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ABSTRACT 

 

            The response of single-curvature composite panels under external blast was 

studied. For the single-curvature composite shells under external pressure pulse loading, 

Lagrange’s equations of motion were established to determine the shell response and the 

Budiansky-Roth criterion was used to examine the instability. The predicted transient 

shell response compared very well with FEA results from ABAQUS Implicit, and the 

predicted buckling loads also agreed with experiments on steel arches. Under various 

load durations, buckling was impulsive, dynamic and quasi-dynamic. Thicker composite 

shells were more likely to fail by first-ply failure rather than buckling. It was shown that 

the composite lay-up could be adjusted to increase the buckling resistance of the shell. 

            For the single-curvature composite sandwich panels under external pressure pulse 

loading, a multi-layered approach was used to distinguish facesheets and core 

deformations. Core compressibility and transverse shear through the thickness were 

accounted for using linear displacement fields through the thickness. Equations of motion 

for the facesheet transient deformations were again derived from Lagrange’s equations of 

motion, and predicted solutions using this approach compared very well with FEA results 

from ABAQUS Implicit. In the case of core undergoing elastic deformations only, both 

facesheet fracture during stable deformation response and local dynamic pulse buckling 

of facesheets were considered as possible modes of failure in the curved sandwich panel. 



iv 
 

It was found that local facesheets buckling is more likely to occur than facesheet fracture 

in thin and deeply curved sandwich panels. The facesheet laminate lay-up could also be 

adjusted to improve the local buckling resistance of the curved sandwich panel. In the 

case of the core undergoing elastic-plastic deformations, a parametric study showed that 

blast resistance of the curved sandwich panel can be increased by allowing cores to 

undergo plastic crushing. Very thick (i.e., radius-to-thickness aspect ratio less than 10) 

and shallow shells derived much of their resistance to blast from core crushing. Strong, 

dense foam cores did not increase the blast resistance of the curved sandwich panel but 

allowed facesheets to fracture while the core remained elastic. 
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CHAPTER I 

INTRODUCTION 

 

            Curved composite panels are commonly used to construct lightweight aerospace, 

marine, transportation and civil structures. For example, the Boeing 787 Dreamliner 

aircraft uses 80% composite materials by volume in the construction of its airframe, as 

shown in Figure 1.1. Specifically, curved panels made of carbon/epoxy triaxial braided 

composite material are used to construct its GE GEnx engine cases. The hulls of naval 

ships can also be made with composite shells. Figure 1.2 shows an operational stealth 

ship, Swedish Visby-Class corvette, made with carbon/E-glass Vinyl Ester composite 

materials. A New Generation high-speed train in China is shown in Figure 1.3, where the 

interior components, such as doors, ceilings, floors and partition walls, are made with 

Divinycell foam-cored composite sandwich panels. Figure 1.4 shows a road bridge that 

was approximately 100 years old is being replaced with the first fiber composite 

sandwich bridge in Switzerland. 

            When compared to traditional metals, laminated composites offer advantages such 

as higher strength-to-weight and stiffness-to-weight ratios, improved chemical and 

environmental resistance and the ability to tailor properties. The increased use of 

composite materials in many engineering applications has generated much interest in 

understanding the behavior of curved composite panels. In some cases, these curved 

composite panels will be exposed to external pressure pulse loadings, like during military 
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combats, terrorists’ attacks or accidental explosions. Therefore, it is necessary to examine 

the response of curved composite panels under external blast, and this is the objective of 

the present research. 

 

Figure 1.1 Boeing 787 Dreamliner aircraft. Courtesy of Wikimedia Commons. 

 

Figure 1.2 Swedish Visby-Class corvette. Courtesy of pinterest.com. 
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Figure 1.3 China Railway High-speed train. Courtesy of Wikimedia Commons. 

 

Figure 1.4 First fiber composite sandwich bridge in Switzerland. Courtesy of 3A 

Composites, Inc. 

            Curved panels or shells are structural elements defined by a curved middle surface, 

and bounded between upper and lower surfaces with a given thickness. The thickness of 

shell is small compared to the in-plane dimensions and/or the radii of shell curvature. 

Shell structures can carry much higher lateral loads than flat plates because of the in-

plane membrane resistance that it allows from having an initial curvature. An even more 
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efficient composite shell structure is a composite sandwich shell. A typical sandwich 

shell is a layered structure consisting of two thin, stiff and high-density facesheets and a 

thick, soft and low-density core. The facesheets are adhesively bonded to the core. 

Usually the core is made from honeycomb or foam material while the facesheets could be 

of metallic or fiber-reinforced composite materials. This type of configuration makes the 

facesheets carry the in-plane and bending loads, while the core bear the transverse normal 

and shear loads. The advantages of the sandwich shell over a monolithic shell include 

higher bending stiffness and strength per unit weight, as well as energy absorption 

capability of the core.  

            When exposed to external pressure loadings, shells may fail in one of two ways: 

buckling or fracture due to large deformation. Which failure mode will occur depends on 

the shell geometries and materials. To more precisely define the scope of study in this 

thesis, it is useful to distinguish among several types of buckling. The first distinction is 

between static buckling and dynamic buckling. The former is due to quasi-static loads 

and involves the fundamental mode or lowest buckling mode. The latter is from vibratory 

and/or transient loads. With vibratory loads, the vibration frequency determines the 

buckling mode when resonance takes place. With transient loads, particularly high 

amplitude, short-duration pulse loading, the higher-order modes of the structure may 

become unstable as the buckling modes depend on load amplitude and duration [1].  

            The above expressions about dynamic buckling can be further described based on 

the physical phenomena of the buckling processes. The buckling from oscillatory loads is 

defined as vibration buckling and the buckling from transient loads as pulse buckling. In 

vibration buckling, the amplitudes of vibration caused by an oscillating load become 
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unacceptably large at critical combinations of load amplitude, load frequency, and 

structural damping. A mathematical description of vibration buckling is dynamic stability 

of vibrations induced by oscillating parametric loading. The resonance (buckling) occurs 

when the parametric loading frequency coincides with one of the natural frequencies of 

structure. This type of resonance is so called parametric resonance. In pulse buckling, the 

structure deforms to unacceptably large amplitude as a result of response to the applied 

transient load. This transient load consists of a single pulse characterized by its amplitude 

and duration. A mathematical definition is given to pulse buckling: dynamic response of 

structural systems induced by time varying parametric loading. If the amplitude of 

transient load is well below that required to produce pulse buckling, a special form of 

vibration buckling may occur, which is autoparametric vibration buckling. The specific 

type of buckling referenced in this thesis is dynamic pulse buckling. 

            This thesis is organized into six chapters. Chapter II provides a detailed literature 

review about the development of shell theories and dynamic response of composite shells. 

In Chapter III, the dynamic pulse buckling of a clamped, single-curvature laminated 

composite shell under uniformly distributed external pressure pulse loading is 

investigated. The transient shell response is found using Lagrange’s equations of motion. 

This response is then compared to finite element analysis results using ABAQUS Implicit. 

Dynamic stability of the composite shell is investigated with the Budiansky and Roth 

criterion [2]. Failure of the composite shell due to large deformation and not necessarily 

instability is also addressed. A parametric study is performed to determine the influence 

of pulse duration, shell aspect ratio, angular extent and laminate lay-up on the failure 

resistance of the shell. 
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            Chapter IV addresses the problem of local dynamic pulse buckling of a curved 

composite sandwich panel. In Chapter IV, we expand on previous work in Chapter III, 

involving the dynamic stability of thin laminated composite shells undergoing pressure 

pulse loading by considering a curved composite sandwich panel with thin facesheets and 

an elastic compressible core. Since the sandwich shell consists of two thin facesheets and 

a compressible core, facesheets may be susceptible to pulse buckling. Equations of 

motion for the facesheet transient deformations are again derived from Lagrange’s 

equations of motion, and solutions using this approach are then compared to FEA results 

from ABAQUS Implicit. Both facesheet fracture during stable response and local 

dynamic pulse buckling of facesheets are considered as possible curved sandwich panel 

modes of failure. The Budiansky-Roth criterion is also used as the dynamic instability 

criterion. 

            Chapter V presents an elastic-plastic analytical model for the blast response of a 

curved, composite sandwich panel with polymeric foam core. The model will elucidate 

not only the dynamic response of the sandwich panel but address its ultimate failure and 

the energy absorption of its core up to the point of failure. The predicted solution from 

the elastic-plastic model is compared to FEA results from ABAQUS Implicit. Chapter VI 

concludes the present thesis and gives the suggestions on the future possible research 

work. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Development of Shell Theories and Sandwich Shell Theories 

 In this section, the development of classical shell theories, laminated shell 

theories and sandwich shell theories are discussed respectively. 

 

2.1.1 Development of classical shell theories 

            In classical linear shell theories, there are two fundamental methods of approach 

to the problem. The first method was proposed by Cauchy [3] and Poisson [4], which is 

based on the expansion of displacements and stresses in the shell in power series of the 

distance z from the middle surface. However, the convergence of these power series was 

skeptical, which made this method unpopular. The second method was proposed by 

Kirchhoff [5], and has the advantage of introducing physical meanings into the shell 

theories.  

            The first accurate shell theory may be attributed to Love’s thin shell theory [6]. 

When analyzing bending of shells, Love introduced his first approximation to define a 

linear analysis of thin shells. This approximation assumes (1) strains and displacements 

to be small such that second and higher-order terms can be neglected, (2) the thickness of 

the shell to be small compared with other shell parameters, (3) the transverse stress to be 
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small compared with other stresses in shells, and (4) normals to the undeformed surface 

to remain straight and normal to the deformed surface. The first of these assumptions 

defines a linear analysis of shells. This assumption needs to be relaxed if the strains 

and/or displacements become large. Displacement is considered large if it exceeds the 

thickness of the shell. It is well known that thin shells may undergo large displacements 

while the strains at each point remain small. 

            Following Love’s thin shell theory, von Karman [7] extended this approach to 

study finite deformation of plates by taking nonlinear terms into account. Donnell [8] 

established the nonlinear theory of circular cylindrical shells under the simplifying 

shallow shell hypothesis. Because of its relative simplicity and practical accuracy, this 

theory has been widely used. Mushtari and Galimov [9] presented nonlinear theory for 

thin shells undergoing moderate and large deformations. A more refined nonlinear theory 

of shells was developed by Sanders in tensorial form [10] and by Koiter around the same 

time period [11], leading to Sanders-Koiter theory. Another accurate theory was referred 

to as the Flugge-Lur’e-Byrne nonlinear shell theory [12, 13], which is very close to the 

general large deflection theory of thin shells developed by Novozhilov [14]. Additional 

nonlinear shell theories were formulated by Reissner [15] and by Timoshenko and 

Woinowsky-Krieger [16]. Vlasov [17] and Sanders [18] tried to resolve some of the 

inconsistencies which appeared in the shell theories based on Love’s approximation, 

including rigid body motion and asymmetric differential operators.  

            Actually, in the case of moderately thick shells, the classical shell theories 

mentioned above can become inaccurate. As early as 1877, Rayleigh [19] noted that 

rotary inertia terms were important in the analysis of vibrating systems. Decades later, 
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Timoshenko [20] showed that shear deformation terms are at least as important. Since 

then, researchers realized that the hypothesis of negligible rotary inertia and shear 

deformation can be a rough approximation for thick shells. Rotary inertia and shear 

deformation led to a necessary relaxation of some of the assumptions in Love’s first 

approximation, and shear deformation shell theories were born. The Reissner-Mindlin 

theory of plates took into account transverse shear strains in order to deal with thicker 

and laminated composite plates [21, 22]. For moderately thick laminated shells, the 

nonlinear first-order shear deformation theory of shells was proposed by Reddy and 

Chandrashekhara [23], which is based on the linear first-order shear deformation theory 

introduced by Reddy [24]. In these theories, the shear correction factors are required for 

equilibrium considerations. For this reason, a linear higher-order shear deformation 

theory of shells proposed by Reddy and Liu [25] and a nonlinear higher-order shear 

deformation theory of plates proposed by Reddy [26] do not require shear correction 

factors by satisfying zero transverse shear stresses at the top and bottom surfaces.  

 

2.1.2 Development of laminated shell theories 

            The use of laminated composite shells in many engineering applications has been 

expanding rapidly in the past four decades. The shell theories used for isotropic materials 

need further treatment when laminated composite materials are in consideration. This is 

because such materials offer stretching-bending coupling effects, and new stiffness 

coefficients need to be determined. Ambartsumian [27] published probably the first book 

in the area of composite shells. In his book he presented various laminated composite 
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shell theories by expanding the stress resultant equation of earlier theories to those for 

anisotropic shells, and solved for stresses and deformations under static loads. A 1973 

monograph by Leissa [28] reviewed shell vibration research up to that time, including 

both isotropic and laminated composite shells. Librescu covered areas of stability and 

flutter of laminated composite shells [29] and developed refined nonlinear theories for 

anisotropic laminated shells [30]. Vinson and Sierakowski [31] presented analysis of 

composite shells. 

            Composite materials offer higher shear deformation than typical metallic 

materials. If the shear strains and shear deformations were neglected, the assumption that 

normals to the undeformed surface remain straight and normal to the deformed surface 

leads to an underprediction of the potential strain energy in laminated shells. For this 

reason, Librescu et al. [32, 33] developed a shear deformation theory for laminated 

composite shells, which included higher-order terms. This theory failed to consider the 

trapezoidal shape of the shell cross-section in the stress resultant equations (i.e., the 

1+z/R term). Leissa and Chang [34] considered this term but truncated it using a 

geometric series expansion. 

 

2.1.3 Development of sandwich shell theories 

            Sandwich constructions are important elements in many fields of lightweight 

construction like marine vessels, aerospace vehicles, and civil infrastructure [35]. A 

typical sandwich shell consists of two stiff metallic/composite facesheets and a soft 

honeycomb/foam core. Within the principle of sandwich construction, the facesheets 
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carry the membrane and bending loads while the core keeps the facesheets at their desired 

distance and transmits the transverse normal and shear loads. This layout gives the 

sandwich shell the integrity of high stiffness and strength with little resultant weight 

penalty and high energy absorption capability.  

