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ABSTRACT

DNA Microarray technology provides a convenient way to investigate expression
levels of thousands of genes in a collection of related samples during different biological
processes. Researchers from diverse disciplines such as computer science and biology
have found it interesting as well as meaningful to group genes based on the similarity of
their expression patterns. Different clustering algorithms such as hierarchical clustering,
k-means clustering, self-organizing maps have been applied to group of genes with
similar expression patterns. However these traditional clustering algorithms suffer from
various limitations. Beside these clustering algorithms, there are other algorithms to
group similar items together. Ford Fulkerson algorithm which is based on maximum flow
— minimum cut approach is one of them and it is widely used for community discovery in
web graphs. The aim of this research work is, to group genes with similar expression
pattern using two different approaches: one is the k-means clustering combined with
hierarchical clustering and the other is maximum flow — minimum cut approach in

association with Dijkstra’s algorithm to select source and sink nodes.

We use a publicly available microarray data on Adenocarcinoma which is the
most common type of non-small-cell cancers. This dataset is available in the Gene

Expression Omnibus which is a public domain functional genomics data repository. This
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dataset contains samples of five different groups: normal tissue, tissues with EGFR
mutation, tissues with KRAS mutation, tissues with EML4-ALK fusion and tissues with
EGFR, KRAS, EML4-ALK negative cases. We investigate a number of representative
genes from the group of normal tissue and from the group of KRAS mutation tissues
which is also termed as KRAS positive groups in this study. We clustered the genes for
both of these groups. Finally we used Gene Ontology database to find changes in the
enrichment of molecular functions of the genes contained in each cluster discovered by

the above mentioned approaches for both normal and KRAS positive dataset.

We discovered that both of these approaches can group genes with similar
expression pattern together and hence we proposed that these approaches can be used in

future for clustering microarray data.
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CHAPTERI

INTRODUCTION

1.1 Overview

DNA microarray technology which has become a very useful tool to get
information for diagnosis of different diseases often requires algorithms to analyze DNA
microarray datasets accurately. Clustering algorithms play an important role in gene
analysis by separating a dataset of heterogeneous genes into homogeneous groups
containing similar genes. It helps to analyze a group of genes instead of analyzing each
one individually. After getting appropriate clusters, researchers can further investigated
the clusters to find distinct pattern for each cluster as well as find more information about
functional similarities and gene interactions. A large number of algorithms have been
developed for clustering DNA microarray data so far. Tavazoie et al. applied the k—
means clustering algorithm for yeast data [1] and Luo et al. used hierarchical clustering
algorithm in genomic research [2]. Unfortunately both of these algorithms suffer from
some limitations such as the performance of k-means clustering depends of how
efficiently the initial number of cluster is determined and hierarchical clustering

algorithm requires high computational complexity to discover optimal cluster.



There is also another clustering algorithm which uses maximum flow minimum
cut approach which is mostly used in clustering web graph for web community discovery
[3]. Algorithms based on this approach are relatively fast and simple, and have been used
in the past for clustering web graphs [4 —5]. We believe this approach can be used for

gene clustering as well.

In this research work, we propose two approaches for gene clustering which
includes an algorithm that combines both hierarchical clustering and k-means clustering.
The other approach uses the maximum flow minimum cut algorithm. The first approach
first uses the hierarchical clustering to decide the initial number of clusters and then feed
this information to k-means clustering to obtain the final clusters. The second approach
requires a weighted graph. So we represented the DNA microarray data by a weighted
graph where the genes are represented as the nodes of the graph and the weight of the
edges are represented by the Pearson Correlation coefficient value between the
corresponding genes. The graph can be partitioned into two disjoint sub graphs by each
graph cut. The algorithm is applied recursively on the sub graphs until no new cluster can
be discovered. After getting the new clusters from these two approaches, at the end, we
explored the change in enrichment of molecular functionalities of the genes of each

cluster for normal tissue and cancer tissue by using Gene Ontology (GO) annotations.



1.2 Research Goals

The goals of this research work are listed below:

Implementing a combined clustering algorithm that uses hierarchical

clustering and k-means clustering algorithm.

Implementing a clustering algorithm that uses maximum flow minimum cut

algorithm.

Developing software to be used as a platform for the proposed approaches.

Finding an appropriate dataset to be used as the input data source.

Analyzing the change in enrichment of the genes’ molecular functionalities
genes in the clusters discovered by the proposed approaches using Gene

Ontology annotations.

1.3 Organization of the thesis

Chapter 1 introduces the necessity of gene clustering as well as the goals of
this research work.

Chapter 2 explains the background necessary to understand the materials and
methods used here. This chapter discusses about the algorithms used along
with a brief discussion about the Pearson correlation coefficient which we use
as the similarity matric, gene expression and gene ontology.

Chapter 3 gives an overview of previous research works.



Chapter 4 explains the materials and methods used for clustering genes. This
chapter describes in detail about the data set used and also how the algorithms
were used for clustering the genes given in the data set.

Chapter 5 discusses the results of this research work and analyzes the result
using Gene Ontology annotations.

Chapter 6 concludes the research work presented here.



CHAPTER I

BACKGROUND

This chapter describes necessary background concepts related to this work. A
brief description of the gene expression is given. It is followed by the Pearson Correlation
Coefficient which is used as the similarity score among the genes is given in this chapter.
K-means and hierarchical clustering algorithms are also explained in detail along with
Dijkstra’s shortest path algorithm and Ford Fulkerson algorithm. We also discuss about

Gene Ontology which is used for gene enrichment analysis.

2.1 Gene Expression

In gene expression, gene products such as proteins or RNA are created from the
inheritable information contained in a gene [6]. So far traditional molecular biology has
focused on studying individual genes in isolation for determining gene functions, but it is
not suitable for determining complex gene interactions as well as explaining the nature of
complex biological processes. For this purpose, examining the expression pattern of a
large number of genes in parallel is required [7]. DNA microarray technology which is
one of the most important tools now-a-days for the analysis of gene expression has made
it possible to view thousands of genes expression levels in parallel [8]. It is believed that

a group of genes with similar gene expressions are likely to have related gene functions
5



[9]. Hence identifying genes with similar expression levels in different phases of the cell

cycle or in different environmental conditions is an important task.
2.2 Pearson Correlational Coefficient

The Pearson correlation coefficient developed by Karl Pearson from a related idea
introduced by Francis Galton [10 - 11] is a measure of the correlation between two
variables X and Y, giving a value between +1 and —1 inclusive. It is widely used as a
measure of the strength of linear dependence between two variables. In this study, each
variable represents the expression level of a gene which is also referred as an object in

this thesis.

Let’s consider the expression levels of gene X and Y, X = {x;, x2, X3, ceoee..nn. , Xn}
and Y= {y5, V2, ¥3, cevvvvren. , ¥n} Where x; is the expression level of gene x in sample i. The
Pearson correlation coefficient between these genes can be defined as

r= % (xia_x f) (3’1’0; }7> 2.1

n
i=1

where X is the average of values in X, and g, is the standard deviation of these

values.

The values for Pearson correlation coefficient range from -1 to 1. If a linear
equation describes the relationship between x and y perfectly and all data points lies on a
line, with the correlation value 1 it means y increases as x increases and the correlation

value -1 means the completely opposite thing i.e., y decreases as x increases. With a



correlation value 0 it means x and y are completely uncorrelated and there is no linear

relation between them.

