltage to charge a cell to and what voltage to discharge a cell

to ultimately affect the number of charge/discharge cycles that can be achieved with that

cell (Hartmann, 2008). In a series-connected battery pack without a method to balance cell

SoC, all SoC’s are hard to regulate if the individual cell voltages are very different. Again,

this is due to the fact that the same current is used to charge each cell. This will cause one

or more cells to become fully-charged faster than others. An option at this point is to simply

stop charging the series string and leave the remaining cells not fully charged. However,

during discharge, the lowest charged cells will discharge the quickest and then energy in

the higher charged cells will go unused. This is non-ideal since the full-capacity of the

battery pack is not being utilized.

The main causes of cell imbalance are variations in an individual cell’s impedance,

capacity, and self-discharge rate. These factors will cause divergence in the cells’ voltage

over time. Since most battery chargers detect full charge by checking whether the voltage

of the entire string of cells has reached the voltage-regulation point, individual cell voltages

can vary as long as they do not exceed the limits for overvoltage protection. However, both

weak cells (i.e., cells with lower capacity or higher internal impedance) and warm cells

tend to exhibit higher voltage than the rest of the series cells at full charge termination.

These cells are weakened further by continuous overcharge cycles (Andrea, 2010).

21

2.6 Cell Balancing Methods Summary

The impact of cell imbalance on run-time performance and battery life in

applications using series-connected cells is certainly undesirable. The fundamental solution

of cell balancing equalizes the voltages and SoCs among the cells when they are at full

charge. Cell balancing is usually categorized into two types, passive and active. With

passive balancing, excess energy is dissipated as heat. Active-balancing, on the other hand,

is more energy efficient as it attempts to transfer energy conservatively from cell to cell.

The fact that 100% of the excess energy from a higher-energy cell is dissipated as

heat makes the passive method less preferable to use during discharge because of the

obvious impact on battery run time. Active cell balancing, which utilizes capacitive or

inductive charge shuttling to transfer charge between battery cells, is significantly more

efficient because energy is transferred to where it is needed instead of being bled off. Of

course, the trade-off for this improved efficiency is the need for additional components and

complexity at higher cost.

2.6.1 Passive Balancing

The easiest approach to cell balancing is to equalize cell voltages. This can be done

by comparing cell voltages with programmable thresholds to determine if cell balancing is

needed. If any particular cell hits the threshold, a resistive bypass is enabled. The main

disadvantage of this method is the energy lost through the bypassing. This method is known

as passive cell balancing (Moore, 2009) (Andrea, 2010). Passive balancing is a cost-

effective, lossy, option to reduce the disparity between the SoC of each cell. The bypass

resistor allows higher charged cells to burn-off excess energy in the form of heat (Figure

2.6). It also creates a path to allow energy to shunt around a cell in a series-connected

22

string. The limitation that comes from utilizing a bypass is the amount of heat that is

generated from the bypass device itself. One strategy for utilizing a bypass is to simply

turn on the bypass device once the cell hits a specific voltage. This allows the rate-of-

charge to the highest charged cells to be reduced and allows current to be shunted around

that particular cell.

Based upon the charging current and bypass resistance, there are three conditions

that can exist when a bypass is implemented. One condition is if the bypass resistor is

designed such that it bypasses less than the charging current. This implies that the

remaining charging current that is not bypassed continues to charge the cell. The second

condition is if the bypass resistor is selected such that it bypasses approximately the same

value of the charging current. In this condition, the cell stops charging and the cell’s voltage

will stay constant. This is because if the cell’s voltage goes up, the fixed-resistance bypass

will bypass a little more current as well. If the cell’s voltage goes down, the fixed-resistance

bypass also bypasses less current. The third condition is if the bypass resistor is selected

such that it bypasses all of the charging current and also draws additional current from the

cell. This allows higher charged cells to decrease their SoC while allowing other cells to

increase their SoC.

23

Figure 2.6: Passive Resistive Bypass (Moore, 2009).

2.6.2 Active Balancing

Another approach is active cell balancing. This method overcomes the energy loss

of the passive method by using capacitive or inductive charge storage and shuttling to

deliver energy to where it is needed most, and with little loss. The disadvantage to this

method is in component count, cost, and complexity. Active balancing techniques fall into

four main groups (Yevgen, 2009) (Moore, 2001):

1. Cell to cell: energy is transferred between neighboring cells.

2. Cell to battery: energy is removed from cells with highest SoC and dumped to

the whole battery.

3. Battery to cell: Energy is removed from the battery pack and transferred to the

cells with least SoC.

24

4. Bidirectional: Based on needs, energy is transferred from cell to battery or vice

versa.

These methods may be implemented in a variety of ways. A simple approach to

redistribute the energy between the cells is to connect a capacitor first to higher voltage

cell, than to lower voltage cell, as shown Figure 2.7.

Figure 2.7: Capacitor-Based Shuttle (Yevgen, 2009).

More complicated implementations allow the connection of not only two nearby

cells, but also cells for far away in the stack for faster equilibration Figure 2.8.

25

Figure 2.8: Shuttle circuit with remote cells connection capability (Yevgen, 2009).

The main problem with this method is that significant energy losses occur during

capacitor charging, due to high currents because of high voltage mismatch. Another

problem is that high voltage differences between the unbalanced cells exist only in highly

discharged states. Because this method’s transfer rate is proportional to cell voltage

differences, it only becomes efficient near the end of discharge so that the total amount of

unbalance that can be removed during one cycle is low.

Another active balancing method, depicted in Figure 2.9, is implemented by taking

energy from the battery pack as a whole and redistributing it to a single cell. This is done

by directing the battery pack current through a transformer which is then switched to one

of the cells that needs additional charge. However, the efficiency of such a converter is

limited, and the need to use a transformer results in increased price and size of the overall

solution (Moore, 2001).

26

Figure 2.9: Inductive converter cell balancing circuit (Moore, 2001).

2.7 A Proposed Integrated Charger and Battery Management System

A study performed in 2011 compared several balancing methods consisting of both

passive and active circuitry (Daowd et al, 2011). In the investigation, each method was

evaluated and simulated within MATLAB/Simulink. Each method was graded upon its

equalization speed, complexity, size, cost, and efficiency. The method that outperformed

others in terms of simplicity, and cost-effectiveness, was the passive resistive shunt bypass.

In terms of speed and efficiency, the resistive shunt bypass received average to less-than-

average ratings. In the case of many high volume commercial applications, cost and

development time is often of great concern. In fact, many available battery management

integrated circuit manufacturers, such as Texas Instruments, utilize passive resistive shunts

for balancing (Texas Instruments, 2012). In this research, the resistive shunt bypass is used

due its popularity, cost-effectiveness, and minimal amount of components. A proposed

27

method to further improve the speed of balancing with passive resistive shunts and reduce

the number of cycles a battery pack stays unbalanced is discussed next.

The proposed battery system will use a BMS that interfaces directly with the

charging system as shown in Figure 2.10. The BMS consists of one Individual Cell

Management Unit (ICMU) per a cell and a single Battery Pack Master Unit (BPMU) for

the entire battery pack. The block diagram of Figure 2.11 depicts an ICMU which consists

of circuitry that at a high level, includes a voltage, current and temperature monitor, and

an adjustable bypass current device. In terms of the adjustable passive bypass device, this

will be achieved by a MOSFET driven in its linear region. In doing so this causes the

MOSFET to behave as a voltage-controlled resistor. The adjustability of the bypass current

as well as the adjustability of the charging current allows the system to have more

flexibility when it comes to equalizing the energy within battery pack’s cells.

Figure 2.10: High Level Block Diagram for Integrated BMS and Charger System.

28

Figure 2.11: Detailed block diagram for Individual Cell Manager Unit within BMS.

The BPMU, shown in Figure 2.12, processes data from each ICMU for monitoring

of the battery pack as a whole. The BPMU will communicate battery pack issues during

charge and discharge. In addition, the BPMU will also have a communication interface to

the charging system. This interface will allow the BPMU to directly control the charging

current profile as it demands from the charger. A block diagram of the integrated charger

is shown in Figure 2.13.

29

Figure 2.12: Detailed block diagram for Battery Pack Manager Unit within BMS.

Figure 2.13: Detailed block diagram for Charger for integrated BMS concept.

The sequence of steps for the proposed method of charging and balancing will be

discussed next. First, the charging device will initially charge the battery pack at the

maximum constant current rate that the battery pack application can accept. When the

highest charged cell is nearing its full charge voltage, the BMS can request the charger to

30

decrease its current as desired. Simultaneously, the BMS can activate bypass current

devices on each cell as necessary, shunting as much current as possible around the highest

charged cells. In doing so, this allows the remaining lower charged cells to continue

charging at a higher rate. If the highest charged cells continue to charge too quickly (even

with the bypasses on), the BMS can then request the charging device to lower its charging

current as necessary. This continues until the bypass devices can shunt all of the charging

current around a given cell and discontinue the charging to any individual cell.

2.8 Summary

This chapter provided a brief history on the discovery and the development of cells.

Also provided was background information on cells and how they function electrically and

chemically during the charge and discharge processes. Next, an overview of cell

chemistries used most in industry was provided. This led to a discussion of methods that

can be used to perform cell balancing within a battery pack. Lastly, the chapter concluded

with a proposed method for balancing using an integrated charger with a resistive-bypass

based battery management system.

31

CHAPTER III

BATTERY CELL MODELING

 This chapter will discuss a procedure that can be used to obtain a mathematical cell

model. The benefits of using a cell model and how a cell model may be used for various

applications are also discussed.

3.1 Introduction

To be able to simulate the voltage behavior of a cell during usage, either on its own

or within a battery pack, an accurate cell model may be used. Using a cell model allows

simulations and investigations to be performed of how individual cells behave or multiple

cells behave within a battery pack. This allows theories and concepts to be tested without

actually spending time on a physical test set-up. This chapter will discuss a cell model and

how the parameters for this model are obtained. In order to obtain parameters for the cell

model, data must be collected from the cell of interest. The data collected must be obtained

following a procedure that allows the cell’s dynamics of interest to be observed, as well as

either a full charge cycle or a full discharge cycle. After collecting the data, the data is

graphed and analyzed to obtain some of the model’s parameters. These parameters can vary

from cell size, cell chemistry, and even from cell to cell within a manufacturing batch.

32

With regard to the variability within a manufacturing batch, battery packs designed

for space applications go through categorizing newly manufactured cells in order to pick

cells with well-matched characteristics. The goal and assumption is that these cells start

out with the same SoC and have very similar charge/discharge characteristics as they are

used throughout their lifetime. If this is indeed the case, the assumption is that such a

battery pack no longer requires a battery management system (Pearson, 2004).

Also, cell modeling improves accuracy estimates for a cell’s SoC. This is especially

the case in applications where the power profile varies such that the electrochemistry

dynamics are not able to reach a state of equilibrium. The cell voltage is dependent on

multiple factors such as the charge/discharge current, temperature, and the cell’s age. This

being the case, it can be difficult to provide an accurate estimate of a cell’s SoC solely upon

its voltage. Also, a sensor cannot directly be employed to read the cell’s SoC directly,

however with the use of a mathematic cell model/algorithm, this is possible. An exception

for using a cell’s voltage as an estimate for its current SoC is when the current (and power)

is relatively low such that the open-circuit voltage is close to the running voltage. In cases

such as these, it is possible to utilize a table that correlates the SoC with open-circuit

voltage (Plett, 2004).

Accuracy of the SoC is important in applications where aggressive power profiles

demanded from the battery pack are required. The accuracy also allows more aggressive

use of energy available within the battery, as the true SoC of each cell is known. To make

this concept clearer, take the following example. In a hypothetical application where the

cell’s voltage is close to the manufacturer’s recommended cut-off voltage, the cell’s

voltage may not be accurately reflected when a large current is drawn from the cell. Due

33

to the cell’s internal impedance, an internal voltage drop may occur that is correlated with

the current draw from the cell. This is an offset from the true cell voltage, and causes an

external voltage measurement to appear as if it were below the cut-off voltage. This issue

may be alleviated from more accurate SoC estimates via real-time cell models.

3.2 Battery Modeling

The cell model used in this research is derived from a first-principles based

structure (Hartley & Jannette, 2005). In other words, the model is based upon established

laws of physics. This model is a generalized structure with parameters that are acquired

through data collection consisting of voltage, current, and temperature measurements from

a cell as it is discharged through a low-resistive load. To model the charge diffusion

characteristics of the cell, during the discharge cycle, the load is temporarily removed from

the cell in order to observe the resulting transient response. An example of a complete

discharge cycle with charge diffusion transient (small transient towards middle of plot) can

be observed in Figure 3.1.

34

Figure 3.1: Measured Battery Voltage for full cell discharge cycle.

The model obtained will generate a voltage as a function of the stored charge,

diffusing charge, and the amount of current flowing in or out of a given cell at any given

time, which are denoted by ��(�),	��(�), and �(�), respectively.

The state equations of the cell model are the stored-charge rate given by

�	�(�) = �(�) (1)

and the diffusing-charge rate given by

�	�(�) = �
�

�(�) − �

�
�

��(�) (2)

35

where �� 	is the diffusion capacitance and �� is the diffusion resistance (Hartley &

Jannette, 2005). The values for the diffusion parameters are obtained by analyzing the

diffusion transient response. In order to obtain the stored charge and the diffusing-charge

states, equations (1) and (2) are integrated with the measured current during the discharge

cycle.

Using only a linear combination of the integrated states	��(�),	��(�), and the

current, �(�), the linear portion of the voltage curve of Figure 3.1 can be accurately

modeled. In order to represent the non-linear portions of the voltage curve in the beginning

and end of the discharge cycle, two additional exponential terms dependent on ��(�) are

incorporated. System identification is performed on the data collected using batch least

squares to acquire the following parameters

 � = ���			�� 			 ��� 			��		��		���
�

 (3)

each of which corresponds to an element of

�(�) = �1		�(�)		��(�)		��(�)		� !"#$(%)		�!&#$(%)' (4)

such that the battery voltage is given by

 ()(�) = �(�)� (5)

 = (1)(��) + (�(�))(��) + +��(�), - ���.

 ++��(�),(��) + +� !"#$(%),(��) + +�!&#$(%),(��)	.

36

Based upon the state ��(�), the SoC is calculated as follows

 /0��(�) = #$(%)
#$,123

100% (6)

where ��,678 is the rated full capacity of a given cell.

The scope of the research did not implement this model in real-time, however, a

brief discussion of such an implementation follows. A real-time implementation allows an

application to track cell parameters, usually not directly measureable, that provide more

information about a cell’s condition. For example, the (SoC) can be extracted from the data

with higher accuracy than directly measuring the cell’s voltage alone (Hartmann, 2008)

(Bergveld, 2001). This is especially useful in cases where the cell’s current consumption

is dynamically changing, which causes voltage measurements alone to be misleading when

it is used for SoC estimation. By implementing a cell model on a computing device (e.g.

microcontroller, computer, etc...) in real-time, this allows real-time access to information

about the aforementioned non-direct measurements.

There are several additional benefits to be gained from a real-time model. Self-

discharge can be modeled by measuring a cell’s remaining capacity after being stored for

a long period of time. With an accurate self-discharge model, it can be determined that a

cell is failing by detecting a fast self-discharge rate.

In terms of accuracy of a real-time cell model, it is vital in the case of aggressive

designs and high-power usage of battery packs. The ability to accurately predict remaining

SoC in a battery pack allows for maximum power draw, and may be estimated without

overdischarging a cell or causing it damage. This could also allow a smaller battery pack

37

be utilized for a given application. This is as opposed to sizing the battery pack with a large

design margin and higher cost (Plett, 2004).

Figure 3.2: Control block diagram of open-loop cell model.

 In order to improve accuracy of the model’s states, a real-time observer can be

implemented to supplement the model running on the computing device. The real-time

observer will compare the model’s output voltage with an actual measured voltage of the

cell of interest by calculating the error,

 �(�) = ((�) − ()(�), (7)

where ((�) is the cell’s measured voltage and ()(�) is the model’s estimated voltage given.

38

Equations (1) and (2) become

 �	�(�) = �(�) + 9��(�), (8)

 �	�(�) = �
�

�(�) − �

�
�

��(�) + 9��(�), (9)

where 9�	and 9� are observer gains that are multiplied by the error, �(�), to correct the state

estimates, for ��(�) and ��(�), respectively, (Plett, 2004) (Vamsi et. al, 2007) (Bergveld,

2001).

Figure 3.3: Control block diagram of closed-loop cell model with observer.

To further improve estimates, there are additional methods that can be

implemented. This includes providing the ability for the cell model’s internal parameters

to adapt such that it tracks the aging effects of the cell. This is opposed to determining the

39

cell’s parameters from a single set of data and keeping the internal model parameters at

fixed values indefinitely. Also, taking operating cell temperatures into the real-time model

allows for more accurate cell-model estimates. A possible approach for adapting cell

parameters with temperatures is to gather cell operation data at specific temperatures of

interest. A polynomial fit may then be used to match temperatures to correlating

coefficients (Plett, 2004) (Hartmann, 2008).

3.3 Procedure for Data Collection

In order to get a cell model, data must be collected from the cell during its operation.

In this research a fully charged LiFePO4, 3.3V nominal, 60Ah cell was used. The cell was

charged per the cell manufacturer’s recommendations using a power supply with settings

for constant current and constant voltage. The cell was first charged in constant current

mode at 20A per the manufacturer’s recommended charging current of C/3. The power

supply was set for a constant voltage of 4.2V, at which point the charger automatically

tapered the charging current to maintain the desired 4.2V. The charge process was stopped

when the charging current fell below C/6. The cell was then left to rest several hours to

allow the cell’s voltage to settle after the charging process.

Next, the cell was discharged via a fixed load resistor bank. The equivalent

resistance used during the discharge was ~0.21 ohms which provided a nominal discharge

current of ~16A. Both the cell’s discharging current and the cell’s voltage was logged using

a microprocessor development board. These measurements were done via a resistive shunt

and voltage divider, respectively. The discharging procedure consisted of connecting the

load to the cell, removing the load, re-applying the load, and stopping the discharge

process. The step of removing the load was performed in order to capture the dynamics

40

associated with the cell’s charge diffusion. The load was removed long enough until the

cell’s voltage increased and reached a steady-state. At that point, the load was re-applied

until the cell’s voltage hit the manufacturer’s stated cell cut-off voltage. The data collected

in this process is graphed in Figure 3.5.

Figure 3.4: Diagram of circuit used to collect cell discharge data.

41

Figure 3.5: Graph of collected discharge data (time axis is in seconds)

3.4 Processing Collected Data

Using the graphed data in Figure 3.5, measurements are made from specific features

from the plot. These measurements are then used to calculate and obtain values for the cell

model’s parameters. The following are the parameters and how they are extracted from the

graph.

42

1. ��: To determine this value, two other values must be obtained beforehand.

o The current before load removal (BLR), :;<�, which can visually be determined

from the plot.

o The “instantaneous” change in voltage observed directly after removal of the

load. This is designated as the voltage after load removal, �!<�,=. In terms of

the “instantaneous” change in voltage, what should be observed upon load

removal is a sudden jump in voltage due to the lack of a voltage drop across the

cell’s internal impedance (because of the sudden stop in load current). It is

noteworthy to distinguish between the “instantaneous” voltage change and the

exponential voltage change due to the cell’s diffusion properties (of which the

parameters are obtained in the next section), because they occur very closely

one after the other in the graph.

o To calculate �� the following equation is used: �� = >?@A,B
CD@A

2. Diffusion Time Constant: To determine the Diffusion Time Constant, E� , the cell

dynamics associated with load removal are analyzed. The following steps are used to

determine the time constant:

o Determine the initial voltage, �FGHH,GIG%G7J, immediately after the removal of the

load.

o Next, determine the time, KFGHH,GIG%G7J, at which the load was removed.

o Determine steady-state voltage, �FGHH,00, after load removal (this requires that

during data collection the cell voltage was allowed to reach a steady-state after

the load was removed).

43

o Calculate the voltage that corresponds with 63% of the voltage difference

between the initial voltage and steady-state voltage. This value is the diffusion

voltage after one time constant which will be designated as �FGHH,�" ,	This step

is summarized by the following:

�FGHH,�" 	= 	 (�FGHH,00 − �FGHH,GIG%G7J) 	× 	0.63.

o Visually determine the time, KFGHH,�", at which the time at which �FGHH,�" 	occurs.

o Finally, E� can be calculated with:

E� = KFGHH,�" − KFGHH,CIG%G7J

3. ��: To determine ��the following steps can be followed:

o Visually determine the current, :FGHH,GIG%G7J	, right before the load is removed.

o Use �FGHH,P to determine the current right before the load is removed.

o �F may be calculated with:

�
�	Q >RSTT,U

	CRSTT,SVSWS2X	

4. ��: may simply be calculated with the obtained values of �� and E� 	using the

following:

�� =
��
E� 	

5. To determine	��, two parameters are required, the change in voltage after the load

removal and the voltage at the end of the end of the linear region of cell.

�� = �!<�,=+ end of linear region voltage.

6. The next step calculates the stored charged and charge diffusion given in Equation (1)

and Equation (2), respectively. In order to solve these first order ordinary differential

44

equations, a numerical method was utilized namely, the Euler method (Hartley et. al,

1994). For each time step during the sampled discharge cycle:

o The stored charge �� is approximated with the Euler method with a 1s time step

(K�76YJZ = 1	[�\]^_). Also for the approximation to be accurate it is important

that the initial condition, ��[0], must be initialized with the estimated SoC of

the cell.

��[^ + 1] = ��[^] + :[^] × K�76YJZ

where K�76YJZ is the sampling time of the logged data.

o Likewise, the diffusion charge is approximated using the same numerical

method, with the parameters �� and �� obtained from steps 2, 3, and 4:

��[^ + 1] = ��[^] + -C
[I]
�

− #
[I]
�
�

. × K�76YJZ

7. Next, a trial and error method is used to determine b� and b� of equation 4. These

values are chosen based upon the sharpness of the non-linear regions towards the

beginning and the end of the discharge curve. This corresponds with the curves at the

far left and far right of the voltage plot of Figure 3.5. Step 8 provides a metric which

provides feedback on the selection of the values of b� and	b�.

45

8. Next, batch least squares is performed using the collected and calculated data. An array

is formed using the parameters from equation 4. Each row in the array corresponds with

either the data sampled or calculated values for each time step in the discharge cycle.

o Theta is solved for in equation 3 using batch least squares

o � = (���) ���((�)

o Once theta is obtained the Butler-Volmer equation is calculated with the solved

parameters and the measured cell current measured during the discharge cycle.

This is to grade how well the model predicts the cell voltage.

o ()(�) = � ∙ �

o The sum of the square of the difference between the model’s estimated

voltage,	()(�) and the measured data, ((�), is calculated to determine a metric

for the accuracy of the model. This metric can be used for the trial and error

selection of the terms in Step 7. The smaller the sum becomes with the choice

of b� and b�, the more accurate the model is in predicting the cell voltages.

3.5 Obtained Cell Model Parameters

The values obtained for the model are given in Table 3.1.

46

Table 3.1: Values for obtained parameters for LiFePO4 cell model.

Parameter Value Units

b� 22/24000 coloumb-1

b� −10.14/240000 coloumb-1

�� ~0 ohm

�� 25052 farad

�� 0.00243 ohm

E 61 second

�� 3.122 volt

1
��

 4.345E − 7

farad-1

�� 1.793 volt

�� −1.0696 volt

�� 4.21Ε − 11 volt

3.6 Cell Model Output and Equivalent Circuit Diagram for Cell Model

After the cell model parameters were obtained, the cell model response was plotted

over the measured battery data. As can be seen Figure 3.6, the model output (shown in red),

was in good agreement with the collected battery data. In fact, in the figure, it is hard to

distinguish since the line lies directly over the measured data.

47

For reference, an equivalent circuit diagram representing the cell model is shown

in Figure 3.7. This is similar to equivalent circuit models available provided in the

literature, however, there is an addition of a dependent voltage source to model the non-

linear voltage behavior of the cell near full charge and full discharge (Hartmann, 2008). In

the circuit model, the cell voltage ()(�) is a sum of the fixed dc voltage,	��, the storage

voltage,	��(�), the diffusion voltage,	��(�), the dependent source that captures the non-

linear voltage dynamics (dependent upon the level of charge, ��(�)), 	�I�I JGIZ7m,mZnG�I(�),

minus the current-dependent voltage drop across 	��.

Figure 3.6: Measured battery data (black) with cell model output plotted over measured

data (Red). To the right of the picture is a zoomed view of the temporary load removal.

48

Figure 3.7: Equivalent circuit diagram for cell model with a dependent source used to

represent non-linearity characteristics of cell.

3.7 Summary

In this Chapter, the background for a cell model and its various parameters were

discussed. In addition, methods for implementing real-time cell models for real-time cell

parameter estimates was discussed. Although such an implementation was not in the scope

of this research, the benefits and abilities gained from a real-time cell model

implementation were also provided. Next, the method and steps used to collect necessary

cell data required to obtain parameters of the cell model were discussed. Lastly, the

parameters obtained from the actual collected cell data were provided.

49

CHAPTER IV

CELL MODEL SIMULATIONS

This chapter will discuss the use of the cell model obtained from actual measured data.

Simulations of virtual battery packs were performed and using multiple instances of the

obtained cell model. First, an investigation into a hypothetical battery pack consisting of 3

cells connected in series is discussed. The purpose of the investigation is to demonstrate

the effectiveness of passive bypasses in a battery pack versus a battery pack without any

equalization. The end of the chapter concludes with a simulation to test the concepts of an

integrated battery management and charging system. This simulation serves as a pre-cursor

of which the remainder of the research was focused.

4.1 Simulations of a 3-Cell Series Connected Battery Pack

A simulation was performed on a virtual 3-cell series battery pack that consisted of

several discharge and charge cycles. In this example, no bypass circuits were utilized. The

goal of this simulation was to verify that without any bypass circuitry, the cells’ SoC

diverges over time. Since voltage depends upon the SoC, this also leads to the cells’

voltages diverging over time.

The cell model parameters used to simulate the cells were kept all the same. The

only difference in each cell was the initial SoC assigned to each one. Cell One was provided

50

a SoC 2% above Cell Two and Cell Three was provided an SoC 2% below Cell Two. It is

important to note that the conditions in the simulation were chosen to demonstrate how un-

balanced cell voltages within a battery pack behave. Of particular interest is whether all of

the cells’ voltages diverge or converge relative to one another. Also, worth mentioning is

that in practice, there will be some slight variation between each individual cells’

parameters (which in actual cells is due to variations in the cell manufacturing process).

However, these variations will most likely only make the cells even more likely to diverge.

It will be shown that just the variation in the cells’ initial SoC is enough to cause

divergence.

The following discussion outlines the simulation of a charging device and the

simulation of a monitored discharge load. At a high-level, chargers typically provide a

constant current into the battery pack being charged. The charger then monitors the overall

voltage of the pack until it reaches a pre-designed constant voltage state. At this point it

decreases the current to maintain a designated constant voltage. Following this, the charger

either shuts off after a given period of time or waits until the charging current falls below

a certain threshold. Similarly, the discharge monitoring circuitry typically monitors the

voltage of the overall pack voltage until it reaches a low threshold. At this point the

circuitry discontinues running the application.

Charge Cycle, Simulated Charger

o Constant current: The pack was charged at a constant current of 20A until

the pack voltage reached 11.4V (occurring ideally when each cell is 3.8V).

51

o Constant voltage: At this point the charger maintained the constant voltage

of 11.4V by reducing the current until it reached 6A.

o End of charge cycle: This point marks the end of the charge cycle and the

discharge cycle starts shortly after.

Discharge Cycle, Simulated Monitored Load

o Constant Discharge Current: The battery pack is discharged at 60A until

the pack voltage reaches 7.5V (occurring when each cell reaches 2.5V).

o End of discharge cycle: This point marks the end of the discharge cycle and

the charge cycle begins again.

4.1.1 Battery Pack without Passive Bypass

Figure 4.1 shows the packs’ voltage over 916 charge/discharge cycles (or

approximately 4000 hours continuously running the aforementioned Charge and Discharge

Cycles). A closer view of the first 10 hours of the simulation are provided in Figure 4.2.

This simulation represents what is seen if only the overall battery pack voltage is

monitored. Obviously, the exact voltages of the individual cells within the battery pack

cannot be determined from this graph. Although the battery pack’s total voltage never

reached over 11.4V (3.8V x 3 cells if cells are balanced) or went below 7.5V (2.5V x 3

cells if cells are balanced), the individual cells in the pack did not stay balanced as

demonstrated in Figure 4.3.

52

Figure 4.1: 3-cell series battery pack voltage over 916 charge/discharge cycles.

Figure 4.2: Zoomed in view of the beginning cycles of the 3-cell series battery pack

simulations. The final cycles of the simulation also look similar to these.