            In the early studies of the response of a sandwich structure to static loading or 

dynamic loading with long duration, the compressibility of the core in the transverse 

direction was neglected [36, 37]. This type of model is the now classical sandwich 

membrane models which assume membrane theory for the facesheets and pure transverse 

shear deformation is the only type of deformation considered for the core. However, 

experimental and numerical results [38-42] have shown that the core undergoes 

significant transverse deformation when the sandwich structure experiences dynamic 

loading.  

            On the other hand, due to the thick core made of relatively soft material, the 

deformation and instability behaviors of sandwich shells are essentially changed from 

those behaviors of classical laminated shells and monolayer shells. In addition to the 

standard overall buckling mode, the transverse compressibility of the core yields a 

distinctive instability mode, which is buckling of the local facesheets into the core region 

while the global response of the entire shell remains stable. In the early studies on 

buckling of sandwich panels, the two instability modes are considered independently [43-

45].  

            To account for the specific deformation and buckling behavior, a number of shell 

theories and models have been developed for sandwich shells and they can be divided 



12 
 

into two types: effective single layer theories and effective multilayer theories. The 

former treats the entire sandwich shell as single-layer by using displacement functions 

related to one reference surface, usually the middle surface of the shell. The latter 

considers each individual facesheet and core layer separately and the compatibility is 

ensured by appropriate interface constraint conditions. Skvortsov and Bozhevolnaya [46] 

studied the linear elastic material behavior of sandwich plates and shells using an 

effective single layer sandwich model. Ferreira et al. [47] considered geometrical and 

material nonlinearities when presenting the work on effective single layer sandwich 

model. Barut et al. [48] presented an advanced effective single layer theory for sandwich 

plates. This approach accounts for the transverse compressibility of the core by using 

weighted average displacement functions. The disadvantages of effective single layer 

models are that they lose accuracy due to the simplified displacement functions, and they 

cannot predict the instability mode of local facesheets buckling. These disadvantages can 

be overcome by effective multilayer models which treat each principal layer separately.  

            Among the first to work on effective multilayer models was Allen [37]. He 

presented the classical sandwich membrane model which assumes membrane theory for 

the facesheets and pure transverse shear deformation for the core. Frostig et al. [49] 

proposed a multilayer model for sandwich beams, which is based on Kirchhoff 

approximations for the facesheets and includes transverse shear stress of the core. This 

approach was extended to singly curved sandwich beams by Bozhevolnaya and Frostig 

[50] and to 2-D sandwich plates by Frostig [51]. Dawe and Yuan [52] proposed a theory 

for flat sandwich plates accounting for the transverse compressibility of the core, by 

considering a first and second order displacement expansion for the transverse and 
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tangential displacements, respectively. Pai and Palazotto [53] developed similar theory by 

using a second and third order approximation. Librescu and Hause [54] provided surveys 

on recent developments in the theory and modeling of sandwich panels. 

 

2.2 Dynamic Response of Composite Shells 

            Dynamic analysis of shells, or curved panels, started at the 19th century. Research 

on shell dynamics is found to be mainly free vibration analysis at its initial stage. Free 

vibration is initiated when a curved composite panel is displaced from its equilibrium 

position due to an energy imparted to the structure through an external source. A 

restoring force or moment results from its bending stiffness and this pulls it back toward 

equilibrium. Ganapathi and Haboussi [55] studied the free vibrations of thick laminated 

anisotropic non-circular cylindrical shells. Korhevskaya and Mikhasev [56] studied the 

free vibrations of a laminated cylindrical shell subjected to nonuniformly distributed axial 

forces. Shang [57] presented an exact analytical solution for the free vibration of 

composite capsule structures. However, when subjected to various kinds of external 

dynamic loads, shells can present different dynamic behaviors, which lead to several 

types of dynamic analysis. 

            Curved panels made of laminated composites under impact loading due to flying 

foreign objects or other causes have been intensely studied. Such impacts induce a region 

of high stress concentration in the vicinity of contact area and lead to a localized damage. 

Krishnamurthy et al. [58, 59] performed a parametric study of the impact response of 

laminated cylindrical shells. Kim et al. [60] investigated the behavior of laminated 
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composite shells under transverse impact loading. Hoo Fatt and Sirivolu [61] investigated 

high velocity impact response of a composite sandwich panel. 

            Dynamic stability of curved composite panels is a very broad subject that includes 

not only dynamic buckling from transient and/or vibratory loads, but also interaction of 

structures with other media, such as in aircraft flutter, and interaction with active control 

systems that have their own dynamic characteristics [1]. Recent research activities on the 

dynamic stability behavior of plates and shells were reviewed by Sahu and Datta [62]. 

Zhou and Wang [63] presented a theory of non-linear dynamic stability for laminated 

composite cylindrical shells.  

            Several other studies have addressed the general dynamic behavior of curved 

composite panels. Von Karman and Tsien [64] performed a seminal study on the stability 

of axially loaded circular cylindrical shells, based on Donnell’s non-linear shallow shell 

theory. Pinto Correiaa et al. [65] presented a finite element model for the dynamic 

analysis of laminated axisymmetric shells. Sahu and Datta [66] discussed parametric 

resonance characteristics of laminated composite shells subjected to nonuniform loading. 

Ribeiro and Jansen [67] studied the non-linear vibrations of laminated cylindrical shallow 

shells under thermomechanical loading. Li and Hua [68] studied the transient vibrations 

of laminated composite cylindrical shells exposed to underwater shock waves. Qatu et al. 

[69] reviewed most of the research done in recent years on the dynamic behavior of 

composite shells and that review was conducted with emphasis on the type of dynamic 

analysis performed. 

 



15 
 

2.3 Dynamic Pulse Buckling of Composite Shells 

            The dynamic behavior studied in this research is dynamic pulse buckling from 

prescribed dynamic loads acting on curved composite panels. This thesis will focus on 

two types of composite shells: monocoque curved composite panels and curved 

composite sandwich panels. 

2.3.1 Dynamic pulse buckling of monocoque curved composite panels 

            Composite shells, or curved composite panels, are commonly used to construct 

lightweight aerospace, military, transportation and civilian structures. When exposed to 

external pressure pulse loading, such as one caused by a nearby explosion, these shells 

may undergo dynamic instability instead of stable transient and vibratory response. The 

specific type of dynamic instability referenced herein is a dynamic pulse buckling [1, 70]. 

This type of dynamic buckling is characterized by pressure pulse loading and is distinct 

from vibration buckling, which is characterized by oscillatory or periodic loading. 

            Dynamic pulse buckling due to lateral pressure pulse has been addressed for 

isotropic shell structures since the early 1960s [2, 70-73] and only very recently for 

laminated composite cylindrical shells [74-77]. Hoo Fatt and Pothula [74] developed the 

equations of motion governing transient motion of a thin composite cylinder under 

external pressure pulse loading and resulted in a set of Mathieu equations for which the 

instability conditions are well-known. In particular, parametric resonance occurs when 

the hoop mode couples with specific bending modes. In addition to this analytical 

approach, dynamic buckling of composite cylindrical shells under external, step pressure-

pulse loading has also been addressed numerically [75-77]. Tanov et al. [75] applied 
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ABAQUS to determine the stability of the laminated cylindrical shell under suddenly 

applied pressure loading using both the Budiansky-Roth and Phase-Plane criteria, both of 

which are explained in the textbook by Simitses [70]. Schokker et al. [76] used an 

asymptotic procedure in conjunction with p-version finite elements to extract the 

buckling mode and the associated second-order field of the composite cylindrical shell 

when they become unstable. Most recently Rahman et al. [77] extended a finite element 

perturbation method for static buckling to dynamic buckling analysis of composite 

cylindrical shells subjected to step-pulse radial and axial loading. The dynamic stability 

of cylindrical shells with finite angular extent and specified boundary conditions cannot 

be dealt with analytically. The coupled non-linear equations of motion must be dealt with 

numerically as was the case for isotropic shells [71, 73, 78]. 

            Simitses [70] discusses various approaches for determining the dynamic stability 

of structures under sudden loading and a more recent review on the topic, including 

experimental studies, can be found in Singer et al. [79]. In general the dynamic stability 

of structures can be addressed using direct equations of motion or the Budiansky-Roth 

approach [2], a total energy-phase plane or the Hsu approach [80], and the total potential 

energy or Simitses approach [70]. In the last two approaches, lower and upper bounds of 

critical stability conditions are established. The Budiansky-Roth criterion simply states 

that instability occurs when there is a large increase in deformation response from little or 

no increase of load and it involves numerical solution of non-linear coupled equations of 

motion. 
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2.3.2 Dynamic pulse buckling of curved composite sandwich panels 

            Curved composite sandwich panels have widespread applications in aerospace, 

naval and civil constructions because they offer high bending resistance and strength with 

little weight penalty. This results in considerably more research and interest in their 

dynamic behavior. When these structures are exposed to external pressure pulses, the 

deformation and stability of the curved sandwich panel are affected by the fact that the 

core is compressible. Transverse or through-thickness deformation of the core allows 

facesheets to deform as monolithic shells and this may give rise to an additional buckling 

mode, local facesheet wrinkling, while the global sandwich panel response is in a stable 

deformation mode.  

            While many foam core materials exhibit energy absorption through permanent 

crushing, there are some foams that can be extremely resistant to permanent crushing 

because of their high compressive strength. The Divinycell HCP foams manufactured by 

Diab [81], for instance, are designed for lightweight buoyancy, excellent hydraulic 

compressive properties and high impact resistance. They are typically used in marine and 

naval applications, and have very high compressive strength. 

            In recent years, higher-order sandwich shell theories that incorporate 

compressible cores have been developed to address the dynamic response of composite 

sandwich shells subjected to external pressure pulses [82-86]. Hohe and Librescu [83] 

used a multi-layered sandwich model, which distinguished between facesheets and core 

deformations, and a higher-order displacement field for capturing core compressibility to 

determine the response of a spherical sandwich cap under uniform pressure. Li et al. [85] 
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presented a nonlinear compressible core model to capture the transient shock wave 

response of the individual facesheets and core of a shallow, simply-supported composite 

sandwich shell. Li and Kardomateas [86] have extended this theory to cylindrical 

sandwich shells with flexible core, thereby allowing one to differentiate deformations and 

stresses in individual facesheets and core. The advantage of above-mentioned theories is 

that they make the facesheets carry the in-plane and bending loads and the core bear the 

transverse normal and shear loads. However, these theories are restricted to shallow shell 

assumptions, i.e., small strains and moderately large rotations. The sandwich shell 

kinematics presented in this thesis is distinguished from the above-mentioned studies. 

Facesheet strains are derived based on large deflection, thin shell theory [1, 72], while the 

core strains are obtained using the assumption of small deflection, thick shell theory, in 

particular first-order shear deformation theory. Modelling the sandwich shell in this way 

allows one to assess both shallow and deep sandwich shells. 

 

2.4 Curved Composite Sandwich Panels with Crushable Elastic-Plastic Cores 

            The sandwich core is considered elastic in the analytical formulations of above-

mentioned theories. In some instances, however, the core of the sandwich panel can 

experience plasticity due to permanent foam crushing. An elastic-plastic core may even 

be more representative of the blast behavior of foams used nowadays in composite 

sandwich construction. While the current design of a sandwich panel prohibits plastic 

crushing of the core, plastic core crushing becomes inevitable under very high intensity 

loading, such as a nearby blast.  
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            Plastic foam core crushing in composite sandwich structures under projectile 

impact has been addressed extensively in the past and only more recently for blast 

loading [87, 88]. Hoo Fatt and Surabhi [87] developed analytical models for the blast 

resistance and energy absorption of cylindrical, composite sandwich shells, while Hoo 

Fatt and Chapagain [88] presented an elastic-plastic sandwich panel model for simply 

supported, rectangular flat composite sandwich panels under uniformly distributed 

pressure pulse. The elastic-plastic behavior of the core is described as crushable foam 

with isotropic hardening by Deshpande and Fleck [89]. The plastic flow is determined by 

an associated flow rule. Under plane strain, the elastic-plastic stress-strain relations are 

generally not ideally plastic (constant stress) for a material that is elastic-perfectly plastic 

under uniaxial stress [90]. Incremental stress-strain relations can be derived for the foam 

and the resulting strain hardening plastic stress-strain curve must be integrated from it. 

Mines and Alias [91] studied the progressive collapse of polymer composite sandwich 

beams under static loading by using numerical simulations. Rivoz and Mladensky [92] 

studied the static indentation response of H30 foam experimentally and computationally. 
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CHAPTER III 

CURVED COMPOSITE PANELS UNDER EXTERNAL BLAST 

 

            In this chapter, the dynamic pulse buckling of a clamped, curved laminated 

composite panel under uniformly distributed external pressure pulse loading is 

investigated. The curved composite panel is also considered as a single curvature 

composite shell. The transient shell response is found using Lagrange’s equations of 

motion. This response is then compared to finite element analysis results using ABAQUS 

Implicit. Dynamic instability of the composite shell is investigated with the criterion by 

Budiansky and Roth, which simply states that instability occurs when there is a large 

increase in deformation response from little or no increase of load and it involves 

numerical solution of non-linear coupled equations of motion. Failure of the composite 

shell due to large deformation and not necessarily instability is also addressed. A 

parametric study is performed to determine the influence of pulse duration, shell aspect 

ratio, angular extent and laminate lay-up on the failure resistance of the shell. 

3.1 Problem Formulation 

Consider a long, laminated composite shell of radius a  and thickness h , 

subjected to uniformly-distributed pressure pulse loading as shown in Figure 3.1.  In a 

previous publication [74], the dynamic stability of a composite cylindrical shell under 

external blast was analyzed.  In this chapter, only a section of the cylindrical shell is 
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considered so that the shell surface is of a single curvature with a subtended angle 0 .  

Points on the mid-surface of the shell have polar coordinates ),( a .  The external 

pressure pulse loading is defined as 













T

t
ptp 1)( 0

                                                                 

(3.1) 

where 0p  is the peak pressure, T  is the load duration and t  is the time.  The shell 

deforms with mid-surface radial displacement ),( tw  and tangential displacement ),( tv

. 

 

Figure 3.1 Composite shell subjected to external pressure pulse loading. 

 

3.2 Nonlinear Equations of Motion 

The equations of motion governing the transient deformations of the shell are 

defined in normalized radial and tangential displacements aw  and av , 
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respectively, and normalized time 
a

tc
 , where 

h

A
c


22

 

is the wave speed in the 

circumferential direction of the shell and 22A  is the circumferential membrane stiffness.   