There are many ways of theorizing the correlation coefficient. If we consider a
scatterplot of the values of x against y i.e. pairing x; with y;, x, with y, and so on, then the
Pearson correlation coefficient » reports how well we can fit a line to the values as shown

in Figure 2.1.

r=cd -1<r<0

0<r<l r=1

Figure 2.1: Scatter diagrams with different values of Pearson correlation coefficient

()

2.3 Calculating the distance matrix from Pearson Correlation Coefficient

The first step in the hierarchical clustering discussed later is to calculate the
distance between all pairs of object to be clustered. This distance is the opposite of the

similarity. The distance between X and Y can be calculated using the following equation:

distance = 1.0 —r (2.2)

where r 1s the value of Pearson correlation coefficient.
7



2.4 K-means Clustering Algorithm

K-means clustering is a well-known method for cluster analysis which partitions
expression levels of n genes into k clusters where each gene belongs to the cluster with
the nearest mean. Normally, the existing heuristic algorithms are used until the clustering

converges quickly to a local optimum.

Let’s consider a set of expression value of n genes (x;, x»,..., x,). It is a vector
with d-dimension where d is the number of samples in the dataset and k-means clustering
algorithm partitions the n genes into k sets (k< n) S = {S;, Sz, ..., Sk} until the criterion
function converges. Typically, the square-error criterion given in equation (2.3) is used to

measure whether an optimal is reached

K (2.3)
_ 2
E=) > - wl
i=1 XjESi
where E is the sum of the square error for all genes in the data set and y; is the
mean of points in S;. Here for each gene in each cluster, the distance from the genes to its
cluster center is squared and, the squares are summed up. This criterion tries to make the

resulting k clusters as compact and as separate as possible. The clustering process is

summarized in Figure 2.2.
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Figure 2.2: Illustration of the k-means clustering algorithm.

In Figure 2.2 a circle represents a gene and cross represents the centroid of a
cluster of genes. Here step (a) shows the original dataset containing the genes. Step (b)
shows the initial cluster centroids selected randomly. Steps (c) to (f) show the illustration
of running two iterations of k-means. In every iteration, each gene is assigned to the
closest cluster centroid, shown by painting the gene the same color as the cluster centroid
to which is assigned. Then each cluster centroid is moved to the mean of the points

assigned to it.

The Algorithm for k-means clustering is given below:

Input:

e k: the number of clusters

e §:adataset containing n genes

9



Output: A set of k clusters
Steps:

1. arbitrarily choose k genes from § as the initial cluster centers;
2. repeat
a. (re) assign each gene to the cluster to which the gene is the most
related, based on the means value of the genes in the cluster;
b. update the cluster means, i.e., calculate the mean value of the genes for
each cluster;

3. until no change in the clusters take place.
Advantages of using this technique are:

1. It is computationally faster than other clustering algorithm (ex. hierarchical
clustering) with a large number of variables.

2. It produces tighter cluster than hierarchical clustering.
Disadvantage of using this technique is:
It is difficult to select what should be the value of £.
2.5 Hierarchical Clustering

In gene clustering, hierarchical clustering is a method for cluster analysis which
builds a hierarchy of clusters. This clustering method organizes genes in a tree structures

based on their relation. The basic idea is to assemble a set of genes into a tree, where

10



genes are joined by very short branches if they have very high similarity to each other

and by increasingly long branches as their similarity decreases.

The approaches for hierarchical clustering can be classified into two groups:
agglomerative and divisive. The agglomerative approach is a —bottom up” approach
where each gene starts in its own cluster and pairs of clusters are merged as one moves
up the hierarchy. On the other hand, divisive approach is a —tep down” approach where
all genes starts in one cluster and splits are performed recursively as one moves down the

hierarchy. Figure 2.3 summarizes both approaches.

[ a.b.cde ]
Agglomerative

N

v
Divisive

Figure 2.3: Agglomerative and Divisive approaches for hierarchical clustering.
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In hierarchical clustering, the first step is to calculate the distance matrix between
the genes in the data set. The clustering starts once this matrix of distances is computed.
The agglomerative hierarchical clustering technique consists of repeated cycles where the
two closest genes having the smallest distance are joined by a node. In this study this new
node has been termed as pseudo node. The two joined genes are removed from the list of
genes being processed and replaced by the pseudo node that represents the new branch.
The distances between this pseudo node and all other remaining genes are computed, and

the process is repeated until only one node remains.

There are a variety of ways to compute distances while dealing with pseudo node:

centroid linkage, single linkage, complete linkage, and average linkage.

2.5.1 Centroid Linkage

In centroid linkage clustering, an average expression profile also knows as
centroid is calculated in two steps. First, the mean in each sample of the expression
profiles is calculated for all genes in a cluster. Then, distance between the clusters is

measured as the distance between the average expression profiles of the two clusters.

2.5.2 Single Linkage Clustering

In single linkage clustering, distance between two clusters of genes is calculated
as the minimum distance between all possible pairs of genes, one from each cluster. This
method has an advantage that it is insensitive to outliers. This method is also known as

the nearest neighbor linkage. Unlike centroid linkage clustering, once the distance matrix

12



is known, no further distance need to be calculated in single linkage clustering. Hence,

single linkage clustering is much faster and more memory efficient.

2.5.3 Complete Linkage Clustering

In complete linkage clustering, distance between two clusters of genes is
calculated as the maximum distance between all possible pairs of genes, one from each
cluster. The disadvantage of this method is that it is sensitive to outliers. This method is
also known as the farthest neighbor linkage. In complete linkage clustering, once the

distance matrix is known, no more distance need to be calculated.

2.5.4 Average Linkage Clustering

In average linkage clustering, distance between two clusters of genes is calculated
as the average of distances between all possible pairs of genes in the two clusters. In
bioinformatics this one is also known as UPGMA (Unweighted Pair Group Method with
Arithmetic Mean) which is used to produce guide trees for more sophisticated

phylogenetic reconstruction algorithms.

Figure 2.4 shows the algorithms discussed above to find distance between two

clusters of genes.

13



Single Linkage  Complete Linkage Average Linkage Centroid Linkage

Cluster 1 Cluster 1 Cluster 1 Cluster 1
@]
@] @]
O @)
O
o O
O
O
Cluster 2 Cluster 2 Cluster 2 Cluster 2
O Genein acluster == Distance @ Centroid of a
between clusters cluster

Figure 2.4: Different algorithms to find distance between two clusters

Figure 2.5 illustrates an example of hierarchical clustering that uses single linkage

algorithm for calculating distance between two clusters. [12]

‘ N
(K L IRV
AQ | & [ |/ OF)
® O o e\ | e 50
B o e T
B ’,fl Il\ll B ’,fl| ."lll
\ /
ABCDE \_/ 0
- AB[D2 ¢
Y (NFAERE . j AB,C DE
g ! d j DE[ T [0 0 ;
D e
: : ] }

Figure 2.5: Illustration of hierarchical clustering with single linkage algorithm
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In Figure 2.5, black circles represent the genes in the dataset. There are five genes
and the distances between the genes are given in the first table. At step 1, genes that are
close to each other and the distances are re-calculated by using the single linkage
algorithm. This steps repeats until all genes are grouped into one cluster. This procedure
is shown in the dendrogram and length of a branch represents the distance between genes

and clusters.

