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ABSTRACT

An investigation into battery management for lithium-based battery packs was
performed. Out of the investigation of the various management/balancing methodologies
came a proposed management methodology that is integrated with a charging system and
utilizes cost-effective, lossy, bypass resistors for cell balancing. This integration allows the
management system to cater the charging current to the needs of the battery pack and
overcome the limitations of the lossy bypass on its own. To first investigate this concept,
a LiFePOg4 cell model was obtained. This was done using a cell discharging procedure and
characterization process that provides a mathematical first-principles cell model. The
obtained model was then used to simulate various pack configurations, battery
management configurations, including the proposed management method. The results from
these simulations demonstrated that the proposed management methodology balanced cell
voltages within a battery pack in as little as a single charge cycle. To confirm this concept
a manually hand-controlled experiment, consisting of voltmeter monitoring cell voltages,
manual activation of lossy bypass resistors, and manual adjustments of charging current,
was performed. The results from this experiment confirmed the ability to balance the cell
voltages within a single cycle. Hardware and software was developed to automate the
proposed management methodology. Data collected from the automated implementation

was in agreement with the performed simulations and successfully demonstrated a

11



functional automated version of the proposed integrated battery management system and

charger.
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CHAPTER I

INTRODUCTION

Portable battery applications today can consist of either a single electrochemical
cell (which will further be referred to simply as a “cell”) or a battery pack that consists of
a combination of two or more cells. However, in industry, the term battery is often
interchangeably used to describe both an individual cell as well as a battery pack. A cell
that is designed such that it only is discharged once, and not recharged, is referred to as a
primary cell. A cell that is designed such that it can be discharged and recharged multiple
times is known as a secondary cell. It is the secondary cells and their applications that are
the focus of this research. When using these secondary cells, special care must be taken to
ensure the cells’ voltage, temperature, and maximum current remains within the
manufacturer’s specified operating range. Maintaining this range will help to ensure that
the manufacturer’s specified cell capacity, the total possible amount of charge before
damage occurs, stays consistent with each charge and discharge cycle. This number of
charge and discharge cycles is also referred to as the cells’ cycle life. Cell manufacturer’s
specifications often provide a minimum cycle life to which the cell should be capable of
maintaining a specified storage capacity. That is, provided there are not manufacturing

defects and the cells are properly used and maintained. In general, this minimum cell cycle



life can increase or decrease with more aggressive or lower demanding deviations from the

cell manufacturer’s recommended voltage operating ranges (Hartmann, 2008).

1.1 Types of Cell Combinations (Battery Packs)

In applications where a single cell is utilized, monitoring and maintaining the
recommended manufacturer’s operating range is straightforward. This is because the
charging device and load can be controlled to cater to that individual cell’s operation. On
the other hand, in applications where there is a battery consisting of multiple cells, ensuring
each individual cell stays inside the required voltage range can become more challenging.
Battery packs can consist of two cells (i.e. handheld portable consumer products) to several
thousand (i.e. electric vehicle applications). Battery packs can be constructed such that they
are connected in series, parallel, or a combination of series and parallel. The various
combinations of cells and the challenges of monitoring and managing them will be

discussed in the following paragraphs.

1.1.1  Series-Connected Cells

In applications that demand higher voltages than an individual cell can provide, a
number of cells can be connected in series to create a battery pack with the required higher
voltage. This type of battery pack configuration is referred to as series-connected or simply
as a series string. During operation of this battery configuration type, the current during
charging and discharging is the same current through each cell within the string. This is
advantageous when measuring current as only a single current measurement is required.
However, when it comes to monitoring cell voltages, circuitry is required for each
individual cell. In addition, due to the fact that a single current charges and discharges these

cells, how well balanced the stored energy in each cell is becomes an issue. Depending on
2



the balance of energy within the pack and individual cell construction variations, cells may
finish charging and discharging at different times. Variations between the cells is what
causes the individual cell voltages to go outside the manufacturer’s specified range, and
cause damage to individual cells. As will be discussed later in this document, several

methods exist that allow the cells in the string to be balanced.

In general, it is possible for one or more cells to fail in an open-circuit state or in a
short-circuit state. If a cell fails in an open-circuit condition, there is no longer a current
path. This renders the series-connected battery pack unusable. On the other hand, a short-
circuit cell failure condition, while not ideal, will still allow for current to be drawn from
the battery pack. The short-circuit condition will reduce the voltage of the overall battery

pack by the voltage that was once provided from the short-circuited cell.

1.1.2 Parallel-Connected Cells

In applications that demand higher current than an individual cell can provide,
multiple cells may be connected in parallel to provide higher current draw. Since the cells
are connected in parallel, all of the cells’ voltages are equal. If there is voltage difference
before the cells are connected in parallel, the higher potential cells will transfer energy to
the lower potential cells until the voltages balance (to prevent a large surge of current the
cells should be relatively balanced). In terms of monitoring circuitry, paralleling cells is
beneficial in that only one circuit is needed to measure the whole parallel group’s voltage.
However, the exact individual currents provided by each cell are unknown unless the
individual cell currents are measured. In terms of cell failures in this configuration, unlike
the series configuration, the open-circuit fault condition does not render this pack

configuration useless. However, with this type of failure the application will draw higher
3



currents from the remaining cells. If the remaining parallel cells cannot handle the new
current demand, they could also be damaged. In the case of the short-circuit fault condition,
this will cause all of the other parallel connected cells to discharge through the faulted cell

and render the battery pack un-useable.

1.1.3  Series and Parallel Connected Cells

In applications that require both higher voltages and higher current, a combination
of series-connected and parallel-connected cells is required to form the battery pack. There
are two common combinations that exist. The first combination is paralleled-series-
connected cell strings. This combination consists of several cells connected to form series
strings, which in turn are connected in parallel. The second combination is “series-
connected parallel groupings”. This combination consists of several cells connected to
form parallel cell groupings. These parallel cell groupings are in turn connected in series.
Based upon the previous discussion, the configuration that stands out in terms of reliability
is the first combination of paralleled-series-connected cell strings. In this configuration, the
fault that rendered the original independent series string unusable, has less of an impact
and improves overall reliability (McDowall, 2005). This is because an open-circuit failure
results in only one-of-the-many strings to become unusable. The remaining strings can still
provide energy to allow the application to continue. In the second configuration, the fault
that renders the series-connected-parallel groupings unusable still poses an issue. If a cell
fails in a short-circuit condition, it will still drain energy from the remaining cells within

that entire grouping.



1.2 Goals of Research

The focus of this research is to monitor and protect cells within a battery pack that
are connected in a series-connected configuration. To ensure that the cells stay balanced
within a series-connected configuration, the use of a cost-effective, lossy, cell bypass is
investigated. Although only a single series-string is investigated, the principles of this
research can be carried over to paralleled-series-string battery packs. In terms of cell
chemistry, lithium-based chemistries are of focus in this research due to their high energy
density, lower costs, and the traction it is gaining within the market place (Krieger, 2103)
(Vincent, 2000). To perform this research a first-principles cell model is obtained via data
collected through a given procedure. This model obtained in turn is then used to simulate
the cell balancing circuitry and its effectiveness. In order to further improve the utility of
the cost-effective, lossy, cell-bypass, a concept of integrating the cell balancing system and

the charging device is proposed and investigated.

1.3 Thesis Outline

The research performed is provided over seven chapters. Chapter I is an
introduction to cells and batteries. Chapter II provides a history of cells as well as
background information on cells, cell balancing methods, and a proposed balancing method
and charging system is provided. Chapter III provides details on a procedure that is
performed to collect data used to determine a cell model. Chapter IV uses the obtained
model to demonstrate the effectiveness of a passive bypass for balancing a series-connected
battery pack. Also simulated in Chapter IV is the proposed balancing system. Chapter V
and Chapter VI provides a summary of the software and hardware, respectively, used to
implement an interactive charger and passive bypass balancing battery management

5



system. Chapter VII provides results from experiments performed to test the proposed
method. Chapter VIII concludes the thesis along with recommendations for future work in

this area.



CHAPTER I

BACKGROUND AND RELATED WORK

This chapter discusses the history of electrochemical cells and battery packs. A
description of the inner working of electrochemical cells is given along with the various
cell chemistries. This section ends with operational considerations when using electro-
chemical cells, a summary on charging techniques, and a summary on cell-balancing

techniques.

2.1 The History of Electrochemical Cells

Although the earliest electric cells were in existence over 2,000 years ago, the
history of the battery truly begins in the 18th and 19th centuries. People like Alessandro
Volta (1745 — 1827) and Luigi Galvani (1737 — 1798) carried out the groundwork that led
to an electrochemical energy storage device, and their names live on in terms such as

"volts” and the "galvanic cell" (Bergveld, 2001).

Around the 1800s the voltaic column, the world's first working battery was created.
This battery consisted of alternate copper and zinc plates, separated by scraps of cloth
saturated with acid. Using this first battery, Volta discovered that certain liquids initiated

chemical reactions between metals, thereby generating electrical energy (Bergveld, 2001).



In the early 19th century, Volta worked in close collaboration with the French
National Institute to further develop the battery. The first battery suitable for mass
production was developed in 1802 by the chemist Dr. William Cruickshank (Anders,
2003). He stacked alternating layers of copper and zinc sheets of equal dimensions. This
stack was then placed in a sealed wooden chest and sealed with cement. This chest in turn

was then filled with a saline lye.

In 1859 the French physicist Gaston Planté used conductor plates in dilute sulphuric
acid, which led to the first rechargeable battery (Bergveld, 2001). Previous batteries
developed up to this point were all primary cells and were not re-charged. Planté’s
invention led to the first rechargeable secondary battery, which was a lead-acid chemistry

that is used to this day.

Over the following decades the lead battery underwent a number of significant
further developments. By introducing a variety of alloys, battery performance was greatly
improved which then minimized the need for maintenance. Experimentation with lithium
batteries began in 1912 under G.N. Lewis, and in the 1970s the first non-rechargeable
lithium batteries were sold. A research team managed by Akira Yoshino of Asahi
Chemical, Japan built the first lithium ion battery prototype in 1985, a rechargeable and
more stable version of the lithium battery; followed by Sony that commercialized the
lithium ion battery in 1991 (Vincent, 2000) (The Economist, 2008). The next section will

discuss the inner workings of these cells.



2.2 Electrochemical cells

Electrochemical cells are aptly named because they can provide electrical energy
stored in the form of chemical energy. This energy can then be utilized at a later time by
conversion of the chemical energy back to electrical energy. At a high level, a cell is
comprised of two metal electrodes suspended in an electrolyte. At the interfaces between
the electrodes and electrolyte are where chemical reactions take place allowing for the
conversion to and from electrical energy (depending on whether the cell is being used as a
load or if it is being charged, respectively). The two electrodes switch roles as anodes or
cathodes, depending on whether they are being charged or discharged. The two electrodes
will be designated as PE and NE, for the positive electrode and negative electrode,
respectively. In the case of charging, the PE and NE are designated as the anode and
cathode, respectively. During charging, at the interface between the electrolyte and the PE,
an oxidation reaction occurs. As a result of this, electrons are free to flow out to the external
charging circuitry. Simultaneously, at the electrolyte and the NE interface, a chemical
reduction process occurs that accepts electrons from the external charge circuitry. Inside
the electrolyte, negatively charged ions produced from the reduction reaction occurring at
the NE, move towards the PE. Similarly within the electrolyte, positively charged ions
produced by the oxidation reaction at the PE move towards the NE. Thus, the flow of
current is possible because of the electrons, which travel in and out of the cell, use the
electrodes as a medium to travel through. The availability of free electrons in the PE and
the “room” to accept electrons in the NE is made possible through the chemical reactions
made at the electrolyte and electrode interface. These reactions can continue because the

positive and negative ions use the electrolyte as a medium to travel through.



The discharge process through a cell is the reverse of the charging process. By
definition, the PE and NE switch roles as the anode and cathode. The location of the
reactions and direction of movements for the electrons and ions are also switched. This can
be more clearly seen by comparing Figure 2.1 and Figure 2.2. Pictured within in the figure,
in between the PE and the NE, is an electrically isolating separator. The separator is
typically a porous material that still allows the ions to easily travel through, but not so

porous that it does not behave well as an electrical insulator (Kumar et al., 2010) (Bergveld,

2001).
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23 Cell Chemistries

Although the focus of this research is on rechargeable Lithium Ion (Li-Ion) battery
cells, a brief overview of other battery chemistries is given in the following sections. For
reference, a comparison of multiple cell chemistries and storage technologies are given in
the Ragone Plot in Figure 2.3 (Kalhammer, 2007). As can be seen, the various types of
lithium-based energy storage devices, outperform the other storage devices in terms of

energy storage and instantaneous power per kilogram of material.
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Figure 2.3: Ragone plot comparing several types of cell chemistries and other energy

storage devices (Kalhammer, 2007).

2.3.1 Lead-Acid

The oldest form of rechargeable battery is the lead-acid battery. The lead-acid
battery was developed into two main designations. The first being sealed lead-acid (SLA)
and the second being large valve regulated lead-acid (VRLA). Both battery types should
not be operated at high depths of discharge to preserve cycle life. An advantage of the lead-
acid battery is that cells may be balanced by charging the battery pack with a slow, trickle
charge for long durations. Typical charge times are 8-16 hours, and typical cycle life is
200-300 cycles. This short cycle life is due to the corrosion that occurs for the positive
electrode which causes depletion of the active material and expansion of the plates. The
optimum operating temperature for lead-acid is 25 degrees C, and as a general rule, a

change of 8 degrees C will cut the cycle life in half. The lead-acid battery has the lowest
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energy density of rechargeable cells, making it unsuitable for smaller consumer electronics

(Buchmann, 2011).

2.3.2 Nickel-Cadmium

The Nickel-Cadmium (NiCd) battery has advantages in that it is well-suited for fast
charging and rigorous discharge conditions. NiCd batteries have a typical cycle life of
1,000 cycles, and offer good performance at low temperatures without significant impact
to cycle life. The NiCd has a decent shelf life as compared with other rechargeable cells,
and is the lowest-cost battery in terms of cost per cycle. Unfortunately, the NiCd battery
suffers from the memory effect, and relatively low energy density. The memory effect
occurs when NiCd cells are charged after being only partially discharged several times.
This effect causes the cell to lose some of its prior capacity and it “remembers” the new
smaller capacity (Buchmann, 2011). To prevent this, the NiCd cell simply has to be

discharged to its full rated capacity.

2.3.3 Nickel-Metal Hydride

The Nickel-Metal Hydride (NiMH) battery offers 30-40 percent higher energy
density as compared to NiCd, and is less prone to the memory effect. The disadvantages of
the NiMH are related to its performance which is depleted if cycled at high discharge rates.
Additionally, the NiMH requires a more complex charging algorithm, and more frequent
maintenance to prevent crystalline formation. This higher-cost battery has a high self-

discharge rate (50% higher than NiCd), and is sensitive to high temperatures.
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2.3.4 Lithium Based Chemistries

The Lithium-Ion (Li-Ion) battery is probably the most well-known chemistry on the
market today. Original development for this battery began in 1912, but was not
commercially available until 1991 due to concerns of safety. The energy density of Li-ion
cells are twice that of NiCd, while also offering a low self-discharge rate and low-
maintenance with a high cycle life. Because of safety concerns, the Li-ion cells require
protective circuits (such as those discussed in this thesis), and are still relatively expensive
to manufacture. The cells support higher voltages, and also offer moderate discharge
currents. There are several types of lithium-based cell chemistries as will be discussed in

the following sections (Buchmann, 2011).

2.3.4.1 Lithium Cobalt Oxide (LiCoO2)

This chemistry is used in small portable electronics such as cameras, phones,
tablets, and some laptops. The positive electrode is derived from cobalt oxide and the
negative electrode is graphite carbon. Typical charge and discharge current maximum’s
are relatively small. Anything higher causes overall cell life to decrease. While the specific
energy, the cells’ ability to store energy per unit of weight, of this chemistry is high, the
specific power is low. The specific power is a measure of how much instantaneous power

the cell can provide in a short period of time (Buchmann, 2011).

2.3.4.2 Lithium Manganese Oxide (LiMnO»)

This chemistry was first introduced in 1996 and had a positive electrode made of
lithium manganese oxide. Due to the architecture, a three-dimensional spinel structure, ions
can flow more freely, decreasing internal resistance. This allows for high currents which

make this chemistry suitable for applications such as power tools, medical equipment, and
14



electric vehicles. Compared to lithium cobalt, lithium manganese has a capacity roughly

one-third the size of lithium cobalt’s storage capacity (Buchmann, 2011).

2.3.4.3 Lithium Iron Phosphate (LiFePO4)

In 1996, researchers at the University of Texas implemented phosphate as a positive
electrode for a lithium based cell. This material which can be designed with nano-scale
phosphate which offers low resistance, high current rating, and long cycle life. Along with
the aforementioned benefits and a relatively higher abuse tolerance, this technology finds
applications also in power tools, electric vehicles, and back-up power applications. In
comparison to the LiMnO; chemistry, due to LiFePO4’s lower 3.2-3.3V nominal voltage,

it has a slightly lower specific energy (Buchmann, 2011) (Padhi et. al, 1996).

2.3.4.4 Lithium-Titanate (Li2TiO3)

This chemistry has been around since the 1980s. In this cell chemistry Lithium-
titanate, as opposed to carbon, is used for the negative electrode. This also forms a spinel
structure as with the LiMnOz cell chemistry, enabling lower internal resistance. This allows
this chemistry to safely charge and discharge quickly at high currents, and has low-
temperature discharge characteristics (down to -30°C). Due to the fact that a single cell

provides 2.4V nominally, its specific energy is relatively low (Buchmann, 2011).

24  Charging

There are several cell charging methods that can be used when it comes to cell
charging. A few of these modes are constant-current charging, constant-voltage charging,
trickle-charging, float-charging, and pulse-charging. Since the focus of this research is on

lithium-based cell technologies, the commonly used constant-current, constant-voltage
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method will be discussed in greater detail. The other methods will be briefly discussed in

the following sections.

2.4.1 Lithium-based Battery Charging

A lithium-based battery charger is typically a fixed voltage source that is current
limited. The charger will charge the battery at a constant current (CC) until the battery
voltage reaches a pre-set value, the set-point voltage. This charging current is typically
limited to a 1C charge rate, however, higher or lower charge rates may be possible
depending on the recommendation of the manufacturer. The “C rate” is a relative
specification based upon the Ah rating of the cell. This is easily explained in the form of
an example. If a cell has a rated capacity of 2Ah, 1C, 2C, and 3C corresponds with charge
(or discharge) currents of 2 amps, 4 amps, and 6 amps. About 65% of the total charge is

delivered to the battery during the constant current phase of charging.

Once the set-point voltage is reached during the CC phase, the charger will begin
to decrease current to maintain the set-point voltage on the battery. This is known as the
constant voltage (CV) phase of charging. Most major Li-ion cell manufacturers
recommend 4.200V +/- 50 mV as the ideal set point voltage. The constant-voltage cut-off
time is typically given by the manufacturer with a desired degree of accuracy to ensure the
specified cell cycle-life and capacity can be met. It is important to note that this value is
specified for the voltage available at the cell’s terminals. When current is actively charged
or discharged from the cell, the series resistance in the form of terminal connections and/or
wiring provides measurement offsets from the true cell’s terminal voltage. A method to
overcome this may be accomplished by providing two high impedance measurement wires

connected directly to the cell’s terminals. Since these two wires are high impedance and
16



are not part of the cell’s main current path, the offset voltage measurement issues are

overcome (Bergveld, 2001).
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Figure 2.4: A CC/CV charger first applies constant current rate until the battery reaches a
set-point voltage, charging current is then reduced to maintain the set-point voltage

(Simpson, 2011).

2.4.2 Floating/Trickle Charging

When charging battery packs with chemistries of lead-acid, NiCd, or NiMH, float
charging and/or trickle charging is performed. This type of charging is utilized after a
charge cycle has already completed, and while the battery or cell is unused. The charge
current is typically small (less than 0.05 C) and is used to both compensate for the self-
discharge of the battery pack as well as balance the pack at the end of charge. This is
important in the case of lead-acid especially as sulfation occurs more readily at lower

discharge states, leading to poor battery performance.
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In terms of lithium based chemistries, holding this chemistry at higher voltages for
long durations instead leads to lower cycle life. Some possible causes attributing to the
lowering of cycle life are electrolyte decomposition, formation of a passivation layer on
the negative electrode, and dendrite formation. Each of these conditions can decrease cycle
life as the available active materials required for charging/discharging decreases. In the
extreme case, the dendrites can grow so that a short is formed between the positive and

negative electrodes (Bergveld, 2001).

2.4.3 Lithium Ion Battery Discharging

The end-of-discharge voltage for a Li-ion cell is typically 2.5V on average. At this
point, approximately 95% of the energy is depleted, and from there, the cell voltage drops
rapidly if discharging were allowed to continue. To protect the cell from overdischarging,
most battery management systems will prevent operation beyond this low-voltage cutoff.
When a load is removed from a battery after discharge, the voltage will gradually recover

by a small amount.

In terms of choice of discharge rates and overall cell cycle life, higher discharge

rates lead to faster capacity fade as can be seen in Figure 2.5 (Ning et al, 2003).
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Figure 2.5: Initial capacity of LiCoOx: cells before and after 300 cycles at varying

discharge currents. The capacity fade increases with higher c-rates (Ning et al, 2003).

Historically, Li-ion cells had been considered unsuitable for high current loads. In
recent years, however, many Li-ion systems permit discharge rates upwards of 50C. This
means that a cell rated at 1.5Ah can provide a steady load of 45 amps, and this is being
achieved primarily by lowering the internal resistance through optimizing the surface area

between the active cell materials (Choi et. al, 2002).

2.5 Need for Cell Balancing and Battery Management

Chargers for series-connected packs often look at the battery pack’s overall voltage
for controlling the charging current. If each cell is identical and evenly charged, it could be
assumed that each cell is at the same voltage. However, in practice individual cells’ state-
of-charge (SoC), or the amount of stored energy within in a cell, is likely to be unequal.

During charging, this can cause cells with higher SoC to reach higher than recommended
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operating voltages. Similarly, during discharge, cells with lower SoC will reach lower than

recommended operating voltages.

The choice of what voltage to charge a cell to and what voltage to discharge a cell
to ultimately affect the number of charge/discharge cycles that can be achieved with that
cell (Hartmann, 2008). In a series-connected battery pack without a method to balance cell
SoC, all SoC’s are hard to regulate if the individual cell voltages are very different. Again,
this is due to the fact that the same current is used to charge each cell. This will cause one
or more cells to become fully-charged faster than others. An option at this point is to simply
stop charging the series string and leave the remaining cells not fully charged. However,
during discharge, the lowest charged cells will discharge the quickest and then energy in
the higher charged cells will go unused. This is non-ideal since the full-capacity of the

battery pack is not being utilized.

The main causes of cell imbalance are variations in an individual cell’s impedance,
capacity, and self-discharge rate. These factors will cause divergence in the cells’ voltage
over time. Since most battery chargers detect full charge by checking whether the voltage
of the entire string of cells has reached the voltage-regulation point, individual cell voltages
can vary as long as they do not exceed the limits for overvoltage protection. However, both
weak cells (i.e., cells with lower capacity or higher internal impedance) and warm cells
tend to exhibit higher voltage than the rest of the series cells at full charge termination.

These cells are weakened further by continuous overcharge cycles (Andrea, 2010).
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2.6 Cell Balancing Methods Summary

The impact of cell imbalance on run-time performance and battery life in
applications using series-connected cells is certainly undesirable. The fundamental solution
of cell balancing equalizes the voltages and SoCs among the cells when they are at full
charge. Cell balancing is usually categorized into two types, passive and active. With
passive balancing, excess energy is dissipated as heat. Active-balancing, on the other hand,

is more energy efficient as it attempts to transfer energy conservatively from cell to cell.

The fact that 100% of the excess energy from a higher-energy cell is dissipated as
heat makes the passive method less preferable to use during discharge because of the
obvious impact on battery run time. Active cell balancing, which utilizes capacitive or
inductive charge shuttling to transfer charge between battery cells, is significantly more
efficient because energy is transferred to where it is needed instead of being bled off. Of
course, the trade-off for this improved efficiency is the need for additional components and

complexity at higher cost.

2.6.1 Passive Balancing

The easiest approach to cell balancing is to equalize cell voltages. This can be done
by comparing cell voltages with programmable thresholds to determine if cell balancing is
needed. If any particular cell hits the threshold, a resistive bypass is enabled. The main
disadvantage of this method is the energy lost through the bypassing. This method is known
as passive cell balancing (Moore, 2009) (Andrea, 2010). Passive balancing is a cost-
effective, lossy, option to reduce the disparity between the SoC of each cell. The bypass
resistor allows higher charged cells to burn-off excess energy in the form of heat (Figure

2.6). It also creates a path to allow energy to shunt around a cell in a series-connected
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string. The limitation that comes from utilizing a bypass is the amount of heat that is
generated from the bypass device itself. One strategy for utilizing a bypass is to simply
turn on the bypass device once the cell hits a specific voltage. This allows the rate-of-
charge to the highest charged cells to be reduced and allows current to be shunted around

that particular cell.

Based upon the charging current and bypass resistance, there are three conditions
that can exist when a bypass is implemented. One condition is if the bypass resistor is
designed such that it bypasses less than the charging current. This implies that the
remaining charging current that is not bypassed continues to charge the cell. The second
condition is if the bypass resistor is selected such that it bypasses approximately the same
value of the charging current. In this condition, the cell stops charging and the cell’s voltage
will stay constant. This is because if the cell’s voltage goes up, the fixed-resistance bypass
will bypass a little more current as well. If the cell’s voltage goes down, the fixed-resistance
bypass also bypasses less current. The third condition is if the bypass resistor is selected
such that it bypasses all of the charging current and also draws additional current from the
cell. This allows higher charged cells to decrease their SoC while allowing other cells to

increase their SoC.

22



; E 2 E

] VS ) W L

R, . R, R

: : : n
Control

Figure 2.6: Passive Resistive Bypass (Moore, 2009).

2.6.2 Active Balancing

Another approach is active cell balancing. This method overcomes the energy loss
of the passive method by using capacitive or inductive charge storage and shuttling to
deliver energy to where it is needed most, and with little loss. The disadvantage to this
method is in component count, cost, and complexity. Active balancing techniques fall into

four main groups (Yevgen, 2009) (Moore, 2001):

1. Cell to cell: energy is transferred between neighboring cells.

2. Cell to battery: energy is removed from cells with highest SoC and dumped to

the whole battery.

3. Battery to cell: Energy is removed from the battery pack and transferred to the

cells with least SoC.
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4. Bidirectional: Based on needs, energy is transferred from cell to battery or vice

versa.

These methods may be implemented in a variety of ways. A simple approach to
redistribute the energy between the cells is to connect a capacitor first to higher voltage

cell, than to lower voltage cell, as shown Figure 2.7.

Control T

Figure 2.7: Capacitor-Based Shuttle (Yevgen, 2009).

More complicated implementations allow the connection of not only two nearby

cells, but also cells for far away in the stack for faster equilibration Figure 2.8.
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Figure 2.8: Shuttle circuit with remote cells connection capability (Yevgen, 2009).

The main problem with this method is that significant energy losses occur during
capacitor charging, due to high currents because of high voltage mismatch. Another
problem is that high voltage differences between the unbalanced cells exist only in highly
discharged states. Because this method’s transfer rate is proportional to cell voltage
differences, it only becomes efficient near the end of discharge so that the total amount of

unbalance that can be removed during one cycle is low.

Another active balancing method, depicted in Figure 2.9, is implemented by taking
energy from the battery pack as a whole and redistributing it to a single cell. This is done
by directing the battery pack current through a transformer which is then switched to one
of the cells that needs additional charge. However, the efficiency of such a converter is
limited, and the need to use a transformer results in increased price and size of the overall

solution (Moore, 2001).
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Figure 2.9: Inductive converter cell balancing circuit (Moore, 2001).

2.7 A Proposed Integrated Charger and Battery Management System

A study performed in 2011 compared several balancing methods consisting of both
passive and active circuitry (Daowd et al, 2011). In the investigation, each method was
evaluated and simulated within MATLAB/Simulink. Each method was graded upon its
equalization speed, complexity, size, cost, and efficiency. The method that outperformed
others in terms of simplicity, and cost-effectiveness, was the passive resistive shunt bypass.
In terms of speed and efficiency, the resistive shunt bypass received average to less-than-
average ratings. In the case of many high volume commercial applications, cost and
development time is often of great concern. In fact, many available battery management
integrated circuit manufacturers, such as Texas Instruments, utilize passive resistive shunts
for balancing (Texas Instruments, 2012). In this research, the resistive shunt bypass is used

due its popularity, cost-effectiveness, and minimal amount of components. A proposed
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method to further improve the speed of balancing with passive resistive shunts and reduce

the number of cycles a battery pack stays unbalanced is discussed next.

The proposed battery system will use a BMS that interfaces directly with the
charging system as shown in Figure 2.10. The BMS consists of one Individual Cell
Management Unit (ICMU) per a cell and a single Battery Pack Master Unit (BPMU) for
the entire battery pack. The block diagram of Figure 2.11 depicts an ICMU which consists
of circuitry that at a high level, includes a voltage, current and temperature monitor, and
an adjustable bypass current device. In terms of the adjustable passive bypass device, this
will be achieved by a MOSFET driven in its linear region. In doing so this causes the
MOSFET to behave as a voltage-controlled resistor. The adjustability of the bypass current
as well as the adjustability of the charging current allows the system to have more

flexibility when it comes to equalizing the energy within battery pack’s cells.
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Figure 2.10: High Level Block Diagram for Integrated BMS and Charger System.

27



Individual Cell Manager Unit

Cell

Sensors

Temperature

Volt
Current

Cell

Communication

BMS
Communication
Medium

Cell

Bypass

v A 4

Cell
Identifier Block

Cell
Microcontroller

| Individual Cell Manager Unit |

Figure 2.11: Detailed block diagram for Individual Cell Manager Unit within BMS.

The BPMU, shown in Figure 2.12, processes data from each ICMU for monitoring

of the battery pack as a whole. The BPMU will communicate battery pack issues during

charge and discharge. In addition, the BPMU will also have a communication interface to

the charging system. This interface will allow the BPMU to directly control the charging

current profile as it demands from the charger. A block diagram of the integrated charger

is shown in Figure 2.13.
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Figure 2.13: Detailed block diagram for Charger for integrated BMS concept.

The sequence of steps for the proposed method of charging and balancing will be
discussed next. First, the charging device will initially charge the battery pack at the
maximum constant current rate that the battery pack application can accept. When the

highest charged cell is nearing its full charge voltage, the BMS can request the charger to
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decrease its current as desired. Simultaneously, the BMS can activate bypass current
devices on each cell as necessary, shunting as much current as possible around the highest
charged cells. In doing so, this allows the remaining lower charged cells to continue
charging at a higher rate. If the highest charged cells continue to charge too quickly (even
with the bypasses on), the BMS can then request the charging device to lower its charging
current as necessary. This continues until the bypass devices can shunt all of the charging

current around a given cell and discontinue the charging to any individual cell.

2.8 Summary

This chapter provided a brief history on the discovery and the development of cells.
Also provided was background information on cells and how they function electrically and
chemically during the charge and discharge processes. Next, an overview of cell
chemistries used most in industry was provided. This led to a discussion of methods that
can be used to perform cell balancing within a battery pack. Lastly, the chapter concluded
with a proposed method for balancing using an integrated charger with a resistive-bypass

based battery management system.
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CHAPTER III

BATTERY CELL MODELING

This chapter will discuss a procedure that can be used to obtain a mathematical cell
model. The benefits of using a cell model and how a cell model may be used for various

applications are also discussed.

3.1 Introduction

To be able to simulate the voltage behavior of a cell during usage, either on its own
or within a battery pack, an accurate cell model may be used. Using a cell model allows
simulations and investigations to be performed of how individual cells behave or multiple
cells behave within a battery pack. This allows theories and concepts to be tested without
actually spending time on a physical test set-up. This chapter will discuss a cell model and
how the parameters for this model are obtained. In order to obtain parameters for the cell
model, data must be collected from the cell of interest. The data collected must be obtained
following a procedure that allows the cell’s dynamics of interest to be observed, as well as
either a full charge cycle or a full discharge cycle. After collecting the data, the data is
graphed and analyzed to obtain some of the model’s parameters. These parameters can vary

from cell size, cell chemistry, and even from cell to cell within a manufacturing batch.
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With regard to the variability within a manufacturing batch, battery packs designed
for space applications go through categorizing newly manufactured cells in order to pick
cells with well-matched characteristics. The goal and assumption is that these cells start
out with the same SoC and have very similar charge/discharge characteristics as they are
used throughout their lifetime. If this is indeed the case, the assumption is that such a

battery pack no longer requires a battery management system (Pearson, 2004).

Also, cell modeling improves accuracy estimates for a cell’s SoC. This is especially
the case in applications where the power profile varies such that the electrochemistry
dynamics are not able to reach a state of equilibrium. The cell voltage is dependent on
multiple factors such as the charge/discharge current, temperature, and the cell’s age. This
being the case, it can be difficult to provide an accurate estimate of a cell’s SoC solely upon
its voltage. Also, a sensor cannot directly be employed to read the cell’s SoC directly,
however with the use of a mathematic cell model/algorithm, this is possible. An exception
for using a cell’s voltage as an estimate for its current SoC is when the current (and power)
is relatively low such that the open-circuit voltage is close to the running voltage. In cases
such as these, it is possible to utilize a table that correlates the SoC with open-circuit

voltage (Plett, 2004).

