
c©2014

TIMOTHY ALLEN NIXDORF

ALL RIGHTS RESERVED



A MATHEMATICAL MODEL FOR CARBON NANOSCROLLS

A Thesis

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Timothy Allen Nixdorf

August, 2014



A MATHEMATICAL MODEL FOR CARBON NANOSCROLLS

Timothy Allen Nixdorf

Thesis

Approved:

Advisor
Dr. Dmitry Golovoty

Co-Advisor
Dr. J. Patrick Wilber

Faculty Reader
Dr. Malena Español
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ABSTRACT

Carbon nanoscrolls (CNS) have great potential in engineering applications. Under-

standing the geometries of CNS and their properties can provide insight into the

design of nanoscale devices. We study an energy-based model of CNS. We approxi-

mate the 2-D scroll of atoms by a 1-D chain of carbon atoms interacting via van der

Waals (VDW) and bending forces. A collection of equilibrium configurations is found

by evolving various initial spiral geometries using dissipation-dominated gradient flow

dynamics. The structure of the final configuration depends on the relative strengths

of the bending and VDW forces. The predictions drawn from our simple model are

qualitatively consistent with experimental observations [1], [2]. We then approximate

the 2-D scroll by a 2-D lattice of atoms interacting via extensional bond forces, VDW

forces, and bending forces.
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CHAPTER I

INTRODUCTION

1.1 Graphene, Carbon Nanotubes, and Carbon Nanoribbons

In the modern world, nanotechnology is a popular field of study. Particularly, sig-

nificant efforts have been expanded to investigate carbon-based nanostructures and

graphene. Graphene exhibits remarkable mechanical properties, including exceptional

rigidity and strength, in addition to impressive transport properties like high electron

mobility [5]. New uses for graphene are constantly being discovered; for example, it

can be used to store hydrogen atoms, with possible applications in hydrogen fuel cells

[6].

A large number of studies have been done on carbon nanotubes (CNT). A

CNT is essentially a sheet of graphene that has been rolled into a tube. Much like

graphene sheets, CNT have impressive mechanical and electronic properties [7]. CNT

are of two types: single-walled CNT (SWNT) and multi-walled CNT (MWNT). These

structures can be sufficiently large to be described within a framework of continuum

theory, yet are still small enough for their properties to be dependent on discreteness

of the atomistic structure. Some MWNT have been shown to have polygonal cross-

sections [8], while it is expected that these cross-sections should be circular. This
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polygonization effect was recently described within the framework of a continuum

theory [8].

Under some conditions, the shape of a nanotube may be hard to control.

For instance, if the temperature is sufficiently increased, a pair of double-walled CNT

(DWNT) can even combine into a “bicable” through a “zipping” process that connects

the outer tubes into one large loop that encapsulates both of the inner CNT, [9].

Some other graphene shapes include carbon nanoribbons/nanobelts [10], and carbon

nanoscrolls (CNS). Carbon nanoribbons are graphene sheets that have a large aspect

ratio [10]. A carbon nanoscrolls is a graphene sheet that is rolled up into the shape

of a scroll.

1.2 Carbon Nanoscrolls

MWNT have the cross-sectional shape of concentric, closed curves while CNS have

the cross-sectional shape of a spiral (see Figure 1.1). Therefore, CNS are similar

to MWNT, but they have more freedom to change shape. One reason CNS are of

interest is that, under some conditions, a graphene sheet will spontaneously roll up

into a CNS [11]. These CNS are considered to exist at a lower energy than the original

sheet [11], but they can get stuck in a meta-stable configuration during the rolling

process [12]. There has also been a significant amount of research done to investigate

the formation of CNS by allowing a graphene sheet to wrap around a CNT [13, 14, 15].

CNS share many of the same characteristics with CNT, including impressive

mechanical and electronic properties [16]. There are applications in the field of CO2
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Figure 1.1: Comparison of graphene-based structures, Left: graphene, Center:
MWNT, Right: CNS [3]

storage [17]. Important differences between CNS and CNT come into play under

loading [16]. Where CNT has an “exact” size that is only stable under very specific

conditions, CNS have a “tunable” size that depends on its environment [18]. This

torsional instability can be exploited for molecular mass transport [16], [19].

There are several other applications specific to CNS. CNT supported by a

substrate have been used as oscillators along their axes, but new research suggests

that CNS whose cores are stiffened by CNT can be used as oscillators perpendicular

to their axes [20]. Additionally, CNS have been shown to have excellent potential

for nanoactuators and nanomotors, even without the CNT stiffeners [21]. Looking at

their magnetic properties, arrays of CNS have been theoretically shown to act as a

hyperbolic magnetic metamaterial that is magnetically active in a frequency regime

for which such materials are extremely rare [22].

Similarities between CNS and CNT suggest that the “polygonization” effects

observed in CNT may exit in CNS. This hypothesis is supported by models that
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Figure 1.2: Geometry of a graphene sheet

suggest twisted polygonal shapes [23]. We will investigate CNS using a computational

model to determine possible equilibrated states.

1.3 Modeling CNS

All graphene-based structures are based on a hexagonal lattice of carbon atoms held

together by covalent bonds (see Figure 1.2) [7]. In both CNT and CNS, the structure

can be characterized by the orientation (chirality) of the lattice. There are two specific

cases called “armchair” (see Figure 1.3A) and “zigzag” (see Figure 1.3B). All other

orientations are simply referred to as “chiral” (see Figure 1.3C) [7]. Therefore, a good

model should be able to describe any chirality.
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Figure 1.3: Different types of chirality, A: armchair, B: zigzag, and C: chiral [4].

To model the behavior of CNT and CNS, we employ a method based on min-

imizing an appropriately defined total energy. We use an atomistic model based on

positions of atoms. The total energy we define generally consists of three contribu-

tions. The first of these is the energy of the covalent bonds between adjacent atoms

in the hexagonal lattice. The forces in these bonds are considered to be very strong

compared to all other forces within the system. In our model, the covalent bonds are

modeled either as linear springs or as rigid rods.

A second contribution to the energy describes the attractive-repulsive inter-

actions between atoms that are not covalently bonded together. This interaction is

believed to be critical for explaining polyganization of CNT and CNS [8]. This in-

teraction is attributed in part to van der Waals effects and is often modeled by the

Lennard-Jones potential, [5], [25]. The Lennard-Jones potential energy is

ELJ(dij) = ε

[(
σ

dij

)12

− 2

(
σ

dij

)6
]
, (1.1)
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where dij is the distance between the atoms i and j, σ is the equilibrium distance,

and ε is the depth of the potential well. Figure 1.4 shows the Lennard Jones potential

Figure 1.4: Lennard Jones curve ELJ

(
dij
σ

)
for ε = 1

as a function of the ratio of the distance between atoms and the equilibrium distance.

Observe that this potential has a minimum when dij = σ and converges to 0 as

dij →∞.

The final contribution to the total energy is a bending energy, which is min-

imized when the sheet is flat. It is less clear how this energy should be represented.

Some simplified models use a linear torsional spring [26, 25], but more in-depth for-

mulations can be used as well [7]. We will describe our choices of bending below when

discussing specific models.
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1.4 Gradient Flow Dynamics

An equilibrium state of the graphene sheet corresponds to a configuration of atoms in

which the internal energy of the system is at a local minimum. Therefore, to find an

equilibrium, we must minimize the internal energy. To do this, we employ a method

called gradient flow dynamics, or “steepest descent.” This method moves the state

of the system in the direction opposite to the gradient of the internal energy and

therefore should find a local minimum of the energy, so long as one exists.

Next we explain how we implement gradient flow dynamics to track the sys-

tem’s evolution through time. We know that force is related to the total energy of

the system by ~F (~ri) = −~∇~riEtotal, where ~ri is the position of the atom i, ~F (~ri) is the

net force acting on atom i, and E is the total energy of the system. We let

γ
d~ri
dt

= −~∇~riE, (1.2)

where t is time and γ is a constant. Here, we assume that the total energy is a function

of positions of atoms. Note that ~ri can be replaced by any generalized coordinate of

the atom i.

1.5 Summary of the Project

We formulate a one-dimensional atomistic model of a CNS with modifiable parame-

ters. We establish an intial condition of a scroll-like configuration. We then evolve

this configuration toward a local equilibrium via gradient flow dynamics. We perform

a study of the shape of a CNS vs. system parameters. Many of these resulting shapes
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correspond to polygonized scrolls; we observe this for a range of parameter values.