Advantages of using hierarchical clustering are:

1. Does not require the number of clusters to be known in advance

2. Computes a complete hierarchy of clusters.

Disadvantage is:

1. There is no automatic discovering of —eptimal” clusters.

2.6 Dijkstra’s Algorithm

Let’s consider a weighted directed graph G = (V, E) where V is the set of genes
and E is the set of edges in G. Here also consider that all edge weights are nonnegative
ie., wu,v) > 0 for each edge (u, v) € E. In this study, the weights represent the distance
between the genes. Dijkstra’s algorithm is a graph search algorithm that solves the single
source shortest path problem for G. This algorithm is often used in GPS technology to

find shortest route.

15



In the implementation shown below, Dijkstra’s algorithm maintains a set S of
genes whose final shortest-path weights from the source s have already been determined.
The algorithm repeatedly selects the vertex (gene) u € V' - S with the minimum shortest-
path estimate, adds u to S, and relaxes all edges leaving u. This implementation uses a

min-priority queue Q of vertices, keyed by their distance values, d [13]

DUKSTRA (G, w, )

1. INITIALIZE-SINGLE-SOURCE (G, )

2. §= o/l Initializes the set S to the empty set

3. Q <— V/l Initializes the min-priority Q queue to contain all the vertices
(genes) in V'

4. while Q #¢ // Until Q is not empty

5. u = EXTRACT-MIN (Q) // extract a vertex (gene) u from Q = V-S
6. S'=S8U {u} // add the extracted vertex (gene) u to set S

7. for each vertex v which is adjacent to u

8. RELAX (u,v,w)

INITIALIZE-SINGLE-SOURCE (G, s)

1. for each vertex ve V

2. v.d = oo // initially the shortest-path estimate for node v is infinite

3. v.wr = NIL // v.r means predecessor attribute of v

4. s.d =0 // initially the shortest-path estimate for the source node s is zero

RELAX (u,v,w)
16



1. ifvid>u.d+ w(u,v) // if any path found which is shorter than the previously

found shortest path
2. v.d = u.d + w(u,v) // update the shortest-path estimate of v
3. v.r = u // update the predecessor attribute of v

The process of relaxing an edge (u,v) in the function RELAX consists of testing
whether the shortest path to v found so far can be improved by going through u and if any
such path found, then update v.d and v.z. This process may decrease the value of the

shortest-path of v i.e. v.d and update the predecessor attribute of v i.e. v.xz.

Figure 2.6 illustrates an example of the Dijkstra’s algorithm. In this figure s is the
source node, dashed edges indicate predecessor values. In this figure black vertices are in

the set S, and white vertices are in the min-priority queue Q = V' - S.

17
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Figure 2.6: Example of Dijkstra’s algorithm
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2.7 Maximum-flow Minimum-cut Theorem

Maximum-flow Minimum-cut theorem states that in a flow network, the
maximum amount of flow passing from the source node to the sink node is equal to the
minimum capacity. If this minimum capacity is removed from the network in a specific

way, it causes the situation that no flow can pass from the source to the sink node.

Let’s consider N = (V, E) be a directed graph which represents a network and s
and ¢ are the source and the sink node of N respectively. The capacity of an edge is c(u,v)
that represents the maximum amount of flow that can pass through that edge (u,v). A

flow is f{u,v) which is subject to the following constraints:

1. 0<Auy)<c(u,y)foralluyeV

2. Ypevfwuw) = Y,evfu,v) forallueV—{s, t}

The maximum-flow problem is to maximize |f| where [f] is defined by |f| =
Yvevf(s,v) where s is the source of N. The purpose is to route as much flow as

possible from source node s to sink node z.

The minimum-cut problem is to minimize c(S, 7) where ¢(S, T) is defined by (S,

T) = ¥ (wv) e sxr ¢(u, v) and the purpose is to determine S and T such that the capacity of

S-T cut is minimal. Here S and T are two disjoint sets and SUT = V.
2.7.1 Ford Fulkerson Algorithm

The Ford-Fulkerson algorithm computes the maximum flow in a flow network. The

idea behind the algorithm is as long as there is a path from the source to sink node, with
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available capacity on all edges in the path, flow should be sent along one of these paths.
Then another path is found and so on. Here a path with available capacity is known as

augmenting path.

Let’s consider N = (V, E) be a directed graph which represents a network and s
and ¢ are the source and the sink node of N respectively. Here V' is set of vertices and E is
the set of edges in the graph. The residual network of N is a network G(V, E;) with

capacity cAu,v) = c(u,v) - f(u,v) and no flow.
FORD-FULKERSON(G, ¢, s, t)

/I G is the graph, ¢ contains the capacity for all edges, s is the source node and ¢ is

the sink node

1. flu, v) =0 for all edges (u, v)

2. while there is a path p from s to t is G¢ such that cu,v) > 0 for all edges
(u,v) € p // Gy 1s the residual network and cyis the residual capacity.

3. find c(p) = min { cAu,v): (u,v) €p }

4. for each edge (u,v) e p

5. flu, v) = flu, v) + c¢Ap) // send flow along the path

6. Sfv, u) = f(v, u) - cp) // the flow might be returned later

The path in step can be found using Breadth First Search (BFS) or Depth First

Search (DFS). Figure 2.7 shows an example of the Ford-Fulkerson algorithm.
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In Figure 2.7 steps (a) to (e) show the successive iteration of the while loop.
The residual network Gy is shown at the left side of each part with a dashed
augmenting path p. The right side of each part shows the new flow f resulted from

the augmenting path f by f,. Here the network shown in (a) is the input network and
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the network shown in (f) is the residual network with no augmenting path. Therefore

the flow f'shown in (e) is a maximum flow and the value of the maximum flow is 23.

2.8 Gene Ontology

Gene Ontology (GO) is a set of associations relating biological phrases to
specific genes. GO is designed to encapsulate the known relationships between
biological terms and genes that are instances of these terms. It is helpful for
biologists to make inferences about a group of genes without investigating each one
individually. Hence by using GO, each gene can be assigned its respective attributes

automatically.

Terms are also separated into three categories/ontologies: Biological Process,

Molecular Function and Cellular Component.

Biological Process describes biological phenomena such as a series of
commonly known biological events that affects the state of an organism. Examples

of biological process include cell cycle, replication of DNA etc.

Molecular Function defines the activities that take place at molecular level. It
also defines the function that is carried out by a gene product. Examples of molecular
function include retinoic acid receptor, glycine dehydrogenase, amino methyl

transferace etc.
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Cellular Component describes the location in a cell where a gene acts, where
a gene product functions takes place. Examples of cellular components include

nuclear inner membrane, ubiquitin ligase complex, integral membrane protein etc.

This chapter discusses in detail about the algorithms implemented in this

thesis work and also gene ontology which is used to analyze gene enrichment.
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CHAPTER 1II

RELATED RESEARCH

This chapter discusses about some previous works related to gene clustering, k-
means clustering with hierarchical clustering and use of maximum-flow minimum-cut
algorithm for web community discovery. This chapter contains an overview of the
different algorithms previously used for gene clustering. This way the problem domain

and existing solutions have been introduced in this chapter.

