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ABSTRACT 

This thesis sought to investigate and develop valid numerical approaches to 

predict ductile fracture under different stress state and loading conditions.  

As the first portion of this work, the plastic flow and fracture behaviors of three 

aluminum alloys (5083-H116, 6082-T6 and 5183 weld metal) under the effects of strain 

rate and temperature were studied through a series of experiments and finite element 

analyses. The fracture behavior under the influential factor of stress triaxiality was also 

studied. The applicability of the Johnson-Cook plasticity and fracture models were 

investigated with mixed results. For all three materials, the dependency of the failure 

strain on triaxiality is adequately described. 

The stress state effect on plasticity and ductile fracture behaviors was further 

explored for aluminum alloy 5083-H116 through tests on plane strain specimens and 

torsion specimens, focusing on the third deviatoric stress invariant (lode angle). A stress 

state dependent plasticity model, J2-J3 model, together with the Xue-Wierzbicki fracture 

criterion which defined the damage parameter as a function of the stress triaxiality and 

the Lode angle, was implemented and calibrated with the test data. The calibrated model 

was utilized to study the residual stress effect on ductile fracture resistance, using 

compact tension specimens with residual stress fields generated from a local out-of-plane  
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compression approach. Fracture tests with positive and negative residual stresses were 

conducted on the C(T) specimens. Both experimental and finite element results showed 

significant effect of residual stress on ductile fracture resistance. 

In an attempt to predict ductile fracture under shear-dominated conditions, this 

study combined the damage mechanics concept with the Gurson-Tvergaard-Needleman 

porous plasticity model that accounts for void nucleation, growth and coalescence. The 

GTN model was extended by coupling two damage parameters, representing volumetric 

damage and shear damage respectively, into the yield function and flow potential. The 

new model was validated through a series of numerical tests in comparison with existing 

GTN type models, and applied to predict the ductile fracture behaviors of a beta-treated 

Zircaloy-4. With model parameters calibrated using experimental data, the model was 

able to predict failure initiation and propagation in various specimens experiencing a 

wide range of stress states. 
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CHAPTER I 

INTRODUCTION 

1.1 Background and motivation 

Structural fracture has been a big threat to human life and economy. The first 

historically recorded study of fracture strength was by Leonardo da Vinci (1452- 1519) 

on the tensile strength of a short iron wire. Since then, understanding on fracture 

problems has been broadened and deepened, especially after the start of last century. 

Human efforts in eliminating fracture caused losses have achieved significant success. 

But more complexities arise nowadays due to emerging new technology, new structure 

designs and new materials. 

Considering the way the material deforms before fracture, fracture is usually 

classified into two types, brittle or ductile.  In ductile fracture, extensive plastic 

deformation takes place before fracture. On the other hand, brittle fracture happened 

more suddenly, before apparent plastic deformation takes place. For most industrial 

applications, materials with higher ductility are usually more desirable when the 

requirement for strength is satisfied. Ductile materials like metals are widely used in 

fields of aeronautics, automobiles, nuclear engineering, oil and gas etc. Prevention of 

ductile failure has been of utmost interest, and tremendous amount of efforts have been 

made to understand the mechanism of ductile fracture. 

https://en.wikipedia.org/wiki/Ductile
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Fracture mechanics is a traditional theoretical system that studies fracture 

behaviors of a material with existing initial macroscopic crack. The crack-opening 

driving force around a crack tip is evaluated with concepts of the stress intensity factor, 

energy release rate or J-integral, whose critical value at crack propagation is regarded as 

fracture toughness.  Test standards have been established for obtaining the fracture 

toughness to characterize the material's resistance to fracture.  Fracture mechanics 

approach has achieved great success in the industrial applications, but has also a number 

of limitations [1, 2]. Firstly, it can only deal with preexisting cracks and cannot predict 

crack initiation. Secondly, fracture toughness is not a material intrinsic property as it 

strongly depends on specimen geometry. At last, the theory doesn’t describe the 

mechanism of material failure at the crack tip. With all these limitations, fracture 

mechanics cannot be used to model situations with complex loading where the material 

failure depends strongly on the local stress and deformation histories. 

The limitations of the fracture mechanics approach (so called ‘Global Approach’) 

led to the development of physics-based damage models which actually describe features 

of the local damage phenomenon in the rupture process zone (Local Approach to Fracture 

[3, 4]. This concept provided key insights for development of “transferable” fracture 

models for damage assessment.  

1.2 Ductile failure mechanisms and modeling  

From the micro-mechanical point of view, ductile fracture in metallic alloys 

usually follows a multi-step failure process involving several concurrent and mutually 

interactive mechanisms [5, 6]: (a) nucleation of microscopic voids by either fracture or 
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decohesion of the second-phase particles and inclusions, (b) growth of the fine 

microscopic voids due to localized plastic deformation (c) localization of plastic flow 

between the growing voids, and (d) final tearing or rupture of the ligaments between the 

grown and enlarged voids.  

1.2.1 Stress state effect 

This whole fracture process is strongly affected by the stress state. Research on 

the effect of the stress state on ductile fracture can be traced back to the early work of 

Ludwik and Scheu in 1923 [7], in which the authors noticed the effect of maximum 

principal stress on the fracture. Ludwik’s theory was further explored by Orowan [8] in 

his work on notch brittleness. Experimental evidence of the effect of stress state was 

given by Bridgman [9] who showed that strains to failure in tension tests were greatly 

increased under superimposed hydrostatic pressure. The influence of superimposed 

hydrostatic pressure on the fracture mechanisms of copper, aluminum and brass were also 

studied by French and Weinrich [10-12], which gave similar results. 

In the late 1960s, theoretical studies of micro mechanism of ductile fracture were 

conducted by McClintock [13], Rice and Tracey [14], who investigated the growth of 

isolated cylindrical or spherical void surrounded by an ideally plastic matrix subjected to 

uniform remote stressing. Their works showed the dominant effect of stress state on the 

void growth rate. Rice and Tracey’s solution related the void growth rate to the stress 

triaxiality directly. Inspire by their findings, Gurson proposed a well-known micro-

mechanism based constitutive model, which described the material softening due to void 

growth [15].  
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On the other hand, Hancock and Mackenzie [16] proposed an empirical failure 

initiation criterion based on Rice and Tracey’s solution: assuming inverse proportionality 

of failure strain to the void growth rate, the failure strain is an exponentially decaying 

function of the stress triaxiality. This empirical failure criterion was validated through 

tension tests on notched tensile bars conducted by the authors. A widely used ductile 

fracture criterion was provided by Johnson and Cook [17] , in which a damage parameter 

was defined as a weighted integral with respect to the effective strain and the integrand is 

the reciprocal of the effective failure strain as a function of the stress triaxiality, strain 

rate and temperature. Due to its simple form and broad consideration, the Johnson-Cook 

fracture models is very popular in industrial applications [18, 19].   

The common tribute of the above mentioned papers are that the materials fracture 

is affected by the stress triaxiality. However, triaxiality seems to be not the only factor 

that affects ductile rupture. Johnson and Cook [17] observed a phenomenon that, in the 

torsion test where the triaxiality is lower compared to the tension test, the fracture strain 

is lower for some material such as 4340 steel. By comparing the experiment data between 

simple tension test and torsion/shear test, McClintock [20] and Xue [21] both showed that 

the two types of loading had a mixed effect on the fracture strain magnitude. Bao and 

Wierzbicki [22] conducted a series of tests including upsetting tests, shear tests and 

tensile tests on 2024-T351 aluminum alloy, where a wide range of stress triaxiality was 

covered. It was observed that the dependence of the failure strain on the stress triaxiality 

was not monotonic. Instead, the relationship followed a trend as shown in Figure 1.1, 

where three distinct regimes described the different types of tests: for triaxiality between 



 

5 

zero and 0.4, shear fracture is also observed besides void growth; for negative triaxiality, 

damage is dominated by the shear fracture.    

 

Figure 1. 1 Dependence of the equivalent strain to fracture on the stress triaxiality [22]. 
  

The fact that triaxiality is not the only factor that affects ductile rupture leads to 

the exploration of other possible elements. The Lode angle/parameter, which is related to 

the third invariant of stress deviatoric, is believed to be a factor that influences the 

material ductility by many authors. Studies by Kim et al. [23-25] and Gao et al. [26, 27] 

on the void-contained cell model found that the Lode parameter should be considered in 

order to distinguish the stress state with the same triaxiality ratio, since the macroscopic 

stress strain response and the void growth/coalescence behavior of a representative 

material volume significantly vary for each stress state even though the triaxiality stays 

the same. Barsoum and Faleskog [28] conducted tests on double notched tube specimen 

under combined tension and torsion at fixed stress ratios. In their tests, as the triaxiality 
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decreases with an increasing amount of shearing, a shift in rupture mechanism from void 

internal necking to internal shearing occurs, accompanied with a dramatic change in the 

Lode parameter and a significant drop in ductility. Xue and Wierzbicki [29] presented a 

ductile failure criterion as a function of both stress triaxiality and the Lode angle, and 

assumed the influence on fracture strain of the two to be independent. Their study results 

were plotted as a 3-D fracture locus in the space of both triaxiality and the Lode 

parameter. 

1.2.2 Shear-induced damage 

From the microscopic point of view, the void growth mechanism is limited under 

lower triaxiality, when the ductile fracture mainly is caused by shear localization. Under 

this mechanism, the void size can be much smaller than that for failure governed by void 

growth and inter ligament necking. From the test of Barsoum and Faleskog [28], the SEM 

fractographs of ductile fracture in a Weldox 420 presents a shift in rupture mechanism 

from void internal necking to internal shearing, Figure 1.2.  

The formation of shear localization can be attributed to many factors: the material 

inhomogeneity, plastic yielding vertex, friction, etc [30]. Shear softening due to void 

distortion and inter-void linking is believed by many authors to be a possible mechanism 

that leads to shear localization and final fracture. Knowledge of the void shearing 

mechanisms on softening and shear localization is more qualitative than quantitative. For 

an initially spherical void in a linearly viscous material, Fleck and Hutchinson [31] 

observed that the void became spheroidal under remote shearing, and then rotated, before 

a penny-shaped crack was eventually formed. More recently, Barsoum and Faleskog [32] 
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conducted a fully three-dimensional (3D) analysis on similar shear specimens containing 

spherical voids to simulate their experiments [28] of ductile fracture in a double-notched 

tube specimen under combined tension and torsion. Tvergaard [33] modeled the failure of 

a row of voids in a shear field, and observed the micro-mechanism features that the voids 

collapsed to microcracks and continued to rotate and elongate with further shear 

deformation, until localization of plastic flow occurred. The behavior of initially 

spheroidal voids in a shear field was also analyzed by Scheyvaerts et al. [34] with 

different initial orientations of the spheroid. Besides the voids behavior in a shear field, 

Anderson et al. [35] studied the behaviors of a row of micro-cracks in a material subject 

to shear, and showed that localization could result from crack rotation and stretching.  

 

 

Figure 1. 2  SEM fractographs of ductile fracture in a Weldox 420 showing different 

rupture mechanisms [28]: (a) necking of intervoid ligaments and (b) intervoid shearing. 

In the earlier micro-mechanics constitutive models, the void nucleation, growth 

and coalescence mechanism was described in details, but the mechanism of the shear-

induced damage was not accounted for. These models are not applicable for modeling 
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fracture under low stress triaxiality where void growth is limited and shear deformations 

dominates. This motivated a number of recent modifications to include shear-induced 

damage in the model.  

The theoretical study of void damage under shear loading for ductile fracture can 

be traced back to early 1960s. McClintock [35] studied the void rotation and distortion 

under simple shear loading, and found that the ligament of voids could be reduced, hence 

the reduction of effective loading area. This didn’t attract much attention until Xue [36] 

implemented this idea to account for the shear induced damage in his extended Gurson-

type model. On the other hand, Nahshon and Hutchinson [37] proposed the shear damage 

law in a phenomenological way and assumed shear damage varied linearly with the 

porosity and the effective strain increment. In both Xue and Nahshon-Hutchinson models, 

the original form of the GTN model was maintained and the void volume fraction in the 

model was treated as a generalized damage parameter including a void growth 

contribution and a shear-induced damage contribution. And both assumed that the shear-

induced damage was a function of the Lode angle. These modifications have shown 

improvement in predicting shear dominant failure under low triaxiality conditions. 

However, these models tended to overestimate in the cases of moderate to high triaxiality. 

Nielsen and Tvergaard [38] recognized this problem and had to introduce an ad hoc 

modification to the shear damage evolution law to reduce the shear damage under high 

triaxiality.  

The modeling of shear-induced damage is still being explored by many researches. 

This thesis also presented a new model to account for shear-induced damage based on 

Gurson-type models, as described in Chapter 5. 
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1.3 Residual stress effect on fracture 

Residual stresses in the engineering structures are generated from forming, 

welding, heat treatment etc., which play an important role in either increasing or 

decreasing the fracture resistance. The compressive residual stress usually improves the 

fracture toughness, while the tensile residual stress can detrimentally reduce the loading 

capacity of the structure. This is usually attributed to the additional crack driving force 

and change of the crack front constraint [39, 40].  As part of the investigation on ductile 

fracture behaviors, this thesis studied the application of the fracture models to specimens 

under residual stress. 

To quantify the effect of residual stress on fracture toughness, it is necessary to 

introduce well characterized and reproducible residual stress fields into fracture 

specimens. There are plenty of literatures on residual stress generation techniques, which 

can either be mechanical or thermal process. Almer et al. [41] deformed large tensile 

specimens and cut the gauge sections to produce compact tension (CT) specimens. Meith 

et al. [42] applied local compression to the sides of fracture specimens. Because of the 

strain incompatibility between elastic and plastic region caused by the permanent plastic 

deformation, the residual stress field can be generated in the specimen. This local out-of-

plane compression (LOPC) approach was further explored by Mahmoudi et al.[43], who 

ran a series experiments and finite element analyses to examine how the position of 

compression tools influences the residual stress distribution in the specimen.  

This thesis work employed the LOPC approach and used two pairs of 

compression punches to generate various residual stress fields in C(T) specimens. The 
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residual stress field was obtained by conducting finite element simulation of the out-of-

plane compression process. After the residual stress field was generated, fracture tests of 

C(T) specimens having positive and negative residual stresses were conducted and 

simulated numerically.  

1.4 Research objectives and thesis outline 

This thesis explored different aspects of ductile fracture modeling. The objective 

of the research is to investigate and develop valid numerical approaches for ductile 

damage modeling under complex loading conditions. Both empirical damage initiation 

criteria and micro-mechanics based models are studied and verified with experiments. 

The following lists the different aspects of the research objectives to be achieved 

through this thesis work: 

1) Study the effects of strain rate and temperature on flow stress and ductile failure 

strain, and investigate the applicability of Johnson-Cook plasticity model and 

Johnson-Cook damage model for aluminum alloys.  

2) Study the Lode angle effect on material plasticity behavior and fracture behaviors 

with a J2-J3 plasticity model and the Xue-Wierzbicki fracture model.  

3) Calibrate the above models, and study the residual stress effect on ductile fracture 

resistance for an aluminum alloy.  

4) Extend the Gurson-type model to account for shear-induced damage and use it to 

study the fracture behavior of a Zircaloy. 

Here is a simple outline of the thesis framework: 
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Chapter 1 is a general introduction. It reviews the background of ductile modeling 

that motivated this research. 

Chapter 2 provides an overview of common modeling approaches for ductile 

fracture study. 

Chapter 3 studies the effects of triaxiality, strain rate and temperature on both 

flow and ductile fracture behavior for three aluminum alloys (5083-H116, 6082-T6 and 

5183 weld metal) with a series of axisymmetric tensile specimens, and investigate the 

applicability of Johnson-Cook plasticity model and Johnson-Cook damage model for 

these materials. 

Chapter 4 studies the effects of the Lode angle on the flow and ductile fracture 

behaviors for aluminum alloy 5083-H116 through tests on plane strain specimens and 

torsion specimens, and implements Xue-Wierzbicki fracture model to model the residual 

stress effect on fracture behavior. A local out-of-plane compression approach was 

employed to generate residual stress fields in the compact tension specimens.  

Chapter 5 builds a new extended GTN model and compares with the existing 

models. A calibration procedure is provided and used to simulate the crack initiation and 

growth for a beta-treated zircaloy-4. 

Chapter 6 concludes the research, and starts an extended model for future work 

attempts.
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CHAPTER II 

DUCTILE FRACTURE MODELING APPROACHES 

There is great amount of theoretical research about ductile fracture. A brief 

literature review is given in this chapter on common modeling approaches. For 

convenience, a short description of stress tensor and its invariants is presented as a prior. 

2.1 Stress tensor and its invariants 

Let σij be the stress tensor and σ1, σ2 and σ3 be the principal stress values. I1 

represents the first invariant of the stress tensor and the summation convention is adopted 

for repeated indices. The hydrostatic stress (or mean stress) can be expressed as   

      )(
3

1

3

1

3

1
3211   iih I          (2. 1) 

Let ij  be the stress deviator tensor and 1  , 2   and 3   be its principal values, i.e. 

 
    ijhijij  

 
         (2. 2) 

where δij represents the Kronecker delta. It is obvious that the first invariant of the stress 

deviator tensor is zero. The second and third invariants of the stress deviator tensor are 

defined as 
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The von Mises equivalent stress is related to the second invariant of stress 

deviator tensor as 

23Je              (2. 4) 

  

                

      (a)                (b) 

Figure 2. 1  The stress state represented in  (a) principal stress space,   (b) the deviatoric 

plane  

 

A principal stress state (σ1, σ2, σ3), can be geometrically represented by a vector 

OP  in the Cartesian coordinate system, with the three principal stresses as axes, as 

shown in Figure 2.1(a).  It is also convenient to represent it in the Haigh–Westergaard 

cylindrical coordinates (  ,, ), where ,  are simply the magnitude of, respectively, 

the hydrostatic stress vector ON  and the deviatoric stress vector NP  as shown in Figure 
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2.1(a). The azimuth angle can be characterized by the Lode angle  in the deviatoric 

plane as shown in Figure 2.1 (b).