In normalized time, the pressure pulse loading becomes  
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where 
a

Tc
0

 
is a normalized load duration.  

            For fully clamped boundary condition of the shell, ,0 0  and 0  at 

0,0   .  The boundary conditions of the shell are satisfied by the following Fourier 

series representations of   and  : 
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(3.4) 

where )(nb  and )(nc  are mode amplitudes and n  is the mode number.             

 The circumferential membrane and bending strains for the thin shell are taken 

from References [1, 72] and re-derived in Appendix B.  These follow from the 

deformation of a differential element at the mid-surface of the shell as shown in Figure 

B.1. Following Appendix B, the hoop strain in the shell is 

  zm 

                                                                                                                

(3.5) 

where the mid-surface hoop strain m  and the change in hoop
 
curvature

   can be 

expressed as 
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            The transient shell response is found from Lagrange’s equations of motion:  
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where nq  is a generalized coordinate, nQ  is a generalized external force, T  is the kinetic 

energy, U  is the strain energy and     


/ . In the following analysis, nq
 
are the 

time-varying mode amplitudes nb  and nc , and nQ  are obtained from virtual work W  as 

follows:  
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The kinetic energy T and strain energy U  of the shell as well as the virtual work W  are 

defined respectively as follows: 
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where   is the virtual normalized radial displacement,     


/ , 
22

2

222

Aa

D
  is 

the circumferential bending-to-membrane stiffness ratio and 22D  is the circumferential 

bending stiffness. The derivation of strain energy U  of the shell is given in Appendix C. 

            Substitution of Equations (3.3) and (3.4) into Equation (3.10) gives
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            On neglecting fourth-order terms, Equation (3.11) becomes 
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Substitution of Equations (3.3) and (3.4) into Equation (3.14) gives
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Finally, substituting Equation (3.3) into Equation (3.12) gives 
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            The equations of motion for the shell are developed by substituting the above 

energy expressions into Equation (3.8).  For example, a one-term approximation is given 

when 0 pmn : 
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where 
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p   is the normalized peak pressure.  A three-term approximation is given 

when 2,0 pmn : 
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(3.20) 

Note that the equations of motion are coupled second-order ordinary differential 

equations in which only the symmetric mode amplitudes exist for  , i.e., ,...,, 420 bbb , 

while only the anti-symmetric exist for  , i.e., ,...,, 642 ccc . However, both symmetric 

and anti-symmetric mode amplitudes could exist if shell imperfections were taken into 

account. 

 

3.3 An Example 

            Consider an orthotropic shell made of 0/90 Woven Roving E-Glass/Vinyl 

Ester with thickness 2h mm, radius 80a mm (aspect ratio 40/ ha ) and 

subtended angle  0 . Material properties for the 0/90 Woven Roving E-Glass/Vinyl 

Ester were taken from Boh et al. [93] and are shown in Table 3.1.  
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Table 3.1 Material properties of 0/90 Woven Roving E-glass/Vinyl Ester 

and Uni-Directional E-Glass/Epoxy. 

 

Material 
0/90 Woven Roving 

E-Glass/Vinyl Ester 

Uni-Directional 

E-Glass/Epoxy 

Density (kg/m
3
) 1,391 2,050 

E11 (+) (GPa) 17 48 

E22 (+) (GPa) 17 12 

E33 (+) (GPa) 7.48 12 

E11 (-) (GPa) 19 -- 

E22 (-) (GPa) 19 -- 

E33 (-) (GPa) -- -- 

12 0.13 0.19 

23 0.28 0.26 

13 0.28 0.19 

31 0.12 0.05 

G12=G21 (GPa) 4.0 6 

G23=G32 (GPa) 1.73 5 

G13=G31 (GPa) 1.73 6 

XT, 10 (+) (MPa) 270 1,020 

XC, 10 (-) (MPa) 200 490 

YT, 20 (+) (MPa) 270 8 

YC, 20 (-) (MPa) 200 78 

ZT, 30 (+) (MPa) 23.2 8 

ZC, 30 (-) (MPa) 343.5 78 

SL, 120=210 (MPa) 40 23 

ST, 130=310 (MPa) 31.6 23 

ST, 230=320 (MPa) 31.6 66 

 

            The external pressure pulse loading has peak pressure 6.00 p MPa and load 

duration 1T ms. The normalized radial displacement   of the center point of the 
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shell, which has coordinate (
2

,


a ), is shown in Figure 3.2. This solutions was 

produced in MATLAB using ode15s, which was found to be the most efficient solver.  

The total step time 6.3t  ms, corresponds to a normalized step time 160 on the 

abscissa axis. The results are shown when the total number of terms are succesively 

increased to approach the converged solution. It can be seen that the analytical results 

converged with 15 terms, i.e., up to and including 14 pmn . 

 

Figure 3.2 Convergence of normalized radial displacement at shell center. 

 

3.4 Finite Element Analysis 

            The example problem above was numerically solved using ABAQUS Implicit 

[94]. The FEA model is shown in Figures 3.3(a) and (b). Four-node bilinear plane strain 

quadrilateral elements (CPE4) were used to model the shell segment in a plane strain 

condition. There were 2000 elements in the meshed shell. To show the mesh clearly, only 

one half section is presented in Figure 3.3(b). The material properties of the shell were 
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assigned using Elastic Engineering Constants with data for the 0/90 Woven Roving E-

Glass/Vinyl Ester from Table 3.1. Implicit dynamic analysis was performed with 

automatic time increment and a specified half-step residual. The size of the half-step 

residual was small enough to yield accurate results. No damping was specified in the 

problem. Non-linear geometry was also used in the analysis. 

      

                (a) geometry                                                     (b) mesh 

Figure 3.3 Finite element model of composite shell for (a) geometry and (b) mesh. 

            The numerical results for   of the center point of the shell is shown in Figure 

3.4, in comparison with the converged analytical results in Section 3.3. The analytical 

and finite element analysis (FEA) results are in very good agreement. During the first 

cycle they are almost the same. After the first cycle, the analytical and FEA results begin 

to deviate and the deviation gets worse as time progresses, although the low frequency 

response of the two still compare very well. There are two reasons for the deviation. 
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Firstly, the FEA model used two-dimensional continuum elements so that radial stress 

waves were generated in addition to circumferential waves, while the analytical shell 

model neglected radial stress waves through the thickness of the shell.  Secondly, the 

FEA solution used implicit time integration to determine the transient shell response, 

while the MATLAB program used explicit time integration to solve the equations of 

motion.  Both numerical schemes had errors which accumulated differently over time.     

            Two other shells with the same radius and thickness but subtended angle 

2/0    and 3/0    were simulated in ABAQUS Implicit.  Predictions of the 

normalized radial displacement   at the center point of the shell were compared to 

the FEA in Figures 3.5 and 3.6.  Again 15 terms of the Fourier series expression for   

were taken to assure convergence in the analysis.  There is even better agreement 

between the FEA and predicted results for small angular extents than was the case for a 

semi-circular shell (  0 ).  The best agreement between FEA and the predicted 

transient response was for the smallest angular extent, 3/0   . This suggests that the 

model is better for shallow shells, when the geometric nonlinearities are not as severe. 
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Figure 3.4 Comparison of FEA and analytical solutions for   at shell center,  0 . 

 

Figure 3.5 Comparison of FEA and analytical solutions for   at shell center, 20 /  . 
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Figure 3.6  Comparison of FEA and analytical solutions for   at shell center, 30 /  . 

 

3.5 Dynamic Instability 

            When assessing the dynamic instability of the shell, the Budiansky-Roth buckling 

criterion [2] was used: the equations of motion were solved for various values of the 

loading and the value at which there was a significant jump in the response signified the 

onset of dynamic instability or buckling. The application of this criterion requires solving 

the equations of motion for different values of peak pressure 0p , monitoring the 

significant change in shell responses and determining the critical peak pressure crp0 . 

Characterized by pressure pulse loading, this specific type of dynamic instability is 

defined as dynamic pulse buckling [1, 70]. The example in Section 3.3 was performed 

again to assess shell dynamic buckling. The normalized radial displacement   of the 
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center point of the shell was obtained for various values of peak pressure 0p , as 

shown in Figure 3.7. 

 

Figure 3.7 Occurrence of dynamic buckling in response of   at shell center. 

 

 It can be observed that for small values of peak pressure, there are small 

oscillations for  , and the oscillation amplitudes gradually increase with increasing 

magnitude of the peak pressure. When the peak pressure reaches a critical value MPa9.0 , 

  goes to infinity, which means nothing else but the occurrence of shell buckling. A 

peak pressure larger than the critical value only makes the buckling occur sooner. 

 

3.6 Comparison with Dynamic Pulse Bucking Tests 

            Experiments concerning dynamic pulse buckling of laminated composite shells 

are lacking, even though they are needed to compare the analytical model and FEA.  
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However, test data on the dynamic stability of clamped steel arches subjected to 

impulsive loading were presented by Humphreys in Reference [71].  His test data was 

given in dimensionless form for the impulse and arch geometry and is shown in Figure 

3.8.  The solid circles indicate buckled and failed shells, while the open circles indicate 

unbuckled or undamaged shells.  Marginal cases are shown with partially filled circles.  

Dynamic buckling of the steel arch is a special case of the solution for the composite 

arch.  The circumferential membrane and bending stiffness reduce to  2

22 1  EhA

and   23

22 112  EhD , respectively, where E and  are the Young’s modulus and 

Poisson’s ratio of steel, respectively.  Hence,  .12 222 ah   Predicted buckling loads, 

expressed in terms of the impulse parameter, is shown for several shell geometries, 

expressed in terms of shape parameter, in Figure 3.8.  The impulse was taken as the area 

under the pressure pulse.  There is very good agreement between the predicted and test 

results.  Therefore, the criterion for dynamic buckling has been validated, at least on 

isotropic shells.  It is assumed that similar conclusions could be made for a laminated 

composite shell. 
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Figure 3.8 Comparison of predicted buckling load with experimental results on steel 

arches (Humphreys, 1965). 

 

3.7 Parametric Study 

Parametric studies on load duration, shell aspect ratio, shell subtended angle and 

laminate lay-up are performed in this section. 

3.7.1 Load duration 

            Load duration T  determines whether the pressure pulse loading is impulsive, 

dynamic or quasi-dynamic. Consider the 0/90 Woven Roving E-Glass/Vinyl Ester 

shell with radius mma 80 , aspect ratio 40/ ha  and subtended angle  0 .  The 

critical peak pressures for different load durations are shown in Figure 3.9, where the 

abscissa axis is on logarithmic scale. 
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Figure 3.9  Influence of load duration on critical peak pressure for 0/90 E-Glass/Vinyl 

Ester shell. 

 

 The shell fails due to buckling for all the load durations. From the plot it can be 

seen that in the load duration range 0.01-0.05 ms there is a sharp decrease in critical peak 

pressure with pulse duration and the pressure pulse loading is considered as 

impulsive.  In the range 0.05-4 ms the critical peak pressure decreases gently with 

pusle duration and the pressure pulse loading is dynamic. In the range 4-10 ms the 

critical peak pressure is relatively constant and the pressure pulse loading is said to be 

quasi-dynamic.  

 

3.7.2 Aspect ratio 

            A brittle orthotropic composite shell may actually fail due to local tensile or 

compressive failure of individual plies instead of buckling of whole shell.  Ply failure 

criteria for an orthotropic shell is given in Appendix D.  Consider the orthotropic shell 

made of 0/90 Woven Roving E-Glass/Vinyl Ester with radius 80a mm and 
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subtended angle  0 . The load duration is 1T ms.  Both ply failure and 

buckling are carried out for different aspect ratios ( ha / ) and the critical peak 

pressures are shown in Figure 3.10.  It can be seen that thicker shells are more likely 

to fail by ply failure, while thinner ones by buckling.  

 

Figure 3.10 Influence of aspect ratio on the type of failure for 0/90 E-Glass/Vinyl Ester 

shell. 

 

3.7.3 Subtended angle 

            The subtended angle 0  is an important parameter because it determines whether 

the shell is a shallow or deep shell.  In this parametric study, consider the orthotropic 

shell of radius 80a  mm made of 0/90 Woven Roving E-Glass/Vinyl Ester.  The 

load duration is 1T ms.  For different subtended angles, ply failure and buckling 

are carried with two different aspect ratios, as shown in Figure 3.11. 
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Figure 3.11 Influence of subtended angle on critical peak pressure for 0/90 E-

Glass/Vinyl Ester shell. 

 

 For the shells with aspect ratio 20/ ha , ply failure is the dominant mode of  

shell failure, and 30
0
, 105

0
, 150

0
 give higher failure resistances.  For those shells with 

aspect ratio 100/ ha , buckling dominates the mode of shell failure and subtended 

angle has little effect on critical peak pressure. The curve of aspect ratio 20/ ha  is 

truncated at 300   because the curved shell assumption breaks down when 100 


h

a 
.  

 

3.7.4 Laminate lay-up 

            The dynamic instability of laminated composite shell will be influenced by shell 

lay-up.  Three different lay-ups are chosen for laminated shells made of unidirectional E-

Glass/Epoxy: symmetric ([90
0
/0

0
]s), anti-symmetric ([90

0
/45

0
/-45

0
/90

0
]) and quasi-

isotropic ([90
0
/45

0
/0

0
/-45

0
]).  Material properties for the unidirectional E-Glass/Epoxy 
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were taken from Peters [95] and are also shown in Table 3.1.  Each of the shells has a 

radius 80a mm, aspect ratio 60/ ha , and subtended angle  0 .  The shells all 

weigh the same. The load duration is 1T  ms. 

 With an aspect ratio 60/ ha , failure is due to buckling for all the lay-ups 

considered. The critical peak pressures for these shells are listed in Table 3.2.  It can be 

seen that even though all the shells have the same geometry and weight, their lay-ups 

affect c  and 2  and play an important role in determining the shell resistance to dynamic 

instability.  According to Table 3.2, the quasi-isotropic lay-up gives the lowest buckling 

resistance, while the symmetric lay-up gives the highest buckling resistance of all three 

lay-ups. 

Table 3.2 Critical peak pressure for laminated composite shells with different lay-ups. 