3.1 Research Works Related to Gene Clustering

In microarray data analysis, clustering genes to find out the biologically relevant
groups based on their expression profiles is one of the basic techniques. Similarity in
gene expression profiles indicates similarity in their gene functionalities also [14]. Hence
the problem of grouping the genes with similar functionality that participates in the same
biological process can be mapped as a clustering problem that clusters the genes based on

their expression profiles [14].

So far many algorithms have been implemented for clustering gene expression
data. These algorithms include hierarchical clustering [15-16], k-means clustering [1],

self-organizing maps [17 — 19], support vector machines [20], Bayesian networks [21],
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fuzzy logic approach [22]. Beside these algorithms, some algorithms use other genomic
information along with gene expression data in order to improve clustering efficiency.
These algorithms include [22] that use gene ontology data with gene expression data and
[24-26] that clusters genes by using information of upstream regions of the coding

sequences with gene expression profiles to get more biologically relevant clusters.

3.2 Research Works Related to Hierarchical Clustering Combined with k-means

Traditional clustering algorithms such as k-means and hierarchical clustering
algorithms have already been implemented for gene clustering [1, 15-16]. As discussed
in chapter 2, both k-means and hierarchical clustering method suffer from some
limitation. Moreover, these algorithms are computationally expensive which impede the
wide use of these algorithms in gene expression data analysis [27-29]. To overcome
these limitations, a combined hierarchical k-means clustering method has been proposed
in [30] which firstly applies k-means algorithm in each cluster to determine k cluster and
then feed those clusters to hierarchical clustering technique to shorten merging clusters
time while generating a tree-like dendrogram. But still this algorithm suffers from

limitation of determining the initial value for k.

3.3 Research Works Related to Graph Clustering Using Maximum-Flow Minimum-Cut

Algorithm

After calculating the correlation coefficient for all genes, a weighted graph can be
created where each gene can be represented as node in the graph and at this stage
clustering these genes can be mapped as a graph clustering problem. In recent research
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works, solutions to the graph clustering problem have been formalized by modeling the
clustering problem into a maximum-flow minimum-cut problem of the underlying graph.
This approach has been used in problems like web community discovery [31-32], image
segmentation etc. In [33] the authors used this approach to produce clusters and it has
been shown that this approach works remarkably in practice [33]. However, in spite of
wide applications of this algorithm, as the algorithm requires processing of the entire
graph, if changes happen in graph structure during run time, using this algorithm
becomes infeasible for dynamic graph [34]. Note that, we are using static graph in our

research work, so we are not considering this limitation in this case.
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CHAPTER IV

MATERIALS AND METHODS

The goal of this research work is to cluster genes where genes with similar
expression level will remain in same cluster and compare their change in molecular
functions for normal and cancer samples. We are using microarray data and two different
approaches namely k-means clustering combined with hierarchical clustering and Ford
Fulkerson algorithm for graph clustering. For determining the differentially expressed
genes, we performed t-test, Bonferroni correction and calculated the value of fold change
of genes in the whole dataset. This chapter discusses about the dataset used for this

purpose followed by the whole process that has been carried out.

4.1 Dataset

Lung cancer is one of the leading causes of death caused by cancer worldwide
[35-36]. Adenocarcinoma is the most frequent type of non-small-cell lung cancers
(NSCLC) and it accounts for more than 50% of NSCLC and the percentage is increasing
[37]. Recent studies have shown that activation of the EGFR, KRAS and ALK genes
defines 3 different pathways which are responsible for a considerable fraction (30%—

60%) of development of lung adenocarcinoma [38-42]. The remaining lung
27



adenocarcinomas i.e., those without EGFR, KRAS, and ALK mutations (also designated
as —triple-negative adenocarcinomas’), develop with mutations of several other genes
such as HER2, BRAF etc. However, these are known to be mutated also mutually
exclusively with the EGFR, KRAS, and ALK genes though their frequencies of

mutations are very low (<5%) [38—41].

The dataset used in this research work contains expression profiles for 246
samples where 20 samples belong to normal tissue. Out of 226 lung adenocarcinomas
samples 127 are with EGFR mutation, 20 with KRAS mutation, 11 with EML4-ALK
fusion and 68 samples are with triple negative cases. Platform used for this dataset is
GPL570 [HG-U133 Plus 2] Affymetrix Human Genome U133 Plus 2.0 Array. This

dataset was collected from GEO database (accession number GSE31210).

Typically expression data are analyzed in matrix form where each row represents
a gene and each column represents a sample. In this study, the dataset contains 54675
genes and 40 samples which include 20 samples from normal tissue and 20 samples from
KRAS positive tissues. We represent the data matrix by the symbol X and denote the data
as shown in Figure 4.1. In this Figure, for example x;,, represents the expression value of

gene x; for Sample 2.
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Sample 1 Sample 2 Sample 40
X =
Gene 1 x11 XL2 e X140
Gene 2 X271 X232 s X740
Gene 34675 X546751 X546752 0 ceeeeeeeenes X546735.40

Figure 4.1: Matrix representation of the dataset

An overview of the final dataset is given in table 5.1.

4.2 Finding the Differentially Expressed Genes

To determine the differentially expressed genes, we performed t-test and
Bonferroni correction followed by the calculation of the value of fold change of the

genes. Brief descriptions of t-test, Bonferroni correction and fold change are given below.

4.2.1 T-Test

A t-test is a statistical hypothesis test which is used to determine if data from two
sets are significantly different from each other. This test is most commonly applied to the
test statistic which follows a normal distribution and the value of a scaling term in the test
statistic 1s known.

Generally there are two types of t-test: unpaired and paired t-test. Unpaired t-test
is used for the two datasets to be compared where the members of the datasets are

randomly selected or otherwise not related. On the other hand, paired t-test is used for the
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two datasets to be compared where the members of the datasets are related to each other
and the second datasets contains the same members as the first one.

In this study, as we are comparing the value of the same gene for both normal
tissue dataset and KRAS positive dataset, we used a paired t-test. Given two paired sets X
and Y of n measured values, the paired t-test determines whether they differ from each
other in a significant way under the assumptions that the paired differences are
independent and identically normally distributed. The ¢ statistic to test whether the means

are different can be calculated as follows:

(4.1)

where

S = = (S 2 + S 2)
XY 2 X Y

Here Sxy is the grand standard deviation. The denominator of ¢ in Equation (4.1)
is the standard error of the difference between two means. X and Y represent the mean
values of dataset X and Y respectively, Sy and Sy represent the standard deviation for

dataset X and Y respectively and # is the size of the dataset.
4.2.2 Bonferroni Correction

The Bonferroni correction is a simple as well as conservative statistical method

used to make adjustment to p-values when several dependent or independent statistical
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tests are being performed simultaneously on a single data set. This correction aims to
reduce the chances of obtaining false-positive results when multiple pairwise tests are
performed on a single set of data. In order to perform a Bonferroni correction, we need to

divide the critical p-value (o) by the number of comparisons being made. For example, if

10 hypotheses are being tested, the new critical p-value would be la—o. The statistical power

of the study is then calculated based on this modified p-value.

Let’s consider a researcher is testing 20 hypotheses simultaneously, with a critical
p-value of 0.05. In this case, if P denotes the probability, then the following would be

true:
P (at least one significant result) = 1 — P (no significant results)
=1-(1-0.05)"
=0.64

This example shows that, performing 20 tests on a data set yields a 64% chance of
identifying at least one significant result, even if all of the tests are actually not
significant. It means while a given o may be appropriate for each individual comparison,

it may not be appropriate for the set of all comparisons.