Accuracy of the SoC is important in applications where aggressive power profiles
demanded from the battery pack are required. The accuracy also allows more aggressive
use of energy available within the battery, as the true SoC of each cell is known. To make
this concept clearer, take the following example. In a hypothetical application where the
cell’s voltage is close to the manufacturer’s recommended cut-off voltage, the cell’s

voltage may not be accurately reflected when a large current is drawn from the cell. Due
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to the cell’s internal impedance, an internal voltage drop may occur that is correlated with
the current draw from the cell. This is an offset from the true cell voltage, and causes an
external voltage measurement to appear as if it were below the cut-off voltage. This issue

may be alleviated from more accurate SoC estimates via real-time cell models.

3.2 Battery Modeling

The cell model used in this research is derived from a first-principles based
structure (Hartley & Jannette, 2005). In other words, the model is based upon established
laws of physics. This model is a generalized structure with parameters that are acquired
through data collection consisting of voltage, current, and temperature measurements from
a cell as it is discharged through a low-resistive load. To model the charge diffusion
characteristics of the cell, during the discharge cycle, the load is temporarily removed from
the cell in order to observe the resulting transient response. An example of a complete
discharge cycle with charge diffusion transient (small transient towards middle of plot) can

be observed in Figure 3.1.
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Measured cell data with load remaoval
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Figure 3.1: Measured Battery Voltage for full cell discharge cycle.

The model obtained will generate a voltage as a function of the stored charge,

diffusing charge, and the amount of current flowing in or out of a given cell at any given

time, which are denoted by q,(t), q4(t), and i(t), respectively.

The state equations of the cell model are the stored-charge rate given by
qs(t) = i(t) (1
and the diffusing-charge rate given by

Ga(®) = - i(0) = = a(®) 2)
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where C; is the diffusion capacitance and R, is the diffusion resistance (Hartley &
Jannette, 2005). The values for the diffusion parameters are obtained by analyzing the
diffusion transient response. In order to obtain the stored charge and the diffusing-charge
states, equations (1) and (2) are integrated with the measured current during the discharge

cycle.

Using only a linear combination of the integrated states q¢(t), q4(t), and the
current, i(t), the linear portion of the voltage curve of Figure 3.1 can be accurately
modeled. In order to represent the non-linear portions of the voltage curve in the beginning
and end of the discharge cycle, two additional exponential terms dependent on q,(t) are
incorporated. System identification is performed on the data collected using batch least

squares to acquire the following parameters

o=V Ry = Kiki ko] G
each of which corresponds to an element of
P(t) = [1i(t) q5(6) ga(t) e™18() e42050)] “
such that the battery voltage is given by
D(t) = P(1)6 %)

= (D) + G®))I(R,) + (g5(®) (cis)

+(qa(®)(Ky) + (e 415W)(Ky) + (e4295D)(K,) .
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Based upon the state g, (t), the SoC is calculated as follows
Qsoc(®) = 222-100% (©)

where qs mqx 15 the rated full capacity of a given cell.

The scope of the research did not implement this model in real-time, however, a
brief discussion of such an implementation follows. A real-time implementation allows an
application to track cell parameters, usually not directly measureable, that provide more
information about a cell’s condition. For example, the (SoC) can be extracted from the data
with higher accuracy than directly measuring the cell’s voltage alone (Hartmann, 2008)
(Bergveld, 2001). This is especially useful in cases where the cell’s current consumption
is dynamically changing, which causes voltage measurements alone to be misleading when
it is used for SoC estimation. By implementing a cell model on a computing device (e.g.
microcontroller, computer, etc...) in real-time, this allows real-time access to information

about the aforementioned non-direct measurements.

There are several additional benefits to be gained from a real-time model. Self-
discharge can be modeled by measuring a cell’s remaining capacity after being stored for
a long period of time. With an accurate self-discharge model, it can be determined that a

cell is failing by detecting a fast self-discharge rate.

In terms of accuracy of a real-time cell model, it is vital in the case of aggressive
designs and high-power usage of battery packs. The ability to accurately predict remaining
SoC in a battery pack allows for maximum power draw, and may be estimated without

overdischarging a cell or causing it damage. This could also allow a smaller battery pack
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be utilized for a given application. This is as opposed to sizing the battery pack with a large

design margin and higher cost (Plett, 2004).

I:Actual Cell Measured Cell I
Current

e .

Open-Loop Cell Model:
Provides access to usually non-observable cell parameters with estimate corrections.

Figure 3.2: Control block diagram of open-loop cell model.

In order to improve accuracy of the model’s states, a real-time observer can be
implemented to supplement the model running on the computing device. The real-time
observer will compare the model’s output voltage with an actual measured voltage of the

cell of interest by calculating the error,

e(t) = v(t) — (1), @)

where v(t) is the cell’s measured voltage and ¥(t) is the model’s estimated voltage given.
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Equations (1) and (2) become
C.ls(t) = i(t) + Lse(t)a ®)
Ga(8) = 10 = == qa(0) + Lae(®). ©)

where Lg and L, are observer gains that are multiplied by the error, e(t), to correct the state

estimates, for g,(t) and g4 (t), respectively, (Plett, 2004) (Vamsi et. al, 2007) (Bergveld,

2001).
___________________________________________________________________ :
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1 A :
CaqRqa : :
Observer :
f da ® Gains :
l
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- 1
___________________________________________________________ L
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Current Cell Voltage
Actual Cell

Closed-Loop Cell Model: Provides access to usually non-observable cell
parameters with estimate corrections.

Figure 3.3: Control block diagram of closed-loop cell model with observer.

To further improve estimates, there are additional methods that can be
implemented. This includes providing the ability for the cell model’s internal parameters

to adapt such that it tracks the aging effects of the cell. This is opposed to determining the
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cell’s parameters from a single set of data and keeping the internal model parameters at
fixed values indefinitely. Also, taking operating cell temperatures into the real-time model
allows for more accurate cell-model estimates. A possible approach for adapting cell
parameters with temperatures is to gather cell operation data at specific temperatures of
interest. A polynomial fit may then be used to match temperatures to correlating

coefficients (Plett, 2004) (Hartmann, 2008).

33 Procedure for Data Collection

In order to get a cell model, data must be collected from the cell during its operation.
In this research a fully charged LiFePOs, 3.3V nominal, 60Ah cell was used. The cell was
charged per the cell manufacturer’s recommendations using a power supply with settings
for constant current and constant voltage. The cell was first charged in constant current
mode at 20A per the manufacturer’s recommended charging current of C/3. The power
supply was set for a constant voltage of 4.2V, at which point the charger automatically
tapered the charging current to maintain the desired 4.2V. The charge process was stopped
when the charging current fell below C/6. The cell was then left to rest several hours to
allow the cell’s voltage to settle after the charging process.

Next, the cell was discharged via a fixed load resistor bank. The equivalent
resistance used during the discharge was ~0.21 ohms which provided a nominal discharge
current of ~16A. Both the cell’s discharging current and the cell’s voltage was logged using
a microprocessor development board. These measurements were done via a resistive shunt
and voltage divider, respectively. The discharging procedure consisted of connecting the
load to the cell, removing the load, re-applying the load, and stopping the discharge
process. The step of removing the load was performed in order to capture the dynamics
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associated with the cell’s charge diffusion. The load was removed long enough until the
cell’s voltage increased and reached a steady-state. At that point, the load was re-applied
until the cell’s voltage hit the manufacturer’s stated cell cut-off voltage. The data collected

in this process is graphed in Figure 3.5.

+Veurrent-

shunt ‘
cell | L
Voltage | = Voltage Divider Top = q.av j e
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.
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-

Figure 3.4: Diagram of circuit used to collect cell discharge data.
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Figure 3.5: Graph of collected discharge data (time axis is in seconds)

3.4  Processing Collected Data

Using the graphed data in Figure 3.5, measurements are made from specific features
from the plot. These measurements are then used to calculate and obtain values for the cell
model’s parameters. The following are the parameters and how they are extracted from the

graph.
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1. R,: To determine this value, two other values must be obtained beforehand.

o The current before load removal (BLR), I5;z, which can visually be determined
from the plot.

o The “instantaneous” change in voltage observed directly after removal of the
load. This is designated as the voltage after load removal, V4, 4. In terms of
the “instantaneous” change in voltage, what should be observed upon load
removal is a sudden jump in voltage due to the lack of a voltage drop across the
cell’s internal impedance (because of the sudden stop in load current). It is
noteworthy to distinguish between the “instantaneous” voltage change and the
exponential voltage change due to the cell’s diffusion properties (of which the
parameters are obtained in the next section), because they occur very closely

one after the other in the graph.

. . . 174
o To calculate R, the following equation is used: R, = —I“‘LR'A
BLR

2. Diffusion Time Constant: To determine the Diffusion Time Constant, 7; , the cell
dynamics associated with load removal are analyzed. The following steps are used to
determine the time constant:

o Determine the initial voltage, Vp;sr initiai, iImmediately after the removal of the
load.

o Next, determine the time, Tp;ff initiar» at Which the load was removed.

o Determine steady-state voltage, Vp;sr ss, after load removal (this requires that
during data collection the cell voltage was allowed to reach a steady-state after

the load was removed).
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o Calculate the voltage that corresponds with 63% of the voltage difference
between the initial voltage and steady-state voltage. This value is the diffusion
voltage after one time constant which will be designated as Vp;¢s r,, This step
is summarized by the following:

Voirsr, = (Vbirsss = Vbirs,mitiar) X 0.63.
o Visually determine the time, Tp;ff r, , at which the time at which Vp;¢¢ 7, occurs.
o Finally, 74 can be calculated with:
Ta = Tpifrr, — Tpiff mitial
3. R;: To determine R the following steps can be followed:
o Visually determine the current, Ip;ff initiqr » right before the load is removed.
o Use Vp;ss ., todetermine the current right before the load is removed.

o Rp may be calculated with:

Rd __ Vpiffr
IDiff,initial

4. C4: may simply be calculated with the obtained values of R; and 7,4 using the

following:

R
Cd :_d
Tgq

5. To determine V,, two parameters are required, the change in voltage after the load
removal and the voltage at the end of the end of the linear region of cell.
Vo = V4 ra+ end of linear region voltage.

6. The next step calculates the stored charged and charge diffusion given in Equation (1)

and Equation (2), respectively. In order to solve these first order ordinary differential
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equations, a numerical method was utilized namely, the Euler method (Hartley et. al,
1994). For each time step during the sampled discharge cycle:

o The stored charge g, is approximated with the Euler method with a 1s time step

(Tsampie = 1 second). Also for the approximation to be accurate it is important

that the initial condition, g4[0], must be initialized with the estimated SoC of

the cell.

qs[n + 1] = qg[n] + I[n] X Tsampie
where Tggmpie 18 the sampling time of the logged data.

o Likewise, the diffusion charge is approximated using the same numerical

method, with the parameters C; and R; obtained from steps 2, 3, and 4:

I[n] qd[n])
Cq RgCq

da [n+1] = qa [n] + ( Tsample

7. Next, a trial and error method is used to determine A; and A, of equation 4. These
values are chosen based upon the sharpness of the non-linear regions towards the
beginning and the end of the discharge curve. This corresponds with the curves at the
far left and far right of the voltage plot of Figure 3.5. Step 8 provides a metric which

provides feedback on the selection of the values of A; and A,.
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8. Next, batch least squares is performed using the collected and calculated data. An array

is formed using the parameters from equation 4. Each row in the array corresponds with

either the data sampled or calculated values for each time step in the discharge cycle.

O

O

Theta is solved for in equation 3 using batch least squares

6 = (PTP)1PTv(t)

Once theta is obtained the Butler-Volmer equation is calculated with the solved
parameters and the measured cell current measured during the discharge cycle.
This is to grade how well the model predicts the cell voltage.

o(t)=P-0

The sum of the square of the difference between the model’s estimated
voltage, U(t) and the measured data, v(t), is calculated to determine a metric
for the accuracy of the model. This metric can be used for the trial and error
selection of the terms in Step 7. The smaller the sum becomes with the choice

of A; and A, the more accurate the model is in predicting the cell voltages.

3.5 Obtained Cell Model Parameters

The values obtained for the model are given in Table 3.1.
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Table 3.1: Values for obtained parameters for LiFePO4 cell model.

Parameter Value Units
Ay 22/24000 coloumb’!
A, —10.14/240000 coloumb'!
R, ~0 ohm
Cyq 25052 farad
Ry 0.00243 ohm

T 61 second
Vs, 3.122 volt
1

C, 4.345E — 7 farad!
K, 1.793 volt
K —1.0696 volt
K, 4.21E - 11 volt

3.6 Cell Model Output and Equivalent Circuit Diagram for Cell Model

After the cell model parameters were obtained, the cell model response was plotted
over the measured battery data. As can be seen Figure 3.6, the model output (shown in red),
was in good agreement with the collected battery data. In fact, in the figure, it is hard to

distinguish since the line lies directly over the measured data.
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For reference, an equivalent circuit diagram representing the cell model is shown
in Figure 3.7. This is similar to equivalent circuit models available provided in the
literature, however, there is an addition of a dependent voltage source to model the non-
linear voltage behavior of the cell near full charge and full discharge (Hartmann, 2008). In
the circuit model, the cell voltage ¥(t) is a sum of the fixed dc voltage, V,, the storage
voltage, V. (t), the diffusion voltage, V;(t), the dependent source that captures the non-

linear voltage dynamics (dependent upon the level of charge, qs(t)), Vnon—iinearregion(t)

minus the current-dependent voltage drop across R,.

o Measured data with mode| output data

Measured battery data
Model output

36}

34+

,muu W

Voltage [V]

28 ¢+

26

1 1 J
0 5000 10000 15000
Time [sec]

Figure 3.6: Measured battery data (black) with cell model output plotted over measured

data (Red). To the right of the picture is a zoomed view of the temporary load removal.
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Figure 3.7: Equivalent circuit diagram for cell model with a dependent source used to

represent non-linearity characteristics of cell.

3.7  Summary

In this Chapter, the background for a cell model and its various parameters were
discussed. In addition, methods for implementing real-time cell models for real-time cell
parameter estimates was discussed. Although such an implementation was not in the scope
of this research, the benefits and abilities gained from a real-time cell model
implementation were also provided. Next, the method and steps used to collect necessary
cell data required to obtain parameters of the cell model were discussed. Lastly, the

parameters obtained from the actual collected cell data were provided.
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CHAPTER 1V

CELL MODEL SIMULATIONS

This chapter will discuss the use of the cell model obtained from actual measured data.
Simulations of virtual battery packs were performed and using multiple instances of the
obtained cell model. First, an investigation into a hypothetical battery pack consisting of 3
cells connected in series is discussed. The purpose of the investigation is to demonstrate
the effectiveness of passive bypasses in a battery pack versus a battery pack without any
equalization. The end of the chapter concludes with a simulation to test the concepts of an
integrated battery management and charging system. This simulation serves as a pre-cursor

of which the remainder of the research was focused.

4.1 Simulations of a 3-Cell Series Connected Battery Pack

A simulation was performed on a virtual 3-cell series battery pack that consisted of
several discharge and charge cycles. In this example, no bypass circuits were utilized. The
goal of this simulation was to verify that without any bypass circuitry, the cells’ SoC
diverges over time. Since voltage depends upon the SoC, this also leads to the cells’

voltages diverging over time.

The cell model parameters used to simulate the cells were kept all the same. The

only difference in each cell was the initial SoC assigned to each one. Cell One was provided
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a SoC 2% above Cell Two and Cell Three was provided an SoC 2% below Cell Two. It is
important to note that the conditions in the simulation were chosen to demonstrate how un-
balanced cell voltages within a battery pack behave. Of particular interest is whether all of
the cells’ voltages diverge or converge relative to one another. Also, worth mentioning is
that in practice, there will be some slight variation between each individual cells’
parameters (which in actual cells is due to variations in the cell manufacturing process).
However, these variations will most likely only make the cells even more likely to diverge.
It will be shown that just the variation in the cells’ initial SoC is enough to cause

divergence.

The following discussion outlines the simulation of a charging device and the
simulation of a monitored discharge load. At a high-level, chargers typically provide a
constant current into the battery pack being charged. The charger then monitors the overall
voltage of the pack until it reaches a pre-designed constant voltage state. At this point it
decreases the current to maintain a designated constant voltage. Following this, the charger
either shuts off after a given period of time or waits until the charging current falls below
a certain threshold. Similarly, the discharge monitoring circuitry typically monitors the
voltage of the overall pack voltage until it reaches a low threshold. At this point the

circuitry discontinues running the application.

Charge Cycle, Simulated Charger

o Constant current: The pack was charged at a constant current of 20A until

the pack voltage reached 11.4V (occurring ideally when each cell is 3.8V).

50



o Constant voltage: At this point the charger maintained the constant voltage
of 11.4V by reducing the current until it reached 6A.
o End of charge cycle: This point marks the end of the charge cycle and the

discharge cycle starts shortly after.

Discharge Cycle, Simulated Monitored Load

o Constant Discharge Current: The battery pack is discharged at 60A until
the pack voltage reaches 7.5V (occurring when each cell reaches 2.5V).
o End of discharge cycle: This point marks the end of the discharge cycle and

the charge cycle begins again.

4.1.1 Battery Pack without Passive Bypass

Figure 4.1 shows the packs’ voltage over 916 charge/discharge cycles (or
approximately 4000 hours continuously running the aforementioned Charge and Discharge
Cycles). A closer view of the first 10 hours of the simulation are provided in Figure 4.2.
This simulation represents what is seen if only the overall battery pack voltage is
monitored. Obviously, the exact voltages of the individual cells within the battery pack
cannot be determined from this graph. Although the battery pack’s total voltage never
reached over 11.4V (3.8V x 3 cells if cells are balanced) or went below 7.5V (2.5V x 3
cells if cells are balanced), the individual cells in the pack did not stay balanced as

demonstrated in Figure 4.3.
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Figure 4.1: 3-cell series battery pack voltage over 916 charge/discharge cycles.
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Figure 4.2: Zoomed in view of the beginning cycles of the 3-cell series battery pack

simulations. The final cycles of the simulation also look similar to these.

Figure 4.3 shows the 3 individual cell voltages over the 916 charge/discharge cycles

performed. The number of cycles was chosen arbitrarily in order to demonstrate the
individual cell voltages of the pack diverging. Clearly, it can be seen that the cells diverge

enough to allow Cell 1 and Cell 2 to reach voltages outside their manufacturer
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recommended voltage operating ranges during charge and discharge, respectively. Cell 2
reaches voltages near 4.4V, while Cell 1 reaches close to 2V. To further demonstrate how
the cell voltages diverged, provided are Figure 4.4 and Figure 4.5. These figures show the

first few hours of the simulation and the last few hours of the simulation, respectively.
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Figure 4.3: 3-cell series battery pack initially unbalanced, without balancing circuits after

916 charge/discharge cycles.
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Figure 4.4: Zoomed in view of initial cycles of 3-cell simulation without bypasses.
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Figure 4.5: Zoomed in view of final cycles of 3-cell simulation without bypasses.
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4.1.2 Battery Pack with Passive Bypass

Figure 4.6 shows the same simulation with the addition of a resistor-based current
bypass on each cell. When any individual cell reached a voltage of 3.8 V, the current bypass
was enabled allowing 1 amp to shunt around the bypass’s corresponding cell. This provided
a means to allow the higher charged cells to continue charging at a reduced charge rate and
allow the lower charged cells to continue at the full rate. As can be seen, the results
demonstrate the cells converged within the first 250 hours of continuously running the
simulation charge and discharge cycles. Again the initial cycles of the simulation, Figure
4.7, and the final cycles of the simulation, Figure 4.8, demonstrate that the cell voltages
converged. The MATLAB code for the 3-Cell pack simulations with and without bypasses

can be seen in Appendix A.1.
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Figure 4.6: Simulations performed with the same initial conditions as the previous
simulation and cell parameters but with the addition of balancing circuitry being

simulated.
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Figure 4.7: Zoomed in view of the initial cycles of the 3-cell simulation with bypasses.
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Figure 4.8: Zoomed in view of final cycles of the 3-cell simulation with bypasses.
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4.2 Simulations of 10-Cell Pack
The following sections were simulations performed to determine the behavior of a 10-
cell battery pack using different configurations for management. The three sets of

simulations performed consisted of:

1. 10-Cell Battery Pack without any BMS and simple Charger.

2. 10-Cell Battery Pack with simple BMS and a simple Charger.

3. 10-Cell Battery Pack with BMS and integrated Charger.

The details of each of these individual simulations will be covered in the following
sections. In all three of these simulations, the cells are all initialized with an idealized set
of identical parameters as given in Section 3.5 (this condition is ideal in the sense that these
hypothetical cells have the same exact properties which in practice may be different due to
cell manufacturing tolerances). The one exception to the choice of identical parameters was
the initial SoC for each cell pack arbitrarily chosen to be different. However, the values
chosen for each of the cells’ initial SoC are the same for each simulation set. This allows
for an apples-to-apples comparison to be made on the effectiveness of the simulated
management scheme. The initial SoC of each cell within the battery pack given in
percentage are, 8%, 13%, 14%, 15%, 16%, 14%, 15%, 15%, 17%, and 16%. Lastly, in each

of the simulations a constant-current 60A load is used during the discharge cycle.

4.2.1 Simulation with Non-Integrated Charger and without any BMS

This section discusses the simulation of the 10-Cell series-connected battery pack
without a BMS and a simple charger. The simple charger charges the battery pack in
constant current mode at a current of 12A. The simple charger looks at the overall voltage

of the battery pack without any consideration of the individually charged cells. When the
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overall voltage of the battery pack hits 42V (4.2V x 10 cells), the discharge cycle is started.
The discharge cycle is complete when the voltage of the overall pack is less than 25V (2.5V
x 10 Cells). This simulation reinforces the results seen in Figure 4.1 (simulation results of
the overall voltage of the series-connected 3-cell battery pack) and Figure 4.3 (simulation
results of the individual cell voltages of the series-connected 3-cell battery pack). The
results, plotted in Figure 4.9, of this simulation will serve as a baseline for performance
comparison with the other simulated methods (a closer view of a single cycle is shown
Figure 4.10). Figure 4.9 shows the cell voltages and the battery pack current over 14 full
charge and discharge cycles. Due to the fact that the cells are unbalanced, it is clear that
specific cells are being charged such that their voltages go above the plotted threshold lines
of 4.2V and 2.5V. The cell model simulations do not take into account the damage and how
this alters the cell’s operation, however, it is clear that each charge and discharge cycle
continues to undesirably push the cell voltages outside of these bounds. The MATLAB

simulation code for this simulation is provided in Appendix A.4.
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Figure 4.9: Simulations performed with the same initial conditions and cell parameters

and without an integrated charger or any BMS.
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Simulated unbalanced cells with no bypasses, no inegrated charger
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Figure 4.10: Zoomed in view of the initial cycles of 10-cell pack without bypasses.

4.2.2 Simulation with 2A Fixed Bypass and Non-Integrated Charger

This section shows results of simulations with the same 10-cell series-connected
battery pack, the same simple charger, and the same load as in the previous simulation. The
main difference is that constant-current 2A bypasses are simulated on each cell that turn
on when the cells reach 3.8V. Figure 4.11 shows the individual cell voltages, battery pack
current, and the bypass currents for each cell over 17 full charge and discharge cycles. The

results are similar to the results seen in the 3-cell series-connected pack simulations. The
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cells initially started off-balanced in the first few charge/discharge cycles, going outside
the 4.2V and 2.5V threshold lines. However, as the bypasses are able to provide more
balancing during each charge cycle, the cell voltages begin to converge. Towards the end
of the simulation as the cells become more balanced, the cell voltages are able to stay within
the threshold lines. A comparison between the unbalanced cell voltages at the beginning of
the simulation and the balanced cell voltages at the end of the simulation can be seen in
Figure 4.12 and Figure 4.13, respectively. The MATLAB simulation code for this

simulation is provided in Appendix A.2.
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Figure 4.11: Simulations performed with the same initial conditions and cell parameters

but with the passive bypass and non-integrated charger.
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Figure 4.12: Zoomed in view of the initial cycles of the passive bypasses-only-
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Figure 4.13: Zoomed in view of the final cycles of the passive bypasses-only-simulations.
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4.2.3 Simulation with BMS and Integrated Charger

This section discusses the simulation of the proposed 10-Cell series-connected
battery pack with BMS and integrated charging system as discussed in Section 2.7. The
integrated charging system is simulated to charge at 12A. This constant current mode
continues until any cell reaches 3.8V. Upon this event, the simulation will begin to shunt
current around that cell to try to maintain the 3.8V. If the shunting current reaches 2A for
any given cell, the max shunt current value, the simulation reduces the charging current by
2A. This effectively reduces the charging current for the cell that originally reached 3.8V
to a charging current that is 2A less, with an additional possible reduction of up to 2A
shunted via the simulated bypass circuitry. Shortly after decreasing the charging current by
2A and with the additional shunt current of 2A, this caused the cell’s voltage to decrease.
The simulated shunt current will be controlled and decreased to try to maintain 3.8V. After
enough charging time has elapsed at the new lower charging current, the cell voltage will
begin to increase again. This in turn will cause the shunt current to increase again in attempt
to maintain the 3.8V. Once again upon the cell reaching its maximum shunt current of 2A,
the whole cycle repeats beginning with the BMS communicating to the charger to reduce
its current by 2A. This will continue until the charging current is reduced to 1.8A. At this
value, the maximum shunt current is larger than the charging current, and the BMS can

easily maintain each cell at the voltage of 3.8V via the bypasses.

The goal of the aforementioned charging method is to allow the charging current to
remain as large as possible throughout the charging process. This allows the lowest charged
cells to continue charging at the highest possible rate, and only reducing it as necessary, to
protect the highest charged cell.
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The results in Figure 4.14 show the individual cell voltages, battery pack current,
and the bypass currents for each cell over 7 full charge and discharge cycles. A closer view
of the first cycle and the balancing of Figure 4.14 is shown in Figure 4.15. The cell voltages
are able to stay within the thresholds of 4.2V and 2.5V much better than the previous
simulated methods. This is due to the BMS’s ability to control the charger such that the
BMS can continue its cell balancing operations as desired. The MATLAB simulation code

for this simulation is provided in Appendix A.1.
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Figure 4.14: Simulations performed with the same initial conditions and cell parameters

but with the integrated charger and with BMS.
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4.3 Summary

This section discussed battery pack simulations performed with the cell model
obtained in CHAPTER III. The simulations were done to compare a hypothetical 3-cell
battery pack with and without passive bypasses. The battery packs were cycled multiple
times in the simulation to demonstrate that without passive bypasses the cells drift further
and further out of balance from one another. The pack with the passive bypasses initially

went slightly out of the desired voltage range, but then converged over time.

Also simulated in this section were 3 different management schemes for a 10-cell
series-connected battery pack. The 3 different schemes simulated consisted of: a system
without any management and a simple charger, a system with a fixed 2A bypass and simple
charger, and lastly, a system with an integrated charger and BMS. These simulations were
conducted to show the benefits gained from integrating the charger and BMS over other
simulated methods. The main benefit is that the BMS may use the integrated charger
interface to support cell balancing. The simulations show that by analyzing each cells’
voltage and reducing the overall charging current as needed, the BMS can better maintain

cell operating voltages and better equalize the SoC of each cell within the battery pack.
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CHAPTER V

HARDWARE FOR BMS IMPLEMENTATION

This chapter will discuss the hardware designed and implemented for the integrated
charger and BMS. The battery pack, which the proposed battery management system was
implemented on, consisted of 10 series-connected LiFePO4, 60Ah, 3.3V (nominal) cells.
One of these cells is shown in Figure 5.1. The resulting battery pack formed from these
cells creates a 33.3V, 60Ah pack. This is roughly 2kWh, which for reference is enough

energy to run a 60W bulb continuously for 33.3 hours.

Figure 5.1: Single 60Ah LiFePO4 Cell.
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5.1 Overview of Hardware for Integrated Charger and BMS

The proposed BMS for this battery pack system consisted of 10 PCBs: 9 ICMU and
1 ICMU/BPMU hybrid. The ICMU’s main function is to monitor and provide equalization
capability for one specific cell. In addition to these tasks, each ICMU is also responsible
for communicating information to the BPMU. This information includes cell voltage, cell
temperature, and any fault detections such as overvoltage or undervoltage conditions. The
BPMU simply compiles all this information, and based upon the individual cells’
conditions, makes decisions about how the charger and load controller interact with the

battery pack.

Each of these printed circuit boards (PCBs) were mounted directly onto one of the
10 cells in the battery pack. The placement of each PCB onto a given cell was arbitrary
with the exception of the ICMU/BPMU hybrid PCB. The ICMU/BPMU hybrid PCB was
placed on the cell at the lowest voltage potential with respect to the negative terminal of
the entire battery pack. The reasoning behind this was to allow the BPMU to be at the same
ground potential of the charger when the battery pack was connected to the charger device.
This allowed the BPMU to communicate with the charging device without the requirement
of electrical isolation in between the systems. Although it was not necessary for
functionality, isolation between the BMS and charger is ideal. The benefits of isolation
include mitigation of electrical noise being transmitted between the two circuits, as well as

provision for a level of fault protection for the logic circuitry.
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Figure 5.2: Individual Cell Management Unit pictured mounted on a single LiFePO4 Cell.

5.1.1 Hardware for Individual Cell Management Unit (ICMU)

In this BMS implementation, the ICMUs measure the cells’ voltage, current, and
temperature. Powering the ICMUs was accomplished by designing PCBs that mounted
directly onto each of the individual cells’ terminals. Each ICMU is responsible for
monitoring its own cell and detecting if an undesirable condition or use of the cell will
cause damage to it. Such conditions as discussed earlier are overvoltage, undervoltage,

and overtemperature.

The ICMU periodically transmits its own cell’s information (estimated SoC,
voltage, current, and temperature) to the BPMU via an isolated serial communication bus.
In addition to this information, the ICMU also transmits information regarding to if any
overvoltage, undervoltage, or overtemperature conditions exists. The BPMU then compiles
all information from all the individual ICMUs and monitors for any cell damaging
conditions. If a condition is detected, the BPMU will take action to either stop the charging

or discharging process or provide fault indication to a user.
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In the event of an overvoltage condition during charging of the battery pack, the
ICMU also has the ability to bypass up to 2A of current around its respective cell. In doing
so, this allowed the ICMU to slow down the charge rate of the cell it was managing. This
allowed the other cells in the series-connected pack to continue charging at a faster

charging rate and therefore provide a means of balancing the cells.

5.1.2  PCB Connection

PCBs were mounted on top of the LiFePOs cells via the positive and negative
threaded terminals. The PCB’s Top copper pour is shown in Figure 5.3 and the Bottom
copper is shown in Figure 5.4. Further details and schematics of this PCB’s implementation
will be further covered in the following sections. However, the connections of the PCBs to
the cells will be discussed here first. Proper mechanical connections to the cells were vital
for safe usage of the cells. If the connections are not made such that they are tight and
secure, they may become loose with mechanical vibrations overtime. This in turn causes
the connections themselves to become a high impedance during the cell’s usage. This will
result in high power loss to occur at these loose connections in the form of heat. The heat

generated can be enough to melt both the cell’s outer enclosure and also damage the PCB.

In order to allow the boards to be mounted, M6 threaded rods are screwed into each
of the cell’s terminals. To allow the bolt to be tightened further a nut was placed on the
threaded shaft and tightened with a crescent wrench until it was flat against the cell’s outer

terminal Figure 5.5. Figure 5.6 shows the same PCB from the top view.
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Figure 5.3: Top side of ICMU PCB.

Figure 5.4: Bottom side of ICMU PCB.
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Figure 5.5: Cell with M6 threaded bolt inserted with nut.

Figure 5.6: Top View of ICMU board on a single LiFePO4 Cell before being tightened

down with nuts on the threaded shafts.
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Figure 5.7: Circuit board tightened down onto battery terminals and also shown are

connections to adjacent cells in the series connected cells.

5.1.3 ICMU Power Circuitry

The ICMU circuitry is powered with 3.3 volt and 5 volt power rails. These are
provided via two MCP1253 charge pump integrated circuit chips. Both of these chips are
directly powered off the cell the ICMU is connected to. As can be seen with the schematics
pictured in Figure 5.8 and Figure 5.9, either a 3.3 volt or 5 volt output may be generated
from the chip by either pulling the SELECT pin on the chip high or low, respectively. The
3.3 volt source is used to power the ICMU microcontrollers, two temperature sensors, and
an isolated 12C chip. The 5 volt source is used to power a MOSFET gate driver integrated

chip. These devices will be covered further in the sections to follow.
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5.1.4 ICMU Microcontroller

The Atmel ATXMEGA16A4 is a 16-bit processor that was selected primarily for
its ADC features and low power capabilities (Figure 5.10). The ADC is capable of
differential analog measurements. Once the differential measurements are brought into the
device, the output from the differential measurement can then be applied to an internal
programmable gain amplifier. The microcontroller’s ADC device was implemented with
an external 2.048 volt shunt reference. Utilizing a 2.048 volt reference and placing the
ADC in “signed differential mode” with 12-bit resolution conveniently results in analog
conversions that correlate with ImV per 1-ADC unit. In other words, an ADC reading of
2047 (decimal value) from the ADC unit corresponds with a voltage of 2.047V. An ADC
reading of -2048 in turn correlates with a -2.048V differential measurement. The interface
to the microcontroller consists of I2C communication, multiple analog readings, in-circuit
programming port, and a digital PWM output. These interfaces will be individually covered

in the sections to follow.
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Figure 5.10: Schematic: Microcontroller schematic for ICMU PCB.