 

Uni-Directional E-Glass/Epoxy 

Lay-up 
)/( smc  2  )(0 MPaP cr  

Symmetric [90
0
/0

0
]s 3,843.9 3.36e-5 0.71 

Anti-symmetric [90
0
/45

0
/-45

0
/90

0
] 4,154 2.96e-5 0.7 

Quasi-isotropic [90
0
/45

0
/0

0
/-45

0
] 3,581.1 2.92e-5 0.53 

 

 

3.8 Concluding remarks 

            Dynamic pulse buckling of a single curvature laminated composite shell under 

uniformly distributed external pressure pulse loading was examined in this chapter. The 

transient shell response was found using Lagrange's equation of motion. The analytical 
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solution governing the transient shell response compared very well with finite element 

analysis results using ABAQUS Implicit.   

            Buckling pressures were determined using the Budiansky and Roth criterion. The 

predicted buckling was shown to agree with experimental results on impulsively loaded 

steel arches from Humphreys in 1965. A parametric study was then performed on the 

composite shell.  Load duration determined whether the buckling response was impulsive, 

dynamic or quasi-dynamic. It was found that thicker shells were more likely to fail by 

first-ply failure rather than buckling, while thinner shells were more susceptible to fail by 

buckling than first-ply failure. The angular extent of the thicker shell also appeared to 

influence the critical peak pressure at which first-ply failure occurs, although shell 

angular extent of the thinner had no influence on the buckling pressure. Finally, lay-up of 

the composite shell affects the critical pressure at the onset of dynamic instability and 

may be adjusted to increase the buckling resistance of the shell. 
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CHAPTER IV 

CURVED COMPOSITE SANDWICH PANELS UNDER EXTERNAL BLAST 

 

When the curved composite sandwich panels are exposed to external pressure 

pulses, their deformation and stability are affected by the fact that the core is 

compressible. In Chapter III, it was found that thicker shells were more likely to fail by 

fracture during stable response rather than buckling, while the opposite was true for 

thinner shells. This conclusion also indicates that it is unlikely that a composite sandwich 

shell, which behaves globally like a thick shell, would undergo global buckling before 

stable deformation and fracture of its facesheet and/or core. However, the sandwich shell 

consists of two thin facesheets and a compressible core, and transverse or through-

thickness deformation of the core allows facesheets to deform as monolithic shells. This 

may give rise to an additional buckling mode, local facesheet wrinkling, while the global 

sandwich shell response is in a stable deformation mode.  

This chapter addresses the problem of local dynamic pulse buckling of a curved 

composite sandwich panel. The facesheets of the sandwich panel are considered to be 

made from fiber-reinforced polymeric materials, while the core is considered to be made 

of elastically deformable polymeric foam. While many foam core materials exhibit 

energy absorption through permanent crushing, there are some foams that can be 

extremely resistant to permanent crushing because of their high compressive strength. 
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The Divinycell HCP foams manufactured by Diab [81], for instance, are designed for 

lightweight buoyancy, excellent hydraulic compressive properties and high impact 

resistance. They are typically used in marine and naval applications, and have very high 

compressive strength. Composite sandwich panels made with this type of core material 

will exhibit purely elastic response before facesheet fracture. Equations of motion for the 

facesheet transient deformations are derived from Lagrange’s equations of motion, and 

solutions using this approach are compared to FEA results from ABAQUS Implicit. Both 

facesheet fracture during stable response and local dynamic pulse buckling of facesheets 

are considered as possible curved sandwich panel modes of failure. The Budiansky-Roth 

criterion is also used as the dynamic instability criterion. 

 

4.1 Problem Formulation 

 Consider the two-sided clamped, curved sandwich panel shown in Figure 4.1. The 

single curvature, composite sandwich shell has facesheet thickness h  and core thickness 

H . The mid-surfaces of the composite facesheets are defined with radius 1a  and 2a , and 

the shell subtends an angle 0 .  The panel is fixed or clamped at the edges 0,0   .  

The facesheets consist of orthotropic, linear elastic material, while the foam core is 

idealized as isotropic, elastic material. The mass densities of facesheets and core are f

and c , respectively.  There is perfect bonding between facesheets and core.  The length 

of the shell is very long and it is subjected to uniformly distributed pressure pulse: 













T

t
ptp 1)( 0

                                                                 

(4.1) 
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where 0p  is the peak pressure, T  is the load duration and t  is the time.  The sandwich 

shell therefore deforms in a state of plane strain.   

 

Figure 4.1 Geometry of composite sandwich shell. 

 

 The facesheets are thin shells with radial deflections 1w  and 2w  and tangential 

deformations 1v  and ,2v  as shown in Figure 4.1.  These deformations are related to local 

coordinate systems 1, z  and 2, z , where 1z  and 2z  are defined at the mid-surface of the 

facesheets.  The deformations at the mid-surface of the core are denoted 0w

 

and

 
0v

  

and 

likewise, these are defined with respect to ., z   Geometric imperfection, which may 

trigger buckling modes, could be introduced in the above expressions for radial and 

tangential deformations. However, they are not necessary for type of pulse buckling that 

is the subject of this chapter and are omitted. 
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Facesheet strains are derived based on large deflection, thin shell theory, while the 

core strains are obtained using the assumption of small deflection, thick shell theory, in 

particular first order shear deformation theory. Modeling the sandwich shell in this way 

allows one to assess both shallow and deep sandwich shells. Specialized strain-

displacement relations for the facesheets and core are derived in the following sections. 

4.1.1 Facesheet kinematics 

We introduce normalized facesheet deflections as follows: ,111 aw

,111 av ,222 aw .222 av  For fully clamped boundary condition of the 

sandwich shell, the facesheet deflections are subject to ,021    

021    and 021   at 0,0   .  The boundary conditions of the 

facesheets are satisfied by the following Fourier series representations: 

00 0

1 cos
2

cos1









n
e

n

n













           (4.2)  
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



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

                          (4.3) 
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
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
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01

2 sin





n
h

n

n




                           (4.5) 

where nnn gfe ,,  and nh
 
are time-varying amplitudes. 
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Following Appendix B, the hoop strain in the outer and inner facesheets can be 

expressed as  

1111   zm                            (4.6) 

and 

2222   zm                            (4.7) 

where the mid-surface strain and the change in curvature in the outer (inner) facesheets 

are   

2

111111
2

1
 m                             (4.8) 

)(
1

11

1

1  
a                                 

                            (4.9) 

2

222222
2

1
 m                                 (4.10) 

)(
1

22

2

2  
a                                  (4.11) 

and    denotes derivative with respect to  . The above expressions are based on large 

deflections of the shell and include geometric nonlinearities. The terms underlined in 

Equations (4.8)-(4.11) do not appear in shallow shell theory, but they are necessary for a 

deep shell.   

4.1.2 Core kinematics 

The following assumptions are made to enable core strains to be fully determined 

by the facesheet deformations:  
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1. Since the facesheets are perfectly bonded to the core, the radial and tangential 

deformations of the core at the bond interface can be determined from facesheet 

deformations.  The radial deformations of the core at the bond interface are equal to the 

mid-surface radial deformation of the facesheets because the through-thickness 

deformation of the thin facesheet was ignored.  A similar assumption is made for the core 

tangential deformations at the bond interface since variations in the tangential 

deformation from the mid-surface to the outer surfaces of the facesheets would be small 

because of the thinness of the facesheet to the core.     

2. The radial and tangential deformations at the core mid-surface are given by 

2

21
0

ww
w




                                                             

   (4.12) 

and 

2

21
0

vv
v




                                                                

(4.13) 

The above assumption may be verified by FEA, as will be discussed later. 

3. To account for transverse shear deformation of the core, it is assumed that plane 

sections of the core (transverse normal to the mid-surface) rotate uniformly with angle    

H

vv 12
0




                                                                                                                  

(4.14)

 

Equation (4.14) is consistent with first-order shear deformation theory, although the 

rotation is treated as an independent of tangential deformation in first-order shear 

deformation theory.   
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4. To account for transverse compressibility of the core, an average radial strain is as 

calculated as 

H

ww
r

12 
                                                                

(4.15) 

Following Assumptions 3 and 4 are linear through-thickness variation of tangential and 

radial  deformations  

    00 ,,,  ztvtrv 

                                                               

(4.16) 

and 

    rztwtrw   ,,, 0

                                                              

(4.17) 

The boundary conditions for the core ,0v  0w  and 00   at 0,0    then follow 

naturally from Equations (4.14)-(4.17), based on the Fourier series chosen for facesheet 

deformations.   

The tangential and radial displacement fields for the core are first order 

approximations.  They allow resistance from core transverse shear and radial compressive 

stresses on the facesheets to be evaluated in an average sense. Higher-order sandwich 

shell theory involving nonlinear variations of the tangential and radial displacement fields 

with respect to through-thickness coordinate have been proposed to account for core 

transverse shear and compressibility [82-86]. Such theories are limited to shallow shells 

and do not involve higher order terms in the membrane strains of the facesheet, which are 

important for determining its dynamic stability.  It will be shown later that Equations 

(4.16) and (4.17) yield sufficient accuracy for predicting local facesheet buckling.      
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            The above core mid-surface deformations are normalized as follows: ,000 aw

,000 av  where   .2210 aaa   Since the core is thick compared to its mean radius, 

small deflection, first-order shear deformation theory is used to evaluate hoop strain and 

transverse shear strain in the core:  

0

0

00  
a

z

                                                                                                     
(4.18) 

000   r

                                                                                                    
(4.19) 

The transverse shear strains are constant through the thickness in first-order shear 

deformation theory. These core strains can be expressed further in facesheet 

dimensionless variables as 
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where 12 aa
 
is the inner-to-outer radius ratio. 

 

4.2 Lagrange’s Equations of Motion 

The equations of motion governing the transient deformations of the shell are 

defined in normalized radial and tangential displacements and normalized time 
1a

tc
 , 
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where 
h

A
c

f
22

 

is the wave speed and 22A  is the membrane stiffness in the 

circumferential direction of the facesheet.  In normalized time, the pressure pulse loading 

becomes  


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(4.23) 

where 
1

0
a

Tc


 
is a normalized load duration.  

 The transient shell response is found from Lagrange’s equations of motion:  
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where nq  is a generalized coordinate, nQ  is a generalized force, T  is the kinetic energy, 

U  is the strain energy and     


/ .  Generalized forces nQ  are obtained from 

virtual work W :  
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For uniformly distributed external pressure pulse, 
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where 
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The kinetic energy of the facesheets and core are as follows: 
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and 
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where    .81 hH fc      

The elastic strain energy of the facesheets is from Appendix C  
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(4.30) 

where 22A  and 22D  are the facesheet circumferential membrane and bending resistance, 

respectively.  Substituting the facesheet strains given in Equations (4.8)-(4.11) into 

Equation (4.30) gives the strain energy of the outer and inner facesheets as 
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where  22

2
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2

1 AaD  and  .22

2
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 The core elastic strain energy is derived 

in Appendix E for the special case of plane strain as  
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where     ,121    and ,,, 22  2  are elastic constants of the foam defined 

in Appendix E.   

 Coupled elastic equations of motion result from satisfying Lagrange’s equation of 

motion as follows: 
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where n  is the particular mode of the Fourier series, N  is the chosen number of terms in 

the Fourier series, nQ  is a normalized load,  hfge PPPP ,,,  are elastic spring forces and 

0f̂  is given by 
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In Equations (4.33) and (4.34) there is coupling not only between each deformation mode 

but also between mode numbers of the same deformation mode. The normalized external 

load is
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is the normalized pressure pulse loading. The elastic spring 

forces hfge PPPP ,,,
 
result from taking derivatives of the strain energy in terms of the 

generalized coordinates.   

 

4.3 An Example 

The composite sandwich shell considered has dimensions 08.5h mm, 4.25H

mm, 24.3961 a mm, 76.3652 a mm and 
o900  .  The mean radius-to-thickness 

ratio of this sandwich shell is 10.71, which implies a rather thick shell.  It is made with 

0/90 woven E-Glass/Vinyl Ester facesheets and a Divinycell PVC HCP100 foam core, 

with properties of the facesheet and core listed in Table 4.1.  The shell is subjected to the 

uniformly distributed pressure pulse described in Equation (4.1) where 20 p MPa and 

1T ms.  
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Table 4.1 Material properties of 0/90 Woven Roving E-glass/Vinyl Ester, 

Uni-Directional E-glass/Epoxy and foam Divinycell HCP100. 

 

Material 
0/90 Woven Roving 

E-Glass/Vinyl Ester 

Uni-Directional 

E-Glass/Epoxy 

Divinycell 

HCP100 

Density (kg/m
3
) 1,391 2,050 400 

E11 (+) (GPa) 17 48 -- 

E22 (+) (GPa) 17 12 -- 

E33 (+) (GPa) 7.48 12 -- 

E11 (-) (GPa) 19 -- 0.34 

E22 (-) (GPa) 19 -- 0.34 

E33 (-) (GPa) -- -- 0.34 

12 0.13 0.19 0.3 

23 0.28 0.26 0.3 

13 0.28 0.19 0.3 

31 0.12 0.05 0.3 

G12=G21 (GPa) 4.0 6 0.131 

G23=G32 (GPa) 1.73 5 0.131 

G13=G31 (GPa) 1.73 6 0.131 

q (MPa) -- -- 10.3 

γf -- -- 0.35 

XT, 10 (+) (MPa) 270 1,020 -- 

XC, 10 (-) (MPa) 200 490 -- 

YT, 20 (+) (MPa) 270 8 -- 

YC, 20 (-) (MPa) 200 78 -- 

ZT, 30 (+) (MPa) 23.2 8 -- 

ZC, 30 (-) (MPa) 343.5 78 -- 

SL, 120=210 (MPa) 40 23 7.44 

ST, 130=310 (MPa) 31.6 23 7.44 

ST, 230=320 (MPa) 31.6 66 7.44 
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A MATLAB program was written to solve coupled equations of motion for time-

varying amplitudes of the Fourier series in Equations (4.2)-(4.5), i.e., coefficients 

nnn gfe ,,  and nh .  The radial or transverse deflections of the outer and inner facesheets at 

0.297 ms for various numbers of terms of the Fourier series are shown in Figures 4.2 (a) 

and (b), respectively.  The outer facesheet deflections were found to converge with 17 

terms or n=16 in the Fourier series expansion (n=0 exists for the radial deflection).  

Curiously the inner facesheet deflections converged more rapidly with only 15 terms.  

Predictions from finite element analysis, which will be discussed later, are shown for 

comparison. 