In short, Bonferroni correction tries to mitigate the risk of producing erroneous
false-positive conclusions when testing multiple hypotheses on a single set of data and an
appropriate use of this correction can ensure the integrity of studies in which a large

number of significance tests are used.
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In this study, after performing Bonferroni correction, we selected the genes as the

most differentially express which have p-values < 0.05.
4.2.3 Fold Change

Fold change represents a measure of how much a quantity changes going from its
initial stage to a final stage. For example, if a variable has an initial value of 30 and a
final value of 60, it means there is a fold change of 2, in other words, a 2-fold increase.
As another example, a change from 80 to 20 would be a fold change of 0.25. Fold change

is calculated simply as the ratio of the final value to the initial value. For example, if the
initial value is A and final value is B, the fold change is %. In some cases, a fold-change

value that is less than 1 can be replaced by the negative of its inverse, such as a change
from 80 to 20 would be a fold change of -4, in other words, a four-fold decrease.

In this study, we considered only those genes where the value of fold change
(increase or decrease) is significant. In the final dataset, we put the genes
where |log,f;| = 1, where f is the value of fold change for gene x; and x is the set of
genes.

Beside these preprocessing, we considered only those genes that are associated
with molecular functions according to the Gene Ontology (GO). Figure 4.2 shows the

flow diagram of the data preprocessing
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4.3 Methods

In this study, we investigated two approaches for grouping genes with similar

expression profiles:

Read the expression values from the original dataset

W

Perform t-test and Bonferroni Correction for each gene for
both normal dataset and ERAS posifive dataset. Keep only
the genes with the adjusted p-value = 0.03

W

Calculate the value of fold change for each gene. Keep onlv
the genes where|log, f;| = 1, where fis the value of fold
change for gene x; and X is the set of genes.

W

Keep only the genes that are associated with molecular
functions according to Gene Ontology (GO)

W

Save the filtered dataset

Figure 4.2: Flow diagram of data preprocessing

1. K-means clustering combined with hierarchical clustering

2. Ford-Fulkerson algorithm that uses maximum-flow minimum-cut algorithm.

We developed a tool written in Java which is used as the platform for these two

approaches. Figure 4.2 shows the GUI of the tool developed in this research work.
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Figure 4.3: GUI of the tool developed in this research work.

4.3.1 K-means Clustering Combined with Hierarchical Clustering

As discussed in chapter 2, k-means clustering method produces tighter cluster
than hierarchical clustering and also this algorithm is computationally faster than
hierarchical clustering. But the performance of k-means clustering largely depends on the

initial selection of the number of clusters. On the other hand, hierarchal clustering
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produces a complete hierarchy of clusters which makes it easy to understand how the
objects group while clustering. So to overcome the limitation of k-means clustering, here
we used a combined approach to decide the number of clusters for the k-means clustering
from the output of hierarchical clustering. Flow chart of this approach is shown in Figure

4.3.

4.3.2 Ford Fulkerson Algorithm for Graph Clustering

From the dataset, a weighted graph can be created where each node is represented
by a gene and the weight (capacity) between two nodes is the value of Pearson
correlation coefficient between the corresponding genes. After creating the weighted
graph, Ford Fulkerson algorithm can be applied to get the clusters where genes with

similar expression profile will group together.

To apply Ford Fulkerson algorithm, we need to specify a source node and a sink
node. For this purpose we used Dijkstra’s algorithm for each pair of nodes and then the
two nodes with maximum shortest distance were selected as source and sink nodes. Note
that, as Dijkstra’s algorithm deals with distance, we used Pearson correlation distance
while applying Dijkstra’s algorithm. After getting the minimum cut graph from Ford
Fulkerson algorithm in the form of two disjoint sets, we recursively apply Ford Fulkerson
algorithm again to each set until the cardinality of the disjoint set is less than or equal to
2. In this approach, clustering is done in a top down fashion. Figure 4.4 shows the flow

diagram of the clustering process.
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Fead Gene Expression value from the filtered
dataset

i

Caleulate Pearson Correlation Coefficient {#)

Apply Average Linkage Hierarchical
Chastening (UPGMA) using Pearson
Cotrelation Distance {1-#)

i

Calculate the distance between two
consecutive levels in the hierarchy of the
output produced by hierarchical clustering

!

Set num ber of clusters for k-m eans clustering

= 1+ the level fium ber where the diff erence
between two consecutive levels in the
hierarchy of the output produced by
hierarchical clustering is the m aximum

Apply k-m eans clustering to get the final

clusters

Figure 4.4: Flow diagram of K-means clustering combined with hierarchical
clustering
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Figure 4.5: Work flow diagram of applying Ford Fulkerson algorithm for clustering

4.4 Comparing Molecular Functions of the Genes

development.

We explored the molecular functions captured in each cluster of genes using Gene
Ontology (GO). For each cluster, the molecular functions obtained from normal lung
tissues are compared to the ones from the KRAS positive tissues. The result illustrates the

change in molecular functions which is the underlying reason for cancer formation and
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CHAPTER V

RESULTS AND DISCUSSION

In this study, we used two approaches for clustering the genes based on their
expression levels. These approaches are: k-means clustering combined with hierarchical
clustering and a maximum-flow minimum-cut based approach. In this chapter the results
obtained by these two approaches are presented and a comparative study of the molecular
functions of the genes in the clusters is done using gene ontology annotation. Section 5.1
briefly shows dataset containing highly expressed genes we obtained after preprocessing
using t-test, Bonferroni correction and calculating the value of fold change. Section 5.2
presents the results obtained by using the k-means clustering combined with hierarchical
clustering approach and followed by the result obtained from the maximum-flow
minimum-cut approach which is presented in section 5.3. The molecular function of the
genes captured in each cluster for cancer and normal data are explored using gene

ontology annotation and presented in section 5.4.

5.1 Preprocessing of Dataset

Initially the dataset contained 54675 genes and 40 samples (20 for normal tissues
and 20 for KRAS positive tissues). We determined the highly expressed genes using the

t-test followed by Bonferroni correction and calculating the value of fold change. After
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performing t-test we obtained 21880 genes which had significant p value (< 0.05). We

performed Bonferroni correction on these genes and found 1988 genes which had a

significant adjusted p value (< 0.05). As the total number of genes was still too high, we

calculated the value of fold change and got 1005 genes which had |log,f;| = 1, where [

is the value of fold change for gene x; and X is the set of genes. We then performed

another step of filtering to keep only those genes that have Gene Ontology (GO) terms

and responsible for molecular functions. Finally we came up with 464 genes in the

dataset. The final dataset is given partially in Table 5.1 and the complete dataset is

available in [43].