Stress components in the cylindrical coordinate system can be related to the 

principle stresses and their invariants as below 
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There are many equivalent definitions to lode angle in literatures, some of them 

use the same name ‘Lode parameter’, such as ‘   ’ in the above equation, Bai and 

Wierzbicki[44]. Barsoum and Faleskog [32] defined another Lode parameter   as 

 
2 1 3

1 3
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
 (2. 6) 

This parameter can be easily related to the Lode angle with 

 
3

tan


   (2. 7) 

Stress triaxiality is defined as the ratio of the hydrostatic stress (or mean stress) 

over the von Mises equivalent stress, 

 )3/(2/*   ehT  (2. 8) 
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It can be observed that, when von Mises equivalent stress is known, the stress 

state is fully defined by two nondimensional parameter, stress triaxiality and Lode angle 

or Lode parameter. 

2.2 Common modeling approach for ductile fracture 

The ductile fracture models can be divided into three main categories: 

i). Non-weakening fracture initiation criterion. This type of fracture models do not 

account for material damage induced weakening effect. The advantages of these models 

are: 1) it’s easy to calibrate material parameters with experimental data, due to the 

decoupling of material response and damage prior to failure, 2) numerical 

implementation is also easier for finite element application. 

ii). Continuum damage models. In this type of models, damage is coupled with 

the plastic behavior. It treats the effect of damage in a purely phenomenological way, and 

do not explicitly describe the details in the microstructure. It is based on the idea that the 

actual sustainable stress level in the material increases due to reduction of the effective 

loading area resulted from microcracks and microvoids. This method avoids complex 

micro features, and treats material behaviors in a macroscopic sense.  

iii). Micro-mechanics based model. The micro-mechanics based models monitor 

the micro scale features, mainly the void, in a phenomenological way, and can replicate 

the process of nucleation, growth and coalescence. Most of the micro mechanical models 

are the Gurson-type models, constructed as a yield function that incorporates the void 

growth mechanism and the void induced material softening.  
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2.2.1 Fracture initiation criterion (Non-weakening) 

In this type of damage models, a damage parameter D is usually defined to 

indicate the extent of material deterioration but has no influence on material constitutive 

behavior prior to fracture. 

A common definition of damage D is based on accumulated plastic strain, which 

is calculated from the integral of equivalent plastic strain p factored by a weight 

function f : 

 
p

ppp

ij dTfD



0

...,,,,        (2. 9) 

The weight function f can be related to macro-scale field variables, such as stress 

state ij , equivalent plastic strain p ,  equivalent plastic strain rate p  and temperature T, 

etc,  as shown in Eq. (2.9). 

When the accumulated damage reaches a critical value, failure occurs. This 

critical value can be used to normalize the damage calculation, and gives a unit value for 

damage at fracture initiation.   

Assuming damage accumulates linearly with equivalent plastic strain under fixed 

loading conditions (stress component ratio, strain rate, temperature, etc), a simple form of 

damage can be defined as 

f

p

D



          (2. 10) 
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where f  is the effective failure strain at given loading conditions. 

When the loading condition is not constant, damage can be defined as the integral 

of equivalent plastic strain p  weighted by the reciprocal of the effective failure strain,  


p

T

d
D

p

ijf
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0 ...),,,( 

       (2. 11) 

A widely used damage model is given by Johnson and Cook [17], where they 

define f  as  
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The first term, originated from Hancock [16], describes the stress triaxiality 

dependency of the failure strain. This represents the stress state effect with only one 

parameter, T*
. The second and third term defines the effect of equivalent plastic strain 

rate and temperature respectively, where 
p

0
  is a reference plastic strain rate, T0 and Tmelt 

are the room temperature and the melting temperature. D1, D2, D3, D4 and D5 are five 

material constants. 

The Johnson-Cook fracture model is usually combined with the Johnson and 

Cook constitutive model [45], where its yield stress   is defined as: 
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where A, B, n, C, and q are five material constants. The first term of the right hand side in 

Eq. (2.13) represents the quasi-static stress-strain relation at room temperature; the 

second term indicates strain-rate hardening; the third term gives the temperature 

softening effect. 

The effects of stress state, strain rate and temperature on failure strain are 

assumed to be independent, to make the model easier to calibrate.  For quasi-static 

loading under room temperature, only stress state dependency is in effect. Due to its 

simple form and broad consideration, the Johnson-Cook fracture model is very popular 

for industrial applications.  

The stress state dependency of failure strain, for quasi-static loading under room 

temperature, has been studied by many researchers. Wierzbicki [46] calibrated seven 

different damage initiation criteria for 2024-T351 aluminum alloy under a wide range of 

the stress triaxiality values. Facture loci of these calibrated models were plotted together 

against experiment data for comparison. Among these models, the Xue-Wierzbicki model 

gave the best prediction. The Xue-Wierzbicki model defined the effective failure strain as 

a function of both triaxiality and lode parameter:   

])1(1))[()(()(),( /1*0*1*1* nn

f TTTT
fff

      (2. 14) 

where 
*

2

1

1 TC
eC

f

  and 
*

4

3

0 TC
eC

f

  correspond to the fracture strain for two limiting 

cases,  axisymmetric tension loading (ξ =1) and plane strain and pure shear loading (ξ = 0) 

respectively. C1, C2, C3, C4 and n are five parameters need to be calibrated. 
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There are many other common damage initiation criteria, such as Cockcroft–

Latham criteria [47], Wilkins’ criteria [48], etc. Wilkins’ model does not explicitly 

introduce the concept of failure strain, but it can be converted to a similar form to Eq. 

(2.11) [21]. For all this type of models, the non-weakening/uncoupled assumption makes 

them suitable to be integrated with a plasticity model without much difficulty. Moreover, 

it even allows multiple fracture criteria to be used for a single material, such as the case 

in commercial codes ABAQUS [49].  

For prediction of fracture initiation in crack-free bodies, since damage induced 

material softening usually does not play an important role until it’s close to final fracture 

for many ductile materials, the error induced by the uncoupled assumption is not too bad 

[50]. However, for modeling of crack propagation, the softening of a material point 

significantly affects the surrounding stress field and the final results, and the uncoupled 

assumption is not persuasive enough. Furthermore, instant failure after fracture initiation 

will lead to dynamic instability due to the sudden drop of stress state at the material point. 

As a remedy, a post-initiation softening behavior can be defined as a complement 

to the fracture initiation law. Once fracture initiation criterion is satisfied, the material 

stiffness is degraded progressively according to the specified degradation law. This 

methodology was adopted by ABAQUS [49] and Li [51].  

2.2.2 Continuum damage mechanics 

The first continuum damage mechanics model was developed by Kachanov [51], 

and further extended by Lemaitre [50, 52]. In their works, the damage variable D 

represents the reduction of the effective loading area resulted from micro voids and 
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cracks. Assuming isotropic damage, the actual stress the matrix material undergoes is 

defined as the applied stress e  divided by (1-D): 

D
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           (2. 15) 

The yield function is modified accordingly 
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where y  is the yield stress.  

The damage evolution laws in continuum damage mechanics were usually derived 

through a thermodynamic framework [52], or by introducing the weakening effect into 

the uncoupled damage model. For instance, Borvik et al [18] introduced a weakening 

factor to the Johnson-Cook strength equation  
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where D is the same as in the original Johnson-Cook damage model, and b  defines the 

material softening. Similarly, Xue [21] used an exponential term D  to account for the 

weakening effect: 

  Me D   1         (2. 18) 
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2.2.3 Micro-mechanical models 

The pioneer work by McClintock [13] and Rice and Tracey [14] on growth of 

cylindrical and spherical voids in infinitely large, plastic solids studied the major 

influencing factors in the fracture process, and indicated that it is possible to develop 

mechanism-based, micromechanical models to describe the complex ductile failure 

process. Since then tremendous efforts have been made in building micromechanical 

fracture models. Gurson [15] proposed a homogenized yield surface for void-containing 

materials based on the maximum plastic work principle. Rousselier [53] described the 

mechanical behavior of voided materials using thermodynamic and plastic potentials.  

More recent efforts on this area have focused on extending/modifying these 

models to develop computational schemes that simulate the ductile fracture process under 

various circumstances. Tvergaard [54, 55] introduced two adjustment parameters into the 

Gurson model to account for the effect of void interaction and material strain hardening. 

Chu and Needleman [56] proposed void nucleation models controlled by the local stress 

or plastic strain. Tvergaard and Needleman [57] introduced a simplified method to 

provide for rapid deterioration of stiffness after localization has occurred in the material. 

Koplik and Needleman [58] proposed a unit cell approach to calibrate the 

micromechanical parameters of the homogenized model.   

1) GTN model 

The Gurson model, with additional developments by Tvergaard and Needleman, 

is often referred as the GTN model and has been widely used to describe the material 
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behavior during the ductile fracture process.  The yield function of GTN model takes the 

following form 
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where: f is the current void volume fraction; e is the macroscopic effective stress; kk  is 

the hydrostatic stress; and M is the current yield stress of the matrix material. The 

adjustment parameters q1 and q2 were introduced by Tvergaard [54, 55] to improve model 

predictions.  

The plastic strain rate is defined as  

         (2. 20) 

where   is the plastic multiplier and the associated (normality) flow rule is invoked to 

define the normal of the plastic strain rate, i.e., 
ij

ijn



 . 

The evolution of the void volume fraction is due to two contributions, void 

growth and void nucleation.  

,            (2. 21) 

Void growth is based on bulk material incompressibility under plastic 

deformation 

,           (2. 22) 
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where represents the first invariant of the plastic strain rate.  

Void nucleation can be stress or strain controlled. A commonly used strain-

controlled void nucleation law is taken to follow a normal distribution as suggested by 

Chu and Needleman [56] 

, ,   (2. 23) 

where 
p

M  represents the matrix plastic strain, and Fn, n and Sn are material parameters. 

In the GTN model, the effect of rapid void coalescence after the onset of 

localization is taken into account by replacing f in Eq. (2.19) with an effective porosity f* 

defined by the following bilinear function  

   (2. 24)
 

where fc is the critical void volume fraction at which void coalescence begins and the 

material softening is accelerated thereafter. Another material constant is the void volume 

fraction cutoff at failure ff . As f reaches ff , f*  increases to 1/q1 and the material loses all 

stress carrying capacity. 

By enforcing equality between the rates of macroscopic plastic work and the 
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       (2. 25)
 

where the matrix material follows a prescribed hardening function )( p

MM  .
 

 

2) Modified GTN model with shear damage  

Despite the apparent success and popularity of the GTN model in predicting 

ductile fracture, it still suffers from several significant limitations. A major drawback of 

the GTN model is its inapplicability to model the localization and fracture under low 

stress triaxiality, shear dominated deformations, since it does not predict void growth and 

damage under shear loading.  This motivated a number of recent modifications to include 

shear-induced damage in the model, among which the work by Xue [36] and Nahshon 

and Hutchinson [37] received the most attention.  

In these modifications, the void volume fraction as appeared in Eq. (2.19) is 

replaced by a general damage parameter containing contributions of both volumetric 

damage and shear damage while the form of the GTN yield function is retained. 

Nahshon and Hutchinson claimed that f is no longer directly tied to the plastic 

volume change but rather should be regarded as a damage parameter, and introduced an 

additional term in the evolution equation of f to account for shear damage. Xue directly 

introduced a new damage parameter, D, which contains both void damage and shear 

induced damage, and substituted the fq1
 term in Eq. (2.19) with D. The modified yield 

function can be expressed as  
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In establishing shear damage evolution law, both Xue [36] and Nahshon and 

Hutchinson [37] first derived the evolution of shear damage under the pure shear or 

simple shear state, then extended it to other stress states by introducing a Lode angle 

dependent function. Nahshon and Hutchinson proposed the shear damage law in a 

phenomenological way which assumes it linearly depends on the porosity and the 

effective strain increment. Inspired by the solution for coalescence of holes in a shear 

band by McClintock et al. [59], Xue developed his shear damage law based on the 

change of the void ligament of a unit cell model under simple shear deformation. The 

damage evolution law can be summarized as follows, where (2.27a) represents the 

Nahshon and Hutchinson model and (2.27b) represents Xue’s model, and (2.27c) show 

Lode angle dependent functions 
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The shear damage evolution laws of both models share three common features. 

First, shear damage is a weighted integration of equivalent plastic strain increment (the 

fraction in the Nahshon and Hutchinson model can be regarded as a definition of the 

equivalent plastic strain increment). Second, the Lode angle dependency functions, 
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 
ij  and  g , have the same limit values. It equals to one at the generalized shear 

(pure shear state + hydrostatic state) and zero at the generalized tension/compression 

(uniaxial tension/compression + hydrostatic state). Third, one material parameter, k  or 

3q , is used to scale the shear damage growth rate. This parameter can be calibrated using 

experimental data obtained from a shear dominated test. 

The major difference between the two models is the void volume dependency. 

There is an additional parameter q4 in Xue’s model, where shear damage is scaled by 

4q
f . The value of q4 is 1/2 for 2D problem and 1/3 for 3D problem. This parameter has a 

significant effect on the predicted shear damage since porosity f can vary significantly 

during the loading history.  

Since the model has one generalized damage parameter in Eq. (2.26), the onset of 

localization and the final material failure process can be modeled by introducing a D* in a 

similar fashion as the f* concept described in Eq. (2.24).  

3) Other extensions of the Gurson-type model 

The Gurson-type was extended by Gologanu et al. [60, 61] to consider spheroidal 

voids. In the so called GLD model, both void volume fraction and the void shape evolve 

as deformation increased. The spheroidal model was further extended by Scheyvaerts et. 

[34], to include the effect of void rotation. The prediction of the extended model agreed 

with the 3D cell model study, and captured the effect of the initial void shape and 

orientation on the void rotation rate.  
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Thomason [62] developed a coalescence model based on the mechanism of 

internal necking, and did not introduce any extra parameters. The coalescence model was 

later implemented by Pardoen and Hutchinson [63], Zhang, et. [64]. 

Many researchers also studied the application of Gurson-type model for various 

types of matrix material with features such as: anisotropy [65, 66] and kinematic 

hardening [67, 68], stress state dependent plasticity [69]. Materials with heterogeneous 

microstructures has also been studied by many authors [70-72]. 
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CHAPTER III  

MODELING OF FRACTURE INITIATION: TEMPERATURE, STRAIN RATE AND 

TRIAXIALITY EFFECT 

 In ductile fracture modeling with failure initiation criteria described in section 

2.1.1, the key is to find the failure strain under different loading conditions. In order to 

calculate the failure strain, the plastic flow behavior of the material needs to be accurately 

captured in the plasticity model. 

 This chapter presents an experimental and numerical study to investigate the 

effects of strain rate and temperature on flow stress and ductile failure strain of three 

aluminum alloys, a 5083-H116, a 6082-T6 and a 5183 weld metal. In addition, the effect 

of the stress triaxiality on ductile failure strain was also studied.  With the experimental 

data obtained, the applicability of the Johnson-Cook plasticity and ductile fracture models 

was examined. The plasticity model was assumed to be uncoupled with damage model 

for simplicity.   

The chapter is organized as follows. Section 3.1 provides information about the 

materials and experimental procedures. Section 3.2 gives the plastic flow behavior of the 

materials under different loading conditions. Section 3.3 presents the fracture properties 

of materials and all the numerical results. And finally, Section 3.4 summarizes the major 

findings. 
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3.1 Materials and Experiments 

Table 3.1  Chemical compositions (wt %) 

 5083-H116 6082-T6 5183 weld metal 

Al Balance Balance Balance 

Si 0.20 1.01 0.40 

Fe 0.35 0.31 0.40 

Cu 0.052 0.09 0.10 

Mn 0.69 0.40 0.5~1.0 

Mg 4.41 0.61 4.3~5.2 

Cr 0.086 0.02 0.05~0.25 

Zn 0.081 0.02 0.25 

Ti 0.065 0.03 0.15 

 

Aluminum alloys, because of their light weight, good mechanical properties and 

corrosion resistance, provide a viable replacement for steels in many engineering 

structures. These structures may be subjected to dynamic loading and experience varying 

temperature. Understanding the effects of strain rate and temperature on the plastic flow 

and ductility properties of these aluminum alloys is crucial to structural reliability 

assessments.  

The aluminum alloys of interest were 5083-H116 (a work-hardened marine alloy), 

6082-T6 (a precipitation hardened marine alloy), and welded joint of 5183 filler joining 

two 5083-H116 plates. 5083-H116 was procured in 25 mm thick rolled plate that was 1.2 

m wide by 3.6 m long to ASTM B928-04a from the Belaya Kalitva Metallurgical 

Products Company while 6082-T6 was procured in 25 mm thick by 0.2 m wide by 3.6 m 
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long flat bars to ASTM B221 from Taber Extrusion, LLC.  Base metal specimens were 

extracted from the center of the plate thickness in the transverse orientation, relative to 

the rolling direction.  Chemical compositions of the three aluminum alloys are presented 

in Table 3.1. These materials were considered because they are the most often used 

aluminum alloys in marine structures. The test matrix included smooth and notched 

round tensile specimens. The diameter of the gage section of the smooth round bar was 

6.35 mm. Notched round tensile specimens impart higher stress triaxiality to the material 

in the gage section than the uniform tensile specimens. All the notched round bars had the 

same diameters of 15.2 mm in the smooth sections and 7.62 mm at the root of the notch 

so that the specimens sampled the same amount of material. Three notch radii, 1.27 mm, 

2.54 mm and 6.35 mm, were considered for specimens D, B and E respectively. As the 

notch radius decreases, the stress triaxiality increases. Notched round bar tensile tests in 

the B-notch and E-notch configurations were conducted on the 5083-H116 base metal, 

6082-T6 base metal, and 5183 weld metal.  The D-notch specimens were tested only for 

the 5083-H116 base metal. A 25 mm extensometer was centered about the gage section 

for each specimen and measured a global extension of the notched gage section.  