We also learn about the effects of parameters on the model and the model limitations.

We then formulate a two-dimensional atomistic model of a CNS with modi-

fiable parameters. This model is similar to the one-dimensional model, but requires

fewer assumptions. We intend to consider two types of initial conditions: a sheet-like

configuration and a scroll-like configuration.
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CHAPTER II

ONE DIMENSIONAL MODEL

2.1 Modeling Assumptions

We assume that a CNS can be described by a chain of atoms in the plane. We can

think of this chain as describing a typical cross-section of a CNS. The atoms in the

chain are connected by links, where each link represents a strong, inextensible bond

of length 1 (see Figure 2.1). This chain should reasonably approximate zigzag or

armchair CNS. With each chain, we associate an energy that consists of two contri-

butions: nonadjacent atoms interact via VDW forces that tend to keep these atoms

at a certain equilibrium distance σ, and the bending forces between adjacent inter-

atomic bonds that tend to keep these bonds aligned. A parameter β controls the size

of the bending energy. We also consider the bonds between each atom and its imme-

diate neighbors to be essentially inextensible. Hence, this model does not include the

contribution due to extensibility of the bonds.

Next, we must decide how to track the positions of atoms in the chain. One

way to do this is to use the position vector of each atom in R2; however, because of

the assumption that each bond between atoms is inextensible, this approach would

require many constraints to be incorporated into the problem. Alternatively, we
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Figure 2.1: Planar chain of atoms approximating a cross-section of a CNS

observe that, because we know the length of each bond, it is sufficient to track the

orientations of the bonds. Thus, we can represent the chain by a sequence of angles

ψl, where ψl measures the angle between a bond joining atoms l and l + 1 and a

prescribed vector ~v1 (see Figure 2.2).

Figure 2.2: Geometry of the chain and VDW pairs.
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As mentioned above, the energy of the chain has two components. The first is

the energy due to VDW forces between atoms that are not covalently bonded together

(see Figure 2.2). To represent this energy, we use the Lennard-Jones potential (1.1) so

the VDW energy between atoms i and j is ELJ(dij), where dij is the distance between

atoms i and j. The second component is the bending energy, which accounts for the

energy stored when adjacent bonds are not parallel. For this model, we assume that

the bending energy is

EB (∆ψk) = tan2

(
∆ψk

2

)
, (2.1)

where ∆ψk = ψk−ψk−1. Note that π−∆ψk is the angle between the two bonds that

meet at the kth atom (see Figure 2.2). The function EB is even, periodic,vanishes at

0, and blows up to ∞ as ∆ψk approaches ±π.

We assume that the total energy E is the sum of the energy due to van der

Waals interactions and the bending energy. If we rescale by the strength of the van

der Waals forces, we can rewrite E as

E =
∑
i 6=j

ELJ(dij) + β
∑
k

EB(∆ψk), (2.2)

where β is the relative strength of the bending forces with respect to the van der

Waals forces. Shortly, we show how to express dij in terms of the angles ψi, . . . , ψj−1.

Hence the total energy E in (2.2) is a function of only these angles. Later we shall

present the results of a parametric study in which we vary the values of σ and β.
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2.2 Gradient Flow Dynamics

We assume that the chain evolves by gradient flow dynamics. Then, we have the

following adaptation of system (2.3)

dψl
dt

= −γ ∂E
∂ψl

. (2.3)

Combining equations (2.2) and (2.3), we get

dψl
dt

= −γ

[∑
i 6=j

∂ELJ
∂ψl

+ β
∑
k

∂EB
∂ψl

]
. (2.4)

To compute the right-hand side of (2.4), recall (1.1) and (2.1). Via the chain rule,

∂ELJ
∂ψl

=
dELJ

d
(
d2
ij

) ∂ (d2
ij

)
∂ψl

, (2.5)

and by (1.1)

dELJ

d
(
d2
ij

) =
6

σ2

[(
σ2

d2
ij

)4

−
(
σ2

d2
ij

)7
]
. (2.6)

To get the distance dij between atoms i and j, we consider the vector from atom i to

atom j. Observe that this vector is the sum of the |i− j| unit vectors that describe

the orientations of the bonds between the adjacent atoms in the part of the chain

from atom i to atom j (see Figure 2.2).

To express these vectors in components, we pick an orthonormal frame {v̂1, v̂2}.

The unit vector pointing from atom k to atom k + 1 can be written as cos(ψk)v̂1 +

sin(ψk)v̂2. Then, we know the square of the distance between atoms i and j is

d2
ij =

 k2(i,j)∑
k=k1(i,j)

cos(ψk)

2

+

 k2(i,j)∑
k=k1(i,j)

sin(ψk)

2

, (2.7)
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where k1(i, j) = min{i, j} and k2(i, j) = max{i, j} − 1.

Returning to (2.5), we have

∂
(
d2
ij

)
∂ψl

=


2

[
cos(ψl)

k2∑
k=k1

sin(ψk)− sin(ψl)

k2∑
k=k1

cos(ψk)

]
if k1 ≤ l ≤ k2,

0 otherwise.

Thus,

∂
(
d2
ij

)
∂ψl

=


2

k2∑
k=k1

sin(ψk − ψl) if k1 ≤ l ≤ k2,

0 otherwise.

(2.8)

Next, we can combine equations (2.5), (2.6), and (2.8) to get

∂ELJ
∂ψl

=


12

σ2

[(
σ2

d2
ij

)4

−
(
σ2

d2
ij

)7
]

k2∑
k=k1

sin(ψk − ψl) if k1 ≤ l ≤ k2,

0 otherwise.

(2.9)

Next, we use equation (2.1) to compute

∂EB
∂ψl

=



sec2(∆ψk) tan(∆ψk) if k = l,

− sec2(∆ψk) tan(∆ψk) if k = l + 1,

0 otherwise.

Then, if we sum these derivatives for all k, we get the following equation

∂

∂ψl

∑
k

EB(∆ψk) = sec2(∆ψl) tan(∆ψl)− sec2(∆ψl+1) tan(∆ψl+1). (2.10)

If we combine equations (2.4), (2.9), and (2.10) and rescale t by γ−1, we get

dψl
dt

=
12

σ2

∑
i 6=j

[(σ2

d2
ij

)7

−
(
σ2

d2
ij

)4
]

k2(i,j)∑
k=k1(i,j)

sin(ψk − ψl)


+β [sec2(ψl+1 − ψl) tan(ψl+1 − ψl) + sec2(ψl−1 − ψl) tan(ψl−1 − ψl)] .

(2.11)
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Thus, (2.11) gives us a system of ordinary differential equations for the evolution of

the chain of atoms. To solve this system, we need only to set up an initial condition

and pick the vector v̂1.

2.3 Setting up the Initial Condition

Many geometries can be considered as initial conditions for our simulations. We are

interested in studying spirals. Therefore, we pick initial conditions that are spiral

shapes and that should not make VDW interactions too large. To construct these

shapes, we start with a curve described in polar coordinates by

r(θ) = ρ+
∆r

2π
θ, (2.12)

where ρ is the distance from the origin to the first point on the curve, ∆r controls the

distance between adjacent arms in the spiral, and
(
r, π

2
− θ
)

is a point on the curve.

To construct the initial condition for the chain, we place n atoms on curve (2.12)

(see Figure 2.3). Because we have inextensible bonds, adjacent atoms are connected

by secant lines of length 1 along the curve. Thus, the length of the chain will be

a function of the number of atoms n. If we convert the position of the first atom,

(ρ, π
2
), to Cartesian coordinates, we have the point (0, ρ). Given a point (xi, yi) in the

position of atom i, we can find (δxi, δyi) such that (xi+1, yi+1) = (xi + δxi, yi + δyi).

14



Figure 2.3: Spiral geometry for initial condition

Then we have the following system

δxi =
[
ρ+ ∆r

2π
θi+1

]
sin(θi+1)−

[
ρ+ ∆r

2π
θi
]

sin(θi),

δyi =
[
ρ+ ∆r

2π
θi+1

]
cos(θi+1)−

[
ρ+ ∆r

2π
θi
]

cos(θi),

δx2
i + δy2

i = 1,

θ1 = 0,

(2.13)

where (r(θi), θi) is the coordinates of the ith atom in polar form, and i ∈ {1, . . . , n−1}.