The tangential deformations of the outer and inner facesheets at 0.297 ms are also 

shown in Figures 4.3 (a) and (b), respectively, with various numbers of terms in the 

Fourier series. The Fourier series for tangential deformations start at n=2.  The tangential 

deformations converged more rapidly than the radial deflections; it only took 6 terms for 

the tangential deformations to converge.  From the convergence study, it was concluded 

that 17 terms would give sufficient accuracy.   

Hoop stresses in the inner and outer facesheets were calculated at 0.297 ms and 

are shown in Figures 4.4 (a) and (b) with 17 terms of the Fourier series.  Because the 

bending stresses vary through the facesheet thickness, maximum and minimum hoop 

stresses are shown at positions S1 and S2 for the outer facesheet and S3 and S4 for the 

inner facesheet.  It can be seen that S4 surface, i.e., the back of the inner facesheet, is 

more critical with respect to failure than other three surfaces due to hoop direction 

compressive fracture near the clamped boundaries.  A condition for facesheet failure will 

be discussed later in Section 4.5. 
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(a) 

 

(b) 

Figure 4.2 Facesheet radial deflections at 0.297 ms with increasing number of terms in  

Fourier series and as predicted by FEA: (a) outer facesheet and (b) inner facesheet. 
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(a) 

 

(b) 

Figure 4.3 Facesheet tangential deformations at 0.297 ms with increasing number of 

terms in Fourier series and as predicted by FEA: (a) outer facesheet and (b) inner 

facesheet. 
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(a) 

 

(b) 

Figure 4.4 Variation of hoop stress with angle: (a) outer facesheet and (b) inner facesheet 

at t=0.297ms. 
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the peak radial, hoop and axial stresses are of the same order of magnitude as the peak 

transverse shear stress.  A sandwich theory that ignores radial stress in the core would 

therefore be inaccurate in predicting the behavior of a thick curved sandwich panel.  

Finite element analysis predictions of the corresponding variables in the composite 

sandwich shell are also shown in Figures 4.2-4.7, and discussed below.   

 

Figure 4.5 Radial deflections taken at mid-surface of sandwich shell. 
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Figure 4.6 Tangential deformations taken at mid-surface of sandwich shell. 

 

 

Figure 4.7 Stress variations along the mid-surface of core at t=0.22ms. 
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4.4 Finite Element Analysis 

Finite element analysis with ABAQUS Implicit Version 6.9 [94] was done in 

order to corroborate solutions with the analytical model.  The FEA model is shown in 

Figure 4.8. The sandwich panel dimensions and pulse loading are the same in the 

example problem of Section 4.3. The facesheets were rigidly tied using surface-to-surface 

tie constraint. The core was meshed with 1200 elements, while each facesheet had 400 

elements. Continuum plane strain four node elements (CPE4) were chosen for both 

facesheets and core. The CPE4 element is a linear quadrilateral element. The facesheet 

material was modeled as linear elastic, orthotropic material and the core was modeled 

using crushable foam with isotropic hardening [94]. Plasticity properties for HCP100 

were taken from Rizov [96].  However, this foam is so stiff and strong that it will not 

undergo crushing or plasticity for the pressure loading considered in this study.     

The numerical implementation in ABAQUS Implicit involved Dynamic, Implicit 

analysis. The direct-integration method provided for Dynamic, Implicit analysis in 

ABAQUS Implicit is the Hilber-Hughes Taylor operator, which is an extension of the 

trapezoidal rule. Automatic time increment with specified half-step residual was used.  A 

parametric study was done to determine that a half-step residual tolerance of 2,794 N 

would yield accurate results. No numerical damping was specified in the problem.   

Results from the ABAQUS Implicit are compared to the results from MATLAB 

in Figures 4.2-4.7. Good agreement was found between the MATLAB and FEA solutions 

in all cases.  Stresses near the clamped edges (Figures 4.4 and 4.7) were not evaluated as 

well as at other locations even with 17-term Fourier series in the model.  The solution 
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from the analytical model is within 5% of the FEA radial deformations and about 15% of 

the FEA stresses.  Fourier series solutions for deflections converge more rapidly than for 

stresses because the stresses are expressed in terms of derivatives of the deflections.  The 

above result is typical of the Fourier series approach, and was deemed sufficient for this 

study.   

 

Figure 4.8 Finite element model of composite sandwich shell. 

 

4.5 Sandwich Panel Failure 

Sandwich panel failure may occur in the modes shown in Figures 4.9 (a) and (b).  

Facesheet failure is primarily due to compressive hoop stresses because of the initial shell 

curvature.  As indicated in Figure 4.9 (a), it is the distal or inner facesheet, with a smaller 

radius of curvature and higher circumferential strain than the loaded or outer facesheet, 

that first experiences compressive facesheet fracture near the clamped boundaries.  On 

the other hand, a very strong core and facesheet may prevent the failure mode shown in 
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Figure 4.9 (a) but the curved sandwich panel may still fail due to local facesheets 

dynamic pulse buckling as described in Figure 4.9 (b).   

 

(a) 

 

(b) 

Figure 4.9 Failure modes of sandwich shell:  (a) facesheet fracture during stable response 

and (b) dynamic instability of facesheets. 

 

4.5.1 Facesheet failure 

The modified Hashin-Rotem criteria are used to examine lamina failure of the 

woven roving E-Glass/Vinyl Ester [97]. According to Appendix D, the modified Hashin-
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Rotem failure criteria can be used by substituting Equation (D.6) into Equation (D.2), 

1
22


TY

Q 
 if 0                (4.39)     

and 

1
22


CY

Q 
 if 0            (4.40) 

Thus the value of the hoop strain at which failure occurs is given by  

 

22

,min

Q

YY cT
f               (4.41) 

The above expression describes the maximum allowable strain based on a Hashin-Rotem 

composite failure criterion. 

 

4.5.2 Facesheet dynamic instability 

            In order to examining dynamic instability of the facesheets, the Budiansky-Roth 

buckling criterion [2] was used again: the equations of motion were solved for various 

values of the loading and the value at which there was a significant jump in the response 

signified the onset of dynamic instability or buckling. The application of this criterion 

requires solving the equations of motion for different values of peak pressure 0p , 

monitoring the significant changes in facesheets radial deflections and determining the 

critical peak pressure crp0 . Because the instability occurs under pressure pulse loading, 

this specific type of dynamic instability is defined as dynamic pulse buckling [1].  
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 To illustrate dynamic pulse buckling of the facesheet, consider the composite 

sandwich shell made of 0/90 woven E-Glass/Vinyl Ester facesheets and Divinycell 

HCP100 foam core with dimensions 4.6h mm, 4.25H mm, 9.11581 a mm, 

1.11272 a mm and 
o900  .  The mean radius-to-thickness ratio of this sandwich shell 

is 92.29/0 totha , which implies it is a thin shell.  The load duration is fixed at 1T

ms.  The normalized radial displacement of the center point of the outer facesheet 10  

was obtained for various values of peak pressure 0p , as shown in Figure 4.10.  A 

normalized step time of 100 on the abscissa corresponds to the total step time 9.32t

ms. 

 It can be observed that for small peak pressures, there are small oscillations in 10

, and the oscillation amplitudes gradually increase with increasing magnitude of the peak 

pressure.  When the peak pressure reaches a critical value 1.1MPa, 10  goes to infinity, 

which means the occurrence of facesheets dynamic pulse buckling.  Also note that a peak 

pressure larger than the critical value only makes buckling occur sooner.   
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Figure 4.10 Radial deflections during stable and unstable response ( 10  is the normalized 

radial displacement at center point of outer facesheet). 

 

4.6 Parametric Study 

A parametric study was used to determine the failure modes of curved sandwich 

panels.  The effects of sandwich radius-to-thickness ratio, angular extent, load duration as 

well as composite lay-up are discussed below.   

 

4.6.1 Radius-to-thickness ratio 

            The mean radius-to-thickness ratio of the sandwich shell will determine its global 

stiffness and strength.  This parametric study was done on a curved composite sandwich 

panel made of 0/90 woven E-Glass/Vinyl Ester facesheets and Divinycell HCP100 foam 

core.  The core thickness and angular extent of sandwich shell are both fixed as 4.25H
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mm (1 inch) and 
o900  , while the mid-surface radius of foam core 0a  and facesheet 

thickness h  vary.  The load duration is 1T ms. Facesheets failure (fracture) and 

dynamic pulse buckling are carried out for different mean radius-to-thickness ratios (

totha /0 ) and the critical peak pressures 0p  are shown in Figure 4.11.  In the plot, 

Ha /0  is the sandwich core radius-to-thickness ratio and ha /1  is the outer facesheet 

radius-to-thickness ratio.  Higher ratio means a relatively thinner shell.   It can be seen 

that facesheets buckling is more likely than facesheets fracture when 28/0 Ha , 

regardless of facesheet thickness.  Also note that the three facesheet fracture curves 

coincide to form a master curve. 

 

Figure 4.11 Influence of mean radius-to-thickness ratio on the failure modes of 

composite sandwich shell. 
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4.6.2 Angular extent/shallowness 

            Many analytical models for double curvature sandwich shells are based on 

shallow shell theory in order to simplify shell kinematics.  The mid-surface of a shallow 

shell has a small rise compared to its span on a projected plane.  This allows infinitesimal 

line elements of the mid-surface to be approximated in the rectangular coordinates of the 

projected plane. Vlasov [17] suggested that shallow shell theory gives sufficient accuracy 

for shells with a rise-to-span ratio of less than 1/5, although the delineation of shallow 

shell theory might vary slightly by other researchers [98-100].  A rise-to-span ratio of less 

than 1/5 corresponds to approximately 25 degrees of angular extent in the single 

curvature shell geometry.   

            A parametric study was done to examine how the analysis changes with angular 

extent.  The angular extent and shallowness of the shell are related.  Thus a sandwich 

shell with small angular extent would be categorized as shallow, while a sandwich shell 

with a large angular extent would correspond to a deep shell.  Consider a composite 

sandwich shell with 0/90 woven E-Glass/Vinyl Ester facesheets and Divinycell HCP100 

foam core.  The thicknesses of sandwich shell are fixed as 4.25H mm (1 inch) and 

08.5h mm (1/5 inch), while two different mid-surface radii of foam core 0a , 381mm 

(15 inch) and 1143mm (45 inch), are selected.  Again the load duration is 1T ms.  For 

various angular extent 0 , facesheets failure (fracture) and dynamic pulse buckling 

analyses are carried with mean radius-to-thickness ratios 71.10/0 totha  and 

14.32/0 totha , as shown in Figure 4.12. 
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            For thick curved sandwich panels ( 71.10/0 totha ), failure is always in the form 

of facesheet fracture, i.e., the buckling loads are much higher than the facesheet fracture 

load.  The angular extent has little effect on peak pressure to cause facesheet fracture.  

The curve in the plot is truncated at 
450   because the shell assumption breaks down 

when 1000 


toth

a 
.  For thin curved sandwich panels ( 14.32/0 totha ), the failure mode 

depends on angular extent.  Thin, shallow shells undergo facesheet fracture, while thin, 

deep shells are more likely to fail by facesheet buckling.  It also can be observed that for 

deep shells, the pressure amplitude at failure does not vary substantially, but it increases 

as 0  decreases in the case of shallow shells.   

 

 

Figure 4.12 Influence of angular extent on critical peak pressure and mode of failure for 

composite sandwich shell. 
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4.6.3 Load duration 

            Load duration T  determines whether the pressure pulse loading is impulsive, 

dynamic or quasi-dynamic.  Consider a curved composite sandwich panel made of 0/90 

woven E-Glass/Vinyl Ester facesheets and Divinycell HCP100 foam core with 

dimensions 4.25H mm, 08.5h mm, 11430 a mm and 0

0 90 .  The critical peak 

pressures for different load durations are shown in Figure 4.13, whose abscissa is on 

logarithmic scale. 

 From the plot it can be seen that the curved sandwich panel fails due to facesheet 

buckling for all the load durations.  In the load duration range 0.1-1ms, critical peak 

pressure decreases sharply as T  increases and the pressure pulse loading is 

considered as impulsive.  In the range 1-10ms, the critical peak pressure decreases 

gently as T  increases and the pressure pulse loading is dynamic.  In the range 10-

30ms, the critical peak pressure is relatively constant and the pressure pulse loading is 

said to be quasi-dynamic, approaching the solution for a step loading condition.  
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Figure 4.13 Influence of load duration on critical peak pressure for composite 

sandwich shell. 
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though all the sandwich panels have the same geometry and weight, their lay-ups affect c , 

2

1  and
2

2 , and play an important role in determining the resistance to dynamic 

instability. According to Table 4.2, the symmetric lay-up gives the lowest buckling 

resistance of all three lay-ups. This means that the curved composite sandwich panel can 

be tailored for high buckling resistance.  

 

Table 4.2 Critical peak pressure for laminated curved composite sandwich panels  

with different lay-ups. 

 

Uni-Directional E-Glass/Epoxy 

Lay-up 
)/( smc  2

1  
2

2  )(0 MPap cr  

Symmetric [90
0
/0

0
]s 3,843.9 2.32e-6 2.45e-6 1.1 

Anti-symmetric [90
0
/45

0
/-45

0
/90

0
] 4,154 2.05e-6 2.16e-6 1.3 

Quasi-isotropic [90
0
/45

0
/0

0
/-45

0
] 3,581.1 2.02e-6 2.13e-6 1.3 

 

4.7 Concluding Remarks 

In this chapter, the author expanded on previous work in Chapter III involving the 

dynamic instability of thin laminated composite shells undergoing pressure pulse loading 

by considering a curved composite sandwich panel with thin facesheets and an elastic 

compressible core. Equations of motion for the facesheet transient deformations were 

derived from Lagrange’s equations of motion, and solutions using this approach 

compared well with FEA results from ABAQUS Implicit.  Both facesheet fracture during 

stable response and local dynamic pulse buckling of facesheets were considered as 
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possible curved sandwich panel modes of failure. The Budiansky-Roth criterion was used 

as the dynamic instability criterion. Parametric studies indicated the following:    

 

1. Local facesheets buckling is more likely to occur than facesheets fracture in 

thin curved sandwich panels with mean radius-to-thickness ratios above a 

critical value, regardless of facesheet thickness.   