5.1.5 Implementation of Voltage and Current Monitoring

The voltage monitoring is implemented with a pair of relatively high impedance
voltage dividers as show in Figure 5.11. Two identical dividers are used to ensure that the
differential measurement is scaled to each input of the differential amplifier. The inputs to
these voltage dividers are the positive and negative terminals of the cell that the ICMU is
connected to. The resistor values of the divider was chosen to scale the cells’ maximum
expected voltage down to the maximum voltage of the microprocessor’s ADC (the value

of the external voltage reference of 2.048V). In addition, a 0.1uF ceramic capacitor is
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placed across the stepped down voltage to serve as a low pass filter. An undesirable effect
of this implementation method is that it requires a constant current to be drawn from the
cell at all times. Since the cells have a relatively large capacity compared to the current that
is drawn from the divider, it can be considered negligible. This is under the assumption
that battery pack will be charged on a regular basis and not stored for a long period of time.
Storage for a long period of time with any additional current draw will certainly bring the

SoC of the battery pack down faster.

Also pictured in Figure 5.11, is a resistive shunt that was utilized to measure the
current in and out of the cell. As can be seen in Figure 5.7, the PCB has a third terminal in
the center. This third terminal has a shunt connected to it, which in turn is connected to the
cell’s negative terminal. This extra terminal and the placement of the shunt allows the
current to be measured going in and out of the cell’s negative terminal. In the schematic of
Figure 5.11 the value of 2 milli-ohms is shown as the original designed value, but after
testing, a 6 milli-ohm shunt was used to scale the maximum current measuring range to a
more preferable value. This shunt was utilized to create a voltage drop that correlates with
the current going in and out of the cell. To get the voltage measurement on the shunt, a
differential analog measurement was taken across the shunt. This differential measurement
was then sent through the programmable gain amplifier with a gain of 8. Utilizing the
programmed gain and the chosen 6 milli-ohm shunt, provided a maximum theoretical
reading range of -42 to 42 amps correlating with the range of voltages coming out of the
programmable gain amplifier of -2.048 to 2.048V. Figure 5.12 shows the actual

implementation of the PCB.
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Figure 5.12: Current Shunt used to measure system current is pictured in red box.

5.1.6 Implementation of Current Bypass Circuit

The main components of the bypass circuitry consisted of a MOSFET switch in
series with a 1 ohm, 25 watt power resistor. This circuitry, shown in Figure 5.13, was used

when an overvoltage condition was detected during a charge cycle.

The current bypass circuitry was designed to allow current to be bypassed around

a cell in the range of 1-to-2 amps. This was implemented by operating the MOSFET in its
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linear region. In other words, the MOSFET was used as a voltage controlled resistor. In
order to measure how much of the current was bypassed, the differential voltage drop

across the 1-ohm power resistor was measured with the ICMUs microcontroller’s ADC.

The voltage control on the gate of the MOSFET was implemented using the output
from a 20.8 kHz PWM signal fed into a low-pass RC filter. The PWM was generated from
the ICMU’s microcontroller PWM peripheral. The RC filter consisted of a 10kohm resistor
and 0.1uF ceramic capacitor as seen at the MOSFETs gate in Figure 5.13. These two

provide a cut-off frequency of 159 Hz with the transfer function

G(s) = 1000/(s+1000)

To control the amount of current to be bypassed, a proportional controller was
implemented. The controller’s reference input was the desired maximum voltage the cell
being protected was allowed to reach. If the voltage of the cell increased beyond the
maximum desired voltage the ICMU’s microcontroller increases the PWM duty cycle. This
increases the voltage on the capacitor in the low-pass filter, which in turn decreases the

MOSFET’s drain to source resistance.

The heat generated from using the MOSFET as a voltage-controlled resistive
bypass, was dissipated via a heat-sink. To ensure that the heat generated did not rise to an
excessive level, a temperature sensor was used. The temperature sensor was simply a
thermistor placed near the bypass MOSFET that was placed within a voltage divider with

a fixed resistance. The actual implementation of this is shown in Figure 5.14.
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Figure 5.13: Schematic: Bypass MOSFET circuit and bypass’s overtemperature Sensor

on ICMU PCB.

Figure 5.14: The red box shows the location of bypass resistor and MOSFET configured

to be a voltage-controlled resistor (underneath silver heat-sink).




5.1.7 Implementation of Cell Temperature Monitoring

An ideal place to monitor the temperature of the cell is inside of the cell itself.
However, since placing a sensor inside is not feasible for an end-user of a cell, the only
option was to make an external measurement. The temperature sensor was placed near one
of the cell’s terminals. The reasoning for this placement was that it was assumed that the
thermal transfer from inside the cell is faster through the cell’s terminals and not through
the plastic casing of the cell. The choice of which terminal to place the temperature sensor
was chosen arbitrarily. The actual temperature sensor and location on the ICMU board is
shown in Figure 5.15. A more accurate linear voltage output temperature sensor was
utilized, namely the LM20. The circuit utilized is shown in Figure 5.16. The only high
temperatures observed during battery pack use were while the board was bypassing current
and dissipating heat through the bypass circuitry. This implies the board design is such that
the heat distributed from the bypass circuitry influences the cell temperature measurement.
This could be considered and possibly corrected for in software but for a future design,
ideally better heat sinking of the bypass circuitry could decrease the influence on cell

temperature measurements.
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Figure 5.15: Location of cell temperature sensor near cell terminal bolt (small black

integrated circuit identified by arrow).
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Figure 5.16: Schematic: Temperature sensor to measure cell temperature on ICMU PCB.

5.1.8 Implementation of LED displays for Status Indication
LEDs were placed onto each ICMU board to provide feedback information on the
current status of the cell being managed by the ICMU as well as the battery pack as a whole.

As pictured in the schematic of Figure 5.17, six dual colored LEDs were provided per each
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ICMU. The actual implementation of a single ICMU can be seen in Figure 5.18. Although
six dual colored LEDs were not necessary for display purposes, during the design process,
the microcontroller had additional I/O open and so the number six was arbitrarily chosen
for the number of dual LEDs. For display purposes only, when all cells were lined up, a
“Knight Rider” (1982 TV Series) light effect was displayed. The BPMU broadcasted a
command to turn on specific LEDs on each ICMU’s individual LEDs. The commands were
sent in such a way that it gave the appearance of a single lit LED traversing through all
ICMUs from ICMU to ICMU. This provided a visual as to whether or not the

communication between each ICMU and the BPMU was active.

A single dual LED, PDO and PD1 (see Figure 5.17), was used to show the status of
the onboard current bypass. Green indicated no bypass was active, Amber indicated that
some current bypass was active, and Red indicated the maximum bypass current was being

shunted around the cell.

In the event of an overtemperature, overvoltage, or undervoltage condition, all
ICMUs were told to flash all 6 of their LEDs red by the BPMU. This was simply used to
provide a visual for the battery pack user so that proper action could be performed (i.e. stop

using the battery pack, or remove charger and end the charging process).
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Figure 5.17: Schematic: Status LEDs on ICMU PCB.

Figure 5.18: Actual Implementation of dual color LEDs.
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Figure 5.19: Battery Pack with ICMUs displaying various LED colors to demonstrate cell

condition.

5.1.9 Implementation of Communication Circuits between BPMU and ICMU

In order to directly communicate from ICMU to the BPMU, isolation circuitry was
required. This was done mainly because each cell was connected in series and so inherently
the communication signal voltage is level shifted. For example between the lowest cell and
highest cell within a series string, a serial digital output on the highest cell could have been
as high as +30V higher than a serial digital output on the lowest cell. Therefore simply
connecting the digital grounds between the highest cell and lowest cell was not possible as
that essentially is a direct short from +30V to the pack ground. This is why the ADUM1250
I2C isolated digital bus IC was utilized. I12C is a serial communication protocol that is
implemented with a Clock line, a bi-directional Data Line, and a Ground. The clock line
and data lines are typically pulled high via pull-up resistors to the digital bus voltage.

Therefore the clock and data lines get simply pulled down to assert an active signal. The
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ADUM1250 simply allows the I2C communication to be done through specialized optical-
isolated circuitry that allows bi-directional data on a single line as well as a bi-directional
drive for the clock line as well. On the ICMUs on one side of the isolation barrier the
ADUMI1250 is supplied power from the cell the ICMU is attached to. On the other side of
the isolation barrier the ADUMI1250 is supplied power via the BPMU. To make
connections from the ICMU to BPMU, a daisy-chain style connection is utilized on each
ICMU. There are two paralleled RJ-11 4-PIN telephone jack style to achieve this. The
circuit and actual implementation for this is pictured in Figure 5.20 and Figure 5.21,

respectively.
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Figure 5.20: Schematic: Isolated communication 12C Bus on ICMU PCB.
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Figure 5.21: 12C connections shown from daisy chaining ICMU to ICMU.

5.1.10 Implementation of ICMU Address Hardware Identification

Each ICMU node was provided an identifying address that was provided with a 4-
bit value that was determined by the value of 4 available digital input pins on the processor.
The initial envisioned method to assign each ICMU’s address was to simply program a
unique address in each devices’ memory, however, there were difficulties encountered with
this method. Since the decision was made after the PCB was designed and made, the idea
of taking 4 available pins on the processor was considered. By simply soldering each of
these 4 pins either high or low (either shorting to a nearby low-ground or high-microchip
operating voltage) each board could be assigned its own unique address with various
combinations on these pins. Although up to 16 possible addresses could be used, only 10

were required for all ICMUE .
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Upon initialization, each ICMU read these 4 pins to determine its own address.
After determining its own address, the ICMU flashed a LED the value of its address to
provide visual indication of the address value. Using these addresses the BPMU could

individually poll each of the ICMU nodes over the 12C bus.

5.1.11 Hardware for BPMU/ICMU Hybrid

The hardware for the BPMU/ICMU are exactly the same since the BPMU/ICMU
hybrid must be able to perform all the functionality of just a single ICMU board. The only
differences are the BPMU has special connections for the I12C interface and the BPMU has
an extra serial port output to communicate to the charger device. Figure 5.22 demonstrates
the different connections used for BPMU. On the BPMU, instead of using the 12C isolator
ADUM1250 integrated chip, the BPMU simply shorts the I2C data and clock lines pins 2
to 7, and pins 3 to 4, respectively. Zero ohm resistors are populated on R27 and R28 to
connect the isolated side of the I2C Bus on all ICMUs to the BPMU’s operating voltage
Vcce and Gnd, respectively. In other words, the BPMU powers the right hand side of all the
ADUM1250 devices on each ICMU. As for the left side of each ICMU’s ADUM1250,

each ICMU powers this side on its own.
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Figure 5.22: I12C connections for BPMU.
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CHAPTER VI

SOFTWARE FOR BMS IMPLEMENTATION

This chapter discusses the software implemented for the integrated charger and
BMS platform. Since 1 of the 10 ICMUs served both as an ICMU and the BMPU, two
sets of software were written. The first set was used to control the 9 ICMU slave boards

and the second set was for the ICMU/BPMU Hybrid.

6.1 ICMU Software Overview
During operation, a high-level view of the operations that each ICMU performs every

4ms is listed below:

1. Read Analog Values

2. Filter, Convert, and Process Analog Readings

3. Run control loop for Bypass

4. Package ICMU’s Data into Communication Packet for BPMU

5. Update Status LEDs

6.1.1 Analog Voltage Reading
The analog-to-digital converter (ADC) measurement is performed with the
XMEGA A4 processor’s onboard 12-bit measurement. An interrupt is setup that rapidly

and automatically sweeps through the four desired measurements. In the ADC interrupt the
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four desired measurements are over-sampled with 16 fast samples and averaged to reduce
sampling noise. The XMEGA A4 processor also has a programmable gain amplifier block
that can be used to amplify the signal (either differentially or single-ended) before being
sampled by the ADC. The available gain selections are 1, 8, 16, and 64. The cell voltage
measurement is performed with gain of 1 on the programmable gain amplifier. The cell
current measurement is performed differentially with a gain of 8. The bypass current
measurement is performed differentially and also with a gain of 1. Lastly, the temperature

measurement is performed single-ended with a gain of 1.

6.1.2 Read, Filter, Convert, and Process Analog Readings

After each analog measurement is averaged from the 16, samples each is placed
into its own 64-element ring buffer every 4ms. This buffer is used to calculate a 64-sample
moving average to filter out any high frequency noise. Each value is converted from the
raw ADC value to scientific units (e.g. volts, amps, degrees Fahrenheit, etc...). Each of

these conversions used linear equations consisting of a gain and offset.

Using the converted data, cell voltages were checked to determine the state of a cell
and to detect overdischarge (under 2.5V) or overcharge (larger than 4.2V). Also calculated
was the integral of the current measurement. This provided a rough SoC estimate. The
integral was performed simply by accumulating the sum of the currents multiplied by the

sampling time of 4ms.

6.1.3 Run Control Loop for Bypass Current
After the measurements were taken, the cell voltage was checked to determine if it

was higher than 3.8V. If it was, the bypass current controller was activated; otherwise this
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section of code itself was skipped. However when it was activated, an integral control loop
ran to determine how much current should be bypassed to keep the cell at a nominal 3.8V.
The control loop’s output was the duty-cycle value that was used to drive the low-pass
filter coupled to the gate and source of the aforementioned bypass MOSFET of Figure 5.13.
The PWM peripheral used to control this duty-cycle was set-up for a frequency of
approximately 20.8 kHz (chosen simply to ensure the frequency was not audible and higher
than the low-pass RC filter). Provided that the voltage applied to the MOSFET’s gate and
source was slowly increased, this causes MOSFET’s operating region to be placed into its
linear region of which the MOSFET behaves as a voltage-controlled resistor. Once the
controller increases the duty-cycle beyond the MOSFET’s gate threshold, the MOSFET
reaches its saturation region and becomes relatively low impedance compared to its linear
region operation. At this point, the MOSFET’s impedance becomes relatively negligible.
The 2.1 ohm resistor connected in series with the MOSFET, is now the only current
limiting impedance. As will be discussed later, the BPMU will need to take action once the

maximum current is bypassed and the cell voltage can no longer be maintained at 3.8V.
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Figure 6.1: MOSFET operating regions based upon gate voltage, drain current and drain

to source voltage.

Since the cell’s dynamics were not rapidly changing, the tuning of the controller for high
performance was not critical. The controller’s integral gain was chosen through an offline
manual iterative tuning process. This process consisted of starting with low gains and
increasing them in small incremental steps. The final integral gain was chosen
conservatively to prevent the bypass current value from overshooting and varying wildly.
However, it was just enough speed to increase or decrease the bypass current to maintain

the cell’s 3.8V.

6.1.4 Package ICMU’s Data into a Communication Packet for BPMU

Next, after the various measurements were sampled, calculated, and/or converted,
it was placed into a fixed communication packet. Each ICMU stored this packet in
anticipation of a data update request from the BPMU. The communication packet formed

consisted of the Cell Current, Cell Voltage, Bypass Current, estimated SoC, and the
94



following status bits: bypass on/off, bypass is/is not at maximum duty-cycle, cell is/is not
overdischarged, and temperature is/is not over maximum threshold. In terms of size, the
packet consisted of a total of 10 bytes, 2 bytes for each of the 4 analog readings, and 2

additional bytes for the SoC and the 4 status bits.

6.1.5 Update Status LEDs

The last portion of the ICMU’s operation loop was used to update the ICMU’s dual
color status LEDS. One of the six LEDs served as an indicator for the state of the ICMU’s
bypass circuit. The other five LEDs were used to indicate active communication with the
BPMU as well as system status. Not all five dual color LEDs were necessary and were
merely placed originally on the ICMU PCB for debugging purposes. However, since they

were available on the board they were creatively utilized.

The single dual-color LED was used to provide the ICMU’s bypass with the
following color configuration: In order to indicate that the Bypass was off, the Green LED
was individually lit. In order to indicate some current was being bypassed and less than the
maximum, the Green and Red LEDs were lit (creating Amber). Lastly, if the maximum
current of 1.9A was being shunted around the cell by the bypass circuit, the Red LED was

individually lit.

All display LEDs were updated with values from the BPMU for the “Night Rider
effect”, and as aforementioned, this concept was used to display the battery pack status and
also as a visual indication that the communication between the BPMU and all ICMUs was

active.
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6.2  ICMU Interrupts
There were three interrupts that ran as needed over the ICMU’s operation loop, the
12C Interface Interrupt, Timer Interrupt, and the ADC Interrupt. Each of these will be

discussed in the following sections.

6.2.1 12C Interrupt

The I2C Interrupt was used for communication between the BPMU and each
ICMU. The BPMU/ICMU hybrid and the other 9 ICMUs were all placed onto the same
12C bus via the I2C isolation chips mentioned in the hardware design section. Each ICMU’s
12C peripheral interface was setup as a slave module with the address determined by the
four address selection pins as aforementioned. The ICMU then only responds to 12C
requests provided with its matching address from the BPMU. The BPMU performed two
operations in regards to the I2C interface; a data packet update read sequence or a

communication status write sequence.

The read sequence simply consisted of the BPMU commanding data to be given
from a specific addressed ICMU. Upon the request and verification of the address match
the 12C interrupt was triggered. Inside the interrupt the slave firsts acknowledges the
BPMU’s request for a packet update indicating it had at least one byte of data to send.
Next, the slave starts providing the packet data byte by byte and continues to acknowledge
that it had data to send. When the ICMU reached the end of its 10-byte communication
data packet, it simply ignores the acknowledgement and the BPMU stops the 12C read

sequence.
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During the write sequence the BPMU broadcasts a message to all ICMUs. This
message was a number that corresponded to one of the 60 Green LEDs available from each
ICMU. This number was updated every time the BPMU finished a read sequence with an
ICMU. The pattern the BPMU followed to update the number consisted of incrementing
the number from 1 to 60 and then decrementing from 60 back down to 1. This is what
provided the “Night Rider Effect” as mentioned earlier. Since this message was
broadcasted to all ICMUs, provided the ICMU’s green LED corresponded with the
broadcasted value, it turned on that specific LED. This visually provided a means to see
when a message request was dropped if the “Night Rider Effect” pattern was not consistent
(i.e. if the LED stopped on a single LED for inconsistent period of time from the others, or
if LEDs were skipped in the pattern, etc...). In addition to providing communication status
using the write sequence, the BPMU also used this write sequence to provide all [ICMUs
with a message to blink their RED LEDs. This was reserved for the event when the BPMU
processed the data it received from all ICMUs and detected a cell with an overcharged,
overdischarged, or overtemperature condition. This provided a visual indicator for the user

to be able to take action with the system.

6.2.2 Timer Interrupt
This interrupt was setup to occur approximately every 4ms. The only purpose for

this timer was simply to perform the integration of the current for the SoC integration.

6.2.3 ADC Interrupt
The ADC was setup to read a sweep of the four ADC measurements mentioned
previously. The interrupt occurred at the completion of the fourth ADC conversion. In the

interrupt, each individual conversion was summed up over 16 samples and then averaged.
97



It is this 16 sample average that was used each time the ICMU operation loop was run.

This 16 sample average was implemented to reduce sampling noise.

6.3 BPMU/ICMU Hybrid Software Overview

Since the BPMU is actually a hybrid BPMU/ICMU in this BMS implementation,
the BPMU performs the same functions of the ICMU. Therefore, the discussion of software
for the BPMU/ICMU hybrid will only focus on the differences between the code sets used

to implement the stand-alone ICMU versus the code for the BPMU/ICMU hybrid.

In terms in the functionality of the ICMU portion of the BPMU/ICMU hybrid, there
is only one main difference, the I2C communication. The BPMU/ICMU hybrid does not
send any information out on the I12C bus about the cell it is managing like the other ICMUs.
It simply just stores its own information internally and then it gathers the rest of the battery
pack’s cell information from other ICMUs via the I2C bus. All other steps mentioned in
the ICMU software overview behave the same in the hybrid device. The operation for the
BPMU portion of the BPMU/ICMU hybrid consist of the following: All steps for ICMU
portion are executed first. Next data from ICMUs are processed, converted, and printed
out. Next, cell status is determined and any necessary actions are taken. Lastly, charger

detection, charge current selection logic, and charger communication is performed.

6.3.1 Process ICMU Data Packets, Convert and Print out

After the BPMU requests data from a particular ICMU on the 12C bus, an interrupt
processes all the data received (this interrupt will be discussed further in a later section).
Once an entire packet is received from the ICMU a flag is set indicating there is new data

to be processed. The BPMU takes the data from the packet and decodes it back to the
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individual measurements and status bits cell current, cell voltage, cell’s bypass current,
cell’s estimates SoC, temperature, bypass status bit, bypass at max bit, overtemperature
detection bit, and the overdischarge detection bit. This data is then sent out from a BPMU’s
information serial port at a baud rate of 19200. This process is repeated until all information

1s received from all of the other 9 ICMUs.

The collection of all data from each ICMU occurs in 100 milliseconds. This means
that the acquisition of data from all ICMUs is complete once every second. When a full
round of data is received from all ICMUs, the BPMU then calculates the overall pack
voltage, current and the SoC. The pack voltage is determined by summing the individual
cell voltage measurements received. The pack current is determined by taking an average
of all the cell currents measured (since all cells are connected in series). The SoC is simply
given as the lowest SoC of the lowest charged cell (again since all cells are in series, to
protect the lowest charged cell from overdischarge, the lowest SoC percentage is given).

Next, all ICMU data is analyzed for various conditions and action is taken as necessary.

6.3.2 Determine Cell Status and Take Corrective Action as Necessary
The BPMU takes all the data and analyzes each ICMU to see if any of the following

conditions: undervoltage, overvoltage, overtemperature, and bypass at max current.

To detect the overdischarge condition, the overdischarge status bit sent from each
ICMU is evaluated. If this bit is received with a positive for an overdischarge condition for
two consecutive messages for the same ICMU, action is taken. Since there is no load shut-

off in this BMS implementation, the only action that is taken is to indicate to the user that
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the condition exists. To do so, the BPMU simply tells all ICMUs to flash their red LEDs

in sync. This leaves it up to the user to stop the use of battery pack.

In order to detect an overvoltage condition, the BPMU evaluates the level of each
ICMU’s cell voltage during the charging process. If the BPMU detects that any cell’s
voltage is larger than 4.2V after 2 seconds, the BPMU sends a command to charger telling

it to shut-off.

As for the overtemperature condition, again the BPMU simply scans each
individual ICMU’s overtemperature status bit. If any device stays in the overtemperature
condition over 2 seconds, the BPMU sends a command to the charger telling it to also shut-

off in this case.

Given that none of the aforementioned condition exist the charging process runs

until all cells are charged equally as will be discussed in the following section.

6.3.3 Implementation of [2C Communication Scheme
The BPMU polled one ICMU node every 10ms. In other words, to poll and then
receive all 10 ICMU nodes’ cell information, this required a total of 100ms. This sampling

time was chosen to ensure any fast transient current pulses were captured during discharge.

6.3.4 Implementation of Charger Control Interface

The charging device used to implement the proposed method was developed in
conjunction with an electric vehicle project (Taschner, 2011). Shown in Figure 6.2, is a
high-level schematic of the charging device. It consists of a bridge rectifier, a smoothing
capacitor, and a buck-regulator block. Not pictured are additional electronics that provide

the monitoring, measurements, controls, and serial interface for the charging device. An
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actual photo of the hardware is shown in Figure 6.3. Next, the serial interface will be

discussed in more detail.
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Figure 6.3: Photo of charging device (Taschner, 2011).
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The serial communication interface between the BMS and the charger consisted of
three wires. Two of these were signals and the last wire was used to establish a common
ground. One of the signal wires was used to detect whether or not the charger was presently
connected to the BPMU. The other signal wire allowed the BPMU to transmit commands

to the charger.

In order to detect the presence of the charger, the BPMU used a digital input with
a high impedance pull-up resistor. When the three-wire connection was made between the

charger and the BPMU, the digital input was pulled to ground.

The command packet transmitted by the BPMU to the charger consisted of 6 bytes
as summarized in Table 6.2. This packet was designed to transmit a new desired charging
current from the BPMU to the charger. Error detection capabilities were built into the
packet. The desired current will have two integer digits and two decimal digits. A variable

representation of this format can be viewed as “I1.DD”.

The starting character (Byte 0) and an ending character (Byte 5) envelops the packet
to allow for synchronization of the messages between the BPMU and charger. The integer
portion (Bytes 1 and 3) and decimal portion (Bytes 2 and 4) of the current is redundantly
sent within the packet. This is to allow the charger to receive both sets of bytes and check
if any bits were changed during the transmission. To provide an additional measure of error
checking, the BPMU sends this entire packet 5 times repeatedly to the charger. The charger
then ensures all packets are consistent before updating the actual charging current to the

new desired value.
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Table 6.2: Communication packet sent from the BPMU to the charger.

BYTE # DATA DESCRIPTION

0 0xAA Starting character

1 II Integer Portion of Current
2 DD Decimal Portion of Current
3 II Integer Portion of Current
4 DD Decimal Portion of Current
5 0x55 Ending character
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CHAPTER VII

SIMULATION VALIDATION AND RESULTS

This chapter will discuss the results obtained from a battery pack discharge and
charge cycle with the proposed integrated charger and BMS implementation. Plots of the
data collected during both cycles will be shown. In addition, some images collected of the

BMS system during the charging process will be displayed.

7.1 Discharge and Charge Cycles Results from a 4-cell Battery

The positive results from the simulations of the integrated BMS and Charger of
Section 4.2.3 were used to perform a quick manually-controlled experiment on a series
connected 4-cell battery pack. The cells consisted of four 26650 LiFePOj cells, each with
a 2.5Ah capacity. A power supply was used for the charging cycle and a programmable
load was used for the discharge. The power supply was set for a constant-current of 4A and
a constant-voltage of 14.8V (3.7V x 4 cells). The programmable load on the other hand
was set for a fixed discharge of 4A. On each cell a resistive bypass was implemented

consisting of an 8.2 ohm resistor that turned on at 3.5V.

The experiment started with all cells individually charged with the same CC and
CV profile. For the constant-current mode 4A continuous was maintained until the cell

voltage reached 3.7V. In the constant-voltage mode, the cell voltage of 3.7V was
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maintained until the cell reached S0mA. At this point the charging was complete and the

cells were allowed to rest.

The purpose of the experiment was to demonstrate that the cell balancing could be
more effective if the charging current was controllable. This could be accomplished by
manually watching the cell voltages and reducing the power supplies charging current as

necessary.

The experiment started with cycling the pre-balanced cells for two cycles. As can
be seen in Figure 7.1, the first two cycles show that the cell voltages stayed relatively
balanced during the charge cycle (note that the second cycle appears different after the
charge cycle only because the pack was allowed to rest longer). After the second discharge
cycle, a single cell was individually charged at 4A on its own for 10 minutes to purposefully
unbalance the pack (unbalance marker in yellow in figure). After this, the cells were
allowed to rest again and then the third charge cycle was started. As can be seen, the higher
charged cell quickly reached 3.7V before the other cells. Even with the bypass on, the cell
voltage increased significantly more as observed in the simulations of Chapter 4. At this
point, the charger current was turned down to a constant-current of 0.4A. This allowed the
bypass to completely shunt the current around the highest charged cell while the other cells
remained charging. Once all cells reached the bypass activation voltage, the current was
increased to 0.6A to allow all the cells to continue charging. The next charge and discharge
cycle show that the charging stays well balanced. After a long rest, an additional charge

cycle was performed to demonstrate the cells remained balanced.

105



w
o
A

~
@
m et = o T O

nm oA e O
MM = 0 F e w — O

4+—nn m = o JF o w - O

— o m - w F O

w
n
by

— p U % W T O

4 o W = o F O
4— 0 M -~ O T e ow = O

4+ o m = W F o w - O

3.35

3.15

295

275

7657
8005
8353
8527
8701
8875
9049
9223
9571
9745
9919

30 per. Mov. Avg. (Seriesd) 30 per. Mov. Avg. (Series3) 30 per. Mov. Avg. (Series2) 30 per. Mov. Avg. (Series1)

Figure 7.1: Data plotted from a 4-Cell series-connected battery pack manually-controlled

experiment.

7.2 Results from the Integrated Charger and BMS on a 10-Cell Battery Pack
The results of data collected from the 10-Cell series-connect integrated Charger is
given in the next few sections. The data collected from the discharge cycle is provided

followed by the charging and balancing results.

7.2.1 Discharge Cycle
A fixed high power resistive load with a resistance of approximately 1.67 ohms was

used to discharge the battery pack at a nominal discharge current of 20A. The discharge
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was stopped when at least one of the cells dropped below the 2.5V threshold. The BPMU
visually indicated this to the users by notifying the ICMU boards to flash their red indicator
LEDs. As can be seen in Figure 7.2, Cell 10 reached a low voltage of 2.5V. At this point
the red LED indicators were asserted and removal of the load completed the discharge
cycle. Also worth noting is that the cell voltages have different discharge characteristics.
As can be seen in the figure, initially in the discharge cycle cell 4 is at a lower voltage.

However, towards the end of the discharge, cell 10 reaches 2.5V first.

Also shown at the bottom of Figure 7.2 was the discharge current. Since the
resistance was a fixed resistive load, the cell discharge current started out higher as the cell
voltages were higher earlier on during the discharge cycle. The linear cell voltage region,
where the cells stays relatively constant, can be seen from approximately 0.5 to the 2 hour
mark of the discharge cycle. Towards the end of the discharge cycle (2.5 hours and after),
the cell voltages move out of the linear region and began to drop steeply. As can be
observed and expected, a decrease in discharge current occurs. At the end of the cycle, the

removal of the load is seen and the measured cell discharge current drops to zero.
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Figure 7.2: Discharge cycle of 10 Cell Series Connected LiFePOs Battery Pack.

7.2.2 Charge Cycle

This charge cycle occurred after the aforementioned discharge cycle was
completed. Once the BPMU was connected to the charger, it communicated to the charger
and requested a charging current of 12A. After the start button was pressed on the charger,
the BPMU continuously polled each of the ICMUs for information about their respective
cells. Figure 7.3 shows the visual LED feedback from each ICMU early on during the

charging process. Since no cells are in bypass all feedback LEDs are green.
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Figure 7.3: Battery Pack with ICMU and ICMU/BMPU Hybrid attached to each cell. As

pictured here each cell is charging and is not bypassing any current.

The ICMUs on each board watch over its own cell and begin bypassing current
around the cell if necessary. When an ICMU begins bypassing current, the feedback LED
on the ICMU changes to amber. When an ICMU begins bypassing current close to its
maximum allowable current of 2A, the feedback LED changes to RED. Figure 7.4 shows
the system later in the discharge cycle with some ICMUs in bypass. As can be seen, some
LEDs are currently in bypass and amber. One LED is red since that bypass has reached the
maximum shunt current and can no longer keep the cell at the desired cut-off voltage. At
this point, the BPMU will communicate to the charger that it needs to reduce its charging

current by 2A.
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Figure 7.4: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As
pictured here, 4 cells are bypassing current since they have reached a voltage of at least

3.8V.

This process continues until all cells have reached the same charge cut-off voltage.
Figure 7.5 shows the battery pack late in the charging cycle. As can be seen, all but one
cell is bypassing current except the ICMU/BPMU hybrid. This is because the
ICMU/BPMU hybrid powers the isolated I2C bus for all of the other ICMU cells. This is
in addition to the additional processing it must perform than the other [ICMU cells. The last
figure of interest, Figure 7.6, shows the battery pack moments before it discontinues the

charging process as the ICMU/BPMU hybrid gets to the desired charge cut-off voltage.
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Figure 7.5: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As

pictured here, all cells are in bypass with the exception of the ICMU/BPMU Hybrid.

Figure 7.6: Battery Pack with ICMU and ICMU/BPMU Hybrid attached to each cell. As
pictured here, all cells are in bypass. Shortly after this picture was taken, the BPMU

commanded the Charger to discontinue the charging process.

The data collected from the charging cycle is shown in Figure 7.7. Pictured in the

figure are each of the individual cells’ voltage, the charging current, and each cell’s bypass
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current as measured by each cells’ ICMU board. During the initial phase of the charge
cycle, a wide range of cell voltages was present after the discharge. However, as the
charging commenced, the cell voltages converged when they each reached the nominal
voltage plateau of 3.3V. However, as the cells neared their full charge capacity, the cell
voltages began to slightly diverge. However, the BPMU and ICMU circuitry mitigated
damaging cell conditions by cooperating to ensure that no cells reached an overvoltage

state.

As can be seen in the bypass current measurement plots, once a cell reached 3.8V,
its ICMU activated the bypass circuitry for that given cell. The bypass circuitry continued
to bypass the necessary amount of current in order to maintain the cell’s voltage at 3.8V if
possible. However, once the maximum amount of current was bypassed, the cell continued
to charge. This increased the highest charged cell’s voltage to the maximum voltage of
4.2V. At this point, the BPMU told the charger to decrease its charging current to 1.8A. At
this charging current, the ICMUs individually control their cell’s charging current by
controlling the bypass circuitry. Once all cells reached their full bypass current, the BPMU

requested the charger to end the charging process.