Table 5.1: A brief overview of the final dataset

Affymatrix Gene Samples
ID Symbol

GSM773551 | GSM773552 GSM773784 | GSM773785
1555579 s at | PTPRM | 3441.222 2205.079 3569.134 5426.586
211986 at AHNAK | 4395.679 3074.898 7080.395 8986.732
222392 x at | PERP 21707.73 11773.66 11350.53 9255.438
236715 x at | UACA | 1303.009 685.552 1867.759 2359.538
244704 at NFYB 124.0794 103.3855 277.4942 303.6087
211237 s at | FGFR4 |22.41334 6.840419 11.07046 134.4622
203980 at FABP4 | 257.254 28.62955 920.4353 5008.182
207302 at SGCG | 47.08894 4.437844 9.613587 368.0018
210081 at AGER | 241.6255 26.12709 2001.279 4878.16
217046 s at | AGER | 132.4155 21.06835 1016.052 2485.816

5.2 Clustering Results from K-means Combined with Hierarchical Clustering

As discussed earlier, k-means clustering algorithm requires the initial number of

clusters before starting the clustering and the performance as well as the subsequent
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interpretation of the clusters largely depends on this number. In this approach we tried to
overcome the limitation of k-means clustering by getting the initial number of clusters
from the result of hierarchical clustering. Figure 5.1 shows the hierarchical clustering of

normal tissue dataset.
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Figure 5.1: Hierarchical Clustering of normal tissue dataset

There are 463 nodes in this tree generated from the hierarchical clustering. To
decide the number of clusters from the output of hierarchical clustering we used a bar
graph to show the difference of height between two consecutive nodes and it is shown in

Figure 5.2.
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Figure 5.2: Bar graph of the difference of height between two consecutive nodes in
the tree generated from the hierarchical clustering of normal tissue dataset.

From Figure 5.2 we can see that the difference is the maximum for node 461 and
node 462. As there are total 463 nodes in the tree, node 461 is in level 3 from the top. So
according to the approach we are discussing here, the total number of clusters for k-

means clustering should be 4.
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List of the genes for cluster 1 for normal tissue dataset is given in Table 5.2. List

of the genes for cluster 2, 3, 4 are given in the appendix (See Table App 1.1, App 1.2 and

App 1.3). Note that, some genes may have same gene symbols though they have different

Affymatrix IDs. So there are some duplicate gene symbols in the tables.

Table 5.2: List of the genes contained in Cluster 1 for the normal tissue dataset

PERP TSSCl1 ADCY4 SRSF3 P4HB COPZ1
ATP6VOA2 | PCMI PCBD?2 UGGTI RHOJ MYO7A
IDE KGFLP2 SSR4 CANTI KIF2A ATP2A2
EFEMP1 SYNPO PAK1 COPBI1 IDS CYCS
SEC24A IFTS57 RHOJ 1D4 ECT2 RHOJ
RALGPS2 SFN RBPMS CDC25A SEN RALGPS2
FERMTI

Similarly we can perform the combined clustering on KRAS positive dataset.

Figure 5.3 shows the hierarchical clustering of KRAS positive dataset.
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GSM773551
GSM773552
GSM773553
GSM7TT7T3554
GSMTT3555
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GSM7 73567
GSM7 73568

Figure 5.3: Hierarchical Clustering of KRAS positive dataset

There are 463 nodes in this tree generated from the hierarchical clustering. To
decide the number of clusters from the output of hierarchical clustering we used a bar
graph to show the difference of height between two consecutive nodes and it is shown in

Figure 5.4.
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Figure 5.4: Bar graph of the difference of height between two consecutive nodes in
the tree generated from the hierarchical clustering of KRAS positive dataset.

From Figure 5.4 we can see that the difference is the maximum for node 461 and
node 462. As there are total 463 nodes in the tree, node 461 is in level 3 from the top. So
according to the approach we are discussing here, the total number of clusters for k-
means clustering should be 4.

List of the genes for cluster 1 for KRAS positive dataset is given in Table 5.3. List

of the genes for cluster 2, 3, 4 are given in the appendix (See Table App 1.4, App 1.5 and
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App 1.6). Note that, some genes may have same gene symbols though they have different

Affymatrix IDs. So there are some duplicate gene symbols in the tables.

Table 5.3: List of genes contained in Cluster 1 for the KRAS positive dataset

PERP TSSC1 P4HB TIMP3 FAM69A ITPR1
GAPDH PCBD?2 UGGTI MYO7A IDE CBR4
SSR4 ICAM?2 AKT3 CANTI KIF2A ATP2A2
FANCD2 CDKNIC PAK1 SEC24A AKAPI12 AKAP12
E2F2 SPOCK2 RUNX1 SKA3 ECT2 RALGPS2
SFN GPRS&2 CDC25A SFN RALGPS2 FERMTI

5.3 Clustering Results from Maximum Flow Minimum Cut Approach

After calculating the Pearson Correlation Coefficient, a weighted graph can be

formed where each node is represented by a gene and the weight of the edge between two

genes can be represented by the corresponding Pearson correlation coefficient. As

discussed in Chapter 4, maximum flow minimum cut approach can be used for graph

clustering and Ford Fulkerson algorithm is commonly used in clustering web graph to

discover web communities. In this research work, we used this approach for clustering

the gene graph so that genes with high similarity can be grouped together. Note that, Ford

Fulkerson algorithm requires source and sink node at the beginning and we used

Dijkstra’s algorithm to find out the source and the sink node as discussed in Chapter 4.

Figure 5.5 shows a brief overview of how the maximum flow minimum cut

algorithm works to a small part of the normal tissue dataset.

Let’s consider Set; which contains all the genes. Hence,

Step 1: Set; = {CYCSKIF2A, IDE, FERMTISFN, SFN, ATP2A2, SEC24A,

UGGTI, ECT2, PAK1, COPZI1, CANTI1, P4HB}
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Step 2: After applying the Ford-Fulkerson algorithm to Set;, we get two

disjoint sets, say Set; ; and Set; 2,

Set;, 1 = {CYCSKIF2A, IDE, FERMTISFN, SFN, ATP2A2, SEC24A,

UGGTI, ECT2}

Set; » = {PAKI1, COPZ1, CANTI1, P4HB}

Step 3: After applying the Ford-Fulkerson algorithm to Setl,1, we get two disjoint
sets, say Set, 1,1 and Set;, 2.

Set 1.1,1 = {CYCSKIF2A, IDE, FERMTI1SFN, SFN, ATP2A2}
Set;, 1,2 = {SEC24A, UGGT1, ECT2}

In Step4, the algorithm is applied to the Set 1, 1, land this process is applied to all
sets, until the set has a cardinality which is less than or equal to 2. In this way, the tree for
clustering is formed in a top to bottom fashion.

After applying the Ford-Fulkerson algorithm on the dataset of normal tissue and
KRAS positive tissues, we found that the clustering result were same as the hierarchical
clustering hence it proves the correctness of this maximum flow minimum cut based

approach.
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Figure 5.5: A brief overview of how the maximum flow minimum cut algorithm
works.

5.4 Discussion and Analysis

In this section we explain the change molecular function of the genes captured in

the clusters of both normal tissue and KRAS positive datasets using Gene Ontology (GO)
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annotations. For comparing the molecular function of the clusters of normal tissue and
KRAS positive tissues, we took one cluster from normal tissue dataset and one from
KRAS positive dataset which have maximum number of common genes. Table 5.10
shows the clusters we have selected for comparing their molecular functions with the

number of genes they have in common.