We change this into a system of equations with respect to θ only. We can

rearrange the first two equations in system (2.13) as follows.
δxi = ρ [sin(θi+1)− sin(θi)]− ∆r

2π
[θi+1 sin(θi+1)− θi sin(θi)] ,

δyi = ρ [cos(θi+1)− cos(θi)]− ∆r
2π

[θi+1 cos(θi+1)− θi cos(θi)] .

15



Squaring the equation for δxi, we get

δx2
i = ρ2

[
sin(θi)

2 − 2 sin(θi) sin(θi+1) + sin(θi+1)2
]

+
ρ (∆r)

π

[
θi sin(θi)

2 − (θi + θi+1) sin(θi) sin(θi+1) + θi+1 sin(θ2
i+1)
]

+
(∆r)2

4π2

[
θ2
i sin(θi)

2 − 2θiθi+1 sin(θi) sin(θi+1) + θ2
i+1 sin(θi+1)2

]
.

(2.14)

Simplifying equation (2.14) (and its analog for δy2
i ) and adding the conditions from

system (2.13) yields the following equation.

1 = 2ρ2 [1− cos(θi+1 − θi)] + ρ(∆r)
π

[1− cos(θi+1 − θi)]

+ (∆r)2

4π2 [θ2
i + θ2

i+1 − 2θiθi+1 cos(θi+1 − θi)].
(2.15)

Finally, we can simplify (2.15) to get

1 =

(
2ρ2 +

ρ(∆r)

π
+
θiθi+1(∆r)2

2π2

)
[1− cos(θi+1 − θi)]

+ (∆r)2

4π2 [θi+1 − θi]2 ,

θ1 = 0.

(2.16)

System (2.16) can be quickly solved with a numerical root-finding method.

Solving this system will yield a sequence of points in R2 given by their polar coordi-

nates; however, for our model, we need a sequence of angles, {ψk}. If we convert the

points to Cartesian coordinates as done above and pick the vector from the origin

to the first atom as ρv̂1, we can transform our sequence of points into a sequence of

angles 
sin(ψk) = yk+1 − yk,

cos(ψk) = xk+1 − xk.

where 0 ≤ ψk < 2π. Thus, we are prepared to run our model.
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CHAPTER III

ONE DIMENSIONAL RESULTS

3.1 Types of Shapes

In this chapter, we present results for simulations run for various combinations of

parameters. Table 3.1 shows typical examples of the qualitatively different shapes we

observe in our simulations when we initialize the system with ∆r = σ. From these,

we were able to make some observations regarding the behavior of the system. We

see a prominent dependence upon β, the relative strength of the bending forces to

the VDW forces. We also see a dependence upon σ, the equilibrium distance of the

van der Waals forces. We find some interesting results about the limitations of our

model. Finally, we briefly investigate what happens if we do not have ∆r = σ.

3.2 Varying β for σ = 1

In this section, we present results in which we fix n, r, ∆r, and σ while varying β.

The bending forces “want” the CNS to be straight and penalize deviations from this

state. Therefore, it is reasonable to expect that as β → ∞, the final configuration

of the system will tend to a straight line (corresponding to a flat graphene sheet).

Conversely, as β → 0, the system will tend towards a triangular lattice of atoms
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Table 3.1: Typical shapes found.

Shape Initial Condition Final Configuration

Sharp-Cornered Polygon

Round-Cornered Polygon

Polygon with Bubble

Spiral-Like

Paperclip

Partially-Wound Spiral

Golf Club

Tennis Racquet

Line
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favored by VDW interactions; atoms that are not bonded directly will “want” to

be a distance σ apart. The behavior between these two cases is less obvious. We

find that there is a predictable evolution in the simulation results with increasing β.

Table 3.2 presents a series of qualitatively different plots that share all parameters,

except β. Specifically, we set n = 120, ρ = 5, and ∆r = σ = 1. These plots confirm

expectations and shed some light on what happens for β in the intermediate stages.

Table 3.2a shows a simulation result for a very small value of β. The shape

is characterized by a multi-layered polygonal shape with straight sides and sharp

corners. Each side of this polygon corresponds to a lattice of atoms. Beginning to

increase β preserves the general polygonal shape; however, the corners become less

soft (see Table 3.2b). Because the bending energy function is convex and penalizes

large angle differences between adjacent bonds, a lower energy can be achieved by

spreading the corner out between a few links. Observe that the rounded corners look

the same in each layer of the structure, giving the appearance of the same shape

with successively larger straight lines separating the corners. Increasing β further

and these corners will spread until a mostly-round shape is achieved (see Table 3.2c).

At approximately this stage, the outer end of the spiral begins to straighten despite

the pull of the van der Waals forces.

There is a large range of β for which the spiral will unwind until it reaches

a local energy minimum (see Table 3.2d). As the spiral unwinds, the inner radius

increases, making it progressively more difficult for the outer edge to delaminate. For

large β within this range, a typical simulation leaves the still-wound portion mostly
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Table 3.2: Results obtained by varying β.

Initial Condition a) β = 0.01 b) β = 10

c) β = 250 d) β = 500 e) β = 900

f) β = 1000 g) β = 3800 h) β = 4000
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one layer thick with a small region in which it is two layers thick (see Table 3.2e).

Increasing β slightly from here causes a bifurcation in the solution where the inside

edge no longer stays aligned with the mostly-straight portion and the innermost point

slides outward until it reaches an equilibrium, forming a tear-drop shape at the end

of a straight line, see Table 3.2f).

In this case, referred to as the “golf club” case earlier, two forces compete

with each other. The collective force of the bending within the tear-drop shape

competes with the VDW forces between the inside endpoint (and its neighbors) with

the straight portion of the sheet. The VDW forces do not depend heavily upon which

pair the inside point is held near. Conversely, the bending forces would be lowest if all

of the angles were more gentle. So, the expansion of the drop-like shape depends on

whether the cumulative bending force is enough to overcome the VDW forces holding

the point in place. If the bending energy is large enough, the point will slide along

the sheet until the bending forces no longer outweigh the VDW forces or the endpoint

has reached the end of the sheet, (see Table 3.2g).

Increasing β from here causes the system to bifurcate once more. The end-

points detach from each other and bending energy governs the system, flattening the

shape into a straight line, (See Table 3.2h). This is consistent with our expectation

from earlier for what would happen as β →∞. Similar behavior is seen for different

values of n and r.
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3.3 Varying σ

VDW forces “prefer” lattices of atoms and bending forces “prefer” straight lines

within a chain. Therefore, both VDW forces and bending forces “prefer” straight

lines; however, a wound shape cannot be straight, though it can have straight parts.

When we had a wound shape with straight components, we categorized them as

“polygons” (see Table 3.1). These polygonal cross-sections can exist with different

numbers of sides per revolution. We would like to find some sort of correlation

between the number of sides and the parameters of the model. These configurations

were stable because each side of a set of concentric polygons forms a mini-lattice,

satisfying VDW forces, and is straight almost everywhere, satisfying bending forces.

The same type of polygonization occurs in CNT [8]. Next, we try to explain

polygonization for MWNT and then apply similar ideas to CNS. This approach makes

sense if we can assume that the CNS does not wind or unwind as it attains its

equilibrium configuration.

We begin by trying to find the cause of polygonization in a DWNT. We can

approximate the cross-section of a DWNT with closed, non-intersecting curves such

that one is strictly contained within the other. We take these curves and map them to

concentric circles (while preserving the curve lengths). We let r1, r2 denote the radii

of the circles, with r1 < r2. See Figure 3.1. The difference in length is 2π (r2 − r1).

These circles are analogous to the spiral in our model and can be considered to model

a chain of bonds. Because we assume that inter-atomic bonds are inextensible, the
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Figure 3.1: Double-walled tube cross-section

length of each curve must be proportional to the number of atoms on the curve. Thus,

2π (r2 − r1) = n2− n1 where n2 is the number of atoms along the outer curve and n1

is the number of atoms along the inner curve. Our “polygons” (Table 3.1) must have

this same relationship.