Table 3.2  Test conditions 

 5083-H116 6082-T6 5183 weld metal 

Temperature 24, 66, 149 24, 66, 149 24, 66, 149 

Strain rate level 1, 2, 3 1, 3 1, 3 

Notch B,E,D B,E B,E 

 

All test conditions are listed in Table 3.2. Smooth round tensile specimens were 

tested at room temperature (24 ºC) and two elevated temperatures (66 ºC and 149 ºC), 
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and under different dynamic loading rates. Because 5083-H116 gains its strength from 

the work-hardening described by the H116 condition, the testing temperature of 149 ºC 

was selected as the upper temperature for calibrating the thermal softening relation as it is 

safely below the hot-working temperature of 316 ºC.  Quasi-static (Level 1, 0.004 ~ 

0.006 s-1) and high rate tests (Level 3, 150~220 s-1) were conducted for all three 

materials, and medium rate tests (Level 2, 0.15~0.70 s-1) for 5083-H116 only. Notched 

round tensile specimens were only tested at room temperature (24 ºC) under quasi-static 

loading.  

 

Figure 3. 1 Schematic of dynamic, uniform tensile specimen (dimensions in mm). 

Figure 3.1 illustrates the dynamic specimen design. At highest loading rates, the 

machine’s load cell did not adequately resolve load, nor would an extensometer or 

diametral gage maintain physical contact with the specimen throughout testing. Instead, 

the specimen design incorporated a larger diameter region than the gage section that was 

designed to remain elastic throughout testing. Two strain gages were applied 180 apart 

to this larger diameter region and wired in a Wheatstone half-bridge circuit to form an 

integral load cell. The integral load cell was calibrated to 10% of the predicted maximum 
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load prior to testing and the calibration was extrapolated to full scale. Specimen axial 

strain measurement was achieved by applying two 3 mm high-elongation strain gages to 

the gage section of the specimen at 180 apart and also wired in a Wheatstone half-

bridge. All the tests were done by NSWCCD (Naval Surface Warfare Center, Carderock 

Division) and detailed test procedures are provided in paper [73]. 

3.2 Plastic flow behavior 

A number of plasticity models with different function forms have been proposed 

to describe the strain rate and temperature effects on flow stress, among which the 

Johnson–Cook plasticity model is widely used because of its simplicity. It assumes the 

uncoupled behavior of strain hardening, strain rate hardening, and temperature softening 

effect. In this section, attempts were made to interpret the experimental results with a 

slightly modified Johnson-Cook plasticity model.  

3.2.1 Strain hardening for room temperature (RT), quasi-static (QS) loading 

In the original Johnson-Cook plasticity model (2.13), the first bracket at the RHS 

presents the strain hardening effect under RT and QS. Any other strain hardening law or 

simple piecewise stress-strain relation can be used instead to improve accuracy. It was 

found that the stress-strain relation at RT and QS loading could be very well described by 

a power-law function for all three materials, where the current yield stress is expressed as 

a power function of the total strain ε  

0
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where 0  represents the initial yield stress,  0  is the initial yield strain and N is the 

strain hardening exponent. Keeping other portion of the Johnson-Cook plasticity model 

(Eq. (2.13)) unchanged, the model was modified as 
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where  p  is the stress-strain relation  (strain hardening law) defined through Eq. (3.1).  

The strain hardening exponent N was obtained by performing linear regression on 

the true stress vs. true strain curve before necking. All parameters for the modified 

Johnson-Cook plasticity model are listed in Table 3.3. Figure 3.2 gives the stress-strain 

curves at various strain rates at RT for all three materials. 

 

Table 3.3 Calibrated parameters for the modified Johnson-Cook plasticity model  

  σ0 (MPa) N ε0 C q 

5083-H116 189.6 0.155 0.00277 0.005 NA 

6082-T6 288.7 0.064 0.00419 0.0034 1.033 

5183 weld 

metal 
113.8 0.238 0.00212 0 NA 
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Figure 3. 2  Comparison of the stress-strain relations predicted by the Johnson-Cook 

model with experimental data at different strain rates: (a) 5083-H116 (b) 6082-T6 and (c) 

5183 weld metal. 

(b) 

(a) 

(c) 
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3.2.2 Strain rate effect on flow stress 

As shown in the Figure 3.2(a), the flow stress of 5083-H116 did not exhibit the 

same strain rate sensitivity in the test strain rate range. At higher rate loading, the 

specimens displayed rate hardening; however, the difference of stress-strain curves 

between the medium rate loading and QS loading before necking was quite small, it even 

displayed noticeable negative strain rate sensitivity after necking, which could be 

observed clearly from the load-displacement relation shown in Figure 3.8 discussed later.  

This unusual feature of rate softening at low stain rates can be explained by the 

effect of dynamic strain aging (DSA), which exists in most 5XXX series Al-Mg alloy 

[74]. DSA is introduced when the solute magnesium atoms lock dislocation during 

dislocation motion at low strain rates and sufficiently high temperature [75], which 

results in higher strength. As the strain rate increases, the frequency of this interaction 

will decrease, which results in strain rate softening in the low strain rate range. Another 

phenomenon indicating the DSA effect is the serration of stress-strain curve, the well-

known Portevin-LeChaterlier phenomenon [76], which was observed for both 5083-H116 

and 5183 weld metal from Figure 2(a) and (c). However, the 5183 weld metal did not 

exhibit noticeable strain rate sensitivity in the range considered in this study.  

The complex rate sensitivity of the 5XXX alloys suggested that the effect of strain 

rate on flow stress could not be adequately described by the simple Johnson-Cook like 

constitutive laws in the range of the loading rate considered in this study. However, for 

the reason that DSA almost has no effect at high strain rate and since the stress-strain 

curves at different strain rates had similar shapes, the Johnson-Cook type models might 
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still be applicable in the high strain rate region. Mukai et al. [77] studied various Al-Mg 

alloys and found only when the strain rate was beyond  10 s-1, the flow stress would 

increase with increasing strain rate. Thus we performed calibration for Johnson-Cook 

model using only high loading rate data and the QS data. Figure 2(a) shows the stress-

strain relation predicted by the Johnson-Cook model with C = 0.005 and 𝜀𝑝̇= 180 s-1 

(fitted curve) as well as the experimental curves. It should be emphasized that the 

Johnson-Cook model cannot predict the plasticity behavior correctly as the strain rate is 

less than 10s-1. To quantify the low or negative strain rate sensitivity at the low strain rate 

region, further studies are required. 

Compared to the AA 5XXX series, the 6082-T6 has much less magnesium 

concentration and no obvious DSA effect was observed in our tests (the stress-strain 

curves do not show serration). The stress-strain curves of 6082-T6 at high loading rate 

obtained from five specimens showed considerable scatter.  Using the mean of these 

dynamic stress-strain curves and the QS data, the calibrated C-value was 0.0034. Figure 

2(b) gives the stress-strain relation predicted by the Johnson-Cook model with C = 

0.0034 and p = 190 s-1 as well as the experimental curves. The strain rate hardening 

property of 6082-T6 has been studied by other authors. Chen et al. [78] conducted a 

series of tests at a wider strain rate range from 10-3 to 900s-1 and found only a slight rate 

hardening for this material. 

If the Johnson-Cook plasticity model is to be used to describe these materials, 

based on the limited experimental data obtained in this study, the model parameters could 

be calibrated as listed in Table 3.3. 
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3.2.3 Temperature effect on flow stress 

5083-H116 and 5183 weld metal exhibited similar temperature dependency of 

flow stress. As can be seen from Figure 3.3(a) and (c), before temperature was raised 

beyond a certain level, the flow stresses of these materials showed very little variation 

with temperature. Clausen et al. [74] also observed that the flow stress was not sensitive 

to temperature in the range of 20 ºC to 100 ºC for 5083-H116. As temperature continued 

to increase, both materials displayed noticeable temperature softening.  

Because thermal softening only occured at relatively high temperature, the 

Johnson-Cook plasticity model would not work in the temperature range considered in 

this study. By comparing the stress-strain curves at RT and at 149 ºC for 5183 weld 

metal, Figure 3.3(c), the initial yield stress did not change much but the 149 ºC curve 

showed considerable less strain hardening. For this reason, stress-strain curves obtained 

at different temperatures for 5083-H116 and 5183 weld metal were used in the input files 

of the finite element analyses presented in Section 4.4. 

Compared to the 5XXX alloys, the temperature softening behavior of 6082-T6 

could be very well described by the Johnson-Cook plasticity model at the temperature 

range considered in this study with a calibrated q-value of 1.033. This is manifested in 

Figure 3.3(b), where the solid lines represented the stress-strain curves obtained 

experimentally at 24ºC, 66ºC and 149ºC respectively and the three dash-dotted lines 

represented the corresponding curves given by the Johnson-Cook plasticity model using 

the calibrated parameters.  
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Figure 3. 3 Comparison of the stress-strains relation predicted by the Johnson-Cook 

model with experimental data at different temperatures: (a) 5083-H116 (b) 6082-T6 and 

(c) 5183 weld metal. 

(a) 

(c) 

(b) 
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3.3 Fracture behavior and numerical results 

The Johnson–Cook fracture model, which is widely used in structural reliability 

analysis, provides a simple mathematical relation to describe the effects of stress 

triaxiality, strain rate and temperature on the equivalent strain to ductile fracture. In this 

section, the fracture behavior of materials was studied, and the fracture model was 

calibrated through both experimental data and numerical results. 

In the calibration of the fracture model, the effective failure strain needed to be 

determined for each loading case. A common method to get equivalent failure strain is by 

measuring the area reduction of round tensile specimen [74]. This method is an 

approximate method for the reason that the plastic flow becomes inhomogeneous after 

necking, which results in non-uniform strain distribution on the fracture surface. In this 

thesis, an inverse method was employed to obtain the local failure strain: by comparing 

the finite element simulated loading history with the experimental record, the equivalent 

strain at critical element when the failure initiated was extracted.  

3.3.1 Finite element modeling and Fracture criterion 

Finite element analyses of the specimens were conducted to study the fracture 

behavior of the materials using the software package ABAQUS [79]. For round tensile 

specimens, axi-symmetric conditions were considered and the 4-node, axisymmetric, 

solid elements with reduced integration (CAX4R) were used. Details of the finite element 

models, mesh refinement and convergence studies can be found in Gao et al. [80].  
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The Johnson-Cook fracture model is restated here for convenience 
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Figure 3. 4 Comparison of the numerically predicted and measured load-displacement 

response for the smooth tensile bars at RT and QS loading rate. 

 

The damage parameter D defined in Eq. (3.3a) accounts for the history effect 

when the stress triaxiality, strain rate and temperature do not remain constant. For all the 

specimens in this study, fracture started at the specimen center. Therefore, the history of 

stress triaxiality, plastic strain rate and equivalent strain increment of the center element 

were output to compute D. The sudden load drop on the measured load-displacement 

curve designated fracture initiation. By comparing the computed and measured load-

displacement curves, the increment numbers at which the center element fractured were 
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determined. Figure 3.4 compares the predicted load-displacement curve with test data for 

5083-H116 for the smooth tensile bar at RT and QS loading rate, where the “red cross” 

indicates the average failure position. 

3.3.2 Triaxiality effect on failure strain 

As described in the Johnson-Cook fracture model, the triaxiality-dependent, rate-

dependent and temperature-dependent terms in Eq. (3.2) are not coupled, thus the 

calibrations of the parameters D1 to D5 were performed separately. We first calibrated the 

parameters D1 to D3 using the room temperature, QS data.  

Figure 3.5 compares the predicted load-displacement curves with experimental 

records for the notched round bars, where the solid black lines represent the experimental 

measurements and the dashed red lines represent the numerical predictions. In general, 

the numerical results matched the experimental records very well.  

A nonlinear optimization process was employed to determine parameters D1 to 

D3, where an optimization function was chosen as to minimize the difference between the 

average of the computed damage values and one 
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where M is the number of specimens and  i
fD  is the computed damage parameter value 

for specimen i using Eq. (3.3a) with the assumed values of D1, D2 and D3. A Matlab 

program using the Nelded-Mead simplex method [81] was written to optimize the error 

function for finding best fit parameters.   
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Figure 3. 5 Comparison of the predicted and measured load-displacement responses for 

the notched round bars at room temperature and QS loading rate: (a) 5083-H116 (b) 

6082-T6 and (c) 5183 weld metal. 

(a) 

(b) 

(c) 
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For round tensile specimens, failure started at the specimen center. As can be seen 

in Figure 3.6, the variation of stress triaxiality in the center element was not very large 

during the loading process for several specimens. A simple way to obtain the parameters 

is to average the stress triaxiality during the loading history up to fracture initiation, 

p

f

av dTT
f







0

** 1
, and fit the  failure strain vs. triaxiality data obtained for the smooth 

and notched specimens into a function in the form expressed as the first bracket of Eq. 

(3.3b).      

 

Figure 3. 6 Variation of the stress triaxiality in the center element during the loading 

history:(a) 5083-H116 smooth roundbar (b) 5083-H116 B-notch. 

 

The calibrated D1 to D3 values from the optimization process described above are 

listed in table 3.4. Figure 3.7 shows the variation of effective failure strain with stress 

triaxiality at room temperature and QS loading, where the solid line represents the 

function form with the calibrated parameters (D1, D2, D3) and the symbols represent the 

effective failure strain and the corresponding average stress triaxiality for the smooth and 

three notched tensile specimens respectively. It was found out that material parameters 

calibrated using average stress triaxiality were quite close to the ones given by 
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optimization method. For all three materials, failure strain was a decay function of the 

stress triaxiality. For the 5183 weld metal, due to the material variability introduced by 

the welding process, a larger scatter in strain to failure was observed in the experiments.  

It is important to point out that the parameter D1 calibrated above did not 

represent a limit value for ductility. As described by Johnson and Cook [17], the function 

form of f  versus T*  given by the first bracket of Eq. (3.3b) was only valid for triaxiality 

level lower than 1.5, they also mentioned that the fracture strain varied approximately in 

a linear manner from the value at T* = 1.5 to a minimum value (min)f  corresponding to 

the spall stress.  

 

Table 3.4 Calibrated parameters for the Johnson-Cook fracture model 

 D1 D2 D3 D4 D5 

5083-H116 0.005 0.845 -1.89 0.0897 7.970 

 6082-T6 0.0164 2.245 -2.798 0.0070 3.658 

5183 weld 

metal -0.900 1.185 -0.128 0.0975 9.584 

 

For 5083-H116, the parameters calibrated appear different from the original paper 

[73], because the necking of the smooth roundbar specimen was not well captured. Here 

the calibration process was redone and new calibrated values were obtained as shown in 

Table 3.4. 
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Figure 3. 7 Effective failure strain vs. stress triaxiality at room temperature, QS loading 

rate: (a) 5083-H116 (b) 6082-T6 and (c) 5183 weld metal. 
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3.3.3 Strain-rate effect on ductile failure strain 

Similar to the plastic flow behavior, the variation of the failure strain with strain 

rate was not monotonic for 5083-H116. As shown in Figure 3.8, the 5083-H116 

specimens tested at the intermediate loading rates exhibited lower elongation than those 

tested quasi-statically. The high inhomogeneity of plastic flow at the intermediate strain 

rate could be a possible explanation of the lower ductility than quasi-static loading [82]. 

In the strain rate range where DSA works, the negative strain rate hardening will lead to 

strain localization [83], which results in higher probability of failure and thus decreases 

the ductility. 

At high strain rate, the ductility of 5083-H116 increased significantly. From the 

picture of the fractured specimens shown in Figure 3.9, a transition from a slant fracture 

surface at low rate to a cup-cone fracture surface at high rate was observed, which 

indicated the change of failure mechanism with the increasing loading rate. The cup-cone 

fracture surface was a result of the void formation, growth and coalescence mechanism 

while the slant fracture surface was caused by shear failure. This change of failure 

mechanism was also demonstrated by the microscopic pictures of fracture surface given 

by [77] for a high purity aluminum alloy with 5% Magnesium, which showed that the 

void size did not change much as the strain rate increased from 10-4 to 2s-1, but the voids 

grew to much larger sizes at the strain rate of 1.5x103.  

Because the fracture behavior of 5083-H116 at the intermediate loading rate was 

very complex, finite element analysis was only conducted at the level 3 loading rate. The 

Johnson-Cook plasticity model with the calibrated parameters given in Section 3.2 was 
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incorporated into ABAQUS via a user defined subroutine and used in the dynamic 

analysis.  

 

Figure 3. 8  Compares of the level 1 (QS) and level 2 (strain rate < 1 s-1) load vs. 

engineering strain curves for 5083-H116 smooth specimens tested at room temperature. 

 

 

 

(a)                                   (b)                                      (c) 

Figure 3. 9  Fractured 5083-H116 specimens tested at room temperature and various 

loading rates: (a) quasi-static; (b) intermediate rate; (c) high rate.  

 

In the high rate tests, engineering strains in the gage section were measured using 

strain gages. As the applied load approached the maximum value, necking developed in 
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the gage section, resulting the strain gage failure in two possible scenarios: 1) If necking 

occurred at the spot where the strain gage was placed, the strain gage might debond from 

the specimen after necking develops; 2) If necking occurred at a location other than 

where the strain gage was placed, the readings of the strain gage would not reflect the 

post-necking deformation experienced by the specimen. Consequently, the experimental 

records did not have the complete deformation history and we couldn’t determine the 

failure point from the load-displacement records. Instead, we used the load vs. time 

records to find the instant when failure initiates (sudden load drop).  