Table 5.4: List of the clusters to be compared for the change in molecular function

Clusters to compare Number if genes in common
Normal Tissue dataset KRAS positive
dataset
Cluster 1 Cluster 1 20
Cluster 2 Cluster 3 52
Cluster 3 Cluster 4 46
Cluster 4 Cluster 2 69

We explained the molecular functions of the genes in each cluster using GO
annotations and the relationship are represented using a Directed Acyclic Graph (DAG)
which is termed as GO graph in this study. To generate these graph we used a web based
tool named GOEAST which stand for Gene Ontology Enrichment Analysis Software
Toolkit [44]. This graph displays enriched GOIDs and their hierarchical relationships in
"molecular function" GO categories. Here boxes represent GO terms, labeled by its Gene
Ontology ID (GOID), term definition, p-value etc. Note that significantly enriched GO
terms are marked yellow. The degree of color saturation of each node is positively
correlated with the significance of enrichment of the corresponding GO term. Non-
significant GO terms within the hierarchical tree are shown as white boxes. In this graph,
edges stand for connections between different GO terms. Edges with red color stand for

relationship between two enriched GO terms, black solid edges stand for relationship
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between enriched and un-enriched terms; black dashed edges stand for relationship

between two un-enriched GO terms.

5.4.1 Comparing Cluster 1 of Normal Tissue with Cluster 1 of KRAS Positive Tissues

Figure 5.6 and 5.7 shows the GO graph for the cluster 1 of normal tissue dataset

and cluster 1 of KRAS positive dataset respectively.
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Figure 5.6: GO graph for cluster 1 of normal tissue data set.
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Figure 5.7: GO graph for cluster 1 of KRAS positive data set

In brief, from these two figures we see that, the significant GO terms GO:

0005488 (binding) and GO: 0005515 (protein binding) remain same in both clusters. GO
terms such as GO: 0030234 (Enzyme Regulator Activity), GO: 0019207 (Kinase
Regulator Activity), GO: 0019210 (Kinase Inhibitor Activity), GO: 0019887 (Protein
Kinase regulator Activity) and GO: 0004860 (Protein Kinase Inhibitor Activity) which

are un-enriched in normal tissue, become highly enriched in the KRAS positive tissues.

For better comparing the enrichment status of the two clusters, we used Multi-
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GOEAST which is an advanced version of GOEAST and it is helpful to identify the



hidden correlation between the two clusters. Figure 5.8 shows the comparative GO graph

of the clusters discussed above.
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Figure 5.8 Comparative GO graph for comparing GO enrichment status of Cluster 1
of normal tissue dataset and Cluster 1 of KRAS positive dataset.

pyrophosphatase activity

In the comparative GO graph, significantly enriched GO terms in both clusters are
marked yellow, light yellow color indicates the GO terms which are enriched in both
clusters. Nodes marked with coral pink indicate the GO terms which are enriched in
normal tissue dataset but not in KRAS positive dataset. In addition to that, nodes with
green color represent the GO terms which are un-enriched in normal tissue but enriched
in KRAS positive tissues. Note that, the degree of color saturation of each node is
positively correlated with the significance of enrichment of the corresponding GO term.

Table 5.5 lists the genes associated with the GO terms which are enriched in the

cluster 1 of KRAS positive tissue dataset but not enriched in the cluster 1 of normal tissue
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dataset and these GO terms which are marked with green color in the comparative GO
graph shown in Figure 5.8. These are responsible for the change in the molecular activity
of the genes that causes the development of lung cancer.

Table 5.5: GO Terms and pathways which are enriched in molecular functions of the

genes of Clusterl of KRAS positive tissue but un-enriched in the genes of Cluster1 of
Normal tissue dataset

GO ID GO Term Associated Pathway
Genes
G0:0030234 | Enzyme TIMP3 Matrix_Metalloproteinases
Regulator
Activity CDKNIC G1 to S cell cycle Reactome
PAK1 Integrin
mediated cell adhesion KEGG
ECT2 |
RALGPS2 |  mee-
SFN Calcium_regulation_in_cardiac_cells
Smooth_muscle contraction
G0:0019207 Kinase CDKNIC G1 to S cell cycle Reactome
Regulator o Tation T 1
Activity SFN Calcium_regulation in_cardiac_cells
Smooth_muscle contraction
GO:0004857 Enzyme TIMP3 Matrix_Metalloproteinases
Inhibitor 7 T T T
Activity CDKNIC Gl to S cell cycle Reactome
SFN Calcium_regulation_in_cardiac_cells
Smooth_muscle contraction
GO:0019887 Protein CDKNIC Gl _to S cell cycle Reactome
Kinase SFN Calcium_regulation in_cardiac_cells
Regulator - - -
Activity Smooth _muscle contraction
G0:0019210 Kinase CDKNI1C G1 to S cell cycle Reactome
Inhibitor
Activity SFN Calcium_regulation_in_cardiac_cells
Smooth_muscle contraction
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GO:0004860 Protein CDKNIC GI1 to S cell cycle Reactome
Kinase - — -
Inhibitor SFN Calcium_regulation_in_cardiac_cells
Activity Smooth_muscle contraction
GO:0051018 Protein AKAPI12 G _Protein_Signaling
Kinase A
Binding
GO:0008179 Adenylate AKAP12 G_Protein_Signaling
Cyclase
Binding

Similarly we can generate and compare the GO enrichment graph for the rest of
the clusters listed in Table 5.4 which are given in the Appendix.

This chapter discusses about the result of applying both of the clustering
approaches to the dataset. Additionally, this chapter analyzes the change in GO
enrichment of molecular functions of the genes captured in the clusters for both normal

tissue and KRAS positive tissues.

53




CHAPTER VI

CONCLUSION

The aim of the study is to group biologically relevant genes by using different
approaches of gene clustering. In the first approach a combined algorithm is used to
cluster genes using k-means clustering algorithm where the initial number of clusters is
decided from the output of hierarchical clustering. This approach overcomes the
limitation of both k-means clustering and hierarchical clustering discussed in previous
chapters. In the second approach, we used maximum-flow minimum-cut based algorithm
Ford-Fulkerson algorithm which is a commonly used algorithm for discovering web
communities by clustering web graphs. This approach produced similar result as the
hierarchical clustering hence proves the correctness of this approach in gene clustering.

In this study we examined 40 samples and 464 genes from the dataset of
Adenocarcinoma which is the most frequent type of non-small-cell lung cancers. Out of
the 40 samples, 20 were from normal tissue and 20 were from KRAS positive tissues. We
applied t-test, Bonferroni correction and Fold Change to find the significantly
differentially expressed genes and included only these genes in the final dataset.

After applying the clustering algorithms we obtained 4 clusters for both normal

tissue dataset and KRAS positive dataset. Hereafter, we examined the genes contained in
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each cluster with respect to their molecular functions based on Gene Ontology (GO)
annotation to see what are the changes in the enrichment of the molecular functions of the
genes took place from normal tissues to KRAS positive tissues.