Figure 4.3 shows the 3 individual cell voltages over the 916 charge/discharge cycles

performed. The number of cycles was chosen arbitrarily in order to demonstrate the

individual cell voltages of the pack diverging. Clearly, it can be seen that the cells diverge

enough to allow Cell 1 and Cell 2 to reach voltages outside their manufacturer

53

recommended voltage operating ranges during charge and discharge, respectively. Cell 2

reaches voltages near 4.4V, while Cell 1 reaches close to 2V. To further demonstrate how

the cell voltages diverged, provided are Figure 4.4 and Figure 4.5. These figures show the

first few hours of the simulation and the last few hours of the simulation, respectively.

Figure 4.3: 3-cell series battery pack initially unbalanced, without balancing circuits after

916 charge/discharge cycles.

54

Figure 4.4: Zoomed in view of initial cycles of 3-cell simulation without bypasses.

Figure 4.5: Zoomed in view of final cycles of 3-cell simulation without bypasses.

55

4.1.2 Battery Pack with Passive Bypass

 Figure 4.6 shows the same simulation with the addition of a resistor-based current

bypass on each cell. When any individual cell reached a voltage of 3.8 V, the current bypass

was enabled allowing 1 amp to shunt around the bypass’s corresponding cell. This provided

a means to allow the higher charged cells to continue charging at a reduced charge rate and

allow the lower charged cells to continue at the full rate. As can be seen, the results

demonstrate the cells converged within the first 250 hours of continuously running the

simulation charge and discharge cycles. Again the initial cycles of the simulation, Figure

4.7, and the final cycles of the simulation, Figure 4.8, demonstrate that the cell voltages

converged. The MATLAB code for the 3-Cell pack simulations with and without bypasses

can be seen in Appendix A.1.

Figure 4.6: Simulations performed with the same initial conditions as the previous

simulation and cell parameters but with the addition of balancing circuitry being

simulated.

56

Figure 4.7: Zoomed in view of the initial cycles of the 3-cell simulation with bypasses.

Figure 4.8: Zoomed in view of final cycles of the 3-cell simulation with bypasses.

57

4.2 Simulations of 10-Cell Pack

The following sections were simulations performed to determine the behavior of a 10-

cell battery pack using different configurations for management. The three sets of

simulations performed consisted of:

1. 10-Cell Battery Pack without any BMS and simple Charger.

2. 10-Cell Battery Pack with simple BMS and a simple Charger.

3. 10-Cell Battery Pack with BMS and integrated Charger.

The details of each of these individual simulations will be covered in the following

sections. In all three of these simulations, the cells are all initialized with an idealized set

of identical parameters as given in Section 3.5 (this condition is ideal in the sense that these

hypothetical cells have the same exact properties which in practice may be different due to

cell manufacturing tolerances). The one exception to the choice of identical parameters was

the initial SoC for each cell pack arbitrarily chosen to be different. However, the values

chosen for each of the cells’ initial SoC are the same for each simulation set. This allows

for an apples-to-apples comparison to be made on the effectiveness of the simulated

management scheme. The initial SoC of each cell within the battery pack given in

percentage are, 8%, 13%, 14%, 15%, 16%, 14%, 15%, 15%, 17%, and 16%. Lastly, in each

of the simulations a constant-current 60A load is used during the discharge cycle.

4.2.1 Simulation with Non-Integrated Charger and without any BMS

This section discusses the simulation of the 10-Cell series-connected battery pack

without a BMS and a simple charger. The simple charger charges the battery pack in

constant current mode at a current of 12A. The simple charger looks at the overall voltage

of the battery pack without any consideration of the individually charged cells. When the

58

overall voltage of the battery pack hits 42V (4.2V x 10 cells), the discharge cycle is started.

The discharge cycle is complete when the voltage of the overall pack is less than 25V (2.5V

x 10 Cells). This simulation reinforces the results seen in Figure 4.1 (simulation results of

the overall voltage of the series-connected 3-cell battery pack) and Figure 4.3 (simulation

results of the individual cell voltages of the series-connected 3-cell battery pack). The

results, plotted in Figure 4.9, of this simulation will serve as a baseline for performance

comparison with the other simulated methods (a closer view of a single cycle is shown

Figure 4.10). Figure 4.9 shows the cell voltages and the battery pack current over 14 full

charge and discharge cycles. Due to the fact that the cells are unbalanced, it is clear that

specific cells are being charged such that their voltages go above the plotted threshold lines

of 4.2V and 2.5V. The cell model simulations do not take into account the damage and how

this alters the cell’s operation, however, it is clear that each charge and discharge cycle

continues to undesirably push the cell voltages outside of these bounds. The MATLAB

simulation code for this simulation is provided in Appendix A.4.

59

Figure 4.9: Simulations performed with the same initial conditions and cell parameters

and without an integrated charger or any BMS.

60

Figure 4.10: Zoomed in view of the initial cycles of 10-cell pack without bypasses.

4.2.2 Simulation with 2A Fixed Bypass and Non-Integrated Charger

This section shows results of simulations with the same 10-cell series-connected

battery pack, the same simple charger, and the same load as in the previous simulation. The

main difference is that constant-current 2A bypasses are simulated on each cell that turn

on when the cells reach 3.8V. Figure 4.11 shows the individual cell voltages, battery pack

current, and the bypass currents for each cell over 17 full charge and discharge cycles. The

results are similar to the results seen in the 3-cell series-connected pack simulations. The

61

cells initially started off-balanced in the first few charge/discharge cycles, going outside

the 4.2V and 2.5V threshold lines. However, as the bypasses are able to provide more

balancing during each charge cycle, the cell voltages begin to converge. Towards the end

of the simulation as the cells become more balanced, the cell voltages are able to stay within

the threshold lines. A comparison between the unbalanced cell voltages at the beginning of

the simulation and the balanced cell voltages at the end of the simulation can be seen in

Figure 4.12 and Figure 4.13, respectively. The MATLAB simulation code for this

simulation is provided in Appendix A.2.

62

Figure 4.11: Simulations performed with the same initial conditions and cell parameters

but with the passive bypass and non-integrated charger.

63

Figure 4.12: Zoomed in view of the initial cycles of the passive bypasses-only-

simulations.

Figure 4.13: Zoomed in view of the final cycles of the passive bypasses-only-simulations.

64

4.2.3 Simulation with BMS and Integrated Charger

This section discusses the simulation of the proposed 10-Cell series-connected

battery pack with BMS and integrated charging system as discussed in Section 2.7. The

integrated charging system is simulated to charge at 12A. This constant current mode

continues until any cell reaches 3.8V. Upon this event, the simulation will begin to shunt

current around that cell to try to maintain the 3.8V. If the shunting current reaches 2A for

any given cell, the max shunt current value, the simulation reduces the charging current by

2A. This effectively reduces the charging current for the cell that originally reached 3.8V

to a charging current that is 2A less, with an additional possible reduction of up to 2A

shunted via the simulated bypass circuitry. Shortly after decreasing the charging current by

2A and with the additional shunt current of 2A, this caused the cell’s voltage to decrease.

The simulated shunt current will be controlled and decreased to try to maintain 3.8V. After

enough charging time has elapsed at the new lower charging current, the cell voltage will

begin to increase again. This in turn will cause the shunt current to increase again in attempt

to maintain the 3.8V. Once again upon the cell reaching its maximum shunt current of 2A,

the whole cycle repeats beginning with the BMS communicating to the charger to reduce

its current by 2A. This will continue until the charging current is reduced to 1.8A. At this

value, the maximum shunt current is larger than the charging current, and the BMS can

easily maintain each cell at the voltage of 3.8V via the bypasses.

The goal of the aforementioned charging method is to allow the charging current to

remain as large as possible throughout the charging process. This allows the lowest charged

cells to continue charging at the highest possible rate, and only reducing it as necessary, to

protect the highest charged cell.

65

 The results in Figure 4.14 show the individual cell voltages, battery pack current,

and the bypass currents for each cell over 7 full charge and discharge cycles. A closer view

of the first cycle and the balancing of Figure 4.14 is shown in Figure 4.15. The cell voltages

are able to stay within the thresholds of 4.2V and 2.5V much better than the previous

simulated methods. This is due to the BMS’s ability to control the charger such that the

BMS can continue its cell balancing operations as desired. The MATLAB simulation code

for this simulation is provided in Appendix A.1.

Figure 4.14: Simulations performed with the same initial conditions and cell parameters

but with the integrated charger and with BMS.

66

Figure 4.15: Zoomed in view of the first cycle of integrated charger and BMS simulation.

67

4.3 Summary

This section discussed battery pack simulations performed with the cell model

obtained in CHAPTER III. The simulations were done to compare a hypothetical 3-cell

battery pack with and without passive bypasses. The battery packs were cycled multiple

times in the simulation to demonstrate that without passive bypasses the cells drift further

and further out of balance from one another. The pack with the passive bypasses initially

went slightly out of the desired voltage range, but then converged over time.

Also simulated in this section were 3 different management schemes for a 10-cell

series-connected battery pack. The 3 different schemes simulated consisted of: a system

without any management and a simple charger, a system with a fixed 2A bypass and simple

charger, and lastly, a system with an integrated charger and BMS. These simulations were

conducted to show the benefits gained from integrating the charger and BMS over other

simulated methods. The main benefit is that the BMS may use the integrated charger

interface to support cell balancing. The simulations show that by analyzing each cells’

voltage and reducing the overall charging current as needed, the BMS can better maintain

cell operating voltages and better equalize the SoC of each cell within the battery pack.

68

CHAPTER V

HARDWARE FOR BMS IMPLEMENTATION

This chapter will discuss the hardware designed and implemented for the integrated

charger and BMS. The battery pack, which the proposed battery management system was

implemented on, consisted of 10 series-connected LiFePO4, 60Ah, 3.3V (nominal) cells.

One of these cells is shown in Figure 5.1. The resulting battery pack formed from these

cells creates a 33.3V, 60Ah pack. This is roughly 2kWh, which for reference is enough

energy to run a 60W bulb continuously for 33.3 hours.

Figure 5.1: Single 60Ah LiFePO4 Cell.

69

5.1 Overview of Hardware for Integrated Charger and BMS

The proposed BMS for this battery pack system consisted of 10 PCBs: 9 ICMU and

1 ICMU/BPMU hybrid. The ICMU’s main function is to monitor and provide equalization

capability for one specific cell. In addition to these tasks, each ICMU is also responsible

for communicating information to the BPMU. This information includes cell voltage, cell

temperature, and any fault detections such as overvoltage or undervoltage conditions. The

BPMU simply compiles all this information, and based upon the individual cells’

conditions, makes decisions about how the charger and load controller interact with the

battery pack.

Each of these printed circuit boards (PCBs) were mounted directly onto one of the

10 cells in the battery pack. The placement of each PCB onto a given cell was arbitrary

with the exception of the ICMU/BPMU hybrid PCB. The ICMU/BPMU hybrid PCB was

placed on the cell at the lowest voltage potential with respect to the negative terminal of

the entire battery pack. The reasoning behind this was to allow the BPMU to be at the same

ground potential of the charger when the battery pack was connected to the charger device.

This allowed the BPMU to communicate with the charging device without the requirement

of electrical isolation in between the systems. Although it was not necessary for

functionality, isolation between the BMS and charger is ideal. The benefits of isolation

include mitigation of electrical noise being transmitted between the two circuits, as well as

provision for a level of fault protection for the logic circuitry.

70

Figure 5.2: Individual Cell Management Unit pictured mounted on a single LiFePO4 Cell.

5.1.1 Hardware for Individual Cell Management Unit (ICMU)

In this BMS implementation, the ICMUs measure the cells’ voltage, current, and

temperature. Powering the ICMUs was accomplished by designing PCBs that mounted

directly onto each of the individual cells’ terminals. Each ICMU is responsible for

monitoring its own cell and detecting if an undesirable condition or use of the cell will

cause damage to it. Such conditions as discussed earlier are overvoltage, undervoltage,

and overtemperature.

The ICMU periodically transmits its own cell’s information (estimated SoC,

voltage, current, and temperature) to the BPMU via an isolated serial communication bus.

In addition to this information, the ICMU also transmits information regarding to if any

overvoltage, undervoltage, or overtemperature conditions exists. The BPMU then compiles

all information from all the individual ICMUs and monitors for any cell damaging

conditions. If a condition is detected, the BPMU will take action to either stop the charging

or discharging process or provide fault indication to a user.

71

In the event of an overvoltage condition during charging of the battery pack, the

ICMU also has the ability to bypass up to 2A of current around its respective cell. In doing

so, this allowed the ICMU to slow down the charge rate of the cell it was managing. This

allowed the other cells in the series-connected pack to continue charging at a faster

charging rate and therefore provide a means of balancing the cells.

5.1.2 PCB Connection

PCBs were mounted on top of the LiFePO4 cells via the positive and negative

threaded terminals. The PCB’s Top copper pour is shown in Figure 5.3 and the Bottom

copper is shown in Figure 5.4. Further details and schematics of this PCB’s implementation

will be further covered in the following sections. However, the connections of the PCBs to

the cells will be discussed here first. Proper mechanical connections to the cells were vital

for safe usage of the cells. If the connections are not made such that they are tight and

secure, they may become loose with mechanical vibrations overtime. This in turn causes

the connections themselves to become a high impedance during the cell’s usage. This will

result in high power loss to occur at these loose connections in the form of heat. The heat

generated can be enough to melt both the cell’s outer enclosure and also damage the PCB.

In order to allow the boards to be mounted, M6 threaded rods are screwed into each

of the cell’s terminals. To allow the bolt to be tightened further a nut was placed on the

threaded shaft and tightened with a crescent wrench until it was flat against the cell’s outer

terminal Figure 5.5. Figure 5.6 shows the same PCB from the top view.

72

Figure 5.3: Top side of ICMU PCB.

Figure 5.4: Bottom side of ICMU PCB.

73

Figure 5.5: Cell with M6 threaded bolt inserted with nut.

Figure 5.6: Top View of ICMU board on a single LiFePO4 Cell before being tightened

down with nuts on the threaded shafts.

74

Figure 5.7: Circuit board tightened down onto battery terminals and also shown are

connections to adjacent cells in the series connected cells.

5.1.3 ICMU Power Circuitry

The ICMU circuitry is powered with 3.3 volt and 5 volt power rails. These are

provided via two MCP1253 charge pump integrated circuit chips. Both of these chips are

directly powered off the cell the ICMU is connected to. As can be seen with the schematics

pictured in Figure 5.8 and Figure 5.9, either a 3.3 volt or 5 volt output may be generated

from the chip by either pulling the SELECT pin on the chip high or low, respectively. The

3.3 volt source is used to power the ICMU microcontrollers, two temperature sensors, and

an isolated I2C chip. The 5 volt source is used to power a MOSFET gate driver integrated

chip. These devices will be covered further in the sections to follow.

75

Figure 5.8: Schematic: Single LiFePO4 Cell and 3.3V bus derived from charge pump.

Figure 5.9: Schematic: 5 volt bus derived from charge pump.

76

5.1.4 ICMU Microcontroller

The Atmel ATXMEGA16A4 is a 16-bit processor that was selected primarily for

its ADC features and low power capabilities (Figure 5.10). The ADC is capable of

differential analog measurements. Once the differential measurements are brought into the

device, the output from the differential measurement can then be applied to an internal

programmable gain amplifier. The microcontroller’s ADC device was implemented with

an external 2.048 volt shunt reference. Utilizing a 2.048 volt reference and placing the

ADC in “signed differential mode” with 12-bit resolution conveniently results in analog

conversions that correlate with 1mV per 1-ADC unit. In other words, an ADC reading of

2047 (decimal value) from the ADC unit corresponds with a voltage of 2.047V. An ADC

reading of -2048 in turn correlates with a -2.048V differential measurement. The interface

to the microcontroller consists of I2C communication, multiple analog readings, in-circuit

programming port, and a digital PWM output. These interfaces will be individually covered

in the sections to follow.

77

Figure 5.10: Schematic: Microcontroller schematic for ICMU PCB.

5.1.5 Implementation of Voltage and Current Monitoring

The voltage monitoring is implemented with a pair of relatively high impedance

voltage dividers as show in Figure 5.11. Two identical dividers are used to ensure that the

differential measurement is scaled to each input of the differential amplifier. The inputs to

these voltage dividers are the positive and negative terminals of the cell that the ICMU is

connected to. The resistor values of the divider was chosen to scale the cells’ maximum

expected voltage down to the maximum voltage of the microprocessor’s ADC (the value

of the external voltage reference of 2.048V). In addition, a 0.1uF ceramic capacitor is

78

placed across the stepped down voltage to serve as a low pass filter. An undesirable effect

of this implementation method is that it requires a constant current to be drawn from the

cell at all times. Since the cells have a relatively large capacity compared to the current that

is drawn from the divider, it can be considered negligible. This is under the assumption

that battery pack will be charged on a regular basis and not stored for a long period of time.

Storage for a long period of time with any additional current draw will certainly bring the

SoC of the battery pack down faster.

 Also pictured in Figure 5.11, is a resistive shunt that was utilized to measure the

current in and out of the cell. As can be seen in Figure 5.7, the PCB has a third terminal in

the center. This third terminal has a shunt connected to it, which in turn is connected to the

cell’s negative terminal. This extra terminal and the placement of the shunt allows the

current to be measured going in and out of the cell’s negative terminal. In the schematic of

Figure 5.11 the value of 2 milli-ohms is shown as the original designed value, but after

testing, a 6 milli-ohm shunt was used to scale the maximum current measuring range to a

more preferable value. This shunt was utilized to create a voltage drop that correlates with

the current going in and out of the cell. To get the voltage measurement on the shunt, a

differential analog measurement was taken across the shunt. This differential measurement

was then sent through the programmable gain amplifier with a gain of 8. Utilizing the

programmed gain and the chosen 6 milli-ohm shunt, provided a maximum theoretical

reading range of -42 to 42 amps correlating with the range of voltages coming out of the

programmable gain amplifier of -2.048 to 2.048V. Figure 5.12 shows the actual

implementation of the PCB.

79

Figure 5.11: Schematic: Voltage divider to scale cell voltage for microcontroller's ADC

on ICMU PCB and measure the current going in and out of the managed cell.

Figure 5.12: Current Shunt used to measure system current is pictured in red box.

5.1.6 Implementation of Current Bypass Circuit

The main components of the bypass circuitry consisted of a MOSFET switch in

series with a 1 ohm, 25 watt power resistor. This circuitry, shown in Figure 5.13, was used

when an overvoltage condition was detected during a charge cycle.

The current bypass circuitry was designed to allow current to be bypassed around

a cell in the range of 1-to-2 amps. This was implemented by operating the MOSFET in its

80

linear region. In other words, the MOSFET was used as a voltage controlled resistor. In

order to measure how much of the current was bypassed, the differential voltage drop

across the 1-ohm power resistor was measured with the ICMUs microcontroller’s ADC.

The voltage control on the gate of the MOSFET was implemented using the output

from a 20.8 kHz PWM signal fed into a low-pass RC filter. The PWM was generated from

the ICMU’s microcontroller PWM peripheral. The RC filter consisted of a 10kohm resistor

and 0.1uF ceramic capacitor as seen at the MOSFETs gate in Figure 5.13. These two

provide a cut-off frequency of 159 Hz with the transfer function

G(s) = 1000/(s+1000)

To control the amount of current to be bypassed, a proportional controller was

implemented. The controller’s reference input was the desired maximum voltage the cell

being protected was allowed to reach. If the voltage of the cell increased beyond the

maximum desired voltage the ICMU’s microcontroller increases the PWM duty cycle. This

increases the voltage on the capacitor in the low-pass filter, which in turn decreases the

MOSFET’s drain to source resistance.

The heat generated from using the MOSFET as a voltage-controlled resistive

bypass, was dissipated via a heat-sink. To ensure that the heat generated did not rise to an

excessive level, a temperature sensor was used. The temperature sensor was simply a

thermistor placed near the bypass MOSFET that was placed within a voltage divider with

a fixed resistance. The actual implementation of this is shown in Figure 5.14.

81

Figure 5.13: Schematic: Bypass MOSFET circuit and bypass’s overtemperature Sensor

on ICMU PCB.

Figure 5.14: The red box shows the location of bypass resistor and MOSFET configured

to be a voltage-controlled resistor (underneath silver heat-sink).

82

5.1.7 Implementation of Cell Temperature Monitoring

An ideal place to monitor the temperature of the cell is inside of the cell itself.

However, since placing a sensor inside is not feasible for an end-user of a cell, the only

option was to make an external measurement. The temperature sensor was placed near one

of the cell’s terminals. The reasoning for this placement was that it was assumed that the

thermal transfer from inside the cell is faster through the cell’s terminals and not through

the plastic casing of the cell. The choice of which terminal to place the temperature sensor

was chosen arbitrarily. The actual temperature sensor and location on the ICMU board is

shown in Figure 5.15. A more accurate linear voltage output temperature sensor was

utilized, namely the LM20. The circuit utilized is shown in Figure 5.16. The only high

temperatures observed during battery pack use were while the board was bypassing current

and dissipating heat through the bypass circuitry. This implies the board design is such that

the heat distributed from the bypass circuitry influences the cell temperature measurement.

This could be considered and possibly corrected for in software but for a future design,

ideally better heat sinking of the bypass circuitry could decrease the influence on cell

temperature measurements.

83

Figure 5.15: Location of cell temperature sensor near cell terminal bolt (small black

integrated circuit identified by arrow).

Figure 5.16: Schematic: Temperature sensor to measure cell temperature on ICMU PCB.

5.1.8 Implementation of LED displays for Status Indication

LEDs were placed onto each ICMU board to provide feedback information on the

current status of the cell being managed by the ICMU as well as the battery pack as a whole.

As pictured in the schematic of Figure 5.17, six dual colored LEDs were provided per each

84

ICMU. The actual implementation of a single ICMU can be seen in Figure 5.18. Although

six dual colored LEDs were not necessary for display purposes, during the design process,

the microcontroller had additional I/O open and so the number six was arbitrarily chosen

for the number of dual LEDs. For display purposes only, when all cells were lined up, a

“Knight Rider” (1982 TV Series) light effect was displayed. The BPMU broadcasted a

command to turn on specific LEDs on each ICMU’s individual LEDs. The commands were

sent in such a way that it gave the appearance of a single lit LED traversing through all

ICMUs from ICMU to ICMU. This provided a visual as to whether or not the

communication between each ICMU and the BPMU was active.

A single dual LED, PD0 and PD1 (see Figure 5.17), was used to show the status of

the onboard current bypass. Green indicated no bypass was active, Amber indicated that

some current bypass was active, and Red indicated the maximum bypass current was being

shunted around the cell.

In the event of an overtemperature, overvoltage, or undervoltage condition, all

ICMUs were told to flash all 6 of their LEDs red by the BPMU. This was simply used to

provide a visual for the battery pack user so that proper action could be performed (i.e. stop

using the battery pack, or remove charger and end the charging process).

85

Figure 5.17: Schematic: Status LEDs on ICMU PCB.

Figure 5.18: Actual Implementation of dual color LEDs.

86

Figure 5.19: Battery Pack with ICMUs displaying various LED colors to demonstrate cell

condition.

5.1.9 Implementation of Communication Circuits between BPMU and ICMU

In order to directly communicate from ICMU to the BPMU, isolation circuitry was

required. This was done mainly because each cell was connected in series and so inherently

the communication signal voltage is level shifted. For example between the lowest cell and

highest cell within a series string, a serial digital output on the highest cell could have been

as high as +30V higher than a serial digital output on the lowest cell. Therefore simply

connecting the digital grounds between the highest cell and lowest cell was not possible as

that essentially is a direct short from +30V to the pack ground. This is why the ADUM1250

I2C isolated digital bus IC was utilized. I2C is a serial communication protocol that is

implemented with a Clock line, a bi-directional Data Line, and a Ground. The clock line

and data lines are typically pulled high via pull-up resistors to the digital bus voltage.

Therefore the clock and data lines get simply pulled down to assert an active signal. The

87

ADUM1250 simply allows the I2C communication to be done through specialized optical-

isolated circuitry that allows bi-directional data on a single line as well as a bi-directional

drive for the clock line as well. On the ICMUs on one side of the isolation barrier the

ADUM1250 is supplied power from the cell the ICMU is attached to. On the other side of

the isolation barrier the ADUM1250 is supplied power via the BPMU. To make

connections from the ICMU to BPMU, a daisy-chain style connection is utilized on each

ICMU. There are two paralleled RJ-11 4-PIN telephone jack style to achieve this. The

circuit and actual implementation for this is pictured in Figure 5.20 and Figure 5.21,

respectively.

Figure 5.20: Schematic: Isolated communication I2C Bus on ICMU PCB.

88

Figure 5.21: I2C connections shown from daisy chaining ICMU to ICMU.

5.1.10 Implementation of ICMU Address Hardware Identification

Each ICMU node was provided an identifying address that was provided with a 4-

bit value that was determined by the value of 4 available digital input pins on the processor.

The initial envisioned method to assign each ICMU’s address was to simply program a

unique address in each devices’ memory, however, there were difficulties encountered with

this method. Since the decision was made after the PCB was designed and made, the idea

of taking 4 available pins on the processor was considered. By simply soldering each of

these 4 pins either high or low (either shorting to a nearby low-ground or high-microchip

operating voltage) each board could be assigned its own unique address with various

combinations on these pins. Although up to 16 possible addresses could be used, only 10

were required for all ICMUs.

89

Upon initialization, each ICMU read these 4 pins to determine its own address.

After determining its own address, the ICMU flashed a LED the value of its address to

provide visual indication of the address value. Using these addresses the BPMU could

individually poll each of the ICMU nodes over the I2C bus.

5.1.11 Hardware for BPMU/ICMU Hybrid

The hardware for the BPMU/ICMU are exactly the same since the BPMU/ICMU

hybrid must be able to perform all the functionality of just a single ICMU board. The only

differences are the BPMU has special connections for the I2C interface and the BPMU has

an extra serial port output to communicate to the charger device. Figure 5.22 demonstrates

the different connections used for BPMU. On the BPMU, instead of using the I2C isolator

ADUM1250 integrated chip, the BPMU simply shorts the I2C data and clock lines pins 2

to 7, and pins 3 to 4, respectively. Zero ohm resistors are populated on R27 and R28 to

connect the isolated side of the I2C Bus on all ICMUs to the BPMU’s operating voltage

Vcc and Gnd, respectively. In other words, the BPMU powers the right hand side of all the

ADUM1250 devices on each ICMU. As for the left side of each ICMU’s ADUM1250,

each ICMU powers this side on its own.

90

Figure 5.22: I2C connections for BPMU.

91

CHAPTER VI

SOFTWARE FOR BMS IMPLEMENTATION

This chapter discusses the software implemented for the integrated charger and

BMS platform. Since 1 of the 10 ICMUs served both as an ICMU and the BMPU, two

sets of software were written. The first set was used to control the 9 ICMU slave boards

and the second set was for the ICMU/BPMU Hybrid.

6.1 ICMU Software Overview

During operation, a high-level view of the operations that each ICMU performs every

4ms is listed below:

1. Read Analog Values

2. Filter, Convert, and Process Analog Readings

3. Run control loop for Bypass

4. Package ICMU’s Data into Communication Packet for BPMU

5. Update Status LEDs

6.1.1 Analog Voltage Reading

The analog-to-digital converter (ADC) measurement is performed with the

XMEGA A4 processor’s onboard 12-bit measurement. An interrupt is setup that rapidly

and automatically sweeps through the four desired measurements. In the ADC interrupt the

92

four desired measurements are over-sampled with 16 fast samples and averaged to reduce

sampling noise. The XMEGA A4 processor also has a programmable gain amplifier block

that can be used to amplify the signal (either differentially or single-ended) before being

sampled by the ADC. The available gain selections are 1, 8, 16, and 64. The cell voltage

measurement is performed with gain of 1 on the programmable gain amplifier. The cell

current measurement is performed differentially with a gain of 8. The bypass current

measurement is performed differentially and also with a gain of 1. Lastly, the temperature

measurement is performed single-ended with a gain of 1.

6.1.2 Read, Filter, Convert, and Process Analog Readings

After each analog measurement is averaged from the 16, samples each is placed

into its own 64-element ring buffer every 4ms. This buffer is used to calculate a 64-sample

moving average to filter out any high frequency noise. Each value is converted from the

raw ADC value to scientific units (e.g. volts, amps, degrees Fahrenheit, etc…). Each of

these conversions used linear equations consisting of a gain and offset.

Using the converted data, cell voltages were checked to determine the state of a cell

and to detect overdischarge (under 2.5V) or overcharge (larger than 4.2V). Also calculated

was the integral of the current measurement. This provided a rough SoC estimate. The

integral was performed simply by accumulating the sum of the currents multiplied by the

sampling time of 4ms.

6.1.3 Run Control Loop for Bypass Current

After the measurements were taken, the cell voltage was checked to determine if it

was higher than 3.8V. If it was, the bypass current controller was activated; otherwise this

93

section of code itself was skipped. However when it was activated, an integral control loop

ran to determine how much current should be bypassed to keep the cell at a nominal 3.8V.

The control loop’s output was the duty-cycle value that was used to drive the low-pass

filter coupled to the gate and source of the aforementioned bypass MOSFET of Figure 5.13.