Now, we assume that we have two concentric polygonal edges that are a

constant distance apart and that the VDW energy is at its minimum. Suppose that

our system of atoms along these two edges is symmetric about an axis perpendicular

to the edges. This symmetry means we have one of two cases, either the perpendicular

distance between the edges is approximately σ and a line perpendicular to the edges

that passes through one atom will also pass through another (see Figure 3.2 (left));

or, the perpendicular distance between the edges is approximately 1
2

√
4σ2 − 1 and a

line perpendicular to the edges that passes through an atom also bisects a bond (see

Figure 3.2 (right)).
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Figure 3.2: Symmetric pairs of parallel lines

To determine which case minimizes the VDW energy, we fix one line of atoms

and plot the energy between a single atom and this line as a function of the position

of the atom. This energy should be periodic with an axis parallel to the line with a

period of 1, because that is the bond length. We will set the origin to be the middle

of the line, orient the x-axis along the line, set σ = 1, and create a three-dimensional

colored contour (see Figure 3.3). It is worth noting that the value of energy for this

contour was capped at -1 for clarity. The colors correspond to the energy level at

various points. The colors are ordered as in a rainbow with red indicating a large

amount of energy and blue indicating a small amount of energy. We can see that the

point (0, 1) is a saddle point; this corresponds to case a (Figure 3.2 (left)). Similarly,

the point
(
−1

2
,
√

3
2

)
is a minimum; this corresponds to case b (Figure 3.2 (right)).

This behavior is periodic in x, as expected. Thus, we can expect to see the case b in

practice.

Now we look at a polygonized DWNT. We assume that the global structure

can be approximated by the two concentric circles mentioned above. Locally, we

assume that the structure away from a corner can be approximated by the case b from

above (Figure 3.2). As we investigate the polygonal corner, we will assume β = 0.
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Figure 3.3: VDW energy from free atom near fixed edge

Thus, there is no energy penalty for large angles between normals to bonds and so

we will assume that corners are sharp corners where one straight edge immediately

switches to another at the junction of an atom. We will assume σ = O(1). Thus, each

corner of a polygon will have one inner corner-atom, shared between both edges, and

one outer corner-atom, also shared between both edges. Also, we are consistent with

Figure 3.3. Note that if we have this, we have the same corner-shape for the inside

and outside corners, which we observed in the result shown in Table 3.2b and can
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see in the result shown in Table 3.2a. With this assumption, for each pair of edges,

we have one more atom in the outer edge than in the inner edge. Therefore, it is

reasonable to expect that, for small β, polygonized cross-sections with these features

will minimize the total energy and hence that the polygon has n2 − n1 sides.

The values n2 and n1 are well-defined in a for two nested circles; however,

their meaning is not so clear in a spiral. Therefore, it may be more beneficial to think

of them in terms of a distance. For circles, n2 − n1 is proportional to the distance

between the circles. For spirals, the analogous quantity is the distance between arms

of the spiral. Then, the number of corners per revolution should be approximately

proportional to the VDW equilibrium distance, σ. With this in mind, we will vary

the parameter σ and see how well the solutions match this expectation.

Table 3.3 shows nine plots of initial and final configurations from simulations

in which n = 80, β = 1, ρ = 5, and ∆r = σ, where σ is varied. We see a clear

dependence on σ and the number of sides seems to increase approximately linearly

with respect to σ for σ = O(1). With these parameters we can see convex polygons

ranging from triangles to decagons. We can observe that as σ increases, the winding

number decreases. Additionally, we can observe that our assumption about the local

behavior of the corner is only valid for values of σ within the approximate range of

0.8 to 1.4 for this set of parameters (Table 3.3 c-g); however, the global behavior does

not seem to change outside of this range.

Now we investigate the extreme combinations of parameters. First, as sug-

gested by Table 3.3 (a) and (b), σ = 4
2π

does not yield a quadrilateral and σ = 3
2π
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Table 3.3: Results obtained by varying σ: σ < 2

a) 2πσ = 3.7 b) 2πσ = 4.4 c) 2πσ = 5

d) 2πσ = 6 e) 2πσ = 7 f) 2πσ = 8

g) 2πσ = 9 h) 2πσ = 10 i) 2πσ = 11
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does not yield a triangle. Here, the ratio of the radius, ρ, to the distance between

spiral arms, ∆r, is too large to be reasonably approximated by a circle. Then, the

difference in spiral arm lengths can no longer be considered to be an integer times

2π. Here, σ = 4
2π

is a transitional case between a a triangle and a quadrilateral (see

Figure 3.4 a). If the n is increased to 200 and ρ is doubled, we get a quadrilateral

(see Figure 3.4 b). We therefore see that this “issue” with the general assumption

Figure 3.4: Transitional case for 2πσ = 4 a) original solution b) doubling ρ and
increasing n

only exists for small radii. However, increasing the radius will not yield a triangle for

σ = 3
2π

; an entirely separate problem exists in that case.

A simulation result for σ = 3
2π

is shown in Figure 3.6. In this result, the spiral

walls intersect and atoms from different arms lie on the same curve. If we set σ = 3
2π

and we fix an edge and plot the energy of the interaction of a single atom with a fixed

line of atoms (see Figure 3.5), we see that the minimum energy is achieved if the

atom lies directly between two atoms within that line. Physically, this would mean

two layers of graphene would “fuse together,” and do so without affecting the system
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Figure 3.5: Degenerate case for 2πσ = 3: energy from free atom with edge

of covalent bonds. This is obviously not realistic. This can happen for σ ≤ 0.5,

so we will restrict ourselves to σ > 0.5. It is worth noting that the covalent bond

Figure 3.6: Degenerate case for 2πσ = 3: simulation result

length between carbon atoms in a graphene sheet is 1.42 Å and the VDW equilibrium

distance is 3.4 Å, meaning σgraphene ≈ 2.4 [27]. So, this modeling issue should not be

a problem.
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We can also see that as σ increases, the final configurations seem to lose their

convexity. From Table 3.3i, we see that the convexity is lost for 2πσ = 11. In this

case, the loss of convexity appears to come from the length of the chain being too

short; however, this merely exaggerates a behavior that exists for much larger chains.

Figure 3.7 shows the case for 250 atoms. Even after more than tripling the number

Figure 3.7: Simulation result for 2πσ = 11, n = 250

of atoms, the configuration is non-convex in the same area. In this area, there is one

more layer of atoms on one side of a corner than there is on the other, and so the

atoms are attracted towards the “extra layer.”

That explains why this phenomenon occurs, but not why this occurs for larger

values of σ rather than smaller values of σ. We offer two reasons. The first reason

is, as σ increases, the valleys in the energy contour becomes more shallow, meaning

deviating from the VDW minimum is not as undesirable as it was in previous cases.

Figure 3.8 shows another energy contour, this time for 2πσ = 11; there is a much
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Figure 3.8: 2πσ = 11: energy from free atom with edge

smaller penalty for deviating from the stable position here than there is in Figure 3.3.

The second reason is, the VDW forces within an edge begin to counteract the VDW

forces between edges.

One factor that we have not discussed yet is the effect of VDW forces between

atoms that are two bonds apart. Recall that adjacent atoms on a chain are 1 unit

apart. Hence, two atoms that are both bonded to a common third atom can be

any distance from 0 to 2 from each other. Recall that there are n2 − n1 corners

in a polygonized structure. Then, a regular polygon has angles of size π
n2−n1

. For
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Table 3.4: Results obtained by varying σ: σ > 2

a) 2πσ = 13 b) 2πσ = 15 c) 2πσ = 19

σ < 2 sin
(

π
n2−n1

)
, VDW forces between atoms that are two bonds apart counteracted

bending forces, exaggerating the sharpness of the corners. For σ > 2 sin
(

π
n2−n1

)
,

VDW forces between atoms that are two bonds apart reinforce the bending forces at

the corners of a polygonized spiral. This effect caused a buffer to form against the

forces from the “extra layer” on only one side of the corner for small σ, but not for

large σ. As σ is increased further, the model acts similarly to how it would act if β

was increased.

Table 3.4 is an extension of Table 3.3 for σ > 2. All other parameter values

are the same. Here the VDW forces between the next nearest neighbors always act

to straighten an arm. We have similar results to those seen in Table 3.2, but with

one key difference. Here our energy contour is less steep, giving the edges more

freedom to move parallel to one another. In all three cases, the arms start a distance

∆r = σ apart. We established earlier that this is further than the equilibrium distance
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between arms. Case (b) shows that the final configuration of the spiral is more tightly

wound than the initial configuration for σ = 15
2π

. Case (c) indicates that increasing σ

causes the spiral to start unwinding, much like increasing β would. The remaining

case, case (a), is something we have not seen yet. Case (a) begins by winding itself

further, much like case (b), but in case (a), two opposite sides collapse inward due

to the VDW pull across the center and form a paperclip-like shape. Transitioning to

case (b) softens the angles in the semi-circles (the “paperclip” ends), and can also

be interpreted as an analog of increasing β. Increasing σ further causes the spiral to

entirely unwind into a straight line.