The finite element analysis of each specimen involved an iterative process. We 

varied the applied velocity at the specimen ends until the computed engineering strain vs. 

time of the gage section matched the experimental records. The experimental data 

suggested that the engineering strain rate in the gage section gradually increased to a 

constant value. Figure 3.10 (a)-(f) compare the computed load vs. time and engineering 

strain (gage section) vs. time histories with experimental records for the smooth round 

bars of the three materials tested at room temperature under level 3 dynamic loading.  

Using the level 3 dynamic test data and the optimization procedure described 

above, the parameter D4 was calibrated as 0.0897, 0.007 and 0.0975 for 5083-H116, 

6082-T6 and the 5183 weld metal respectively. A positive D4 indicated that the failure 

strain became larger as the strain rate increased. Compared to the significant increase of 

ductile failure strain at high strain rates, the D4 value was quite small which indicated that 

6082-T6 had very low rate sensitivity on ductility. 
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Figure 3. 10  Comparison of the computed load vs. time and gage section displacement 

vs. time histories with experimental records for the smooth round bar at room 

temperature and level 3 dynamic loading: (a, b) 5083-H116; (c, d) 6082-T6; (e, f) 5183 

weld metal. 
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3.3.4 Temperature effect on ductile failure strain 

Figure 3.11 shows the load vs. displacement curves for 5XXX series smooth 

specimens tested at 66ºC and 24ºC under QS loading. At either temperature level, several 

specimens were tested and only the specimens exhibiting least and most ductility were 

shown in Figure 3.11. The ductility was apparently lower at 66ºC. However, the ductility 

of 5XXX at 149 ºC was much higher than at 24ºC, which could be seen from Figures 

3.12(a) and (c). Based on the research of Skinner et al. [82] on different aluminum alloys 

where DSA effect exists, minimum ductility occurred at intermediate temperatures. At 

elevated temperatures two mechanisms affect ductility and flow behavior: dynamic 

recovery results in lower strength and higher ductility whereas DSA effect has opposite 

effects. In our case, DSA had a strong effect at lower elevated temperature (66ºC), which 

resulted in lower ductility; however, at higher elevated temperature (149ºC), the dynamic 

recovery dominated and serration of stress-strain curve was not observed.  

From the above discussions, the Johnson-Cook fracture model was not suitable 

for the 5XXX alloys in the temperature range considered. The calibrated D5 values in 

Table 3.4 for the 5XXX alloys were from data tested at RT and at 149ºC, which only 

serve the purpose for comparison of the temperature effect on ductility of different 

materials.  

In contrast to the 5XXX series, the ductility of 6082-T6 increased as temperature 

increased monotonically as shown in Figure 3.12 (b), and the failure strain of this 

material could be very well described by the Johnson-Cook fracture model.  
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The parameter D5 was calibrated as 7.970, 3.658 and 9.584 for 5083-H116, 6082-

T6 and the 5183 weld metal respectively. A positive D5 indicated that the failure strain 

became larger as temperature increased. 6082-T6 showed less ductility change compared 

to the other two materials. Figure 3.12 also compares the computed and the 

experimentally measured load-displacement curves of the smooth round tensile specimen 

tested at different temperatures. 

 

 

Figure 3. 11 Comparison of the QS load vs. displacement curves for smooth specimens 

tested at 66ºC than 24ºC:    (a) 5083-H116    (b) 5183 weld metal. 

 

(a) 

(b) 
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Figure 3. 12 Comparison of the predicted and measured load-displacement responses for 

tests at different temperatures: (a) 5083-H116 (b) 6082-T6 and (c) 5183 weld metal. 

(a) 

(b) 

(c) 
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3.4 Concluding Remarks 

In this study, the effects of strain rate and temperature on the plastic response and 

ductile failure strain of three aluminum alloys often used in marine structures, AA 5083-

H116, AA 6082-T6 and AA 5183 weld metal, were investigated. As a first step, the 

applicability of the Johnson-Cook plasticity and ductile fracture models was examined. 

The primary findings can be summarized as follows: 

1) Flow stress and failure strain of AA 5083-H116 showed negative strain 

rate dependency at low dynamic loading rate (< 1s-1) at room temperature, which was 

strongly related to the DSA effect. But at high strain rate, this material exhibited rate 

hardening and significant increase in ductility.  

2) The flow stress of the 5183 weld metal was not sensitive to the strain rate, 

whereas the ductility increased significantly at high strain rate. 

3) At room temperature the flow stress of AA 6082-T6 displayed strain rate 

hardening effect while the ductility increase at high strain rate was insignificant. 

4) Before the temperature was raised beyond a certain level, the QS flow 

stresses of AA 5083-H116 and the 5183 weld metal showed no obvious temperature 

dependency but the ductilities of these alloys were lower at 66 ºC than at 24 ºC. As 

temperature continued to increase, both materials displayed noticeable temperature 

softening and increase of ductility. 

5) Both temperature softening and increase of failure strain with elevating 

temperature of AA 6082-T6 could be well described by the Johnson-Cook plasticity and 

fracture models. 
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6) For all three materials, the equivalent strain to failure was a decaying 

function of the stress triaxiality and well captured by the Johnson-Cook model, and the 

material parameters calibrated using average stress triaxiality gave enough accuracy in 

comparison with the optimization method.  

Our results showed that the strain-rate dependent and temperature dependent 

relations given by the Johnson-Cook plasticity and fracture models generally cannot 

applicable for the AA 5XXX series especially in the temperature and loading rate range 

where DSA effect exist. To develop more accurate and useful mathematical relations for 

rate and temperature dependencies of these materials, further experimental and numerical 

work needs to be conducted. In this chapter, only axisymmetric tensile specimens were 

tested, and the J3 or the Lode angle effect was not taken into account, which is discussed 

in Chapter 4.   
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CHAPTER IV 

 FRACTURE MODELING INCLUDING THE RESIDUAL STRESS EFFECT 

In this chapter, the stress state effect on plasticity and ductile fracture behaviors of 

an AA 5083-H116 was further explored through a series of experiments under quasi-

static loading at room temperature，with the focus on the Lode angle/third deviatoric 

stress.  A recently developed stress state dependent plasticity model, the J2-J3 plasticity 

model, was implemented to describe the plastic response of this material. Furthermore, 

the Xue-Wierzbicki ductile failure criterion, which defines the damage parameter as a 

function of the stress triaxiality and the Lode angle, was implemented to model the 

material fracture behavior. The calibrated plasticity model and ductile failure model were 

utilized to study the residual stress effect on ductile fracture resistance. A local out-of-

plane compression approach was employed to generate residual stress fields in the 

compact tension specimens. Fracture tests of C(T) specimens having zero, positive and 

negative residual stresses were conducted.  

4.1 Plasticity and Fracture Models 

The most popular continuum plasticity model is the so-called J2-flow theory. This 

theory assumes hydrostatic stress as well as the third invariant of the stress deviator has 

no effect on plastic yielding and the flow stress However, increasing experimental
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evidences showed that this assumption was invalid for many materials. Inspired by the 

extensive experimental results reported by Spitzig et al. [84], Brunig [85] presented an I1-

J2 yield criterion which incorporate the pressure dependency. Later, the third invariant of 

stress deviator, J3, was added to the I1-J2 yield criterion by Brunig [86] to study the 

deformation and localization behavior of hydrostatic stress sensitive metals. Recently, 

Gao et al. [69, 87] noticed the plastic response of a 5083 aluminum alloy was also J3 

dependent. A I1-J2-J3 plasticity model proposed by Gao et al. [69] was adopted in this 

study. 

4.1.1 Stress state dependent Plasticity modeling 

The isotropic, stress state dependent plasticity model is formulated in terms of the 

invariants of stress tensor. The general forms of the yield function (F) and the flow 

potential (G) are expressed as functions of I1, J2 and J3. Eq. (4.1) describes the yield 

condition and the flow rule:
 

      0),,( 321 JJIF
;   

ij

p

ij

JJIG







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),,( 321  (4.1)  

where   is the hardening parameter, p

ij  are the rates of the plastic strain components and 

  is the plastic multiplier. If plasticity behavior of this material has no pressure 

dependency, the following first order homogeneous function can be used to defining the 

yield function (F) [69] 
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where b1 are material constants and c1 is determined by substituting the uniaxial 

condition into Eq. (4.2) so that the equivalent stress defined by Fe   equals to the 

applied stress: 

      
6/1

11 )1729/4/(1  bc  (4.3)  

The flow potential (G) takes a similar form 
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If the flow potential and the yield function are identical, i.e., F = G, a material is 

said to follow the associated flow rule. Furthermore, if b1 = b2 = 0, the plasticity model 

degenerates to the formulation of classical J2-flow theory and e  becomes the von Mises 

equivalent stress. 

The hardening parameter depends on the strain history. By enforcing the 

equivalence of plastic work, i.e, 

      
p

ijij

p     (4.5)  

The equivalent plastic strain increment can be defined as 

      /p

ijij

p    (4.6)  

Therefore, the hardening behavior can be described by a stress vs. plastic strain relation

)( p , where tpp d  . 
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4.1.2 Fracture criterion 

The cumulative strain damage models assume that the damage toward eventual 

fracture is due to the plastic deformation history and the equivalent fracture strain 

depends on the stress state subjected by the material. Here a damage parameter, D, is 

introduced and given by   

     
p

f

pd
D






0 )(σ

 (4.7)  

with εf being the failure strain under the current stress state characterized by the triaxiality  

T* and the Lode parameter ξ 
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ξ is related to the Lode angle, θ, through )2/3cos(   . Therefore 

     ),()( *  Tff σ  (4.9)  

Under proportional loading and if T* and ξ remain unchanged during the loading 

history, when the equivalent plastic strain, 
p , reaches the critical value εf, D will equal 

to unit.  For general cases, when the cumulative damage according to Eq. (4.7) reaches 

one, ductile failure is said to have happened. 

In Eq. (4.9), if ξ is a constant, εf becomes a function of T* only. Here an 

exponentially decaying function having the same form as the Johnson-Cook fracture 

model is used to describe the dependency of εf  on T* 
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      )]exp([ *. TCBAconst

f
  (4.10)  

where A, B and C are material constants to be calibrated using experimental data. 

The Lode angle distinguishes the deviatoric stress state and it is mathematically 

convenient to use the parameter ξ defined in Eq. (4.8), whose range is from -1 to 1, to 

quantify the Lode angle. Wilkins et al. [48] was first to introduce the effect of Lode angle 

on ductile fracture, where the function  εf (T*, ξ) was taken to be symmetric with respect 

to ξ. Here we follow Xue and Wierzbicki [88] and assumed εf  (T*, ξ)  takes the following 

form 

      ])1(1))[()(()(),( /1*0*1*1* nn

f TTTT
fff

     (4.11)  

where a symmetric function of ξ is used to interpolate the value of εf between two 

bounding values  
1

f
 and

0
f

.  The two bounding curves, )( *1 T
f

 and )( *0 T
f

 given 

by Eq. (4.12), can be calibrated by conducting simple mechanical tests: ξ =1 for notched, 

round tensile specimens and ξ =0 for flat-grooved plates under tension and the thin-

walled torsion specimen. Calibration of parameter n requires performing additional tests 

using specimens having ξ values between zero and one, which can be done by conducting 

combined torsion-tension tests of thin-walled cylindrical specimens.  
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Fracture is assumed to have initiated at a material point once the failure criterion 

is reached. The post-initiation softening process needs to be considered in order to model 

crack propagation. As illustrated by Li et al. [89], because the finite element has a finite 
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size, additional work is needed to propagate the crack through the element, i.e., the 

element gradually loses its strength as crack grows through it. A mesh-independent, post-

initiation material degradation model based on an effective plastic displacement (uf) is 

available in ABAQUS [79] and was adopted in this study. The element was removed 

when it was fully degraded (stresses being reduced to zero).  

The plasticity and ductile fracture models described above were implemented into 

ABAQUS/Explicit via a user defined subroutine VUMAT following the a Backward-

Euler procedures developed by Kim and Gao [90] and Gao et al. [69]. 

 

 

Figure 4. 1 Sketches of a smooth round bar, a notched round bar, a cylindrical 

compression specimen, a grooved plane strain specimen and a torsion specimen. 

 

4.2 Model Calibration for AA 5083-H116 

The plasticity and ductile fracture models described above were calibrated in this 

section for an AA 5083-H116. Except the smooth and notched round tensile bars 

described in Chapter 3, the test matrix also included cylindrical compression specimens, 

grooved plane strain specimens and the Lindholm-type specimen subjected to different 
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tension-torsion ratios, as plotted in Figure 4.1. Detailed descriptions of specimen 

geometries and finite element modeling can be found in [69]. All specimens were 

machined from a 25mm thick plate, with tensile axes oriented transversely to the rolling 

direction.  All tests were performed at room temperature and are considered to be quasi-

static.  

4.2.1 Calibration of Plasticity model 

The stress-strain relationship was obtained from the smooth round bar test as 

given in Chapter 3. The pressure insensitivity of plasticity was proved by comparing the 

numerical predictions and the experimental measurements for the smooth tensile 

specimen and the compression specimen respectively, Figure 4.2. The experimental data 

are represented by black thinner lines while the finite element result is represented by a 

red thicker line. Using the stress strain data obtained from uniaxial tensile test, the 

predicted load-displacement curve of the cylindrical compression specimen fitted well 

with the test data as shown in Figure 4.2(b), which indicated the plasticity behavior of 

this material had no pressure dependency.  

  

Figure 4. 2 Comparison of the numerical and experimental load vs. displacement curves 

for (a) the smooth tensile specimen and (b) the compression specimen. 

(a) (b) 
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Figure 4. 3 Comparisons of load vs. displacement and/or torque vs. twist angle responses 

between the experimental data: (a) the pure torsion specimen, (b) & (c) the torsion-

tension specimen (TT-16) 

 

 

 

 

Figure 4. 4 Yield surface and flow potential in the deviatoric plane 

 

TT-16 TT-16 

(a) 

(b) (c) 
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Torsion and tension specimens exhibit different Lode parameters, thus were used 

to examine the J3 dependency. As found in reference [69], the simulation of pure torsion 

test using stress-strain curve from uniaxial tensile test and the J2-plasticity model over-

predicted the torque vs. twist angle responses, as shown in Figure 4.3(a) (dotted red line), 

which indicated the plastic response is J3 dependent. It was found that parameter b1 had 

strong effect on the predicted torque vs. twist angle response of the torsion specimen 

while parameter b2 had pronounced effect on the predicted axial force-displacement 

response of torsion-tension specimen. The final calibrated material constants were b1 = -

60.75 and b2 = -50. Figure 4.3(b) and (c) compare the predicted and measured torque vs. 

twist angle and axial force-displacement responses. With these material constants 

determined, the yield surface (F) and flow potential (G) in the deviatoric stress plane are 

given in Figure 4.4.  

Other specimens which were not used in the calibration process were simulated to 

verify the calibrated material model. Figure 4.5(a) compares the predicted and measure 

load-displacement curves for a notched round bar, Figure 4.5(b) compares the predicted 

and measure load-displacement curves for a grooved plane strain specimen, and Figure 

4.5(c) and (d) compare the predicted and measured torque vs. twist angle and axial force-

displacement responses for a torsion-tension specimen with a different torsion-tension 

ratio than the specimen shown in Figure 4.3. As can be seen in Figure 4.5, excellent 

agreements between numerical and experimental results were found for all cases. 
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Figure 4. 5 Comparisons of the predicted load vs. displacement and/or toque vs. twist 

angle responses: (a) notched round bar (E-Notch); (b) plane strain specimen (G-Groove); 

(c) & (d) torsion-tension specimen (TT-9). 

 

4.2.2 Calibration of the fracture model 

As described in Section 4.1.2, failure strain is a function of T* and ξ.  However, 

both  T* and ξ at a material point varies during the loading history [69], the average 

values, given by Eq. (4.13), were used.  
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Using the calibrated J2-J3 plasticity model, the load-displacement response of 

each tested specimen was computed. The method to obtain the critical strain was same as 

G-Groove E-Notch 

TT-9 TT-9 

(a) (b) 

(c) 
(d) 
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described in Chapter 3. The histories of stress triaxiality, Lode parameter, and plastic 

strain increment of the critical element were direct outputs, and 
*

avT and ξav were 

calculated according to Eq. (4.13). 

For axi-symmetric tensile specimens, including smooth round bar and all notched 

round bars, 𝜉 in the center element equaled to 1 and T* varied with the notch radius. For 

grooved plane strain specimens, ξ in the center element equaled to 0 and T* varied with 

the groove radius. For the Lindholm-type specimen subjected to pure torsion, both ξ and 

T* equaled to zero in the gage section. For the Lindholm-type specimen subjected to 

combined torsion and tension, ξ and T* in the gage section varied with the imposed 

torsion-tension ratio. 

Fitting the failure strain vs. triaxiality data obtained from ξ = 1 and ξ = 0 

specimens to functions given by Eq. (4.12), parameters (A1, B1, C1) and (A2, B2, C2) were 

calibrated. The calibrated values were A1 =0, B1=0.85, C1=-1.9 (these were different from 

Chapter 3, because a different approach was used), A2 =0, B2=0.64 and C2=-1.9. The εf vs. 

T* curves for these two cases are plotted in Figure 4.6. As can be seen, for both cases the 

failure strain decreased dramatically as the stress triaxiality increased. The difference 

between the two curves indicated the Lode angle dependency, although this dependency 

was not as strong compared to the result obtained by Bai et al. [44] for aluminum alloy 

2024-T351. Using the two εf vs. T* curves and the torsion-tension data, which had ξ 

values between 0 and 1, the shape parameters n was determined. The orange circular 

symbol in Figure 4.6 shows a data point obtained from a torsion-tension specimen having 

ξ =0.81 and T*=0.31. The calibrated shape parameter for this material was n = 1.31.  
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After the parameters in Eq. (4.11) were calibrated, the 3D failure surface in the 

space of ξ and T* was fully defined. Figure 4.7 shows the 3D failure locus by using the 

calibrated parameters A1 =0, B1=0.85, C1=-1.9, A2 =0, B2=0.64, C2=-1.9, and n = 1.31. 