The PWM peripheral used to control this duty-cycle was set-up for a frequency of

approximately 20.8 kHz (chosen simply to ensure the frequency was not audible and higher

than the low-pass RC filter). Provided that the voltage applied to the MOSFET’s gate and

source was slowly increased, this causes MOSFET’s operating region to be placed into its

linear region of which the MOSFET behaves as a voltage-controlled resistor. Once the

controller increases the duty-cycle beyond the MOSFET’s gate threshold, the MOSFET

reaches its saturation region and becomes relatively low impedance compared to its linear

region operation. At this point, the MOSFET’s impedance becomes relatively negligible.

The 2.1 ohm resistor connected in series with the MOSFET, is now the only current

limiting impedance. As will be discussed later, the BPMU will need to take action once the

maximum current is bypassed and the cell voltage can no longer be maintained at 3.8V.

94

Figure 6.1: MOSFET operating regions based upon gate voltage, drain current and drain

to source voltage.

Since the cell’s dynamics were not rapidly changing, the tuning of the controller for high

performance was not critical. The controller’s integral gain was chosen through an offline

manual iterative tuning process. This process consisted of starting with low gains and

increasing them in small incremental steps. The final integral gain was chosen

conservatively to prevent the bypass current value from overshooting and varying wildly.

However, it was just enough speed to increase or decrease the bypass current to maintain

the cell’s 3.8V.

6.1.4 Package ICMU’s Data into a Communication Packet for BPMU

Next, after the various measurements were sampled, calculated, and/or converted,

it was placed into a fixed communication packet. Each ICMU stored this packet in

anticipation of a data update request from the BPMU. The communication packet formed

consisted of the Cell Current, Cell Voltage, Bypass Current, estimated SoC, and the

95

following status bits: bypass on/off, bypass is/is not at maximum duty-cycle, cell is/is not

overdischarged, and temperature is/is not over maximum threshold. In terms of size, the

packet consisted of a total of 10 bytes, 2 bytes for each of the 4 analog readings, and 2

additional bytes for the SoC and the 4 status bits.

6.1.5 Update Status LEDs

The last portion of the ICMU’s operation loop was used to update the ICMU’s dual

color status LEDS. One of the six LEDs served as an indicator for the state of the ICMU’s

bypass circuit. The other five LEDs were used to indicate active communication with the

BPMU as well as system status. Not all five dual color LEDs were necessary and were

merely placed originally on the ICMU PCB for debugging purposes. However, since they

were available on the board they were creatively utilized.

The single dual-color LED was used to provide the ICMU’s bypass with the

following color configuration: In order to indicate that the Bypass was off, the Green LED

was individually lit. In order to indicate some current was being bypassed and less than the

maximum, the Green and Red LEDs were lit (creating Amber). Lastly, if the maximum

current of 1.9A was being shunted around the cell by the bypass circuit, the Red LED was

individually lit.

All display LEDs were updated with values from the BPMU for the “Night Rider

effect”, and as aforementioned, this concept was used to display the battery pack status and

also as a visual indication that the communication between the BPMU and all ICMUs was

active.

96

6.2 ICMU Interrupts

There were three interrupts that ran as needed over the ICMU’s operation loop, the

I2C Interface Interrupt, Timer Interrupt, and the ADC Interrupt. Each of these will be

discussed in the following sections.

6.2.1 I2C Interrupt

The I2C Interrupt was used for communication between the BPMU and each

ICMU. The BPMU/ICMU hybrid and the other 9 ICMUs were all placed onto the same

I2C bus via the I2C isolation chips mentioned in the hardware design section. Each ICMU’s

I2C peripheral interface was setup as a slave module with the address determined by the

four address selection pins as aforementioned. The ICMU then only responds to I2C

requests provided with its matching address from the BPMU. The BPMU performed two

operations in regards to the I2C interface; a data packet update read sequence or a

communication status write sequence.

The read sequence simply consisted of the BPMU commanding data to be given

from a specific addressed ICMU. Upon the request and verification of the address match

the I2C interrupt was triggered. Inside the interrupt the slave firsts acknowledges the

BPMU’s request for a packet update indicating it had at least one byte of data to send.

Next, the slave starts providing the packet data byte by byte and continues to acknowledge

that it had data to send. When the ICMU reached the end of its 10-byte communication

data packet, it simply ignores the acknowledgement and the BPMU stops the I2C read

sequence.

97

During the write sequence the BPMU broadcasts a message to all ICMUs. This

message was a number that corresponded to one of the 60 Green LEDs available from each

ICMU. This number was updated every time the BPMU finished a read sequence with an

ICMU. The pattern the BPMU followed to update the number consisted of incrementing

the number from 1 to 60 and then decrementing from 60 back down to 1. This is what

provided the “Night Rider Effect” as mentioned earlier. Since this message was

broadcasted to all ICMUs, provided the ICMU’s green LED corresponded with the

broadcasted value, it turned on that specific LED. This visually provided a means to see

when a message request was dropped if the “Night Rider Effect” pattern was not consistent

(i.e. if the LED stopped on a single LED for inconsistent period of time from the others, or

if LEDs were skipped in the pattern, etc…). In addition to providing communication status

using the write sequence, the BPMU also used this write sequence to provide all ICMUs

with a message to blink their RED LEDs. This was reserved for the event when the BPMU

processed the data it received from all ICMUs and detected a cell with an overcharged,

overdischarged, or overtemperature condition. This provided a visual indicator for the user

to be able to take action with the system.

6.2.2 Timer Interrupt

This interrupt was setup to occur approximately every 4ms. The only purpose for

this timer was simply to perform the integration of the current for the SoC integration.

6.2.3 ADC Interrupt

The ADC was setup to read a sweep of the four ADC measurements mentioned

previously. The interrupt occurred at the completion of the fourth ADC conversion. In the

interrupt, each individual conversion was summed up over 16 samples and then averaged.

98

It is this 16 sample average that was used each time the ICMU operation loop was run.

This 16 sample average was implemented to reduce sampling noise.

6.3 BPMU/ICMU Hybrid Software Overview

Since the BPMU is actually a hybrid BPMU/ICMU in this BMS implementation,

the BPMU performs the same functions of the ICMU. Therefore, the discussion of software

for the BPMU/ICMU hybrid will only focus on the differences between the code sets used

to implement the stand-alone ICMU versus the code for the BPMU/ICMU hybrid.

In terms in the functionality of the ICMU portion of the BPMU/ICMU hybrid, there

is only one main difference, the I2C communication. The BPMU/ICMU hybrid does not

send any information out on the I2C bus about the cell it is managing like the other ICMUs.

It simply just stores its own information internally and then it gathers the rest of the battery

pack’s cell information from other ICMUs via the I2C bus. All other steps mentioned in

the ICMU software overview behave the same in the hybrid device. The operation for the

BPMU portion of the BPMU/ICMU hybrid consist of the following: All steps for ICMU

portion are executed first. Next data from ICMUs are processed, converted, and printed

out. Next, cell status is determined and any necessary actions are taken. Lastly, charger

detection, charge current selection logic, and charger communication is performed.

6.3.1 Process ICMU Data Packets, Convert and Print out

After the BPMU requests data from a particular ICMU on the I2C bus, an interrupt

processes all the data received (this interrupt will be discussed further in a later section).

Once an entire packet is received from the ICMU a flag is set indicating there is new data

to be processed. The BPMU takes the data from the packet and decodes it back to the

99

individual measurements and status bits cell current, cell voltage, cell’s bypass current,

cell’s estimates SoC, temperature, bypass status bit, bypass at max bit, overtemperature

detection bit, and the overdischarge detection bit. This data is then sent out from a BPMU’s

information serial port at a baud rate of 19200. This process is repeated until all information

is received from all of the other 9 ICMUs.

The collection of all data from each ICMU occurs in 100 milliseconds. This means

that the acquisition of data from all ICMUs is complete once every second. When a full

round of data is received from all ICMUs, the BPMU then calculates the overall pack

voltage, current and the SoC. The pack voltage is determined by summing the individual

cell voltage measurements received. The pack current is determined by taking an average

of all the cell currents measured (since all cells are connected in series). The SoC is simply

given as the lowest SoC of the lowest charged cell (again since all cells are in series, to

protect the lowest charged cell from overdischarge, the lowest SoC percentage is given).

Next, all ICMU data is analyzed for various conditions and action is taken as necessary.

6.3.2 Determine Cell Status and Take Corrective Action as Necessary

The BPMU takes all the data and analyzes each ICMU to see if any of the following

conditions: undervoltage, overvoltage, overtemperature, and bypass at max current.

To detect the overdischarge condition, the overdischarge status bit sent from each

ICMU is evaluated. If this bit is received with a positive for an overdischarge condition for

two consecutive messages for the same ICMU, action is taken. Since there is no load shut-

off in this BMS implementation, the only action that is taken is to indicate to the user that

100

the condition exists. To do so, the BPMU simply tells all ICMUs to flash their red LEDs

in sync. This leaves it up to the user to stop the use of battery pack.

In order to detect an overvoltage condition, the BPMU evaluates the level of each

ICMU’s cell voltage during the charging process. If the BPMU detects that any cell’s

voltage is larger than 4.2V after 2 seconds, the BPMU sends a command to charger telling

it to shut-off.

As for the overtemperature condition, again the BPMU simply scans each

individual ICMU’s overtemperature status bit. If any device stays in the overtemperature

condition over 2 seconds, the BPMU sends a command to the charger telling it to also shut-

off in this case.

Given that none of the aforementioned condition exist the charging process runs

until all cells are charged equally as will be discussed in the following section.

6.3.3 Implementation of I2C Communication Scheme

The BPMU polled one ICMU node every 10ms. In other words, to poll and then

receive all 10 ICMU nodes’ cell information, this required a total of 100ms. This sampling

time was chosen to ensure any fast transient current pulses were captured during discharge.

6.3.4 Implementation of Charger Control Interface

The charging device used to implement the proposed method was developed in

conjunction with an electric vehicle project (Taschner, 2011). Shown in Figure 6.2, is a

high-level schematic of the charging device. It consists of a bridge rectifier, a smoothing

capacitor, and a buck-regulator block. Not pictured are additional electronics that provide

the monitoring, measurements, controls, and serial interface for the charging device. An

101

actual photo of the hardware is shown in Figure 6.3. Next, the serial interface will be

discussed in more detail.

Figure 6.2: A high-level schematic of the charging device (Taschner, 2011).

Figure 6.3: Photo of charging device (Taschner, 2011).

102

The serial communication interface between the BMS and the charger consisted of

three wires. Two of these were signals and the last wire was used to establish a common

ground. One of the signal wires was used to detect whether or not the charger was presently

connected to the BPMU. The other signal wire allowed the BPMU to transmit commands

to the charger.

In order to detect the presence of the charger, the BPMU used a digital input with

a high impedance pull-up resistor. When the three-wire connection was made between the

charger and the BPMU, the digital input was pulled to ground.

The command packet transmitted by the BPMU to the charger consisted of 6 bytes

as summarized in Table 6.2. This packet was designed to transmit a new desired charging

current from the BPMU to the charger. Error detection capabilities were built into the

packet. The desired current will have two integer digits and two decimal digits. A variable

representation of this format can be viewed as “II.DD”.

The starting character (Byte 0) and an ending character (Byte 5) envelops the packet

to allow for synchronization of the messages between the BPMU and charger. The integer

portion (Bytes 1 and 3) and decimal portion (Bytes 2 and 4) of the current is redundantly

sent within the packet. This is to allow the charger to receive both sets of bytes and check

if any bits were changed during the transmission. To provide an additional measure of error

checking, the BPMU sends this entire packet 5 times repeatedly to the charger. The charger

then ensures all packets are consistent before updating the actual charging current to the

new desired value.

103

Table 6.2: Communication packet sent from the BPMU to the charger.

BYTE # DATA DESCRIPTION

0 0xAA Starting character

1 II Integer Portion of Current

2 DD Decimal Portion of Current

3 II Integer Portion of Current

4 DD Decimal Portion of Current

5 0x55 Ending character

104

CHAPTER VII

SIMULATION VALIDATION AND RESULTS

This chapter will discuss the results obtained from a battery pack discharge and

charge cycle with the proposed integrated charger and BMS implementation. Plots of the

data collected during both cycles will be shown. In addition, some images collected of the

BMS system during the charging process will be displayed.

7.1 Discharge and Charge Cycles Results from a 4-cell Battery

The positive results from the simulations of the integrated BMS and Charger of

Section 4.2.3 were used to perform a quick manually-controlled experiment on a series

connected 4-cell battery pack. The cells consisted of four 26650 LiFePO4 cells, each with

a 2.5Ah capacity. A power supply was used for the charging cycle and a programmable

load was used for the discharge. The power supply was set for a constant-current of 4A and

a constant-voltage of 14.8V (3.7V x 4 cells). The programmable load on the other hand

was set for a fixed discharge of 4A. On each cell a resistive bypass was implemented

consisting of an 8.2 ohm resistor that turned on at 3.5V.

The experiment started with all cells individually charged with the same CC and

CV profile. For the constant-current mode 4A continuous was maintained until the cell

voltage reached 3.7V. In the constant-voltage mode, the cell voltage of 3.7V was

105

maintained until the cell reached 50mA. At this point the charging was complete and the

cells were allowed to rest.

The purpose of the experiment was to demonstrate that the cell balancing could be

more effective if the charging current was controllable. This could be accomplished by

manually watching the cell voltages and reducing the power supplies charging current as

necessary.

The experiment started with cycling the pre-balanced cells for two cycles. As can

be seen in Figure 7.1, the first two cycles show that the cell voltages stayed relatively

balanced during the charge cycle (note that the second cycle appears different after the

charge cycle only because the pack was allowed to rest longer). After the second discharge

cycle, a single cell was individually charged at 4A on its own for 10 minutes to purposefully

unbalance the pack (unbalance marker in yellow in figure). After this, the cells were

allowed to rest again and then the third charge cycle was started. As can be seen, the higher

charged cell quickly reached 3.7V before the other cells. Even with the bypass on, the cell

voltage increased significantly more as observed in the simulations of Chapter 4. At this

point, the charger current was turned down to a constant-current of 0.4A. This allowed the

bypass to completely shunt the current around the highest charged cell while the other cells

remained charging. Once all cells reached the bypass activation voltage, the current was

increased to 0.6A to allow all the cells to continue charging. The next charge and discharge

cycle show that the charging stays well balanced. After a long rest, an additional charge

cycle was performed to demonstrate the cells remained balanced.

106

Figure 7.1: Data plotted from a 4-Cell series-connected battery pack manually-controlled

experiment.

7.2 Results from the Integrated Charger and BMS on a 10-Cell Battery Pack

The results of data collected from the 10-Cell series-connect integrated Charger is

given in the next few sections. The data collected from the discharge cycle is provided

followed by the charging and balancing results.

7.2.1 Discharge Cycle

A fixed high power resistive load with a resistance of approximately 1.67 ohms was

used to discharge the battery pack at a nominal discharge current of 20A. The discharge

107

was stopped when at least one of the cells dropped below the 2.5V threshold. The BPMU

visually indicated this to the users by notifying the ICMU boards to flash their red indicator

LEDs. As can be seen in Figure 7.2, Cell 10 reached a low voltage of 2.5V. At this point

the red LED indicators were asserted and removal of the load completed the discharge

cycle. Also worth noting is that the cell voltages have different discharge characteristics.

As can be seen in the figure, initially in the discharge cycle cell 4 is at a lower voltage.

However, towards the end of the discharge, cell 10 reaches 2.5V first.

Also shown at the bottom of Figure 7.2 was the discharge current. Since the

resistance was a fixed resistive load, the cell discharge current started out higher as the cell

voltages were higher earlier on during the discharge cycle. The linear cell voltage region,

where the cells stays relatively constant, can be seen from approximately 0.5 to the 2 hour

mark of the discharge cycle. Towards the end of the discharge cycle (2.5 hours and after),

the cell voltages move out of the linear region and began to drop steeply. As can be

observed and expected, a decrease in discharge current occurs. At the end of the cycle, the

removal of the load is seen and the measured cell discharge current drops to zero.

108

Figure 7.2: Discharge cycle of 10 Cell Series Connected LiFePO4 Battery Pack.

7.2.2 Charge Cycle

This charge cycle occurred after the aforementioned discharge cycle was

completed. Once the BPMU was connected to the charger, it communicated to the charger

and requested a charging current of 12A. After the start button was pressed on the charger,

the BPMU continuously polled each of the ICMUs for information about their respective

cells. Figure 7.3 shows the visual LED feedback from each ICMU early on during the

charging process. Since no cells are in bypass all feedback LEDs are green.

109

Figure 7.3: Battery Pack with ICMU and ICMU/BMPU Hybrid attached to each cell. As

pictured here each cell is charging and is not bypassing any current.

The ICMUs on each board watch over its own cell and begin bypassing current

around the cell if necessary. When an ICMU begins bypassing current, the feedback LED

on the ICMU changes to amber. When an ICMU begins bypassing current close to its

maximum allowable current of 2A, the feedback LED changes to RED. Figure 7.4 shows

the system later in the discharge cycle with some ICMUs in bypass. As can be seen, some

LEDs are currently in bypass and amber. One LED is red since that bypass has reached the

maximum shunt current and can no longer keep the cell at the desired cut-off voltage. At

this point, the BPMU will communicate to the charger that it needs to reduce its charging

current by 2A.

110

Figure 7.4: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As

pictured here, 4 cells are bypassing current since they have reached a voltage of at least

3.8V.

This process continues until all cells have reached the same charge cut-off voltage.

Figure 7.5 shows the battery pack late in the charging cycle. As can be seen, all but one

cell is bypassing current except the ICMU/BPMU hybrid. This is because the

ICMU/BPMU hybrid powers the isolated I2C bus for all of the other ICMU cells. This is

in addition to the additional processing it must perform than the other ICMU cells. The last

figure of interest, Figure 7.6, shows the battery pack moments before it discontinues the

charging process as the ICMU/BPMU hybrid gets to the desired charge cut-off voltage.

111

Figure 7.5: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As

pictured here, all cells are in bypass with the exception of the ICMU/BPMU Hybrid.

Figure 7.6: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As

pictured here, all cells are in bypass. Shortly after this picture was taken, the BPMU

commanded the Charger to discontinue the charging process.

The data collected from the charging cycle is shown in Figure 7.7. Pictured in the

figure are each of the individual cells’ voltage, the charging current, and each cell’s bypass

112

current as measured by each cells’ ICMU board. During the initial phase of the charge

cycle, a wide range of cell voltages was present after the discharge. However, as the

charging commenced, the cell voltages converged when they each reached the nominal

voltage plateau of 3.3V. However, as the cells neared their full charge capacity, the cell

voltages began to slightly diverge. However, the BPMU and ICMU circuitry mitigated

damaging cell conditions by cooperating to ensure that no cells reached an overvoltage

state.

As can be seen in the bypass current measurement plots, once a cell reached 3.8V,

its ICMU activated the bypass circuitry for that given cell. The bypass circuitry continued

to bypass the necessary amount of current in order to maintain the cell’s voltage at 3.8V if

possible. However, once the maximum amount of current was bypassed, the cell continued

to charge. This increased the highest charged cell’s voltage to the maximum voltage of

4.2V. At this point, the BPMU told the charger to decrease its charging current to 1.8A. At

this charging current, the ICMUs individually control their cell’s charging current by

controlling the bypass circuitry. Once all cells reached their full bypass current, the BPMU

requested the charger to end the charging process.

In summary, the method of modifying charging current during balancing allows

cells to balance in fewer cycles. In fact, the manually-controlled experiment from Section

7.1 used this method and demonstrated the battery pack’s cell voltages converging within

a single cycle. The automated implementation of this method also demonstrated similar

results. It can be seen that this balancing cycle resembles the simulated balancing cycle of

Figure 4.15. Following the balancing cycle of Figure 7.7, the cells in the pack became

balanced similar to those shown in the simulations of Figure 4.14.

113

7.3 Chapter Summary

This chapter provided results from a quick manually-controlled experiment, to

demonstrate the benefit of providing an interface to the charger from the BMS. This allows

the cost-effective method of resistive bypassing to be implemented at a faster rate as

opposed to over a period of several charge/discharge cycles. Also discussed in this chapter

were the results from the actual implementation of the proposed BMS with the charger

interface. This implementation automates the same concept performed in the manually-

controlled experiment. The results obtained were in-line with the methods outlined in the

performed simulations. The results demonstrated the ability to charge and balance a

relatively unbalanced pack in less cycles than using an independent charger and

independent BMS with bypasses alone.

114

Figure 7.7: Charge cycle with integrated charger and BMS for a 10 cell series-connected

battery pack.

115

CHAPTER VIII

CONCLUSIONS

In this thesis, and investigation into battery management systems and monitoring

systems was performed. The investigation looked at the available methods of balancing

cells within a battery pack and identified a cost-effective method, namely, the lossy passive

bypass. It was proposed, to improve this method, to integrate the BMS with the charging

device. Next, a summary of the process followed to simulate and test this method is

provided along with the results.

Before being able to test the proposed method, a first-principles cell model was

obtained. This was done by following a procedure that allowed the required cell dynamics

to be observed. Following this procedure, the collected data was analyzed and additional

data sets were made from additional calculations. A combination of the collected data set

and new calculations data set were used to obtain the cell model’s unknown parameters.

This was done by performing batch least squares on the data sets.

Next, using this cell model and the parameters obtained, battery pack simulations

were performed. These simulations were performed to understand how cells in a series-

connected battery pack behave under various configurations. The main battery pack

configurations tested were a: 1) battery pack with no cell balancing, 2) battery pack with

116

resistive bypasses and a BMS, and 3) a battery pack with resistive bypasses, BMS, and

integrated charger.

The battery packs with no balancing had cells where their voltages diverged as the

cells went through several charge and discharge cycles. In a practical application, the cells

in this battery pack would get damaged by straying from their recommended manufacturing

voltage operating range.

The battery pack with balancing circuitry on each cell had better results in terms of

maintaining the desired voltage operating range. The cell voltages in this configuration

converged with one another as the pack was cycled. Depending on how poorly balanced

each cell was with respect to the others, the initial charge and discharge cycles could also

force the cells to work outside the desired operating voltage range. However, as the charge

and discharge cycles continued, the cells eventually became balanced.

The last configuration simulated, Configuration 3, had the best results in terms of

the number of cycles it took to balance the battery pack. It allowed the cells to be balanced

in a single cycle which prevented the cells from going outside the desired voltage range in

the subsequent charge cycles. In order to demonstrate a physical implementation of this

concept, hardware and software was developed.

The actual battery pack used for the demonstration was comprised of ten 60Ah

LiFePO4 cells connected in series. Circuit boards with a microcontroller and additional

supporting electronics were designed to directly connect to each cell individually. Using

the microcontroller and supporting electronics, code was written to monitor the cell’s

voltage, current, and temperature. In addition, the circuit could control bypass current

117

around the cell up to a maximum of 2A. Furthermore, serial communication circuitry

allowed each cell to communicate information as well as receive commands from a single

master device. This master device processed information from each cell and performed

necessary actions to protect the battery pack. During a discharge cycle, the master provided

visual feedback to a user if one or more cells reached a low SoC. During a charge cycle,

the master interfaced to an integrated charger. The interface between the two devices

allowed the master to change the charger’s charging current in response to the battery

pack’s condition.

Lastly, results were provided from a manual experiment to demonstrate the

balancing of the battery pack with the ability to change the charging current as necessary.

In addition, data was collected from a discharge and charge cycle using the designed

software and hardware that automated the concepts demonstrated in the manual

experiment. It was demonstrated that an integrated BMS and charger could balance a

battery pack in as little as a one cycle, thus providing a significant improvement over a

non-integrated BMS-charter combination.

118

BIBLIOGRAPHY

Andrea, D., ''Battery Management Systems for Large Lithium-Ion Battery Packs", ISBN

1608071049, September 2010.

Anders, A. “Tracking down the origin of arc plasma Science-II. Early continuous

discharges,” Plasma Science, IEEE Transactions on, 31(5), 1060-1069, 2003.

Annavajjula, V. K., “A Failure Accommodating Battery Management System with

Individual Cell Equalizers and State of Charge Observers,” A Thesis Presented to

The Graduate Faculty of The University of Akron, December 2007.

Bergveld, H. J., “Battery Management Systems Design by Modelling,” Royal Phillips

Electronics. ISBN 90-7445-51-9, 2001.

Battery Space, “LiFePO4 Cells/Packs,” Powerizer, Last accessed December 2010.

<http://www.batteryspace.com>

Buchmann, I., and Cadex Electronics Inc., “Batteries in a portable world: a handbook on

rechargeable batteries for non-engineers,” Cadex Electronics, 2011.

Choi, S. S., and Lim, H.S., "Factors that affect cycle-life and possible degradation

mechanisms of a Li-ion cell based on LiCoO2," Journal of Power Sources 111.1,

130-136, 2002.

Daowd, M., Omar, N.; Bossche, V., et al., “Passive and Active Battery Balancing

comparison based on MATLAB Simulation,” IEEE Vehicle Power and Propulsion

Conference, (VPPC 2011), pp. 1-7, 2011.

Economist, The, “Case History: In search of the perfect battery”, Last accessed May 2014.

< http://www.economist.com/node/10789409>. March 2008.

Krieger, E. M., Cannarella, J., & Arnold, C. B., “A comparison of lead-acid and lithium-

based battery behavior and capacity fade in off-grid renewable charging

applications,” Energy, 60, 492-500, 2013.

119

Hartley, T. T., Beale, G. O., Chicatelli, S. P., “Digital simulation of dynamic systems: a

control theory approach,” Prentice-Hall, Inc., 1994.

Hartley, T. T., Jannette, A. G., “A First Principles Battery Model for the International

Space Station,” American Institute of Aeronautics and Astronautics, AIAA-2005-

5625, 2005.

Hartmann, R. L., “An Aging Model for Lithium-Ion Cells,” A Dissertation Presented to

The Graduate Faculty of the University of Akron, December 2008.

Hicks, J. A., Gruich, R., Oldja, A., Myers, D., Hartley, T. T., Veillette, R., et al.

“Ultracapacitor Energy Management and Controller Developments for a Series-

Parallel 2-by-2 Hybrid Electric Vehicle,” IEEE Vehicular Propulsion and Power

Conference, 2007.

ICCNexergy, “Comparison of Energy Densities for Various Battery Chemistries,” 2011.

Last accessed March 2014. <http://www.iccnexergy.com/battery-systems/battery-

energy-density-comparison>

Kalhammer, F.R., Kopf, B.M., Swan, D., Roan, V.P., Walsh, M.P., “Status and Prospects

for Zero Emissions Vehicle Technology: Report of the ARB Independent Expert

Panel 2007,” Prepared for State of California Air Resources Board, Sacramento,

California, April 2007.

Kumar, R. Vasant, and Sarakonsri, T., "Introduction to Electrochemical Cells." High

Energy Density Lithium Batteries: Materials, Engineering, Applications, 2010.

Moore, S. W., Schneider, P.J. “A Review of Cell Equalization Methods for Lithium Ion

and Lithium Polymer Battery Systems,” SAE Technical Paper Series: 2001-01-

0959, 2001.

Ning, G., Haran, B., & Popov, B. N., “Capacity fade study of lithium-ion batteries cycled

at high discharge rates,” Journal of Power Sources, 117(1), 160-169, 2003.

Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., "LiFePO4: A Novel Cathode

Material for Rechargeable Batteries", Electrochemical Society Meeting Abstracts,

96-1, May, 1996.

Pearson, C., Thwaite, C., Curzon, D., Rao, G., “The long-term performance of small-cell

batteries without cell balancing electronics”, Proceedings of the 2004 NASA

Battery Workshop, 2004.

Plett, G. L., “Extended Kalman Filtering for Battery Management Systems of LiPB-based

HEV Battery Packs, Part 1: Background,” Journal of Power Sources, Vol. 134, pp.

252–261, 2004.

120

Plett, G. L., “Extended Kalman Filtering for Battery Management Systems of LiPB-based

HEV Battery Packs, Part 2: Modeling and Identification,” Journal of Power

Sources, Vol. 134, pp. 262–276, 2004.

Plett, G. L., “Extended Kalman Filtering for Battery Management Systems of LiPB-based

HEV Battery Packs, Part 3: State and Parameter Estimation,” Journal of Power

Sources, Vol. 134, pp. 277–292, 2004.

Simpson, C., “LM2576, LM3420, LP2951, LP2952: Battery Charging”, Texas

Instruments: Literature Number: SNVA557, 2011.

Taschner, M. J., “The Development of an Electric Tricycle and Buck-Topology-Based

Battery Pack Charger,” A Thesis Presented to The Graduate Faculty of The

University of Akron, July 2011.

Texas Instruments, “Battery Management Solutions Guide,” Texas Instruments: SLYT420

2012.

Vincent, C. A., “Lithium batteries: a 50-year perspective, 1959–2009,” Solid State

Ionics, 134 (1), 159-167, 2000.

Yevgen, B., “Battery Cell Balancing: What to Balance and How”, Texas Instruments, Last

accessed March 2014. <http://focus.ti.com>, 2009.

121

APPENDICES

122

APPENDIX A

MATLAB CODE

 The following are MATLAB Simulations for various battery pack configurations.