3.4 Setting ∆r > σ

In all simulations discussed thus far, ∆r was set equal to σ. Setting ∆r < σ gives

the same result as ∆r = σ for small β. However, setting ∆r > σ leads to a new

type of final configuration. See Figure 3.9. In this case, the inner layers of the spiral

move towards the middle of the outer layer. This causes the final configuration to be

divided into two sections. The first of these sections contains these inner layers. The

second section only has the outer layer. This phenomenon can lead to a number of

different final configurations.
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Figure 3.9: Simulation results for ∆r = 2, σ = 1, a)β = 1, b)β = 100
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CHAPTER IV

TWO DIMENSIONAL MODEL

4.1 Modeling Assumptions

We are interested in relaxing the assumptions of our one-dimensional model. To do

this, we formulate a two-dimensional model. We assume that a CNS can be described

by a two-dimensional lattice of atoms with each atom connected to its three nearest

neighbors. In a flat, undeformed state, the atoms in the lattice form hexagons. The

connection between each of pair of adjacent atoms models covalent bonding. We

further assume that there is a trackable “center point” within each of these hexagons.

In a flat, undeformed state, the atoms and center points form a triangular lattice (see

Figure 4.1).

With this lattice, we associate an energy that consists of three contributions.

Nonadjacent vertices interact via VDW forces that tend to keep these atoms at a

certain equilibrium distance σ. The covalent bond between adjacent atoms is modeled

by an extensional spring that tends to keep these atoms at a certain distance, l; and,

bending forces tend to keep adjacent triangles planar (see Figure 4.2).

We track the position of each atom in R3. As mentioned above, three types of

energies are included in the model. The first type is the VDW energy between pairs
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Figure 4.1: Approximated CNS

of bonds that are not directly bonded together. Note that we do not consider the

center points when calculating the VDW forces. To represent this energy, we use the

Lennard-Jones potential, (see Equation (1.1)). The second contribution to the energy

is due to stretching and it increases whenever a bond extends or contracts from its

natural length (see Figure 4.3). We assume that the stretching energy between atoms

Figure 4.2: Bending force
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Figure 4.3: Model bond

i and j can be expressed by

ES (l, ks, ~ri, ~rj) =
1

2
ks (|~ri − ~rj| − l)2 , (4.1)

where ~ri and ~rj are the positions of the atoms, ks is a parameter defining the strength

of the spring force relative to the VDW forces, and l is the natural length of the

spring. For this type of energy, each center point acts as an atom, bonded to each

vertex of its hexagon. The third type of energy is the “penalty” energy stored when

adjacent triangles bend about a bond (see Figure 4.4). For this model, we will assume

Figure 4.4: Adjacent normals

that the bending energy between two triangles can be expressed as

EB(kb, ~ri, ~rj, ~rh, ~rm) = kb

(
3

4
− ~Nhij · ~Njim

)
, (4.2)
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where ~N123 = (~r1 − ~r2) × (~r3 − ~r2) is a vector normal to the triangle with atoms 1,

2, and 3, and kb is a parameter defining the strength of the bending force relative

to the VDW forces. The function EB is even and periodic with respect to the angle

between normals; it is 0 when the normals are parallel; and, it has a maximum if

the two normals point in opposite directions. We assume that the total energy of the

system, E, is the sum of the energy due to VDW interactions, the spring energy, and

the bending energy,

E =
∑

ELJ +
∑

ES +
∑

EB. (4.3)

4.2 Gradient Flow Dynamics

We minimize the total energy (4.3) using to gradient flow dynamics. Then, we have

the system

d~rj
(i)

dt
= −γ ∂E

∂~rj
(i)
, (4.4)

where ~rj
(i) is the ith component of the vector ~rj. Combining equations (4.3) and (4.4),

we get

d~rj
(i)

dt
= −γ

[∑ ∂ELJ

∂~rj
(i)

+
∑ ∂ES

∂~rj
(i)

+
∑ ∂EB

∂~rj
(i)

]
(4.5)

We need derivatives of the energies defined by (1.1), (4.1) , and (4.2).

We compute the derivative of (1.1) via the chain rule,

∂ELJ

∂ ~rh
(m)

=
dELJ

d
(
d2
ij

) ∂ (d2
ij

)
∂ ~rh

(m)
. (4.6)
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Equation (2.6) gives us the first factor on the right-hand side. We only need to

determine the second factor. We can express d2
ij as |~ri − ~rj|2, so we have the equation

∂
(
d2
ij

)
∂ ~rh

(m)
=



2
(
~ri

(m) − ~rj
(m)
)

if h = i,

2
(
~rj

(m) − ~ri(m)
)

if h = j,

0 otherwise.

(4.7)

Now, we can rewrite (4.6) using (2.6) and (4.7) as

∂ELJ

∂ ~rh
(m)

=



12

σ2

(
~ri

(m) − ~rj
(m)
)( σ2

|~ri − ~rj|2

)4

−

(
σ2

|~ri − ~rj|2

)7
 if h = i,

12

σ2

(
~rj

(m) − ~ri(m)
)( σ2

|~ri − ~rj|2

)4

−

(
σ2

|~ri − ~rj|2

)7
 if h = j,

0 otherwise.

(4.8)

We find the derivative of (4.1) with the chain rule and equation (4.7),

∂Es

∂ ~rh
(m)

=



ks

(
~ri

(m) − ~rj
(m)
) [
l − l

|~ri−~rj |

]
if h = i,

ks

(
~rj

(m) − ~ri(m)
) [
l − l

|~ri−~rj |

]
if h = j,

0 otherwise.

(4.9)

Finally, we compute the derivative of (4.2). By repeatedly applying the product rule,

we get the equation

∂EB

∂ ~rp
(q)

= −kb

[
∂ (~rh − ~ri)
∂ ~rp

(q)
× (~rj − ~ri) + (~rh − ~ri)×

∂ (~rj − ~ri)
∂ ~rp

(q)

]

·

[
∂ (~rj − ~ri)
∂ ~rp

(q)
× ( ~rm − ~ri) + (~rj − ~ri)×

∂ ( ~rm − ~ri)
∂ ~rp

(q)

] (4.10)
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If we name our basis vectors ê1, ê2, and ê3, then we have the relationship

∂ ~rp

∂ ~rp
(q)

= êq.

We can use this relationship to rewrite equation (4.10) as

∂EB

∂~ri
(q)

= −kb [êq × (~ri − ~rj) + (~ri − ~rh)× êq] · [êq × (~ri − ~rm) + (~ri − ~rj)× êq]

∂EB

∂~rj
(q)

= −kb [(~rh − ~ri)× êq] · [êq × ( ~rm − ~ri)]

∂EB

∂ ~rh
(q)

= −kb [êq × (~rj − ~ri)]

∂EB

∂ ~rm
(q)

= −kb [(~rj − ~ri)× êq]

Simplifying this, we get

∂EB

∂~ri
(q)

= −kbêq × [(~rh − ~rj) · (~rj − ~rm)]

∂EB

∂~rj
(q)

= −kbêq × [( ~rm − ~ri) · (~ri − ~rh)]

∂EB

∂ ~rh
(q)

= −kbêq × (~rj − ~ri)

∂EB

∂ ~rm
(q)

= −kbêq × (~ri − ~rj)

(4.11)

If we combine equations (4.5), (4.8), (4.9), and (4.11) and rescale t by γ−1, we get an

equation for the evolution of the lattice through time. Then, we need only set up an

initial condition to run our model.

4.3 Setting up the Initial Condition

Before we can set up an initial configuration of the lattice, we must first create

the lattice itself. For simplicity, we create the lattice in a plane and map it to an

“initial configuration” later. We begin by triangulating a certain region within this

40



plane with equilateral triangles. We then associate clusters of triangles as hexagons

(see Figure 4.5). We then select a rectangle as an approximate boundary for the

Figure 4.5: Lattice initialization

prospective graphene sheet. We then throw out any hexagons that are not within the

rectangle or intersecting the rectangle, (see Figure 4.6).