 

 

Figure 4. 6 Failure strain vs. stress triaxiality. 

 

 

Figure 4. 7  3D plot of the failure locus. 
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4.3 Fracture Specimen and Residual Stress Generation 

Here we employed the LOPC approach and used two pairs of compression 

punches to generate various residual stress fields in C(T) specimens. In the numerical 

analysis, the residual stress field was obtained by conducting finite element simulation of 

the out-of-plane compression process. After the residual stress field was generated, 

fracture tests of C(T) specimens having positive and negative residual stresses were 

conducted and simulated numerically.  

 

Figure 4. 8 Geometry of the plane-sided C(T) specimen (mm). 

 

The 1/2T C(T) specimens (thickness: 12.7 mm) were used in fracture tests. The 

specific design utilized in this study was modified from the standard design specified by 

ASTM-E1820 as a means of applying controlled residual stresses. The aim was to 

introduce residual stresses into the C(T) specimen by compressing the two faces with 

cylindrical punches to a specified displacement to produce a pair of permanent 
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depressions on both faces of the specimen. Figure 4.8 shows the geometry of the C(T) 

specimen. 

4.3.1 Experiment design 

From the analyses performed by Mahmoudi et al. [43], the size and position of the 

punching tools had strong influence on the magnitude and distribution of the residual 

stress field. Thus one can tailor the residual stress field at the crack tip by varying the 

position of the set of depressions relative to the crack tip. Mahmoudi et al [43] conducted 

two series of tests, one involved single pair of compression tools which place punches 

directly along the line of crack, the other one used double pairs of punches. To avoid the 

direct contact of punches on the material in the crack growth plane, only double pairs 

punch LOPC method was adopted here. The position of punches are illustrate in the 

Figure 4.9. When the punches are ahead of the crack tip, Figure 4.9(a), positive residual 

stress will be generated; and negative residual stress will be generate for punches behind 

of the crack tip, Figure 4.9(b).  

 

 

Figure 4. 9 Punching tool positions 

 

(a) (b) 
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A series finite element analyses were conducted first to determine the diameter, 

applied displacement, and locations of each depression, in order to obtain larger residual 

stress influenced region. From these analyses, the 8.89 mm punch radius was selected and 

the punch position was chosen to be 1/ Rx  and -1, 2.1/ Ry , where x  and y  are 

the distances from the punch center to the crack tip parallel and normal to the crack 

growth direction respectively and R is the radius of the punch.   

4.3.2 Mechanical Test Preparation 

With the aid of the above analyses, fixtures were designed for use in side 

compression. The specimen was sandwiched between two guide plates.  The guide plates 

were aligned with the specimen by threading two pins through one guide plate, the pin 

loading holes of the specimen, and through the other guide plate.  These guide pins 

ensured consistency in locating the side compression indentations between specimens.  

Two side compression punches (one on either side of the crack plane) were placed in the 

top guide plate and two mating punches were placed in the bottom guide plate.  Once 

assembled, the compression force was applied to the top punches while the bottom 

punches remained fixed. Sets of fixtures were designed and machined for both the

1/ Rx  and 1/ Rx configurations ( 2.1/ Ry ). Figure 4.10 illustrate the schematic 

of side compression fixture. 

4.4 Experimental and Numerical Results 

In this section, the results of the experiment and numerical analysis for the 

fracture specimen with or without residual stresses are presented and compared.  
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4.4.1 C(T) specimens without residual stress 

The plane-sided C(T) specimen was considered first. Due to symmetry of the 

geometry and the boundary conditions, only a quarter of the specimen was meshed. The 

element size along the crack path was 0.254 mm in all three directions. The eight-node, 

isoparametric, brick elements with reduced integration were used in the analysis. Figure 

4.11(a) shows the quarter-symmetric finite element mesh and Figure 4.11(b) shows a 

close-up of the crack tip region. 

 

Figure 4. 10 Schematic of side compression fixture 

 

 

Figure 4. 11 Finite element mesh of the plane-side CT specimen 

(a) (b) 
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Figure 4. 12 Fracture surface and stress triaxiality distribution in the plane-sided C(T) 

specimen 

 

 

Figure 4. 13 Comparison of the load-displacement curves for side-grooved and plane-

sided specimens 

 

Side-grooved  

Plane-side  

(a) (b) 
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Figure 4.12 compares the predicted crack profile with the fracture surface of the 

broken specimen and the agreement was very good. A “V” shape crack profile, seen in 

both test and simulation results, showed strong crack tunneling effect. This was due to the 

variation of the constraint in the thickness direction, where the plane stress prevailed at 

the free surface and the plane strain condition prevailed in the center. Figure 4.12 (b) 

displays the stress triaxiality contour on the crack plane, where the stress triaxiality 

decreased from the mid-plane to the free surface. 

The computed and measured load vs. load line displacement curves of the plane-

sided C(T) specimen are compared in Figure 4.13. Good agreement was observed before 

fracture initiation and at the early stage of crack growth. The simulation result slightly 

under predicted the applied force at the later stage. 

In order to promote plane strain constraint along the crack front and obtain more 

uniform though thickness crack growth, the C(T) specimens were side-grooved by 20% 

of the thickness (10% each side). Consequently, a quarter-symmetric finite element 

model was generated for the side-grooved specimen, in which the same element type and 

size were used as those for the plane-sided specimen. With the side grooves, the 

constraint level was significantly raised close to specimen edges and as a result, more 

uniform crack growth (less tunneling) was observed. Figure 4.14(a) compares the 

predicted crack profile with the crack surface of the broken specimen. Figure 4.14(b) 

shows stress triaxiality became almost uniform through specimen thickness due to the 

side grooves.  
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Because the constraint level was raised by the side grooves, fracture became 

easier, resulting in a lower load carrying capacity by the specimen. Figure 4.13 compares 

the load-displacement curves for the side-grooved specimen with that of the plane-sided 

specimen. The load carrying capacity of the C(T) specimen was significantly reduced by 

the side grooves. The model predicted load-displacement curves are also included in 

Figure 4.13, showing good agreements with test data.  

 

 

Figure 4. 14 Fracture surface and stress triaxiality distribution in the side-grooved C(T) 

specimen.  

 

In conducting the experiments, the test was stopped after some amount of crack 

extension and the specimen was broken by fatigue loading. The post fatigue marks were 

used to determine the amount of crack growth. Due to the non-uniform crack growth 

through the specimen thickness, a nine-point average was used to determine the crack 

length. We compared the model predicted crack growth with experimental measurements 

at the same applied load levels and found very good agreements between the two. For 

examples, C(T)-17 had crack extensions of 6.81 mm (measured from post fatigue marks) 

(a) (b) 
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when the test was stopped. The finite element analyses predicted the amount of crack 

extension of 7.11 mm at the same load level.  

4.4.2 Fracture tests with Residual stress  

The C(T) specimens considered hereafter were all side-grooved. In the finite 

element analysis, the cylindrical punches were modeled as rigid surfaces, and a friction 

coefficient of 0.001 (almost frictionless) between the punch and the specimen surface 

was used. The rigid punch was given a displacement slowly normal to the side surface of 

the C(T) specimen and after the reaction force reached the level of the applied load, the 

punch was removed from the specimen surface. 

1)  Tensile residual stress  

Two levels of compression forces, 182 kN and 220 kN, were used in the 

experiments to generate tensile residual stresses. The average total indentation depths 

(after the punches were removed) were 0.083 mm and 0.244 mm for 182 kN and 220 kN 

respectively. The finite element analyses resulted in 0.089 mm and 0.259 mm total 

indentation depths for these two cases.   

Since the LOPC method creates residual stress field by introducing plastic strain 

into structure, too much side compression may results in the crack extension. Several 

methods, such as dye injection and SEM observation of the fracture surface, were used to 

verify if this has happened. From result of the dye and also SEM observations, the tensile 

residual side compression did result in crack initiation and growth when 220 kN load was 

applied. SEM observations also showed clear damage i.e. inclusions broken and pulled 

loose from the matrix.  However, this was not observed for the 182 kN case.   
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The simulation results for both cases confirmed the experimental observations. 

Figure 4.15 shows the crack front region after side compression, suggesting crack did 

extend about 1.5 mm when 220 kN of compression force was employed, whereas crack 

extension did not happen when 182 kN compression force was applied. 

     

Figure 4. 15 Contour plots of the residual stress normal to the crack plane:  (a) 220 kN 

side-compression, (b) 182 kN side-compression (stress unit in psi) 

 

The contours of residual stresses normal to the crack plane for both cases are 

shown in Figure 4.15. The high positive residual stress was confined in a small region 

close to the crack tip, within about 1.3 mm from the crack tip, and the residual stress 

distribution was fairly uniform along the crack tip except in the region close to the free 

surface. Figure 4.16 displays the variation of the residual stress (σ22) ahead of the crack 

front, showing that the residual stress decayed as the distance from crack tip increased. 

As can be seen, 220 kN side compression generated only slightly larger residual stress 

than 182 kN side compression did and the residual stress at the mid-plane was larger than 

at the specimen edge. Since the purpose was to study the residual stress effect on the 

fracture toughness, appropriate values of the compression force were used so that the 

unwanted crack growth during side the compression process was avoided. 

(a) (b) 
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Figure 4. 16 Residual stresses (σ22) distributions ahead of the crack tip at the mid-plane 

and the specimen edge 

 

   

Figure 4. 17 Triaxiality distribution under 182 kN LOPC (tensile residual stress) 

 

Tensile residual stress not only raises the crack driving force but also introduce 

additional crack-tip constraint [91, 92]. Figure 4.17(a) shows the distribution of triaxiality 

in the crack front region under 182 kN LOPC force and Figure 4.17(b) shows the 

variation of the triaxiality ahead of the crack at the mid-plane.  

(a) (b) 
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After the residual stress fields have been generated in the specimens, finite 

element analyses of the compact tension tests of these specimens were carried out. Figure 

4.18 compares the model predicted load-displacement curves with experimental records 

for the as-received specimen as well as the specimens with tensile residual stress field. 

The numerical model captured the effect of the tensile residual stress on the fracture 

resistance. The existence of tensile residual stress drastically reduced the fracture 

resistance and lowered the specimen’s load carrying capacity. After crack grew away 

from the residual stress influence area, the features of crack growth became similar to 

those exhibited by the virgin specimen.   

 

Figure 4. 18 Comparisons of the computed and measured load-displacement curves for 

C(T) specimen without residual stress and with tensile residual stress  

 

2) Compressive residual stress 

When side-compression was applied behind the crack tip, crack closed and the 

crack surfaces contacted each other. In finite element analysis, to prevent crack surface 

As-received  

182 kN LOPC 

220 kN LOPC  
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penetration, a rigid surface was added to the symmetric plane behind the crack tip. The 

finite element analysis results showed that the high compressive residual stress region 

was at the initial EDM notch (behind the fatigue pre-crack front) and the residual stress 

distribution was not as uniform as tensile residual stress case, Figure 4.19 (a). Figure 4.19 

(b) and (c) show the variations of the residual stress (σ22) and the triaxiality with the 

distance in the crack growth direction (the crack tip is at x = 0) at the mid-plane 

respectively. 

 

 

 

Figure 4. 19 (a) Contour plot of the residual stress normal to the crack plane; (b)&(c) 

variation of the residual stress (σ22) and the triaxiality with the distance in the crack 

growth direction respectively (compressive residual stress) 

(a) (b) 

fatigue pre-crack 

front 

(c) 
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Compressive residual stresses reduced the constraint level at the crack front 

region and tent to close the crack. Consequently, the compressive residual stress 

increased the fracture resistance. Figure 4.20 compares the load-displacement curves of 

the specimen with compressive residual stress field generated by 220 kN side 

compression with the as received specimen. Included in the Figure are also comparisons 

between the model predictions and the experimental measurements. Again, good 

agreement was observed. 

 

Figure 4. 20 Comparisons of the computed and measured load-displacement curves for 

C(T) specimen without residual stress and with compressive residual stress.  

 

4.5 Concluding Remarks 

In this chapter, the plasticity and ductile fracture behaviors of an AA 5083-H116 

were studied through a series of experiments and finite element analyses. This material’s 

plasticity behavior was shown to be J3 dependent. A J2-J3 dependent plasticity model was 

calibrated and validated by a series of experimental tests and numerical analyses.  

220 kN LOPC 

As-received  
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Xue-Wierzbicki ductile failure criterion based on the damage parameter defined 

in terms of the accumulative plastic strain as a function of the stress triaxiality and the 

Lode angle was implemented and the detailed model calibration process was described. 

With the calibrated model parameters, the 3D fracture locus was plotted in the space of 

stress triaxiality and Lode parameter. For this material, increasing stress triaxiality greatly 

reduced the failure strain while change in Lode parameter did affect the failure strain but 

the effect was not as strong. The plasticity and ductile fracture models were shown to 

have the ability to predict the crack growth in C(T) specimens with and without side-

grooves.  

In the second part of this investigation, a local out-of-plane compression approach 

was used to generate residual stress fields in C(T) specimens and these residual stress 

fields were quantified by finite element modeling of the side compression process. 

Tensile residual stress not only increased the crack driving force but also raised the 

constraint level in crack tip region, which resulted in lower fracture resistance. 

Compressive residual stress had the opposite effect. The numerical results, such as load-

displacement curves and crack front profiles, were compared with experimental 

measurements and good agreements were observed. The presented fracture model can be 

further extended to predict the fracture behavior of welded structures where the residual 

stress field can be included in the analysis using the eigenstrain method.   
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CHAPTER V  

AN EXTENDED GTN MODEL 

In this chapter, a new extended GTN model is proposed by combining the damage 

mechanics concept of Lemaitre and Lippmann [52] with the GTN void growth model. In 

this model, two damage parameters, the volumetric damage (void volume fraction) and 

the shear damage, were coupled into the yield function and flow potential. The evolution 

law for void volume fraction remained the same as in the original GTN model and a new 

shear damage evolution law was proposed. Separate localization criterion was introduced 

for volumetric damage and shear damage and material failure was said to have occurred 

if the total damage parameter (a combination of volumetric damage and shear damage) 

reached one.  

The extended model is presented after the discussions of the drawbacks of the 

existing models. The effectiveness of the new model was illustrated through a series of 

numerical tests that compared its performance with existing models in the literature. Next, 

the new model was applied to predict the ductile fracture behavior of a beta-treated 

Zircaloy-4, where the elastic-plastic response of the undamaged material exhibited 

tension-compression asymmetry and was described by a recently developed J2-J3 model 

(Zhai et al., 2013). The material constants involved in the model were determined based 

on the experimental observations reported by Cockeram and Chan [93, 94] as well as 

model calibrations using experimental data reported in Zhai et al., [95]. The predicted 
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failure initiation and propagation behavior and load-displacement response of specimens 

experiencing a wide range of stress states were compared with experiments.  

5.1 Micromechanical ductile failure models 

In this section, the drawbacks of the existing models are discussed first. A new 

extended GTN model is subsequently proposed in order to overcome these drawbacks. 

5.1.1 Drawbacks of the existing models 

As described in Chapter 2, the GTN model is incapable of predicting damage 

under low triaxiality where shear dominates. Xue [36] and Nahshon and Hutchinson [37]  

proposed similar idea of modification in the GTN model to incorporate the shear-induced 

damage. Although the above models have shown improvements in the prediction of shear 

dominated failure at zero or low, positive triaxiality stress states, it has been observed that 

these models have inherent drawbacks [96, 97]. In particular for combined stress states, 

the prediction of the location of fracture, the displacement to fracture, and the equivalent 

plastic strain to fracture were not representative of experimental results. As discussed by 

Nielsen and Tvergaard [96], the additional damage contribution due to the shear 

modification might have too strong effect in some cases where the stress triaxiality was 

not low. This forced them to modify the k parameter in the Nahshon and Hutchinson 

model as a function of the triaxiality. Nielsen and Tvergaard [38] resolved this issue 

through modifications of the k parameter in the Nahshon-Hutchinson model to be a 

function of the triaxiality. This modification defined no shear damage when the triaxiality 

exceeded a cutoff value.   



 

83 

For convenience, their yield function and void/shear damage evolution law are 

restated here, and nucleation is not included for simplicity. 

Original GTN model: 
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Yield function used in the Nahshon-Hutchinson model can be written as same 

form as in the Xue model 
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where damage evolution law is defined as (5.4a) in the Nahshon-Hutchinson model and 

(5.4b) in the Xue model, and (5.4c) show the Lode angle dependent functions 
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The limitations of the existing models are attributed to the following reasons: 

1) Use of a unified single damage parameter  in the  yield  function  

In the original Gurson model, the void coupled yield function was derived from 

the void deformation behavior in a matrix material. Therefore f represented the physical 
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void volume fraction, and the plastic volume change of the material was due to the void 

size change. This basis was kept when the Gurson model was extended to the GTN model. 

The incorporation of shear damage in the modified model was accomplished through the 

introduction of an additional term in the evolution equation of void volume fraction. This 

term does not represent a physical value of the porosity but ensures the detrimental effect 

of void distortion and inter-void linking, associated with the low stress triaxiality. Since 

only one scalar damage variable measures the total accumulation of different types of 

damage in the material in an average sense, it should not be used as same as f, the void 

volume fraction.  

Shear damage, such as void distortion and inter-void linking, alters the shear 

loading capacity. However, it is questionable that shear damage has the same significant 

effects on plastic flow under hydrostatic tension as porosity has. Furthermore, the plastic 

volumetric strains predicted by Eq. (5.3) are too large compared to the original GTN 

model when Ds is high.  