2. Thin, shallow shells undergo facesheet fracture, while thin, deep shells are more 

likely to fail by local facesheet buckling.   

3. For the curved sandwich panels which fail by local facesheet buckling, the 

buckling load decreases with increasing load duration and approaches the quasi-

static buckling load at long load durations.  

4. Facesheet laminate lay-up can be adjusted to improve the local buckling 

resistance of the curved panel.  
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CHAPTER V 

CURVED COMPOSITE SANDWICH PANELS WITH CRUSHABLE FOAM CORE 

UNDER EXTERNAL BLAST 

 

            When exposed to the high intensity loading of a blast, curved composite sandwich 

panels with polymeric foam core could undergo dynamic instability or fracture under 

stable response if not properly designed. In some instances, however, the core of the 

sandwich panel can experience plasticity due to permanent foam crushing. An elastic-

plastic core may even be more representative of the blast behaviour of foams used 

nowadays in composite sandwich construction. While the current design of a sandwich 

panel prohibits plastic crushing of the core, plastic core crushing becomes inevitable 

under very high intensity loading, such as a nearby blast. 

            In this chapter, an elastic-plastic model is developed for predicting the blast 

response of a foam-core, curved composite sandwich panel. The model will elucidate not 

only the dynamic response of the sandwich panel but address its ultimate failure and the 

energy absorption of its core up to the point of failure. The curved sandwich panel is 

described with a single radius of curvature, being clamped along the axis of zero 

curvature. It is also long enough along the clamped edge to be in a state of plane strain.  

A multi-layered approach is used to distinguish facesheets and core deformations.  Core 

compressibility and transverse shear through the thickness are accounted for using linear 
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displacement fields through the thickness. The predicted solutions from the elastic-plastic 

model are compared to FEA results from ABAQUS Implicit. A parametric study is 

performed to determine the blast resistance of the sandwich shell by allowing cores to 

undergo plastic crushing. 

 

5.1 Problem Formulation 

 Consider a single curvature, composite sandwich shell with facesheet thickness h  

and core thickness H , as shown in Figure 4.1. The mid-surfaces of the composite 

facesheets are defined with radius 1a  and 
2a , and the shell subtends an angle 0 . It is 

fixed at the edges 0,0   .  

 The mass density of facesheets and core are f  and c , respectively. The 

following assumptions concerning material behaviors are made:  

1. Foam cores do not experience appreciable crushing (core compression) before 

facesheet fracture so that they can be described as an elastic, perfectly-plastic 

material. This assumption is generally applicable to composite sandwich panels 

with fiber-reinforced polymeric facesheets, which are brittle (fracture strains less 

than 5%).      

2. There is perfect bonding between facesheets and core. The low strain deformation 

limits of the core will also ensure no interfacial cracking between facesheets and 

core.    
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3. Although many of the foams used in composite sandwich panels are transversely 

isotropic, the foam is assumed to be isotropic in this analysis. While transversely 

isotropic elastic properties of foam are readily available, transversely isotropic 

plastic flow properties are not.  The model is therefore limited to the current state-

of-the-art in crushable foam constitutive modeling. 

4. Strain rate effects in both facesheet and core material behaviour are neglected.  

Under blast loading, facesheet and core materials may experience high strain 

rates, and both facesheet and core material behaviour are best described by 

dynamic constitutive relations.         

In summary, the facesheets are therefore considered to be orthotropic, linear elastic-

brittle material, while the foam core is idealized as isotropic, elastic, perfectly-plastic 

material.   

 The length of the shell is very long and it is subjected to uniformly distributed 

pressure pulse: 













T

t
ptp 1)( 0

                                                               

(5.1) 

where 0p  is the peak pressure, T  is the load duration and t  is the time.  The sandwich 

shell therefore deforms in a state of plane strain.   

The facesheet and core kinematics used in this Chapter are identical to those 

derived in Chapter IV, and they are derived here again for reading convenience. 

The facesheets are thin shells with radial deflections 1w  and 2w  and tangential 

deformations 1v  and ,2v  as shown in Figure 4.1. These deformations are related to local 
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coordinate systems 
1, z  and 

2, z , where 
1z  and 

2z  are defined at the mid-surface of the 

facesheets.  The deformations at the mid-surface of the core are denoted 0w

 

and

 
0v

  

and 

likewise, these are defined with respect to ., z   Specialized strain-displacement relations 

are derived in the following sections.  

 

5.1.1 Facesheet kinematics 

We introduce normalized facesheet deflections as follows: ,111 aw

,111 av ,222 aw .222 av  For fully clamped boundary condition of the 

sandwich shell, the facesheet deflections are subjected to ,021  

021   and 021   at 0,0   . The boundary conditions of the 

facesheets are satisfied by the following Fourier series representations: 

00 0

1 cos
2

cos1









n
e

n

n













       (5.2)  

01

1 sin





n
f

n

n




                      (5.3) 

00 0

2 cos
2

cos1









n
g

n

n













       (5.4) 

 
01

2 sin





n
h

n

n




                       (5.5) 

where nnn gfe ,,  and nh
 
are time-varying amplitudes. Other boundary conditions, such as 

pinned, will give rise to different Fourier series.   

One of the reasons for considering the clamped boundary conditions is because 

these boundary conditions are easy to model in finite element analysis, which will be 
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discussed later.  Pinned boundary conditions on foam-core sandwich structure are very 

difficult to apply because failure will always take place at the pinned boundary of the soft 

core.  Using roller boundary conditions for the curved sandwich panel is also not feasible 

if it is a deeply curved sandwich panel since membrane forces force the panel to slip out 

of the rollers.    

Strains in the facesheet are based on large deflection, thin shell theory. The 

circumferential membrane and bending strains for a thin shell are taken from Appendix B 

as   

1111   zm                        (5.6) 

and 

2222   zm                        (5.7) 

where the mid-surface strain and curvature in the outer (inner) facesheets are   
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and    denotes derivative with respect to  .   
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5.1.2 Simplified core kinematics 

Facesheets are assumed to be perfectly bonded to the core. The radial and 

tangential deformations of the core at the bond interface are thus continuous with the 

facesheet deformations.  Radial deformations do not vary through the thickness of the 

facesheet so that radial deformations of the core at the bond interface are equal to the 

mid-surface radial deformation of the facesheets.  A similar assumption is made for the 

core tangential deformations at the bond interface since variations in the tangential 

deformation from the mid-surface to the outer surfaces of the facesheets would be small 

because of the thinness of the facesheet to the core.  
 

The radial and tangential deformations are assumed to vary linearly through the 

core.  Following this assumption, the radial and tangential deformation at the core mid-

surface are 
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In addition to this, the core compresses with uniform radial strains  

H

ww
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12 
                                                              

(5.14) 

and plane sections (transverse normals to the mid-surface) of the core rotate uniformly 

with angle
 

H
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
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(5.15) 

The tangential and radial deformations in the core are  
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    00 ,,,  ztvtrv 

                                                             

(5.16) 

    rztwtrw   ,,, 0

                                                            

(5.17) 

The above core mid-surface deflections are normalized as follows: ,000 aw

,000 av  where   .2210 aaa 
 

Following small deflection, thick core shell theory, the strain-displacement 

relations are 
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(5.18) 

and the transverse shear strains are 
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Note that transverse shear strains are constant through the thickness, as in first-order 

shear deformation theory. These core strains can be expressed further in facesheet 

dimensionless variables as 
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where 12 aa
 
is the inner-to-outer radius ratio. 
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5.2 Lagrange’s Equations of Motion 

            The elastic equations of motion used in this Chapter are identical to those derived 

in Chapter IV, and they are derived here again for reading convenience. 

The equations of motion governing the transient deformations of the shell are 

defined in normalized radial and tangential displacements and normalized time 
1atc

, where )/(22 hAc f

 

is the wave speed and 
22A  is the membrane stiffness in the 

circumferential direction of the facesheet.   In normalized time, the pressure pulse loading 

becomes  
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(5.23) 

where 
1

0
a

Tc


 
is a normalized load duration.  

 The transient shell response is found from Lagrange’s equations of motion:  
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where nq  is a generalized coordinate, nQ  is a generalized force, T  is the kinetic energy, 

U  is the strain energy and     


/ .  Generalized forces nQ  are obtained from 

virtual work W :  
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For uniformly distributed external pressure pulse, 
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where 
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The kinetic energy of the facesheets and core are as follows: 
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and 

  


d
aA

Tc  









0

0
21

2

2

22

121

2

2

22

1
122

3

4
2

2
    (5.29) 

where    .81 hH fc      

 

5.2.1 Elastic equations of motion 

The elastic strain energy of the facesheets is from Appendix C, 
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where 22A  and 22D  are the facesheet circumferential membrane and bending resistance, 

respectively.  Substituting the facesheet strains given in Equations (5.8)-(5.11) into 

Equation (5.30) gives the strain energy of the outer and inner facesheets as 
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where  22
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2 AaD  The core elastic strain energy is derived 

in Appendix E for the special case of plane strain as  
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where     ,121    and ,,, 22   and 
2  are elastic constants of the foam 

defined in Appendix E.   

 Coupled elastic equations of motion result from satisfying Lagrange’s equation of 

motion as follows: 
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where n  is the particular mode of the Fourier series, N  is the chosen number of terms in 

the Fourier series, nQ  is a normalized load,  hfge PPPP ,,,  are elastic spring forces and 

0f̂  is given by 
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The normalized external load is
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is the normalized pressure pulse loading. The elastic spring 

forces hfge PPPP ,,,
 
result from taking derivatives of the strain energy in terms of the 

generalized coordinates.  Explicit equations for them are not given here because they are 

very lengthy.   

 

5.2.2 Elastic-plastic equations of motion 

 For high enough pressure pulse amplitude, the core may yield and undergo 

plasticity.  The elastic-plastic behaviour of the core is described as crushable foam with 

isotropic hardening [89]. The condition for initial core yielding under plane strain 

conditions is given by the yield condition  
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where 0  is the flow stress and the effective stress ̂  is given by 

  

 222

2

2

3
1

1
ˆ

mpe

p




 



























        (5.40) 



84 
 

where 23p , assuming the foam plastic Poisson’s ratio is approximately zero, and 

the mean stress m
 
and von Mises stress .e

  
Under plane strain conditions and elastic 

conditions,
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where  is the elastic Poisson’s ratio. Substituting Equations (5.41) and (5.42) in 

Equation (5.39) gives the effective stress of the foam at initial yield as 

  2
1

22222 2ˆ
  rrr        (5.43) 

Subsequent plastic flow is determined by an associated flow rule.  Under plane strain, the 

elastic-plastic stress-strain relations are generally not ideally plastic (constant stress) for a 

material that is elastic-perfectly plastic under uniaxial stress [90]. Incremental stress-

strain relations can be derived for the foam and the resulting strain hardening plastic 

stress-strain curve must be integrated from it.  This approach will not be used here.  

Instead we neglect strain hardening of the foam due to plane strain constraint and assume 

that continued plastic flow is at a constant stress.  A material point in the foam that has 

yielded will exhibit the stress-strain curve described by the solid line in Figure 5.1.  

Equations (5.39) and (5.43) are used to determine plastic regions in the foam.  These 

plastic regions are more likely to develop near the clamp edges where transverse shear 

stresses are high, as indicated in Figure 5.2.  Although the hoop strains in Equation (5.21) 

contain a bending strain that is linear in z- or the through-thickness coordinate, this term 

is negligible compared with the hoop membrane strain, as well as the radial and 



85 
 

transverse shear strains.  As such, foam stresses do not vary through the thickness and are 

primarily a function of  . 

Foam plasticity is accounted for by assuming non-linear elasticity. The strain 

energy density for the foam that is undergoing yielding is calculated from the areas under 

the stress-strain curve shown in Figure 5.1:  

ABCOBDOACD UUU           (5.44) 

The hatched region in Figure 5.1 is represented as negative area or strain energy density 

in Equation (5.44). In terms of total strain energy, the foam  
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(5.45) 

where eV  and pV  are the volumes of the elastic and plastic regions (see Figure 5.2). The 

above expression is expanded in terms of foam strains defined in Equations (5.20) – 

(5.22) as 
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where eR  and pR  are angular elastic and plastic regions and 
2

0

2

00 ,,   are plastic 

constants of the foam defined in Appendix F.   

 

Figure 5.1 Representation of nonlinear elastic strain energy density in an elastic perfectly 

plastic material (solid line). 

 

Figure 5.2 Elastic and plastic regions in the foam. 

Coupled elastic-plastic equations of motion result from satisfying Lagrange’s 

equation of motion: 
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where elastic spring forces are hpfpgpep PPPP ,,,  and plastic damping forces are

dhdfdgde QQQQ ,,, .  The elastic spring forces and damping forces result from the first and 

last integrals of Equation (5.46), respectively.  They are described by very lengthy 

equations and are not shown for brevity.  Since the elastic strain energy is integrated only 

over the elastic core regions, hpfpgpep PPPP ,,,   are smaller than .,,, hfge PPPP  The plastic 

damping forces dhdfdgde QQQQ ,,,  are introduced on the right-hand side of the equations 

of motion to indicate that they retard deformation.   

 

5.3 An Example 

The composite sandwich shell considered has dimensions 5h  mm, 25H mm, 

3961 a mm, 3652 a mm and 
o900  . The mean radius-to-thickness ratio of this 

curved sandwich shell is 10.71, which implies a rather thick shell.  It is made with 0/90 

woven E-Glass/Vinyl Ester facesheets and a Divinycell PVC H200 foam core, with 

properties of the facesheet and core listed in Table 5.1. The shell is subjected to the 
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uniformly distributed pressure pulse described in Equation (1) where 2.20 p MPa and 

1T ms.  
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Table 5.1 Material properties of 0/90 woven roving E-glass/Vinyl Ester and different 
foams. 