Figure 4.6: Isolating graphene sheet

To do this in practice, we must first define a rectangle. Then, the triangula-

tion domain must be large enough to contain this rectangle with sufficient overlap to
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ensure that all hexagons that would cross the border of the rectangle are still included

in the trianglulation domain. To uniquely define the rectangle, two values must be

specified to determine the size of the rectangle and three values must be specified to

determine its position and orientation. We define our rectangle with the following five

parameters: L (length), W (width), x0 (the x-position of the lower-left corner), y0

(the y-position of the lower-left corner), and θ0 (the rotation about the point (x0, y0)),

(see Figure 4.7). The angle θ0 determines the lattice orientation within the sheet and

Figure 4.7: Definition of rectangle

therefore determines the sheet’s edge geometry. This will correspond to the chirality

of the CNS.
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We then map this lattice to an “initial configuration” in R3. We wrap this

planar lattice into a CNS by translating and rotating the sheet and then bending it.

First, we rigidly translate the sheet such that the point (x0, y0) moves to the origin.

Next, we rigidly rotate the sheet by the angle −θ0. Finally, we are set up to bend

the sheet about the y-axis.

To bend the CNS, we seek to determine how the method of placing secant

lines on a 1-D curve can be modified to place secant planes on a 2-D surface. We

look for a chain of atoms like we had in the 1-D case. First, we observe that there are

three bond orientations within the unbent sheet. Figure 4.8 illustrates this through

the use of three colors. We can look at each of these sets of bonds separately (see

Figure 4.8: Graphene sheet bond orientations

Figure 4.9). The sheet will be bent about the y-axis; so, our chain should be bent

about this axis also. Therefore, we should look for a chain that is oriented along the

x-axis. If the chirality is “armchair,” we have this; otherwise, we do not.
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Figure 4.9: Graphene sheet bond orientations: individual orientations

Since we cannot find a chain with the correct orientation, we seek the chain

most closely oriented to the x-axis. In the sheet from Figure 4.8, this is the blue set

of bonds. We isolate a single chain of these blue atoms and we project this chain

onto the x-axis. The projected chain can now be bent similarly to the chain in the

1-D model. We define a spiral in the same way and find secant lines to the curve

similarly. Only, this time we create bonds the length of the bond projections. This

Figure 4.10: 3D chain

yields a bent chain in the xz-plane (see Figure 4.10 (left)). If we perform the same

transformation to the original bonds instead of the projected ones, preserving the
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position along the y-axis, we get a chain of atoms in 3-D space where each bond has

length 1 (see Figure 4.10 (right)).

To expand the transformation of this chain to the entire sheet, we assume

that a chain sits along the bottom line of the rectangle defined above with an atom

at the lower-left corner. We transform this chain and interpolate all projected atoms

onto the curve between the points on the assumed chain. The result is a bent sheet

with a spiral-shaped cross section (see Figure 4.11).

Figure 4.11: 2-D CNS showing bond orientations

Thus, the 2-D model has been set up. This model can now be run to more

accurately determine equilibrium configurations for CNS. Additionally, the behavior

of a graphene sheet can be investigated by omitting the transformation to a CNS. This

model should facilitate a wide variety of results; however, its application is beyond

the scope of this thesis.
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CHAPTER V

CONCLUSIONS

We have modeled a CNS by a one-dimensional chain of atoms. The model includes

VDW forces and bending forces and treats the bonds between adjacent atoms as inex-

tensible. We found equilibrium configurations that locally minimize the total energy

by gradient flow dynamics. We assumed an initial configuration of an Archimedian

spiral. Finally, we evolved several of these configurations through time while varying

the strength of the bending forces and the equilibrium distance of the VDW forces.

By varying the strength of bending forces, we found a variety of final con-

figurations ranging from polygonized to spiral-shaped, to straight. The polygonized

shapes correlate with configurations that have been seen experimentally. Similarly,

the straight shape corresponds to a graphene sheet. Thus, this model was able to

replicate some equilibrium configurations that have been seen experimentally. This

could potentially lead to predictive modeling.

By varying the equilibrium distance of the VDW forces, we were able to

change the number of sides of a polygon. We were able to see polygons ranging

from triangles to decahedrons. This shows that our model can yield a wide variety

of polygonal shapes. Overall, this model appears to find the general shapes that are

discovered experimentally.
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We have also modeled a CNS by a two-dimensional lattice of atoms. This

model includes internal forces between bonded atoms, VDW forces, and bending

forces. We modeled evolution through time by gradient flow dynamics. Lastly, we

discussed issues that arise in creating a spiral initial configuration for the 2D model.
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APPENDIX

ONE DIMENSIONAL MODEL CODE

spiral.m

%% Mapping
%% Given (j, i) ˜ ( tube index, atom index )
%% and an array of angles, y, then
%% y(i + sum(n(1:j-1))) is the angle for the atom
%% at (j, i)
%%%% Parameters
%% m := # of tubes
%% n(j) := ## of atoms on j-th tube
%% beta := bending coefficient
%% len := length between atoms on a tube
%% lambda := load on the tubes
%% epsi := Strength of Van der Waals interaction
%% sigma := Equillibrium distance of Van der Waals.
%% init := initial condition
%% delta(j) := offset of the j-th tube

a
m = 1;
n = 30;
beta = 10;
len = 1;
lambda = 0; mu = 0;
epsi = 1;
sigma = 1;
delta = 0:1:(m-1);
%%init = zeros(1,sum(n));

a
checkInterval = 1000;
nhbdUpdate = 500;
nhbdRadius = 6;

a
%%rng(404530);
%%for i = 2:n*m

51



%% init(i) = 0 + (pi/4-0).*rand(1,1);
%% init(i) = init(i-1) + i*pi/3;
%% init(i) = 0;
%%end

a
init = SpiralGeomInit(n + 1,2,1);

a
%%%% Parameter and Output Setup
%%%%{
if length(n) < m
temp = n;
temp_size = length(n);
temp_end = n(length(n));
n = zeros(1,m);
n(1:temp_size) = temp;
for ps_k = temp_size+1:m
n(ps_k) = temp_end;
end
elseif length(n) > m
n = n(1:m);
end

a
N = sum(n);

a
state = struct(’m’,m,’n’,n,’N’,N,’beta’,beta,’len’,len, . +
..

’lambda’,lambda,’mu’,mu,’epsi’,epsi,’sigma’,sigma, . +
..

’delta’,delta,’init’,init);

imap = zeros(N,2);
for i = 1:N
[ imap(i,1), imap(i,2) ] = getAtom(i,n);
end

a
E = spiralEnergy(init,state,imap,checkInterval,nhbdUpdate +
,nhbdRadius);

a
options = odeset(’RelTol’,1e-12,’AbsTol’,1e-12);

a
%%}
%%%% Solver and Time Domain
state.tend = 10;
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tspan = 0:1:state.tend;
startTime = cputime;
[ t, y ] = ode15s(@spiralForce,tspan,init,options,state,i +
map, ...

checkInterval,nhbdUpdate,nhbdRadius);
endTime = cputime;
elapsedTime = endTime - startTime;

a
for j = 2:length(tspan)

E = [E; spiralEnergy(y(j,:),state,imap,checkInterval, +
nhbdUpdate,nhbdRadius)];
end
state.time = elapsedTime;
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SpiralGeomInit.m

function psi = SpiralGeomInit(n,r,dr)

% This is like Tube init geom but for spirals.
%
% This assumes that the radius linearly increases with re +
spect to the
% angle about the origin.
%
% The "r" term is the initial radius and the "dr" term is +
the change in
% radius of the spiral between layers.

% It determines the atoms’ positions in polar coordinates +
and converts them
% to coordinates in terms of azimuths relative to previou +
s points.
%
% The first point of each spiral is assumed to be along t +
he same axis
% intersecting the origin.

Len = length(n); Max = max(n);
psi = zeros(Max-1,Len);

tol = 1e-8; max_it = 10000;

for i = 1:Len
for j = 1:n(i)

if j == 1
R = r(i); DR = dr(i);
theta_2 = 0; r2 = R;
y1 = r2; x1 = 0;
theta_1 = theta_2; r1 = r2;

else
a = theta_1; b = theta_1 + 3*pi/2;
f = @(theta_2)...