Assuming an incompressible matrix material and the associated flow rule, the 

plastic volume change can be obtained as 
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The plastic multiplier  can be derived from the consistency condition, and the 

void growth rate is determined by Eq. (5.2). 

From the above equations, shear damage contributes to the plastic volume change, 

and therefore the void growth rate. This results in significant overestimates of volume 
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change predictions, which in turn lead to overestimates of void growth. This implicit 

coupling serves as one of the main reasons for the over-predicted damage under high 

triaxiality.  

The models also result in unrealistic plastic volume change especially when the 

stress history is complex. For example, if the material has an initial porosity f0 and is first 

subjected to a pure shear loading, the shear damage Ds will increase but the total volume 

will remain unchanged. If the material is then subjected to a pressure loading, the volume 

will immediately shrink at a rate above the rate suggested by the initial void volume 

fracture. The total volume can shrink beyond (1-f0)V0 because D > 0 at f = 0, Eq. (5.5), 

where V0 represents the initial volume.  

The above discussion suggests that the two failure mechanisms, volumetric 

damage and shear damage, cannot be adequately described using a single damage 

parameter in the yield function.  

2) The Lode angle dependency  

A Lode angle dependent function is used to distinguish the axisymmetric tension 

state and the pure shear state. The original GTN model provides good prediction at high 

triaxiality and no damage under pure shear, the Lode angle dependent function is taken to 

be zero for axisymmetric tension and one for pure shear. Xue [36] showed the ability of 

his modified GTN model to predict cup-cone fracture of the round bar tensile test and 

slant fracture of a C(T) specimen, indicating the necessity of the inclusion of the Lode 

angle dependency in the model. 
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However, the Lode angle dependent functions used in the existing models 

preclude failure at generalized tension or generalized compression with zero pressure. 

From the viewpoint of void ligament reduction, at these stress states, the shortest 

ligament distance can also be reduced under proportional loading without void volume 

change. Therefore, the Lode angle function needs to have a non-zero value to predict 

failure under zero or negative triaxiality. 

3) The void volume dependency  

If shear damage is related to void linkage and void distortion, the void size will 

play an important role in the shear damage accumulation. As discussed above, the void 

volume can have a pronounced effect on the accumulation of shear damage. The simple 

linear relationship between shear damage and void volume fraction used by Nahshon and 

Hutchinson might not be enough. This could be another reason why the Nahshon-

Hutchinson model over-predicts the shear damage under high triaxiality. The power 

parameter q4 used by Xue gives a better way to tackle this issue. Since the unit cell 

analysis made by Xue to determine q4 may not be valid in reality, q4 can be relaxed to a 

free parameter. 

On the other hand, under low or negative triaxiality, the void volume is rather 

small or even tends to reduce, and the mechanism of shear interaction with voids is 

questionable. In fact, the formation of shear localization does not require the existence of 

voids. Any form of weakness can serve as the perturbation to trigger localization. For 

simplicity, it might be better to treat shear damage as not related to void volume fraction, 

in order to predict damage under negative triaxiality.  
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5.1.2 The proposed model 

To overcome the above drawbacks, we proposed a new, extended GTN model. By 

combining the damage mechanics concept of Lemeitre and Lippmann [52] with the 

Gurson-type void growth model, shear damage in the new model only affects the 

deviatoric stress while the only cause of the plastic volume change is the porosity.  

1) A new yield function with two damage parameters 

In Lemaitre’s damage mechanics model [52], one scalar damage parameter D is 

defined to represent the general loss of load bearing area, which is coupled in the 

plasticity model. The loss of load carrying capacity due to damage is reflected in both the 

yield function and the elastic stiffness. In the yield function, the effective stress is scaled 

by 1/(1-D), i.e., 
M
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      (5.6) 

By replacing q1f with D, Eq. (5.6) is equivalent to the Lemaitre model. Since f 

represents the void volume fraction, q1f can be considered as a parameter which 

quantifies the void damage.  
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Under a deviatoric stress state, shear damage, Ds, accumulates in the material. If 

we assume the shear damage only affects the deviatoric stress, and the total damage is the 

combination of void damage and shear damage, we can add a Ds term in Eq. (5.6). 

Therefore, the yield function without pressure can be modified as 
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Under a general stress state, a void will grow due to hydrostatic stress. Assuming 

the softening effect due to void growth takes the same form as given in the original GTN 

model, the yield function of a new, extended GTN model can be expressed as 
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When the total damage (q1f + Ds) becomes unity, the material loses its load 

carrying capacity completely. The new model degenerates to the GTN model when no 

shear damage exists.  

This new model separates contributions from the two failure mechanisms, i.e., 

volumetric damage and shear damage. Shear damage provides a softening effect that 

shrinks the deviatoric yield surface and does not affect the volumetric plastic prediction. 

Volumetric deformation is affected by the porosity in the same way as in the original 

GTN model.  
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2) The shear damage evolution law 

The shear damage evolution law, which features potential contributions from 

several failure mechanisms, might be fairly complex and the preliminary studies 

conducted by the authors attempted to balance the accuracy of the model and the number 

of material parameters to be calibrated. A quantitative relationship between void size and 

shear damage has not been firmly established since shear localization can occur with or 

without the existence of voids. In the material considered in this study (Zircaloy-4), we 

assumed that shear damage was not directly linked to the void volume fraction, and 

regarded void growth as merely one of the sources that weakened the material under 

shear loading.   

The shear damage was taken to be a function of plastic strain and stress state. Let 

s

f  be the failure strain under the pure shear state, a shear damage parameter can be 

defined by a power function as below 
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where 
p

M represents the matrix plastic strain and n is a constant larger than one. Ds is 

equal to one when 
p

M  reaches to s

f . With n is greater than one, the softening effect is 

small at the early stage of plastic deformation and becomes larger as the material 

approaches failure. The incremental form of shear damage can be expressed as 
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To extend Eq. (5.10) to any arbitrary stress state, a function of triaxiality *T and 

Lode angle was introduced as a weight factor 
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where the weight function  *,T  must have unit value under pure shear state. To our 

knowledge, there is no generally accepted form of this function at present.  In this study, 

the weight function was taken to be the same as the  g function used in the Xue model 

[36] for positive stress triaxiality (Eq. (5.4c)). A modification was made to provide the 

ability of predicting shear damage as 6/   with negative stress triaxiality  
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where the constant k in (5.12) represents the value of the weight factor when the stress 

triaxiality is negative and 6/  , which can be calibrated using axisymmetric 

compression test data. In the Xue model and the Nahshon-Hutchinson model, shear 

damage was indirectly related to the stress triaxiality through the void volume fraction 

dependency. For the material (Zircaloy-4) considered in this study, it was found that Eq. 

(5.12) provided an adequate description of the stress state effect on shear damage. While 

the rather simplified form of the weight function given by Eq. (5.12) worked reasonably 

well for the material considered in this study by being able to capture the damage 

evolution process in various specimens and reproduce the experimental data, further 

investigation needs to be dedicated to explore different forms of the  *,T  function. 
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3) Evolution of volumetric damage 

The volumetric damage is due to the increase of void volume. The evolution 

equation for void volume fraction is the same as in the original GTN model described in 

Section 5.1.1. 

4) Separate criteria for initiation of localization caused by the two types of damage 

The criterion for onset of localization plays a significant role in the prediction of 

failure initiation and propagation. After the onset of localization, damage increases 

rapidly and the softening process accelerates so that material loses its load carrying 

capacity quickly. The f*-function described in Chapter 2.3 is a simple way to deal with 

the localization caused by void volume increase.  

For the two kinds of damage discussed above, when triaxiality is high, volumetric 

damage (increase of void volume) triggers localization, but when triaxiality is low, shear 

damage often triggers localization (shear band). For example, in a round, tensile bar, the 

stress triaxiality is high at the center and low at the specimen surface. Void volume 

increase leads to material failure at the center, and shear damage causes material failure 

near the specimen surface, resulting in a cup-cone fracture surface. Consequently, a 

separate localization criterion can be established for each of the two damage mechanisms. 

Under the situation that void damage grows faster than shear damage, the porosity 

reaches the critical value first and triggers localization, and vice versa. The competition 

between the two localization mechanisms, influenced significantly by the stress state, 

results in a different mode of fracture and different appearance of the fracture surface.  
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In this study, localization caused by void damage was modeled the same way as 

described in Chapter 2.3 using the f*-function. The shear damage evolution law was 

selected so that the localization effect was already reflected. For common ductile metals 

and alloys, the softening induced by shear damage increases slowly when the plastic 

strain is small and accelerates when 
p

M  approaches s

f , so the n-power in the shear 

damage definition is usually greater than 4. The parameters s

f and n determines shear 

localization. 

5) Summarization of the extended GTN model 

The following equations summarize our extended GTN model 

   021
2

cosh2
2*

1
2*

1

2


















 ss

M

kk

M

e DDfq
q

fq







; 

ij

p

ij n   ;  
ij

ijn



  

ng fff   ;      p

kkg ff   1 ; p

MNn Af   ;     






















 


2

2

1
exp

2 n

n

p

M

n

n
N

SS

f
A




;    

 
fc

c

c

cf

c
c

fff

ff

ff
ff

fq
f

f

f



















for 

for 

1 1
* ;    (5.14)

 

  p

Ms

f

n

n

s
s

Dn
TD 


 

1

*,



 ;        

sDfqD  *

1 ;        p

ijij

p

MM qD  
1/1 .   



 

93 

where D is the total damage parameter. When D reaches unity, the material is said to 

have completely failed.  

6) Matrix plasticity behavior 

For an isotropic material in general, the yield function and flow potential should 

be functions of the hydrostatic stress as well as the second and third invariant of the 

deviatoric stress tensor, J2 and J3 ([69] and references therein). If the material exhibits no 

pressure sensitivity or Lode dependency, the J2 flow theory is usually used to describe the 

plastic response. In the original GTN model, the matrix plasticity behavior follows the J2 

flow plasticity theory, where the equivalent stress e  is the von Mises stress defined as 

e  = 23J .  

5.2 Single Material Point Test 

To illustrate the effect of the modifications presented above on the predicted 

material behavior, a series of numerical tests were conducted and the results were 

compared with the original GTN model as well as the Xue model and Nahshon-

Hutchinson model.  

5.2.1 Analysis procedure 

For proportional loading histories, the stress tensor can be represented by a load 

proportionality factor ~  multiplied by a constant tensor ijR . The designated stress 

triaxiality and Lode parameter can be obtained by choosing appropriate ijR  values. 
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A load-controlled process using ~ as the loading parameter is difficult to achieve 

because of the softening effect. Instead, an algorithm was developed to apply the plastic 

multiplier incrementally and compute ~ and the internal variables 
p

M ,  f and sD at each 

step accordingly. 

To illustrate this process, we started with the consistency condition 

0
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where the rates of internal variables 
p

M , f and sD  can be written as functions of  . 

Substituting 
p

M , f and sD in (5.15) results in 
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where H is the hardening modulus 
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For a given stress state where the ratios between stress components are fixed, Eq. 

(5.16) can be written as (5.18a) and the increment of ~ can be obtained by (5.18b) 
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Eq. (5.18b) can be solved numerically. This was done in MATLAB using a 

forward Euler integration scheme. The increment size was reduced until the solution was 

converged. The initial values of ~  at the onset of plastic deformation ( 0 ) were 

solved from Eq. (5.8). 

The details of the procedures described above to maintain the stress triaxiality and 

the Lode parameter at constant values during the loading history are given in Appendix A.  

5.2.2 Numerical examples 

In the numerical examples presented in this Section, the matrix material was 

assumed to follow the J2 flow plasticity theory and obey a power-law hardening, true 

stress-strain relation 
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    (5.19) 

Here the material parameters were taken to be 0/E = 300 and N = 0.1, where E,

0 and N represent the Young’s modulus, yield stress and hardening exponent 

respectively. The damage related parameters for extended GTN model are listed in Table 

5.1, with no consideration of void nucleation.  

Table 5.1 Model parameters for extended GTN model used in the single material point 

analyses 

1q

 

2q

 

0f

 

cf

 

ff

 s

f  n k 

1.5 1 0.005 0.1 0.25 1.4 5 0.7 
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For comparisons among the current model and the Xue model, the Nahshon-

Hutchinson model, and the original GTN model, the same matrix material constants and 

volumetric damage parameters were adopted in the numerical analyses. Specific 

parameters used to define shear damage contribution in the Xue model and the Nahshon-

Hutchinson model were chosen to ensure these models predict similar behaviors as the 

current model under the pure shear condition. The parameters chosen were k = 3 for the 

Nahshon-Hutchinson model and 

3q

= 1.8 and 

4q

=1/3 for the Xue model.  

1) Case 1 – Comparison of model predictions under generalized shear loading 

For generalized tension (uniaxial tension + hydrostatic stress) where T* > 0 and θ 

= -π/6, there was no difference among predicted results from the four models. However, 

under generalized shear (pure shear + hydrostatic stress) where θ = 0, the models 

predicted different behaviors. Here comparisons were made at three levels of stress 

triaxialities, T*= 0, 0.7 and 1.2. Figure 5.1 shows the effective stress 

e

 versus matrix 

plastic strain 

p

M

 response generated by the four models, where the black solid curve 

represents the result of the current model and the blue, red and green dash lines represent 

the results of the Xue model, the Nahshon-Hutchinson model and the GTN model 

respectively. 

For the pure shear case (θ = 0, T*=0) shown in Figure 5.1(a), the predictions of the 

current model, the Xue model, and the Nahshon-Hutchinson model showed little 

difference prior to shear localization. These three modified GTN models resulted in 

similar material softening behavior caused by shear damage. In contrast, the original 

GTN model did not predict any damage as expected.  
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The difference between the current model and the other two modified models was 

apparent as the stress triaxiality increased. Figure 5.1(b) displays the results for T* =0.7 

and Figure 5.1(c) displays the results for T* =1.2. Results of the Xue model and the 

Nahshon-Hutchinson model both predicted significantly higher damage than the current 

model and the GTN model. But as discussed in Chapter 5.1.1, the shear damage 

corrections introduced in the Xue model and the Nahshon-Hutchinson model were too 

strong at high triaxiality levels.  On the other hand, the predicted softening effect by the 

current model lied between the results from the original GTN model and the Xue and 

Nahshon-Hutchinson models. As the triaxiality level increased, the predictions of the 

current model approached the GTN model. With the new model, shear damage governed 

the failure behavior when the triaxiality was low. As the triaxiality increased, the 

dominant failure mechanism shifted to void growth and coalescence. At high triaxiality 

levels (for T* >1.2 here), void damage was dominant, and the shear effect was negligible. 

This also matched findings by numerous researchers that the original GTN model worked 

well under high stress triaxiality conditions. 

Material ductility reduces as the stress triaxiality increases. Figure 5.2 shows the 

predicted effective stress versus matrix plastic strain responses by the current model at 

three T* levels. As T* increased, the softening behavior became more pronounced and the 

onset of material failure occurred earlier. 
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  (a)          (b) 

 

         (c) 

 Figure 5. 1 Comparison of the effective stress versus matrix plastic strain response 

between the current model (New), the Xue model, the Nahshon-Hutchinson model (NH), 

and the GTN model under generalized shear condition with different stress triaxialities. 

 

 

Figure 5. 2  The predicted effective stress versus matrix plastic strain responses by the 

current model at three T* levels. 

 

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5

New

Xue

NH

GTN

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5

New

Xue

NH

GTN

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5

New

Xue

NH

GTN

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5

New

θ = 0, T*= 0 θ = 0, T*= 0.7 

 

θ = 0, T*= 1.2 

 

θ = 0 

T*= 1.2 

 

T*= 0.7 

 

T*= 0 

 

p

M

 

 

p

M

 

 

p

M

 

 

p

M

 

 

0

 e  

0

 e  

0

 e  

0

 e  



 

99 

2)  Case 2 – Effect of the introduction of two separate damage parameters in the yield 

function 

To illustrate the effect of the introductions of two separate damage parameters in 

the yield function, we considered a modified Xue model, where the volumetric damage 

and shear damage parameters present separately in the yield function as shown in Eq. 

(5.8), and compared the numerical predictions with the original Xue model. Figure 5.3 

plots the 

e

 versus 

p

M

 responses under generalized shear (θ = 0) for the T* = 0, 0.7, and 

1.2 cases, where the results of the modified Xue model, the original Xue’s model and the 

GTN model are displayed in black, red and green lines respectively. For pure shear 

loading (T* = 0), since the volumetric damage did not grow, the modified Xue model and 

the original Xue model became the same, Figure 5.3(a). The modified Xue model 

predicted less softening effect and delayed material failure compared to the original Xue 

model, Figs 5.3(b) and 3(c). It is worth noting that, unlike the new model developed in 

this study, the modified Xue model still predicted significant shear damage effect under 

high stress triaxiality level.  

Figure 5.4 compares the void growth rates predicted by the modified Xue model, 

the original Xue’s model and the GTN under θ = 0 and T* = 0.7, which clearly indicated 

that the void growth rate predicted by using Eq. (5.8) was much slower than the original 

Xue model. In particular, the modified Xue model predicted almost the same void growth 

rate as the GTN model in the early stage of loading while the original Xue model 

predicted a much accelerated void growth rate.  
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(a)      (b)  

 

Figure 5. 3 Comparison of the effective stress versus matrix plastic strain response 

between the modified Xue model and the original Xue model under generalized shear 

condition with different stress triaxialities.  