In summary, the method of modifying charging current during balancing allows
cells to balance in fewer cycles. In fact, the manually-controlled experiment from Section
7.1 used this method and demonstrated the battery pack’s cell voltages converging within
a single cycle. The automated implementation of this method also demonstrated similar
results. It can be seen that this balancing cycle resembles the simulated balancing cycle of
Figure 4.15. Following the balancing cycle of Figure 7.7, the cells in the pack became

balanced similar to those shown in the simulations of Figure 4.14.
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7.3 Chapter Summary

This chapter provided results from a quick manually-controlled experiment, to
demonstrate the benefit of providing an interface to the charger from the BMS. This allows
the cost-effective method of resistive bypassing to be implemented at a faster rate as
opposed to over a period of several charge/discharge cycles. Also discussed in this chapter
were the results from the actual implementation of the proposed BMS with the charger
interface. This implementation automates the same concept performed in the manually-
controlled experiment. The results obtained were in-line with the methods outlined in the
performed simulations. The results demonstrated the ability to charge and balance a
relatively unbalanced pack in less cycles than using an independent charger and

independent BMS with bypasses alone.
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Figure 7.7: Charge cycle with integrated charger and BMS for a 10 cell series-connected

battery pack.
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CHAPTER VIII

CONCLUSIONS

In this thesis, and investigation into battery management systems and monitoring
systems was performed. The investigation looked at the available methods of balancing
cells within a battery pack and identified a cost-effective method, namely, the lossy passive
bypass. It was proposed, to improve this method, to integrate the BMS with the charging
device. Next, a summary of the process followed to simulate and test this method is

provided along with the results.

Before being able to test the proposed method, a first-principles cell model was
obtained. This was done by following a procedure that allowed the required cell dynamics
to be observed. Following this procedure, the collected data was analyzed and additional
data sets were made from additional calculations. A combination of the collected data set
and new calculations data set were used to obtain the cell model’s unknown parameters.

This was done by performing batch least squares on the data sets.

Next, using this cell model and the parameters obtained, battery pack simulations
were performed. These simulations were performed to understand how cells in a series-
connected battery pack behave under various configurations. The main battery pack

configurations tested were a: 1) battery pack with no cell balancing, 2) battery pack with
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resistive bypasses and a BMS, and 3) a battery pack with resistive bypasses, BMS, and

integrated charger.

The battery packs with no balancing had cells where their voltages diverged as the
cells went through several charge and discharge cycles. In a practical application, the cells
in this battery pack would get damaged by straying from their recommended manufacturing

voltage operating range.

The battery pack with balancing circuitry on each cell had better results in terms of
maintaining the desired voltage operating range. The cell voltages in this configuration
converged with one another as the pack was cycled. Depending on how poorly balanced
each cell was with respect to the others, the initial charge and discharge cycles could also
force the cells to work outside the desired operating voltage range. However, as the charge

and discharge cycles continued, the cells eventually became balanced.

The last configuration simulated, Configuration 3, had the best results in terms of
the number of cycles it took to balance the battery pack. It allowed the cells to be balanced
in a single cycle which prevented the cells from going outside the desired voltage range in
the subsequent charge cycles. In order to demonstrate a physical implementation of this

concept, hardware and software was developed.

The actual battery pack used for the demonstration was comprised of ten 60Ah
LiFePOs cells connected in series. Circuit boards with a microcontroller and additional
supporting electronics were designed to directly connect to each cell individually. Using
the microcontroller and supporting electronics, code was written to monitor the cell’s

voltage, current, and temperature. In addition, the circuit could control bypass current
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around the cell up to a maximum of 2A. Furthermore, serial communication circuitry
allowed each cell to communicate information as well as receive commands from a single
master device. This master device processed information from each cell and performed
necessary actions to protect the battery pack. During a discharge cycle, the master provided
visual feedback to a user if one or more cells reached a low SoC. During a charge cycle,
the master interfaced to an integrated charger. The interface between the two devices
allowed the master to change the charger’s charging current in response to the battery

pack’s condition.

Lastly, results were provided from a manual experiment to demonstrate the
balancing of the battery pack with the ability to change the charging current as necessary.
In addition, data was collected from a discharge and charge cycle using the designed
software and hardware that automated the concepts demonstrated in the manual
experiment. It was demonstrated that an integrated BMS and charger could balance a
battery pack in as little as a one cycle, thus providing a significant improvement over a

non-integrated BMS-charter combination.
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APPENDIX A

MATLAB CODE

The following are MATLAB Simulations for various battery pack configurations.

A.1 3-Cells Bypasses Vs 3-Cells w/o Bypasses

%% Charge/Discharge with No Bypass

clc;
clear all;
close all;

initialCharge = 65; % Initial Charge in AmpHours
Ro = -1.09287007554604e-05;

C = 1222821.68974733;

al = 15;

a2 = -10.14;

Cd = 25052.2307692307;

Rd = 0.00243491290503841;
tau = 61;

ConstV = 0;

current=0;

chargingTimeHr=4000; %$hours
chargingTimeSec = chargingTimeHr*3600;
dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec
x=[ 3.14011797411029 3.14011797411029*%0.99
3.14011797411029*1.01;

3.82610318626407e-07 3.82610318626407e-07*1.01
3.82610318626407e-07*%0.99;

1.53543639979267 1.53543639979267%0.99
1.53543639979267*0.99;
-1.08581425643197 -1.08581425643197*1.01 -

1.08581425643197*1.01;
3.76948681201294e-08 3.76948681201294e-08*0.99
3.76948681201294e-08*1.01];
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%I = [zeros(1,1800) -ones(1l,3600*3)*20 zeros(1l,1800)
ones (1,3600*%3)*20 zeros(1,1800)];

gqs = zeros(chargingTimeSec, 3);
qd = zeros(chargingTimeSec, 3);
v = zeros(chargingTimeSec, 3);
I = zeros(chargingTimeSec,1);
gs(l,1) = initialCharge*3600*1.02; %Coloumb * Amps*Sec
qd(1l,1) = 0;
gs(l,2) = initialCharge*3600; %$Coloumb * Amps*Sec
qd(1,2) = 0;
gs(l,3) = initialCharge*3600*0.98; %Coloumb * Amps*Sec
qd(1,3) = 0;
I(1)=0;
v(l,1) = x(1,1) + x(2,1)*gs(1,1) + x(3,1)*qgd(1l, l) +
x(4,1)*exp(a2*gs(1,1)/240000) + x(5,1)*exp(al*gs/(
I(1l)*Ro;
v(l,2) = x(1,2) + x(2,2)*gs(1,2) + x(3,2)*gqd(1,2) +
x(4,2)*exp(a2*gs (1,2) /240000) + x(5,2)*exp(al*gs (1
I(1)*Ro;
v(l,3) = x(1,3) + x(2,3)*gs(1,3) + x(3,3)*gd (1, 3) +
x(4,3)*exp(a2*gs (1,3)/240000) + x(5,3)*exp(al*gs(
I(1l)*Ro;
for n = 1:1:chargingTimeSec
for k = 1:3
if (((v(n,1)+v(n,2)+v(n,3)) < 3.8*3) && ConstV==
current = 20; %%Const. Current
else
ConstV = 1;
end
if ConstV==
vtot = v(n,1l)+v(n,2)+v(n,3);
err = 3.8*3-vtot;
current = current + 2*err;
if (current <= 6)
current = 0;
turnOnLoad=1;
ConstV=0;
end
end
if turnOnLoad==
I(n) = -60;
if v(n,1l)+v(n,2)+v(n,3)<2.5*3

turnOnLoad = 0;
dischargeCnt=dischargeCnt+1;
end
else

) /240000)

) /240000)

) /240000)

)

+

+

+
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I(n) = current;

end

gs(n+l,k) = gs(n,k)+I(n)*Tsamp;

qd(n+1,k) = gd(n,k)+((I(n)/Cd)-(gd(n,k)/(Rd*Cd)))*Tsamp;

v(n+tl,k) = x(1,k) + x(2,k)*gs(n,k) + x(3,k)*gd(n,k) +
x(4,k)*exp(a2*gs(n,k)/240000) + x(5,k)*exp(al*gs(n,k)/240000) +
I(n)*Ro;

end

end
figure(3)
hold all

plot ([0:1:chargingTimeSec]/3600,v(:,1),'r")
plot ([0:1:chargingTimeSec]/3600,v(:,2),'g")
plot ([0:1:chargingTimeSec]/3600,v(:,3),"'c")

xlabel ('Time [Hours]')
ylabel ('Voltage')
legend({'Cell 1' 'Cell 2' 'Cell 3'})

figure (4)
plot ([0:1:chargingTimeSec-1]/3600, I)

xlabel ('Time [Hours]')
ylabel ('Current')

figure (5)

plot ([0:1:chargingTimeSec] /3600, v (:,1)+v(:,2)+v(:,3))
xlabel ('Time [Hours]')

ylabel ('Voltage')

disp('Discharge cnt is: ')

disp (dischargeCnt)

%% Charge/Discharge with Bypass
clc;

clear all;

close all;

initialCharge = 65; % Initial Charge in AmpHours
Ro = -1.09287007554604e-05;

C = 1222821.68974733;

al = 15;

a2 = -10.14;

Cd = 25052.2307692307;

Rd = 0.00243491290503841;
tau = 61;

ConstV = 0;
current=0;
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chargingTimeHr = 4000; %hours
chargingTimeSec = chargingTimeHr*3600;
dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[ 3.14011797411029 3.14011797411029*0.99
3.14011797411029*1.01;

3.82610318626407e-07 3.82610318626407e-07*1.01
3.82610318626407e-07*0.99;

1.53543639979267 1.53543639979267*%0.99
1.53543639979267*%0.99;

-1.08581425643197 -1.08581425643197*1.01 -
1.08581425643197*1.01;

3.76948681201294e-08 3.76948681201294e-08*0.99
3.76948681201294e-08*1.01];
%I = [zeros(1,1800) -ones(1l,3600*3)*20 zeros(1l,1800)

ones(1,3600*3)*20 zeros(1l,

1800)1;

gs = zeros(chargingTimeSec, 3);

gqd = zeros(chargingTimeSec, 3);

v = zeros(chargingTimeSec, 3);

I = zeros(chargingTimeSec, 3);

gs(l,1l) = initialCharge*3600*1.02; %Coloumb * Amps*Sec

gqd(l,1) = 0;

gs(l,2) = initialCharge*3600; %Coloumb * Amps*Sec

qd(1l,2) = 0;

gs(l,3) = initialCharge*3600*0.98; %Coloumb * Amps*Sec

qd(1l,3) = 0;

I(lll)zo;

I(1,2)=0;

I(1,3)=0;

v(l,1) = x(1,1) + x(2,1)*gs(1l,1) + x(3,1)*gd (1, l) +
x(4,1)*exp(a2*qs (1,1)/240000) + x(5,1)*exp(al*qgs/ y/240000) +
I(1)*Roj;

v(l,2) = x(1,2) + x(2,2)*gs(1l,2) + x(3,2)*qgd(1,2) +
x(4,2)*exp(a2*gs(1,2)/240000) + x(5,2)*exp(al*gs(1,2)/240000) +
I(1l)*Ro;

v(l,3) = x(1,3) + x(2,3)*gs(1,3) + x(3,3)*qgd(1,3) +
x(4,3)*exp(a2*gs (1, 3) /240000) + x(5,3)*exp(al*gs(1,3)/240000) +
I(1)*Ro;

o\

SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES

SYSTEM STARTS WITH CHARGING

CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS

ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH INDVIDUAL CELL
VOLTAGE)

oe o

o\°
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% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT VOLTAGE
MODE

for n = 1:1:chargingTimeSec

for k = 1:3 $REPEAT SIMULATION CALCUATIONS FOR EACH CELL
(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL)

o\

CHARGING PROCESS: CONSTANT CURRENT
THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO CONSTANT
VOLTAGE MODE
if (((v(n,1)+v(n,2)+v(n,3)) < 3.8%*3) && ConstV==0)
20; %

o\

current = MAINTAIN CONSTANT CURRENT
else

ConstV = 1; % START CONSTANT VOLTAGE MODE
end

% CHARGING PROCESS: CONSTANT VOLTAGE
% CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT VOLTAGE

MODE
% IF SO, SWITCHES ON LOAD
if ConstV==
vtot = v(n,1l)+v(n,2)+v(n,3);
err = 3.8*3-vtot;
current = current + 2*err;
if (current <= 6)
current = 0;
turnOnLoad=1;
ConstV=0;
end
end
% LOAD ACTIVE: 60 AMP LOAD
% IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING PROCESS
STOPS

if turnOnLoad==
I(n,k) = -60;
if v(n,1)+v(n,2)+v(n,3)<2.5*3
turnOnLoad = 0;
dischargeCnt=dischargeCnt+1;
end
else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON
BYPASS WHEN NECESSARY
% IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP CONSTANT
CURRENT BYPASS)
% ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS
if v(n,k) > 3.8
I(n,k) = current-1;
else
I(n,k) = current;
end
end

% CALCULATE NEXT TIME-STEP USING CELL MODELS
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gs(n+l,k) = gs(n,k)+I(n,k)*Tsamp;
qd(n+1,k) = gd(n,k)+((I(n,k)/Cd)-(gd(n,k)/(Rd*Cd))) *Tsamp;
v(n+tl,k) = x(1,k) + x(2,k)*gs(n,k) + x(3,k)*gd(n,k) +
x(4,k)*exp(a2*gs (n, k) /240000) + x(5,k)*exp(al*gs(n,k)/240000) +
I(n,k)*Ro;
end
end

figure (5)

hold all

plot ([0:1:chargingTimeSec]/3600,v(:,1),"'r
plot ([0:1:chargingTimeSec]/3600,v(:,2),'g")
plot ([0:1:chargingTimeSec]/3600,v(:,3),'c

xlabel ('Time [Hours]')
ylabel ('Voltage')

figure (6)
plot ([0:1:chargingTimeSec-1]/3600, I(:,1))

xlabel ('Time [Hours]')
ylabel ('Current')

disp('Discharge cnt is: ')
disp (dischargeCnt)
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A.2 MATLAB Simulations: 10-Cells & Integrated Charger & Battery Pack w/

Bypasses

%% Charge/Discharge with Bypass 10 Cells Integrated charger
cle;

clear all;

%close all;

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED
CHARGING CURRENT
% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10)

9% ampHour =

% 53.4478888888888
% 52.4618888888889
% 51.3797222222222
% 51.1152222222222
% 50.5888333333333
% 51.4822499999999
% 51.1220555555555
% 50.7726944444444
% 49.8306944444444
% 50.1831111111111
% SOC_Percent =

% 89.0798148148147
% 87.4364814814814
% 85.6328703703704
% 85.192037037037
% 84.3147222222221
% 85.8037499999999
% 85.2034259259258
% 84.6211574074073
% 83.0511574074073
% 83.6385185185185
% Initial_Charge_SOC_Percent =
% 10.9201851851853
% 12.5635185185186
% 14.3671296296296
% 14.807962962963
% 15.6852777777779
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% 14.1962500000001

% 14.7965740740742
% 15.3788425925927
% 16.9488425925927
% 16.3614814814815

initialCharge = 60; % Initial Charge in AmpHours
Ro =-1.09287007554604e-05;

C =1222821.68974733;

al =15;

a2 =-10.14;

Cd =25052.2307692307;

Rd =0.00243491290503841;

tau = Cd*Rd;

ConstV =0;

current=0;

chargingTimeHr = 50; %Simulation hours
chargingTimeSec = chargingTimeHr*3600;
dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[ 3.14011797411029;
3.82610318626407e-07;
1.53543639979267;

-1.08581425643197;
3.76948681201294e-08];

X=[XXXXXXXXXX];

%]1 = [zeros(1,1800) -ones(1,3600*3)*20 zeros(1,1800) ones(1,3600*3)*20
zeros(1,1800)];

gs = zeros(chargingTimeSec,10);
qd = zeros(chargingTimeSec,10);
v = zeros(chargingTimeSec,10);
I = zeros(chargingTimeSec,10);

% 10.9201851851853
% 12.5635185185186
% 14.3671296296296
% 14.807962962963
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% 15.6852777777779
% 14.1962500000001
% 14.7965740740742
% 15.3788425925927
% 16.9488425925927
% 16.3614814814815

gs(1,1) = initialCharge*3600%0.08; %Coloumb * Amps*Sec
qd(1,1) = 0;

gs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec
qd(1,2) = 0;

gs(1,3) = initialCharge*3600%0.144; %Coloumb * Amps*Sec
qd(1,3) = 0;

gs(1,4) = initialCharge*3600%0.148; %Coloumb * Amps*Sec
qd(1,4) = 0;

gs(1,5) = initialCharge*3600%0.157; %Coloumb * Amps*Sec
qd(1,5) = 0;

gs(1,6) = initialCharge*3600%0.142; %Coloumb * Amps*Sec
qd(1,6) = 0;

gs(1,7) = initialCharge*3600%0.148; %Coloumb * Amps*Sec
qd(1,7) = 0;

gs(1,8) = initialCharge*3600%0.154; %Coloumb * Amps*Sec
qd(1,8) = 0;

gs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec
qd(1,9) = 0;

gs(1,10) = initialCharge*3600*0.164; %Coloumb * Amps*Sec
qd(1,10) = 0;

1(1,1)=0;
1(1,2)=0;
1(1,3)=0;
1(1,4)=0;
1(1,5)=0;
1(1,6)=0;
1(1,7)=0;
1(1,8)=0;
1(1,9)=0;
1(1,10)=0;

v(1,1) = x(1,1) +x(2,1) *qgs(1,1) +x(3,1)*qd(1,1) +x(4,1)
*exp(a2*qs(1,1)/240000) + x(5,1) *exp(al*qs(1,1)/240000) + I(1)*Ro;
v(1,2) = x(1,2) +x(2,2) *qs(1,2) +x(3,2)*qd(1,2) +x(4,2)
*exp(a2*qs(1,2)/240000) + x(5,2) *exp(al*qs(1,2)/240000) + I(1)*Ro;
v(1,3) = x(1,3) +x(2,3) *qs(1,3) +x(3,3)*qd(1,3) +x(4,3)
*exp(a2*qs(1,3)/240000) + x(5,3) *exp(al*qs(1,3)/240000) + I(1)*Ro;
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v(1,4) = x(1,4) +x(2,4) *qs(1,4) +x(3,4)*qd(1,4) +x(4.4)
*exp(a2*qs(1,4)/240000) + x(5,4) *exp(al*qs(1,4)/240000) + I(1)*Ro;

v(1,5) = x(1,5) +x(2,5) *qs(1,5) + x(3,5)%qd(1,5) +x(4,5)
*exp(a2*qs(1,5)/240000) + x(5,5) *exp(al*qs(1,5)/240000) + I(1)*Ro;

v(1,6) = x(1,6) +x(2,6) *qs(1,6) + x(3,6)*qd(1,6) + x(4,6)
*exp(a2*qs(1,6)/240000) + x(5,6) *exp(al*qs(1,6)/240000) + I(1)*Ro;

v(1,7) = x(1,7) +x(2,7) *qs(1,7) +x(3,7)*qd(1,7) +x(4,7)
*exp(a2*qs(1,7)/240000) + x(5,7) *exp(al*qs(1,7)/240000) + I(1)*Ro;

v(1,8) = x(1,8) +x(2,8) *qs(1,8) + x(3,8)*qd(1,8) + x(4.8)
*exp(a2*qs(1,8)/240000) + x(5,8) *exp(al*qs(1,8)/240000) + I(1)*Ro;

v(1,9) = x(1,9) +x(2,9) *qs(1,9) + x(3,9)*qd(1,9) + x(4,9)
*exp(a2*qs(1,9)/240000) + x(5,9) *exp(al*qs(1,9)/240000) + I(1)*Ro;
v(1,10) = x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) +
x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(al*qs(1,10)/240000) + I(1)*Ro;

hold_balancing_current = 0;

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES
% SYSTEM STARTS WITH CHARGING

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH
INDVIDUAL CELL VOLTAGE)

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT
VOLTAGE MODE

bypass_current = zeros(chargingTimeSec,10);
previous_bypass_current = zeros(10,1);
bypass_begun = zeros(10,1);

for n = 1:1:chargingTimeSec

fork=1:10 %REPEAT SIMULATION CALCUATIONS FOR EACH CELL
(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL)

9% CHARGING PROCESS: CONSTANT CURRENT
9% THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO
CONSTANT VOLTAGE MODE
if (max(v(n,:)) <= 3.8 && ConstV==0)
charge_current = 12; % MAINTAIN CONSTANT CURRENT
else
ConstV =1; % START CONSTANT VOLTAGE MODE
end

% CHARGING PROCESS: CONSTANT VOLTAGE
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% CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT
VOLTAGE MODE
% IF SO, SWITCHES ON LOAD
if ConstV==1
Yovtot =
v(n,)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10);
if max(v(n,:)) >=4.2
if charge_current > 2 && (hold_balancing_current ~= 1)
charge_current = charge_current-2;
else
charge_current = 2.0;
hold_balancing_current = 1;
end
end

if (min(v(n,:)) >=3.79)
current = 0;
turnOnlLoad=1;
ConstV=0;
end
end

% LOAD ACTIVE: 60 AMP LOAD
% IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING
PROCESS STOPS
if turnOnLoad==
I(n,k) = -60;
if
(v(n,)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) <
(2.5*%10)
turnOnLoad = O;
dischargeCnt=dischargeCnt+1;
charge_current = 12.0;
hold_balancing_current=0;
bypass_begun = zeros(10,1);
end
else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON
BYPASS WHEN NECESSARY
9% IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP
CONSTANT CURRENT BYPASS)
9% ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS
if v(n,k) > 3.8 && (bypass_begun(k) ~=1)
bypass_begun(k) = 1;
error = 3.8-v(n,k);
kp = 100;
bypass_current(n,k) = bypass_current(n-1,k) - error*kp;
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if bypass_current(n,k) > 2
bypass_current(n,k) = 2;
end

I(n,k) = charge_current - bypass_current(n,k);

elseif bypass_begun(k)==
%]I(n,k) = charge_current-2;
bypass_current(n,k) = 2;
I(n,k) = charge_current - bypass_current(n,k);
else
I(n,k) = charge_current;
end
end

if v(n,:) >=3.8
break
end

% CALCULATE NEXT TIME-STEP USING CELL MODELS
gs(n+1,k) = gs(n,k)+I(n,k)*Tsamp;
qd(n+1.k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp;
v(n+1,k) = x(1,k) + x(2,k)*qgs(n,k) + x(3,k)*qd(n,k) +
x(4,k)*exp(a2*qs(n,k)/240000) + x(5.k)*exp(al *qs(n,k)/240000) + I(n,k)*Ro;
end
end

figure(4)

subplot(3,1,1)

hold all

plot([0:1:chargingTimeSec]/3600,v(:,1))
plot([0:1:chargingTimeSec]/3600,v(:,2))
plot([0:1:chargingTimeSec]/3600,v(:,3))
plot([0:1:chargingTimeSec]/3600,v(:,4))
plot([0:1:chargingTimeSec]/3600,v(:,5))
plot([0:1:chargingTimeSec]/3600,v(:,6))
plot([0:1:chargingTimeSec]/3600,v(:,7))
plot([0:1:chargingTimeSec]/3600,v(:,8))
plot([0:1:chargingTimeSec]/3600,v(:,9))
plot([0:1:chargingTimeSec]/3600,v(:,10))
plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r")
plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r")
% legend('Celll','Cell2','Cell3','Cell4','Cell5','Cell6','Cell 7','Cell8','Cell9','Cell10")
xlabel("Time [Hours]')

ylabel('"Voltage')

e
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subplot(3,1,2)

hold all
plot([0:1:chargingTimeSec-1]/3600, I(:,1))
plot([0:1:chargingTimeSec-1]/3600, I(:,2))
plot([0:1:chargingTimeSec-1]/3600, I(:,3))
plot([0:1:chargingTimeSec-1]/3600, I(:,4))
plot([0:1:chargingTimeSec-1]/3600, I(:,5))
plot([0:1:chargingTimeSec-1]/3600, I(:,6))
plot([0:1:chargingTimeSec-1]/3600, 1(:,7))
plot([0:1:chargingTimeSec-1]/3600, I(:,8))
plot([0:1:chargingTimeSec-1]/3600, 1(:,9))
plot([0:1:chargingTimeSec-1]/3600, 1(:,10))

xlabel("Time [Hours]')
ylabel('Current')
disp('Discharge cnt is: ')
disp(dischargeCnt)

subplot(3,1,3)

hold all

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,1))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,2))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,3))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,4))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,5))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,6))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,7))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,8))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,9))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,10))

xlabel("Time [Hours]')
ylabel('Bypass Current')
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A.3 MATLAB Simulations: 10-Cells, Simple Charger, and with Bypasses

%% Charge/Discharge with Bypass 10 Cells
cle;

clear all;

Yoclose all;

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED
CHARGING CURRENT
% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10)

% ampHour =

% 53.4478888888888
% 52.4618888888889
% 51.3797222222222
% 51.1152222222222
% 50.5888333333333
% 51.4822499999999
% 51.1220555555555
% 50.7726944444444
% 49.8306944444444
% 50.1831111111111
% SOC_Percent =

% 89.0798148148147
% 87.4364814814814
% 85.6328703703704
% 85.192037037037
% 84.3147222222221
% 85.8037499999999
% 85.2034259259258
% 84.6211574074073
% 83.0511574074073
% 83.6385185185185
% Initial_Charge_SOC_Percent =
% 10.9201851851853
% 12.5635185185186
% 14.3671296296296
% 14.807962962963
% 15.6852777777779
% 14.1962500000001
% 14.7965740740742
% 15.3788425925927
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% 16.9488425925927
% 16.3614814814815

initialCharge = 60; % Initial Charge in AmpHours
Ro =-1.09287007554604e-05;

C =1222821.68974733;

al =15;

a2 =-10.14;

Cd =25052.2307692307,

Rd =0.00243491290503841;

%Cd = 7000;

%Rd = 0.005;

tau = Cd*Rd;

ConstV =0;

current=0;

chargingTimeHr = 120; %Simulation hours
chargingTimeSec = chargingTimeHr*3600;
dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[ 3.14011797411029;
3.82610318626407e-07;
1.53543639979267,

-1.08581425643197;
3.76948681201294e-08];

X=[XXXXXXXXXX];

%1 = [zeros(1,1800) -ones(1,3600%3)*20 zeros(1,1800) ones(1,3600*%3)*20
zeros(1,1800)];

gs = zeros(chargingTimeSec,10);
qd = zeros(chargingTimeSec,10);
v = zeros(chargingTimeSec,10);
I = zeros(chargingTimeSec,10);

% 10.9201851851853
% 12.5635185185186
% 14.3671296296296
% 14.807962962963
% 15.6852777777779
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% 14.1962500000001

% 14.7965740740742
% 15.3788425925927
% 16.9488425925927
% 16.3614814814815

gs(1,1) = initialCharge*3600*0.08; %Coloumb * Amps*Sec
qd(1,1) = 0;

gs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec
qd(1,2) = 0;

gs(1,3) = initialCharge*3600*0.144; %Coloumb * Amps*Sec
qd(1,3) = 0;

gs(1,4) = initialCharge*3600*0.148; %Coloumb * Amps*Sec
qd(1,4) = 0;

gs(1,5) = initialCharge*3600*0.157; %Coloumb * Amps*Sec
qd(1,5) = 0;

gs(1,6) = initialCharge*3600*0.142; %Coloumb * Amps*Sec
qd(1,6) = 0;

gs(1,7) = initialCharge*3600*0.148; %Coloumb * Amps*Sec
qd(1,7) = 0;

gs(1,8) = initialCharge*3600*0.154; %Coloumb * Amps*Sec
qd(1,8) = 0;

gs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec
qd(1,9) = 0;

gs(1,10) = initial Charge*3600*0.164; %Coloumb * Amps*Sec
qd(1,10) = 0;

1(1,1)=0;
1(1,2)=0;
1(1,3)=0;
1(1,4)=0;
1(1,5)=0;
1(1,6)=0;
1(1,7)=0;
1(1,8)=0;
1(1,9)=0;
1(1,10)=0;

v(1,1) = x(1,1) +x(2,1) *qs(1,1) +x(3,1)*qd(1,1) +x(4,1)
*exp(a2*qs(1,1)/240000) + x(5,1) *exp(al*qs(1,1)/240000) + I(1)*Ro;
v(1,2) = x(1,2) +x(2,2) *qs(1,2) +x(3,2)*qd(1,2) +x(4,2)
*exp(a2*qs(1,2)/240000) + x(5,2) *exp(al*qs(1,2)/240000) + I(1)*Ro;
v(1,3) = x(1,3) +x(2,3) *qs(1,3) +x(3,3)*qd(1,3) +x(4,3)
*exp(a2*qs(1,3)/240000) + x(5,3) *exp(al*qs(1,3)/240000) + I(1)*Ro;
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v(1,4) = x(1,4) +x(2,4) *qs(1,4) +x(3,4)*qd(1,4) +x(4.4)
*exp(a2*qs(1,4)/240000) + x(5,4) *exp(al*qs(1,4)/240000) + I(1)*Ro;

v(1,5) = x(1,5) +x(2,5) *qs(1,5) + x(3,5)%qd(1,5) +x(4,5)
*exp(a2*qs(1,5)/240000) + x(5,5) *exp(al*qs(1,5)/240000) + I(1)*Ro;

v(1,6) = x(1,6) +x(2,6) *qs(1,6) + x(3,6)*qd(1,6) + x(4,6)
*exp(a2*qs(1,6)/240000) + x(5,6) *exp(al*qs(1,6)/240000) + I(1)*Ro;

v(1,7) = x(1,7) +x(2,7) *qs(1,7) +x(3,7)*qd(1,7) +x(4,7)
*exp(a2*qs(1,7)/240000) + x(5,7) *exp(al*qs(1,7)/240000) + I(1)*Ro;

v(1,8) = x(1,8) +x(2,8) *qs(1,8) + x(3,8)*qd(1,8) + x(4.8)
*exp(a2*qs(1,8)/240000) + x(5,8) *exp(al*qs(1,8)/240000) + I(1)*Ro;

v(1,9) = x(1,9) +x(2,9) *qs(1,9) + x(3,9)%qd(1,9) + x(4,9)
*exp(a2*qs(1,9)/240000) + x(5,9) *exp(al*qs(1,9)/240000) + I(1)*Ro;
v(1,10) = x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) +
x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(al*qs(1,10)/240000) + I(1)*Ro;

hold_balancing_current = 0;

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES
% SYSTEM STARTS WITH CHARGING

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH
INDVIDUAL CELL VOLTAGE)

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT
VOLTAGE MODE

bypass_current = zeros(chargingTimeSec,10);
previous_bypass_current = zeros(10,1);
bypass_begun = zeros(10,1);

for n = 1:1:chargingTimeSec

fork=1:10 %REPEAT SIMULATION CALCUATIONS FOR EACH CELL
(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL)

9% CHARGING PROCESS: CONSTANT CURRENT
9% THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO
CONSTANT VOLTAGE MODE
if (max(v(n,:)) <= 3.8 && ConstV==0)
charge_current = 12; % MAINTAIN CONSTANT CURRENT
else
ConstV =1; % START CONSTANT VOLTAGE MODE
end

% CHARGING PROCESS: CONSTANT VOLTAGE
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% CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT
VOLTAGE MODE
% IF SO, SWITCHES ON LOAD
if ConstV==1
vtot =
v(n,)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10);

if vtot >=4.2*10
current = 0;
turnOnlLoad=1;
ConstV=0;
end
end

9% LOAD ACTIVE: 60 AMP LOAD
% IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING
PROCESS STOPS
if turnOnLoad==
I(n,k) = -60;
if
(v(n,D)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) <
(2.5*%10)
turnOnLoad = 0;
dischargeCnt=dischargeCnt+1;
charge_current = 12.0;
bypass_begun = zeros(10,1);
end
else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON
BYPASS WHEN NECESSARY
% IMPLEMENTING PASSIVE BYPASS (ASSUMED 1-AMP
CONSTANT CURRENT BYPASS)
% ACTIVE WHEN CELL VOLTAGE IS GREATER THAN 3.8 VOLTS
if v(n,k) > 3.8 && (bypass_begun(k) ~=1)
bypass_begun(k) = 1;
error = 3.8-v(n,k);
kp = 100;
bypass_current(n,k) = bypass_current(n-1,k) - error*kp;

if bypass_current(n,k) > 2
bypass_current(n,k) = 2;
end

I(n,k) = charge_current - bypass_current(n,k);

elseif bypass_begun(k)==1
9%]I(n,k) = charge_current-2;
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bypass_current(n,k) = 2;
I(n,k) = charge_current - bypass_current(n,k);
else
I(n,k) = charge_current;
end
end

% CALCULATE NEXT TIME-STEP USING CELL MODELS
gs(n+1,k) = gs(n,k)+I(n,k)*Tsamp;
qd(n+1.k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp;
v(n+1,k) = x(1,k) + x(2,k)*qgs(n,k) + x(3,k)*qd(n,k) +
x(4.k)*exp(a2*qs(n,k)/240000) + x(5.k)*exp(al *qs(n,k)/240000) + I(n,k)*Ro;
end
end

figure(5)

subplot(3,1,1)

hold all

plot([0:1:chargingTimeSec]/3600,v(:,1))
plot([0:1:chargingTimeSec]/3600,v(:,2))
plot([0:1:chargingTimeSec]/3600,v(:,3))
plot([0:1:chargingTimeSec]/3600,v(:,4))
plot([0:1:chargingTimeSec]/3600,v(:,5))
plot([0:1:chargingTimeSec]/3600,v(:,6))
plot([0:1:chargingTimeSec]/3600,v(:,7))
plot([0:1:chargingTimeSec]/3600,v(:,8))
plot([0:1:chargingTimeSec]/3600,v(:,9))
plot([0:1:chargingTimeSec]/3600,v(:,10))
plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r")
plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r")
% legend('Celll','Cell2','Cell3','Cell4','Cell5','Cell6','Cell 7','Cell8','Cell9','Cell10")
xlabel("Time [Hours]')

ylabel('Voltage')

e e

subplot(3,1,2)

hold all
plot([0:1:chargingTimeSec-1]/3600, I(:,1))
plot([0:1:chargingTimeSec-1]/3600, 1(:,2))
plot([0:1:chargingTimeSec-1]/3600, I(:,3))
plot([0:1:chargingTimeSec-1]/3600, 1(:,4))
plot([0:1:chargingTimeSec-1]/3600, I(:,5))
plot([0:1:chargingTimeSec-1]/3600, 1(:,6))
plot([0:1:chargingTimeSec-1]/3600, I(:,7))
plot([0:1:chargingTimeSec-1]/3600, 1(:,8))
plot([0:1:chargingTimeSec-1]/3600, 1(:,9))

e
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plot([0:1:chargingTimeSec-1]/3600, 1(:,10))

xlabel("Time [Hours]')

ylabel('Current')