A.1 3-Cells Bypasses Vs 3-Cells w/o Bypasses

%% Charge/Discharge with No Bypass

clc;

clear all;

close all;

initialCharge = 65; % Initial Charge in AmpHours

Ro = -1.09287007554604e-05;

C = 1222821.68974733;

a1 = 15;

a2 = -10.14;

Cd = 25052.2307692307;

Rd = 0.00243491290503841;

tau = 61;

ConstV = 0;

current=0;

chargingTimeHr=4000; %hours

chargingTimeSec = chargingTimeHr*3600;

dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[3.14011797411029 3.14011797411029*0.99

3.14011797411029*1.01;

 3.82610318626407e-07 3.82610318626407e-07*1.01

3.82610318626407e-07*0.99;

 1.53543639979267 1.53543639979267*0.99

1.53543639979267*0.99;

 -1.08581425643197 -1.08581425643197*1.01 -

1.08581425643197*1.01;

 3.76948681201294e-08 3.76948681201294e-08*0.99

3.76948681201294e-08*1.01];

123

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800)

ones(1,3600*3)*20 zeros(1,1800)];

qs = zeros(chargingTimeSec,3);

qd = zeros(chargingTimeSec,3);

v = zeros(chargingTimeSec,3);

I = zeros(chargingTimeSec,1);

qs(1,1) = initialCharge*3600*1.02; %Coloumb * Amps*Sec

qd(1,1) = 0;

qs(1,2) = initialCharge*3600; %Coloumb * Amps*Sec

qd(1,2) = 0;

qs(1,3) = initialCharge*3600*0.98; %Coloumb * Amps*Sec

qd(1,3) = 0;

I(1)=0;

v(1,1) = x(1,1) + x(2,1)*qs(1,1) + x(3,1)*qd(1,1) +

x(4,1)*exp(a2*qs(1,1)/240000) + x(5,1)*exp(a1*qs(1,1)/240000) +

I(1)*Ro;

v(1,2) = x(1,2) + x(2,2)*qs(1,2) + x(3,2)*qd(1,2) +

x(4,2)*exp(a2*qs(1,2)/240000) + x(5,2)*exp(a1*qs(1,2)/240000) +

I(1)*Ro;

v(1,3) = x(1,3) + x(2,3)*qs(1,3) + x(3,3)*qd(1,3) +

x(4,3)*exp(a2*qs(1,3)/240000) + x(5,3)*exp(a1*qs(1,3)/240000) +

I(1)*Ro;

for n = 1:1:chargingTimeSec

 for k = 1:3

 if (((v(n,1)+v(n,2)+v(n,3)) < 3.8*3) && ConstV==0)

 current = 20; %%Const. Current

 else

 ConstV = 1;

 end

 if ConstV==1

 vtot = v(n,1)+v(n,2)+v(n,3);

 err = 3.8*3-vtot;

 current = current + 2*err;

 if (current <= 6)

 current = 0;

 turnOnLoad=1;

 ConstV=0;

 end

 end

 if turnOnLoad==1

 I(n) = -60;

 if v(n,1)+v(n,2)+v(n,3)<2.5*3

 turnOnLoad = 0;

 dischargeCnt=dischargeCnt+1;

 end

 else

124

 I(n) = current;

 end

 qs(n+1,k) = qs(n,k)+I(n)*Tsamp;

 qd(n+1,k) = qd(n,k)+((I(n)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp;

 v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) +

x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(a1*qs(n,k)/240000) +

I(n)*Ro;

 end

end

figure(3)

hold all

plot([0:1:chargingTimeSec]/3600,v(:,1),'r')

plot([0:1:chargingTimeSec]/3600,v(:,2),'g')

plot([0:1:chargingTimeSec]/3600,v(:,3),'c')

xlabel('Time [Hours]')

ylabel('Voltage')

legend({'Cell 1' 'Cell 2' 'Cell 3'})

figure(4)

plot([0:1:chargingTimeSec-1]/3600, I)

xlabel('Time [Hours]')

ylabel('Current')

figure(5)

plot([0:1:chargingTimeSec]/3600, v(:,1)+v(:,2)+v(:,3))

xlabel('Time [Hours]')

ylabel('Voltage')

disp('Discharge cnt is: ')

disp(dischargeCnt)

%% Charge/Discharge with Bypass

clc;

clear all;

close all;

initialCharge = 65; % Initial Charge in AmpHours

Ro = -1.09287007554604e-05;

C = 1222821.68974733;

a1 = 15;

a2 = -10.14;

Cd = 25052.2307692307;

Rd = 0.00243491290503841;

tau = 61;

ConstV = 0;

current=0;

125

chargingTimeHr = 4000; %hours

chargingTimeSec = chargingTimeHr*3600;

dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[3.14011797411029 3.14011797411029*0.99

3.14011797411029*1.01;

 3.82610318626407e-07 3.82610318626407e-07*1.01

3.82610318626407e-07*0.99;

 1.53543639979267 1.53543639979267*0.99

1.53543639979267*0.99;

 -1.08581425643197 -1.08581425643197*1.01 -

1.08581425643197*1.01;

 3.76948681201294e-08 3.76948681201294e-08*0.99

3.76948681201294e-08*1.01];

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800)

ones(1,3600*3)*20 zeros(1,1800)];

qs = zeros(chargingTimeSec,3);

qd = zeros(chargingTimeSec,3);

v = zeros(chargingTimeSec,3);

I = zeros(chargingTimeSec,3);

qs(1,1) = initialCharge*3600*1.02; %Coloumb * Amps*Sec

qd(1,1) = 0;

qs(1,2) = initialCharge*3600; %Coloumb * Amps*Sec

qd(1,2) = 0;

qs(1,3) = initialCharge*3600*0.98; %Coloumb * Amps*Sec

qd(1,3) = 0;

I(1,1)=0;

I(1,2)=0;

I(1,3)=0;

v(1,1) = x(1,1) + x(2,1)*qs(1,1) + x(3,1)*qd(1,1) +

x(4,1)*exp(a2*qs(1,1)/240000) + x(5,1)*exp(a1*qs(1,1)/240000) +

I(1)*Ro;

v(1,2) = x(1,2) + x(2,2)*qs(1,2) + x(3,2)*qd(1,2) +

x(4,2)*exp(a2*qs(1,2)/240000) + x(5,2)*exp(a1*qs(1,2)/240000) +

I(1)*Ro;

v(1,3) = x(1,3) + x(2,3)*qs(1,3) + x(3,3)*qd(1,3) +

x(4,3)*exp(a2*qs(1,3)/240000) + x(5,3)*exp(a1*qs(1,3)/240000) +

I(1)*Ro;

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES

% SYSTEM STARTS WITH CHARGING

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH INDVIDUAL CELL

VOLTAGE)

126

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT VOLTAGE

MODE

for n = 1:1:chargingTimeSec

 for k = 1:3 %REPEAT SIMULATION CALCUATIONS FOR EACH CELL

(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL)

 % CHARGING PROCESS: CONSTANT CURRENT

 % THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO CONSTANT

VOLTAGE MODE

 if (((v(n,1)+v(n,2)+v(n,3)) < 3.8*3) && ConstV==0)

 current = 20; % MAINTAIN CONSTANT CURRENT

 else

 ConstV = 1; % START CONSTANT VOLTAGE MODE

 end

 % CHARGING PROCESS: CONSTANT VOLTAGE

 % CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT VOLTAGE

MODE

 % IF SO, SWITCHES ON LOAD

 if ConstV==1

 vtot = v(n,1)+v(n,2)+v(n,3);

 err = 3.8*3-vtot;

 current = current + 2*err;

 if (current <= 6)

 current = 0;

 turnOnLoad=1;

 ConstV=0;

 end

 end

 % LOAD ACTIVE: 60 AMP LOAD

 % IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING PROCESS

STOPS

 if turnOnLoad==1

 I(n,k) = -60;

 if v(n,1)+v(n,2)+v(n,3)<2.5*3

 turnOnLoad = 0;

 dischargeCnt=dischargeCnt+1;

 end

 else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON

BYPASS WHEN NECESSARY

 % IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP CONSTANT

CURRENT BYPASS)

 % ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS

 if v(n,k) > 3.8

 I(n,k) = current-1;

 else

 I(n,k) = current;

 end

 end

 % CALCULATE NEXT TIME-STEP USING CELL MODELS

127

 qs(n+1,k) = qs(n,k)+I(n,k)*Tsamp;

 qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp;

 v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) +

x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(a1*qs(n,k)/240000) +

I(n,k)*Ro;

 end

end

figure(5)

hold all

plot([0:1:chargingTimeSec]/3600,v(:,1),'r')

plot([0:1:chargingTimeSec]/3600,v(:,2),'g')

plot([0:1:chargingTimeSec]/3600,v(:,3),'c')

xlabel('Time [Hours]')

ylabel('Voltage')

figure(6)

plot([0:1:chargingTimeSec-1]/3600, I(:,1))

xlabel('Time [Hours]')

ylabel('Current')

disp('Discharge cnt is: ')

disp(dischargeCnt)

128

A.2 MATLAB Simulations: 10-Cells & Integrated Charger & Battery Pack w/

Bypasses

%% Charge/Discharge with Bypass 10 Cells Integrated charger

clc;

clear all;

%close all;

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED

CHARGING CURRENT

% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10)

% ampHour =

% 53.4478888888888

% 52.4618888888889

% 51.3797222222222

% 51.1152222222222

% 50.5888333333333

% 51.4822499999999

% 51.1220555555555

% 50.7726944444444

% 49.8306944444444

% 50.1831111111111

% SOC_Percent =

% 89.0798148148147

% 87.4364814814814

% 85.6328703703704

% 85.192037037037

% 84.3147222222221

% 85.8037499999999

% 85.2034259259258

% 84.6211574074073

% 83.0511574074073

% 83.6385185185185

% Initial_Charge_SOC_Percent =

% 10.9201851851853

% 12.5635185185186

% 14.3671296296296

% 14.807962962963

% 15.6852777777779

129

% 14.1962500000001

% 14.7965740740742

% 15.3788425925927

% 16.9488425925927

% 16.3614814814815

initialCharge = 60; % Initial Charge in AmpHours

Ro = -1.09287007554604e-05;

C = 1222821.68974733;

a1 = 15;

a2 = -10.14;

Cd = 25052.2307692307;

Rd = 0.00243491290503841;

tau = Cd*Rd;

ConstV = 0;

current=0;

chargingTimeHr = 50; %Simulation hours

chargingTimeSec = chargingTimeHr*3600;

dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[3.14011797411029;

 3.82610318626407e-07;

 1.53543639979267;

 -1.08581425643197;

 3.76948681201294e-08];

x = [x x x x x x x x x x];

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) ones(1,3600*3)*20

zeros(1,1800)];

qs = zeros(chargingTimeSec,10);

qd = zeros(chargingTimeSec,10);

v = zeros(chargingTimeSec,10);

I = zeros(chargingTimeSec,10);

% 10.9201851851853

% 12.5635185185186

% 14.3671296296296

% 14.807962962963

130

% 15.6852777777779

% 14.1962500000001

% 14.7965740740742

% 15.3788425925927

% 16.9488425925927

% 16.3614814814815

qs(1,1) = initialCharge*3600*0.08; %Coloumb * Amps*Sec

qd(1,1) = 0;

qs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec

qd(1,2) = 0;

qs(1,3) = initialCharge*3600*0.144; %Coloumb * Amps*Sec

qd(1,3) = 0;

qs(1,4) = initialCharge*3600*0.148; %Coloumb * Amps*Sec

qd(1,4) = 0;

qs(1,5) = initialCharge*3600*0.157; %Coloumb * Amps*Sec

qd(1,5) = 0;

qs(1,6) = initialCharge*3600*0.142; %Coloumb * Amps*Sec

qd(1,6) = 0;

qs(1,7) = initialCharge*3600*0.148; %Coloumb * Amps*Sec

qd(1,7) = 0;

qs(1,8) = initialCharge*3600*0.154; %Coloumb * Amps*Sec

qd(1,8) = 0;

qs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec

qd(1,9) = 0;

qs(1,10) = initialCharge*3600*0.164; %Coloumb * Amps*Sec

qd(1,10) = 0;

I(1,1)=0;

I(1,2)=0;

I(1,3)=0;

I(1,4)=0;

I(1,5)=0;

I(1,6)=0;

I(1,7)=0;

I(1,8)=0;

I(1,9)=0;

I(1,10)=0;

v(1,1) = x(1,1) + x(2,1) *qs(1,1) + x(3,1)*qd(1,1) + x(4,1)

*exp(a2*qs(1,1)/240000) + x(5,1) *exp(a1*qs(1,1)/240000) + I(1)*Ro;

v(1,2) = x(1,2) + x(2,2) *qs(1,2) + x(3,2)*qd(1,2) + x(4,2)

*exp(a2*qs(1,2)/240000) + x(5,2) *exp(a1*qs(1,2)/240000) + I(1)*Ro;

v(1,3) = x(1,3) + x(2,3) *qs(1,3) + x(3,3)*qd(1,3) + x(4,3)

*exp(a2*qs(1,3)/240000) + x(5,3) *exp(a1*qs(1,3)/240000) + I(1)*Ro;

131

v(1,4) = x(1,4) + x(2,4) *qs(1,4) + x(3,4)*qd(1,4) + x(4,4)

*exp(a2*qs(1,4)/240000) + x(5,4) *exp(a1*qs(1,4)/240000) + I(1)*Ro;

v(1,5) = x(1,5) + x(2,5) *qs(1,5) + x(3,5)*qd(1,5) + x(4,5)

*exp(a2*qs(1,5)/240000) + x(5,5) *exp(a1*qs(1,5)/240000) + I(1)*Ro;

v(1,6) = x(1,6) + x(2,6) *qs(1,6) + x(3,6)*qd(1,6) + x(4,6)

*exp(a2*qs(1,6)/240000) + x(5,6) *exp(a1*qs(1,6)/240000) + I(1)*Ro;

v(1,7) = x(1,7) + x(2,7) *qs(1,7) + x(3,7)*qd(1,7) + x(4,7)

*exp(a2*qs(1,7)/240000) + x(5,7) *exp(a1*qs(1,7)/240000) + I(1)*Ro;

v(1,8) = x(1,8) + x(2,8) *qs(1,8) + x(3,8)*qd(1,8) + x(4,8)

*exp(a2*qs(1,8)/240000) + x(5,8) *exp(a1*qs(1,8)/240000) + I(1)*Ro;

v(1,9) = x(1,9) + x(2,9) *qs(1,9) + x(3,9)*qd(1,9) + x(4,9)

*exp(a2*qs(1,9)/240000) + x(5,9) *exp(a1*qs(1,9)/240000) + I(1)*Ro;

v(1,10) = x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) +

x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(a1*qs(1,10)/240000) + I(1)*Ro;

hold_balancing_current = 0;

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES

% SYSTEM STARTS WITH CHARGING

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH

INDVIDUAL CELL VOLTAGE)

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT

VOLTAGE MODE

bypass_current = zeros(chargingTimeSec,10);

previous_bypass_current = zeros(10,1);

bypass_begun = zeros(10,1);

for n = 1:1:chargingTimeSec

 for k = 1:10 %REPEAT SIMULATION CALCUATIONS FOR EACH CELL

(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL)

 % CHARGING PROCESS: CONSTANT CURRENT

 % THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO

CONSTANT VOLTAGE MODE

 if (max(v(n,:)) <= 3.8 && ConstV==0)

 charge_current = 12; % MAINTAIN CONSTANT CURRENT

 else

 ConstV = 1; % START CONSTANT VOLTAGE MODE

 end

 % CHARGING PROCESS: CONSTANT VOLTAGE

132

 % CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT

VOLTAGE MODE

 % IF SO, SWITCHES ON LOAD

 if ConstV==1

 %vtot =

v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10);

 if max(v(n,:)) >= 4.2

 if charge_current > 2 && (hold_balancing_current ~= 1)

 charge_current = charge_current-2;

 else

 charge_current = 2.0;

 hold_balancing_current = 1;

 end

 end

 if (min(v(n,:)) >= 3.79)

 current = 0;

 turnOnLoad=1;

 ConstV=0;

 end

 end

 % LOAD ACTIVE: 60 AMP LOAD

 % IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING

PROCESS STOPS

 if turnOnLoad==1

 I(n,k) = -60;

 if

(v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) <

(2.5*10)

 turnOnLoad = 0;

 dischargeCnt=dischargeCnt+1;

 charge_current = 12.0;

 hold_balancing_current=0;

 bypass_begun = zeros(10,1);

 end

 else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON

BYPASS WHEN NECESSARY

 % IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP

CONSTANT CURRENT BYPASS)

 % ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS

 if v(n,k) > 3.8 && (bypass_begun(k) ~= 1)

 bypass_begun(k) = 1;

 error = 3.8-v(n,k);

 kp = 100;

 bypass_current(n,k) = bypass_current(n-1,k) - error*kp;

133

 if bypass_current(n,k) > 2

 bypass_current(n,k) = 2;

 end

 I(n,k) = charge_current - bypass_current(n,k);

 elseif bypass_begun(k)==1

 %I(n,k) = charge_current-2;

 bypass_current(n,k) = 2;

 I(n,k) = charge_current - bypass_current(n,k);

 else

 I(n,k) = charge_current;

 end

 end

 if v(n,:) >= 3.8

 break

 end

 % CALCULATE NEXT TIME-STEP USING CELL MODELS

 qs(n+1,k) = qs(n,k)+I(n,k)*Tsamp;

 qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp;

 v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) +

x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(a1*qs(n,k)/240000) + I(n,k)*Ro;

 end

end

figure(4)

subplot(3,1,1)

hold all

plot([0:1:chargingTimeSec]/3600,v(:,1))

plot([0:1:chargingTimeSec]/3600,v(:,2))

plot([0:1:chargingTimeSec]/3600,v(:,3))

plot([0:1:chargingTimeSec]/3600,v(:,4))

plot([0:1:chargingTimeSec]/3600,v(:,5))

plot([0:1:chargingTimeSec]/3600,v(:,6))

plot([0:1:chargingTimeSec]/3600,v(:,7))

plot([0:1:chargingTimeSec]/3600,v(:,8))

plot([0:1:chargingTimeSec]/3600,v(:,9))

plot([0:1:chargingTimeSec]/3600,v(:,10))

plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r')

plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r')

% legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10')

xlabel('Time [Hours]')

ylabel('Voltage')

134

subplot(3,1,2)

hold all

plot([0:1:chargingTimeSec-1]/3600, I(:,1))

plot([0:1:chargingTimeSec-1]/3600, I(:,2))

plot([0:1:chargingTimeSec-1]/3600, I(:,3))

plot([0:1:chargingTimeSec-1]/3600, I(:,4))

plot([0:1:chargingTimeSec-1]/3600, I(:,5))

plot([0:1:chargingTimeSec-1]/3600, I(:,6))

plot([0:1:chargingTimeSec-1]/3600, I(:,7))

plot([0:1:chargingTimeSec-1]/3600, I(:,8))

plot([0:1:chargingTimeSec-1]/3600, I(:,9))

plot([0:1:chargingTimeSec-1]/3600, I(:,10))

xlabel('Time [Hours]')

ylabel('Current')

disp('Discharge cnt is: ')

disp(dischargeCnt)

subplot(3,1,3)

hold all

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,1))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,2))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,3))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,4))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,5))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,6))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,7))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,8))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,9))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,10))

xlabel('Time [Hours]')

ylabel('Bypass Current')

135

A.3 MATLAB Simulations: 10-Cells, Simple Charger, and with Bypasses

%% Charge/Discharge with Bypass 10 Cells

clc;

clear all;

%close all;

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED

CHARGING CURRENT

% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10)

% ampHour =

% 53.4478888888888

% 52.4618888888889

% 51.3797222222222

% 51.1152222222222

% 50.5888333333333

% 51.4822499999999

% 51.1220555555555

% 50.7726944444444

% 49.8306944444444

% 50.1831111111111

% SOC_Percent =

% 89.0798148148147

% 87.4364814814814

% 85.6328703703704

% 85.192037037037

% 84.3147222222221

% 85.8037499999999

% 85.2034259259258

% 84.6211574074073

% 83.0511574074073

% 83.6385185185185

% Initial_Charge_SOC_Percent =

% 10.9201851851853

% 12.5635185185186

% 14.3671296296296

% 14.807962962963

% 15.6852777777779

% 14.1962500000001

% 14.7965740740742

% 15.3788425925927

136

% 16.9488425925927

% 16.3614814814815

initialCharge = 60; % Initial Charge in AmpHours

Ro = -1.09287007554604e-05;

C = 1222821.68974733;

a1 = 15;

a2 = -10.14;

Cd = 25052.2307692307;

Rd = 0.00243491290503841;

%Cd = 7000;

%Rd = 0.005;

tau = Cd*Rd;

ConstV = 0;

current=0;

chargingTimeHr = 120; %Simulation hours

chargingTimeSec = chargingTimeHr*3600;

dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[3.14011797411029;

 3.82610318626407e-07;

 1.53543639979267;

 -1.08581425643197;

 3.76948681201294e-08];

x = [x x x x x x x x x x];

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) ones(1,3600*3)*20

zeros(1,1800)];

qs = zeros(chargingTimeSec,10);

qd = zeros(chargingTimeSec,10);

v = zeros(chargingTimeSec,10);

I = zeros(chargingTimeSec,10);

% 10.9201851851853

% 12.5635185185186

% 14.3671296296296

% 14.807962962963

% 15.6852777777779

137

% 14.1962500000001

% 14.7965740740742

% 15.3788425925927

% 16.9488425925927

% 16.3614814814815

qs(1,1) = initialCharge*3600*0.08; %Coloumb * Amps*Sec

qd(1,1) = 0;

qs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec

qd(1,2) = 0;

qs(1,3) = initialCharge*3600*0.144; %Coloumb * Amps*Sec

qd(1,3) = 0;

qs(1,4) = initialCharge*3600*0.148; %Coloumb * Amps*Sec

qd(1,4) = 0;

qs(1,5) = initialCharge*3600*0.157; %Coloumb * Amps*Sec

qd(1,5) = 0;

qs(1,6) = initialCharge*3600*0.142; %Coloumb * Amps*Sec

qd(1,6) = 0;

qs(1,7) = initialCharge*3600*0.148; %Coloumb * Amps*Sec

qd(1,7) = 0;

qs(1,8) = initialCharge*3600*0.154; %Coloumb * Amps*Sec

qd(1,8) = 0;

qs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec

qd(1,9) = 0;

qs(1,10) = initialCharge*3600*0.164; %Coloumb * Amps*Sec

qd(1,10) = 0;

I(1,1)=0;

I(1,2)=0;

I(1,3)=0;

I(1,4)=0;

I(1,5)=0;

I(1,6)=0;

I(1,7)=0;

I(1,8)=0;

I(1,9)=0;

I(1,10)=0;

v(1,1) = x(1,1) + x(2,1) *qs(1,1) + x(3,1)*qd(1,1) + x(4,1)

*exp(a2*qs(1,1)/240000) + x(5,1) *exp(a1*qs(1,1)/240000) + I(1)*Ro;

v(1,2) = x(1,2) + x(2,2) *qs(1,2) + x(3,2)*qd(1,2) + x(4,2)

*exp(a2*qs(1,2)/240000) + x(5,2) *exp(a1*qs(1,2)/240000) + I(1)*Ro;

v(1,3) = x(1,3) + x(2,3) *qs(1,3) + x(3,3)*qd(1,3) + x(4,3)

*exp(a2*qs(1,3)/240000) + x(5,3) *exp(a1*qs(1,3)/240000) + I(1)*Ro;

138

v(1,4) = x(1,4) + x(2,4) *qs(1,4) + x(3,4)*qd(1,4) + x(4,4)

*exp(a2*qs(1,4)/240000) + x(5,4) *exp(a1*qs(1,4)/240000) + I(1)*Ro;

v(1,5) = x(1,5) + x(2,5) *qs(1,5) + x(3,5)*qd(1,5) + x(4,5)

*exp(a2*qs(1,5)/240000) + x(5,5) *exp(a1*qs(1,5)/240000) + I(1)*Ro;

v(1,6) = x(1,6) + x(2,6) *qs(1,6) + x(3,6)*qd(1,6) + x(4,6)

*exp(a2*qs(1,6)/240000) + x(5,6) *exp(a1*qs(1,6)/240000) + I(1)*Ro;

v(1,7) = x(1,7) + x(2,7) *qs(1,7) + x(3,7)*qd(1,7) + x(4,7)

*exp(a2*qs(1,7)/240000) + x(5,7) *exp(a1*qs(1,7)/240000) + I(1)*Ro;

v(1,8) = x(1,8) + x(2,8) *qs(1,8) + x(3,8)*qd(1,8) + x(4,8)

*exp(a2*qs(1,8)/240000) + x(5,8) *exp(a1*qs(1,8)/240000) + I(1)*Ro;

v(1,9) = x(1,9) + x(2,9) *qs(1,9) + x(3,9)*qd(1,9) + x(4,9)

*exp(a2*qs(1,9)/240000) + x(5,9) *exp(a1*qs(1,9)/240000) + I(1)*Ro;

v(1,10) = x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) +

x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(a1*qs(1,10)/240000) + I(1)*Ro;

hold_balancing_current = 0;

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES

% SYSTEM STARTS WITH CHARGING

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH

INDVIDUAL CELL VOLTAGE)

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT

VOLTAGE MODE

bypass_current = zeros(chargingTimeSec,10);

previous_bypass_current = zeros(10,1);

bypass_begun = zeros(10,1);

for n = 1:1:chargingTimeSec

 for k = 1:10 %REPEAT SIMULATION CALCUATIONS FOR EACH CELL

(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL)

 % CHARGING PROCESS: CONSTANT CURRENT

 % THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO

CONSTANT VOLTAGE MODE

 if (max(v(n,:)) <= 3.8 && ConstV==0)

 charge_current = 12; % MAINTAIN CONSTANT CURRENT

 else

 ConstV = 1; % START CONSTANT VOLTAGE MODE

 end

 % CHARGING PROCESS: CONSTANT VOLTAGE

139

 % CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT

VOLTAGE MODE

 % IF SO, SWITCHES ON LOAD

 if ConstV==1

 vtot =

v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10);

 if vtot >= 4.2*10

 current = 0;

 turnOnLoad=1;

 ConstV=0;

 end

 end

 % LOAD ACTIVE: 60 AMP LOAD

 % IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING

PROCESS STOPS

 if turnOnLoad==1

 I(n,k) = -60;

 if

(v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) <

(2.5*10)

 turnOnLoad = 0;

 dischargeCnt=dischargeCnt+1;

 charge_current = 12.0;

 bypass_begun = zeros(10,1);

 end

 else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON

BYPASS WHEN NECESSARY

 % IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP

CONSTANT CURRENT BYPASS)

 % ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS

 if v(n,k) > 3.8 && (bypass_begun(k) ~= 1)

 bypass_begun(k) = 1;

 error = 3.8-v(n,k);

 kp = 100;

 bypass_current(n,k) = bypass_current(n-1,k) - error*kp;

 if bypass_current(n,k) > 2

 bypass_current(n,k) = 2;

 end

 I(n,k) = charge_current - bypass_current(n,k);

 elseif bypass_begun(k)==1

 %I(n,k) = charge_current-2;

140

 bypass_current(n,k) = 2;

 I(n,k) = charge_current - bypass_current(n,k);

 else

 I(n,k) = charge_current;

 end

 end

 % CALCULATE NEXT TIME-STEP USING CELL MODELS

 qs(n+1,k) = qs(n,k)+I(n,k)*Tsamp;

 qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp;

 v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) +

x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(a1*qs(n,k)/240000) + I(n,k)*Ro;

 end

end

figure(5)

subplot(3,1,1)

hold all

plot([0:1:chargingTimeSec]/3600,v(:,1))

plot([0:1:chargingTimeSec]/3600,v(:,2))

plot([0:1:chargingTimeSec]/3600,v(:,3))

plot([0:1:chargingTimeSec]/3600,v(:,4))

plot([0:1:chargingTimeSec]/3600,v(:,5))

plot([0:1:chargingTimeSec]/3600,v(:,6))

plot([0:1:chargingTimeSec]/3600,v(:,7))

plot([0:1:chargingTimeSec]/3600,v(:,8))

plot([0:1:chargingTimeSec]/3600,v(:,9))

plot([0:1:chargingTimeSec]/3600,v(:,10))

plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r')

plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r')

% legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10')

xlabel('Time [Hours]')

ylabel('Voltage')

subplot(3,1,2)

hold all

plot([0:1:chargingTimeSec-1]/3600, I(:,1))

plot([0:1:chargingTimeSec-1]/3600, I(:,2))

plot([0:1:chargingTimeSec-1]/3600, I(:,3))

plot([0:1:chargingTimeSec-1]/3600, I(:,4))

plot([0:1:chargingTimeSec-1]/3600, I(:,5))

plot([0:1:chargingTimeSec-1]/3600, I(:,6))

plot([0:1:chargingTimeSec-1]/3600, I(:,7))

plot([0:1:chargingTimeSec-1]/3600, I(:,8))

plot([0:1:chargingTimeSec-1]/3600, I(:,9))