 

 

 

Figure 5. 4 Comparison of the void growth rates predicted by the modified Xue model, 

the original Xue’s model and the GTN under θ = 0 and T* = 0.7. 
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3)  Case 3 – Failure under negative stress triaxiality  

Under very low or negative stress triaxiality, the void growth mechanism is 

suppressed, and shear damage becomes the driver for material failure. This case study 

illustrated the capability of our proposed model to predict damage and failure under these 

conditions. The loading conditions considered were for T*= -1/3 with three different Lode 

angles: θ = -π/6, θ = -π/12, and θ = 0. The predicted 

e

 versus 

p

M

 and f versus 

p

M

 

responses are shown in Figure 5.5. The model predicted ductile failure even when the 

triaxiality was negative and the void tended to close (Figure 5.5(b)). From Figure 5.5(a), 

the θ = -π/6 case gave the highest failure strain while the θ = 0 gave the lowest failure 

strain. This difference in the predicted ductile failure behavior was determined by the 

parameter k introduced in Eq. (5.12). 

 

    

(a)      (b) 

Figure 5. 5 Predicted effective stress versus matrix plastic strain and void volume fraction 

versus matrix plastic strain responses under negative stress triaxiality (T*= -1/3) and 

different Lode angles. 
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5.3 Modeling the ductile fracture behavior of a beta-treated Zircaloy-4 

In this Section, the newly extended GTN model described above was calibrated 

for a beta-treated Zircaloy-4 and used to predict damage and fracture of a variety of 

specimens. 

5.3.1 Material 

The beta-treated Zircaloy-4 considered in this study is the same material studied 

by Zhai et al [95] and Zhang et al [98]. The chemical compositions of this material are 

listed in Table 5.2. All the specimens were extracted from wrought material in the 

longitudinal direction and tests were conducted at room temperature and quasi-static 

loading rate.  The Zircaloy-4 was heat-treated to produce a random texture on a 

macroscopic scale and is considered isotropic in this study. The Young’s modulus of the 

material is 99.6 GPa and the Poisson’s ratio is 0.34. 

Table 5.2  Nominal Chemical Composition of Zircaloy-4 (wt%) 

Element Fe Sn Cr O Zr 

Composition 0.21 1.53 0.11 0.13 Balance 

 

A recent study found out that the matrix plasticity behavior of this material 

exhibited tension-compression asymmetry and followed a J2–J3 dependent plasticity 

model [95]. According to this model, the definition of equivalent stress was modified as 

3/1

31

2/3

21 )33( JbJce                   (5.20) 

where b1 is a function of 
p

M  as defined by Eq. (5.21) and 
3/1

11 )127/2/(1  bc  
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2.21 b                                 when  1.0p

M  

2.2)1.0(3.171  pb      when  2.01.0  p

M     (5.21) 

8.41 b                                  when   2.0p

M  

Figure 5.6(a) illustrates the yield surface giving by the J2-J3 model as the 

parameter b1 takes different values. When b1 is zero, the model becomes identical to the 

Mises plasticity model. When b1 is greater than zero, the yield stress in compression will 

be larger than the yield stress in tension. Figure 5.6 (b) shows the stress strain curve of 

the matrix material under tension. Details of this plasticity model can be found in [95].   

               

(a)                                                                    (b) 

  

Figure 5. 6 (a) Yield surface of the matrix material as b1 takes different values, (b) tensile 

stress-strain curve. 

 

Cockeram and Chan [94] conducted in-situ experimental studies over a range of 

positive stress triaxialities on beta-treated Zircaloy-4 and Zircaloy-2. Several important 

void formation and damage evolution characteristics observed in their experiments were 

utilized to determine the material constants in the void model. The material was initially 

void-free. Fracture was observed as a process of void nucleation, growth and coalescence. 

b1 = 0 
(Mises) 
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The lath boundaries for beta-treated Zircaloy-4 were covered with laves phase particles 

that are localized sites for void nucleation. Voids were previously observed to nucleate on 

these precipitates located at lath boundaries. Void nucleation might also occur within the 

lath at the intersection of slip bands. Void coalescence generally resulted in the formation 

of larger elongated voids or microcracks. Many lath boundaries were observed to be 

dotted with rows of micron-sized voids, whose coalescence eventually would lead to the 

formation of grain boundary microcracks.  

The experimental studies by Cockeram and Chan [94] also indicated that the 

critical local strain at the initiation of void nucleation was almost constant for all the 

stress states studied. The strain to failure was shown to be controlled by the process of 

void growth and coalescence that was strongly dependent on stress-state.  

In the material modeling, we tried to correlate the void related material constants 

to the experimental observation. It must be pointed out though, f should be regarded as an 

effective void volume fraction, which was not correlated to the actual void size. The void 

distribution in the material was highly non-homogenous, mainly located along the lath 

boundaries in the form of micron-sized voids. In the coalescence process, microcracks 

were formed from the linkage of these small voids.  

The initial void volume, 0f , was set to be zero and void nucleation was assumed to 

be strain-controlled. Cockeram and Chan [93] found that void nucleation process in the 

tensile specimens was observed to occur at the UTS and beyond. From the uniaxial 

tensile tests conducted in this study, the strain value when necking occurs was around 0.1, 

which can be regarded as the mean strain for void nucleation, n . It was observed that 
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once the voids were nucleated, little growth was required before the voids coalesce. 

Therefore, we set the critical porosity cf  to be slightly larger than nf . Other parameters 

were calibrated by matching the finite element analysis results to experimental obtained 

load-displacement response. 

5.3.2 Specimens 

This study analyzed numerical models of smooth round tensile bars, notched 

round tensile bars, cylindrical compression specimens, the Lindholm-type torsion 

specimens subjected to pure torsion and combined torsion-compression, the flat notched 

tensile specimens, and the flat grooved plane strain tensile specimens. Figure 5.7 shows 

sketches of these specimens. The experimental results for the testing of these specimens 

were reported in [95, 98].  The diameter of the gauge section of the smooth round tensile 

bar was 12.7 mm and the gauge length was 50.8 mm. For the notched round bars, the 

diameter at the notch section was 7.62 mm, the notched radius was 2.54 mm, and the 

gauge length was 25.4 mm. The compression specimen had a diameter of 8.0 mm and 

length/diameter (L/D) ratio of 1.5. The Lindholm-type torsion specimen was a hollow 

cylinder having an inner diameter of 13.1 mm and outer diameter of 25.4 mm. The gauge 

section length and wall-thickness were 2.54 mm and 0.7366 mm respectively. Torsion-

compression tests were performed with a central pin to prevent inward buckling. The flat 

notched tensile specimens had a thickness of 2.286 mm and the gauge section length was 

12.7 mm.  The thickness of the flat grooved plane strain specimen at the groove was 

2.032 mm, the radius of the groove was 2.032 mm, the plate thickness at the specimen 

shoulder was 6.096 mm, and the length of gauge section for this specimen was 12.7 mm. 
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Figure 5. 7  Sketches of a smooth round bar, a notched round bar, a compression 

specimen, a torsion specimen, a flat notched tensile specimen, and a flat grooved plane 

strain specimen.  

 

5.3.3 Finite element procedure 

ABAQUS/Explicit was used to analyze all the specimens, where the material 

model was implemented via a user defined subroutine VUMAT. A forward-Euler with 

correction return scheme for the stress integration, original proposed by Crisfield [99] 

was adopted. The detailed numerical implementation procedure is given in the Appendix 

B. 

In the finite element analyses, 4-node axisymmetric elements with reduced 

integration (CAX4R) are used for round tensile specimens and the element size is 63.5 

μm  63.5 μm around the mid-plane where failure was expected to occur. Three-

dimensional, 8-node brick elements with reduced integration (C3D8R) were used for all 

other specimens, where similar element size was adopted in critical regions. To improve 

model efficiency, symmetry conditions were applied whenever available. Figure 5.8 

shows typical finite element meshes of a round tensile specimen, a notched round bar 

tensile specimen, a compression specimen, a torsion specimen, a flat notched tensile 

specimen, and a flat grooved plane strain tensile specimen. For compression tests, the 
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compression platen was modeled as a rigid surface, and frictional surface contact 

modeled the interaction between the platen and the specimen. Since the exact friction 

coefficient was unknown and difficult to obtain, a value of 0.08 was used in the finite 

element analysis. 

After the fully damaged material loses the ability to sustain hydrostatic tension 

load and shear load, it still can withstand pressure load. Therefore, special treatment was 

required after the complete failure of material under compressive stress states. 

Completely damaged material retains its bulk modulus for compressive hydrostatic loads. 

This corresponds to a fluid-like behavior. When the failed element under undergoes 

extremely large deformation, computational efficiency is reduced drastically, the element 

will be removed.      
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             (a)                                        (b)             (c)  
 

 

   
                 

               (d)                  (e)                                         (f)                               

 

Figure 5. 8 Finite element mesh of (a) a smooth round tensile specimen, (b) a notched 

round tensile specimen, (c) a compression specimen with L/D = 1.5, (d) a flat notched 

tensile specimen, (e) a flat grooved plane strain tensile specimen, and (f) a pure torsion 

specimen. 
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5.3.4 Results and discussion 

1) Model calibration and verification 

Model calibration followed a three-step strategy. For specimens where the onset 

of fracture was dominated by the void damage mechanism, the calibration of void related 

parameters could be conducted. The shear damage parameters were calibrated using test 

data where fracture was dominated by shear damage. Finally the parameter k in the 

weight function of the shear damage evolution were calibrated using experimental data 

obtained from a specimen with negative triaxiality and 1)( g .  

Table 5.3 lists all calibrated material constants. The values of q1 and q2 were the 

suggested by Tvergaard [54].  Standard deviation of the void nucleation strain, nS , was 

chosen to be a relatively small value to produce a rapid void nucleation process. 

Parameters nf , cf , and ff , were calibrated from the smooth and notched round bar 

specimens. Effective failure strain under pure shear, s

f , and the shear damage softening 

parameter n were calibrated from the pure torsion test. The value of parameter k was 

calibrated using the compression test data.  

 

Table 5.3 Model parameters for Zircaloy-4 

 

1q

 

2q

 

0f

 nf  nS  n  

cf

 

ff

 s

f  n k 

1.5 1 0 0.012 0.02 0.1 0.03 0.08 0.5 5 0.5 
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Figure 5.9 provides comparisons of the load vs. displacement and torque vs. twist 

angle responses among numerical simulations and experimental data for specimens used 

in the calibrations. Since these specimens were used to fit material parameters, the 

extended GTN model with the calibrated model parameters predicted the plasticity 

responses and the onset of fracture very well for all the specimens. 

To validate the calibrated model, the flat notched tensile specimen, the flat 

grooved plane strain tensile specimen and the torsion-compression specimen were 

analyzed. Figure 5.10 provides comparisons of the load vs. displacement among 

numerical simulations and experimental data for the flat notched tensile specimen and the 

flat grooved plane strain tensile specimen respectively. The predictions of the load-

displacement response and fracture onset agreed with very well with experimental data. 

Figure 5.11 shows comparisons of the load vs. displacement and torque vs. twist 

angle responses among numerical simulations and experimental data for the torsion-

compression specimen. This specimen was under negative triaxiality and the Lode angle 

was between pure shear and uniaxial compression. The comparison between model 

prediction and experimental data was reasonably well up until failure initiation. 

Experimental results showed slowly softening after the peak load was reached which was 

not accurately captured by our model. There are several potential explanations. The 

weight function used to describe the stress state effect on shear damage might not be 

adequate. Alternatively, the newly created free surfaces contact and friction prevented 

rapid shear sliding. This behavior could provide some resistance to additional loading but 

was not included in the present model, which responded like a fluid (no shear resistance) 
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after being fully damaged. These effects may be considered in further studies of fracture 

under negative triaxiality in the future. 

 

   (a)      (b)   

   

   (c)      (d)   

 

 Figure 5. 9 Comparison of load vs. displacement or torque vs. twist angle response 

between the experimental data and FEA prediction: (a) Smooth round tensile specimen; 

(b) Notched round tensile specimen; (c) Pure torsion specimen; (d) Compression 

specimen . 
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 Figure 5. 10 Comparison of the computed load vs. displacement responses with 

experimental data for (a) flat notched tensile specimen and (b) flat grooved plane strain 

tensile specimen. 

  

 

 Figure 5. 11 Comparisons between the numerical predictions and the experimental data 

of the torsion-compression specimen: (a) axial force vs. axial displacement; (b) torque vs. 

twist angle 

 

2) Prediction of fracture initiation and propagation 

To further examine the capability of the extended GTN model, prediction of 

fracture initiation, propagation and fracture surface appearance are discussed in this 
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the loading history to show the volumetric and shear damage initiation, accumulation, 

and propagation process.  

For the smooth round bar tensile specimen, as shown in Figure 5.12, the crack 

initiated in the center of specimen where the triaxiality was high. The crack growth 

remained normal to the loading direction initially, was then followed by a slat fracture as 

it approached to the specimen surface, and finally resulted in a cup-cone fracture surface. 

The notched round bar specimen does not show the cup-cone features, Figure 5.13.  

Figure 5.14 shows fracture initiation occurs at the transition region in the pure 

torsion specimen due to strain concentration in this region (only a representative section 

is shown). The crack growth direction was normal to the direction of the applied torque.   

For the compression specimen, Figure 5.15 shows that fracture initiates at the top 

surface where the weight function had a higher value. The crack then propagated towards 

the specimen center, leading a slant fracture surface.  Figure 5.15(a) and (b) are obtained 

using a 1/8-symmetric finite element model while Figure 15 (c) shows the result of the 

full model where a coarser mesh was used to reduce the computational cost. In Figure 

5.15 (d) is shown the picture of a failed specimen, confirming the features of the failure 

process and fracture surface predicted in Figure 5.15 (a)-(c). 

Figure 5.16 shows contour plots of flat notched tensile specimen, which was 

under a similar stress state as notched round bar. Fracture started in the center of the 

specimen, where it had the highest triaxiality, and propagated toward the specimen 

surface. The fracture surface was mostly flat, with a slight potion of slant fracture at the 

notch region where shear damage was caused by high plastic strain. 
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For the flat grooved plane strain specimen, both the stress triaxiality and the shear 

damage weight function had high values in a large region around the specimen center, 

Figures 5.17(a) and (b). Fracture initiated at the center of the specimen and propagated to 

the sides of the specimen with a strong tunneling effect, as shown in Figure 5.17(c). As 

the crack front approached the specimen edge, shear damage was shown to be high in a 

slant plane, leading to the formation of a slant shear lip, Figure 5.17(d). 

Figure 5.18 provides the contour plots of a representative section of torsion-

compression specimen. Similar to the pure torsion test, crack initiation developed at the 

transition region. Crack growth followed a slant direction towards the center of the 

specimen. 

 

   

 

 

Figure 5. 12 Crack initiation and growth in the smooth round tensile specimen: (a) 

contour plot of triaxiality before fracture initiation; (b) contour plot of porosity before 

fracture initiation; (c) contour plot of the weight function after some amount of crack 

propagation;  (d) contour plot of shear damage after some amount of crack propagation; 

(e) final fracture. 

 

(a) (b) (c) (d) (e) 
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 . 

 

 Figure 5. 13 Crack initiation and growth in the notched round tensile specimen: (a) 

contour plot of porosity before fracture initiation; (b) contour plot of effective plastic 

strain after some amount of crack propagation; (c) final fracture.  

 

                           

Figure 5. 14 Crack initiation and growth in the pure torsion specimen: (a) contour plot of 

equivalent plastic strain before fracture initiation; (b) contour plot of shear damage before 

fracture initiation; (c) final fracture. 

 

(a) (b) (c) 

(a) (b) (c) 
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 Figure 5. 15 Crack initiation and growth in the compression specimen: (a) contour plot 

of the weight function before fracture initiation; (b) contour plot of shear damage 

showing slant crack growth from the top of the specimen toward the center of the 

specimen; (c) slant fracture predicted using a full model with a coarse mesh. 

 

(a) (b) 

(c) 
(d) 
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 Figure 5. 16 Crack initiation and growth in the flat notched tensile specimen: (a-d) 

contour plots of equivalent plastic strain, triaxiality, porosity and shear damage before 

fracture initiation; (e) final fracture. 

 

 

 

 

 

 

 

(a) (b) (c) 

(d) (e) 
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Figure 5. 17 Crack initiation and growth in the flat grooved plane strain tensile specimen: 

(a-b) contour plots of triaxiality and shear damage weigh function before fracture 

initiation; (c) contour plot of shear damage after some amount of crack propagation; (d) 

final fracture. 

 

 

 Figure 5. 18 Crack initiation and growth in the torsion-compression specimen: (a-d) 

contour plots of equivalent plastic strain, triaxiality, shear damage weigh function and 

shear damage before fracture initiation; (e) final fracture. 

(a) (b) (c) (d) (e) 

(a) (b) 

(c) (d) 
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5.4 Concluding Remarks 

In this chapter, the GTN model was extended to account for shear-induced 

damage by combining the damage mechanics concept with the void growth model. In 

particular, two damage parameters, the volumetric damage and the shear damage, were 

coupled into the yield function and flow potential. The evolution law for void volume 

fraction remained the same as in the original GTN model and a new shear damage 

evolution law was proposed. Separate localization criteria were introduced for volumetric 

damage and shear damage. Material failure occurred once the total damage parameter 

reaches unity. The effectiveness of the new model was illustrated through a series of 

numerical tests comparing its performance with existing models. As an application, the 

model was employed to predict the ductile failure behavior of a beta-treated Zircaloy-4, 

where the plastic response of the undamaged matrix material exhibited tension-

compression asymmetry, by coupling the proposed damage modeling framework with a 

recently developed J2-J3 plasticity model for the matrix material. The combined plasticity 

and ductile failure model was implemented in ABAQUS via a user defined subroutine. A 

model calibration scheme was presented and the material constants were determined 

based on experimental observations a semi-inverse method of matching the predicted 

load-displacement responses with experimental data for various specimens. The 

calibrated model predicted very well the load-displacement response, fracture initiation 

point, and propagation behavior in a variety of specimens, including specimens that 

exhibited zero or negative stress triaxiality.
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CHAPTER VI  

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, many aspects of ductile fracture have been studied. The conclusions 

from the study are summarized as below: 

1). From the study on the effects of strain rate and temperature on ductile failure, 

the strain-rate dependency and temperature dependency given by the Johnson-Cook 

plasticity and fracture models cannot be generally applied for the AA 5XXX series 

materials, especially in the temperature and loading rate ranges where DSA effect exists. 