% legend('Celll','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell 10")
disp('Discharge cnt is: ')

disp(dischargeCnt)

subplot(3,1,3)

hold all

plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,1))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,2))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,3))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,4))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,5))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,6))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,7))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,8))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,9))
plot([0:1:chargingTimeSec-1]/3600, bypass_current(:,10))

xlabel("Time [Hours]')
ylabel('Bypass Current')
% legend('Celll','Cell2','Cell3','Cell4','Cell5','Cell6','Cell 7','Cell8','Cell9','Cell10")
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A.4 MATLAB Simulations: 10-Cells, Simple Charger, and No Bypasses

%% Charge/Discharge with No Bypass 10 Cells
cle;

clear all;

% %close all;

% VALUES DERIVED FROM ACTUAL CHARGE DATA, INTEGRATED
CHARGING CURRENT
% FROM EACH CELL (TOP TO BOTTOM IS CELL 1 TO 10)

% ampHour =

% 53.4478888888888
% 52.4618888888889
% 51.3797222222222
% 51.1152222222222
% 50.5888333333333
% 51.4822499999999
% 51.1220555555555
% 50.7726944444444
% 49.8306944444444
% 50.1831111111111
% SOC_Percent =

% 89.0798148148147
% 87.4364814814814
% 85.6328703703704
% 85.192037037037
% 84.3147222222221
% 85.8037499999999
% 85.2034259259258
% 84.6211574074073
% 83.0511574074073
% 83.6385185185185
% Initial_Charge_SOC_Percent =
% 10.9201851851853
% 12.5635185185186
% 14.3671296296296
% 14.807962962963
% 15.6852777777779
% 14.1962500000001
% 14.7965740740742
% 15.3788425925927
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% 16.9488425925927
% 16.3614814814815

initialCharge = 60; % Initial Charge in AmpHours
Ro =-1.09287007554604e-05;

C =1222821.68974733;

al =15;

a2 =-10.14;

Cd =25052.2307692307,

Rd =0.00243491290503841;

%Cd = 7000;

%Rd = 0.005;

tau = Cd*Rd;

ConstV =0;

current=0;

chargingTimeHr = 100; %Simulation hours
chargingTimeSec = chargingTimeHr*3600;
dischargeCnt=0;

turnOnLoad = 0;

Tsamp = 1; %one sec

x=[ 3.14011797411029;
3.82610318626407e-07;
1.53543639979267,

-1.08581425643197;
3.76948681201294e-08];

X=[XXXXXXXXXX];

%1 = [zeros(1,1800) -ones(1,3600%3)*20 zeros(1,1800) ones(1,3600*3)*20
zeros(1,1800)];

gs = zeros(chargingTimeSec,10);
qd = zeros(chargingTimeSec,10);
v = zeros(chargingTimeSec,10);
I = zeros(chargingTimeSec,10);

% 10.9201851851853
% 12.5635185185186
% 14.3671296296296
% 14.807962962963

% 15.6852777777779
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% 14.1962500000001

% 14.7965740740742
% 15.3788425925927
% 16.9488425925927
% 16.3614814814815

gs(1,1) = initialCharge*3600*0.08; %Coloumb * Amps*Sec
qd(1,1) = 0;

gs(1,2) = initialCharge*3600*0.126; %Coloumb * Amps*Sec
qd(1,2) = 0;

gs(1,3) = initialCharge*3600*0.144; %Coloumb * Amps*Sec
qd(1,3) = 0;

gs(1,4) = initialCharge*3600*0.148; %Coloumb * Amps*Sec
qd(1,4) = 0;

gs(1,5) = initialCharge*3600*0.157; %Coloumb * Amps*Sec
qd(1,5) = 0;

gs(1,6) = initialCharge*3600*0.142; %Coloumb * Amps*Sec
qd(1,6) = 0;

gs(1,7) = initialCharge*3600*0.148; %Coloumb * Amps*Sec
qd(1,7) = 0;

gs(1,8) = initialCharge*3600*0.154; %Coloumb * Amps*Sec
qd(1,8) = 0;

gs(1,9) = initialCharge*3600*0.169; %Coloumb * Amps*Sec
qd(1,9) = 0;

gs(1,10) = initial Charge*3600*0.164; %Coloumb * Amps*Sec
qd(1,10) = 0;

1(1,1)=0;
1(1,2)=0;
1(1,3)=0;
1(1,4)=0;
1(1,5)=0;
1(1,6)=0;
1(1,7)=0;
1(1,8)=0;
1(1,9)=0;
1(1,10)=0;

v(1,1) = x(1,1) +x(2,1) *qs(1,1) +x(3,1)*qd(1,1) +x(4,1)
*exp(a2*qs(1,1)/240000) + x(5,1) *exp(al*qs(1,1)/240000) + I(1)*Ro;
v(1,2) = x(1,2) +x(2,2) *qs(1,2) +x(3,2)*qd(1,2) +x(4,2)
*exp(a2*qs(1,2)/240000) + x(5,2) *exp(al*qs(1,2)/240000) + I(1)*Ro;
v(1,3) = x(1,3) +x(2,3) *qs(1,3) +x(3,3)*qd(1,3) +x(4,3)
*exp(a2*qs(1,3)/240000) + x(5,3) *exp(al*qs(1,3)/240000) + I(1)*Ro;
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v(1,4) = x(1,4) +x(2,4) *qs(1,4) +x(3,4)*qd(1,4) +x(4.4)
*exp(a2*qs(1,4)/240000) + x(5,4) *exp(al*qs(1,4)/240000) + I(1)*Ro;

v(1,5) = x(1,5) +x(2,5) *qs(1,5) + x(3,5)%qd(1,5) +x(4,5)
*exp(a2*qs(1,5)/240000) + x(5,5) *exp(al*qs(1,5)/240000) + I(1)*Ro;

v(1,6) = x(1,6) +x(2,6) *qs(1,6) + x(3,6)*qd(1,6) + x(4,6)
*exp(a2*qs(1,6)/240000) + x(5,6) *exp(al*qs(1,6)/240000) + I(1)*Ro;

v(1,7) = x(1,7) +x(2,7) *qs(1,7) +x(3,7)*qd(1,7) +x(4,7)
*exp(a2*qs(1,7)/240000) + x(5,7) *exp(al*qs(1,7)/240000) + I(1)*Ro;

v(1,8) = x(1,8) +x(2,8) *qs(1,8) + x(3,8)*qd(1,8) + x(4.8)
*exp(a2*qs(1,8)/240000) + x(5,8) *exp(al*qs(1,8)/240000) + I(1)*Ro;

v(1,9) = x(1,9) +x(2,9) *qs(1,9) + x(3,9)%qd(1,9) + x(4,9)
*exp(a2*qs(1,9)/240000) + x(5,9) *exp(al*qs(1,9)/240000) + I(1)*Ro;
v(1,10) = x(1,10) + x(2,10)*qs(1,10) + x(3,10)*qd(1,10) +
x(4,10)*exp(a2*qs(1,10)/240000) + x(5,10)*exp(al*qs(1,10)/240000) + I(1)*Ro;

% SIMULATION OF CONTINUOUS CHARGE AND DISCHARGE PROFILES
% SYSTEM STARTS WITH CHARGING

% CHARGE PROFILE IS CONST. CURRENT AT 20 AMPS

% ONCE THE BATTERY PACK TOTAL VOLTAGE (SUM OF EACH
INDVIDUAL CELL VOLTAGE)

% REACHES 3.8V X 3, THE CHARGE PROFILE GOES TO CONSTANT
VOLTAGE MODE

for n = 1:1:chargingTimeSec

fork=1:10 %REPEAT SIMULATION CALCUATIONS FOR EACH CELL
(CELLS IN SERIES ASSUMES, SAME CURRENT THROUGH EACH CELL)

9% CHARGING PROCESS: CONSTANT CURRENT
9% THE FOLLOWING LOGIC DETERMINES WHEN TO SWITCH TO
CONSTANT VOLTAGE MODE
if (max(v(n,:)) <= 3.8 && ConstV==0)
charge_current = 12; % MAINTAIN CONSTANT CURRENT
else
ConstV =1; % START CONSTANT VOLTAGE MODE
end

% CHARGING PROCESS: CONSTANT VOLTAGE
9% CHECKS IF CURRENT DROPS BELOW 6 AMPS IN CONSTANT
VOLTAGE MODE
% 1F SO, SWITCHES ON LOAD
if ConstV==
vtot =
v(n,)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10);
if vtot >=4.2*%10
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current = 0;
turnOnlLoad=1;
ConstV=0;
end
end

% LOAD ACTIVE: 60 AMP LOAD
% IF LOAD IS ACTIVE, 60 AMP LOAD IS ON AND CHARGING
PROCESS STOPS
if turnOnLoad==
I(n,k) = -60;
if
(v(n,D)+v(n,2)+v(n,3)+v(n,4)+v(n,5)+v(n,6)+v(n,7)+v(n,8)+v(n,9)+v(n,10)) <
(2.5*%10)
turnOnLoad = 0;
dischargeCnt=dischargeCnt+1
charge_current = 12;
end
else % LOAD IS NOT ON AND CHARGING IS ACTIVE, TURN ON
BYPASS WHEN NECESSARY

I(n,k) = charge_current;
end

% CALCULATE NEXT TIME-STEP USING CELL MODELS
gs(n+1,k) = gs(n,k)+I(n,k)*Tsamp;
qd(n+1,k) = qd(n,k)+((I(n,k)/Cd)-(qd(n,k)/(Rd*Cd)))*Tsamp;
v(n+1,k) = x(1,k) + x(2,k)*qgs(n,k) + x(3,k)*qd(n,k) +
x(4,k)*exp(a2*qs(n,k)/240000) + x(5,k)*exp(al *qs(n,k)/240000) + I(n,k)*Ro;
end
end

figure(6)

subplot(2,1,1)

hold all
plot([0:1:chargingTimeSec]/3600,v(:,1))
plot([0:1:chargingTimeSec]/3600,v(:,2))
plot([0:1:chargingTimeSec]/3600,v(:,3))
plot([0:1:chargingTimeSec]/3600,v(:,4))
plot([0:1:chargingTimeSec]/3600,v(:,5))
plot([0:1:chargingTimeSec]/3600,v(:,6))
plot([0:1:chargingTimeSec]/3600,v(:,7))
plot([0:1:chargingTimeSec]/3600,v(:,8))
plot([0:1:chargingTimeSec]/3600,v(:,9))

e
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plot([0:1:chargingTimeSec]/3600,v(:,10))
plot([0:1:chargingTimeSec-1]/3600,4.2*ones(chargingTimeSec,1),'r'
plot([0:1:chargingTimeSec-1]/3600,2.5*ones(chargingTimeSec,1),'r')
xlabel("Time [Hours]')

ylabel('"Voltage')

subplot(2,1,2)

hold all
plot([0:1:chargingTimeSec-1]/3600, 1(:,1))
plot([0:1:chargingTimeSec-1]/3600, I(:,2))
plot([0:1:chargingTimeSec-1]/3600, 1(:,3))
plot([0:1:chargingTimeSec-1]/3600, 1(:,4))
plot([0:1:chargingTimeSec-1]/3600, 1(:,5))
plot([0:1:chargingTimeSec-1]/3600, I(:,6))
plot([0:1:chargingTimeSec-1]/3600, 1(:,7))
plot([0:1:chargingTimeSec-1]/3600, I(:,8))
plot([0:1:chargingTimeSec-1]/3600, 1(:,9))
plot([0:1:chargingTimeSec-1]/3600, 1(:,10))

xlabel("Time [Hours]')
ylabel('Current')
disp('Discharge cnt is: ')
disp(dischargeCnt)

147




APPENDIX B

ICMU CODE

[/ e s st stesteste ke ke sk sk st sfeste ke ke sk sk st sfesteske ke sk sk stesfesteskeske sk sk stestestesteske sk sk st stttk skoskestokolokokoskok

This program was produced by the

CodeWizardAVR V2.04.8 Standard

Automatic Program Generator

Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.1.
http://www.hpinfotech.com

Project : Battery Board Slave

Version : .9

Date :10/15/2010

Author :

Company : University of Akron

Comments:

Chip type : ATxmegal 6A4

Program type : Application

AVR Core Clock frequency: 32.000000 MHz
Memory model : Small

Data Stack size 1512

e st e st st st st stestestesteste st st st sk sk sk s s s s sk s sl sl sk ke ke sk skeskeskestestestestestototototokokokokololotolokokok /

#include <io.h>

/I#include <delay.h>
#include <math.h>
#include <stdio.h>
#include <avr_compiler.h>

#define MAX_AMP_SEC 216000.00

#define STOP_CHARGE_VOLT 3.8
#define OVERDISCHARGE_VOLT 2.5

/[Equivalent to a voltage of 3.5V
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#define DUTY_CYC_MAX 1330 //Limits Max Bypass Current to ~2 Amps at 3.8
Volts

/[Current Integrating time in seconds
#define TSamp_TCD1 0.0039996

//Count to wait until MOSFET locks on after battVolt>3.8V mosCurrent>1.95A
and battCurr<1A
#define MAX _LOCK_MOS _CURRENT_CNT 700

//Count to wait until Duty Cycle Shuts off after seeing current out of battery
#define MAX_DUTY_OFF_CNT 700

//Number of bytes to be sent to MASTER
#define MAX_DATA_BYTES 10

//Address for all slave boards to respond to
#define allCallAddress 100

#define READ 1
#define WRITE 0

//LED Colors

#define GREEN 0b10
#define RED 0b01
#define AMBER 0bl11

#define LOW_SOC 70 //Picked a value then the largest ledValue

#define IS_CHARGING_AT_2_MSG 0xFO
#define IS_NOT_CHARGING_AT_2_MSG 0xFA

static float battVolt;

static float battCurr;

static float mosCurr;

static float temp;

/Istatic float prevBattCurr;

static float AmpSec=MAX_AMP_SEC;

signed long ADCtemp[+];

signed int ADCvalues[4];

char ADCsamplecount = 03 // we're supersampling
signed int ADCbuffer;

char stepready = 0;
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unsigned int voltCntrlCnt = 03

unsigned char datalnTWIC=0;
unsigned char ledVal=0;

signed long OFFSET_CHO_TOTAL=0;
signed long OFFSET_CHI1_TOTAL=0;
signed long OFFSET_CH2_TOTAL=0;

signed int OFFSET_CHO_DIFF=0;
signed int OFFSET_CH1_DIFF=0;
signed int OFFSET_CH2_DIFF=0;

/lunsigned char lockMosCurr = 0;
unsigned int dutyOffCnt=0;

unsigned char battDatal MAX_DATA_BYTES];
unsigned char dataByteCnt=0;

unsigned char slaveAddress = 0x00;
signed int offset=0;

unsigned char ledColor=GREEN;
unsigned char chargingAtTwoAmps=0;

//ADC OFFSET for each of the 10 boards OFFSET=M*RAWADC+B calibrated
manually

float const ADC_OFFSET_M[10]={-0.011107,-0.013504,-0.015376,-0.017009,=
0.015646,-0.013056,-0.015416,-0.015210,-0.013949,-0.012555};

float const ADC_OFFSET_B[10]={ 6.366141, 6.417454,6.556141,7.638119,
6.499410, 5.792097, 5.235612, 3.654257, 5.374430, 5.624966};

signed int bound(signed int value, signed int min, signed int max){
if(value > max)
return max;
if(value < min)
return min;
return value;

}
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#pragma warn-
char nvm_cmd_read( char *nvm_cmd_addr, char index ){
#asm
LDD R30,Y+0 ;Z =index
LDI R31,0
LDD R26,Y+! ;X =&NVM.CMD
LDD R27,Y+2
LDI R25,2 3 NVM.CMD = NVM_CMD_READ_CALIB_ROW_gc
ST X,R25
LPM ; read the data in RO
; Clean up NVM Command register. */
LDI R25,0 3 NVM.CMD = NVM_CMD_NO_OPERATION_gc
ST X,R25
MOV R30,R0 ; return result
#endasm

}

#pragma warn+

char SP_ReadCalibrationByte( char index ){
return nvm_cmd_read(&NVM.CMD,index);

}

/I System Clocks initialization
void system_clocks_init(void)

{

unsigned char n,s;

// Optimize for speed

#pragma optsize-

// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts

#asm("cli")

// Internal 32 kHz RC oscillator initialization

// Enable the internal 32 kHz RC oscillator
OSC.CTRLI=OSC_RC32KEN_bm;

// Wait for the internal 32 kHz RC oscillator to stabilize
while ((OSC.STATUS & OSC_RC32KRDY_bm)==0);

// Internal 32 MHz RC oscillator initialization
// Enable the internal 32 MHz RC oscillator
OSC.CTRLI=OSC_RC32MEN_bm;
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/I System Clock prescaler A division factor: 1
// System Clock prescalers B & C division factors: B:1, C:1
/I ClkPer4: 32000.000 kHz
/l ClkPer2: 32000.000 kHz
/l ClkPer: 32000.000 kHz
/I C1IkCPU: 32000.000 kHz
n=(CLK.PSCTRL & (~(CLK_PSADIV_gm | CLK_PSBCDIV1_bm |
CLK_PSBCDIV0_bm))) |
CLK_PSADIV_1_gc | CLK_PSBCDIV_1_1_gc;
CCP=CCP_IOREG_gc;
CLK.PSCTRL=n;

// Internal 32 MHz RC osc. calibration reference clock source: 32.768 kHz Internal
Osc.

OSC.DFLLCTRL&= ~(OSC_RC32MCREF_bm | OSC_RC2MCREF_bm);

// Enable the autocalibration of the internal 32 MHz RC oscillator
DFLLRC32M.CTRLI=DFLL_ENABLE_bm;

// Wait for the internal 32 MHz RC oscillator to stabilize
while ((OSC.STATUS & OSC_RC32MRDY_bm)==0);

// Select the system clock source: 32 MHz Internal RC Osc.

n=(CLK.CTRL & (~CLK_SCLKSEL_gm)) | CLK_SCLKSEL_RC32M_gc;
CCP=CCP_IOREG_gc;

CLK.CTRL=n;

// Disable the unused oscillators: 2 MHz, external clock/crystal oscillator, PLL
OSC.CTRL&= ~(OSC_RC2MEN_bm | OSC_XOSCEN_bm | OSC_PLLEN_bm);

// Peripheral Clock output: Disabled
PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT &
(~PORTCFG_CLKOUT_gm)) | PORTCFG_CLKOUT_OFF_gc;

// Restore interrupts enabled/disabled state
SREG=s;

}

/l Watchdog Timer initialization
void watchdog_init(void)

{

unsigned char s,n;
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/I Optimize for speed

#pragma optsize-

// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts

#asm("cli")

/l Watchdog Timer: Off

n=(WDT.CTRL & (~-WDT_ENABLE_bm)) | WDT_CEN_bm;
CCP=CCP_IOREG_gc;

WDT.CTRL=n;

/l Watchdog window mode: Off

n=(WDT.WINCTRL & (~-WDT_WEN_bm)) | WDT_WCEN_bm;
CCP=CCP_IOREG_gc;

WDT.WINCTRL=n;

// Restore interrupts enabled/disabled state
SREG=s;

}

// Event System initialization
void event_system_init(void)
{
// Event System Channel 0 source: Port D, Pin0O
EVSYS.CHOMUX=EVSYS_CHMUX_PORTD_PINO_gc;
// Event System Channel 1 source: Port D, Pin0O
EVSYS.CHIMUX=EVSYS_CHMUX_OFF_gc;

/I Event System Channel 2 source: None
EVSYS.CH2MUX=EVSYS_CHMUX_PORTD_PIN1_gc;
/I Event System Channel 3 source: None
EVSYS.CH3MUX=EVSYS_CHMUX_OFF_gc;
/I Event System Channel 4 source: None
EVSYS.CH4MUX=EVSYS_CHMUX_OFF_gc;
/I Event System Channel 5 source: None
EVSYS.CHSMUX=EVSYS_CHMUX_OFF_gc;
/I Event System Channel 6 source: None
EVSYS.CH6MUX=EVSYS_CHMUX_OFF_gc;
// Event System Channel 7 source: None
EVSYS.CH7MUX=EVSYS_CHMUX_OFF_gc;

/l Event System Channel 0 Digital Filter Coefficient: 4 Samples
EVSYS.CHOCTRL=0b000010113
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// Event System Channel 1 Digital Filter Coefficient: 1 Sample

EVSYS.CHICTRL=EVSYS_DIGFILT_ISAMPLE_gc;

// Event System Channel 2 Digital Filter Coefficient: 1 Sample

EVSYS.CH2CTRL=0b000010113

/l Event System Channel 3 Digital Filter Coefficient: 1 Sample

EVSYS.CH3CTRL=EVSYS_DIGFILT_ISAMPLE_gc;

// Event System Channel 4 Digital Filter Coefficient: 1 Sample

EVSYS.CH4CTRL=(EVSYS.CH4CTRL & (~(EVSYS_QDIRM_gm |

EVSYS_QDIEN_bm | EVSYS_QDEN_bm | EVSYS_DIGFILT_gm))) |
EVSYS_DIGFILT_1SAMPLE_gc;

/l Event System Channel 5 Digital Filter Coefficient: 1 Sample

EVSYS.CH5CTRL=EVSYS_DIGFILT_ISAMPLE_gc;

// Event System Channel 6 Digital Filter Coefficient: 1 Sample

EVSYS.CH6CTRL=EVSYS_DIGFILT_ISAMPLE_gc;

/l Event System Channel 7 Digital Filter Coefficient: 1 Sample

EVSYS.CH7CTRL=EVSYS_DIGFILT_ISAMPLE_gc;

// Event System Channel 0 output: Disabled

/l Note: the correct direction for the Event System Channel 0 output
/I is configured in the ports_init function
PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT &
(~PORTCFG_EVOUT_gm)) | PORTCFG_EVOUT_OFF_gc;

}

// Ports initialization
void ports_init(void)
{
// PORTA initialization
/I OUT register
PORTA.OUT=0x00;

// BitO: Input
// Bitl: Input
// Bit2: Input
// Bit3: Input
// Bit4: Input
// Bit5: Input
// Bit6: Input
// Bit7: Input
PORTA.DIR=0x00;

// BitO Output/Pull configuration: Totempole/No
// BitO Input/Sense configuration: Input buffer disabled
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/1 Bit0 inverted: Off

// Bit0 slew rate limitation: Off
PORTA.PINOCTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;

// Bitl Output/Pull configuration: Totempole/No

// Bitl Input/Sense configuration: Input buffer disabled
// Bitl inverted: Off

// Bitl slew rate limitation: Off
PORTA.PINICTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;

// Bit2 Output/Pull configuration: Totempole/No

/1 Bit2 Input/Sense configuration: Input buffer disabled
// Bit2 inverted: Off

// Bit2 slew rate limitation: Off
PORTA.PIN2CTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;

// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Input buffer disabled
// Bit3 inverted: Off

// Bit3 slew rate limitation: Off
PORTA.PIN3CTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;

// Bit4 Output/Pull configuration: Totempole/No

// Bit4 Input/Sense configuration: Input buffer disabled
// Bit4 inverted: Off

// Bit4 slew rate limitation: Off
PORTA.PINACTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;

// BitS Output/Pull configuration: Totempole/No

// Bit5 Input/Sense configuration: Input buffer disabled
// Bit5 inverted: Off

// Bit5 slew rate limitation: Off
PORTA.PINSCTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;

// Bit6 Output/Pull configuration: Totempole/No

// Bit6 Input/Sense configuration: Input buffer disabled
// Bit6 inverted: Off

// Bit6 slew rate limitation: Off
PORTA.PIN6CTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;

// Bit7 Output/Pull configuration: Totempole/No

// Bit7 Input/Sense configuration: Input buffer disabled
// Bit7 inverted: Off

// Bit7 slew rate limitation: Off
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PORTA.PIN7CTRL=PORT_OPC_TOTEM_gc |

PORT_ISC_INPUT_DISABLE_gc;

// Interrupt O level: Disabled

// Interrupt 1 level: Disabled

PORTA.INTCTRL=(PORTA.INTCTRL & (~(PORT_INTILVL_gm I

PORT_INTOLVL_gm))) |
PORT_INTILVL_OFF_gc | PORT_INTOLVL_OFF_gc;

// Bit0 pin change interrupt 0: Off

// Bitl pin change interrupt 0: Off

// Bit2 pin change interrupt 0: Off

// Bit3 pin change interrupt 0: Off

// Bit4 pin change interrupt 0: Off

// BitS pin change interrupt 0: Off

// Bit6 pin change interrupt 0: Off

// Bit7 pin change interrupt 0: Off

PORTA.INTOMASK=0x00;

// Bit0 pin change interrupt 1: Off

// Bitl pin change interrupt 1: Off

// Bit2 pin change interrupt 1: Off

// Bit3 pin change interrupt 1: Off

// Bit4 pin change interrupt 1: Off

// Bit5 pin change interrupt 1: Off

// Bit6 pin change interrupt 1: Off

// Bit7 pin change interrupt 1: Off

PORTA.INTIMASK=0x003

// PORTB initialization

/I OUT register

PORTB.OUT=0x00;

// Bit0O: Input

// Bitl: Input

// Bit2: Input

// Bit3: Input

PORTB.DIR=0x00;

// BitO Output/Pull configuration: Totempole/No

// BitO Input/Sense configuration: Input buffer disabled
// Bit0 inverted: Off

// Bit0 slew rate limitation: Off
PORTB.PINOCTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;

// Bitl Output/Pull configuration: Totempole/No

// Bitl Input/Sense configuration: Input buffer disabled
// Bitl inverted: Off

// Bitl slew rate limitation: Off
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PORTB.PIN1ICTRL=PORT_OPC_TOTEM_gc |
PORT_ISC_INPUT_DISABLE_gc;
// Bit2 Output/Pull configuration: Totempole/No
// Bit2 Input/Sense configuration: Input buffer disabled
// Bit2 inverted: Off
// Bit2 slew rate limitation: Off
PORTB.PIN2CTRL=PORT_OPC_PULLUP_gc |
PORT_ISC_INPUT_DISABLE_gc;
// Bit3 Output/Pull configuration: Totempole/No
/1 Bit3 Input/Sense configuration: Input buffer disabled
// Bit3 inverted: Off
// Bit3 slew rate limitation: Off
PORTB.PIN3CTRL=PORT_OPC_PULLUP_gc |
PORT_ISC_INPUT_DISABLE_gc;
// Interrupt O level: Disabled
// Interrupt 1 level: Disabled
PORTB.INTCTRL=(PORTB.INTCTRL & (~(PORT_INTILVL_gm |
PORT_INTOLVL_gm))) |

PORT_INTILVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off
// Bitl pin change interrupt 0: Off
// Bit2 pin change interrupt 0: Off
// Bit3 pin change interrupt 0: Off
PORTB.INTOMASK=0x00;
// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
// Bit2 pin change interrupt 1: Off
// Bit3 pin change interrupt 1: Off
PORTB.INTIMASK=0x00;

// PORTC initialization
// OUT register
PORTC.OUT=0x00;

// BitO: Output

// Bitl: Output

// Bit2: Input

// Bit3: Input

// Bit4: Output

// BitS: Input

// Bit6: Input

// Bit7: Output
PORTC.DIR=0x93;
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// BitO Output/Pull configuration: WIRED-AND (on input)

// BitO Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0O slew rate limitation: Off
PORTC.PINOCTRL=PORT_OPC_WIREDAND_gc |
PORT_ISC_BOTHEDGES_gc;

// Bitl Output/Pull configuration: WIRED-AND (on input)

// Bitl Input/Sense configuration: Sense both edges

// Bitl inverted: Off

// Bitl slew rate limitation: Off
PORTC.PINICTRL=PORT_OPC_WIREDAND_gc |
PORT_ISC_BOTHEDGES_gc;

// Bit2 Output/Pull configuration: Totempole/No

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTC.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTC.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Bit4 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit4 Input/Sense configuration: Sense both edges

// Bit4 inverted: Off

// Bit4 slew rate limitation: Off
PORTC.PINACTRL=PORT_OPC_PULLDOWN_gc |
PORT_ISC_BOTHEDGES_gc;

// BitS Output/Pull configuration: Totempole/Pull-up (on input)

// Bit5 Input/Sense configuration: Sense both edges

// Bit5 inverted: Off

// Bit5 slew rate limitation: Off

PORTC.PINSCTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;
// Bit6 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit6 Input/Sense configuration: Sense both edges

// Bit6 inverted: Off

// Bit6 slew rate limitation: Off

PORTC.PIN6CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;
// Bit7 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit7 Input/Sense configuration: Sense both edges

// Bit7 inverted: Off

// Bit7 slew rate limitation: Off

PORTC.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Interrupt O level: Disabled
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/l Interrupt 1 level: Disabled
PORTC.INTCTRL=(PORTC.INTCTRL & (~(PORT_INTILVL_gm |
PORT_INTOLVL_gm))) |
PORT_INTILVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off
// Bitl pin change interrupt 0: Off
// Bit2 pin change interrupt 0: Off
// Bit3 pin change interrupt 0: Off
// Bit4 pin change interrupt 0: Off
// Bit5 pin change interrupt 0: Off
// Bit6 pin change interrupt 0: Off
// Bit7 pin change interrupt 0: Off
PORTC.INTOMASK=0x00;
// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
// Bit2 pin change interrupt 1: Off
// Bit3 pin change interrupt 1: Off
// Bit4 pin change interrupt 1: Off
// BitS pin change interrupt 1: Off
// Bit6 pin change interrupt 1: Off
// Bit7 pin change interrupt 1: Off
PORTC.INTIMASK=0x00;

// PORTD initialization
/I OUT register
PORTD.OUT=0x00;

// Bit0: Output
// Bitl: Output
// Bit2: Output
// Bit3: Output
// Bit4: Output
// BitS: Output
// Bit6: Output
// Bit7: Output
PORTD.DIR=0xFF;

// Bit0O Output/Pull configuration: Totempole/Pull-up (on input)

// BitO Input/Sense configuration: Sense low level

// Bit0 inverted: Off

// Bit0O slew rate limitation: Off
PORTD.PINOCTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc;

// Bitl Output/Pull configuration: Totempole/Pull-up (on input)
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// Bitl Input/Sense configuration: Sense low level

// Bitl inverted: Off

// Bitl slew rate limitation: Off

PORTD.PINICTRL=PORT_OPC_TOTEM_gc | PORT_ISC_LEVEL_gc;

// Bit2 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTD.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Bit3 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTD.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Bit4 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit4 Input/Sense configuration: Sense both edges

// Bit4 inverted: Off

// Bit4 slew rate limitation: Off

PORTD.PINACTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
/1 Bit5 Output/Pull configuration: Totempole/Pull-up (on input)

// BitS Input/Sense configuration: Sense both edges

// Bit5 inverted: Off

// Bit5 slew rate limitation: Off

PORTD.PINSCTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Bit6 Output/Pull configuration: Totempole/No

// Bit6 Input/Sense configuration: Sense both edges

// Bit6 inverted: Off

// Bit6 slew rate limitation: Off

PORTD.PIN6CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Bit7 Output/Pull configuration: Totempole/No

// Bit7 Input/Sense configuration: Sense both edges

// Bit7 inverted: Off

// Bit7 slew rate limitation: Off

PORTD.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Interrupt O level: Disabled

// Interrupt 1 level: Disabled

PORTD.INTCTRL=(PORTD.INTCTRL & (~(PORT_INTILVL_gm I
PORT_INTOLVL_gm))) |
PORT_INTILVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off
// Bitl pin change interrupt 0: Off
// Bit2 pin change interrupt 0: Off
// Bit3 pin change interrupt 0: Off
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// Bit4 pin change interrupt 0: Off
// Bit5 pin change interrupt 0: Off
// Bit6 pin change interrupt 0: Off
// Bit7 pin change interrupt 0: Off

PORTD.INTOMASK=0x00;

// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
// Bit2 pin change interrupt 1: Off
// Bit3 pin change interrupt 1: Off
// Bit4 pin change interrupt 1: Off
// Bit5 pin change interrupt 1: Off
// Bit6 pin change interrupt 1: Off
// Bit7 pin change interrupt 1: Off
PORTD.INTIMASK=0x003

// PORTE initialization
/I OUT register
PORTE.OUT=0x003 //Initial Output Value

// BitO: Output
// Bitl: Output
// Bit2: Output
// Bit3: Output
PORTE.DIR=0x0F;

// BitO Output/Pull configuration: Totempole/No

// BitO Input/Sense configuration: Sense both edges

/1 Bit0 inverted: Off

// Bit0O slew rate limitation: Off

PORTE.PINOCTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bitl Output/Pull configuration: Totempole/No

// Bitl Input/Sense configuration: Sense both edges

// Bitl inverted: On

// Bitl slew rate limitation: Off

PORTE.PINICTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit2 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off

PORTE.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES _gc;
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// Bit3 Output/Pull configuration: Totempole/Pull-up (on input)

// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTE.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES _gc;
// Interrupt O level: Disabled