141

plot([0:1:chargingTimeSec-1]/3600, I(:,10))

xlabel('Time [Hours]')

ylabel('Current')

% legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10')

disp('Discharge cnt is: ')

disp(dischargeCnt)

subplot(3,1,3)

hold all

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,1))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,2))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,3))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,4))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,5))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,6))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,7))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,8))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,9))

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,10))

xlabel('Time [Hours]')

ylabel('Bypass Current')

% legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10')

142

A.4 MATLAB Simulations: 10-Cells, Simple Charger, and No Bypasses

%% Charge/Discharge with No Bypass 10 Cells

clc;

clear all;

%%close all;

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED

CHARGING CURRENT

% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10)

% ampHour =

% 53.4478888888888

% 52.4618888888889

% 51.3797222222222

% 51.1152222222222

% 50.5888333333333

% 51.4822499999999

% 51.1220555555555

% 50.7726944444444

% 49.8306944444444

% 50.1831111111111

% SOC_Percent =

% 89.0798148148147

% 87.4364814814814

% 85.6328703703704

% 85.192037037037

% 84.3147222222221

% 85.8037499999999

% 85.2034259259258

% 84.6211574074073

% 83.0511574074073

% 83.6385185185185

% Initial_Charge_SOC_Percent =

% 10.9201851851853

% 12.5635185185186

% 14.3671296296296

% 14.807962962963

% 15.6852777777779

% 14.1962500000001

% 14.7965740740742

% 15.3788425925927

143

% 16.9488425925927

% 16.3614814814815

initialCharge = 60; % Initial Charge in AmpHours

Ro = -1.09287007554604e-05;

C = 1222821.68974733;

a1 = 15;

a2 = -10.14;

Cd = 25052.2307692307;

Rd = 0.00243491290503841;

%Cd = 7000;

%Rd = 0.005;

tau = Cd*Rd;

ConstV = 0;

current=0;

chargingTimeHr = 100; %Simulation hours

chargingTimeSec = chargingTimeHr*3600;

dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[3.14011797411029;

 3.82610318626407e-07;

 1.53543639979267;

 -1.08581425643197;

 3.76948681201294e-08];

x = [x x x x x x x x x x];

%I = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) ones(1,3600*3)*20

zeros(1,1800)];

qs = zeros(chargingTimeSec,10);

qd = zeros(chargingTimeSec,10);

v = zeros(chargingTimeSec,10);

I = zeros(chargingTimeSec,10);

% 10.9201851851853

% 12.5635185185186

% 14.3671296296296

% 14.807962962963

% 15.6852777777779

144

% 14.1962500000001

% 14.7965740740742

% 15.3788425925927

% 16.9488425925927

% 16.3614814814815

qs(1,1) = initialCharge*3600*0.08; %Coloumb * Amps*Sec

qd(1,1) = 0;

qs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec

qd(1,2) = 0;

qs(1,3) = initialCharge*3600*0.144; %Coloumb * Amps*Sec

qd(1,3) = 0;

qs(1,4) = initialCharge*3600*0.148; %Coloumb * Amps*Sec

qd(1,4) = 0;

qs(1,5) = initialCharge*3600*0.157; %Coloumb * Amps*Sec

qd(1,5) = 0;

qs(1,6) = initialCharge*3600*0.142; %Coloumb * Amps*Sec

qd(1,6) = 0;

qs(1,7) = initialCharge*3600*0.148; %Coloumb * Amps*Sec

qd(1,7) = 0;

qs(1,8) = initialCharge*3600*0.154; %Coloumb * Amps*Sec

qd(1,8) = 0;

qs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec

qd(1,9) = 0;

qs(1,10) = initialCharge*3600*0.164; %Coloumb * Amps*Sec

qd(1,10) = 0;

I(1,1)=0;

I(1,2)=0;

I(1,3)=0;

I(1,4)=0;

I(1,5)=0;

I(1,6)=0;

I(1,7)=0;

I(1,8)=0;

I(1,9)=0;

I(1,10)=0;

v(1,1) = x(1,1) + x(2,1) *qs(1,1) + x(3,1)*qd(1,1) + x(4,1)

*exp(a2*qs(1,1)/240000) + x(5,1) *exp(a1*qs(1,1)/240000) + I(1)*Ro;

v(1,2) = x(1,2) + x(2,2) *qs(1,2) + x(3,2)*qd(1,2) + x(4,2)

*exp(a2*qs(1,2)/240000) + x(5,2) *exp(a1*qs(1,2)/240000) + I(1)*Ro;

v(1,3) = x(1,3) + x(2,3) *qs(1,3) + x(3,3)*qd(1,3) + x(4,3)

*exp(a2*qs(1,3)/240000) + x(5,3) *exp(a1*qs(1,3)/240000) + I(1)*Ro;

145

v(1,4) = x(1,4) + x(2,4) *qs(1,4) + x(3,4)*qd(1,4) + x(4,4)

*exp(a2*qs(1,4)/240000) + x(5,4) *exp(a1*qs(1,4)/240000) + I(1)*Ro;

v(1,5) = x(1,5) + x(2,5) *qs(1,5) + x(3,5)*qd(1,5) + x(4,5)

*exp(a2*qs(1,5)/240000) + x(5,5) *exp(a1*qs(1,5)/240000) + I(1)*Ro;

v(1,6) = x(1,6) + x(2,6) *qs(1,6) + x(3,6)*qd(1,6) + x(4,6)

*exp(a2*qs(1,6)/240000) + x(5,6) *exp(a1*qs(1,6)/240000) + I(1)*Ro;

v(1,7) = x(1,7) + x(2,7) *qs(1,7) + x(3,7)*qd(1,7) + x(4,7)

*exp(a2*qs(1,7)/240000) + x(5,7) *exp(a1*qs(1,7)/240000) + I(1)*Ro;

v(1,8) = x(1,8) + x(2,8) *qs(1,8) + x(3,8)*qd(1,8) + x(4,8)

*exp(a2*qs(1,8)/240000) + x(5,8) *exp(a1*qs(1,8)/240000) + I(1)*Ro;

v(1,9) = x(1,9) + x(2,9) *qs(1,9) + x(3,9)*qd(1,9) + x(4,9)

*exp(a2*qs(1,9)/240000) + x(5,9) *exp(a1*qs(1,9)/240000) + I(1)*Ro;

v(1,10) = x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) +

x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(a1*qs(1,10)/240000) + I(1)*Ro;

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES

% SYSTEM STARTS WITH CHARGING

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH

INDVIDUAL CELL VOLTAGE)

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT

VOLTAGE MODE

for n = 1:1:chargingTimeSec

 for k = 1:10 %REPEAT SIMULATION CALCUATIONS FOR EACH CELL

(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL)

 % CHARGING PROCESS: CONSTANT CURRENT

 % THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO

CONSTANT VOLTAGE MODE

 if (max(v(n,:)) <= 3.8 && ConstV==0)

 charge_current = 12; % MAINTAIN CONSTANT CURRENT

 else

 ConstV = 1; % START CONSTANT VOLTAGE MODE

 end

 % CHARGING PROCESS: CONSTANT VOLTAGE

 % CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT

VOLTAGE MODE

 % IF SO, SWITCHES ON LOAD

 if ConstV==1

 vtot =

v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10);

 if vtot >= 4.2*10

146

 current = 0;

 turnOnLoad=1;

 ConstV=0;

 end

 end

 % LOAD ACTIVE: 60 AMP LOAD

 % IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING

PROCESS STOPS

 if turnOnLoad==1

 I(n,k) = -60;

 if

(v(n,1)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) <

(2.5*10)

 turnOnLoad = 0;

 dischargeCnt=dischargeCnt+1

 charge_current = 12;

 end

 else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON

BYPASS WHEN NECESSARY

 I(n,k) = charge_current;

 end

 % CALCULATE NEXT TIME-STEP USING CELL MODELS

 qs(n+1,k) = qs(n,k)+I(n,k)*Tsamp;

 qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp;

 v(n+1,k) = x(1,k) + x(2,k)*qs(n,k) + x(3,k)*qd(n,k) +

x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(a1*qs(n,k)/240000) + I(n,k)*Ro;

 end

end

figure(6)

subplot(2,1,1)

hold all

plot([0:1:chargingTimeSec]/3600,v(:,1))

plot([0:1:chargingTimeSec]/3600,v(:,2))

plot([0:1:chargingTimeSec]/3600,v(:,3))

plot([0:1:chargingTimeSec]/3600,v(:,4))

plot([0:1:chargingTimeSec]/3600,v(:,5))

plot([0:1:chargingTimeSec]/3600,v(:,6))

plot([0:1:chargingTimeSec]/3600,v(:,7))

plot([0:1:chargingTimeSec]/3600,v(:,8))

plot([0:1:chargingTimeSec]/3600,v(:,9))

147

plot([0:1:chargingTimeSec]/3600,v(:,10))

plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r')

plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r')

xlabel('Time [Hours]')

ylabel('Voltage')

subplot(2,1,2)

hold all

plot([0:1:chargingTimeSec-1]/3600, I(:,1))

plot([0:1:chargingTimeSec-1]/3600, I(:,2))

plot([0:1:chargingTimeSec-1]/3600, I(:,3))

plot([0:1:chargingTimeSec-1]/3600, I(:,4))

plot([0:1:chargingTimeSec-1]/3600, I(:,5))

plot([0:1:chargingTimeSec-1]/3600, I(:,6))

plot([0:1:chargingTimeSec-1]/3600, I(:,7))

plot([0:1:chargingTimeSec-1]/3600, I(:,8))

plot([0:1:chargingTimeSec-1]/3600, I(:,9))

plot([0:1:chargingTimeSec-1]/3600, I(:,10))

xlabel('Time [Hours]')

ylabel('Current')

disp('Discharge cnt is: ')

disp(dischargeCnt)

148

APPENDIX B

ICMU CODE

/***

This program was produced by the

CodeWizardAVR V2.04.8 Standard

Automatic Program Generator

 Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.

http://www.hpinfotech.com

Project : Battery Board Slave

Version : .9

Date : 10/15/2010

Author :

Company : University of Akron

Comments:

Chip type : ATxmega16A4

Program type : Application

AVR Core Clock frequency: 32.000000 MHz

Memory model : Small

Data Stack size : 512

***/

#include <io.h>

//#include <delay.h>

#include <math.h>

#include <stdio.h>

#include <avr_compiler.h>

#define MAX_AMP_SEC 216000.00

#define STOP_CHARGE_VOLT 3.8

#define OVERDISCHARGE_VOLT 2.5

//Equivalent to a voltage of 3.5V

149

#define DUTY_CYC_MAX 1330 //Limits Max Bypass Current to ~2 Amps at 3.8

Volts

//Current Integrating time in seconds

#define TSamp_TCD1 0.0039996

//Count to wait until MOSFET locks on after battVolt>3.8V mosCurrent>1.95A

and battCurr<1A

#define MAX_LOCK_MOS_CURRENT_CNT 700

//Count to wait until Duty Cycle Shuts off after seeing current out of battery

#define MAX_DUTY_OFF_CNT 700

//Number of bytes to be sent to MASTER

#define MAX_DATA_BYTES 10

//Address for all slave boards to respond to

#define allCallAddress 100

#define READ 1

#define WRITE 0

//LED Colors

#define GREEN 0b10

#define RED 0b01

#define AMBER 0b11

#define LOW_SOC 70 //Picked a value then the largest ledValue

#define IS_CHARGING_AT_2_MSG 0xF0

#define IS_NOT_CHARGING_AT_2_MSG 0xFA

static float battVolt;

static float battCurr;

static float mosCurr;

static float temp;

//static float prevBattCurr;

static float AmpSec=MAX_AMP_SEC;

signed long ADCtemp[4];

signed int ADCvalues[4];

char ADCsamplecount = 0; // we're supersampling

signed int ADCbuffer;

char stepready = 0;

150

unsigned int voltCntrlCnt = 0;

unsigned char dataInTWIC=0;

unsigned char ledVal=0;

signed long OFFSET_CH0_TOTAL=0;

signed long OFFSET_CH1_TOTAL=0;

signed long OFFSET_CH2_TOTAL=0;

signed int OFFSET_CH0_DIFF=0;

signed int OFFSET_CH1_DIFF=0;

signed int OFFSET_CH2_DIFF=0;

//unsigned char lockMosCurr = 0;

unsigned int dutyOffCnt=0;

unsigned char battData[MAX_DATA_BYTES];

unsigned char dataByteCnt=0;

unsigned char slaveAddress = 0x00;

signed int offset=0;

unsigned char ledColor=GREEN;

unsigned char chargingAtTwoAmps=0;

//ADC OFFSET for each of the 10 boards OFFSET=M*RAWADC+B calibrated

manually

float const ADC_OFFSET_M[10]={-0.011107,-0.013504,-0.015376,-0.017009,-

0.015646,-0.013056,-0.015416,-0.015210,-0.013949,-0.012555};

float const ADC_OFFSET_B[10]={ 6.366141, 6.417454, 6.556141, 7.638119,

6.499410, 5.792097, 5.235612, 3.654257, 5.374430, 5.624966};

signed int bound(signed int value, signed int min, signed int max){

 if(value > max)

 return max;

 if(value < min)

 return min;

 return value;

}

151

#pragma warn-

char nvm_cmd_read(char *nvm_cmd_addr, char index){

 #asm

 LDD R30,Y+0 ; Z = index

 LDI R31,0

 LDD R26,Y+1 ; X = &NVM.CMD

 LDD R27,Y+2

 LDI R25,2 ; NVM.CMD = NVM_CMD_READ_CALIB_ROW_gc

 ST X,R25

 LPM ; read the data in R0

 ; Clean up NVM Command register. */

 LDI R25,0 ; NVM.CMD = NVM_CMD_NO_OPERATION_gc

 ST X,R25

 MOV R30,R0 ; return result

 #endasm

}
#pragma warn+

char SP_ReadCalibrationByte(char index){

 return nvm_cmd_read(&NVM.CMD,index);

}

// System Clocks initialization

void system_clocks_init(void)

{
unsigned char n,s;

// Optimize for speed

#pragma optsize-

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

#asm("cli")

// Internal 32 kHz RC oscillator initialization

// Enable the internal 32 kHz RC oscillator

OSC.CTRL|=OSC_RC32KEN_bm;

// Wait for the internal 32 kHz RC oscillator to stabilize

while ((OSC.STATUS & OSC_RC32KRDY_bm)==0);

// Internal 32 MHz RC oscillator initialization

// Enable the internal 32 MHz RC oscillator

OSC.CTRL|=OSC_RC32MEN_bm;

152

// System Clock prescaler A division factor: 1

// System Clock prescalers B & C division factors: B:1, C:1

// ClkPer4: 32000.000 kHz

// ClkPer2: 32000.000 kHz

// ClkPer: 32000.000 kHz

// ClkCPU: 32000.000 kHz

n=(CLK.PSCTRL & (~(CLK_PSADIV_gm | CLK_PSBCDIV1_bm |

CLK_PSBCDIV0_bm))) |

 CLK_PSADIV_1_gc | CLK_PSBCDIV_1_1_gc;

CCP=CCP_IOREG_gc;

CLK.PSCTRL=n;

// Internal 32 MHz RC osc. calibration reference clock source: 32.768 kHz Internal

Osc.

OSC.DFLLCTRL&= ~(OSC_RC32MCREF_bm | OSC_RC2MCREF_bm);

// Enable the autocalibration of the internal 32 MHz RC oscillator

DFLLRC32M.CTRL|=DFLL_ENABLE_bm;

// Wait for the internal 32 MHz RC oscillator to stabilize

while ((OSC.STATUS & OSC_RC32MRDY_bm)==0);

// Select the system clock source: 32 MHz Internal RC Osc.

n=(CLK.CTRL & (~CLK_SCLKSEL_gm)) | CLK_SCLKSEL_RC32M_gc;

CCP=CCP_IOREG_gc;

CLK.CTRL=n;

// Disable the unused oscillators: 2 MHz, external clock/crystal oscillator, PLL

OSC.CTRL&= ~(OSC_RC2MEN_bm | OSC_XOSCEN_bm | OSC_PLLEN_bm);

// Peripheral Clock output: Disabled

PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT &

(~PORTCFG_CLKOUT_gm)) | PORTCFG_CLKOUT_OFF_gc;

// Restore interrupts enabled/disabled state

SREG=s;

}

// Watchdog Timer initialization

void watchdog_init(void)

{
unsigned char s,n;

153

// Optimize for speed

#pragma optsize-

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

#asm("cli")

// Watchdog Timer: Off

n=(WDT.CTRL & (~WDT_ENABLE_bm)) | WDT_CEN_bm;

CCP=CCP_IOREG_gc;

WDT.CTRL=n;

// Watchdog window mode: Off

n=(WDT.WINCTRL & (~WDT_WEN_bm)) | WDT_WCEN_bm;

CCP=CCP_IOREG_gc;

WDT.WINCTRL=n;

// Restore interrupts enabled/disabled state

SREG=s;

}

// Event System initialization

void event_system_init(void)

{
// Event System Channel 0 source: Port D, Pin0

EVSYS.CH0MUX=EVSYS_CHMUX_PORTD_PIN0_gc;

// Event System Channel 1 source: Port D, Pin0

EVSYS.CH1MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 2 source: None

EVSYS.CH2MUX=EVSYS_CHMUX_PORTD_PIN1_gc;

// Event System Channel 3 source: None

EVSYS.CH3MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 4 source: None

EVSYS.CH4MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 5 source: None

EVSYS.CH5MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 6 source: None

EVSYS.CH6MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 7 source: None

EVSYS.CH7MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 0 Digital Filter Coefficient: 4 Samples

EVSYS.CH0CTRL=0b00001011;

154

// Event System Channel 1 Digital Filter Coefficient: 1 Sample

EVSYS.CH1CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 2 Digital Filter Coefficient: 1 Sample

EVSYS.CH2CTRL=0b00001011;

// Event System Channel 3 Digital Filter Coefficient: 1 Sample

EVSYS.CH3CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 4 Digital Filter Coefficient: 1 Sample

EVSYS.CH4CTRL=(EVSYS.CH4CTRL & (~(EVSYS_QDIRM_gm |

EVSYS_QDIEN_bm | EVSYS_QDEN_bm | EVSYS_DIGFILT_gm))) |

 EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 5 Digital Filter Coefficient: 1 Sample

EVSYS.CH5CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 6 Digital Filter Coefficient: 1 Sample

EVSYS.CH6CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 7 Digital Filter Coefficient: 1 Sample

EVSYS.CH7CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 0 output: Disabled

// Note: the correct direction for the Event System Channel 0 output

// is configured in the ports_init function

PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT &

(~PORTCFG_EVOUT_gm)) | PORTCFG_EVOUT_OFF_gc;

}

// Ports initialization

void ports_init(void)

{
// PORTA initialization

// OUT register

PORTA.OUT=0x00;

// Bit0: Input

// Bit1: Input

// Bit2: Input

// Bit3: Input

// Bit4: Input

// Bit5: Input

// Bit6: Input

// Bit7: Input

PORTA.DIR=0x00;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Input buffer disabled

155

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTA.PIN0CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit1 Output/Pull configuration: Totempole/No

// Bit1 Input/Sense configuration: Input buffer disabled

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTA.PIN1CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit2 Output/Pull configuration: Totempole/No

// Bit2 Input/Sense configuration: Input buffer disabled

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTA.PIN2CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Input buffer disabled

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTA.PIN3CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit4 Output/Pull configuration: Totempole/No

// Bit4 Input/Sense configuration: Input buffer disabled

// Bit4 inverted: Off

// Bit4 slew rate limitation: Off

PORTA.PIN4CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit5 Output/Pull configuration: Totempole/No

// Bit5 Input/Sense configuration: Input buffer disabled

// Bit5 inverted: Off

// Bit5 slew rate limitation: Off

PORTA.PIN5CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit6 Output/Pull configuration: Totempole/No

// Bit6 Input/Sense configuration: Input buffer disabled

// Bit6 inverted: Off

// Bit6 slew rate limitation: Off

PORTA.PIN6CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit7 Output/Pull configuration: Totempole/No

// Bit7 Input/Sense configuration: Input buffer disabled

// Bit7 inverted: Off

// Bit7 slew rate limitation: Off

156

PORTA.PIN7CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTA.INTCTRL=(PORTA.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

// Bit4 pin change interrupt 0: Off

// Bit5 pin change interrupt 0: Off

// Bit6 pin change interrupt 0: Off

// Bit7 pin change interrupt 0: Off

PORTA.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

// Bit4 pin change interrupt 1: Off

// Bit5 pin change interrupt 1: Off

// Bit6 pin change interrupt 1: Off

// Bit7 pin change interrupt 1: Off

PORTA.INT1MASK=0x00;

// PORTB initialization

// OUT register

PORTB.OUT=0x00;

// Bit0: Input

// Bit1: Input

// Bit2: Input

// Bit3: Input

PORTB.DIR=0x00;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Input buffer disabled

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTB.PIN0CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit1 Output/Pull configuration: Totempole/No

// Bit1 Input/Sense configuration: Input buffer disabled

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

157

PORTB.PIN1CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit2 Output/Pull configuration: Totempole/No

// Bit2 Input/Sense configuration: Input buffer disabled

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTB.PIN2CTRL=PORT_OPC_PULLUP_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Input buffer disabled

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTB.PIN3CTRL=PORT_OPC_PULLUP_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTB.INTCTRL=(PORTB.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

PORTB.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

PORTB.INT1MASK=0x00;

// PORTC initialization

// OUT register

PORTC.OUT=0x00;

// Bit0: Output

// Bit1: Output

// Bit2: Input

// Bit3: Input

// Bit4: Output

// Bit5: Input

// Bit6: Input

// Bit7: Output

PORTC.DIR=0x93;

158

// Bit0 Output/Pull configuration: WIRED-AND (on input)

// Bit0 Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTC.PIN0CTRL=PORT_OPC_WIREDAND_gc |

PORT_ISC_BOTHEDGES_gc;

// Bit1 Output/Pull configuration: WIRED-AND (on input)

// Bit1 Input/Sense configuration: Sense both edges

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTC.PIN1CTRL=PORT_OPC_WIREDAND_gc |

PORT_ISC_BOTHEDGES_gc;

// Bit2 Output/Pull configuration: Totempole/No

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTC.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTC.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit4 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit4 Input/Sense configuration: Sense both edges

// Bit4 inverted: Off

// Bit4 slew rate limitation: Off

PORTC.PIN4CTRL=PORT_OPC_PULLDOWN_gc |

PORT_ISC_BOTHEDGES_gc;

// Bit5 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit5 Input/Sense configuration: Sense both edges

// Bit5 inverted: Off

// Bit5 slew rate limitation: Off

PORTC.PIN5CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;

// Bit6 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit6 Input/Sense configuration: Sense both edges

// Bit6 inverted: Off

// Bit6 slew rate limitation: Off

PORTC.PIN6CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;

// Bit7 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit7 Input/Sense configuration: Sense both edges

// Bit7 inverted: Off

// Bit7 slew rate limitation: Off

PORTC.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled

159

// Interrupt 1 level: Disabled

PORTC.INTCTRL=(PORTC.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

// Bit4 pin change interrupt 0: Off

// Bit5 pin change interrupt 0: Off

// Bit6 pin change interrupt 0: Off

// Bit7 pin change interrupt 0: Off

PORTC.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

// Bit4 pin change interrupt 1: Off

// Bit5 pin change interrupt 1: Off

// Bit6 pin change interrupt 1: Off

// Bit7 pin change interrupt 1: Off

PORTC.INT1MASK=0x00;

// PORTD initialization

// OUT register

PORTD.OUT=0x00;

// Bit0: Output

// Bit1: Output

// Bit2: Output

// Bit3: Output

// Bit4: Output

// Bit5: Output

// Bit6: Output

// Bit7: Output

PORTD.DIR=0xFF;

// Bit0 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit0 Input/Sense configuration: Sense low level

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTD.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc;

// Bit1 Output/Pull configuration: Totempole/Pull-up (on input)

160

// Bit1 Input/Sense configuration: Sense low level

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTD.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc;

// Bit2 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTD.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTD.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit4 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit4 Input/Sense configuration: Sense both edges

// Bit4 inverted: Off

// Bit4 slew rate limitation: Off

PORTD.PIN4CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit5 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit5 Input/Sense configuration: Sense both edges

// Bit5 inverted: Off

// Bit5 slew rate limitation: Off

PORTD.PIN5CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit6 Output/Pull configuration: Totempole/No

// Bit6 Input/Sense configuration: Sense both edges

// Bit6 inverted: Off

// Bit6 slew rate limitation: Off

PORTD.PIN6CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit7 Output/Pull configuration: Totempole/No

// Bit7 Input/Sense configuration: Sense both edges

// Bit7 inverted: Off

// Bit7 slew rate limitation: Off

PORTD.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTD.INTCTRL=(PORTD.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

161

// Bit4 pin change interrupt 0: Off

// Bit5 pin change interrupt 0: Off

// Bit6 pin change interrupt 0: Off

// Bit7 pin change interrupt 0: Off

PORTD.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

// Bit4 pin change interrupt 1: Off

// Bit5 pin change interrupt 1: Off

// Bit6 pin change interrupt 1: Off

// Bit7 pin change interrupt 1: Off

PORTD.INT1MASK=0x00;

// PORTE initialization

// OUT register

PORTE.OUT=0x00; //Initial Output Value

// Bit0: Output

// Bit1: Output

// Bit2: Output

// Bit3: Output

PORTE.DIR=0x0F;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTE.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit1 Output/Pull configuration: Totempole/No

// Bit1 Input/Sense configuration: Sense both edges

// Bit1 inverted: On

// Bit1 slew rate limitation: Off

PORTE.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit2 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTE.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

162

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTE.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTE.INTCTRL=(PORTE.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

PORTE.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

PORTE.INT1MASK=0x00;

// PORTR initialization

// OUT register

PORTR.OUT=0x00;

// Bit0: Input

// Bit1: Input

PORTR.DIR=0x00;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTR.PIN0CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;

// Bit1 Output/Pull configuration: Totempole/No

// Bit1 Input/Sense configuration: Sense both edges

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTR.PIN1CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTR.INTCTRL=(PORTR.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

163

// Bit1 pin change interrupt 0: Off

PORTR.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

PORTR.INT1MASK=0x00;

}

/*

// Virtual Ports initialization

void vports_init(void)

{

// PORTA mapped to VPORT0

// PORTB mapped to VPORT1

PORTCFG.VPCTRLA=PORTCFG_VP1MAP_PORTB_gc |

PORTCFG_VP0MAP_PORTA_gc;

// PORTC mapped to VPORT2

// PORTD mapped to VPORT3

PORTCFG.VPCTRLB=PORTCFG_VP3MAP_PORTD_gc |

PORTCFG_VP2MAP_PORTC_gc;

}

*/

// Disable a Timer/Counter type 0

void tc0_disable(TC0_t *ptc)

{
// Timer/Counter off

ptc->CTRLA=(ptc->CTRLA & (~TC0_CLKSEL_gm)) | TC_CLKSEL_OFF_gc;

// Issue a reset command

ptc->CTRLFSET=TC_CMD_RESET_gc;

}

// Disable a Timer/Counter type 1

void tc1_disable(TC1_t *ptc)

{
// Timer/Counter off

ptc->CTRLA=(ptc->CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_OFF_gc;

// Issue a reset command

ptc->CTRLFSET=TC_CMD_RESET_gc;

}

// Timer/counter TCC1 Overflow/Underflow interrupt service routine

interrupt [TCC0_OVF_vect] void tcc0_overflow_isr(void)

164

{
// write your code here

}

// Timer/Counter TCD0 initialization

void tcd0_init(void)

{
unsigned char s;

// Note: the correct PORTD direction for the Compare Channels outputs

// is configured in the ports_init function

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure

tc0_disable(&TCD0);

// Clock source: Peripheral Clock/1

TCD0.CTRLA=0;

TCD0.CTRLB=0b00000000;

TCD0.CTRLC=0b00000000;

TCD0.CTRLD=0b01101010;

TCD0.CTRLE=0b00000000;

// Overflow interrupt: Medium Level

// Error interrupt: Disabled

TCD0.INTCTRLA=(TCD0.INTCTRLA & (~(TC0_ERRINTLVL_gm |

TC0_OVFINTLVL_gm))) |

 TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc;

// Compare/Capture channel A interrupt: Disabled

// Compare/Capture channel B interrupt: Disabled

// Compare/Capture channel C interrupt: Disabled

// Compare/Capture channel D interrupt: Disabled

TCD0.INTCTRLB=(TCD0.INTCTRLB & (~(TC0_CCDINTLVL_gm |

TC0_CCCINTLVL_gm | TC0_CCBINTLVL_gm | TC0_CCAINTLVL_gm))) |

 TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc |

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc;

165

// High resolution extension: Off

HIRESD.CTRL&= ~HIRES_HREN0_bm;

// Clear the interrupt flags

TCD0.INTFLAGS=TCD0.INTFLAGS;