-1 + 2*Rˆ2 * (1 - cos(theta_2 - theta_1)) +
+ ...
R*DR/pi*(theta_1+theta_2) * (1-cos(theta_ +
2-theta_1)) + ...
(DR/(2*pi))ˆ2 * ...
(theta_1ˆ2+theta_2ˆ2-2*theta_1*theta_2*co +
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s(theta_2-theta_1));

theta_2 = secant(f,a,b,tol,max_it);
r2 = DR*(theta_2-theta_1)/(2*pi) + r1;
x2 = r2*sin(theta_2); y2 = r2*cos(theta_2);
dx = x2 - x1; dy = y2 - y1;
d = sqrt(dxˆ2+dyˆ2);
if 1-d > tol

fprintf(’Spiral #%1.1g, Bond #%6.6g is %4 +
.4g too short.\n’,i,j-1,1-d)

elseif d-1 > tol
fprintf(’Spiral #%1.1g, Bond #%6.6g is %4 +
.4g too long.\n’,i,j-1,d-1)

end
if dx > 0

if dy > 0
psi(j-1,i) = atan(dx/dy);

elseif dy == 0
psi(j-1,i) = pi/2;

else
psi(j-1,i) = pi + atan(dx/dy);

end
elseif dx == 0

if dy > 0
psi(j-1,i) = 0;

else
psi(j-1,i) = pi;

end
else

if dy < 0
psi(j-1,i) = pi + atan(dx/dy);

elseif dy == 0
psi(j-1,i) = 3*pi/2;

else
psi(j-1,i) = 2*pi + atan(dx/dy);

end
end
x1 = x2; y1 = y2; theta_1 = theta_2; r1 = r2;

end
end

end
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secant.m

function [p1,k]=secant(f,p0,p1,tol,max1)

for k=1:max1
p2=p1-feval(f,p1)*(p1-p0)/(feval(f,p1)-feval(f,p0));
abserr=abs(p2-p1);
relerr=2*abserr/(abs(p2)+tol);
p0=p1;
p1=p2;
y=feval(f,p1);
if (abserr<tol)&(relerr<tol)&(abs(y)<tol),break,end

end

getAtom.m

function [ j, i ] = getAtom( x, n )
temp_s = n(1);
j = 1;
for k = 2:length(n)

if x <= temp_s
temp_s = temp_s - n(k-1);
break;

end
j = k;
temp_s = temp_s + n(k);

end
if j == length(n)

temp_s = temp_s - n(length(n));
end
i = x - temp_s;

end
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getNghd.m

function F = genNghd( y, cs, sn, state, imap, radius )

len = state.len;
delta = state.delta;
r2 = radius*radius;

a
k = 1;
for i = 1:length(y)
for j = i+1:length(y)
v = imap(i,1);
u = imap(i,2);
g = imap(j,1);
h = imap(j,2);
% Rule out the atom itself and it’s two immediate neig +

hbors
if v == g
if u == h || u + 1 == h || u - 1 == h
continue;
end
end
xps = ((delta(v) - delta(g))./len) + sn(i) - sn(j);
yps = cs(i) - cs(j);
d = xps.ˆ2 + yps.ˆ2;

if d <= r2
C(k,1) = {i};
C(k,2) = {j}};
k = k + 1;
end
end
end
F = cell2mat(C);

a
end
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getPos.m

function [ x, y ] = getPos( in, state, imap )

delta = state.delta;
N = state.N;
cs = zeros(N,1);
sn = zeros(N,1);
for k = 1:length(cs)

i = imap(k,2);
if i == 1

sn(k) = sin(in(k));
cs(k) = cos(in(k));

else
sn(k) = sn(k-1) + sin(in(k));
cs(k) = cs(k-1) + cos(in(k));

end
end

x = zeros(N,1);
y = zeros(N,1);

for k = 1:N
j = imap(k,1);
x(k) = delta(j) + sn(k);
y(k) = cs(k);

end

end
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spiralForce.m

function out = spiralForce(t,y,state,imap,icheck,nUpdate, +
nRadius)
persistent F;
persistent fcount;
persistent ltime;
persistent ptime;

a
n = state.n;
m = state.m;
beta = state.beta;
len = state.len;
lambda = state.lambda;
mu = state.mu;
epsi = state.epsi;
sigma = state.sigma;
delta = state.delta;
N = state.N;

s2 = sigma.ˆ2;
E = 0;

if t == 0
ltime = cputime;
fcount = 0;
ptime = 0;
end
fcount = fcount + 1;

% Timing
if mod(fcount,icheck) == 0
ttime = cputime;
elpsd = ttime - ltime;
ptime = ptime + elpsd;
pcnt = 100 * (t / state.tend);
cmpltnTime = ( ( ptime * 100 / pcnt ) - ptime ) / 60;
fprintf(’%%.2f %%%%, %%.5f s, %%.5f m; %%.5f m \n’,pcnt +

,elpsd,ptime/60,cmpltnTime);
ltime = cputime;
end

a
%% Construct Cosine and Sine lookup tables
cs = zeros(N,1);
sn = zeros(N,1);
for k = 1:length(cs)
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i = imap(k,2);
if i == 1
sn(k) = sin(y(k));
cs(k) = cos(y(k));
else
sn(k) = sn(k-1) + sin(y(k));
cs(k) = cs(k-1) + cos(y(k));
end
end

%% Update Neighborhood
if mod(fcount,nUpdate) == 0 || fcount == 1
F = genNghd(y,cs,sn,state,imap,nRadius);
end

out = zeros(length(y),1);

%% V.W. /w Substrate + Bending + Load
%%%%{
z = length(y);
for j = m:-1:1
for i = n(j):-1:1

%% Bending
%%{
if i == 1
out(z) = 0; %%out(z) - beta*(y(z) - y(z+1)) - beta*y( +

z);
elseif i == n(j)
out(z) = out(z) + beta*(sin(y(z-1) - y(z)));
else
out(z) = out(z) - beta*(sin(y(z) - y(z+1))) ...

+ beta*(sin(y(z-1) - y(z)));
end
%%}

%% Bending
%%%%{
if i == 1
out(z) = 0; %%out(z) - beta*(y(z) - y(z+1)) - beta*y( +

z);
elseif i == 2

out(z) = out(z) - beta*(sin((y(z) - y(z+1 +
))/2)./(cos((y(z) - y(z+1))/2).ˆ3));
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elseif i == n(j)
out(z) = out(z) + beta*(sin((y(z-1) - y(z))/2)./(cos( +

(y(z-1) - y(z))/2).ˆ3));
else
out(z) = out(z) - beta*(sin((y(z) - y(z+1))/2)./(cos( +

(y(z) - y(z+1))/2).ˆ3)) ...
+ beta*(sin((y(z-1) - y(z))/2)./(cos((y(z-1) - +

y(z))/2).ˆ3));
end
if i > 2

E = E + beta*tan((y(i)-y(i-1))/2)ˆ2;
end

%%}}

%% Bending Quadratic
%%{
mc = 0;
cp = 0;
if i ˜= 1 && y(z-1) - y(z) >= 2*pi
mc = y(z-1) - y(z) - 2*pi;
elseif i ˜= 1 && y(z-1) - y(z) <= 0
mc = y(z-1) - y(z) + 2*pi;
end

if i ˜= n(j) && y(z) - y(z+1) >= 2*pi
cp = y(z) - y(z+1) - 2*pi;
elseif i ˜= n(j) && y(z) - y(z+1) <= 0
cp = y(z) - y(z+1) + 2*pi;
end

if i == 1
out(z) = 0; %%out(z) - beta*(y(z) - y(z+1)) - beta*y( +

z);
elseif i == n(j)
out(z) = out(z) + beta*mc;
%%E = E + (beta/2) * (y(z-1) - y(z)).ˆ2;
else
out(z) = out(z) - beta*cp + beta*mc;
%%E = E + (beta/2)*(y(z) - y(z+1)).ˆ2 ...
%% + (beta/2)*(y(z-1) - y(z)).ˆ2;
end
%%}}

z = z - 1;