/[ Interrupt 1 level: Disabled

PORTE.INTCTRL=(PORTE.INTCTRL & (~(PORT_INTILVL_gm |
PORT_INTOLVL_gm))) |

PORT_INTILVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off
// Bitl pin change interrupt 0: Off
// Bit2 pin change interrupt 0: Off
// Bit3 pin change interrupt 0: Off
PORTE.INTOMASK=0x003
// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
// Bit2 pin change interrupt 1: Off
// Bit3 pin change interrupt 1: Off
PORTE.INTIMASK=0x00;

// PORTR initialization
// OUT register
PORTR.OUT=0x003
// Bit0O: Input
// Bitl: Input
PORTR.DIR=0x003
// BitO Output/Pull configuration: Totempole/No
// BitO Input/Sense configuration: Sense both edges
// Bit0 inverted: Off
// Bit0 slew rate limitation: Off
PORTR.PINOCTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;
// Bitl Output/Pull configuration: Totempole/No
// Bitl Input/Sense configuration: Sense both edges
// Bitl inverted: Off
// Bitl slew rate limitation: Off
PORTR.PINICTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;
// Interrupt O level: Disabled
// Interrupt 1 level: Disabled
PORTR.INTCTRL=(PORTR.INTCTRL & (~(PORT_INTILVL_gm |
PORT_INTOLVL_gm))) |
PORT_INTILVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off
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// Bitl pin change interrupt 0: Off
PORTR.INTOMASK=0x00;
// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
PORTR.INTIMASK=0x00;

}

/>l<

// Virtual Ports initialization
void vports_init(void)

{
/I PORTA mapped to VPORTO

// PORTB mapped to VPORT1
PORTCFG.VPCTRLA=PORTCFG_VPIMAP_PORTB_gc |
PORTCFG_VPOMAP_PORTA_gc;

// PORTC mapped to VPORT?2

// PORTD mapped to VPORT?3
PORTCFG.VPCTRLB=PORTCFG_VP3MAP_PORTD_gc |
PORTCFG_VP2MAP_PORTC_gc;

}
*/

// Disable a Timer/Counter type 0
void tcO_disable(TCO_t *ptc)

{
// Timer/Counter off

ptc->CTRLA=(ptc->CTRLA & (~TCO_CLKSEL_gm)) | TC_CLKSEL_OFF_gc;
// Issue a reset command

ptc->CTRLFSET=TC_CMD_RESET_gc;

}

// Disable a Timer/Counter type 1
void tcl_disable(TC1_t *ptc)

{
// Timer/Counter off

ptc->CTRLA=(ptc->CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_OFF_gc;
// Issue a reset command

ptc->CTRLFSET=TC_CMD_RESET_gc;

}

/l Timer/counter TCC1 Overflow/Underflow interrupt service routine
interrupt [TCCO_OVF_vect] void tccO_overflow_isr(void)
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{

// write your code here

}

// Timer/Counter TCDO initialization
void tcdO_init(void)
{

unsigned char s;

// Note: the correct PORTD direction for the Compare Channels outputs
/I 1s configured in the ports_init function

// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure
tcO_disable(&TCDO);

// Clock source: Peripheral Clock/1
TCDO.CTRLA=0;

TCDO.CTRLC=0b000000003
TCDO.CTRLD=0b011010103
TCDO.CTRLE=0b000000003

/l Overflow interrupt: Medium Level
/l Error interrupt: Disabled
TCDO.INTCTRLA=(TCDO.INTCTRLA & (~(TCO_ERRINTLVL_gm |
TCO_OVFINTLVL_gm))) |
TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc;

/I Compare/Capture channel A interrupt: Disabled

/l Compare/Capture channel B interrupt: Disabled

/I Compare/Capture channel C interrupt: Disabled

/I Compare/Capture channel D interrupt: Disabled

TCDO.INTCTRLB=(TCDO.INTCTRLB & (~(TCO_CCDINTLVL_gm |

TCO_CCCINTLVL_gm | TCO_CCBINTLVL_gm | TCO_CCAINTLVL_gm))) |
TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF _gc |

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc;
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// High resolution extension: Off
HIRESD.CTRL&= ~HIRES_HRENO_bm;

/l Clear the interrupt flags
TCDO.INTFLAGS=TCDO.INTFLAGS;

/I Set counter register
TCDO.CNT=0x0000;

/I Set period register

TCDO.PER=20719;

// Set channel A Compare/Capture register
TCDO0.CCA=0x00003

// Set channel B Compare/Capture register
TCDO0.CCB=0x0000;

// Set channel C Compare/Capture register
TCDO0.CCC=0x0000;

// Set channel D Compare/Capture register
TCDO0.CCD=0x00003

// Restore interrupts enabled/disabled state
SREG=s;

TCDO.CTRLA=0b000000013
}

/l Timer/counter TCDO Overflow/Underflow interrupt service routine
interrupt [TCDO_OVE _vect] void tcd0_overflow_isr(void)

{
}

// Timer/Counter TCD1 initialization
void tcd1_init(void)
{

unsigned char s;

// Note: the correct PORTD direction for the Compare Channels outputs
/I is configured in the ports_init function

// Save interrupts enabled/disabled state
s=SREG;
// Disable interrupts
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#asm("cli")

// Disable and reset the timer/counter just to be sure
tcl_disable(&TCD1);

/l Clock source: Peripheral Clock/2
TCD1.CTRLA=(TCD1.CTRLA & (~TC1_CLKSEL_gm)) |
TC_CLKSEL_DIV2_gc;

/ Mode: Normal Operation, Overflow Int./Event on TOP
/I Compare/Capture on channel A: Off
// Compare/Capture on channel B: Off
TCD1.CTRLB=(TCD1.CTRLB & (~(TC1_CCAEN_bm | TC1_CCBEN_bm |
TCI_WGMODE_gm))) |
TC_WGMODE_NORMAL_gc;

/I Capture event source: None

// Capture event action: None

TCD1.CTRLD=(TCD1.CTRLD & (~(TC1_EVACT_gm | TC1_EVSEL_gm))) |
TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc;

// Overflow interrupt: Low Level

// Error interrupt: Enabled

TCDI1.INTCTRLA=(TCDI1.INTCTRLA & (~(TC1_ERRINTLVL_gm))) |
TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_LO_gc |

TCI_OVFINTLVL_gm;

/l Compare/Capture channel A interrupt: Disabled
/I Compare/Capture channel B interrupt: Disabled
TCDI1.INTCTRLB=(TCDI.INTCTRLB & (~(TC1_CCBINTLVL_gm |
TCI_CCAINTLVL_gm))) |

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF _gc;

// High resolution extension: Off
HIRESD.CTRL&= ~HIRES_HRENI1_bm;

/I Clear the interrupt flags
TCDI1.INTFLAGS=TCDI1.INTFLAGS;

/I Set counter register
TCDI1.CNT=0x0000;

/I Set period register

TCD1.PER=64000;

// Set channel A Compare/Capture register
TCD1.CCA=0x00003

// Set channel B Compare/Capture register
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TCD1.CCB=0x0000;

// Restore interrupts enabled/disabled state
SREG=s;
}

// Timer/counter TCD1 Overflow/Underflow interrupt service routine
interrupt [TCD1_OVEFE_vect] void tcd1_overflow_isr(void){
stepready = |3

if (battCurr>0.1 Il battCurr<-0.35){
AmpSec = AmpSec + battCurr*TSamp_TCD1;
}else if ( battCurr>-0.35 & & battCurr<(.0){
AmpSec = AmpSec + (battCurr+.05)*TSamp_TCD1;

}

if(AmpSec<=0) AmpSec=0;
else if(AmpSec>MAX_AMP_SEC) AmpSec=MAX_AMP_SEC;

// Timer/Counter TCEQ initialization
void tccl_init(void)

{

unsigned char s;

/I Note: the correct PORTC direction for the Compare Channels outputs
// 1s configured in the ports_init function

// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure
tcl_disable(&TCC1);

/l Clock source: Peripheral Clock/1
TCC1.CTRLA=(TCCI1.CTRLA & (~TC1_CLKSEL_gm)) |
TC_CLKSEL_DIV1_gc;

/ Mode: Dual Slope PWM Gen., Overflow Int./Event on TOP & BOTTOM
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/I Compare/Capture on channel A: Off

/I Compare/Capture on channel B: On

// Compare/Capture on channel C: Off

/I Compare/Capture on channel D: Off

/[TCCO.CTRLB=(TCCO0.CTRLB & (~(TCO_CCAEN_bm | TCO_CCBEN_bm |
TCO_CCCEN_bm | TCO_CCDEN_bm | TCO_WGMODE_gm))) |

/" TCO_CCBEN_bm | TCO_CCAEN_bml|

/I TC_WGMODE_DS_TB_gc;

TCC1.CTRLB = 0b0000001 15 //W
TCC1.CTRLB = TCC1.CTRLB | 0b000 100003

/I Capture event source: None

/I Capture event action: None

TCC1.CTRLD=(TCCO.CTRLD & (~(TCO_EVACT_gm | TCO_EVSEL_gm))) |
TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc;

// Overflow interrupt: Medium Level

// Error interrupt: Disabled

/l TCCO.INTCTRLA=(TCCO.INTCTRLA & (~(TCO_ERRINTLVL_gm |
TCO_OVFINTLVL_gm))) |

/" TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_ gc;

/I Compare/Capture channel A interrupt: Disabled
/I Compare/Capture channel B interrupt: Disabled

/ITCCO.INTCTRLB=(TCCO.INTCTRLB & (~(TCO_CCDINTLVL_gm |
TCO_CCCINTLVL_gm | TCO_CCBINTLVL_gm | TCO_CCAINTLVL_gm))) |
/[ TC_CCDINTLVL_OFF gc | TC_CCCINTLVL_OFF_gc |
TC_CCBINTLVL_OFF _gc | TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off
HIRESC.CTRL&= ~HIRES_HRENO_bm;

/I Clear the interrupt flags
TCCI1.INTFLAGS=0;

// Set counter value
TCC1.CNT=0x00003

/l Set period register
TCC1.PER=1600-1;
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// Set channel A Compare/Capture register
TCC1.CCA=0;

// Set channel B Compare/Capture register
TCC1.CCB=0x0000;

// Restore interrupts enabled/disabled state
SREG=s;
}

// Disable an USART

void usart_disable(USART_t *pu)
{
// Rx and Tx are off

pu->CTRLB=0;

// Ensure that all interrupts generated by the USART are off
pu->CTRLA=0;

}

void adc_init(void){

ADCA.CALL = SP_ReadCalibrationByte( PROD_SIGNATURES_START +
ADCACALQ_offset );

ADCA.CALH = SP_ReadCalibrationByte( PROD_SIGNATURES_START +
ADCACALI_offset );

ADCA.CTRLA = 0b001111013 // set up with a four channel sweep

ADCA.CTRLB = 0b000100003 // signed

ADCA.REFCTRL =0b00110000;5  //portb reference, temp and bandgap
disabled

ADCA.EVCTRL = 0b110000003 // no events

ADCA.PRESCALER = 0b000001015 // div 128, 250kHz

/IADCA.PRESCALER = 0b00000110; // div 256, 125kHz

//IADCA.PRESCALER = 0b00000011; // div 32

/IADCA.PRESCALER = 0b00000111; // div 512, 62.5kHz

ADCA.CHO.CTRL =0b100000113 // start channel 0, differential w/gain 1

ADCA.CHO.MUXCTRL = 0b0000001 13 // Differential POS=A0 and NEG=A7,
Battery Voltage

ADCA.CHO.INTCTRL = 0b000000003 // no interrupt on channel 0;

/IADCA.CH1.CTRL =0b10011011; // start channel 1, differential w/gain 64
//ADCA.CH1.CTRL =0b10010011; // start channel 1, differential w/gain 16
ADCA.CHI1.CTRL =0b100011113 // start channel 1, differential w/gain 8
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ADCA.CH1.MUXCTRL = 0b000100103 // Differential POS=A2 and NEG=A6,
Battery Current

/IADCA.CH1.MUXCTRL = 0b00110010; // Differential POS=A6 and
NEG=A6, Battery Current

ADCA.CHI1.INTCTRL = 0b00000000; // no interrupt on channel 1;

/IADCA.CH2.CTRL = 0b10011011; // start channel 2, differential w/gain 64

ADCA.CH2.CTRL = 0b1000001 135 // start channel 2, differential w/gain 1

ADCA.CH2.MUXCTRL = 0b001000013 // Differential POS=A4 and NEG=AS5,
MOSFET Current

//ADCA.CH2.CTRL = 0b10000011;

//ADCA.CH2.MUXCTRL = 0b00101001; // Differential POS=A4 and
NEG=A5, MOSFET Current

ADCA.CH2.INTCTRL = 0b000000003 // no interrupt on channel 2;

ADCA.CH3.CTRL = 0b 100000013 // start channel 3, single-ended
ADCA.CH3.MUXCTRL = 0b000110003 // Batt temp
ADCA.CH3.INTCTRL = 0b000000013 // low interrupt on channel 3;

}

// ADC interrupt service routine
interrupt [ADCA_CH3_vect] void ADCA_CH3_isr(void){
char i3
// the ADC does not seem to bounds check properly, so I'll have to do it
ADCbuffer = ADCA.CHO.RES-OFFSET_CHO_DIFF;
ADCtempl[0] += bound(ADCbuffer, 0, 2047);

ADCbuffer = ADCA.CH1.RES-OFFSET_CH1_DIFF;
ADCtemp[ ] += bound(ADCbuffer, -2048, 2047);

ADCbuffer = ADCA.CH2.RES-OFFSET_CH2_DIFF;
ADCtemp|[?] += bound(ADCbuffer, -2048, 2047);

ADCbuffer = ADCA.CH3.RES;
ADCtemp[3] += bound(ADCbuffer, 0, 2047);

ADCsamplecount++; /16 super sample
if(ADCsamplecount > 16){
//store the values
ADCvalues[0] = ADCtemp[0]>>4}
ADCvalues[ ] = ADCtemp[ | ]>>4;
ADCvalues[2] = ADCtemp[2]>>4}
ADCvalues[3] = ADCtemp[3]>>4;
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for(i = 0; i<4; i++){
ADCtempl[i] = 03
}

ADCsamplecount = (3
}

//Initiate next samples
ADCA.CHO.CTRL I=
ADCA.CHI1.CTRL I=
ADCA.CH2.CTRL I=
ADCA.CH3.CTRL I=

e Wwe we we

interrupt [TWIC_TWIS_vect] void TWIC_TWIS_isr(void){

if (TWIC.SLAVE.STATUS &
TWI_SLAVE_APIF_bm)>>TWI_SLAVE_APIF_bp){
/if (TWIC.SLAVE.STATUS &
TWI_SLAVE_DIR_bm)>>TWI_SLAVE_DIR_bp){ //CASE M1
//IMASTER READ OPERATION, SEND ACK
TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB &
~TWIL_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) |
TWI_SLAVE_CMD_RESPONSE_gc;
dataByteCnt=0;
}else if (TWIC.SLAVE.STATUS &
TWI_SLAVE_DIF_bm)>>TWI_SLAVE_DIF_bp){

if (TWIC.SLAVE.STATUS &
TWI_SLAVE_DIR_bm)>>TWI_SLAVE_DIR_bp){
if(dataByteCnt<MAX_DATA_BYTES){
TWIC.SLAVE.DATA = battData[dataByteCnt++];
TWIC.SLAVE.STATUS |= TWI_SLAVE_DIF_bm;
}else{
//Automatically clears DIF with command being sent
TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB &
~TWIL_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) |
TWI_SLAVE_CMD_COMPTRANS_gc | TWI_SLAVE_ACKACT_bm;
PORTE.OUTCLR = ;
PORTD.OUTCLR = ;
}
Jelse{
//IMASTER WRITE OPERATION
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dataInTWIC = TWIC.SLAVE.DATA;
if(dataInTWIC == LOW_SOC){
ledVal=LOW_SOC;
}else{
if(datalnTWIC>slave Address*6){
ledVal=7;
}else{
ledVal=dataInTWIC-(slaveAddress-1)*0;
if(ledVal>0) ledVal=7;

}

}
TWIC.SLAVE.CTRLB = (TWIC.SLAVE.CTRLB &

~TWI_SLAVE_CMD_gm & ~TWI_SLAVE_ACKACT_bm) |
TWIL_SLAVE_CMD_COMPTRANS_gc;

}
}

void init_I2C_Slave(){

//BIT 7:3 RESERVED

//BIT 2, ACKACT, O=SEND ACK, 1= SEND NACK
//BIT 1:0, cmd

TWIC.SLAVE.CTRLB = 0b00000000;

//BIT 7 DIF: Data Interrupt Flag

//BIT 6 APIF: Address/Stop Interrupt Flag

//BIT 5 CLKHOLD: Clk Hold Flag

//BIT 4 RXACK: Received Ack flag

//BIT 3 COLL: collision

//BIT 2 BUSERR: Twi slave bus error

//BIT 1 DIR: Read/Write Direction bit 1=Master Read, 0=WTrite

//BIT 0O Slave Address or Stop Flag WHY APIF WAS SET, 0=STOP
1=ADDRESS

TWIC.SLAVE.STATUS = 0b11001100;

TWIC.SLAVE.ADDR = slaveAddress<</;
TWIC.SLAVE.DATA = 0b00000000;

//Mask Off
TWIC.SLAVE.ADDRMASK = allCallAddress<<!11; /Second address all
slaves listen for messages on
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//BIT 7:6 Slave interrupt level?

//BIT 5, DIE Data interrupt enable, 1=ON

//BIT 4, APIEN, Address/Stop Interrupt Enable, 1=ON
//BIT 3, ENABLE TWI SLAVE, 1=ON

//BIT 2, PIEN, Stop Interrupt Enable, I=ON

//Bit 1, PMEN, Promiscuous Mode Enable, 0=OFF
//BIT 0, SMEN, Smart mode enable, ?
TWIC.SLAVE.CTRLA =0b01111000;

}

void main(void)

{

// Declare your local variables here
unsigned char byPassOn=0;
unsigned char byPassMax=0;
unsigned char overTemp=0;
unsigned char overDischarge=0;

int movAvgValues[3][64];

long movAvgTotal[3]={0,0,0};
int newAdcVal[3];

unsigned int initSamples=0;
unsigned int sampleldxOldest=0;

unsigned char n;

int mosCurrRaw;

int battCurrRaw;

int battVoltRaw;

unsigned int socRaw=0x0700;
unsigned int tempRaw=0;

unsigned int i=0;
unsigned int duty=0;
float error = 0.0;

float refV = 0.0;
float KpV = 0;
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//float KpI = 0;
//float refl = 0.0;

//float Ki = 0;

//float integral_1 = 0;
float integral_V = 0;
//float T = 0;

// Make sure the interrupts are disabled

#asm("cli")

/I Low level interrupt: On

// Round-robin scheduling for low level interrupt: Off

/ Medium level interrupt: On

// High level interrupt: On

/I The interrupt vectors will be placed at the start of the Application FLASH section

n=(PMIC.CTRL & (~(PMIC_RREN_bm | PMIC_IVSEL_bm |

PMIC_HILVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_LOLVLEN_bm))) |
PMIC_LOLVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_HILVLEN_bm;

CCP=CCP_IOREG_gc;

PMIC.CTRL=n;

// Set the default priority for round-robin scheduling

PMIC.INTPRI=0x00;

// Watchdog timer initialization
watchdog_init();

/I System clocks initialization
system_clocks_init();

// Event system initialization
event_system_init();

// Virtual Ports initialization
/Ivports_init();

ports_init();

delay_ms(1000);

// Timer/Counter TCC1 initialization
tccl_init();

// Timer/Counter TCDO is disabled
//tcd0_init();
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// Timer/Counter TCD1 is enabled
tcd1_init();

// Timer/Counter TCEQ initialization
//tce0_init();

// RTC initialization
/frtexm_init();

/Il USARTCO is disabled
usart_disable(&USARTCO0);

// USARTCI is disabled
usart_disable(&USARTC1);

// USARTDO is disabled
usart_disable(&USARTDO);

// USARTDI is disabled
usart_disable(&USARTD1);

/I USARTEQ is disabled
usart_disable(&USARTEO);

// ADC Initilization
adc_init();
/fusart_init();

delay_ms(1000);

//Get Address for slave from hardware pins (they were shorted)
//[PB2 =BIT 0

//PB3 =BIT 1

//[PRO = BIT 2

//[PR1 =BIT 3

slaveAddress=0;

if(PORTB.IN&PIN2_bm)>>PIN2_bp) slaveAddress I= 1;
if(PORTB.IN&PIN3_bm)>>PIN3_bp) slaveAddress I= (1<<1);
if(PORTR.IN&PINO_bm)>>PINO_bp) slaveAddress I= (1<<2);
if(PORTR.IN&PIN1_bm)>>PIN1_bp) slaveAddress I= (1<<3);
slaveAddress = slaveAddress+1; //Offset by 1 since addresses cannot be 0

for(i=0;i<slave Address;i++){
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PORTD.OUTTGL = 0b00000010;
delay_ms(200);
PORTD.OUTTGL = 0b00000010;
delay_ms(200);

//nitialize Slave
init_I2C_Slave();

ADCA.CHO.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6
ADCA.CH1.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6
ADCA.CH2.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6

//Calibrate Differential Gain Offset

for (i=0; i<64; i++){
ADCA.CHO.CTRL I=0b10000000;
ADCA.CH1.CTRL I=0b10000000;
ADCA.CH2.CTRL I=0b10000000;
while((ADCA.CH2.INTFLAGS &0x01)!=1);
ADCA.CH2.INTFLAGS I= 0x01; //clear flag

OFFSET_CHO_DIFF += ADCA.CHO.RES;
OFFSET_CHI1_DIFF += ADCA.CH1.RES;
OFFSET_CH2_DIFF += ADCA.CH2.RES;

OFFSET_CHO_DIFF = OFFSET_CHO_TOTAL>>6;
OFFSET_CHI1_DIFF = OFFSET_CHI1_TOTAL>>6;
OFFSET_CH2_DIFF = OFFSET_CH2_TOTAL>>6;

ADCA.CHO.MUXCTRL = 0b00000011; // Differential POS=A0 and NEG=A7,
Battery Voltage

ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and NEG=A6,
Battery Current

ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and NEG=AS5,
MOSFET Current

/I Globaly enable interrupts
#asm("sei")

//Battery Voltage Control
KpV =-200;
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refV = STOP_CHARGE_VOLT;

while (1)
{
if(stepready){ /EVERY 4 ms
stepready=0;

//IREAD NEW OVERSAMPLED ANALOG VALUES
newAdcVal[0] = ADCvalues[0]; /Raw Batt Voltage
newAdcVal[1] = ADCvalues|[1]; //Raw Batt Current
newAdcVal[2] = ADCvalues[2]; //Raw MOSFET Current

//PLACE INTO RING BUFFER LAST 64 SAMPLES
if(initSamples<64){ //Grabs first 64 samples to start off average filter, this
all occurs during INIT MODE so battVoltageFilt can be wrong during this time
for (1=0; i<3; i++){
movAvgValues[i][initSamples] = newAdcVall[i];
movAvgTotal[i] = movAvgTotal[i] +
movAvgValues[i][initSamples]; /Eventually will hold total of first 128 samples
}
initSamples++;
}elsef
for (i=0; 1<3; i++){
movAvgTotal[i] = movAvgTotal[i] -
movAvgValues[i][sampleldxOldest]; /Subtracts out oldest sample
movAvgValues[i][sampleldxOldest] = newAdcVal[i]; //Replace
oldest sample value with a new value
movAvgTotal[i] =
movAvgTotal[i][+movAvgValues[i][sampleldxOldest]; /Add in newest value,
movAvgTotal is now last 128 values, increment oldest index
}
sampleldxOldest++;
sampleldxOldest&=0x3F; //Wraps around Oldest Index value in case it
"overflows" out of range of movAvgValues|] array

}

/ICALCULATE AVERAGE WITH BITSHIFT
battVoltRaw = movAvgTotal[0]>>6;
battCurrRaw = movAvgTotal[1]>>6;
mosCurrRaw = movAvgTotal[2]>>6;
tempRaw = ADCvalues[3];

//ICORRECT READINGS WITH CALIBRATED VALUES
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offset = (signed int)(ADC_OFFSET_M[slaveAddress-1]*mosCurrRaw +

ADC_OFFSET_B[slaveAddress-1]);

mosCurrRaw = mosCurrRaw+offset;

offset = (signed int)(ADC_OFFSET_M[slaveAddress-1]*battVoltRaw +

ADC_OFFSET_B[slaveAddress-1]);

battVoltRaw = battVoltRaw+offset;

/ICONVERT RAW ADC VALUES TO SCIENTIFIC NOTATION
battVolt = battVoltRaw*0.0025;

battCurr = battCurrRaw*0.020833333; //6 mOhm, gain 8

mosCurr = mosCurrRaw*.001; //1 ohm, gain 1

temp = -1481.96 + sqrt(2196200 + (1863.9-tempRaw)*257.732);
tempRaw = (unsigned int)(temp*100);

socRaw = (unsigned

int)((float)4095.0*(float)((float) AmpSec/(floaty MAX_AMP_SEC));

/ISATURATE MOSFET CURRENT VALUE FOR NOISE REASONS
if (mosCurr<0) mosCurr=0;

/ICREATE PACKET FOR DATA TO BE SENT TO MASTER
battData[0] = (unsigned char)(battCurrRaw & 0x00FF);
battData[1] = (unsigned char)(battCurrRaw >> 8);

battData[2] = (unsigned char)(battVoltRaw & 0x00FF);

battData[3] = (unsigned char)(battVoltRaw >> §);
battData[4] = (unsigned char)(mosCurrRaw & 0x00FF);
battData

battData[6] = (unsigned char)(tempRaw & 0x00FF);

battData[7] = (unsigned char)(tempRaw >> 8);
battData[8] = (unsigned char)(socRaw & 0x00FF);
battData[9] = (unsigned char)(((socRaw >> 8)&0xO0F) | byPassOn<<7 |

[
2
[3]
(4]
[5] = (unsigned char)(mosCurrRaw >> 8);
[6]
[7]
[8

byPassMax<<6 | overDischarge<<5 | overTemp<<4);

STATE

/TUPDATE SINGLE BYPASS STATUS LED TO REFLECT BYPASS

if(mosCurr>1.90){
ledColor=RED;
byPassMax=1;

}else if(mosCurr>0.05){
ledColor=AMBER;
byPassOn=1;

}elsef
ledColor=GREEN;
byPassOn=0);
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byPassMax=0;
}

//IBATTERY OVERDISCHARGE STATUS
if(battVolt<OVERDISCHARGE_VOLT){
overDischarge=1;
}else{
overDischarge=0;

}

//IBYPASS ACTIVATION LOGIC AND CONTROL LOOP
voltCntrlCnt++;
if(voltCntrlCnt>75){
voltCntrlCnt=0;
error = (refV-battVolt);
if (error>=0){ //if batteryVoltage <3.8 means error is positive
if((duty+error*KpV)<=0){ //prevent controller from causing duty
from rolling over
duty=0;
Jelsef
duty=duty+KpV*error;
}
Jelse{
duty=duty+KpV*error;
}
}

/ISATURATE MAX DUTY CYCLE
if(duty>DUTY_CYC_MAX) duty=DUTY_CYC_MAX;

//Ensure mosfet stays off if battery is not charging and battery voltage is
less than max
if(battCurr<=0.05 && battVolt<STOP_CHARGE_VOLT) {
if(dutyOffCnt<=MAX_DUTY_OFF_CNT) dutyOffCnt++;

if(dutyOffCnt>=MAX_DUTY_OFF_CNT){
//duty=0;
//dutyOffCnt=0;
TCC1.CCA=0;
}
}elsef
TCC1.CCA=duty;

}
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}

switch(ledVal){

case 1:
PORTD.OUT =0;
PORTE.OUT = 0;
PORTD.OUTSET = ledColor; //0b00000010==2
break;

case 2:
PORTD.OUT = 0;
PORTE.OUT = 0;
PORTD.OUTSET = ledColor<<2; //0b00001000==8
break;

case 3:
PORTD.OUT =0;
PORTE.OUT = 0;
PORTD.OUTSET = ledColor<<4; //0b00100000==32
break;

case 4:
PORTD.OUT = 0;
PORTE.OUT = 0;
PORTD.OUTSET = ledColor<<6; //0b10000000==128
break;

case 5:
PORTD.OUT =0;
PORTE.OUT = 0;
PORTE.OUTSET = ledColor; //0b00000010==2
break;

case 6:
PORTD.OUT = 0;
PORTE.OUT = 0;
PORTE.OUTSET = ledColor<<2; //0b00001000==8
break;

case LOW_SOC:
PORTD.OUTTGL = 0b01010101;
PORTE.OUTTGL = 0b00000101;
break;
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APPENDIX C

ICMU/BPMU HYBRID CODE

/*****************************************************
This program was produced by the

CodeWizardAVR V2.04.8 Standard
Automatic Program Generator

Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com

Project : Battery Board Slave

Version : .9

Date : 10/15/2010

Author

Company : University of Akron
Comments:

Chip type : ATxmegal6RA4
Program type : Application

AVR Core Clock frequency: 32.000000 MHz
Memory model : Small

Data Stack size : 512
*****************************************************/

#include <io.h>

#include <math.h>
#include <stdio.h>
#include <avr_compiler.h>

// Declare your global variables here

#define MAX_AMP_SEC 216000.00

#define STOP_CHARGE_VOLT 3.8

#define OVERDISCHARGE_VOLT 2.5

//Equivalent to a voltage of 3.5V

#define TSamp_TCD1 0.0039996 //Current Integrating time in seconds

#define DUTY_CYC_MAX 1330 //Limits Max Bypass Current to ~2 Amps at
3.8 Volts

#define WAIT_BEFORE_CHANGE_CNT 50000 //2500 COUNTS per
second...Roughly 20 seconds

#define MAX_TURNOFF_CNT 5000 //2500 COUNTS per second seconds
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#define MAX_BYPASS_CURRENT 1.9

//Count to wait until MOSFET locks on after battVolt>3.8V
mosCurrent>1.95A and battCurr<lA
#define MAX_LOCK_MOS_CURRENT_CNT 700

//Count to wait until Duty Cycle Shuts off after seeing current out
of battery
#define MAX_DUTY_OFF_CNT 700

//Address for all slave boards to respond to
#define allCallAddress 100

#define READ 1
#define WRITE O

#define MAX_BATT_CNT 10

unsigned int dutyOffCnt=0;

//LED Colors

#define GREEN 0Dbl0

#define RED 0b01l

#define AMBER 0Obll

#define LOW_SOC 70 //Picked a value then the largest ledValue

//#define IS_CHARGING_AT_ 2 MSG 0xFO
//#define IS_NOT_CHARGING_AT_2_MSG OxFA

unsigned char ledColor=GREEN;
unsigned char underVoltCond=0;

unsigned int waitToChangeCnt=65531; //No waiting initially
unsigned char sendDesiredCurrent=1;
//unsigned char lockMosCurr = O;

unsigned char allBypassOn=1;
unsigned int turnOffChargerCnt=0;

unsigned char overVoltageShutoff=0;
unsigned int turnOffChargerCnt2=0;

unsigned int overTemperatureShutoff=0;
unsigned int turnOffChargerCnt3=0;

unsigned int underVoltCondCnt=0;

float temp[14];
float battVolt[14];
float battCurr[14];
float mosCurr[14];
float soc[14];
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unsigned char byPassOn[14];
unsigned char byPassMax[14];
unsigned char overDischarge[l14];
unsigned char overTemp[14];

//unsigned char chargeStatus;
unsigned char twilLock = 0;

float packCurr=0;
float packSoc=100;
float packVolt=0;

//float prevBattCurr;
float AmpSec=MAX_AMP_SEC;

unsigned int voltCntrlCnt=0;
unsigned int decreaseCurrentCnt=0;

unsigned char currentPkt[6];

unsigned char battBypassId=0;
unsigned char prevBattBypassId=0;

eeprom unsigned char desiredCurrentIntEE=10;
eeprom unsigned char desiredCurrentDecEE=0;

unsigned char desiredCurrentInt=0;
unsigned char desiredCurrentDec=0;

signed long OFFSET_CHO_TOTAL=0;
signed long OFFSET_CH1_TOTAL=0;
signed long OFFSET_CH2_TOTAL=0;

signed int OFFSET_CHO_DIFF=0;
signed int OFFSET_CH1_DIFF=0;
signed int OFFSET_CH2_DIFF=0;

signed long ADCtemp[4];

signed int ADCvalues[4];

char ADCsamplecount = 0; // we're supersampling
signed int ADCbuffer;

char stepready = 0;

unsigned char increment=1;
unsigned char dataCnt=0;
unsigned char dataOutTWIC=0;

unsigned char slaveAddress=0;
unsigned char currAddress=0;

unsigned char newData = 0;
unsigned char dataRdy 0;

unsigned char battIdx=0;
unsigned char datalIdx=0;
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unsigned char battData[14][10];

//ADC OFFSET for each of the 10 boards OFFSET=M*RAWADC+B calibrated
manually

float const ADC_OFFSET_M[10]1={-0.011107,=-0.013504,=-0.015376,=
0.017009,-0.015646,-0.013056,-0.015416,-0.015210,-0.01394
0.012555};

float const ADC_OFFSET_B[10]1={ 6.366141, 6.417454, 6.556141,
7.638119, 6.499410, 5.792097, 5.235612, 3.654257, 5.374430,
5.624966};

4

signed int offset=0;

signed int bound(signed int wvalue, signed int min, signed int max) {
if(value > max)
return max;
if(value < min)
return min;
return value;

#pragma warn-—
char nvm_cmd_read( char *nvm_cmd_addr, char index ) {

#asm
LDD R30,Y+0 ; Z = index
LDI R31,0
LDD R26,Y+1 ; X = &NVM.CMD
LDD R27,Y+2
LDI R25,2 ; NVM.CMD = NVM_CMD_READ_CALIB_ROW_gc
ST  X,R25
LPM ; read the data in RO
; Clean up NVM Command register. */
LDI R25,0 ; NVM.CMD = NVM_CMD_NO_OPERATION_gc
ST  X,R25
MOV  R30,R0 ; return result
#endasm

}

#pragma warn+

char SP_ReadCalibrationByte( char index ){
return nvm_cmd_read (&NVM.CMD, index) ;

}

// System Clocks initialization
void system_clocks_init (void)
{

unsigned char n,s;

// Optimize for speed

#pragma optsize-—

// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts
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#asm("cli™)

// Internal 32 kHz RC oscillator initialization

// Enable the internal 32 kHz RC oscillator
0SC.CTRL|=0SC_RC32KEN_bm;

// Wait for the internal 32 kHz RC oscillator to stabilize
while ((OSC.STATUS & OSC_RC32KRDY_bm)==0);

// Internal 32 MHz RC oscillator initialization
// Enable the internal 32 MHz RC oscillator
OSC.CTRL |=0SC_RC32MEN_bm;

// System Clock prescaler A division factor: 1
// System Clock prescalers B & C division factors: B:1, C:1
// ClkPer4d: 32000.000 kHz
// ClkPer2: 32000.000 kHz
// ClkPer: 32000.000 kHz
// ClkCPU: 32000.000 kHz
n=(CLK.PSCTRL & (~(CLK_PSADIV_gm | CLK_PSBCDIV1_bm |
CLK_PSBCDIVO_bm))) |
CLK_PSADIV_1_gc | CLK_PSBCDIV_1_1_gc;
CCP=CCP_IOREG_gc;
CLK.PSCTRL=n;

// Internal 32 MHz RC osc. calibration reference clock source:
32.768 kHz Internal Osc.