// Set counter register

TCD0.CNT=0x0000;

// Set period register

TCD0.PER=20719;

// Set channel A Compare/Capture register

TCD0.CCA=0x0000;

// Set channel B Compare/Capture register

TCD0.CCB=0x0000;

// Set channel C Compare/Capture register

TCD0.CCC=0x0000;

// Set channel D Compare/Capture register

TCD0.CCD=0x0000;

// Restore interrupts enabled/disabled state

SREG=s;

TCD0.CTRLA=0b00000001;

}

// Timer/counter TCD0 Overflow/Underflow interrupt service routine

interrupt [TCD0_OVF_vect] void tcd0_overflow_isr(void)

{

}

// Timer/Counter TCD1 initialization

void tcd1_init(void)

{
unsigned char s;

// Note: the correct PORTD direction for the Compare Channels outputs

// is configured in the ports_init function

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

166

#asm("cli")

// Disable and reset the timer/counter just to be sure

tc1_disable(&TCD1);

// Clock source: Peripheral Clock/2

TCD1.CTRLA=(TCD1.CTRLA & (~TC1_CLKSEL_gm)) |

TC_CLKSEL_DIV2_gc;

// Mode: Normal Operation, Overflow Int./Event on TOP

// Compare/Capture on channel A: Off

// Compare/Capture on channel B: Off

TCD1.CTRLB=(TCD1.CTRLB & (~(TC1_CCAEN_bm | TC1_CCBEN_bm |

TC1_WGMODE_gm))) |

 TC_WGMODE_NORMAL_gc;

// Capture event source: None

// Capture event action: None

TCD1.CTRLD=(TCD1.CTRLD & (~(TC1_EVACT_gm | TC1_EVSEL_gm))) |

 TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc;

// Overflow interrupt: Low Level

// Error interrupt: Enabled

TCD1.INTCTRLA=(TCD1.INTCTRLA & (~(TC1_ERRINTLVL_gm))) |

 TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_LO_gc |

TC1_OVFINTLVL_gm;

// Compare/Capture channel A interrupt: Disabled

// Compare/Capture channel B interrupt: Disabled

TCD1.INTCTRLB=(TCD1.INTCTRLB & (~(TC1_CCBINTLVL_gm |

TC1_CCAINTLVL_gm))) |

 TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off

HIRESD.CTRL&= ~HIRES_HREN1_bm;

// Clear the interrupt flags

TCD1.INTFLAGS=TCD1.INTFLAGS;

// Set counter register

TCD1.CNT=0x0000;

// Set period register

TCD1.PER=64000;

// Set channel A Compare/Capture register

TCD1.CCA=0x0000;

// Set channel B Compare/Capture register

167

TCD1.CCB=0x0000;

// Restore interrupts enabled/disabled state

SREG=s;

}

// Timer/counter TCD1 Overflow/Underflow interrupt service routine

interrupt [TCD1_OVF_vect] void tcd1_overflow_isr(void){

 stepready = 1;

 if (battCurr>0.1 || battCurr<-0.35){

 AmpSec = AmpSec + battCurr*TSamp_TCD1;

 }else if(battCurr>-0.35 && battCurr<0.0){

 AmpSec = AmpSec + (battCurr+.05)*TSamp_TCD1;

 }

 if(AmpSec<=0) AmpSec=0;

 else if(AmpSec>MAX_AMP_SEC) AmpSec=MAX_AMP_SEC;

}

// Timer/Counter TCE0 initialization

void tcc1_init(void)

{
unsigned char s;

// Note: the correct PORTC direction for the Compare Channels outputs

// is configured in the ports_init function

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure

tc1_disable(&TCC1);

// Clock source: Peripheral Clock/1

TCC1.CTRLA=(TCC1.CTRLA & (~TC1_CLKSEL_gm)) |

TC_CLKSEL_DIV1_gc;

// Mode: Dual Slope PWM Gen., Overflow Int./Event on TOP & BOTTOM

168

// Compare/Capture on channel A: Off

// Compare/Capture on channel B: On

// Compare/Capture on channel C: Off

// Compare/Capture on channel D: Off

//TCC0.CTRLB=(TCC0.CTRLB & (~(TC0_CCAEN_bm | TC0_CCBEN_bm |

TC0_CCCEN_bm | TC0_CCDEN_bm | TC0_WGMODE_gm))) |

// TC0_CCBEN_bm | TC0_CCAEN_bm|

// TC_WGMODE_DS_TB_gc;

TCC1.CTRLB = 0b00000011; //W

TCC1.CTRLB = TCC1.CTRLB | 0b00010000;

// Capture event source: None

// Capture event action: None

TCC1.CTRLD=(TCC0.CTRLD & (~(TC0_EVACT_gm | TC0_EVSEL_gm))) |

TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc;

// Overflow interrupt: Medium Level

// Error interrupt: Disabled

// TCC0.INTCTRLA=(TCC0.INTCTRLA & (~(TC0_ERRINTLVL_gm |

TC0_OVFINTLVL_gm))) |

// TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc;

// Compare/Capture channel A interrupt: Disabled

// Compare/Capture channel B interrupt: Disabled

//TCC0.INTCTRLB=(TCC0.INTCTRLB & (~(TC0_CCDINTLVL_gm |

TC0_CCCINTLVL_gm | TC0_CCBINTLVL_gm | TC0_CCAINTLVL_gm))) |

// TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc |

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off

HIRESC.CTRL&= ~HIRES_HREN0_bm;

// Clear the interrupt flags

TCC1.INTFLAGS=0;

// Set counter value

TCC1.CNT=0x0000;

// Set period register

TCC1.PER=1600-1;

169

// Set channel A Compare/Capture register

TCC1.CCA=0;

// Set channel B Compare/Capture register

TCC1.CCB=0x0000;

// Restore interrupts enabled/disabled state

SREG=s;

}

// Disable an USART

void usart_disable(USART_t *pu)

{
// Rx and Tx are off

pu->CTRLB=0;

// Ensure that all interrupts generated by the USART are off

pu->CTRLA=0;

}

void adc_init(void){

 ADCA.CALL = SP_ReadCalibrationByte(PROD_SIGNATURES_START +

ADCACAL0_offset);

 ADCA.CALH = SP_ReadCalibrationByte(PROD_SIGNATURES_START +

ADCACAL1_offset);

 ADCA.CTRLA = 0b00111101; // set up with a four channel sweep

 ADCA.CTRLB = 0b00010000; // signed

 ADCA.REFCTRL =0b00110000; //portb reference, temp and bandgap

disabled

 ADCA.EVCTRL = 0b11000000; // no events

 ADCA.PRESCALER = 0b00000101; // div 128, 250kHz

 //ADCA.PRESCALER = 0b00000110; // div 256, 125kHz

 //ADCA.PRESCALER = 0b00000011; // div 32

 //ADCA.PRESCALER = 0b00000111; // div 512, 62.5kHz

 ADCA.CH0.CTRL =0b10000011; // start channel 0, differential w/gain 1

 ADCA.CH0.MUXCTRL = 0b00000011; // Differential POS=A0 and NEG=A7,

Battery Voltage

 ADCA.CH0.INTCTRL = 0b00000000; // no interrupt on channel 0;

 //ADCA.CH1.CTRL =0b10011011; // start channel 1, differential w/gain 64

 //ADCA.CH1.CTRL =0b10010011; // start channel 1, differential w/gain 16

 ADCA.CH1.CTRL =0b10001111; // start channel 1, differential w/gain 8

170

 ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and NEG=A6,

Battery Current

 //ADCA.CH1.MUXCTRL = 0b00110010; // Differential POS=A6 and

NEG=A6, Battery Current

 ADCA.CH1.INTCTRL = 0b00000000; // no interrupt on channel 1;

 //ADCA.CH2.CTRL = 0b10011011; // start channel 2, differential w/gain 64

 ADCA.CH2.CTRL = 0b10000011; // start channel 2, differential w/gain 1

 ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and NEG=A5,

MOSFET Current

 //ADCA.CH2.CTRL = 0b10000011;

 //ADCA.CH2.MUXCTRL = 0b00101001; // Differential POS=A4 and

NEG=A5, MOSFET Current

 ADCA.CH2.INTCTRL = 0b00000000; // no interrupt on channel 2;

 ADCA.CH3.CTRL = 0b10000001; // start channel 3, single-ended

 ADCA.CH3.MUXCTRL = 0b00011000; // Batt temp

 ADCA.CH3.INTCTRL = 0b00000001; // low interrupt on channel 3;

}

// ADC interrupt service routine

interrupt [ADCA_CH3_vect] void ADCA_CH3_isr(void){

 char i;

 // the ADC does not seem to bounds check properly, so I'll have to do it

 ADCbuffer = ADCA.CH0.RES-OFFSET_CH0_DIFF;

 ADCtemp[0] += bound(ADCbuffer, 0, 2047);

 ADCbuffer = ADCA.CH1.RES-OFFSET_CH1_DIFF;

 ADCtemp[1] += bound(ADCbuffer, -2048, 2047);

 ADCbuffer = ADCA.CH2.RES-OFFSET_CH2_DIFF;

 ADCtemp[2] += bound(ADCbuffer, -2048, 2047);

 ADCbuffer = ADCA.CH3.RES;

 ADCtemp[3] += bound(ADCbuffer, 0, 2047);

 ADCsamplecount++; //16 super sample

 if(ADCsamplecount > 16){

 //store the values

 ADCvalues[0] = ADCtemp[0]>>4;

 ADCvalues[1] = ADCtemp[1]>>4;

 ADCvalues[2] = ADCtemp[2]>>4;

 ADCvalues[3] = ADCtemp[3]>>4;

171

 for(i = 0; i<4; i++){

 ADCtemp[i] = 0;

 }

 ADCsamplecount = 0;

 }

 //Initiate next samples

 ADCA.CH0.CTRL |=0b10000000;

 ADCA.CH1.CTRL |=0b10000000;

 ADCA.CH2.CTRL |=0b10000000;

 ADCA.CH3.CTRL |=0b10000000;

}

interrupt [TWIC_TWIS_vect] void TWIC_TWIS_isr(void){

 if ((TWIC.SLAVE.STATUS &

TWI_SLAVE_APIF_bm)>>TWI_SLAVE_APIF_bp){

 //if ((TWIC.SLAVE.STATUS &

TWI_SLAVE_DIR_bm)>>TWI_SLAVE_DIR_bp){ //CASE M1

 //MASTER READ OPERATION, SEND ACK

 TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB &

~TWI_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) |

TWI_SLAVE_CMD_RESPONSE_gc;

 dataByteCnt=0;

 }else if ((TWIC.SLAVE.STATUS &

TWI_SLAVE_DIF_bm)>>TWI_SLAVE_DIF_bp){

 if ((TWIC.SLAVE.STATUS &

TWI_SLAVE_DIR_bm)>>TWI_SLAVE_DIR_bp){

 if(dataByteCnt<MAX_DATA_BYTES){

 TWIC.SLAVE.DATA = battData[dataByteCnt++];

 TWIC.SLAVE.STATUS |= TWI_SLAVE_DIF_bm;

 }else{
 //Automatically clears DIF with command being sent

 TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB &

~TWI_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) |

TWI_SLAVE_CMD_COMPTRANS_gc | TWI_SLAVE_ACKACT_bm;

 PORTE.OUTCLR = 0b00001010;

 PORTD.OUTCLR = 0b10101010;

 }

 }else{

 //MASTER WRITE OPERATION

172

 dataInTWIC = TWIC.SLAVE.DATA;

 if(dataInTWIC == LOW_SOC){

 ledVal=LOW_SOC;

 }else{
 if(dataInTWIC>slaveAddress*6){

 ledVal=7;

 }else{
 ledVal=dataInTWIC-(slaveAddress-1)*6;

 if(ledVal>6) ledVal=7;

 }

 }
 TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB &

~TWI_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) |

TWI_SLAVE_CMD_COMPTRANS_gc;

 }

 }

}

void init_I2C_Slave(){

 //BIT 7:3 RESERVED

 //BIT 2, ACKACT, 0=SEND ACK, 1= SEND NACK

 //BIT 1:0, cmd

 TWIC.SLAVE.CTRLB = 0b00000000;

 //BIT 7 DIF: Data Interrupt Flag

 //BIT 6 APIF: Address/Stop Interrupt Flag

 //BIT 5 CLKHOLD: Clk Hold Flag

 //BIT 4 RXACK: Received Ack flag

 //BIT 3 COLL: collision

 //BIT 2 BUSERR: Twi slave bus error

 //BIT 1 DIR: Read/Write Direction bit 1=Master Read, 0=Write

 //BIT 0 Slave Address or Stop Flag WHY APIF WAS SET, 0=STOP

1=ADDRESS

 TWIC.SLAVE.STATUS = 0b11001100;

 TWIC.SLAVE.ADDR = slaveAddress<<1;

 TWIC.SLAVE.DATA = 0b00000000;

 //Mask Off

 TWIC.SLAVE.ADDRMASK = allCallAddress<<1|1; //Second address all

slaves listen for messages on

173

 //BIT 7:6 Slave interrupt level?

 //BIT 5, DIE Data interrupt enable, 1=ON

 //BIT 4, APIEN, Address/Stop Interrupt Enable, 1=ON

 //BIT 3, ENABLE TWI SLAVE, 1=ON

 //BIT 2, PIEN, Stop Interrupt Enable, 1=ON

 //Bit 1, PMEN, Promiscuous Mode Enable, 0=OFF

 //BIT 0, SMEN, Smart mode enable, ?

 TWIC.SLAVE.CTRLA = 0b01111000;

}

void main(void)

{

// Declare your local variables here

unsigned char byPassOn=0;

unsigned char byPassMax=0;

unsigned char overTemp=0;

unsigned char overDischarge=0;

int movAvgValues[3][64];

long movAvgTotal[3]={0,0,0};

int newAdcVal[3];

unsigned int initSamples=0;

unsigned int sampleIdxOldest=0;

unsigned char n;

int mosCurrRaw;

int battCurrRaw;

int battVoltRaw;

unsigned int socRaw=0x0700;

unsigned int tempRaw=0;

unsigned int i=0;

unsigned int duty=0;

float error = 0.0;

float refV = 0.0;

float KpV = 0;

174

//float KpI = 0;

//float refI = 0.0;

//float Ki = 0;

//float integral_I = 0;

float integral_V = 0;

//float T = 0;

// Make sure the interrupts are disabled

#asm("cli")

// Low level interrupt: On

// Round-robin scheduling for low level interrupt: Off

// Medium level interrupt: On

// High level interrupt: On

// The interrupt vectors will be placed at the start of the Application FLASH section

n=(PMIC.CTRL & (~(PMIC_RREN_bm | PMIC_IVSEL_bm |

PMIC_HILVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_LOLVLEN_bm))) |

 PMIC_LOLVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_HILVLEN_bm;

CCP=CCP_IOREG_gc;

PMIC.CTRL=n;

// Set the default priority for round-robin scheduling

PMIC.INTPRI=0x00;

// Watchdog timer initialization

watchdog_init();

// System clocks initialization

system_clocks_init();

// Event system initialization

event_system_init();

// Virtual Ports initialization

//vports_init();

ports_init();

delay_ms(1000);

// Timer/Counter TCC1 initialization

tcc1_init();

// Timer/Counter TCD0 is disabled

//tcd0_init();

175

// Timer/Counter TCD1 is enabled

tcd1_init();

// Timer/Counter TCE0 initialization

//tce0_init();

// RTC initialization

//rtcxm_init();

// USARTC0 is disabled

usart_disable(&USARTC0);

// USARTC1 is disabled

usart_disable(&USARTC1);

// USARTD0 is disabled

usart_disable(&USARTD0);

// USARTD1 is disabled

usart_disable(&USARTD1);

// USARTE0 is disabled

usart_disable(&USARTE0);

// ADC Initilization

adc_init();

//usart_init();

delay_ms(1000);

//Get Address for slave from hardware pins (they were shorted)

//PB2 = BIT 0

//PB3 = BIT 1

//PR0 = BIT 2

//PR1 = BIT 3

slaveAddress=0;

if((PORTB.IN&PIN2_bm)>>PIN2_bp) slaveAddress |= 1;

if((PORTB.IN&PIN3_bm)>>PIN3_bp) slaveAddress |= (1<<1);

if((PORTR.IN&PIN0_bm)>>PIN0_bp) slaveAddress |= (1<<2);

if((PORTR.IN&PIN1_bm)>>PIN1_bp) slaveAddress |= (1<<3);

slaveAddress = slaveAddress+1; //Offset by 1 since addresses cannot be 0

for(i=0;i<slaveAddress;i++){

176

 PORTD.OUTTGL = 0b00000010;

 delay_ms(200);

 PORTD.OUTTGL = 0b00000010;

 delay_ms(200);

}

//Initialize Slave

init_I2C_Slave();

ADCA.CH0.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6

ADCA.CH1.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6

ADCA.CH2.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6

//Calibrate Differential Gain Offset

for (i=0; i<64; i++){

 ADCA.CH0.CTRL |=0b10000000;

 ADCA.CH1.CTRL |=0b10000000;

 ADCA.CH2.CTRL |=0b10000000;

 while((ADCA.CH2.INTFLAGS&0x01)!=1);

 ADCA.CH2.INTFLAGS |= 0x01; //clear flag

 OFFSET_CH0_DIFF += ADCA.CH0.RES;

 OFFSET_CH1_DIFF += ADCA.CH1.RES;

 OFFSET_CH2_DIFF += ADCA.CH2.RES;

}

 OFFSET_CH0_DIFF = OFFSET_CH0_TOTAL>>6;

 OFFSET_CH1_DIFF = OFFSET_CH1_TOTAL>>6;

 OFFSET_CH2_DIFF = OFFSET_CH2_TOTAL>>6;

 ADCA.CH0.MUXCTRL = 0b00000011; // Differential POS=A0 and NEG=A7,

Battery Voltage

 ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and NEG=A6,

Battery Current

 ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and NEG=A5,

MOSFET Current

// Globaly enable interrupts

#asm("sei")

//Battery Voltage Control

KpV = -200;

177

refV = STOP_CHARGE_VOLT;

while (1)

 {

 if(stepready){ //EVERY 4 ms

 stepready=0;

 //READ NEW OVERSAMPLED ANALOG VALUES

 newAdcVal[0] = ADCvalues[0]; //Raw Batt Voltage

 newAdcVal[1] = ADCvalues[1]; //Raw Batt Current

 newAdcVal[2] = ADCvalues[2]; //Raw MOSFET Current

 //PLACE INTO RING BUFFER LAST 64 SAMPLES

 if(initSamples<64){ //Grabs first 64 samples to start off average filter, this

all occurs during INIT MODE so battVoltageFilt can be wrong during this time

 for (i=0; i<3; i++){

 movAvgValues[i][initSamples] = newAdcVal[i];

 movAvgTotal[i] = movAvgTotal[i] +

movAvgValues[i][initSamples]; //Eventually will hold total of first 128 samples

 }

 initSamples++;

 }else{

 for (i=0; i<3; i++){

 movAvgTotal[i] = movAvgTotal[i] -

movAvgValues[i][sampleIdxOldest]; //Subtracts out oldest sample

 movAvgValues[i][sampleIdxOldest] = newAdcVal[i]; //Replace

oldest sample value with a new value

 movAvgTotal[i] =

movAvgTotal[i]+movAvgValues[i][sampleIdxOldest]; //Add in newest value,

movAvgTotal is now last 128 values, increment oldest index

 }

 sampleIdxOldest++;

 sampleIdxOldest&=0x3F; //Wraps around Oldest Index value in case it

"overflows" out of range of movAvgValues[] array

 }

 //CALCULATE AVERAGE WITH BITSHIFT

 battVoltRaw = movAvgTotal[0]>>6;

 battCurrRaw = movAvgTotal[1]>>6;

 mosCurrRaw = movAvgTotal[2]>>6;

 tempRaw = ADCvalues[3];

 //CORRECT READINGS WITH CALIBRATED VALUES

178

 offset = (signed int)(ADC_OFFSET_M[slaveAddress-1]*mosCurrRaw +

ADC_OFFSET_B[slaveAddress-1]);

 mosCurrRaw = mosCurrRaw+offset;

 offset = (signed int)(ADC_OFFSET_M[slaveAddress-1]*battVoltRaw +

ADC_OFFSET_B[slaveAddress-1]);

 battVoltRaw = battVoltRaw+offset;

 //CONVERT RAW ADC VALUES TO SCIENTIFIC NOTATION

 battVolt = battVoltRaw*0.0025;

 battCurr = battCurrRaw*0.020833333; //6 mOhm, gain 8

 mosCurr = mosCurrRaw*.001; //1 ohm, gain 1

 temp = -1481.96 + sqrt(2196200 + (1863.9-tempRaw)*257.732);

 tempRaw = (unsigned int)(temp*100);

 socRaw = (unsigned

int)((float)4095.0*(float)((float)AmpSec/(float)MAX_AMP_SEC));

 //SATURATE MOSFET CURRENT VALUE FOR NOISE REASONS

 if (mosCurr<0) mosCurr=0;

 //CREATE PACKET FOR DATA TO BE SENT TO MASTER

 battData[0] = (unsigned char)(battCurrRaw & 0x00FF);

 battData[1] = (unsigned char)(battCurrRaw >> 8);

 battData[2] = (unsigned char)(battVoltRaw & 0x00FF);

 battData[3] = (unsigned char)(battVoltRaw >> 8);

 battData[4] = (unsigned char)(mosCurrRaw & 0x00FF);

 battData[5] = (unsigned char)(mosCurrRaw >> 8);

 battData[6] = (unsigned char)(tempRaw & 0x00FF);

 battData[7] = (unsigned char)(tempRaw >> 8);

 battData[8] = (unsigned char)(socRaw & 0x00FF);

 battData[9] = (unsigned char)(((socRaw >> 8)&0x0F) | byPassOn<<7 |

byPassMax<<6 | overDischarge<<5 | overTemp<<4);

 //UPDATE SINGLE BYPASS STATUS LED TO REFLECT BYPASS

STATE

 if(mosCurr>1.90){

 ledColor=RED;

 byPassMax=1;

 }else if(mosCurr>0.05){

 ledColor=AMBER;

 byPassOn=1;

 }else{

 ledColor=GREEN;

 byPassOn=0;

179

 byPassMax=0;

 }

 //BATTERY OVERDISCHARGE STATUS

 if(battVolt<OVERDISCHARGE_VOLT){

 overDischarge=1;

 }else{

 overDischarge=0;

 }

 //BYPASS ACTIVATION LOGIC AND CONTROL LOOP

 voltCntrlCnt++;

 if(voltCntrlCnt>75){

 voltCntrlCnt=0;

 error = (refV-battVolt);

 if (error>=0){ //if batteryVoltage <3.8 means error is positive

 if((duty+error*KpV)<=0){ //prevent controller from causing duty

from rolling over

 duty=0;

 }else{

 duty=duty+KpV*error;

 }

 }else{

 duty=duty+KpV*error;

 }

 }

 //SATURATE MAX DUTY CYCLE

 if(duty>DUTY_CYC_MAX) duty=DUTY_CYC_MAX;

 //Ensure mosfet stays off if battery is not charging and battery voltage is

less than max

 if(battCurr<=0.05 && battVolt<STOP_CHARGE_VOLT) {

 if(dutyOffCnt<=MAX_DUTY_OFF_CNT) dutyOffCnt++;

 if(dutyOffCnt>=MAX_DUTY_OFF_CNT){

 //duty=0;

 //dutyOffCnt=0;

 TCC1.CCA=0;

 }

 }else{

 TCC1.CCA=duty;

 }

180

 }

 switch(ledVal){

 case 1:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTD.OUTSET = ledColor; //0b00000010==2

 break;

 case 2:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTD.OUTSET = ledColor<<2; //0b00001000==8

 break;

 case 3:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTD.OUTSET = ledColor<<4; //0b00100000==32

 break;

 case 4:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTD.OUTSET = ledColor<<6; //0b10000000==128

 break;

 case 5:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTE.OUTSET = ledColor; //0b00000010==2

 break;

 case 6:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTE.OUTSET = ledColor<<2; //0b00001000==8

 break;

 case LOW_SOC:

 PORTD.OUTTGL = 0b01010101;

 PORTE.OUTTGL = 0b00000101;

 break;

181

APPENDIX C

ICMU/BPMU HYBRID CODE

/***

This program was produced by the

CodeWizardAVR V2.04.8 Standard

Automatic Program Generator

 Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.

http://www.hpinfotech.com

Project : Battery Board Slave

Version : .9

Date : 10/15/2010

Author :

Company : University of Akron

Comments:

Chip type : ATxmega16A4

Program type : Application

AVR Core Clock frequency: 32.000000 MHz

Memory model : Small

Data Stack size : 512

***/

#include <io.h>

#include <math.h>

#include <stdio.h>

#include <avr_compiler.h>

// Declare your global variables here

#define MAX_AMP_SEC 216000.00

#define STOP_CHARGE_VOLT 3.8

#define OVERDISCHARGE_VOLT 2.5

//Equivalent to a voltage of 3.5V

#define TSamp_TCD1 0.0039996 //Current Integrating time in seconds

#define DUTY_CYC_MAX 1330 //Limits Max Bypass Current to ~2 Amps at

3.8 Volts

#define WAIT_BEFORE_CHANGE_CNT 50000 //2500 COUNTS per

second...Roughly 20 seconds

#define MAX_TURNOFF_CNT 5000 //2500 COUNTS per second seconds

182

#define MAX_BYPASS_CURRENT 1.9

//Count to wait until MOSFET locks on after battVolt>3.8V

mosCurrent>1.95A and battCurr<1A

#define MAX_LOCK_MOS_CURRENT_CNT 700

//Count to wait until Duty Cycle Shuts off after seeing current out

of battery

#define MAX_DUTY_OFF_CNT 700

//Address for all slave boards to respond to

#define allCallAddress 100

#define READ 1

#define WRITE 0

#define MAX_BATT_CNT 10

unsigned int dutyOffCnt=0;

//LED Colors

#define GREEN 0b10

#define RED 0b01

#define AMBER 0b11

#define LOW_SOC 70 //Picked a value then the largest ledValue

//#define IS_CHARGING_AT_2_MSG 0xF0

//#define IS_NOT_CHARGING_AT_2_MSG 0xFA

unsigned char ledColor=GREEN;

unsigned char underVoltCond=0;

unsigned int waitToChangeCnt=65531; //No waiting initially

unsigned char sendDesiredCurrent=1;

//unsigned char lockMosCurr = 0;

unsigned char allBypassOn=1;

unsigned int turnOffChargerCnt=0;

unsigned char overVoltageShutoff=0;

unsigned int turnOffChargerCnt2=0;

unsigned int overTemperatureShutoff=0;

unsigned int turnOffChargerCnt3=0;

unsigned int underVoltCondCnt=0;

float temp[14];

float battVolt[14];

float battCurr[14];

float mosCurr[14];

float soc[14];

183

unsigned char byPassOn[14];

unsigned char byPassMax[14];

unsigned char overDischarge[14];

unsigned char overTemp[14];

//unsigned char chargeStatus;

unsigned char twiLock = 0;

float packCurr=0;

float packSoc=100;

float packVolt=0;

//float prevBattCurr;

float AmpSec=MAX_AMP_SEC;

unsigned int voltCntrlCnt=0;

unsigned int decreaseCurrentCnt=0;

unsigned char currentPkt[6];

unsigned char battBypassId=0;

unsigned char prevBattBypassId=0;

eeprom unsigned char desiredCurrentIntEE=10;

eeprom unsigned char desiredCurrentDecEE=0;

unsigned char desiredCurrentInt=0;

unsigned char desiredCurrentDec=0;

signed long OFFSET_CH0_TOTAL=0;

signed long OFFSET_CH1_TOTAL=0;

signed long OFFSET_CH2_TOTAL=0;

signed int OFFSET_CH0_DIFF=0;

signed int OFFSET_CH1_DIFF=0;

signed int OFFSET_CH2_DIFF=0;

signed long ADCtemp[4];

signed int ADCvalues[4];

char ADCsamplecount = 0; // we're supersampling

signed int ADCbuffer;

char stepready = 0;

unsigned char increment=1;

unsigned char dataCnt=0;

unsigned char dataOutTWIC=0;

unsigned char slaveAddress=0;

unsigned char currAddress=0;

unsigned char newData = 0;

unsigned char dataRdy = 0;

unsigned char battIdx=0;

unsigned char dataIdx=0;

184

unsigned char battData[14][10];

//ADC OFFSET for each of the 10 boards OFFSET=M*RAWADC+B calibrated

manually

float const ADC_OFFSET_M[10]={-0.011107,-0.013504,-0.015376,-

0.017009,-0.015646,-0.013056,-0.015416,-0.015210,-0.013949,-

0.012555};

float const ADC_OFFSET_B[10]={ 6.366141, 6.417454, 6.556141,

7.638119, 6.499410, 5.792097, 5.235612, 3.654257, 5.374430,

5.624966};

signed int offset=0;

signed int bound(signed int value, signed int min, signed int max){

 if(value > max)

 return max;

 if(value < min)

 return min;

 return value;

}

#pragma warn-

char nvm_cmd_read(char *nvm_cmd_addr, char index){

 #asm

 LDD R30,Y+0 ; Z = index

 LDI R31,0

 LDD R26,Y+1 ; X = &NVM.CMD

 LDD R27,Y+2

 LDI R25,2 ; NVM.CMD = NVM_CMD_READ_CALIB_ROW_gc

 ST X,R25

 LPM ; read the data in R0

 ; Clean up NVM Command register. */

 LDI R25,0 ; NVM.CMD = NVM_CMD_NO_OPERATION_gc

 ST X,R25

 MOV R30,R0 ; return result

 #endasm

}

#pragma warn+

char SP_ReadCalibrationByte(char index){

 return nvm_cmd_read(&NVM.CMD,index);

}

// System Clocks initialization

void system_clocks_init(void)

{

unsigned char n,s;

// Optimize for speed

#pragma optsize-

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

185

#asm("cli")

// Internal 32 kHz RC oscillator initialization

// Enable the internal 32 kHz RC oscillator

OSC.CTRL|=OSC_RC32KEN_bm;

// Wait for the internal 32 kHz RC oscillator to stabilize

while ((OSC.STATUS & OSC_RC32KRDY_bm)==0);

// Internal 32 MHz RC oscillator initialization

// Enable the internal 32 MHz RC oscillator

OSC.CTRL|=OSC_RC32MEN_bm;

// System Clock prescaler A division factor: 1

// System Clock prescalers B & C division factors: B:1, C:1

// ClkPer4: 32000.000 kHz

// ClkPer2: 32000.000 kHz

// ClkPer: 32000.000 kHz

// ClkCPU: 32000.000 kHz

n=(CLK.PSCTRL & (~(CLK_PSADIV_gm | CLK_PSBCDIV1_bm |

CLK_PSBCDIV0_bm))) |

 CLK_PSADIV_1_gc | CLK_PSBCDIV_1_1_gc;

CCP=CCP_IOREG_gc;

CLK.PSCTRL=n;

// Internal 32 MHz RC osc. calibration reference clock source:

32.768 kHz Internal Osc.