 

 E-Glass/ 
Vinyl Ester 

Divinycell 
H30 

Divinycell 
H100 

Divinycell 
H200 

Klegecell 
R300 

Divinycell 
HCP100 

Density(kg/m
3
)                      1391.3 36 100 200 300 400 

E11 (+) (GPa)                            17 0.044 0.149 0.277 -- -- 

E22 (+) (GPa)                            17 0.044 0.149 0.277 -- -- 

E33 (+) (GPa) 7.48 0.044 0.149 0.277 -- -- 

E11 (-) (GPa) 19 0.027 0.105 0.293 0.338 0.340 

E22 (-) (GPa) 19 0.027 0.105 0.293 0.338 0.340 

E33 (-) (GPa) -- 0.027 0.105 0.293 0.338 0.340 

12  =21 0.13 0.25 0.31 0.3 0.23 0.3 

13  =23 0.28 0.25 0.31 0.3 0.23 0.3 

31 =32 0.12 0.25 0.31 0.3 0.23 0.3 

G12=G21 (GPa) 4.0 0.013 0.0438 0.110 0.123 0.131 

G23=G32 (GPa) 1.73 0.013 0.0438 0.110 0.123 0.131 

G13=G31 (GPa) 1.73 0.013 0.0438 0.110 0.123 0.131 

q (MPa) -- 0.3 1.66 4.35 7.8 10.3 

f -- 0.09 0.4 0.45 0.27 0.35 

XT, 10 (+) (MPa) 270 0.57 3.2 6.4 -- -- 

XC, 10 (-) (MPa) 200 0.29 1.53 4.36 -- -- 

YT, 20 (+) (MPa) 270 0.57 3.5 6.4 -- -- 

YC, 20 (-) (MPa) 200 0.29 1.53 4.36 -- -- 

SL, 120=210 (MPa) 40 0.35 1.47 3.86 -- 7.44 

ST,13f =310 (MPa) 31.6 0.35 1.47 3.86 -- 7.44 

ST,230=320 (MPa) 31.6 0.35 1.47 3.86 -- 7.44 
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A MATLAB program was written to solve coupled equations of motion for time-

varying amplitudes of the Fourier series in Equations (5.2)-(5.5), i.e., coefficients 

nnn gfe ,,  and nh
 
.  It was found that converged solutions for the deformations could be 

obtained by setting n=16 in the Fourier series.  The radial deformation of the sandwich 

mid-plane is shown at various times in Figure 5.3.  Stresses at the sandwich mid-plane 

were calculated at 0.13ms, which is the time just before the onset of plastic flow, and are 

shown in Figure 5.4.  It is very apparent that for this rather thick shell, foam plasticity 

will begin near the clamped boundaries where all stress components in the foam are at 

their greatest.  Also note that the magnitudes of the peak radial, hoop and axial stresses 

are of the same order of magnitude as the peak transverse shear stress.  A sandwich 

theory that ignores radial stress in the core would therefore be inaccurate in predicting the 

behavior of a thick curved sandwich panel.  The effective stress ̂ , as expressed by 

Equation (5.43), was calculated for the corresponding times given in Figure 5.3, and the 

distribution of the effective stress in the mid-plane of the core is plotted in Figure 5.5 to 

indicate that plasticity begins near the clamped ends at about 0.13ms.  This plastic region 

grows until about 0.35ms when the facesheet ruptures.  A condition for facesheet rupture 

will be given later.  Finite element analysis predictions of the corresponding variables in 

the composite sandwich shell are also shown in Figures 5.3-5.5, and discussed below.   
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Figure 5.3 Radial displacements taken at mid-surface of sandwich shell. 

 

Figure 5.4 Stress variations along the mid-surface of core at t= 0.13ms, right before core 

yielding. 
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Figure 5.5 Effective stress at mid-surface of sandwich shell (core becomes plastic right 

after t= 0.13ms). 

 

5.4 Finite Element Analysis 

Finite element analysis with ABAQUS Standard Version 6.9 [94] was done in 

order to corroborate solutions with the analytical model. The FEA model is shown in 

Figure 5.6. Continuum plane strain four node elements (CPE4) were chosen for both 

facesheets and core.  The facesheet was modeled as linear elastic, orthotropic material 

and the core was modeled by using crushable foam with isotropic hardening [89, 94].  

Plasticity properties for the Divinycell H200 foam were taken from Mines and Alias [91].   

Results from the ABAQUS Standard are compared to the results from MATLAB 

in Figures 5.3-5.5. The numerical implementation in ABAQUS Standard involved 

Dynamic, Implicit analysis.  The direct-integration method provided for Dynamic, 

Implicit analysis in ABAQUS Standard is the Hilber-Hughes Taylor operator, which is an 

extension of the trapezoidal rule.  Automatic time increment with specified half-step 
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residual was used.  A parametric study was done to determine the appropriate size of the 

half-step residual that would yield accurate results.  No numerical damping was specified 

in the problem.   

 

Figure 5.6 Finite element model of composite sandwich shell. 

Good agreement was found between the MATLAB and FEA solutions in all cases.  

There is better agreement in mid-surface radial deformation of the foam (Figure 5.3) and 

effective stress (Figure 5.5) when the core is elastic than when it is elastic-plastic.  This is 

because of the approximate nature of the calculated elastic-plastic strain energy in core. 

Also, stresses near the clamped edge (Figure 5.4) are not evaluated as well as at other 

locations even with a 16-term Fourier series in the model.   The solution from the elastic-

plastic model is within 5% of the FEA radial deformations and 15% of the FEA stresses.   

Fourier series solutions converge more rapidly for deflections than stresses because 
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stresses are calculated from strains, which are expressed in terms of derivatives of the 

deflections.  The above discrepancies are not uncommon in analytical solutions using the 

Fourier series approach.    

 

5.5 Sandwich Panel Failure 

Sandwich panel failure may occur in the modes shown in Figures 5.7 (a) and (b). 

Facesheet failure is primarily due to compressive hoop stresses because of the initial shell 

curvature.  As indicated in Figure 5.7 (a), it is the distal or inner facesheet, with a smaller 

radius of curvature and higher circumferential strain than the loaded or outer facesheet, 

that first experiences compressive facesheet failure near the clamped boundary.  If the 

foam is very weak or the facesheet is very strong, the core of the curved sandwich panel 

can fail in a transverse shear mode, which is also shown in Figure 5.7 (a).  Finally, a very 

strong core and facesheet may prevent the failure modes shown in Figure 5.7 (a) but the 

curved sandwich panel may still fail due to dynamic pulse buckling [1] as described in 

Figure 5.7 (b).  This failure mode of composite shells subjected to external blast has 

received some attention in recent years [74], and has been dealt with in Chapter IV. The 

following section describes simply equations that can be used for facesheet and core 

failure modes.         
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Figure 5.7  Failure modes of sandwich shell:  (a) facesheet and foam fracture during 

stable response and (b) dynamic instability of facesheets. 

5.5.1 Facesheet failure 

            The modified Hashin-Rotem criteria are used to examine lamina failure of the 

woven roving E-Glass/Vinyl Ester [97]. According to Appendix D, the modified Hashin-

Rotem failure criteria can be used by substituting Equation (D.6) into Equation (D.2),  

122 
TY

Q 
 if 0              (5.51)     

and 

122 
CY

Q 
 if 0          (5.52) 

Thus the value of the hoop strain at which failure occurs is given by  

 

22

,min

Q

YY cT
f             (5.53) 

The above expression describes the maximum allowable strain based on a Hashin-Rotem 

composite failure criterion.   
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5.5.2 Core shear fracture  

Although the core fracture is of a mixed mode type involving transverse shear and 

hoop, radial and axial compression, a simple criterion for the onset of core shear failure is 

to set the transverse shear strain in the core equal to the core transverse fracture strain, 

f . Since the transverse shear strain in the core is given by Equation (5.22), the criterion 

for core shear fracture becomes 
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(5.54) 

 

5.6 Dissipated Plastic Work 

If the foam core crushes and experiences plasticity before sandwich panel failure, 

the plastic work dissipated in the core may be approximated.  In Figure 5.8 (a), plastic 

regions extend over angular regions with extent  .  The stress-strain behaviour at the 

initial yield points, 
1C  and 2C , is shown in Figure 5.8 (b), where 

ijf  denotes the final 

strain components at fracture and the onset of elastic unloading.  Assuming that these 

strain components linearly decrease from ijf  to 0ij  at the elastic and plastic boundaries, 

one gets the following expression for the energy dissipated by plastic work up to shell 

failure: 

           2

2

2

1000000
2

1
aaE rfrrfrrfrd

                    
(5.55) 
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Figure 5.8 Plastic work dissipated in core at failure: (a) plastic regions and (b) stress-

strain curve at initial yield points. 

 

5.7 Parametric Study 

A parametric study was used to determine the mode of failure and energy 

dissipation of curved sandwich panels.  The effect of three parameters, sandwich radius-

to-thickness ratio, angular extent, and foam core, is discussed below.  The facesheets are 

made of 0/90 woven E-Glass/Vinyl Ester, with properties given in Table 5.1, in all the 

cases discussed below. 

 

5.7.1 Radius-to-thickness ratio 

            The mean radius-to-thickness ratio of the sandwich shell will determine the global 

stiffness and strength of the panel.  This parametric study was done on a composite 
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sandwich shell with Divinycell H200 core, 5h mm, 25H mm, 
o900   and various 

facesheet radii.  Figure 5.9 shows that the blast resistance decreases as the radius-to-

thickness ratio increases, as to be expected since the sandwich panel loses global bending 

resistance as this ratio increases.  What is also shown in Figure 5.9 is that the amount of 

plastic work dissipated in the core before failure reaches a value of about 20J when the 

radius-to-thickness ratio is high, over 30.  For high radius-to-thickness ratios, the curved 

sandwich panel is becoming more of a thin shell, in which hoop or membrane stresses 

dominate over radial stresses in the foam. 

 

Figure 5.9 Variation of blast resistance and energy absorption with radius-to-thickness 

ratio. 

  

5.7.2 Angular extent/shallowness 

            Many analytical models for double curvature sandwich shells are based on so-

called shallow shell theory in order to simplify shell kinematics.  A shallow shell is 

defined when the angular extent 0  is less than 25 degrees.  A parametric study was done 

to examine what happens when the curved sandwich panel is made into a shallow 
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sandwich shell.  A composite sandwich shell with Divinycell H200 core, 5h mm, 

25H mm, 437,11 a mm, 407,12 a mm and various angular extent 0  is considered.  

Figure 5.10 shows that for deep shells, the blast resistance does not vary substantially, but 

it increases as 0  decreases in the case of shallow shells.  Also the plastic work 

dissipation in the core of a shallow shell is substantially higher than in a deep shell.   

 

Figure 5.10 Variation of blast resistance and energy absorption with angular extent. 

 

5.7.3 Type of foam core 

Both thick and thin composite sandwich shells are considered in this parametric 

study.  Each sandwich shell is composed of facesheets made of 0/90 woven E-

Glass/Vinyl Ester and thickness 5h  mm.  The cores in them are composed of the 

various foams listed in Table 5.1 and have thickness 25H mm.  Foam properties listed 

in Table 5.1 were obtained from References [92, 96, 101-103].  The shear strains at 

fracture for the foams were specifically taken from Diab [103]. 
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The thick sandwich shell considered has dimensions 3961 a mm, 3652 a mm 

and 
o900  .  This gives a sandwich radius-to-thickness ratio   ,7.1020  Hha which 

means it is fairly thick.   Figure 5.11 (a) indicates that the highest load is sustained by the 

sandwich shell with the Divinycell H200 foam core.  This sandwich shell and those with 

Divinycell H30 and H100 foams underwent plasticity before sandwich panel failure (see 

Figure 5.11 (b)).  The sandwich panel with Divinycell H30 core actually failed by core 

shear fracture, while all the other sandwich panels failed by facesheet fracture.  The 

sandwich shells with stiffer and stronger foams, Klegecell R300 and Divinycell HCP100, 

remained fully elastic and absorbed no energy up to the point of facesheet fracture.   

 

(a) 
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(b) 

Figure 5.11 Thick sandwich shell with   7.1020  Hha and 900  deg:  (a) blast 

resistance and (b) energy dissipation. 

 

The thin sandwich shell considered has dimensions 6.437,11 a mm, 

2.407,12 a mm and 
o300  .  This gives a sandwich radius-to-thickness ratio 

  ,4020  Hha which makes it a thin sandwich shell.  Figures 5.12 (a) and (b) show 

the blast resistance and energy absorption associated with failure for the thin sandwich 

shell.  While the failure pressure loads are all lower than the thick sandwich shells, 

similar conclusions are drawn.  The panel that was most blast resistant is still the one 

with the Divinycell H200 core, and it underwent plastic core crushing although not as 

much plastic work was absorbed during failure.  The panel with Divinycell H30 

underwent plasticity and core shear failure, while the panels with strong cores, Klegecell 

R300 and Divinycell HCP100, experienced no plastic core crushing before facesheet 

fracture.     
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(a) 

 

(b) 

Figure 5.12 Thin sandwich shell with   4020  Hha and 300   deg:  (a) blast 

resistance and (b) energy dissipation. 

 

This parametric study indicates that contrary to popular belief, stiffer and stronger 

cores do not increase the blast resistance of a curved, composite sandwich shells.  The 

most blast resistant curved sandwich panel with Divinycell H200 core underwent some, 
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but not significant, plastic core crushing.  In a related study on flat sandwich panels [88], 

a similar conclusion was made but only on a per unit weight basis for the entire panel.   

 

5.8 Concluding Remarks 

An elastic-plastic model was developed for predicting the blast response of a 

foam-core, curved composite sandwich panel.  The curved sandwich panel was described 

with a single radius of curvature, being clamped along the axis of zero curvature.  It was 

also long enough along the clamped edge to be in a state of plane strain.  A multi-layered 

approach was used to distinguish facesheets and core deformations.  Core compressibility 

and transverse shear through the thickness were accounted for using linear displacement 

fields through the thickness. The predicted solution from the elastic-plastic model was 

shown to compare well with FEA from ABAQUS Implicit.   

A parametric study showed that blast resistance of the sandwich shell may be 

increased by allowing cores to undergo plastic crushing. Very thick, i.e. radius-to-

thickness aspect ratio less than 10, and shallow shells derive much of their resistance to 

blast from core crushing.  Strong, dense foam cores did not increase the blast resistance 

of the curved sandwich panel but allowed facesheets to fracture while the core remained 

elastic. Shells with strong cores and very thin facesheets may be susceptible to local pulse 

buckling or facesheet wrinkling, and this was addressed in Chapter IV. 
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CHAPTER VI 

CONCLUDING REMARKS AND FUTURE WORK 

 

            In this thesis, dynamic pulse buckling of single-curvature composite shells, 

including sandwich shells, under external pressure pulse loading was examined using 

Lagrange’s equation of motion and the Budiansky-Roth dynamic stability criterion. The 

predicted transient shell response compared very well with FEA results from ABAQUS 

Implicit, and the predicted buckling loads also agreed with experiments on steel arches. 