OSC.DFLLCTRL&= ~ (OSC_RC32MCREF_bm | OSC_RC2MCREF_bm) ;

// Enable the autocalibration of the internal 32 MHz RC oscillator
DFLLRC32M.CTRL |=DFLL_ENABLE_bm;

// Wait for the internal 32 MHz RC oscillator to stabilize
while ((OSC.STATUS & OSC_RC32MRDY_bm)==0);

// Select the system clock source: 32 MHz Internal RC Osc.
n=(CLK.CTRL & (~CLK_SCLKSEL_gm)) | CLK_SCLKSEL_RC32M_gc;
CCP=CCP_IOREG_gc;

CLK.CTRL=n;

// Disable the unused oscillators: 2 MHz, external clock/crystal
oscillator, PLL
OSC.CTRL&= ~ (OSC_RC2MEN_bm | OSC_XOSCEN_bm | OSC_PLLEN_bm) ;

// Peripheral Clock output: Disabled
PORTCFG.CLKEVOUT= (PORTCFG.CLKEVOUT & (~PORTCFG_CLKOUT_gm)) |
PORTCFG_CLKOUT_OFF_gc;

// Restore interrupts enabled/disabled state
SREG=s;

}

// Watchdog Timer initialization
void watchdog_init (void)

{

unsigned char s,n;
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// Optimize for speed

#pragma optsize-—

// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts

#asm("cli"™)

// Watchdog Timer: On

n=WDT_ENABLE_bm | WDT_CEN_bm | WDT_PER_256CLK_gc;
CCP=CCP_IOREG_gc;

WDT .CTRL=n;

// Watchdog window mode: Off

n=(WDT.WINCTRL & (~WDT_WEN bm)) | WDT_WCEN_bm;
CCP=CCP_IOREG_gc;

WDT.WINCTRL=n;

// Restore interrupts enabled/disabled state
SREG=s;

}

// Event System initialization

void event_system_init (void)

{

// Event System Channel 0 source: Port D, PinO0
EVSYS.CHOMUX=EVSYS_CHMUX_PORTD_PINO_gc;

// Event System Channel 1 source: Port D, PinO
EVSYS.CHIMUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 2 source: None
EVSYS.CH2MUX=EVSYS_CHMUX_PORTD_PIN1_gc;
// Event System Channel 3 source: None
EVSYS.CH3MUX=EVSYS_CHMUX_OFF_gc;
// Event System Channel 4 source: None
EVSYS.CH4AMUX=EVSYS_CHMUX_OFF_gc;
// Event System Channel 5 source: None
EVSYS.CH5MUX=EVSYS_CHMUX_OFF_gc;
// Event System Channel 6 source: None
EVSYS.CH6MUX=EVSYS_CHMUX_OFF_gc;
// Event System Channel 7 source: None
EVSYS.CH7TMUX=EVSYS_CHMUX_OFF_gc;

// Event System Channel 0 Digital Filter Coefficient: 4
EVSYS.CHOCTRL=0b00001011;

// Event System Channel 1 Digital Filter Coefficient: 1
EVSYS.CHICTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 2 Digital Filter Coefficient: 1
EVSYS.CH2CTRL=0b00001011;

// Event System Channel 3 Digital Filter Coefficient: 1
EVSYS.CH3CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 4 Digital Filter Coefficient: 1

EVSYS.CH4CTRL=(EVSYS.CH4CTRL & (~(EVSYS_QDIRM gm | EVSYS_QDIEN_bm

EVSYS_QODEN_bm | EVSYS_DIGFILT_gm))) |

Samples
Sample
Sample
Sample

Sample
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EVSYS_DIGFILT_1SAMPLE_gc;
// Event System Channel 5 Digital Filter Coefficient: 1 Sample
EVSYS.CHS5CTRL=EVSYS_DIGFILT_1SAMPLE_gc;
// Event System Channel 6 Digital Filter Coefficient: 1 Sample
EVSYS.CH6CTRL=EVSYS_DIGFILT_1SAMPLE_gc;
// Event System Channel 7 Digital Filter Coefficient: 1 Sample
EVSYS.CH7CTRL=EVSYS_DIGFILT_1SAMPLE_gc;

// Event System Channel 0 output: Disabled

// Note: the correct direction for the Event System Channel 0
output

// is configured in the ports_init function
PORTCFG.CLKEVOUT=(PORTCFG.CLKEVOUT & (~PORTCFG_EVOUT_gm)) |
PORTCFG_EVOUT_OFF_gc;

//PORTCFG.CLKEVOUT=0b00000001;

}

// Ports initialization
void ports_init (void)

{

// PORTA initialization
// OUT register
PORTA.QUT=0x00;

// Bit0: Input
// Bitl: Input
// Bit2: Input
// Bit3: Input
// Bit4d: Input
// Bit5: Input
// Bit6: Input
// Bit7: Input
PORTA.DIR=0x00;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Input buffer disabled

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off
PORTA.PINOCTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;
// Bitl Output/Pull configuration: Totempole/No

// Bitl Input/Sense configuration: Input buffer disabled

// Bitl inverted: Off

// Bitl slew rate limitation: Off
PORTA.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;
// Bit2 Output/Pull configuration: Totempole/No

// Bit2 Input/Sense configuration: Input buffer disabled

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off
PORTA.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;
// Bit3 Output/Pull configuration: Totempole/No

// Bit3 Input/Sense configuration: Input buffer disabled

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off
PORTA.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;
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//
//
//
//

Bit4
Bit4
Bit4
Bit4

Output/Pull configuration:
Input/Sense configuration:
inverted: Off

slew rate limitation:
PORTA.PIN4CTRL=PORT_OPC_TOTEM_gc

Off

// Bit5 Output/Pull configuration:
// Bit5 Input/Sense configuration:
// Bit5 inverted: Off

// Bith5 slew rate limitation:
PORTA.PIN5SCTRL=PORT_OPC_TOTEM_gc

Off

// Bit6 Output/Pull configuration:
// Bité6 Input/Sense configuration:
// Bit6 inverted: Off

// Bit6 slew rate limitation:
PORTA.PIN6CTRL=PORT_OPC_TOTEM_gc

Off

// Bit7 Output/Pull configuration:
// Bit7 Input/Sense configuration:
// Bit7 inverted: Off

// Bit7 slew rate limitation:
PORTA.PIN7CTRL=PORT_OPC_TOTEM_gc
// Interrupt 0 level:
// Interrupt 1 level:

Disabled
Disabled

Off

Totempole/No
Input buffer disabled

PORT_ISC_INPUT_DISABLE_gc;
Totempole/No
Input buffer disabled

PORT_ISC_INPUT_DISABLE_gc;
Totempole/No
Input buffer disabled

PORT_ISC_INPUT_DISABLE_gc;
Totempole/No
Input buffer disabled

PORT_ISC_INPUT_DISABLE_gc;

PORTA.INTCTRL=(PORTA.INTCTRL & (~(PORT_INTI1LVL_gm |
PORT_INTOLVL_gm)))
PORT_INT1LVL_OFF_gc | PORT_INTOLVL_OFF_gc;

//
//
//
//
//
//
//
//

BitO
Bitl
Bit2
Bit3
Bit4
Bitb
Bité6
Bit7

pin
pin
pin
pin
pin
pin
pin
pin

change
change
change
change
change
change
change
change

interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

PORTA.INTOMASK=0x00;

//
//
//
//
//
//
//
//

BitO
Bitl
Bit2
Bit3
Bit4
Bit5
Bité6
Bit7

pin
pin
pin
pin
pin
pin
pin
pin

change
change
change
change
change
change
change
change

interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

PORTA.INTIMASK=0x00;

// PORTB initialization
// OUT register
PORTB.OUT=0x00;
Input
Input
Input
Input
PORTB.DIR=0x00;
// Bit0 Output/Pull configuration:
// Bit0 Input/Sense configuration:
// Bit0 inverted: Off

// BitO:
// Bitl:
// Bit2:
// Bit3:

0:

O OO OO oo
es s es se ss e s

el e e e
e ee e ke e ee e e

Off
Off
Off
Off
Off
Off
Off
Off

Off
Off
Off
Off
Off
Off
Off
Off

Totempole/No
Input buffer disabled

188




// Bit0 slew rate limitation: Off
PORTB.PINOCTRL=PORT_OPC_TOTEM gc | PORT_ISC_INPUT_DISABLE_gc;
// Bitl Output/Pull configuration: Totempole/No
// Bitl Input/Sense configuration: Input buffer disabled
// Bitl inverted: Off
// Bitl slew rate limitation: Off
PORTB.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_INPUT_DISABLE_gc;
// Bit2 Output/Pull configuration: Totempole/No
// Bit2 Input/Sense configuration: Input buffer disabled
// Bit2 inverted: Off
// Bit2 slew rate limitation: Off
PORTB.PIN2CTRL=PORT_OPC_TOTEM gc | PORT_ISC_INPUT_DISABLE_gc;
// Bit3 Output/Pull configuration: Totempole/No
// Bit3 Input/Sense configuration: Input buffer disabled
// Bit3 inverted: Off
// Bit3 slew rate limitation: Off
PORTB.PIN3CTRL=PORT_OPC_TOTEM gc | PORT_ISC_INPUT_DISABLE_gc;
// Interrupt 0 level: Disabled
// Interrupt 1 level: Disabled
PORTB.INTCTRL=(PORTB.INTCTRL & (~(PORT_INTI1LVL_gm |
PORT_INTOLVL_gm))) |

PORT_INT1LVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off

// Bitl pin change interrupt 0: Off
// Bit2 pin change interrupt 0: Off
// Bit3 pin change interrupt 0: Off
PORTB.INTOMASK=0x00;

// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
// Bit2 pin change interrupt 1: Off
// Bit3 pin change interrupt 1: Off

PORTB.INTIMASK=0x00;

// Bit0: Output
// Bitl: Output
// Bit2: Input
// Bit3: Input
// Bitd: Output
// Bit5: Input
// Bit6: Input
// Bit7: Output
PORTC.DIR=0x93;

// Bit0 Output/Pull configuration: WIRED-AND (on input)

// Bit0 Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off
PORTC.PINOCTRL=PORT_OPC_WIREDAND_ gc | PORT_ISC_BOTHEDGES_gc;
// Bitl Output/Pull configuration: WIRED-AND (on input)

// Bitl Input/Sense configuration: Sense both edges

// Bitl inverted: Off

// Bitl slew rate limitation: Off
PORTC.PIN1CTRL=PORT_OPC_WIREDAND_ gc | PORT_ISC_BOTHEDGES_gc;
PORTC.PIN2CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
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// Bit3 Output/Pull configuration: Totempole/No
// Bit3 Input/Sense configuration: Sense both edges
// Bit3 inverted: Off
// Bit3 slew rate limitation: Off
PORTC.PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Bitd Output/Pull configuration: Totempole/Pull-up (on input)
// Bit4 Input/Sense configuration: Sense both edges
// Bitd inverted: Off
// Bit4d slew rate limitation: Off
PORTC.PIN4CTRL=PORT_OPC_PULLDOWN_gc | PORT_ISC_BOTHEDGES_gc;
// Bith5 Output/Pull configuration: Totempole/Pull-up (on input)
// Bit5 Input/Sense configuration: Sense both edges
// Bit5 inverted: Off
// Bith5 slew rate limitation: Off
PORTC.PIN5S5CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;
// Bit6 Output/Pull configuration: Totempole/Pull-up (on input)
// Bit6 Input/Sense configuration: Sense both edges
// Bit6 inverted: Off
// Bit6 slew rate limitation: Off
PORTC.PIN6CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;
// Bit7 Output/Pull configuration: Totempole/Pull-up (on input)
// Bit7 Input/Sense configuration: Sense both edges
// Bit7 inverted: Off
// Bit7 slew rate limitation: Off
PORTC.PIN7CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Interrupt 0 level: Disabled
// Interrupt 1 level: Disabled
PORTC.INTCTRL= (PORTC.INTCTRL & (~(PORT_INTILVL_gm |
PORT_INTOLVL_gm))) |

PORT_INT1LVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off

// Bitl pin change interrupt 0: Off
// Bit2 pin change interrupt 0: Off
// Bit3 pin change interrupt 0: Off
// Bit4 pin change interrupt 0: Off
// Bit5 pin change interrupt 0: Off
// Bit6 pin change interrupt 0: Off
// Bit7 pin change interrupt 0: Off
PORTC.INTOMASK=0x00;

// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
// Bit2 pin change interrupt 1: Off
// Bit3 pin change interrupt 1: Off
// Bit4 pin change interrupt 1: Off
// Bit5 pin change interrupt 1: Off
// Bit6 pin change interrupt 1: Off
// Bit7 pin change interrupt 1: Off

PORTC.INTIMASK=0x00;

// PORTD initialization
// OUT register
PORTD.OUT=0x00;

// Bit0: Output
// Bitl: Output
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// Bit2: Output
// Bit3: Output
// Bitd: Output
// Bit5: Output
// Bit6: Output
// Bit7: Output

PORTD.DIR=0xFF;

//
//
//
//

BitO
BitO
BitO
BitO

inverted: Off
slew rate limitation:

Output/Pull configuration:
Input/Sense configuration:

Off

PORTD.PINOCTRL=PORT_OPC_TOTEM_gc |

Bitl
Bitl
Bitl
Bitl

//
//
//
//

inverted: Off
slew rate limitation:

Output/Pull configuration:
Input/Sense configuration:

Off

PORTD.PIN1CTRL=PORT_OPC_TOTEM_gc |
// Bit2 Output/Pull configuration:
// Bit2 Input/Sense configuration:

// Bit2 inverted: Off
// Bit2 slew rate limitation:

Off

PORTD.PIN2CTRL=PORT_OPC_TOTEM_gc |
// Bit3 Output/Pull configuration:
// Bit3 Input/Sense configuration:

// Bit3 inverted: Off
// Bit3 slew rate limitation:

Off

PORTD.PIN3CTRL=PORT_OPC_TOTEM_gc |
// Bit4 Output/Pull configuration:
// Bit4 Input/Sense configuration:

// Bit4 inverted: Off
// Bit4 slew rate limitation:

Off

PORTD.PIN4CTRL=PORT_OPC_TOTEM_gc |
// Bith5 Output/Pull configuration:
// Bit5 Input/Sense configuration:

// Bitb inverted: Off
// Bith5 slew rate limitation:

Off

PORTD.PINS5CTRL=PORT_OPC_TOTEM_gc |
// Bit6 Output/Pull configuration:
// Bit6 Input/Sense configuration:

// Bit6 inverted: Off
// Bit6 slew rate limitation:

Off

PORTD.PIN6CTRL=PORT_OPC_TOTEM_gc |
// Bit7 Output/Pull configuration:
// Bit7 Input/Sense configuration:

// Bit7 inverted: Off
// Bit7 slew rate limitation:

Off

PORTD.PIN7CTRL=PORT_OPC_TOTEM_gc |

// Interrupt 0 level: Disabled

// Interrupt 1 level: Disabled

PORTD.INTCTRL=(PORTD.INTCTRL & (~ (P

PORT_INTOLVL_gm))) |
PORT_INT1LVL_OFF_gc | PORT_INTO

Totempole/Pull-up (on input)

Sense low level

PORT_ISC_LEVEL_gc;
Totempole/Pull-up (on input)
Sense low level

PORT_ISC_LEVEL_gc;
Totempole/Pull-up
Sense both edges

(on input)

PORT_ISC_BOTHEDGES_gc;
Totempole/Pull-up (on
Sense both edges

input)

PORT_ISC_BOTHEDGES_gc;
Totempole/Pull-up (on
Sense both edges

input)

PORT_ISC_BOTHEDGES_gc;
Totempole/Pull-up (on
Sense both edges

input)

PORT_ISC_BOTHEDGES_gc;
Totempole/No
Sense both edges

PORT_ISC_BOTHEDGES_gc;
Totempole/No
Sense both edges

PORT_ISC_BOTHEDGES_gc;

ORT_INTILVL_gm |

LVL_OFF_gc;
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// Bit0 pin change interrupt 0: Off
// Bitl pin change interrupt 0: Off
// Bit2 pin change interrupt 0: Off
// Bit3 pin change interrupt 0: Off
// Bit4 pin change interrupt 0: Off
// Bit5 pin change interrupt 0: Off
// Bit6 pin change interrupt 0: Off
// Bit7 pin change interrupt 0: Off
PORTD.INTOMASK=0x00;

// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
// Bit2 pin change interrupt 1: Off
// Bit3 pin change interrupt 1: Off
// Bit4 pin change interrupt 1: Off
// Bit5 pin change interrupt 1: Off
// Bit6 pin change interrupt 1: Off
// Bit7 pin change interrupt 1: Off

PORTD.INTIMASK=0x00;

// PORTE initialization
// OUT register
PORTE.OUT=0x00; //Initial Output Value

// Bit0: Output

// Bitl: Output

// Bit2: Input //Charger Present Detection, Internal pullup,
Yellow Wire

// Bit3: Output //Serial Output PE3

PORTE.DIR=0x0B;

// Bit0 Output/Pull configuration: Totempole/No

// Bit0 Input/Sense configuration: Sense both edges

// Bit0 inverted: Off

// Bit0 slew rate limitation: Off
PORTE.PINOCTRL=PORT_OPC_TOTEM_ _gc | PORT_ISC_BOTHEDGES_gc;

// Bitl Output/Pull configuration: Totempole/No

// Bitl Input/Sense configuration: Sense both edges

// Bitl inverted: On

// Bitl slew rate limitation: Off
PORTE.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Bit2 Output/Pull configuration: Pull-up (on input)

// Bit2 Input/Sense configuration: Sense both edges

// Bit2 inverted: Off

// Bit2 slew rate limitation: Off
PORTE.PIN2CTRL=PORT_OPC_PULLUP_gc | PORT_ISC_BOTHEDGES_gc;

// Bit3 Output/Pull configuration: Totempole/Pull-up (on input)
// Bit3 Input/Sense configuration: Sense both edges

// Bit3 inverted: Off

// Bit3 slew rate limitation: Off

PORTE .PIN3CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;

// Interrupt 0 level: Disabled
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// Interrupt 1 level: Disabled

PORTE.INTCTRL= (PORTE.INTCTRL & (~(PORT_INTILVL_gm |
PORT_INTOLVL_gm))) |

PORT_INT1LVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off

// Bitl pin change interrupt 0: Off
// Bit2 pin change interrupt 0: Off
// Bit3 pin change interrupt 0: Off
PORTE.INTOMASK=0x00;

// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
// Bit2 pin change interrupt 1: Off
// Bit3 pin change interrupt 1: Off

PORTE.INTIMASK=0x00;

// PORTR initialization
// OUT register
PORTR.OUT=0x00;
// Bit0O: Input
// Bitl: Input
PORTR.DIR=0x00;
// Bit0 Output/Pull configuration: Totempole/No
// Bit0 Input/Sense configuration: Sense both edges
// Bit0 inverted: Off
// Bit0 slew rate limitation: Off
PORTR.PINOCTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Bitl Output/Pull configuration: Totempole/No
// Bitl Input/Sense configuration: Sense both edges
// Bitl inverted: Off
// Bitl slew rate limitation: Off
PORTR.PIN1CTRL=PORT_OPC_TOTEM_gc | PORT_ISC_BOTHEDGES_gc;
// Interrupt 0 level: Disabled
// Interrupt 1 level: Disabled
PORTR.INTCTRL= (PORTR.INTCTRL & (~(PORT_INTI1LVL_gm |
PORT_INTOLVL_gm))) |

PORT_INT1LVL_OFF_gc | PORT_INTOLVL_OFF_gc;
// Bit0 pin change interrupt 0: Off
// Bitl pin change interrupt 0: Off
PORTR.INTOMASK=0x00;
// Bit0 pin change interrupt 1: Off
// Bitl pin change interrupt 1: Off
PORTR.INT1IMASK=0x00;
}

// Disable a Timer/Counter type 0

void tcO_disable(TCO_t *ptc)

{

// Timer/Counter off

ptc—>CTRLA= (ptc—>CTRLA & (~TCO_CLKSEL_gm)) | TC_CLKSEL_OFF_gc;
// Issue a reset command

ptc—->CTRLFSET=TC_CMD_RESET_gc;

}

// Disable a Timer/Counter type 1
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void tcl_disable(TCl_t *ptc)

{

// Timer/Counter off

ptc—>CTRLA= (ptc—>CTRLA & (~TC1_CLKSEL_gm)) | TC_CLKSEL_OFF_gc;
// Issue a reset command

ptc—->CTRLFSET=TC_CMD_RESET_gc;

}

// Timer/counter TCCl Overflow/Underflow interrupt service routine
interrupt [TCCO_OVF_vect] void tccO_overflow_isr (void)
{

// write your code here

}

// Timer/Counter TCDO initialization
void tcdO_init (void)
{

unsigned char s;

// Note: the correct PORTD direction for the Compare Channels
outputs
// 1is configured in the ports_init function

// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts

#fasm("cli™)

// Disable and reset the timer/counter just to be sure
tc0_disable (&TCDO) ;
// Clock source: Peripheral Clock/1

TCDO.CTRLB=0b00000000;
TCDO.CTRLC=0b00000000;
TCDO.CTRLD=0b00000000;
TCDO.CTRLE=0b00000000;

// Overflow interrupt: Medium Level
// Error interrupt: Disabled
TCDO.INTCTRLA=(TCDO.INTCTRLA & (~(TCO_ERRINTLVL_gm |
TCO_OVFINTLVL_gm))) |

TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc;

// Compare/Capture channel A interrupt: Disabled

// Compare/Capture channel B interrupt: Disabled

// Compare/Capture channel C interrupt: Disabled

// Compare/Capture channel D interrupt: Disabled
TCDO.INTCTRLB=(TCDO.INTCTRLB & (~(TCO_CCDINTLVL_gm |
TCO_CCCINTLVL_gm | TCO_CCBINTLVL_gm | TCO_CCAINTLVL_gm))) |
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TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc | TC_CCBINTLVL_OFF_gc
| TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off
HIRESD.CTRL&= ~HIRES_HRENO_bm;

// Clear the interrupt flags
TCDO.INTFLAGS=TCDO.INTFLAGS;

// Set counter register

TCDO.CNT=0x0000;

// Set period register

TCDO.PER=312;

// Set channel A Compare/Capture register
TCDO.CCA=0x0000;

// Set channel B Compare/Capture register
TCDO.CCB=0x0000;

// Set channel C Compare/Capture register
TCDO.CCC=0x0000;

// Set channel D Compare/Capture register
TCDO.CCD=0x0000;

// Restore interrupts enabled/disabled state
SREG=s;

TCDO.CTRLA=0b00000111;
}

// Timer/counter TCDO Overflow/Underflow interrupt service routine
interrupt [TCDO_OVF_vect] void tcdO_overflow_isr (void)
{

dataldx=0;

slaveAddress=battIdx+1;

if (slaveAddress==1) {
newData=1;
telse(
twilLock=1;
currAddress=slaveAddress<<1l|READ;
TWIC.MASTER.ADDR = currAddress; //slave address

// Timer/Counter TCD1 initialization
void tecdl_init (void)
{

unsigned char s;

// Note: the correct PORTD direction for the Compare Channels
outputs
// is configured in the ports_init function
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// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure
tcl_disable (&TCD1) ;

// Clock source: Peripheral Clock/1

TCD1.CTRLA=(TCD1.CTRLA & (~TC1l_CLKSEL_gm)) | TC_CLKSEL_DIV2_gc;

// Mode: Normal Operation, Overflow Int./Event on TOP
// Compare/Capture on channel A: Off
// Compare/Capture on channel B: Off
TCD1.CTRLB=(TCD1.CTRLB & (~(TC1l_CCAEN_bm | TC1l_CCBEN_bm |
TC1_WGMODE_gm))) |

TC_WGMODE_NORMAL_gc;

// Capture event source: None

// Capture event action: None

TCD1.CTRLD=(TCD1.CTRLD & (~(TCl_EVACT_gm | TCl1_EVSEL_gm))) |
TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc;

// Overflow interrupt: Low Level

// Error interrupt: Enabled

TCD1.INTCTRLA=(TCD1.INTCTRLA & (~(TC1_ERRINTLVL_gm ))) |
TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_LO_gc | TC1_OVFINTLVL_gm;

// Compare/Capture channel A interrupt: Disabled
// Compare/Capture channel B interrupt: Disabled
TCD1.INTCTRLB=(TCD1.INTCTRLB & (~(TC1_CCBINTLVL_gm |
TC1_CCAINTLVL_gm))) |

TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off
HIRESD.CTRL&= ~HIRES_HRENI1_bm;

// Clear the interrupt flags
TCD1.INTFLAGS=TCD1.INTFLAGS;

// Set counter register

TCD1.CNT=0x0000;

// Set period register

TCD1.PER=64000;

// Set channel A Compare/Capture register
TCD1.CCA=0x0000;

// Set channel B Compare/Capture register
TCD1.CCB=0x0000;

// Restore interrupts enabled/disabled state
SREG=s;
}

// Timer/counter TCD1l Overflow/Underflow interrupt service routine
interrupt [TCD1_OVF_vect] void tcdl_overflow_isr (void) {
stepready = 1;

196




if (battCurr([0]1>0.1 || battCurr[0]<-0.35){
AmpSec = AmpSec + battCurr[0]*TSamp_TCD1;
}

if (AmpSec<=0) AmpSec=0;
else if (AmpSec>MAX_AMP_SEC) AmpSec=MAX_ AMP_SEC;

// Timer/Counter TCEO initialization
void tccl_init (void)
{

unsigned char s;

// Note: the correct PORTC direction for the Compare Channels
outputs
// is configured in the ports_init function

// Save interrupts enabled/disabled state
s=SREG;

// Disable interrupts

#asm("cli")

// Disable and reset the timer/counter just to be sure
tcl_disable (&TCC1);

// Clock source: Peripheral Clock/1

TCC1.CTRLA=(TCC1.CTRLA & (~TC1l_CLKSEL_gm)) | TC_CLKSEL_DIV1_gc;

// Mode: Dual Slope PWM Gen., Overflow Int./Event on TOP & BOTTOM
// Compare/Capture on channel A: Off
// Compare/Capture on channel B: On
// Compare/Capture on channel C: Off
// Compare/Capture on channel D: Off

//TCCO.CTRLB=(TCCO.CTRLB & (~(TCO_CCAEN_bm | TCO_CCBEN_bm |
TCO_CCCEN_bm | TCO_CCDEN_bm | TCO_WGMODE_gm))) |

// TCO_CCBEN_bm | TCO_CCAEN_bm|

// TC_WGMODE_DS_TB_gc;

TCC1.CTRLB 0b00000011; //W
TCC1.CTRLB = TCC1.CTRLB | 0b00010000;

// Capture event source: None

// Capture event action: None

TCC1l.CTRLD=(TCCO.CTRLD & (~(TCO_EVACT_gm | TCO_EVSEL_gm))) |
TC_EVACT_OFF_gc | TC_EVSEL_OFF_gc;

// Overflow interrupt: Medium Level
// Error interrupt: Disabled

// TCCO.INTCTRLA=(TCCO.INTCTRLA & (~(TCO_ERRINTLVL_gm |
TCO_OVFINTLVL_gm))) |
// TC_ERRINTLVL_OFF_gc | TC_OVFINTLVL_MED_gc;

197




// Compare/Capture channel A interrupt: Disabled
// Compare/Capture channel B interrupt: Disabled

//TCCO.INTCTRLB=(TCCO.INTCTRLB & (~(TCO_CCDINTLVL_gm |
TCO_CCCINTLVL_gm | TCO_CCBINTLVL_gm | TCO_CCAINTLVL_gm))) |
// TC_CCDINTLVL_OFF_gc | TC_CCCINTLVL_OFF_gc |
TC_CCBINTLVL_OFF_gc | TC_CCAINTLVL_OFF_gc;

// High resolution extension: Off
HIRESC.CTRL&= ~HIRES_HRENO_bm;

// Clear the interrupt flags
TCC1l.INTFLAGS=0;

// Set counter value
TCC1.CNT=0x0000;

// Set period register
TCC1.PER=1600-1;

// Set channel A Compare/Capture register
TCC1l.CCA=0;

// Set channel B Compare/Capture register
TCC1.CCB=0x0000;

// Restore interrupts enabled/disabled state
SREG=s;
}

// RTC initialization
void rtcxm_init (void)

{

// RTIC 1.024kHz
RTC.CTRL=(RTC.CTRL & (~RTC_PRESCALER_gm)) | RTC_PRESCALER_DIV1_gc;

// RTC overflow interrupt: Off
// RTC compare interrupt: Off
RTC.INTCTRL=(RTC.INTCTRL & (~(RTC_OVFINTLVL_gm |
RTC_COMPINTLVL_gm))) |

RTC_OVFINTLVL_OFF_gc | RTC_COMPINTLVL_OFF_gc;
RTC.CNT=0;

// 1.024kHz internal 32.768 RC oscilator, Enable RTC Clock
CLK.RTCCTRL = 0b0101;

}

//Code given from
//http://blog.frankvh.com/2009/11/14/atmel-xmega-printf-howto/

// Init USART. Transmit only (we're not receiving anything)
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// We use USARTC1l, transmit pin on PC7.