For AA 6082-T6, the effect of temperature softening and failure strain increase with 

elevated temperature was well predicted by the Johnson-Cook plasticity and fracture 

models. The triaxiality dependency of ductile fracture was also well defined by Johnson-

Cook fracture model for all the materials studied.  

2). It was observed that AA 5083-H116 displayed strong lode angle/J3 

dependency in its plasticity behaviors, and weak dependency in fracture behaviors. The 

Xue-Wierzbicki fracture model with dependency on both triaxiality and the Lode angle, 

was calibrated with the experimental results and implemented into a user subroutine 

(VUMAT) in ABAQUS. The model was shown to have the ability to predict the crack 

initiation and growth for complex loading cases. 
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3). A local out-of-plane compression approach was used to generate residual 

stress fields in C(T) specimens and these residual stress fields were quantified with finite 

element modeling of the side compression process. Tensile residual stress not only 

increased the crack driving force but also raised the constraint level in crack tip region, 

which resulted in lower fracture resistance. Compressive residual stress had the opposite 

effect. The whole process, from residual stress generation to the breakage of specimen 

was well simulated with the calibrated plasticity model and ductile fracture model. This 

test combined with numerical method proved to be an effective way to study the residual 

stress effect on ductile fracture.  

4). The GTN model was extended to account for shear-induced damage by 

combining the damage mechanics concept with the void growth model. Two damage 

parameters, the volumetric damage and the shear damage, were coupled into the yield 

function and flow potential. Separate localization criterion was introduced for volumetric 

damage and shear damage, and material failure was said to have occurred if the total 

damage parameter reached unity. The effectiveness of the new model was validated 

through a series of numerical tests that compare the new model with existing Gurson type 

models in several aspects: the predicted shear damage under high triaxiality was greatly 

improved compared to the existing models; the void growth prediction was more 

realistic; the model also showed the ability to predict the shear failure under negative 

triaxiality.  

5). The extended GTN model was implemented to study the ductile failure 

behavior of a beta-treated Zircaloy-4, where the plastic response of the undamaged 

matrix material exhibits tension-compression asymmetry and follows a previously 
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developed J2-J3 model. A model calibration scheme was presented. The calibrated model 

predicted very well the load-displacement response and fracture initiation and 

propagation behavior in a variety of specimens, including specimens that exhibit zero or 

negative stress triaxiality. 

6.2 Future work 

Although the extended GTN model in Chapter 5 successfully predicted material 

behaviors under various loading conditions, there are still some remaining issues that 

need further consideration. 

6.2.1 Micromechanical model - a tentative attempt 

The models discussed in Chapter 5 assumed no shear damage under axisymmetric 

tensile loading. This assumption was based on the experimental observation that the main 

failure mechanism under this type of loading was void growth and coalescence, for which 

the original Gurson-type model can predict reasonably good results. However, in the 

absence of hydrostatic tension, the fracture model should have the ability to predict 

failure caused by shear induced damage. This is the reason why we introduced a constant 

k for negative triaxiality to describe failure caused by material shear or distortion at any 

lode angle (Eq. 5.12). This treatment is ad hoc and without physical explanation.  

Under the assumption of no shear damage for generalized tension (θ = -π/6) and 

full shear damage for generalized shear (θ = 0), the case with θ = -π/6 is supposedly the 

upper limit and θ = 0 the lower limit in terms of the failure strain. However, this is not 

always the case.  As shown in the experiments in [80], plane strain specimens (θ = 0) 
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experienced higher failure strain than the notched round bar specimens (θ = -π/6) at the 

same triaxiality level. As we discussed in Chapter 4, in the 3D fracture locus constructed 

in the space of (εf , T*, θ), there should be three limiting cases, θ = -π/6, θ = 0 and θ = π/6. 

It is possible for any of these limiting cases to become the upper or lower bound limit; it 

is also possible that these three curves will intersect with each other when the 3D surface 

is projected into the plane of the equivalent fracture strain and stress triaxiality [44].  

From the above discussion, we can make a further assumption that any type of 

plastic deviatoric deformation can result in damage. Based on this, we proposed a new 

tentative damage model, with the effect of void damage and shear damage fully 

separated. “Fully” here means any type of deviatoric deformation will results in damage, 

and void damage only describes the void size change. Under this assumption, with the 

exception of pure hydrostatic loading, any plastic loading will result in deviatoric 

damage, including the axisymmetric tensile loading where the void is elongated. The 

volumetric damage is caused by void size increase, same as in the other porous models.  

Starting from the model proposed in last chapter, the yield function is not altered 

here since it already has two damage parameters f and Ds: 
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The new model can no longer degenerate to the GTN model except for pure 

hydrostatic loading, when it can be rewritten as: 
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When the deviatoric loading is applied, the void shape will change. Here an 

assumption is made that the void shape will not affect the void growth law. This 

assumption can greatly simplify the model, and is a good approximation prior to the void 

linkage. It can be verified through a cell model study under pure hydrostatic loading with 

different void shape.  

The shear damage evolution law and its weight function are different from the 

extended GTN model given in Chapter 5. As discussed in Chapter 5, the void size should 

affect the shear damage when it is large enough, but the quantitative relationship is 

obscure. Here we adopt the shear damage evolution law proposed in Xue model, with one 

additional parameter:   
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where Q represents the shear damage which is not related to the void shearing effect. If Q 

has a higher value, the void size effect on shear damage will be lower.  

The Lode angle dependency function  g   is simply defined as  

       kkkkgg 













 1

6
11




     (6.4) 

The symmetric assumption about θ is still used as in the previous chapter to 

reduce the model complexity. The parameter k distinguishes the generalized shear (  g   
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= 1) and generalized tension (  g   = k). If k =1, then the material fracture behavior is 

insensitive to the Lode angle; however, it still can predict the failure under zero or 

positive pressure.  

The coalescence criterion is defined as the same as in the Xue model: when the 

total damage (q1f + Ds) reaches the critical value Dc = q1f , the damage accumulation 

speeds up until final fracture.   

The complete theory structure proposed here can be summed in Eq. (6.5):  
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Some preliminary study has been conducted with single material point tests, in 

order to validate the new model proposed above. Table 6.1 lists the constant values that 

are used for the validation study: 
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1q  2q  0f  cf  
ff  3q  

4q  

1.5 1 0.005 0.1 0.25 1.8 1/3  

The same matrix material constants and volumetric damage parameters are 

adopted as in Chapter 5. Deviatoric damage parameters are 3q = 1.8 and 4q =1/3, as are 

used in Xue model to ensure the same behaviors under pure shear.  

This study mainly focuses on the effect of parameters k and Q. Q is set to be zero 

expect for Case 3.  

 Case 1. Effect of the parameter k under zero pressure (T* = 0) 

For generalized shear (pure shear + hydrostatic stress) where θ = 0, the new 

model yields the same results as the original Xue model and, and the model predication is 

insensitive to the parameter k. For any other cases where θ 0, the prediction of the new 

model is affected by the parameter k, which defines the shear damage dependency on the 

Lode angle. Here the results for generalized tension (uniaxial tension + hydrostatic stress, 

θ = -π/6) are presented as one limit case. 

The effect of the parameter k was studied for θ = -π/6, T* = 0 (generalized tension 

+ zero pressure loading conditions) with k =0, 0.5, 1, 1.5. Figure 6.1 plots the resultant 

effective stress e  versus matrix plastic strain p

M . It shows that the higher k is, the lower 

the ductility. For k = 0, the new model degenerates to the Xue model, and there is no 

shear damage. For k =1, the predicted shear damage is the same as the pure shear case (θ 

= 0, T* = 0, plotted as the black dash line). In fact, as can be predicted from Eq. (6.4), the 

Table 6.1. Constants for the tentative model 
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shear damage for k =1 is the same for any Lode angle. Other values of k>1, or k<1 at θ = 

-π/6 corresponds to more or less shear damage compared to the pure shear case. 

      

Figure 6. 1 Comparison of the effective stress versus matrix plastic strain response of the 

prosed model, for k =0, 0.5, 1, 1.5, at θ = -π/6, T* = 0 

 

 Case 2.  Effect of parameter k on fracture locus  

For a specific k value, the critical strain Ec (equivalent strain at the beginning of 

coalescence) can be obtained with any combination of T* and θ, and the 3D plot of 

fracture locus can be generated. Here we studied the fracture loci for k =0, 0.25, 0.5, 1, 2.  

The results are shown in Figure 6.2 (a~e), where the shape of the fracture locus 

changes drastically as k varies. The curve corresponding to the predicted critical strains 

under generalized shear (at θ = 0) stays the same as k varies, and serves as the lower 

bound curve for the fracture locus at k < 1, or the upper bound curve for k > 1. Another 

bound curve of the fracture locus is at generalized tension  (θ = -π/6), which gets lower as  
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 Figure 6. 2 (a~e)The fracture locus at k=0, 0.25, 0.5, 1, 2.; and (f) their projection to the 

T*-Ec plane for θ = -π/6  
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k increases, as shown in Figure 6.2(f) when projected to the T*~ Ec space. The effect of 

the Lode angle on ductility is gradually reduced as the triaxiality get higher. 

It is an interesting observation that the shape of the fracture locus predicted by the 

proposed model is quite similar to that from the macroscopic fracture initiation model. 

When k is smaller than 1 and greater than zero, the shape is a concave, similar to that 

shown in the Xue-Wierzbicki model (Figure 6.3 (a)).When k is equal to 1, the predicted 

fracture locus flattens out (Figure 6.2 (d)), similar to that from the Johnson and Cook 

model (Figure 6.3 (b)).  

 

    

Figure 6. 3 The fracture locus postulated by (a) Xue and Wierzbicki [29]; and (b) Johnson 

and Cook [17]. (figures from [44]) 

 

The symmetric assumption for the Lode angle dependency in Eq. (6.4) also can be 

released if the material behaviors are different for generalized tension (θ = -π/6) and 

generalized compression (θ = π/6), such as shown in Figure 6.4.   

 

(b) (a) 
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 Figure 6. 4  3D Fracture locus of A710 steel [100] (figure from [44]). 

 

 Case 3.  Effect of Q under generalized shear (θ = 0) 

 

 Figure 6. 5  Critical strain. vs. Triaxiality at different Q values (θ = 0 ) 
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generalized shear loading. The results are shown in Figure 6.5. As Q value increases, the 

void size effect on shear damage decreases, and the critical strain curve become flatter.  

If we set initial void volume fraction 0f  = 0, and the Lode angle dependency 

parameter k =1, any value of Q great than zero will give constant critical strain. 

 Summary of the case study 

The tentative model assumes damage can be induced by any deviatoric plastic 

deformation. It is therefore capable of predicting damage under generalized tension with 

zero pressure (unlike the ad hoc modification in Chapter 5). The Lode angle dependency 

parameter k has great effect on the shape of fracture locus. The close correlation between 

the new proposed micro-mechanical model and existing macroscopic fracture models 

indicates the strong potential of this model. The influence of void size effect on shear 

damage can be reduced by the additional parameter Q, which represents the shear damage 

not related to the void shearing effect.  

This model is still under development, and the application and calibration process 

for real materials needs further investigation.  

6.2.2 Other suggestions of future work 

The proposed constitutive model can be improved in some other aspects:  

 Shear damage evolution law 

The proposed model adopts the shear damage evolution law similar to the Xue 

model (Eq. 6.3). A more reliable approach to model void shearing induced damage would 
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be through a cell model study, where the void shape and distribution effects on shear 

damage can be studied.  

 Coalescence condition  

The coalescence condition defined by a critical value of the summation of void 

and shear contribution is just a rough assumption. A better coalescence condition such as 

the one based on the ligament distance shrinkage needs to be defined. Cell model study 

can also be conducted to investigate how the ligament distance shrinks under the 

combination of tension and shear field.  

 Pure shear or simple shear 

Pure shear and simple shear are defined with the same Lode angle and triaxiality; 

however, the material deformation is quite different under the two loading cases. Most 

cell study of void-shearing effect is for simple shear loading. It is questionable to apply 

the same conclusion to pure shear.  

Thus another interesting direction of future study would be a comparison of pure 

shear and simple shear case study, in order to find out appropriate fracture model for 

different deformation modes. 
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APPENDIX A 

SINGLE MATERIAL POINT TEST PROCEDURE 

The following summarizes the procedure of the single material point test which 

keeps the stress triaxiality and Lode parameter constant during the loading history.  

Consider in the principal stress space and let~ be a proportionality factor. The 

mean stress can be expressed as 

  ~

3

1
 kkm         (A1) 

The three principal deviatoric stresses components can be expressed as 

  ~)1(,~,~
321  sss       (A2) 

where   and   are constants which can be related to the stress triaxiality and Lode 

parameter and the three principal stresses can be expressed as 

   ~1,,1
T

σ       (A3) 

Therefore the von Mises equivalent stress can be expressed as 

)1(3~ 2 e  and the stress triaxiality and Lode angle can be related to constant 

  and  through
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For any prescribed T* and  , parameters   and  can be solved from Eq. (A4). 

For  varying from 6/ to 6/ ,  varies from -0.5 to 1. 

The values of   and  together with the value of ~ solved from Eq. (5.18b) 

determines the three principal stresses. Let p

MMMh   / be the tangent modulus of the 

matrix material, the following derivatives are needed to compute the hardening modulus, 

H, Eq. (5.17). 
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APPENDIX B  

STRESS INTEGRATION SCHEME FOR MODIFIED GTN MODEL 

In the numerical implementation of plasticity model, the stress integration method 

can be implicit or explicit. Among implicit methods, backward Euler is the most popular 

because it’s unconditionally stable and relatively easy to implement. However, in the 

Gauss point level, convergence of the backward Euler can be a major issue for complex 

models, e.g. models with coupled hardening and softening parameters [101]. In these 

cases the plastic corrector can have difficulty returning stresses to the yield surface. 

Compared to the backward Euler method, the explicit stress integration method 

can achieve better convergence behavior. However it has two major limitations. First, it 

lacks exact linearization which is required in the full Newton–Raphson method in solving 

the global system. Second, it’s conditionally stable and requires small time increment.  In 

the present study, the explicit finite element solver was used, for which there was no need 

to solve global nonlinear equations, and small time increment was already a prerequisite. 

A forward-Euler with correction scheme, original proposed by Crisfield [99], was 

adopted in Chapter 5. The procedure follows three steps as illustrated below:  

 STEP 1: Determine the initial yield stress 0
σ .  

To implement a forward-Euler scheme in the plastic region, the location of the 

initial yield position needs to be found.  
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If the stress tensor at time t ( t
σ ) lies on the yield surface, t

σσ 0 . Otherwise if t
σ

lies within the yield surface, and at tt  , a strain increment *
ε is applied which results 

in yielding: 

  0 tt
σ ,   0**  σσ

t ,      (B1) 

Here ** : εCσ   is the elastic predictor stress increment. The initial yielding stress can 

be written as  

*0
σσσ  t ,  10         (B2) 

Now the problem reduces to finding .   can be solved by setting the yield surface 

function to zero 

   0*0  σσ t ,         (B3) 

The Newton–Raphson method is used to solve the above formula 
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where a  = 
σ


.  The initial guess of  can be simply taken as   t

t






*0 . 

After the initial yield stress 0
σ is found, the remaining portion of the strain 

increment ε =   *1 ε  can be treated in an elasto-plastic manner.  

 STEP 2: Forward-Euler return.   
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In the elasto-plastic region, the forward Euler scheme is used to compute the 

plastic portion of the strain increment. The key is to find the plastic multiplier  .  

The consistency condition is applied: 
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)(:)(: nεCεεCσ   p ,       (B6) 

where 
σ

n



 . For associated flow rule, an  .  

Substitute Eq. (B6) into Eq. (B5) 

0)(::    HnεCa ,        (B7) 

where H is the hardening modulus 
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The derivatives in Eq. (B8) are defined as in Eq. (A5). 

The rate form of plastic multiplier can be derived from the above 

H
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::
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The incremental form   is obtained through forward-Euler integration, which 

assumes all derivatives are computed at the beginning of plastic loading:  
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Consequently, the stress tensor and internal variables at tt  can be updated:  
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 STEP 3: Further relaxation to the yield surface.  

In general, the stress tensor obtained from the forward-Euler procedure above lies 

outside the yield surface, and needs further corrections back to the yield surface. The 

‘operator splitting’ method proposed by Simo and Ortiz [102] is adopted, which assumes 

fixed total strain and introduces additional plastic strain in order to ‘relax’ the stress 

tensor onto the yield surface.  

For each iteration step of the relaxation, all the derivatives are computed with the 

current values of the stress and internal variables. The stress and internal variables can be 

updated as follows: 
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where )(k is the plastic multiplier increment during the relaxation iteration step k, and 

can be derived from the truncated Taylor series of yield function 
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Combine Eq. (B13) with Eq. (B7) and Eq. (B8), 
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The relaxation process will iterate until convergence is achieved.  

Note: The relaxation step after initial return is the same as the Cutting Plane 

Method (CPM) [103]. CPM computes the derivatives at the trial stress for the initial 

return step, and does not use information at the initial yield point. Since the trial stress is 

usually much different from the real stress, this results in errors in computing internal 

variables, such as p

M  in the Gurson-type model. This error will be magnified once time 

increment is comparatively large. The integration method adopted here avoids this 

problem by using the derivatives at the initial yield point.  

 

 

 