Load duration determined whether the buckling was impulsive, dynamic or quasi-

dynamic. Thicker composite shells were more likely to fail by first-ply failure rather than 

buckling. It was shown that the composite lay-up could be adjusted to increase the 

buckling resistance of the shell. 

            The single-curvature shell study was expanded by considering a curved composite 

sandwich panel with thin facesheets and an elastic compressible core. Local facesheet 

buckling of the curved sandwich panel subjected to external pressure pulse loading was 

investigated. Equations of motion for the facesheet transient deformations in the 

sandwich shell were derived from Lagrange’s equations of motion, and solutions using 

this approach compared well with FEA results from ABAQUS Implicit. Both facesheet 

fracture during stable deformation response and local dynamic pulse buckling of 

facesheets were considered as possible modes of failure in the curved sandwich panel. 
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Parametric studies indicated that local facesheets buckling is more likely to occur than 

facesheet fracture in thin and deeply curved sandwich panels. The facesheet laminate lay-

up could also be adjusted to improve the local buckling resistance of the curved panel. 

            A curved composite sandwich panel with thin facesheets and a crushable elastic-

plastic foam core was also studied in this thesis. Plastic core damping was introduced into 

the equations of motion as a damping force. The predicted solutions from the elastic-

plastic model were shown to compare well with FEA results from ABAQUS Implicit. A 

parametric study showed that blast resistance of the sandwich shell may be increased by 

allowing cores to undergo plastic crushing. Very thick sandwich shells, i.e. radius-to-

thickness aspect ratio less than 10, and shallow shells derive much of their resistance to 

blast from core crushing. Strong, dense foam cores did not increase the blast resistance of 

the curved sandwich panel but allowed facesheets to fracture while the core remained 

elastic. 

            Future work will be to extend this analysis to various shell geometries that are 

subjected to dynamic research, such as double-curvature composite sandwich shells. The 

addition of another in-plane degree-of-freedom to the shell will lead to double Fourier 

series as well as several other strain components and equations of motion. The second 

aspect will concentrate on dynamic analyses which are typically performed, including 

transient analysis, impact, shock loading, dynamic stability and other dynamic behaviors. 
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APPENDIX A  

NOMENCLATURE 

 

a  shell radius 

0a  mid-surface radius of foam core  

1a  mid-surface radius of outer facesheet 

2a  mid-surface radius of inner facesheet  

ijA  membrane stiffness of facesheet 

c  circumferential wave speed in facesheet 

ijC        stiffness of foam core 

dS   differential shell surface area 

dV   differential core volume 

ijD       bending stiffness of facesheet 

dE  plastic work dissipated 

nnnn hgfe ,,,  mode amplitudes 

ijE  Young’s modulus 

f  yield function  

ijG  shear modulus 
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h  facesheet thickness  

H  foam core thickness 

k         sequence number of lamina 

ijM  bending moment resistance 

n  mode number  

ijN  force resultant 

p  pressure pulse loading 

0p  peak pressure 

p
        

normalized pressure pulse loading 

nq   generalized coordinate 

nQ
       

generalized external force 

ijQ  reduced stiffness of facesheet 

r   radial coordinate 

ijs   deviatoric stress 

TL SS ,  longitudinal and transverse shear strength 

t   time 

T  kinetic energy 

cT  kinetic energy of foam core 

fT  kinetic energy of facesheets 

U  strain energy 

ceU  elastic strain energy of foam core 
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cepU  nonlinear elastic strain energy of foam core 

fU  strain energy of facesheets 

v   tangential deformation of foam core 

0v   mid-surface tangential deformation of foam core 

1v   outer facesheet tangential deformation 

2v   inner facesheet tangential deformation 

eV   elastic regions volumes of foam core 

pV   plastic regions volumes of foam core 

w   radial deflection of foam core 

0w   mid-surface radial deflection of foam core 

1w   outer facesheet radial deflection 

2w   inner facesheet radial deflection 

TC XX ,  compressive and tensile strength along fiber direction 

TC YY ,    compressive and tensile strength perpendicular to fiber direction 

z  radial coordinate measured inward from the mid-surface  

1z  radial coordinate measured inward from the mid-surface of outer facesheet 

2z  radial coordinate measured inward from the mid-surface of inner facesheet 

2  circumferential bending-to-membrane stiffness ratio 

2

1  outer facesheet circumferential bending-to-membrane stiffness ratio 

2

2  inner facesheet circumferential bending-to-membrane stiffness ratio 
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222 ,,,   elastic constants for strain energy of foam core       

ij        Kronecker delta 

nq       virtual mode amplitude 

W      virtual work 

1       virtual normalized outer facesheet radial deflection 

T       load duration 

       angular extent of plastic zone 

f        failure hoop strain of facesheet 

ij        strain  

ijm       mid-surface strain 

r        radial strain in foam core 

0r       radial component of foam core yield strain  

x        axial strain  

xm      mid-surface axial strain  

        hoop strain in foam core 

0       hoop component of foam core yield strain  

1        outer facesheet hoop strain  

2        inner facesheet hoop strain  

m       mid-surface hoop strain 

1m      outer facesheet mid-surface hoop strain 
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2m      inner facesheet mid-surface hoop strain 

0  rotation angle of foam core plane sections 

2

00

2

0 ,,   plastic constants for strain energy of foam core       

 r  transverse shear strain in foam core 

0 r  transverse shear component of foam core yield strain  

 x  in-plane shear strain 

mx  mid-surface in-plane shear strain 

  normalized radial deflection 

0  normalized mid-surface radial deflection of foam core 

1  normalized outer facesheet radial deflection 

2  normalized inner facesheet radial deflection 

         circumferential coordinate 

0        shell subtended angle 

e        angular elastic regions of foam core 

p       angular plastic regions of foam core 

ij       change in curvature 

x       change in axial curvature 

 x      change in in-plane curvature 

       change in hoop curvature  

1       outer facesheet bending curvature in hoop direction 
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2       inner facesheet bending curvature in hoop direction 

         foam core aspect ratio  

         inner-to-outer radius ratio  

ij  Poisson’s ratio 

c        core density  

f        facesheets density  

        constant for kinetic energy of foam core 

0       flow stress of foam core 

e       von Mises stress 

ij       stress  

m       mean stress 

r       radial stress in foam core 

x       axial stress in foam core 

       hoop stress in foam core 

̂        effective stress of foam core 

         normalized time 

0
       

normalized load duration 

 r       transverse shear stress in foam core 

 x       in-plane shear stress  

         normalized tangential deformation 
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0        normalized mid-surface tangential deformation of foam core 

1        normalized outer facesheet tangential deformation 

2        normalized inner facesheet tangential deformation 

 


 derivative with respect to   

   derivative with respect to   
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APPENDIX B 

HOOP STRAINS IN SINGLE CURVATURE THIN SHELL 

 

            The strain-displacement relation presented here was first established by Goodier 

and McIvor [72] for cylindrical shells and has been used for dynamic buckling analysis of 

cylindrical shells in Reference [1]. The hoop strain   for the shell is 

  zm                          (B.1)                                                                

where m  is the mid-surface strain,   is the change in curvature of the shell and z  is the 

radial coordinate measured inward from the mid-surface of the shell. The mid-surface 

hoop strain of the shell is found by considering the differential arc length before and after 

deformation shown in Figure B.1. Points on the mid-surface of the shell have polar 

coordinates ,a   . After the deformation, points have polar coordinates r ,   in the 

deformed configuration.   
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Figure B.1 Deformed and undeformed differential element at the mid-surface of shell. 

 

            The shell has radial displacement  tw ,  and tangential displacement ),( tv   

where 

raw                                                                                       (B.2)                   

and 

 
a

v
                                                                                                                      (B.3) 

The mid-surface strain is the change in length of the differential element in Figure B.1 

divided by the initial length, 
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Differentiating Equations (B.2) and (B.3) gives, 
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 d

dw

d

dr
              (B.5) 

and                                                         





d

dv

ad

d 1
1             (B.6) 

Substituting Equations (B.2), (B.5) and (B.6) into Equation (B.4) gives 

11)(
1 2

1
2

22 
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

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









 


a

v
waw

a
m          (B.7) 

By introducing normalized displacements aw / , av / , Equation (B.7) becomes 

     111 2

1
222  m             (B.8) 

Upon expansion to terms of second order, the mid-surface strain is obtained as 

2

2

1
 m                     (B.9)                                                                                                                   

            Similarly, the change in curvature of the shell is given as 

  2/3222222 )()2(   rrrrrrrr                    (B.10) 

By simplifying Equation (B.10), the change in shell curvature is  

 
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
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


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a

w
w

a

1

1
2

2

2

                      (B.11) 

The membrane and bending strains are based on large deflection theory.  Here the term 

“large” refers to the fact that transverse deflections are greater than the shell thickness so 

that the undeformed and deformed configurations are different.     
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APPENDIX C  

STRAIN ENERGY OF THE LAMINATED COMPOSITE SHELL 

 

 Consider a laminated composite shell with n  laminae in the cylindrical 

coordinate as shown in Figure C.1. The generalized shell forces and moments are related 

to the strains by  
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(C.1) 

where )()( 1

1





 kkk

n

k

ijij zzQA  is the membrane stiffness, )()(
2

1 2

1

2

1





  kkk

n

k

ijij zzQB  is 

the coupling stiffness, )()(
3

1 3

1

3

1





  kkk

n

k

ijij zzQD  is the bending stiffness, ijm
 
is the mid-

surface strain and ij
 
is the change in curvature.  In the expressions of stiffness, ijQ

 
is the 

reduced stiffness, z  is the radial coordinate measured from the mid-surface and the thk  

lamina is bounded by 1 kzz  and kzz  .  The single curvature shell is in plane strain so 

that xmxxm   ,,  and  x  
are equal to zero.  Hence N  and M  reduce to 

  2222 BAN m 
                                                     

(C.2)
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  2222 DBM m 
                                                     

(C.3) 

 

Figure C.1 Laminated composite shell in cylindrical coordinates. 

 

In general, the elastic strain energy of a laminated composite shell is given by 

dSMMMNNNU xxxxmxxmxmx )2(
2

1
   

                            
(C.4) 

where addS   is the differential shell surface area.  Following plane strain conditions 

and substituting Equations (C.2) and (C.3) into Equation (C.4), the elastic strain energy 

of the long, laminated composite shell reduces to 

  adDBAU mm )2(
2

1 2

2222

2

22  
                                           

(C.5) 

A special class of laminated composite shells which have 022 B  is considered. 

This includes shells that are orthotropic, mid-plane symmetric, anti-symmetric and quasi-

isotropic. For these types of laminated composite shells, the elastic strain energy becomes 

  adDAU m )(
2

1 2

22

2

22  
                                                     

(C.6) 
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Substituting Equations (3.6) and (3.7) into Equation (C.6) gives 
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APPENDIX D 

PLY FAILURE CRITERIA FOR ORTHOTROPIC SHELL 

 

            A modified Hashin-Rotem failure criterion [97] is used to examine ply failure of 

the orthotropic shell. The failure occurs when 

1
T

x

X


   if 0x     , or 1

C

x

X


 if 0x                     (D.1) 

1
TY


   if 0     , or 1

CY


 if  0         (D.2) 

1
L

x

S




                                          (D.3) 

            For the orthotropic shell as shown in Figure C.1, the stress-strain relations 

)( ijij    are given by 
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(D.4)

 

where )1/( 21121111  EQ , )1/( 21122222  EQ , )1/( 2112221212   EQ , 1266 GQ 

,
 

016 Q
 
and

 
026 Q .  With plane strain conditions, 0x  and 0 x , the stresses ij  

reduce to 

 12Qx                                                                    
(D.5)
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  22Q
                                                                  

(D.6)
 

0 x                                                                          
(D.7)

 

Since CCTT YXYX  ,  for the woven roving E-Glass/Vinyl Ester and 1222 QQ  , it can 

be noticed that x   
and ply failure of the shell occurs in tangential direction. By 

substituting Equation (D.6) into Equation (D.2) the critical value of hoop strain at which 

failure occurs in tangential direction is thus given by  

22Q

YT

  

if  0 ,   or  
22Q

YC   if  0                                        (D.8) 

            The maximum hoop strain would occur at either center or boundary position of 

the shell, which means 

)/
2

/0,( 0
0

max 


  
                                                            

(D.9) 

At these three critical positions, the maximum hoop strain occurs at the outer plies where 

the bending strains are maximum, i.e., at 2/hz  .  Hence the maximum strain can be 

expressed as 

 
2

max

h
m 

                                                                                 
(D.10) 
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APPENDIX E 

ELASTIC STRAIN ENERGY OF CORE 

 

            Under plane strain conditions, the elastic stress-strain constitutive equations in the 

core are    
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(E.1) 

where ,211  GC  ,12 C  ,66 GC      ,211   E  and EG,  and  are the 

shear modulus, Young’s modulus and Poisson’s ratio, respectively.  The axial stress is 

   rx             (E.2) 

The elastic strain energy in the core is given by 

 dVU rrrrce    
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1
          (E.3) 

where .rdrddV    Substituting Equation (E.1) into Equation (E.3) gives 
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The core strains are 
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The first term of Equation (E.4) is 
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where     .121    

The second term of Equation (E.4) is 
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The third term of Equation (E.4) is 

 
 

  

 

















0

0

0

0

2

12

0

2

1
11

0

212121

0

2

1
11

0

2

21212

0

113

24

)1(12

12

1















d
a

Ha
C

d
a

Ha
C

d
Ha

CU c

                    (E.10) 

The last term of Equation (E.4) is 
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Combining Equations (E.8)-(E.11) gives 
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APPENDIX F 

NONLINEAR ELASTIC STRAIN ENERGY OF CORE 

 

            The following nonlinear strain energy expression can be used to determine the 

elastic-plastic motion using Lagrange’s method:  
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The first integrand is the same as in purely elastic response.  Hence,   
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Expansion of the second integrand gives 
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In this expression, the constant terms 
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can be neglected 

because they will vanish when cepU

 

is made derivative in Lagrange’s equation of motion. 

Hence Equation (F.3) can be expressed as 
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Substituting Equations (F.2)-(F.4) into Equation (F.1) gives 
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