// Want 9600 baud. Have a 32 MHz clock. BSCALE = 0

// BSEL = ( 32000000 / (270 * 16*9600)) -1 = 103

// Fbaud = 32000000 / (270 * 16 * (12+1)) = 9615 bits/sec

void usartCl_init (void) {
// Set the TxD pin high - set PORTC DIR register bit 7 to 1
PORTC.OUTSET = PIN7_bm;
//PORTE.OQOUTSET = PIN3_bm;

// Set the TxD pin as an output - set PORTC OUT register bit 7
to 1

//PORTE.DIRSET = PIN3_bm;

PORTC.DIRSET = PIN7_bm;

// Set baud rate & frame format

//USARTEQ .BAUDCTRLB = 0; // BSCALE = 0 as well,
19200

//USARTEQ .BAUDCTRLA = 0x67;

USARTC1 .BAUDCTRLB 0b11010000; // BSCALE = -3
//USARTEO .BAUDCTRLB = 0b11010000; // BSCALE = -3

USARTC1.BAUDCTRLA = 135; //115,200
//USARTEO .BAUDCTRLA = 63; //230,400
//USARTEQ .BAUDCTRLA = 27; //460800
//USARTEO .BAUDCTRLA = 9; //921600
//USARTC1.BAUDCTRLA = 9; //921600

// Set mode of operation

USARTC1.CTRLA = 0; // no interrupts please

USARTC1.CTRLC = 0x03; // async, no parity, 8 bit
data, 1 stop bit

//USARTEQ.CTRLA = 0; // no interrupts please

//USARTEQ.CTRLC = 0x03; // async, no parity, 8 bit

data, 1 stop bit

// Enable transmitter only
USARTC1.CTRLB = 0b00001000;
//USARTEO.CTRLB = 0b00001000;

}

void usartEO_init (void) {
// Set the TxD pin high - set PORTC DIR register bit 7 to 1
PORTE.OQUTSET = PIN3_bm;

// Set the TxD pin as an output - set PORTC OUT register bit 7
to 1
PORTE.DIRSET = PIN3_bm;

// Set baud rate & frame format
USARTEO.BAUDCTRLB = 0; // BSCALE = 0 as well, 19200
USARTEO.BAUDCTRLA = 0x67;

199




// Set mode of operation

USARTEO.CTRLA 0; // no interrupts please

USARTEO.CTRLC = 0x03; // async, no parity, 8 bit
data, 1 stop bit

// Enable transmitter only
USARTEO.CTRLB = 0b00001000;

}

void uartEO_putchar (char c)

{

// Wait for the transmit buffer to be empty
while ( ! ( USARTEO.STATUS & USART_DREIF_bm) );
// Put our character into the transmit buffer
USARTEO.DATA = c;

// Disable an USART

void usart_disable (USART_t *pu)

{

// Rx and Tx are off

pu->CTRLB=0;

// Ensure that all interrupts generated by the USART are off
Pu—>CTRLA=0;

}

void adc_init (void) {

ADCA.CALL = SP_ReadCalibrationByte( PROD_SIGNATURES_START +
ADCACALO_offset );

ADCA.CALH = SP_ReadCalibrationByte( PROD_SIGNATURES_START +
ADCACAL1_offset );

ADCA.CTRLA 0b00111101; // set up with a four channel sweep

ADCA.CTRLB = 0b00010000; // signed

ADCA.REFCTRL =0b00110000; //portb reference, temp and
bandgap disabled

ADCA.EVCTRL = 0b11000000; // no events

//ADCA.PRESCALER = 0b00000011; // div 32

//ADCA.PRESCALER = 0b00000111; // div 512, 62.5kHz

ADCA.PRESCALER = 0b00000101; // div 128, 250kHz

//ADCA.PRESCALER = 0b00000110; // div 256, 125kHz

ADCA.CHO.CTRL =0b10000011; // start channel 0, differential
w/gain 1

ADCA.CHO.MUXCTRL = 0b00000011; // Differential POS=A0 and
NEG=A"7, Battery Voltage

ADCA.CHO.INTCTRL = 0b00000000; // no interrupt on channel 0;
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//ADCA.CH1.CTRL =0b10011011; // start channel 1, differential
w/gain 64

//ADCA.CH1.CTRL =0b10010011; // start channel 1, differential
w/gain 16

ADCA.CH1.CTRL =0b10001111; // start channel 1, differential
w/gain 8

ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and
NEG=A6, Battery Current

//ADCA.CH1.MUXCTRL = 0b00110010; // Differential POS=A6 and
NEG=A6, Battery Current

ADCA.CH1.INTCTRL = 0b00000000; // no interrupt on channel 1;

//ADCA.CH2.CTRL = 0b10011011; // start channel 2, differential
w/gain 64

ADCA.CH2.CTRL = 0b10000011; // start channel 2, differential
w/gain 1

ADCA.CH2.MUXCTRL = 0b00100001; // Differential POS=A4 and
NEG=A5, MOSFET Current

//ADCA.CH2.CTRL = 0b10000011;

//ADCA.CH2 .MUXCTRL = 0b00101001; // Differential POS=A4 and
NEG=A5, MOSFET Current

ADCA.CH2.INTCTRL = 0b00000000; // no interrupt on channel 2;

ADCA.CH3.CTRL = 0b10000001; // start channel 3, single-ended
ADCA.CH3.MUXCTRL = 0b00011000; // Batt temp
ADCA.CH3.INTCTRL = 0b00000001; // low interrupt on channel 3;

// ADC interrupt service routine

interrupt [ADCA_CH3_vect] void ADCA_CH3_isr (void) {
char i;
//sleep_disable () ;

// the ADC does not seem to bounds check properly, so I'll have
to do it

ADCbuffer = ADCA.CHO.RES;

ADCtemp[0] += bound(ADCbuffer, 0, 2047);

ADCbuffer = ADCA.CH1.RES;
ADCtemp[l] += bound(ADCbuffer, -2048, 2047);

ADCbuffer = ADCA.CH2.RES;
ADCtemp[2] += bound(ADCbuffer, -2048, 2047);

ADCbuffer = ADCA.CH3.RES;
ADCtemp[3] += bound(ADCbuffer, 0, 2047);

ADCsamplecount++; //16 super sample

if (ADCsamplecount > 63){

//store the values
ADCvalues[0] = ADCtemp[0]>>6;
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ADCvalues[l] = ADCtemp[l]>>6;
ADCvalues[2] = ADCtemp[2]>>6;
ADCvalues|[3] ADCtemp [3]>>6;

for(i = 0; i<4; i++){
ADCtemp[i] = 0;
}

ADCsamplecount = 0;
//printf ("%4d,
$4d\r\n", temp, battVolt,ADCvalues[1l],ADCvalues([2]);
}

//Initiate next samples
ADCA.CHO.CTRL |=0b10000000;
ADCA.CH1.CTRL |=0b10000000;
ADCA.CH2.CTRL |=0b10000000;
ADCA.CH3.CTRL |=0b10000000;
//sleep_enable () ;

//idle () ;

interrupt [TWIC_TWIM_vect] void TWIC_TWIM_isr (void) {
//unsigned char x = 0;
if ((TWIC.MASTER.STATUS &
TWI_MASTER_WIF_bm)>>TWI_MASTER_WIF_bp) {

if ((TWIC.MASTER.STATUS &
TWI_MASTER_ARBLOST_bm)>>TWI_MASTER_ARBLOST bp){ //CASE M1
//IF BUSY STATE -> MAKE IDLE
TWIC.MASTER.STATUS = (TWIC.MASTER.STATUS &
~TWI_MASTER_BUSSTATE_gm) | TWI_MASTER_BUSSTATE_IDLE_gc;
}else if ((TWIC.MASTER.STATUS &
TWI_MASTER_RXACK_bm)>>TWI_MASTER_RXACK_bp){ //CASE M2
#asm("wdr")

// This code makes the master skip any cells that
are not responding... be sure to comment out "rewrite slave address
below" too

// if (/*slaveAddress==4 || slaveAddress==5 ||*/
slaveAddress==6) {

// battIdx++;

// dataIdx=0;

// slaveAddress=battIdx+1;

// currAddress=slaveAddress<<1l|READ;

//}else(

//PORTD.OUTCLR = 2;
//for (x=0; x<slaveAddress; x++) {

// delay_ms (300) ;

// PORTD.OUTTGL = 4;
// delay_ms (300);

// PORTD.OUTTGL = 4;
//}

//delay_ms (1000) ;
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/7}

TWIC.MASTER.ADDR = currAddress; //rewrite slave
address
PORTD.OUTTGL = 4; //Toggle Red Led 1 if stuck.
}else{ //MASTER WRITE SEQUENCE
#asm("wdr")
/*1f (dataCnt==0) {
dataCnt=1;
TWIC.MASTER.DATA = chargeStatus;
//TWIC.MASTER.DATA = dataOutTWIC;
}else if (dataCnt==1) {
dataCnt=2;
TWIC.MASTER.DATA = dataOutTWIC;
telse(
TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC &
~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc;
dataCnt=0;
}*/
if (dataCnt==0) {
dataCnt=1;
TWIC.MASTER.DATA = dataOutTWIC;
telse(
TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC &
~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc;
dataCnt=0;
twilLock=0;

}else if ((TWIC.MASTER.STATUS &
TWI_MASTER_RIF_bm)>>TWI_MASTER_RIF_bp){ //MASTER READ SEQUENCE
battData[battIdx] [dataldx++] = TWIC.MASTER.DATA;
if (dataldx<10) {
//Send Ack and Get Next Byte
TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC &
~TWI_MASTER_CMD_gm & ~TWI_MASTER_ACKACT_bm) |
TWI_MASTER_CMD_RECVTRANS_gc;

}else({
//Send Nack and Stop Condition
TWIC.MASTER.CTRLC = (TWIC.MASTER.CTRLC &
~TWI_MASTER_CMD_gm) | TWI_MASTER_CMD_STOP_gc |

TWI_MASTER_ACKACT_ bm;

newData=1;

dataldx=0;

PORTD.OUTCLR = 4; //Ensure RED LED 1 Off if
communicating

#asm("wdr")
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void init_TI2C_Mast ()
{

//000000, BIT 7:2 RESERVED

//0, BIT 1 SDAHOLD, 1-ENABLE, O-DISABLE

//0, BIT 0 EXTERNAL DRIVER ENABLE, 1=EXTERNAL ENABLE, 0=NORMAL
TWI

TWIC.CTRL = 0b0000000O0;

//0000, BIT 7:4 RESERVED

//00, BIT 3:2 TIMEOUT, INACTIVE BUS TIMEOUT, 00=DISABLED

//0, BIT 1, QCEN, Quick Cmd enable

//0, BIT 0, SMEN, Smart mode enable, ACK sent after data
read

TWIC.MASTER.CTRLB = 0b00000000;

//00000, BIT 7:3 Reserved

//1, BIT 2, ACKACT Acknowledge Action bit, 1=Send Ack, 0O=send
Nack

//0, BIT 1:0, CMD BITS, O00=RESERVED, Ol=execute ack w/ repeated
start

// 10=execute ack w/ byte receive

// ll=execute ack w/ stop condition

TWIC.MASTER.CTRLC = 0b00000100;
//Force busstate to idle clear all other bits.
TWIC.MASTER.STATUS = 0b11001101;

TWIC.MASTER.ADDR=0;
TWIC.MASTER.DATA=0;

//TWMBR = fsys/ (2*Ftwi)-5 = 32e6/(2*75e3)-5 = 208 == 75kHz baud

//TWIC.MASTER.BAUD = 208;

//TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*100e3)-5 = 155 == 100kHz
baud

//TWIC.MASTER.BAUD = 155;

//TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*25e3)-5 = 155 == 25kHz baud

TWIC.MASTER.BAUD = 255;

//TWMBR = fsys/(2*Ftwi)-5 = 32e6/(2*300e3)-5 = 48 == 300kHz

baud
//TWIC.MASTER.BAUD = 48;

//00, BIT 7:6, Interrupt Level, 11=HIGH, 10=MED, 01=LOW, 0O0=O0OFF
//0, BIT 5, RIEN, Read Interrupt

//0, BIT 4, WIEN, Write Interrupt Enable

//0, BIT 3, ENABLE, TWI MASTER

//0, BIT 2:0, RESERVED

TWIC.MASTER.CTRLA = 0b01111000;
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void main(void)
{

// Declare your local variables here

int movAvgValues[3][64];

long movAvgTotal[3]1={0,0,0};
int newAdcVal[3];

unsigned int initSamples=0;
unsigned int sampleIdxOldest=0;

unsigned char n;
unsigned char ledval;

int mosCurrRaw;

int battCurrRaw;

int battVoltRaw;

unsigned int socRaw=0x0700;
unsigned int tempRaw=0;

unsigned int i=0;
unsigned int duty=0;
float error = 0.0;

float refv 0.0;
float KpV = 0;

unsigned char currBattIdx=0;
unsigned int chargerConnectedCnt=0;

KpVv = -200;
refV = STOP_CHARGE_VOLT;

// Make sure the interrupts are disabled
#asm("cli")
// Low level interrupt: On
// Round-robin scheduling for low level interrupt: Off
// Medium level interrupt: On
// High level interrupt: On
// The interrupt vectors will be placed at the start of the
Application FLASH section
n=(PMIC.CTRL & (~(PMIC_RREN_bm | PMIC_IVSEL_bm | PMIC_HILVLEN_bm |
PMIC_MEDLVLEN_bm | PMIC_LOLVLEN_bm))) |
PMIC_LOLVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_HILVLEN_bm;
CCP=CCP_IOREG_gc;
PMIC.CTRL=n;
// Set the default priority for round-robin scheduling
PMIC.INTPRI=0x00;

// Watchdog timer initialization
watchdog_init () ;

// System clocks initialization
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system_clocks_init () ;

// Event system initialization
event_system_init () ;

// Ports initialization
ports_init ();

init_I2C_Mast () ;

// Virtual Ports initialization
//vports_init ();

delay_ms (400) ;

// Timer/Counter TCCl initialization
tcecl_init () ;

// Timer/Counter TCDO is enabled, used to initiate talking to
boards.
tcdO0_init () ;

// Timer/Counter TCD1l is enabled
tcdl_init(); //stepready

// Timer/Counter TCEO initialization
//tcel_init ();

// RTC initialization
rtexm_init () ;

// USARTCO is disabled
usart_disable (&USARTCO) ;

// USARTC1l is disabled
usart_disable (&USARTC1) ;

// USARTDO is disabled
usart_disable (&USARTDO) ;

// USARTD1 is disabled
usart_disable (&USARTD1) ;

// USARTEO is disabled
usart_disable (&USARTEOQ) ;

// SPIC initialization
//spic_init ();

// ADC Initilization
adc_init () ;
usartCl_init () ;
usartEO_init () ;

ADCA.CHO.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6
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ADCA.CH1.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6
ADCA.CH2.MUXCTRL = 0b00110010; // Differential POS=A6 and NEG=A6

//Calibrate Differential Gain Offset

for (1i=0; i<64; i++){
ADCA.CHO.CTRL |=0b10000000;
ADCA.CH1.CTRL |=0b10000000;
ADCA.CH2.CTRL |=0b10000000;
while ( (ADCA.CH2.INTFLAGS&0x01) !=1);
ADCA.CH2.INTFLAGS |= 0x01; //clear flag

OFFSET_CHO_DIFF += ADCA.CHO.RES;

OFFSET_CH1_DIFF += ADCA.CHI1.RES;

OFFSET_CH2_DIFF += ADCA.CH2.RES;
}

OFFSET_CHO_DIFF = OFFSET_CHO_TOTAL>>6;
OFFSET_CH1_DIFF OFFSET_CH1_TOTAL>>6;
OFFSET_CH2_DIFF = OFFSET_CH2_TOTAL>>6;

ADCA.CHO.MUXCTRL = 0b00000011; // Differential POS=A0 and NEG=A7,
Battery Voltage

ADCA.CH1.MUXCTRL = 0b00010010; // Differential POS=A2 and NEG=A6,
Battery Current
ADCA.CH2.MUXCTRL
MOSFET Current

0b00100001; // Differential POS=A4 and NEG=A5,

// Globaly enable interrupts
#asm("sei")

//Battery Voltage Control
KpVv = -100;
refV = STOP_CHARGE_VOLT;

watchdog_init () ;
desiredCurrentInt=desiredCurrentIntEE;
desiredCurrentDec=desiredCurrentDecEE;

while (1)

{
if (stepready)
{

stepready=0;
newAdcVal[0]
newAdcVal[l]
newAdcVal[2]

= ADCvalues[0]; //Raw Batt Voltage
ADCvalues[1l]; //Raw Batt Current
ADCvalues[2]; //Raw MOSFET Current

if (initSamples<64) //Grabs first 128 samples to
start off average filter, this all occurs during INIT MODE so
battVoltageFilt can be wrong during this time

{

for (i=0; i<3; 1i++)
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movAvgValues|[i] [initSamples] =
newAdcVall[i];
movAvgTotal [i] = movAvgTotall[i] +
movAvgValues|[i] [initSamples]; //Eventually will hold total of first
128 samples
}
initSamples++;
}
else
{
for (i=0; 1i<3; i++)
{
movAvgTotal [i] = movAvgTotall[i] -
movAvgValues[i] [sampleIdxOldest]; //Subtracts out oldest sample
movAvgValues[1i] [sampleIdxOldest] =
newAdcVal[i]; //Replace oldest sample value with a new value
movAvgTotal[i] =
movAvgTotal [i]+movAvgValues[i] [sampleIdxOldest]; //Add in newest
value, movAvgTotal is now last 128 wvalues, increment oldest index
}
sampleIdxOldest++;
sampleIdxOldest&=0x3F; //Wraps around Oldest
Index value in case it "overflows" out of range of movAvgValues]|]
array

}

battVoltRaw = movAvgTotal[0]>>6;
battCurrRaw = movAvgTotal[l]>>6;
mosCurrRaw = movAvgTotal[2]>>6;

tempRaw = ADCvalues|[3];

offset = (signed int) (ADC_OFFSET_M[O0] *mosCurrRaw +
ADC_OFFSET_B[O0]);
mosCurrRaw = mosCurrRaw+offset;

offset = (signed int) (ADC_OFFSET_M[O0]*battVoltRaw +
ADC_OFFSET_B[0]);
battVoltRaw = battVoltRaw+offset;

battVolt [0] = DbattVoltRaw*0.0025;

mosCurr [0] = mosCurrRaw*.001; //1 ohm, gain 1

battCurr[0] = battCurrRaw*0.020833333; //6 mOhm,
gain 8

if (mosCurr[0]1<0) mosCurr[0]=0;

temp[0] = -1481.96 + sqrt (2196200 + (1863.9-
tempRaw) *257.732) ;

socRaw = (unsigned

int) ((float)4095.0* (float) ((float)AmpSec/ (float)MAX _AMP_SEC));

soc[0] = socRaw*0.0244140625;
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if (AmpSec<=0) AmpSec=0;
//Loop occurs at 4.32ms with printf statement

if (mosCurr [0] >MAX_BYPASS_CURRENT)

{
ledColor=RED;
byPassMax[0]=1;

}

else if (mosCurr[0]>0.05)

{
ledColor=AMBER;
byPassOn[0]=1;

}

else

{
ledColor=GREEN;
byPassOn[0]=0;
byPassMax[0]=0;

}

if (battVolt [0] <OVERDISCHARGE_VOLT)
overDischarge[0]=1;

else overDischarge[0]=0;

voltCntrlCnt++;
if (voltCntrlCnt>75)
{
voltCntrlCnt=0;
error = (refV-battVolt[0]);

if (error>=0) //1f batteryVoltage <3.8 means
error 1is positive

{
if ((duty+error*KpV)<=0) //prevent
controller from causing duty from rolling over
{
duty=0;
}
else
{
duty=duty+KpV*error;
}
}
else
{
duty=duty+KpV*error; // +
Kpv*250*integral_V;

}

//Cap duty cycle to a maximum value.
if (duty>DUTY_CYC_MAX) duty=DUTY_CYC_MAX;

//Ensure mosfet stays off if battery is not
charging and battery voltage is less than max
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if (battCurr[0]<=0.05 &&
battVolt [0]<(STOP_CHARGE_VOLT))
{

if (dutyOffCnt<=MAX_DUTY_OFF_CNT) dutyOffCnt++;
if (dutyOffCnt>=MAX_DUTY_OFF_CNT)
{
TCC1l.CCA=0;
}
}
else
{
TCCl.CCA=duty;
}
}
if (dataOutTWIC == LOW_SOC)
{
ledVal=LOW_SOC;
}
else
{
if (dataOutTWIC>6)
{
ledval=7;
}
else
{
ledVal=dataOutTWIC;
if (ledval>6)ledVal=7;
}
}
switch (ledval)
{
case 1:
PORTD.OUT = 0;
PORTE.OUT = 0;
PORTD.OUTSET = ledColor; //0b00000010==
break;
case 2:
PORTD.OUT = 0;
PORTE.OUT = 0;
PORTD.OUTSET = ledColor<<2; //0b00001000==
break;
case 3:

PORTD.OUT = O0;
PORTE.OUT = O0;

PORTD.OUTSET ledColor<<4;
break;
case 4:
PORTD.OUT = 0;
PORTE.OUT =

0;

PORTD.OUTSET ledColor<<o;

//0b00100000==32

//0b10000000==128

210




break;

case 5:
PORTD.OUT 0;
PORTE.OUT = 0O;
PORTE.OUTSET =

O0b0011 & ledColor;

//0b00000010==
break;
case 6:
PORTD.OUT = 0;
PORTE.OUT = 0O;
PORTE.OUTSET = 0b0011 & (ledColor<<2);
//0b00001000==

break;

case LOW_SOC:
PORTD.OUTTGL 0b01010101;
PORTE.OUTTGL = 0b00000001;

break;
default:
PORTD.OUT = ledColor;
PORTE.OUT = 0;
break;

}

//GRAB DATA FROM OTHER ICMU SLAVES
currBattIdx=battIdx; //HOLD BATTERY CELL INDEX VALUE
WHILE RUNNING THE FOLLOWING LOOP IN CASE battIdx IS CHANGED IN
INTERRUPT
if (newData)
{
if (currBattIdx!=0) //IF NOT THE MASTER, WE NEED TO
CONVERT MEASURMENT DATA FROM PACKET BACK TO ACTUAL VALUE
{

battCurrRaw = (signed int) ((((unsigned
int)battData[currBattIdx] [1])<<8) | battData[currBattIdx] [0]);
battVoltRaw = (signed int) ((((unsigned
int)battData[currBattIdx] [3])<<8) | battDatal[currBattIdx][2]);
mosCurrRaw = (signed int) ((((unsigned
int)battData[currBattIdx] [5])<<8) | battDatal[currBattIdx][4]);
tempRaw = (unsigned int) ((((unsigned
int)battData[currBattIdx] [7])<<8) | battData[currBattIdx] [6]);

//NEED TO GRAB STATUS BITS FROM PACKET
byPassOn[currBattIdx]=(battData[currBattIdx] [9]
& 0x80)>>7;

byPassMax[currBattIdx]=(battData[currBattIdx] [9] & 0x40)>>6;
overDischarge[currBattIdx] =
(battData[currBattIdx] [9] & 0x20)>>5;
overTemp [currBattIdx] =
(battData[currBattIdx] [9] & 0x10)>>4;

//GRAB SOC DATA FROM CURRENT CELL INDEX SOC
battData[currBattIdx] [9] =
battData[currBattIdx] [9]&0x0F;
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socRaw = (unsigned int) ((((unsigned
int)battData[currBattIdx] [9])<<8) | battData[currBattIdx] [8]);

//CONVERT RAW DATA TO SCIENTIFIC NOTATION

battVolt [currBattIdx] = DbattVoltRaw*0.0025;

mosCurr [currBattIdx] = mosCurrRaw*.001; //1
ohm, gain 1

battCurr[currBattIdx] =
battCurrRaw*0.020833333; //6 mOhm, gain 8

temp[currBattIdx] = tempRaw*0.01;

soc[currBattIdx] = socRaw*0.02442;

}

//PRINT OUT CURRENT CELL'S DATA ONLY IF THE BPMU'S
MEASURED CURRENT IS ABOVE A CERTAIN THRESHOLD

if (battCurr[0]>0.08 || battCurr[0]1<-0.08)

{

printf ("%05u,%02d,%03.2f,%03.3f,%+03.3f,%+03.2f,%03.2f,%1d, %1d, %1d,
%$1d\r\n",RTC.CNT, currBattIdx+1, temp[currBattIdx],battVolt [currBattI
dx],battCurr[currBattIdx],mosCurr [currBattIdx], soc[currBattIdx], byP
assOn[currBattIdx],byPassMax[currBattIdx], overDischarge[currBattIdx
],overTemp [currBattIdx]) ;

}

//CLEAR FLAG FOR newData AND WAIT FOR NEXT I2C
MESSAGE, INCREMENT INDEX TO THE NEXT ICMU

newData=0;

battIdx++;

//CHECK TO SEE IF LAST ICMU'S INFORMATION HAS BEEN
RECEIVED.
if (battIdx>=MAX_BATT_CNT)
{
battIdx=0;
dataRdy=1;

//CHECK IF ANY CELL IS IN AND UNDERVOLT
CONDITION
underVoltCond = 0;
for (1=0; 1<MAX_BATT_CNT; i++)
{
if (battVolt[1i]1<2.5 && soc[1]1<0.1)
{
underVoltCond = 1;
break;
}
underVoltCond = 0;
}

//COUNTER FILTER FOR DETECTING UNDERVOLTAGE
CONDITION

if (underVoltCond)

{
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if (underVoltCondCnt<65000)
underVoltCondCnt++;
}else
{
underVoltCondCnt=0;
}

//ENSURE THAT CONDITION EXISTS FOR A
CERTAIN COUNT BEFORE SETTING CONDITION
if (underVoltCondCnt>1000)
{
//SEND OUT LOW SOC MESSAGE TO ALL ICMUs
//ALL ICMUs WILL FLASH RED THEN
dataOut TWIC=LOW_SOC;
}
else //NOT LOW SOC DETECTED,
INCREMENT/DECREMENT NEXT NUMBER FOR "KNIGHT RIDER EFFECT"
{
if (increment)
{
dataOutTWIC++;
}
else
{
dataOutTWIC——;
}
if (dataOutTWIC>=MAX_BATT_CNT*6)
{
increment=0;
}else if (dataOQutTWIC==0) {
increment=1;

}

//Writing current count to all slaves for
cycling LED display pattern, data being written out is in
dataOutTIWIC

currAddress=allCallAddress<<1l|WRITE;

TWIC.MASTER.ADDR = currAddress;

}

//ONCE ALL ICMU DATA HAS BEEN RECEIVED PRINT OUT
INFORMATION ON BATTERY PACK AS WHOLE.
//SPECIFICALLY, PACK VOLTAGE, CURRENT, AND SOC (ZEROS ARE
JUST PLACEHOLDERS) .
if (dataRdy)
{
dataRdy=0;
packCurr=0;
packSoc=100.0;
packVolt=0;
//CALCULATE PACK VOLTAGE FROM SUM OF ALL ICMU's
CELL VOLTAGE
for (i=0; i1<MAX_BATT_CNT; i++)
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packCurr=battCurr[i]+packCurr; //SUM CURRENT
FOR CURRENT AVERAGE
packVolt=battVolt[i]+packVolt;
if (soc[i]<packSoc) packSoc=soc[i];
}
packCurr=packCurr/MAX_BATT_CNT; //AVERAGE CURRENT
FOR ALL CELLS (SHOULD BE SAME)

printf("0,0,0,0,0,0,0,0,0,0,0,%03.3£,%+03.3£,%03.2f\r\n", packVolt,p
ackCurr, packSoc);

}

if (waitToChangeCnt<65530)
{
waitToChangeCnt++; //Prevent Rollover

}

/] *Kkxkxkxkxkxk%x* BEGIN LOGIC FOR CHARGER
CONTROL ¥ * % % % % % % & % % % % k k& k k% /

//DETECT THAT CHARGER IS CONNECTED
if (((PORTE.IN&PIN2_bm)>>PIN2_bp)==0) //Charger present if
pin is low
{
//FLASH LED 2 TIMES AMBER IF CHARGER IS DETECTED
if (chargerConnectedCnt>2000)
{
chargerConnectedCnt = 0;
PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==2
delay_ms (500);
PORTE.OUTTGL =
delay_ms (500) ;
PORTE.QOUTTGL =
delay_ms (500)
PORTE.OUTTGL = 0b0011 & AMBER; //0b00000010==
delay_ms (500) ;

0b0011 & AMBER; //0b00000010==

0b0011 & AMBER; //0b00000010==

~.

//****CHECK: IS AN ICMU AT ITS MAXIMUM BYPASS
CURRENT?
//LOGIC TO DETERMINE IF ANY ICMU IS AT MAX BYPASS
battBypassId=100;
for (i=0; i<MAX_BATT_CNT;i++)
{
//BREAK OUT OF LOOP WHEN MAX IS DETECTED
//KEEPING THE ICMU'S INDEX THAT IS AT MAX
//IF NO CELL IS OVER BYPASS MAX CURRENT
//THEN battBypassId REMAINS 100 WHICH NO
//VALID ICMU WILL HAVE THAT VALUE IN THIS
SYSTEM
if (mosCurr[i]> MAX_BYPASS_CURRENT )
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battBypassId = 1i;
break;

//IF battBypassId IS NOT 100, AND THE SAME VALUE
TWICE IN A ROW

//START COUNT FOR DECREASING CHARGER CURRENT

if ((battBypassId == prevBattBypassId) &&
(battBypassId != 100))

{
if (decreaseCurrentCnt<8000)

{

decreaseCurrentCnt++;

}

else

{

decreaseCurrentCnt=0;

//STORE PREVIOUS BYPASS ID FOR USE NEXT TIME AROUND
prevBattBypassId=battBypassId;

//****CHECK: ARE ALL BYPASSES ON?

//LOGIC TO DETECT THAT ALL ICMUs ARE BYPASSING SOME
CURRENT

allBypassOn=1;

for (1=0; 1<MAX_BATT_CNT; i++)

{

allBypassOn &= (mosCurr[i]>0.05); //If

bypassing some current, means it's at 3.8

}

//IF ALL BYPASSES ARE ON, SETUP BMS MASTER MESSAGE
//TO CHARGER TO SHUT-OFF
if (allBypassOn) {
if (turnOffChargerCnt < MAX_TURNOFF_CNT) {
turnOffChargerCnt++;
}
else
{
turnOffChargerCnt=0;
desiredCurrentInt=0;
desiredCurrentDec=0;
sendDesiredCurrent=1;
wailtToChangeCnt=0;

}

//****CHECK: ANY CELL OVERVOLTAGE (>4.2V)

215




DETECTED

OF TIME.

IN MEASUREMENTS

IN MEASUREMENTS

//LOWER CHARGING CURRENT TO 1.8 AMPS IF ANY CELL IS
//AS BEING HIGHER THAN 4.2V FOR A DETERMINED PERIOD

//NOTE: ICMUs CAN BYPASS 1.9 AMPS
overVoltageShutoff=0;
for (1i=0;i<10;1i++)
{
overVoltageShutoff |= (battVolt([i]>4.2);

}

//COUNTER FOR FILTERING SHUT-OFF LOGIC FROM NOISE

if (overVoltageShutoff)
{
if (turnOffChargerCnt2 < MAX_ TURNOFF_CNT)
{
turnOffChargerCnt2++;
}
else
{
turnOffChargerCnt2=0;
desiredCurrentInt=2;
desiredCurrentDec=2;
sendDesiredCurrent=1;
wailtToChangeCnt=0;

}

//****CHECK: ANY CELL OVERTEMPERATURE
overTemperatureShutoff=0;

for (1i=0;i<10;1i++)

{

overTemperatureShutoff |= overTemp[i];

}

//COUNTER FOR FILTERING SHUT-OFF LOGIC FROM NOISE

if (overTemperatureShutoff)
{
if (turnOffChargerCnt3 < MAX_ TURNOFF_CNT)
{
turnOffChargerCnt3++;
}
else
{
turnOffChargerCnt3=0;
desiredCurrentInt=0;
desiredCurrentDec=0;
sendDesiredCurrent=1;
wailtToChangeCnt=0;
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//IF COUNTERS EXCEED AND ARE NOT RESET BY NORMAL
OPERATION FROM CHECKS ABOVE

//CREATE MESSAGE TO CHARGER TO REDUCE CHARGING
CURRENT

if (decreaseCurrentCnt>5000 &&
waltToChangeCnt>WAIT_ BEFORE_CHANGE_CNT)
{
//IF CHARGING CURRENT IS 6 OR GREATER DECREASE
CURRENT BY 2
if (desiredCurrentInt>=6)
{
desiredCurrentInt=desiredCurrentInt-2;
desiredCurrentDec=0;
}
else //OTHERWISE, SET CURRENT TO 1.8 A
{
desiredCurrentInt=1;
desiredCurrentDec=8;
}
sendDesiredCurrent=1;
wailtToChangeCnt=0;
decreaseCurrentCnt=0;

}

//SEND MESSAGE TO CHARGER
if (sendDesiredCurrent==1)

{

sendDesiredCurrent=0;

//CHECK THAT THE NEW VALUE IS NOT THE SAME AS
WHAT IS CURRENTLY

//IN THE BPMU'S EEPROM IF IT IS NEW, STORE IT
IN BPMU's MEMORY

if (desiredCurrentIntEE != desiredCurrentInt)

{

desiredCurrentIntEE desiredCurrentInt;
desiredCurrentDecEE = desiredCurrentDec;

}

//CREATE PACKET

//BYTEQ: OxAA IS START OF PACKET INDICATOR

//BYTEl: DESIRED CURRENT INTEGER PORTION

//BYTE2: DESIRED CURRENT DECIMAL PORTION

//BYTE3: DESIRED CURRENT INTEGER PORTION

//BYTE4: DESIRED CURRENT DECIMAL PORTION

//0x55 IS END OF PACKET INDICATOR

//BYTES 1&2 ARE REDUNDANT WITH BYTE 3&4 FOR
TRANSMISSION ERROR CHECKING

//ON CHARGER SIDE OF TRANSMISSION

currentPkt [0]=0xAA;

]
currentPkt [l]=desiredCurrentInt;
currentPkt [2]=desiredCurrentDec;
currentPkt [3]=desiredCurrentInt;
currentPkt [4]=desiredCurrentDec;
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currentPkt [5]=0x55;

//SEND SAME PACKET 5 TIMES IN A ROW FOR CHARGER
//IF CHARGER DOES NOT SEE THE SAME MESSAGE 5
//IT WILL NOT CHANGE VALUE
for (i=0;1<6;1i++) uartEO_putchar (currentPkt[i])
for (i=0;1<6;1i++) uartEO_putchar (currentPkt[i])
for (i=0;1<6;1i++) uartEO_putchar (currentPkt[i]);
for (i=0;1i<6;i++) uartEO_putchar (currentPkt[i])
for (i=0;1i<6;i++) uartEO_putchar (currentPkt[i])
}
else //SYSTEM IS IN "CHARGER IS NOT CONNECTED" STATE
{
//NOISE FILTER: chargerConnected STARTS TO COUNT UP
WHEN CHARGER IS DETECTED
//THIS VALUE IS RESET ABOVE WHEN THE CHARGER
DETECTION PIN IS LOW
if (chargerConnectedCnt<3000)
{
chargerConnectedCnt++;
}
//IF CHARGER IS DETECTED, SEND A MESSAGE TO CHARGER
//TO TELL IT TO START CHARGING AT 10 AMPS
if (chargerConnectedCnt>2000)
{
desiredCurrentInt=10; //Integer
desiredCurrentDec=0; //Decimal Value

//CHECK IF NEW CHARGING CURRENT IS THE SAME AS

WHAT
//IS IN BPMU'S EEPROM MEMORY
if (desiredCurrentIntEE != desiredCurrentInt)
{
//STORES 10A CHARGING CURRENT IN BPMU'S
MEMORY

//IN THE EVENT OF A RESET OCCURING
desiredCurrentIntEE = desiredCurrentInt;
desiredCurrentDecEE desiredCurrentDec;

}
sendDesiredCurrent=1; //TELL CHARGER
COMMUNICATION LOGIC TO SEND A MESSAGE

}
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