OSC.DFLLCTRL&= ~(OSC_RC32MCREF_bm | OSC_RC2MCREF_bm);

// Enable the autocalibration of the internal 32 MHz RC oscillator

DFLLRC32M.CTRL|=DFLL_ENABLE_bm;

// Wait for the internal 32 MHz RC oscillator to stabilize

while ((OSC.STATUS & OSC_RC32MRDY_bm)==0);

// Select the system clock source: 32 MHz Internal RC Osc.

n=(CLK.CTRL & (~CLK_SCLKSEL_gm)) | CLK_SCLKSEL_RC32M_gc;

CCP=CCP_IOREG_gc;

CLK.CTRL=n;

// Disable the unused oscillators: 2 MHz, external clock/crystal

oscillator, PLL

OSC.CTRL&= ~(OSC_RC2MEN_bm | OSC_XOSCEN_bm | OSC_PLLEN_bm);

// Peripheral Clock output: Disabled

PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT & (~PORTCFG_CLKOUT_gm)) |

PORTCFG_CLKOUT_OFF_gc;

// Restore interrupts enabled/disabled state

SREG=s;

}

// Watchdog Timer initialization

void watchdog_init(void)

{

unsigned char s,n;

186

// Optimize for speed

#pragma optsize-

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

#asm("cli")

// Watchdog Timer: On

n=WDT_ENABLE_bm | WDT_CEN_bm | WDT_PER_256CLK_gc;

CCP=CCP_IOREG_gc;

WDT.CTRL=n;

// Watchdog window mode: Off

n=(WDT.WINCTRL & (~WDT_WEN_bm)) | WDT_WCEN_bm;

CCP=CCP_IOREG_gc;

WDT.WINCTRL=n;

// Restore interrupts enabled/disabled state

SREG=s;

}

// Event System initialization

void event_system_init(void)

{

// Event System Channel 0 source: Port D, Pin0

EVSYS.CH0MUX=EVSYS_CHMUX_PORTD_PIN0_gc;

// Event System Channel 1 source: Port D, Pin0

EVSYS.CH1MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 2 source: None

EVSYS.CH2MUX=EVSYS_CHMUX_PORTD_PIN1_gc;

// Event System Channel 3 source: None

EVSYS.CH3MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 4 source: None

EVSYS.CH4MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 5 source: None

EVSYS.CH5MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 6 source: None

EVSYS.CH6MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 7 source: None

EVSYS.CH7MUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 0 Digital Filter Coefficient: 4 Samples

EVSYS.CH0CTRL=0b00001011;

// Event System Channel 1 Digital Filter Coefficient: 1 Sample

EVSYS.CH1CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 2 Digital Filter Coefficient: 1 Sample

EVSYS.CH2CTRL=0b00001011;

// Event System Channel 3 Digital Filter Coefficient: 1 Sample

EVSYS.CH3CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 4 Digital Filter Coefficient: 1 Sample

EVSYS.CH4CTRL=(EVSYS.CH4CTRL & (~(EVSYS_QDIRM_gm | EVSYS_QDIEN_bm |

EVSYS_QDEN_bm | EVSYS_DIGFILT_gm))) |

187

 EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 5 Digital Filter Coefficient: 1 Sample

EVSYS.CH5CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 6 Digital Filter Coefficient: 1 Sample

EVSYS.CH6CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 7 Digital Filter Coefficient: 1 Sample

EVSYS.CH7CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 0 output: Disabled

// Note: the correct direction for the Event System Channel 0

output

// is configured in the ports_init function

PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT & (~PORTCFG_EVOUT_gm)) |

PORTCFG_EVOUT_OFF_gc;

//PORTCFG.CLKEVOUT=0b00000001;

}

// Ports initialization

void ports_init(void)

{

// PORTA initialization

// OUT register

PORTA.OUT=0x00;

// Bit0: Input

// Bit1: Input

// Bit2: Input

// Bit3: Input

// Bit4: Input

// Bit5: Input

// Bit6: Input

// Bit7: Input

PORTA.DIR=0x00;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Input buffer disabled

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTA.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit1 Output/Pull configuration: Totempole/No

// Bit1 Input/Sense configuration: Input buffer disabled

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTA.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit2 Output/Pull configuration: Totempole/No

// Bit2 Input/Sense configuration: Input buffer disabled

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTA.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Input buffer disabled

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTA.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

188

// Bit4 Output/Pull configuration: Totempole/No

// Bit4 Input/Sense configuration: Input buffer disabled

// Bit4 inverted: Off

// Bit4 slew rate limitation: Off

PORTA.PIN4CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit5 Output/Pull configuration: Totempole/No

// Bit5 Input/Sense configuration: Input buffer disabled

// Bit5 inverted: Off

// Bit5 slew rate limitation: Off

PORTA.PIN5CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit6 Output/Pull configuration: Totempole/No

// Bit6 Input/Sense configuration: Input buffer disabled

// Bit6 inverted: Off

// Bit6 slew rate limitation: Off

PORTA.PIN6CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit7 Output/Pull configuration: Totempole/No

// Bit7 Input/Sense configuration: Input buffer disabled

// Bit7 inverted: Off

// Bit7 slew rate limitation: Off

PORTA.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTA.INTCTRL=(PORTA.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

// Bit4 pin change interrupt 0: Off

// Bit5 pin change interrupt 0: Off

// Bit6 pin change interrupt 0: Off

// Bit7 pin change interrupt 0: Off

PORTA.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

// Bit4 pin change interrupt 1: Off

// Bit5 pin change interrupt 1: Off

// Bit6 pin change interrupt 1: Off

// Bit7 pin change interrupt 1: Off

PORTA.INT1MASK=0x00;

// PORTB initialization

// OUT register

PORTB.OUT=0x00;

// Bit0: Input

// Bit1: Input

// Bit2: Input

// Bit3: Input

PORTB.DIR=0x00;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Input buffer disabled

// Bit0 inverted: Off

189

// Bit0 slew rate limitation: Off

PORTB.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit1 Output/Pull configuration: Totempole/No

// Bit1 Input/Sense configuration: Input buffer disabled

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTB.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit2 Output/Pull configuration: Totempole/No

// Bit2 Input/Sense configuration: Input buffer disabled

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTB.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Input buffer disabled

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTB.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTB.INTCTRL=(PORTB.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

PORTB.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

PORTB.INT1MASK=0x00;

// Bit0: Output

// Bit1: Output

// Bit2: Input

// Bit3: Input

// Bit4: Output

// Bit5: Input

// Bit6: Input

// Bit7: Output

PORTC.DIR=0x93;

// Bit0 Output/Pull configuration: WIRED-AND (on input)

// Bit0 Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTC.PIN0CTRL=PORT_OPC_WIREDAND_gc | PORT_ISC_BOTHEDGES_gc;

// Bit1 Output/Pull configuration: WIRED-AND (on input)

// Bit1 Input/Sense configuration: Sense both edges

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTC.PIN1CTRL=PORT_OPC_WIREDAND_gc | PORT_ISC_BOTHEDGES_gc;

PORTC.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

190

// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTC.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit4 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit4 Input/Sense configuration: Sense both edges

// Bit4 inverted: Off

// Bit4 slew rate limitation: Off

PORTC.PIN4CTRL=PORT_OPC_PULLDOWN_gc | PORT_ISC_BOTHEDGES_gc;

// Bit5 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit5 Input/Sense configuration: Sense both edges

// Bit5 inverted: Off

// Bit5 slew rate limitation: Off

PORTC.PIN5CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;

// Bit6 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit6 Input/Sense configuration: Sense both edges

// Bit6 inverted: Off

// Bit6 slew rate limitation: Off

PORTC.PIN6CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;

// Bit7 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit7 Input/Sense configuration: Sense both edges

// Bit7 inverted: Off

// Bit7 slew rate limitation: Off

PORTC.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTC.INTCTRL=(PORTC.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

// Bit4 pin change interrupt 0: Off

// Bit5 pin change interrupt 0: Off

// Bit6 pin change interrupt 0: Off

// Bit7 pin change interrupt 0: Off

PORTC.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

// Bit4 pin change interrupt 1: Off

// Bit5 pin change interrupt 1: Off

// Bit6 pin change interrupt 1: Off

// Bit7 pin change interrupt 1: Off

PORTC.INT1MASK=0x00;

// PORTD initialization

// OUT register

PORTD.OUT=0x00;

// Bit0: Output

// Bit1: Output

191

// Bit2: Output

// Bit3: Output

// Bit4: Output

// Bit5: Output

// Bit6: Output

// Bit7: Output

PORTD.DIR=0xFF;

// Bit0 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit0 Input/Sense configuration: Sense low level

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTD.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc;

// Bit1 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit1 Input/Sense configuration: Sense low level

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTD.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc;

// Bit2 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTD.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTD.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit4 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit4 Input/Sense configuration: Sense both edges

// Bit4 inverted: Off

// Bit4 slew rate limitation: Off

PORTD.PIN4CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit5 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit5 Input/Sense configuration: Sense both edges

// Bit5 inverted: Off

// Bit5 slew rate limitation: Off

PORTD.PIN5CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit6 Output/Pull configuration: Totempole/No

// Bit6 Input/Sense configuration: Sense both edges

// Bit6 inverted: Off

// Bit6 slew rate limitation: Off

PORTD.PIN6CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit7 Output/Pull configuration: Totempole/No

// Bit7 Input/Sense configuration: Sense both edges

// Bit7 inverted: Off

// Bit7 slew rate limitation: Off

PORTD.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTD.INTCTRL=(PORTD.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

192

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

// Bit4 pin change interrupt 0: Off

// Bit5 pin change interrupt 0: Off

// Bit6 pin change interrupt 0: Off

// Bit7 pin change interrupt 0: Off

PORTD.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

// Bit4 pin change interrupt 1: Off

// Bit5 pin change interrupt 1: Off

// Bit6 pin change interrupt 1: Off

// Bit7 pin change interrupt 1: Off

PORTD.INT1MASK=0x00;

// PORTE initialization

// OUT register

PORTE.OUT=0x00; //Initial Output Value

// Bit0: Output

// Bit1: Output

// Bit2: Input //Charger Present Detection, Internal pullup,

Yellow Wire

// Bit3: Output //Serial Output PE3

PORTE.DIR=0x0B;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTE.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit1 Output/Pull configuration: Totempole/No

// Bit1 Input/Sense configuration: Sense both edges

// Bit1 inverted: On

// Bit1 slew rate limitation: Off

PORTE.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit2 Output/Pull configuration: Pull-up (on input)

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTE.PIN2CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTE.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled

193

// Interrupt 1 level: Disabled

PORTE.INTCTRL=(PORTE.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

PORTE.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

PORTE.INT1MASK=0x00;

// PORTR initialization

// OUT register

PORTR.OUT=0x00;

// Bit0: Input

// Bit1: Input

PORTR.DIR=0x00;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off

PORTR.PIN0CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit1 Output/Pull configuration: Totempole/No

// Bit1 Input/Sense configuration: Sense both edges

// Bit1 inverted: Off

// Bit1 slew rate limitation: Off

PORTR.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTR.INTCTRL=(PORTR.INTCTRL & (~(PORT_INT1LVL_gm |

PORT_INT0LVL_gm))) |

 PORT_INT1LVL_OFF_gc | PORT_INT0LVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bit1 pin change interrupt 0: Off

PORTR.INT0MASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bit1 pin change interrupt 1: Off

PORTR.INT1MASK=0x00;

}

// Disable a Timer/Counter type 0

void tc0_disable(TC0_t *ptc)

{

// Timer/Counter off

ptc->CTRLA=(ptc->CTRLA & (~TC0_CLKSEL_gm)) | TC_CLKSEL_OFF_gc;

// Issue a reset command

ptc->CTRLFSET=TC_CMD_RESET_gc;

}

// Disable a Timer/Counter type 1

194

void tc1_disable(TC1_t *ptc)

{

// Timer/Counter off

ptc->CTRLA=(ptc->CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_OFF_gc;

// Issue a reset command

ptc->CTRLFSET=TC_CMD_RESET_gc;

}

// Timer/counter TCC1 Overflow/Underflow interrupt service routine

interrupt [TCC0_OVF_vect] void tcc0_overflow_isr(void)

{

// write your code here

}

// Timer/Counter TCD0 initialization

void tcd0_init(void)

{

unsigned char s;

// Note: the correct PORTD direction for the Compare Channels

outputs

// is configured in the ports_init function

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure

tc0_disable(&TCD0);

// Clock source: Peripheral Clock/1

TCD0.CTRLB=0b00000000;

TCD0.CTRLC=0b00000000;

TCD0.CTRLD=0b00000000;

TCD0.CTRLE=0b00000000;

// Overflow interrupt: Medium Level

// Error interrupt: Disabled

TCD0.INTCTRLA=(TCD0.INTCTRLA & (~(TC0_ERRINTLVL_gm |

TC0_OVFINTLVL_gm))) |

 TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc;

// Compare/Capture channel A interrupt: Disabled

// Compare/Capture channel B interrupt: Disabled

// Compare/Capture channel C interrupt: Disabled

// Compare/Capture channel D interrupt: Disabled

TCD0.INTCTRLB=(TCD0.INTCTRLB & (~(TC0_CCDINTLVL_gm |

TC0_CCCINTLVL_gm | TC0_CCBINTLVL_gm | TC0_CCAINTLVL_gm))) |

195

 TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc | TC_CCBINTLVL_OFF_gc

| TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off

HIRESD.CTRL&= ~HIRES_HREN0_bm;

// Clear the interrupt flags

TCD0.INTFLAGS=TCD0.INTFLAGS;

// Set counter register

TCD0.CNT=0x0000;

// Set period register

TCD0.PER=312;

// Set channel A Compare/Capture register

TCD0.CCA=0x0000;

// Set channel B Compare/Capture register

TCD0.CCB=0x0000;

// Set channel C Compare/Capture register

TCD0.CCC=0x0000;

// Set channel D Compare/Capture register

TCD0.CCD=0x0000;

// Restore interrupts enabled/disabled state

SREG=s;

TCD0.CTRLA=0b00000111;

}

// Timer/counter TCD0 Overflow/Underflow interrupt service routine

interrupt [TCD0_OVF_vect] void tcd0_overflow_isr(void)

{

 dataIdx=0;

 slaveAddress=battIdx+1;

 if(slaveAddress==1){

 newData=1;

 }else{

 twiLock=1;

 currAddress=slaveAddress<<1|READ;

 TWIC.MASTER.ADDR = currAddress; //slave address

 }

}

// Timer/Counter TCD1 initialization

void tcd1_init(void)

{

unsigned char s;

// Note: the correct PORTD direction for the Compare Channels

outputs

// is configured in the ports_init function

196

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure

tc1_disable(&TCD1);

// Clock source: Peripheral Clock/1

TCD1.CTRLA=(TCD1.CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_DIV2_gc;

// Mode: Normal Operation, Overflow Int./Event on TOP

// Compare/Capture on channel A: Off

// Compare/Capture on channel B: Off

TCD1.CTRLB=(TCD1.CTRLB & (~(TC1_CCAEN_bm | TC1_CCBEN_bm |

TC1_WGMODE_gm))) |

 TC_WGMODE_NORMAL_gc;

// Capture event source: None

// Capture event action: None

TCD1.CTRLD=(TCD1.CTRLD & (~(TC1_EVACT_gm | TC1_EVSEL_gm))) |

 TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc;

// Overflow interrupt: Low Level

// Error interrupt: Enabled

TCD1.INTCTRLA=(TCD1.INTCTRLA & (~(TC1_ERRINTLVL_gm))) |

 TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_LO_gc | TC1_OVFINTLVL_gm;

// Compare/Capture channel A interrupt: Disabled

// Compare/Capture channel B interrupt: Disabled

TCD1.INTCTRLB=(TCD1.INTCTRLB & (~(TC1_CCBINTLVL_gm |

TC1_CCAINTLVL_gm))) |

 TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off

HIRESD.CTRL&= ~HIRES_HREN1_bm;

// Clear the interrupt flags

TCD1.INTFLAGS=TCD1.INTFLAGS;

// Set counter register

TCD1.CNT=0x0000;

// Set period register

TCD1.PER=64000;

// Set channel A Compare/Capture register

TCD1.CCA=0x0000;

// Set channel B Compare/Capture register

TCD1.CCB=0x0000;

// Restore interrupts enabled/disabled state

SREG=s;

}

// Timer/counter TCD1 Overflow/Underflow interrupt service routine

interrupt [TCD1_OVF_vect] void tcd1_overflow_isr(void){

 stepready = 1;

197

 if (battCurr[0]>0.1 || battCurr[0]<-0.35){

 AmpSec = AmpSec + battCurr[0]*TSamp_TCD1;

 }

 if(AmpSec<=0) AmpSec=0;

 else if(AmpSec>MAX_AMP_SEC) AmpSec=MAX_AMP_SEC;

}

// Timer/Counter TCE0 initialization

void tcc1_init(void)

{

unsigned char s;

// Note: the correct PORTC direction for the Compare Channels

outputs

// is configured in the ports_init function

// Save interrupts enabled/disabled state

s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure

tc1_disable(&TCC1);

// Clock source: Peripheral Clock/1

TCC1.CTRLA=(TCC1.CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_DIV1_gc;

// Mode: Dual Slope PWM Gen., Overflow Int./Event on TOP & BOTTOM

// Compare/Capture on channel A: Off

// Compare/Capture on channel B: On

// Compare/Capture on channel C: Off

// Compare/Capture on channel D: Off

//TCC0.CTRLB=(TCC0.CTRLB & (~(TC0_CCAEN_bm | TC0_CCBEN_bm |

TC0_CCCEN_bm | TC0_CCDEN_bm | TC0_WGMODE_gm))) |

// TC0_CCBEN_bm | TC0_CCAEN_bm|

// TC_WGMODE_DS_TB_gc;

TCC1.CTRLB = 0b00000011; //W

TCC1.CTRLB = TCC1.CTRLB | 0b00010000;

// Capture event source: None

// Capture event action: None

TCC1.CTRLD=(TCC0.CTRLD & (~(TC0_EVACT_gm | TC0_EVSEL_gm))) |

TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc;

// Overflow interrupt: Medium Level

// Error interrupt: Disabled

// TCC0.INTCTRLA=(TCC0.INTCTRLA & (~(TC0_ERRINTLVL_gm |

TC0_OVFINTLVL_gm))) |

// TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc;

198

// Compare/Capture channel A interrupt: Disabled

// Compare/Capture channel B interrupt: Disabled

//TCC0.INTCTRLB=(TCC0.INTCTRLB & (~(TC0_CCDINTLVL_gm |

TC0_CCCINTLVL_gm | TC0_CCBINTLVL_gm | TC0_CCAINTLVL_gm))) |

// TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc |

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off

HIRESC.CTRL&= ~HIRES_HREN0_bm;

// Clear the interrupt flags

TCC1.INTFLAGS=0;

// Set counter value

TCC1.CNT=0x0000;

// Set period register

TCC1.PER=1600-1;

// Set channel A Compare/Capture register

TCC1.CCA=0;

// Set channel B Compare/Capture register

TCC1.CCB=0x0000;

// Restore interrupts enabled/disabled state

SREG=s;

}

// RTC initialization

void rtcxm_init(void)

{

// RTC 1.024kHz

RTC.CTRL=(RTC.CTRL & (~RTC_PRESCALER_gm)) | RTC_PRESCALER_DIV1_gc;

// RTC overflow interrupt: Off

// RTC compare interrupt: Off

RTC.INTCTRL=(RTC.INTCTRL & (~(RTC_OVFINTLVL_gm |

RTC_COMPINTLVL_gm))) |

 RTC_OVFINTLVL_OFF_gc | RTC_COMPINTLVL_OFF_gc;

RTC.CNT=0;

// 1.024kHz internal 32.768 RC oscilator, Enable RTC Clock

CLK.RTCCTRL = 0b0101;

}

//Code given from

 //http://blog.frankvh.com/2009/11/14/atmel-xmega-printf-howto/

// Init USART. Transmit only (we're not receiving anything)

199

// We use USARTC1, transmit pin on PC7.

// Want 9600 baud. Have a 32 MHz clock. BSCALE = 0

// BSEL = (32000000 / (2^0 * 16*9600)) -1 = 103

// Fbaud = 32000000 / (2^0 * 16 * (12+1)) = 9615 bits/sec

void usartC1_init(void){

 // Set the TxD pin high - set PORTC DIR register bit 7 to 1

 PORTC.OUTSET = PIN7_bm;

 //PORTE.OUTSET = PIN3_bm;

 // Set the TxD pin as an output - set PORTC OUT register bit 7

to 1

 //PORTE.DIRSET = PIN3_bm;

 PORTC.DIRSET = PIN7_bm;

 // Set baud rate & frame format

 //USARTE0.BAUDCTRLB = 0; // BSCALE = 0 as well,

19200

 //USARTE0.BAUDCTRLA = 0x67;

 USARTC1.BAUDCTRLB = 0b11010000; // BSCALE = -3

 //USARTE0.BAUDCTRLB = 0b11010000; // BSCALE = -3

 USARTC1.BAUDCTRLA = 135; //115,200

 //USARTE0.BAUDCTRLA = 63; //230,400

 //USARTE0.BAUDCTRLA = 27; //460800

 //USARTE0.BAUDCTRLA = 9; //921600

 //USARTC1.BAUDCTRLA = 9; //921600

 // Set mode of operation

 USARTC1.CTRLA = 0; // no interrupts please

 USARTC1.CTRLC = 0x03; // async, no parity, 8 bit

data, 1 stop bit

 //USARTE0.CTRLA = 0; // no interrupts please

 //USARTE0.CTRLC = 0x03; // async, no parity, 8 bit

data, 1 stop bit

 // Enable transmitter only

 USARTC1.CTRLB = 0b00001000;

 //USARTE0.CTRLB = 0b00001000;

}

void usartE0_init(void){

 // Set the TxD pin high - set PORTC DIR register bit 7 to 1

 PORTE.OUTSET = PIN3_bm;

 // Set the TxD pin as an output - set PORTC OUT register bit 7

to 1

 PORTE.DIRSET = PIN3_bm;

 // Set baud rate & frame format

 USARTE0.BAUDCTRLB = 0; // BSCALE = 0 as well, 19200

 USARTE0.BAUDCTRLA = 0x67;

200

 // Set mode of operation

 USARTE0.CTRLA = 0; // no interrupts please

 USARTE0.CTRLC = 0x03; // async, no parity, 8 bit

data, 1 stop bit

 // Enable transmitter only

 USARTE0.CTRLB = 0b00001000;

}

void uartE0_putchar (char c)

{

 // Wait for the transmit buffer to be empty

 while (!(USARTE0.STATUS & USART_DREIF_bm));

 // Put our character into the transmit buffer

 USARTE0.DATA = c;

}

// Disable an USART

void usart_disable(USART_t *pu)

{

// Rx and Tx are off

pu->CTRLB=0;

// Ensure that all interrupts generated by the USART are off

pu->CTRLA=0;

}

void adc_init(void){

 ADCA.CALL = SP_ReadCalibrationByte(PROD_SIGNATURES_START +

ADCACAL0_offset);

 ADCA.CALH = SP_ReadCalibrationByte(PROD_SIGNATURES_START +

ADCACAL1_offset);

 ADCA.CTRLA = 0b00111101; // set up with a four channel sweep

 ADCA.CTRLB = 0b00010000; // signed

 ADCA.REFCTRL =0b00110000; //portb reference, temp and

bandgap disabled

 ADCA.EVCTRL = 0b11000000; // no events

 //ADCA.PRESCALER = 0b00000011; // div 32

 //ADCA.PRESCALER = 0b00000111; // div 512, 62.5kHz

 ADCA.PRESCALER = 0b00000101; // div 128, 250kHz

 //ADCA.PRESCALER = 0b00000110; // div 256, 125kHz

 ADCA.CH0.CTRL =0b10000011; // start channel 0, differential

w/gain 1

 ADCA.CH0.MUXCTRL = 0b00000011; // Differential POS=A0 and

NEG=A7, Battery Voltage

 ADCA.CH0.INTCTRL = 0b00000000; // no interrupt on channel 0;

201

 //ADCA.CH1.CTRL =0b10011011; // start channel 1, differential

w/gain 64

 //ADCA.CH1.CTRL =0b10010011; // start channel 1, differential

w/gain 16

 ADCA.CH1.CTRL =0b10001111; // start channel 1, differential

w/gain 8

 ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and

NEG=A6, Battery Current

 //ADCA.CH1.MUXCTRL = 0b00110010; // Differential POS=A6 and

NEG=A6, Battery Current

 ADCA.CH1.INTCTRL = 0b00000000; // no interrupt on channel 1;

 //ADCA.CH2.CTRL = 0b10011011; // start channel 2, differential

w/gain 64

 ADCA.CH2.CTRL = 0b10000011; // start channel 2, differential

w/gain 1

 ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and

NEG=A5, MOSFET Current

 //ADCA.CH2.CTRL = 0b10000011;

 //ADCA.CH2.MUXCTRL = 0b00101001; // Differential POS=A4 and

NEG=A5, MOSFET Current

 ADCA.CH2.INTCTRL = 0b00000000; // no interrupt on channel 2;

 ADCA.CH3.CTRL = 0b10000001; // start channel 3, single-ended

 ADCA.CH3.MUXCTRL = 0b00011000; // Batt temp

 ADCA.CH3.INTCTRL = 0b00000001; // low interrupt on channel 3;

}

// ADC interrupt service routine

interrupt [ADCA_CH3_vect] void ADCA_CH3_isr(void){

 char i;

 //sleep_disable();

 // the ADC does not seem to bounds check properly, so I'll have

to do it

 ADCbuffer = ADCA.CH0.RES;

 ADCtemp[0] += bound(ADCbuffer, 0, 2047);

 ADCbuffer = ADCA.CH1.RES;

 ADCtemp[1] += bound(ADCbuffer, -2048, 2047);

 ADCbuffer = ADCA.CH2.RES;

 ADCtemp[2] += bound(ADCbuffer, -2048, 2047);

 ADCbuffer = ADCA.CH3.RES;

 ADCtemp[3] += bound(ADCbuffer, 0, 2047);

 ADCsamplecount++; //16 super sample

 if(ADCsamplecount > 63){

 //store the values

 ADCvalues[0] = ADCtemp[0]>>6;

202

 ADCvalues[1] = ADCtemp[1]>>6;

 ADCvalues[2] = ADCtemp[2]>>6;

 ADCvalues[3] = ADCtemp[3]>>6;

 for(i = 0; i<4; i++){

 ADCtemp[i] = 0;

 }

 ADCsamplecount = 0;

 //printf("%4d,

%4d\r\n",temp,battVolt,ADCvalues[1],ADCvalues[2]);

 }

 //Initiate next samples

 ADCA.CH0.CTRL |=0b10000000;

 ADCA.CH1.CTRL |=0b10000000;

 ADCA.CH2.CTRL |=0b10000000;

 ADCA.CH3.CTRL |=0b10000000;

 //sleep_enable();

 //idle();

}

interrupt [TWIC_TWIM_vect] void TWIC_TWIM_isr(void){

 //unsigned char x = 0;

 if ((TWIC.MASTER.STATUS &

TWI_MASTER_WIF_bm)>>TWI_MASTER_WIF_bp){

 if ((TWIC.MASTER.STATUS &

TWI_MASTER_ARBLOST_bm)>>TWI_MASTER_ARBLOST_bp){ //CASE M1

 //IF BUSY STATE -> MAKE IDLE

 TWIC.MASTER.STATUS = (TWIC.MASTER.STATUS &

~TWI_MASTER_BUSSTATE_gm) | TWI_MASTER_BUSSTATE_IDLE_gc;

 }else if((TWIC.MASTER.STATUS &

TWI_MASTER_RXACK_bm)>>TWI_MASTER_RXACK_bp){ //CASE M2

 #asm("wdr")

 // This code makes the master skip any cells that

are not responding... be sure to comment out "rewrite slave address

below" too

 // if(/*slaveAddress==4 || slaveAddress==5 ||*/

slaveAddress==6){

 // battIdx++;

 // dataIdx=0;

 // slaveAddress=battIdx+1;

 // currAddress=slaveAddress<<1|READ;

 //}else{

 //PORTD.OUTCLR = 2;

 //for (x=0; x<slaveAddress; x++){

 // delay_ms(300);

 // PORTD.OUTTGL = 4;

 // delay_ms(300);

 // PORTD.OUTTGL = 4;

 //}

 //delay_ms(1000);

203

 //}

 TWIC.MASTER.ADDR = currAddress; //rewrite slave

address

 PORTD.OUTTGL = 4; //Toggle Red Led 1 if stuck.