61



end
end
%%}}

a
%% V.W. atom-to-atom
%%%%{
for h = 1:length(F)
a = F(h,1);
b = F(h,2);
j = imap(a,1);
i = imap(a,2);
r = imap(b,1);
k = imap(b,2);

xps = sn(a) - sn(b);
yps = cs(a) - cs(b);
d2 = xps.ˆ2 + yps.ˆ2;

s2d2 = s2./d2; s2d22 = s2d2.ˆ2; s2d24 = s2d22.ˆ2;
LenJ = 12./s2.*(s2d24.*s2d22.*s2d2-s2d24);
E = E + s2d24.*s2d22 - 2*s2d22.*s2d2;

temp = 0;
a

s = a - i + 1;
for q = s:a
atemp = (xps*cos(y(q)) - yps*sin(y(q)));
out(q) = out(q) + LenJ*atemp;
end

s = b - k + 1;
for q = s:b
btemp = (yps*sin(y(q)) - xps*cos(y(q)));
out(q) = out(q) + LenJ*btemp;
end

end
%% end
%%}}
if mod(fcount,icheck) == 0

fprintf(’ E = %%6.6g\n’,E)
end
end
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spiralEnergy.m

function E = spiralEnergy(y,state,imap,icheck,nUpdate,nRa +
dius)

persistent F;
persistent fcount;
persistent ltime;
persistent ptime;

n = state.n;
m = state.m;
beta = state.beta;
len = state.len;
lambda = state.lambda;
mu = state.mu;
epsi = state.epsi;
sigma = state.sigma;
delta = state.delta;
N = state.N;

s2 = sigma.ˆ2;
E = 0;

fcount = 1;
% Construct Cosine and Sine lookup tables
cs = zeros(N,1);
sn = zeros(N,1);
for k = 1:length(cs)

i = imap(k,2);
if i == 1

sn(k) = sin(y(k));
cs(k) = cos(y(k));

else
sn(k) = sn(k-1) + sin(y(k));
cs(k) = cs(k-1) + cos(y(k));

end
end

% Update Neighborhood
if mod(fcount,nUpdate) == 0 || fcount == 1

F = genNghd(y,cs,sn,state,imap,nRadius);
end

out = zeros(length(y),1);

% V.W. /w Substrate + Bending + Load
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%%{
z = length(y);
for j = m:-1:1

for i = n(j):-1:1

% Bending
%{
if i == 1

out(z) = 0; %out(z) - bet +
a*(y(z) - y(z+1)) - beta*y(z);

elseif i == n(j)
out(z) = out(z) + beta*(s +

in(y(z-1) - y(z)));
else

out(z) = out(z) - beta*(s +
in(y(z) - y(z+1))) ...
+ beta*(sin(y(z-1) - y(z)));

end
%}

% Bending
%%{

% if i == 1
% out(z) = 0; %out(z) - b +
eta*(y(z) - y(z+1)) - beta*y(z);
% elseif i == 2
% out(z) = out(z) - beta*(sin((y(z) - y(z +
+1))/2)./(cos((y(z) - y(z+1))/2).ˆ3));
% elseif i == n(j)
% out(z) = out(z) + beta* +
(sin((y(z-1) - y(z))/2)./(cos((y(z-1) - y(z))/2).ˆ3));
% else
% out(z) = out(z) - beta* +
(sin((y(z) - y(z+1))/2)./(cos((y(z) - y(z+1))/2).ˆ3)) ...
% + beta*(sin((y(z-1) - y(z))/2)./(cos((y(z-1) - y(z))/2).ˆ3));
% end

if i >2
E = E + beta*tan((y(i)-y(i-1))/2)ˆ2;

end
%}

% Bending Quadratic
%{
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mc = 0;
cp = 0;
if i ˜= 1 && y(z-1) - y(z) >= 2*pi

mc = y(z-1) - y(z) - 2*pi;
elseif i ˜= 1 && y(z-1) - y(z) <= +

0
mc = y(z-1) - y(z) + 2*pi;

end

if i ˜= n(j) && y(z) - y(z+1) >= +
2*pi

cp = y(z) - y(z+1) - 2*pi;
elseif i ˜= n(j) && y(z) - y(z+1) +

<= 0
cp = y(z) - y(z+1) + 2*pi;

end

if i == 1
out(z) = 0; %out(z) - bet +

a*(y(z) - y(z+1)) - beta*y(z);
elseif i == n(j)

out(z) = out(z) + beta*mc;
%E = E + (beta/2) * (y(z- +

1) - y(z)).ˆ2;
else

out(z) = out(z) - beta*cp +
+ beta*mc;
%E = E + (beta/2)*(y(z) - y(z+1)).ˆ2 ...
% + (beta/2)*(y(z-1) - y(z)).ˆ2;

end
%}

z = z - 1;
end

end
%}

% V.W. atom-to-atom
%%{
for h = 1:length(F)

a = F(h,1);
b = F(h,2);
j = imap(a,1);
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i = imap(a,2);
r = imap(b,1);
k = imap(b,2);

xps = sn(a) - sn(b);
yps = cs(a) - cs(b);
d2 = xps.ˆ2 + yps.ˆ2;

s2d2 = s2./d2; s2d22 = s2d2.ˆ2; s2d24 = s2d22.ˆ2;
LenJ = 12./s2.*(s2d24.*s2d22.*s2d2-s2d24);
E = E + s2d24.*s2d22 - 2*s2d22.*s2d2;

temp = 0;

% s = a - i + 1;
% for q = s:a
% atemp = (xps*cos(y(q)) - yps*sin(y(q)));
% out(q) = out(q) + LenJ*atemp;
% end
%
% s = b - k + 1;
% for q = s:b
% btemp = (yps*sin(y(q)) - xps*cos(y(q)));
% out(q) = out(q) + LenJ*btemp;
% end
% end
% end

%}
if mod(fcount,icheck) == 0

fprintf(’ E = %6.6g\n’,E)
end
end
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R2 Space.m

function[x,y] = R2_Space(n,psi)

% This function finds the R2 space of the atoms. The orig +
in is the first
% point of the spiral.

x = zeros(n,1); y = x;

for j = 2:n
x(j) = x(j-1) + sin(psi(j-1));
y(j) = y(j-1) + cos(psi(j-1));

end
end

plotter.m

for i=1:length(t)
if mod(i,1)==0

[X,Y]=R2_Space(n-1,y(i,2:n-1));
figure(1)
pause(0.001)
clf(figure(1))
subplot(2,1,1)
hold on
plot(X,Y,’black’)
plot(X,Y,’blueo’)
axis equal
subplot(2,1,2)
plot(t(1:i),E(1:i)), title(’Energy v. time’), axis([0,t(e +
nd),floor(min(E(1:i))),floor(max(E(1:i)))+1])
fprintf(’t = %5.5g\n’,t(i))

end
end
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plotter 2.m

for i=1:500:length(t)
[X,Y]=R2_Space(n,y(i,2:n));
figure(1)
pause(0.001)
clf(figure(1))
hold on
plot(X,Y,’blueo’)
axis equal
fprintf(’t = %5.5g\n’,t(i))
end

plot init.m

[X,Y]=R2_Space(n,y(1,2:n));
figure(1)
clf(figure(1))
hold on
plot(X,Y,’black’)
plot(X,Y,’blueo’)
axis equal

plot both.m

figure(1)
clf(figure(1))
hold on

[X,Y]=R2_Space(n,y(1,2:n));
subplot(1,2,1),plot(X,Y,’black’,X,Y,’blacko’),title(’Init +
ial’), axis equal

[X,Y]=R2_Space(n,y(end,2:n));
subplot(1,2,2),plot(X,Y,’red’,X,Y,’redo’),title(’Final’), +
axis equal

fprintf(’t_final = %5.5g\n’,t(end))
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plot both alt.m

figure(1)
clf(figure(1))
hold on

[X,Y]=R2_Space(n,y(1,2:n));
plot(X,Y,’red:’), axis equal

[X,Y]=R2_Space(n,y(end,2:n));
plot(X,Y,’blue’), axis equal

[X,Y]=R2_Space(n,y(1,2:n));
plot(X,Y,’redx’), axis equal

[X,Y]=R2_Space(n,y(end,2:n));
plot(X,Y,’blueo’), axis equal

legend(’Initial’,’Final’)
fprintf(’t_final = %5.5g\n’,t(end))

plot both alt2.m

figure(1)
clf(figure(1))
hold on

[X,Y]=R2_Space(n,y(1,2:n));
plot(X,Y,’red’,X,Y,’redo’), axis equal

figure(2)
clf(figure(2))
hold on

[X,Y]=R2_Space(n,y(end,2:n));
plot(X,Y,’blue’,X,Y,’blueo’), axis equal

fprintf(’t_final = %5.5g\n’,t(end))
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