 }else{ //MASTER WRITE SEQUENCE

 #asm("wdr")

 /*if(dataCnt==0){

 dataCnt=1;

 TWIC.MASTER.DATA = chargeStatus;

 //TWIC.MASTER.DATA = dataOutTWIC;

 }else if(dataCnt==1){

 dataCnt=2;

 TWIC.MASTER.DATA = dataOutTWIC;

 }else{

 TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC &

~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc;

 dataCnt=0;

 }*/

 if(dataCnt==0){

 dataCnt=1;

 TWIC.MASTER.DATA = dataOutTWIC;

 }else{

 TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC &

~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc;

 dataCnt=0;

 twiLock=0;

 }

 }

 }else if ((TWIC.MASTER.STATUS &

TWI_MASTER_RIF_bm)>>TWI_MASTER_RIF_bp){ //MASTER READ SEQUENCE

 battData[battIdx][dataIdx++] = TWIC.MASTER.DATA;

 if(dataIdx<10){

 //Send Ack and Get Next Byte

 TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC &

~TWI_MASTER_CMD_gm & ~TWI_MASTER_ACKACT_bm) |

TWI_MASTER_CMD_RECVTRANS_gc;

 }else{

 //Send Nack and Stop Condition

 TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC &

~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc |

TWI_MASTER_ACKACT_bm;

 newData=1;

 dataIdx=0;

 PORTD.OUTCLR = 4; //Ensure RED LED 1 Off if

communicating

 #asm("wdr")

 }

 }

}

204

void init_I2C_Mast()

{

 //000000, BIT 7:2 RESERVED

 //0, BIT 1 SDAHOLD, 1-ENABLE, 0-DISABLE

 //0, BIT 0 EXTERNAL DRIVER ENABLE, 1=EXTERNAL ENABLE, 0=NORMAL

TWI

 TWIC.CTRL = 0b00000000;

 //0000, BIT 7:4 RESERVED

 //00, BIT 3:2 TIMEOUT, INACTIVE BUS TIMEOUT, 00=DISABLED

 //0, BIT 1, QCEN, Quick Cmd enable

 //0, BIT 0, SMEN, Smart mode enable, ACK sent after data

read

 TWIC.MASTER.CTRLB = 0b00000000;

 //00000, BIT 7:3 Reserved

 //1, BIT 2, ACKACT Acknowledge Action bit, 1=Send Ack, 0=send

Nack

 //0, BIT 1:0, CMD BITS, 00=RESERVED, 01=execute ack w/ repeated

start

 // 10=execute ack w/ byte receive

 // 11=execute ack w/ stop condition

 TWIC.MASTER.CTRLC = 0b00000100;

 //Force busstate to idle clear all other bits.

 TWIC.MASTER.STATUS = 0b11001101;

 TWIC.MASTER.ADDR=0;

 TWIC.MASTER.DATA=0;

 //TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*75e3)-5 = 208 == 75kHz baud

 //TWIC.MASTER.BAUD = 208;

 //TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*100e3)-5 = 155 == 100kHz

baud

 //TWIC.MASTER.BAUD = 155;

 //TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*25e3)-5 = 155 == 25kHz baud

 TWIC.MASTER.BAUD = 255;

 //TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*300e3)-5 = 48 == 300kHz

baud

 //TWIC.MASTER.BAUD = 48;

 //00, BIT 7:6, Interrupt Level, 11=HIGH, 10=MED, 01=LOW, 00=OFF

 //0, BIT 5, RIEN, Read Interrupt

 //0, BIT 4, WIEN, Write Interrupt Enable

 //0, BIT 3, ENABLE, TWI MASTER

 //0, BIT 2:0, RESERVED

 TWIC.MASTER.CTRLA = 0b01111000;

}

205

void main(void)

{

// Declare your local variables here

int movAvgValues[3][64];

long movAvgTotal[3]={0,0,0};

int newAdcVal[3];

unsigned int initSamples=0;

unsigned int sampleIdxOldest=0;

unsigned char n;

unsigned char ledVal;

int mosCurrRaw;

int battCurrRaw;

int battVoltRaw;

unsigned int socRaw=0x0700;

unsigned int tempRaw=0;

unsigned int i=0;

unsigned int duty=0;

float error = 0.0;

float refV = 0.0;

float KpV = 0;

unsigned char currBattIdx=0;

unsigned int chargerConnectedCnt=0;

KpV = -200;

refV = STOP_CHARGE_VOLT;

// Make sure the interrupts are disabled

#asm("cli")

// Low level interrupt: On

// Round-robin scheduling for low level interrupt: Off

// Medium level interrupt: On

// High level interrupt: On

// The interrupt vectors will be placed at the start of the

Application FLASH section

n=(PMIC.CTRL & (~(PMIC_RREN_bm | PMIC_IVSEL_bm | PMIC_HILVLEN_bm |

PMIC_MEDLVLEN_bm | PMIC_LOLVLEN_bm))) |

 PMIC_LOLVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_HILVLEN_bm;

CCP=CCP_IOREG_gc;

PMIC.CTRL=n;

// Set the default priority for round-robin scheduling

PMIC.INTPRI=0x00;

// Watchdog timer initialization

watchdog_init();

// System clocks initialization

206

system_clocks_init();

// Event system initialization

event_system_init();

// Ports initialization

ports_init();

init_I2C_Mast();

// Virtual Ports initialization

//vports_init();

delay_ms(400);

// Timer/Counter TCC1 initialization

tcc1_init();

// Timer/Counter TCD0 is enabled, used to initiate talking to

boards.

tcd0_init();

// Timer/Counter TCD1 is enabled

tcd1_init(); //stepready

// Timer/Counter TCE0 initialization

//tce0_init();

// RTC initialization

rtcxm_init();

// USARTC0 is disabled

usart_disable(&USARTC0);

// USARTC1 is disabled

usart_disable(&USARTC1);

// USARTD0 is disabled

usart_disable(&USARTD0);

// USARTD1 is disabled

usart_disable(&USARTD1);

// USARTE0 is disabled

usart_disable(&USARTE0);

// SPIC initialization

//spic_init();

// ADC Initilization

adc_init();

usartC1_init();

usartE0_init();

ADCA.CH0.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6

207

ADCA.CH1.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6

ADCA.CH2.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6

//Calibrate Differential Gain Offset

for (i=0; i<64; i++){

 ADCA.CH0.CTRL |=0b10000000;

 ADCA.CH1.CTRL |=0b10000000;

 ADCA.CH2.CTRL |=0b10000000;

 while((ADCA.CH2.INTFLAGS&0x01)!=1);

 ADCA.CH2.INTFLAGS |= 0x01; //clear flag

 OFFSET_CH0_DIFF += ADCA.CH0.RES;

 OFFSET_CH1_DIFF += ADCA.CH1.RES;

 OFFSET_CH2_DIFF += ADCA.CH2.RES;

}

OFFSET_CH0_DIFF = OFFSET_CH0_TOTAL>>6;

OFFSET_CH1_DIFF = OFFSET_CH1_TOTAL>>6;

OFFSET_CH2_DIFF = OFFSET_CH2_TOTAL>>6;

ADCA.CH0.MUXCTRL = 0b00000011; // Differential POS=A0 and NEG=A7,

Battery Voltage

ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and NEG=A6,

Battery Current

ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and NEG=A5,

MOSFET Current

// Globaly enable interrupts

#asm("sei")

//Battery Voltage Control

KpV = -100;

refV = STOP_CHARGE_VOLT;

watchdog_init();

desiredCurrentInt=desiredCurrentIntEE;

desiredCurrentDec=desiredCurrentDecEE;

 while (1)

 {

 if(stepready)

 {

 stepready=0;

 newAdcVal[0] = ADCvalues[0]; //Raw Batt Voltage

 newAdcVal[1] = ADCvalues[1]; //Raw Batt Current

 newAdcVal[2] = ADCvalues[2]; //Raw MOSFET Current

 if(initSamples<64) //Grabs first 128 samples to

start off average filter, this all occurs during INIT MODE so

battVoltageFilt can be wrong during this time

 {

 for (i=0; i<3; i++)

208

 {

 movAvgValues[i][initSamples] =

newAdcVal[i];

 movAvgTotal[i] = movAvgTotal[i] +

movAvgValues[i][initSamples]; //Eventually will hold total of first

128 samples

 }

 initSamples++;

 }

 else

 {

 for (i=0; i<3; i++)

 {

 movAvgTotal[i] = movAvgTotal[i] -

movAvgValues[i][sampleIdxOldest]; //Subtracts out oldest sample

 movAvgValues[i][sampleIdxOldest] =

newAdcVal[i]; //Replace oldest sample value with a new value

 movAvgTotal[i] =

movAvgTotal[i]+movAvgValues[i][sampleIdxOldest]; //Add in newest

value, movAvgTotal is now last 128 values, increment oldest index

 }

 sampleIdxOldest++;

 sampleIdxOldest&=0x3F; //Wraps around Oldest

Index value in case it "overflows" out of range of movAvgValues[]

array

 }

 battVoltRaw = movAvgTotal[0]>>6;

 battCurrRaw = movAvgTotal[1]>>6;

 mosCurrRaw = movAvgTotal[2]>>6;

 tempRaw = ADCvalues[3];

 offset = (signed int)(ADC_OFFSET_M[0]*mosCurrRaw +

ADC_OFFSET_B[0]);

 mosCurrRaw = mosCurrRaw+offset;

 offset = (signed int)(ADC_OFFSET_M[0]*battVoltRaw +

ADC_OFFSET_B[0]);

 battVoltRaw = battVoltRaw+offset;

 battVolt[0] = battVoltRaw*0.0025;

 mosCurr[0] = mosCurrRaw*.001; //1 ohm, gain 1

 battCurr[0] = battCurrRaw*0.020833333; //6 mOhm,

gain 8

 if (mosCurr[0]<0) mosCurr[0]=0;

 temp[0] = -1481.96 + sqrt(2196200 + (1863.9-

tempRaw)*257.732);

 socRaw = (unsigned

int)((float)4095.0*(float)((float)AmpSec/(float)MAX_AMP_SEC));

 soc[0] = socRaw*0.0244140625;

209

 if(AmpSec<=0) AmpSec=0;

 //Loop occurs at 4.32ms with printf statement

 if(mosCurr[0]>MAX_BYPASS_CURRENT)

 {

 ledColor=RED;

 byPassMax[0]=1;

 }

 else if(mosCurr[0]>0.05)

 {

 ledColor=AMBER;

 byPassOn[0]=1;

 }

 else

 {

 ledColor=GREEN;

 byPassOn[0]=0;

 byPassMax[0]=0;

 }

 if(battVolt[0]<OVERDISCHARGE_VOLT)

overDischarge[0]=1;

 else overDischarge[0]=0;

 voltCntrlCnt++;

 if(voltCntrlCnt>75)

 {

 voltCntrlCnt=0;

 error = (refV-battVolt[0]);

 if (error>=0) //if batteryVoltage <3.8 means

error is positive

 {

 if((duty+error*KpV)<=0) //prevent

controller from causing duty from rolling over

 {

 duty=0;

 }

 else

 {

 duty=duty+KpV*error;

 }

 }

 else

 {

 duty=duty+KpV*error; // +

KpV*250*integral_V;

 }

 }

 //Cap duty cycle to a maximum value.

 if(duty>DUTY_CYC_MAX) duty=DUTY_CYC_MAX;

 //Ensure mosfet stays off if battery is not

charging and battery voltage is less than max

210

 if(battCurr[0]<=0.05 &&

battVolt[0]<(STOP_CHARGE_VOLT))

 {

 if(dutyOffCnt<=MAX_DUTY_OFF_CNT) dutyOffCnt++;

 if(dutyOffCnt>=MAX_DUTY_OFF_CNT)

 {

 TCC1.CCA=0;

 }

 }

 else

 {

 TCC1.CCA=duty;

 }

 }

 if(dataOutTWIC == LOW_SOC)

 {

 ledVal=LOW_SOC;

 }

 else

 {

 if(dataOutTWIC>6)

 {

 ledVal=7;

 }

 else

 {

 ledVal=dataOutTWIC;

 if(ledVal>6)ledVal=7;

 }

 }

 switch(ledVal)

 {

 case 1:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTD.OUTSET = ledColor; //0b00000010==2

 break;

 case 2:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTD.OUTSET = ledColor<<2; //0b00001000==8

 break;

 case 3:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTD.OUTSET = ledColor<<4; //0b00100000==32

 break;

 case 4:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTD.OUTSET = ledColor<<6; //0b10000000==128

211

 break;

 case 5:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTE.OUTSET = 0b0011 & ledColor;

//0b00000010==2

 break;

 case 6:

 PORTD.OUT = 0;

 PORTE.OUT = 0;

 PORTE.OUTSET = 0b0011 & (ledColor<<2);

//0b00001000==8

 break;

 case LOW_SOC:

 PORTD.OUTTGL = 0b01010101;

 PORTE.OUTTGL = 0b00000001;

 break;

 default:

 PORTD.OUT = ledColor;

 PORTE.OUT = 0;

 break;

 }

 //GRAB DATA FROM OTHER ICMU SLAVES

 currBattIdx=battIdx; //HOLD BATTERY CELL INDEX VALUE

WHILE RUNNING THE FOLLOWING LOOP IN CASE battIdx IS CHANGED IN

INTERRUPT

 if(newData)

 {

 if(currBattIdx!=0) //IF NOT THE MASTER, WE NEED TO

CONVERT MEASURMENT DATA FROM PACKET BACK TO ACTUAL VALUE

 {

 battCurrRaw = (signed int)((((unsigned

int)battData[currBattIdx][1])<<8) | battData[currBattIdx][0]);

 battVoltRaw = (signed int)((((unsigned

int)battData[currBattIdx][3])<<8) | battData[currBattIdx][2]);

 mosCurrRaw = (signed int)((((unsigned

int)battData[currBattIdx][5])<<8) | battData[currBattIdx][4]);

 tempRaw = (unsigned int)((((unsigned

int)battData[currBattIdx][7])<<8) | battData[currBattIdx][6]);

 //NEED TO GRAB STATUS BITS FROM PACKET

 byPassOn[currBattIdx]=(battData[currBattIdx][9]

& 0x80)>>7;

byPassMax[currBattIdx]=(battData[currBattIdx][9] & 0x40)>>6;

 overDischarge[currBattIdx] =

(battData[currBattIdx][9] & 0x20)>>5;

 overTemp[currBattIdx] =

(battData[currBattIdx][9] & 0x10)>>4;

 //GRAB SOC DATA FROM CURRENT CELL INDEX SOC

 battData[currBattIdx][9] =

battData[currBattIdx][9]&0x0F;

212

 socRaw = (unsigned int)((((unsigned

int)battData[currBattIdx][9])<<8) | battData[currBattIdx][8]);

 //CONVERT RAW DATA TO SCIENTIFIC NOTATION

 battVolt[currBattIdx] = battVoltRaw*0.0025;

 mosCurr[currBattIdx] = mosCurrRaw*.001; //1

ohm, gain 1

 battCurr[currBattIdx] =

battCurrRaw*0.020833333; //6 mOhm, gain 8

 temp[currBattIdx] = tempRaw*0.01;

 soc[currBattIdx] = socRaw*0.02442;

 }

 //PRINT OUT CURRENT CELL'S DATA ONLY IF THE BPMU'S

MEASURED CURRENT IS ABOVE A CERTAIN THRESHOLD

 if(battCurr[0]>0.08 || battCurr[0]<-0.08)

 {

printf("%05u,%02d,%03.2f,%03.3f,%+03.3f,%+03.2f,%03.2f,%1d,%1d,%1d,

%1d\r\n",RTC.CNT,currBattIdx+1,temp[currBattIdx],battVolt[currBattI

dx],battCurr[currBattIdx],mosCurr[currBattIdx],soc[currBattIdx],byP

assOn[currBattIdx],byPassMax[currBattIdx],overDischarge[currBattIdx

],overTemp[currBattIdx]);

 }

 //CLEAR FLAG FOR newData AND WAIT FOR NEXT I2C

MESSAGE, INCREMENT INDEX TO THE NEXT ICMU

 newData=0;

 battIdx++;

 //CHECK TO SEE IF LAST ICMU'S INFORMATION HAS BEEN

RECEIVED.

 if(battIdx>=MAX_BATT_CNT)

 {

 battIdx=0;

 dataRdy=1;

 //CHECK IF ANY CELL IS IN AND UNDERVOLT

CONDITION

 underVoltCond = 0;

 for(i=0;i<MAX_BATT_CNT;i++)

 {

 if(battVolt[i]<2.5 && soc[i]<0.1)

 {

 underVoltCond = 1;

 break;

 }

 underVoltCond = 0;

 }

 //COUNTER FILTER FOR DETECTING UNDERVOLTAGE

CONDITION

 if(underVoltCond)

 {

213

 if(underVoltCondCnt<65000)

underVoltCondCnt++;

 }else

 {

 underVoltCondCnt=0;

 }

 //ENSURE THAT CONDITION EXISTS FOR A

CERTAIN COUNT BEFORE SETTING CONDITION

 if(underVoltCondCnt>1000)

 {

 //SEND OUT LOW SOC MESSAGE TO ALL ICMUs

 //ALL ICMUs WILL FLASH RED THEN

 dataOutTWIC=LOW_SOC;

 }

 else //NOT LOW SOC DETECTED,

INCREMENT/DECREMENT NEXT NUMBER FOR "KNIGHT RIDER EFFECT"

 {

 if(increment)

 {

 dataOutTWIC++;

 }

 else

 {

 dataOutTWIC--;

 }

 if(dataOutTWIC>=MAX_BATT_CNT*6)

 {

 increment=0;

 }else if (dataOutTWIC==0){

 increment=1;

 }

 }

 //Writing current count to all slaves for

cycling LED display pattern, data being written out is in

dataOutTWIC

 currAddress=allCallAddress<<1|WRITE;

 TWIC.MASTER.ADDR = currAddress;

 }

 }

 //ONCE ALL ICMU DATA HAS BEEN RECEIVED PRINT OUT

INFORMATION ON BATTERY PACK AS WHOLE.

 //SPECIFICALLY, PACK VOLTAGE, CURRENT, AND SOC (ZEROS ARE

JUST PLACEHOLDERS).

 if(dataRdy)

 {

 dataRdy=0;

 packCurr=0;

 packSoc=100.0;

 packVolt=0;

 //CALCULATE PACK VOLTAGE FROM SUM OF ALL ICMU's

CELL VOLTAGE

 for(i=0; i<MAX_BATT_CNT; i++)

214

 {

 packCurr=battCurr[i]+packCurr; //SUM CURRENT

FOR CURRENT AVERAGE

 packVolt=battVolt[i]+packVolt;

 if(soc[i]<packSoc) packSoc=soc[i];

 }

 packCurr=packCurr/MAX_BATT_CNT; //AVERAGE CURRENT

FOR ALL CELLS (SHOULD BE SAME)

printf("0,0,0,0,0,0,0,0,0,0,0,%03.3f,%+03.3f,%03.2f\r\n",packVolt,p

ackCurr,packSoc);

 }

 if(waitToChangeCnt<65530)

 {

 waitToChangeCnt++; //Prevent Rollover

 }

 //************** BEGIN LOGIC FOR CHARGER

CONTROL*******************/

 //DETECT THAT CHARGER IS CONNECTED

 if(((PORTE.IN&PIN2_bm)>>PIN2_bp)==0) //Charger present if

pin is low

 {

 //FLASH LED 2 TIMES AMBER IF CHARGER IS DETECTED

 if(chargerConnectedCnt>2000)

 {

 chargerConnectedCnt = 0;

 PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2

 delay_ms(500);

 PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2

 delay_ms(500);

 PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2

 delay_ms(500);

 PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2

 delay_ms(500);

 }

 //****CHECK: IS AN ICMU AT ITS MAXIMUM BYPASS

CURRENT?

 //LOGIC TO DETERMINE IF ANY ICMU IS AT MAX BYPASS

 battBypassId=100;

 for(i=0;i<MAX_BATT_CNT;i++)

 {

 //BREAK OUT OF LOOP WHEN MAX IS DETECTED

 //KEEPING THE ICMU'S INDEX THAT IS AT MAX

 //IF NO CELL IS OVER BYPASS MAX CURRENT

 //THEN battBypassId REMAINS 100 WHICH NO

 //VALID ICMU WILL HAVE THAT VALUE IN THIS

SYSTEM

 if(mosCurr[i]> MAX_BYPASS_CURRENT)

215

 {

 battBypassId = i;

 break;

 }

 }

 //IF battBypassId IS NOT 100, AND THE SAME VALUE

TWICE IN A ROW

 //START COUNT FOR DECREASING CHARGER CURRENT

 if ((battBypassId == prevBattBypassId) &&

(battBypassId != 100))

 {

 if(decreaseCurrentCnt<8000)

 {

 decreaseCurrentCnt++;

 }

 }

 else

 {

 decreaseCurrentCnt=0;

 }

 //STORE PREVIOUS BYPASS ID FOR USE NEXT TIME AROUND

 prevBattBypassId=battBypassId;

 //****CHECK: ARE ALL BYPASSES ON?

 //LOGIC TO DETECT THAT ALL ICMUs ARE BYPASSING SOME

CURRENT

 allBypassOn=1;

 for(i=0;i<MAX_BATT_CNT;i++)

 {

 allBypassOn &= (mosCurr[i]>0.05); //If

bypassing some current, means it's at 3.8

 }

 //IF ALL BYPASSES ARE ON, SETUP BMS MASTER MESSAGE

 //TO CHARGER TO SHUT-OFF

 if(allBypassOn){

 if(turnOffChargerCnt < MAX_TURNOFF_CNT){

 turnOffChargerCnt++;

 }

 else

 {

 turnOffChargerCnt=0;

 desiredCurrentInt=0;

 desiredCurrentDec=0;

 sendDesiredCurrent=1;

 waitToChangeCnt=0;

 }

 }

 //****CHECK: ANY CELL OVERVOLTAGE (>4.2V)

216

 //LOWER CHARGING CURRENT TO 1.8 AMPS IF ANY CELL IS

DETECTED

 //AS BEING HIGHER THAN 4.2V FOR A DETERMINED PERIOD

OF TIME.

 //NOTE: ICMUs CAN BYPASS 1.9 AMPS

 overVoltageShutoff=0;

 for(i=0;i<10;i++)

 {

 overVoltageShutoff |= (battVolt[i]>4.2);

 }

 //COUNTER FOR FILTERING SHUT-OFF LOGIC FROM NOISE

IN MEASUREMENTS

 if(overVoltageShutoff)

 {

 if(turnOffChargerCnt2 < MAX_TURNOFF_CNT)

 {

 turnOffChargerCnt2++;

 }

 else

 {

 turnOffChargerCnt2=0;

 desiredCurrentInt=2;

 desiredCurrentDec=2;

 sendDesiredCurrent=1;

 waitToChangeCnt=0;

 }

 }

 //****CHECK: ANY CELL OVERTEMPERATURE

 overTemperatureShutoff=0;

 for(i=0;i<10;i++)

 {

 overTemperatureShutoff |= overTemp[i];

 }

 //COUNTER FOR FILTERING SHUT-OFF LOGIC FROM NOISE

IN MEASUREMENTS

 if(overTemperatureShutoff)

 {

 if(turnOffChargerCnt3 < MAX_TURNOFF_CNT)

 {

 turnOffChargerCnt3++;

 }

 else

 {

 turnOffChargerCnt3=0;

 desiredCurrentInt=0;

 desiredCurrentDec=0;

 sendDesiredCurrent=1;

 waitToChangeCnt=0;

 }

 }

217

 //IF COUNTERS EXCEED AND ARE NOT RESET BY NORMAL

OPERATION FROM CHECKS ABOVE

 //CREATE MESSAGE TO CHARGER TO REDUCE CHARGING

CURRENT

 if(decreaseCurrentCnt>5000 &&

waitToChangeCnt>WAIT_BEFORE_CHANGE_CNT)

 {

 //IF CHARGING CURRENT IS 6 OR GREATER DECREASE

CURRENT BY 2

 if(desiredCurrentInt>=6)

 {

 desiredCurrentInt=desiredCurrentInt-2;

 desiredCurrentDec=0;

 }

 else //OTHERWISE, SET CURRENT TO 1.8 A

 {

 desiredCurrentInt=1;

 desiredCurrentDec=8;

 }

 sendDesiredCurrent=1;

 waitToChangeCnt=0;

 decreaseCurrentCnt=0;

 }

 //SEND MESSAGE TO CHARGER

 if(sendDesiredCurrent==1)

 {

 sendDesiredCurrent=0;

 //CHECK THAT THE NEW VALUE IS NOT THE SAME AS

WHAT IS CURRENTLY

 //IN THE BPMU'S EEPROM IF IT IS NEW, STORE IT

IN BPMU's MEMORY

 if(desiredCurrentIntEE != desiredCurrentInt)

 {

 desiredCurrentIntEE = desiredCurrentInt;

 desiredCurrentDecEE = desiredCurrentDec;

 }

 //CREATE PACKET

 //BYTE0: 0xAA IS START OF PACKET INDICATOR

 //BYTE1: DESIRED CURRENT INTEGER PORTION

 //BYTE2: DESIRED CURRENT DECIMAL PORTION

 //BYTE3: DESIRED CURRENT INTEGER PORTION

 //BYTE4: DESIRED CURRENT DECIMAL PORTION

 //0x55 IS END OF PACKET INDICATOR

 //BYTES 1&2 ARE REDUNDANT WITH BYTE 3&4 FOR

TRANSMISSION ERROR CHECKING

 //ON CHARGER SIDE OF TRANSMISSION

 currentPkt[0]=0xAA;

 currentPkt[1]=desiredCurrentInt;

 currentPkt[2]=desiredCurrentDec;

 currentPkt[3]=desiredCurrentInt;

 currentPkt[4]=desiredCurrentDec;

218

 currentPkt[5]=0x55;

 //SEND SAME PACKET 5 TIMES IN A ROW FOR CHARGER

 //IF CHARGER DOES NOT SEE THE SAME MESSAGE 5

 //IT WILL NOT CHANGE VALUE

 for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]);

 for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]);

 for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]);

 for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]);

 for(i=0;i<6;i++) uartE0_putchar(currentPkt[i]);

 }

 }

 else //SYSTEM IS IN "CHARGER IS NOT CONNECTED" STATE

 {

 //NOISE FILTER: chargerConnected STARTS TO COUNT UP

WHEN CHARGER IS DETECTED

 //THIS VALUE IS RESET ABOVE WHEN THE CHARGER

DETECTION PIN IS LOW

 if(chargerConnectedCnt<3000)

 {

 chargerConnectedCnt++;

 }

 //IF CHARGER IS DETECTED, SEND A MESSAGE TO CHARGER

 //TO TELL IT TO START CHARGING AT 10 AMPS

 if(chargerConnectedCnt>2000)

 {

 desiredCurrentInt=10; //Integer

 desiredCurrentDec=0; //Decimal Value

 //CHECK IF NEW CHARGING CURRENT IS THE SAME AS

WHAT

 //IS IN BPMU'S EEPROM MEMORY

 if(desiredCurrentIntEE != desiredCurrentInt)

 {

 //STORES 10A CHARGING CURRENT IN BPMU'S

MEMORY

 //IN THE EVENT OF A RESET OCCURING

 desiredCurrentIntEE = desiredCurrentInt;

 desiredCurrentDecEE = desiredCurrentDec;

 }

 sendDesiredCurrent=1; //TELL CHARGER

COMMUNICATION LOGIC TO SEND A MESSAGE

 }

 }

 }

}