The k-means clustering algorithm combined with hierarchical clustering takes the
advantage of hierarchical clustering to get a complete hierarchy of clusters and using this
information it decides the initial number of clusters to be used in k-means clustering
which produces a tighter cluster than hierarchical clustering. This way it overcomes the
limitation of k-means clustering. In the second approach we found that the maximum-
flow minimum-cut based gene clustering produces same result as hierarchical clustering
hence it proves the correctness of this approach. Therefore, we propose that both of these

approaches can be used for clustering microarray data.
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APPENDIX A

LIST OF GENES IN THE CLUSTER

Table A.1: List of genes contained in Cluster 2 for the normal tissue dataset

ZHX3 TNSI RLIM MPDZ PBX1 NR2F2
ABCC9 CCDC50 TCF4 TCF4 NTS5C2 FAM69A
DCN PER1 ITPRI1 GAPDH SETBPI LATS2
EFEMPI1 HBB FERMT2 | PTGIR GYPC FBXL7
DIXDC1 SSBP2 SETBP1 PKIG TMODI1 LOC100506948
DZIP1 PLSCR4 DST ZEB?2 MPDZ TCF4
ALS2CR4 | FLTI DCN DNAJB4 GUCY1A3 | NFIA
VLDLR CNRIP1 ID2 HGF NCALD DNAJB4
PBX1 MYHI10 NFIA PRELP FSTLI FHLI1
NEGRI1 ENAH NEXN AKAP12 LSAMP CD34
KIF26A GSTM3 PDE2A KCTDI16 NFIA CREB5S
AKAPI12 NEXN TACCI1 ZEB2 AKT3 ITM2A
FBLNI PTPRD CCDC50 CNKSR2 | HSPB2 FEZ1
FGF2 CDH13 ITGAS ECM2 LEFTY2 SLIT3
PRELP CAB39L RERG ERG THBD ITGAS
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SEPT8 RECK TACCI1 PGR MYHIO0 SYNEI1

TPPP PAK4 VWF LTBP4 TMODI1 FBLNS

SASHI RHOJ FXYDI PDK4 AGTRI1 FHLI1

GHR HBA1//HBA2 | LPHN3 LPHN3 HBB SVEP1

LYVEI1 GPC3 TNXB FABP4 FHLI TNXA///TNXB
HBB MAMD?2 MFAP4 TNXA TNXB FHLI1

FABP4

Table A.2: List of genes contained in Cluster 3 for the normal tissue dataset

AHNAK NFYB NR2F1 GABARAPLI1 | RNFI125 RNF144B
BMPR2 ARHGAP24 | PHACTR2 | PTRF PRKCH PDLIM2
HEGI1 SNRK MACF1 PHACTR2 KIAA1324L | ATXN3
BMP5 HUWEI1 KCTD15 ILTIRA VAPA DNAIJCI18
LMCDI1 ARAP3 ARHGAP24 | PHACTR2 PTPRM ICAM2
PLCE1 QKI ANKSITA CDKNIC LMO2 CRIM1
CCBEl1 KCTD15 SNX1 QKI RNF207 CDKNIC
ARHGAP31 | PTPRG MYLIP MEISI1 SHROOM4 |RHOJ
ATXN3 GATA2 ENG CD93 STARDI3 |KCNJ8
FRMD3 PIK3R1 FRMD3 PRKDI FLT4 KIF17
ADAMTSSE | PRDMS5 KCNIJ8 PTPRG NOTCH4 PTRF
ZEBI HEGI1 RUNXIT! | LRCH2 CDKNIC SVEP1
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CFL2 COLA4A3 TIEI SH3BP5 PKIA PRKCH
DAPK2 ESAM SPTBNI WASEF3 DLCI E2F2
TALI1 CD93 WWC2 KIAA1324L | PTPRM AKAP2///
PALM2-
AKAP2
ERG SH2D3C PECAMI1 FGDS5 SPOCK2 FZD4
CDKNIC GPR133 CLECIA TNSI1 ADRAITA PECAMI1
CELF2 WWC2 CLICS RADIL EMLI1 NOSTRIN
DAPK2 PKNOX2 ADRB2 BDNF HOXAS ANGPT1
COLI3Al CAV2 FRMD3 LIFR QKI GPR146
BMP5 LDB2 CCBEl1 CORO2B CAV1 VAPA
SASHI ACVRLI TGFBR3 LIFR NTNGI BAI3
STX11 NEBL PTPRB SNCA TGFBR3 SHROOM4
GATA2 SEMAGA LPHN2 CD36 ERG CNTNG6
NECABI TEK S1PRI1 LIFR D4 PDZD2
CDH5 FOXF1 RNF182 CLICS LIFR SYNPO2L
ADAMTSSE | TSPAN7 SLIT2 TALI1 PTPRB FGFR4
KL BMPER CLICS CCBEl1 SDPR EDNRB
RXFP1 SPTBNI GDF10 SDPR FREM3 USHBP1
CD36 MASP1 ADAMTSS8 | EDNRB EDNRB GPIHBP1
TCF21 FIGF CLEC3B NCKAPS5 RSPOI1 LRRN3
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GRIALI

FGFR4

SGCG

AGER

AGER

Table A.3: List of genes contained in Cluster 4 for the normal tissue dataset

PTPRM UACA GABARAPLI1/// | INPP5SA KLHDCI1 DCHSI1
GABARAPLS3
EXTI1 TIMP3 ARHGAP24 TNSI AKAP2///PAL | PLAGLI1
M2-AKAP2
LRRFIP1 | TBXS DST CBR4 ITGA1 PECAMI1
PDE3B PLAGL1 | APBB2 DST SIK2 EFHA2
AKT3 NR2Cl1 RORA CACNAI1D PCDHB6 FANCD2
C20orf46 | CAVI CBFA2T3 NPNT SVEP1 P2RY 14
DST FIGN LIN7A NR2F1 GRIALI LRRFIP1
RYR2 C13orfl5 | PIK3R1 SH3BP5 DOCK4 AKAP2 ///
PALM2-
AKAP2
ITGA1 PLAGLI1 | RHOJ FIGN UACA CRIM1
ACACB LIMCH1 | ACACB PTPRD PREX2 FHLI
ACACB AFF2 DOK®6 TBX2 ANO2 RUNX1
DOK6 TENCI1 SKA3 KCNK3 ANGPTI1 GRKS
DACHI LIMCHI1 | TBX2 SASHI1 PKNOX2 C13orfl5
GPX3 WwWC2 Cl3orfl5 RHOJ RAPGEF4 FAT3
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SHANK3 | ARHGA | TBX5 PPPIR14A PELO MYLK
P6

GPR&2 PKNOX2 | GPX3 NPR1 DACH1 CDHI19

PTPRB CDHI19 COL6AG6 ACTN2 TCF21 LRRTM4

KCNK3 KCNK3 | AGTR1 FAT3 AOC3

Table A.4: List of genes contained in Cluster 2 for the KRAS positive dataset

UACA NFYB ADCY4 NR2F1 GABARAPL | RLIM
1
GABARA | MPDZ INPP5SA KLHDCI1 PBX1 NR2F2
PL1
//IGABAR
APL3
EXT1 CCDC50 RNF125 ARHGAP24 | NT5C2 ATP6VOA
2
PHACTR | TNSI PCM1 SNRK SETBPI PHACTR2
2
KGFLP2 | KIAA1324 | ATXN3 DIXDCI SSBP2 SETBP1
L
HUWEI1 PLAGLI TMODI1 TBX5 ILTIRA LOC10050
6948

65




VAPA PECAMI PLSCR4 DNAICI18 APBB2 ARHGAP2
4
MPDZ PHACTR2 | PLCEI SIK2 EFHA?2 ANKSIA
CDKNIC | ALS2CR4 | CRIMI1 FLTI1 RORA CACNAID
PCDHB6 | SNX1 NFIA VLDLR MYLIP ID2
HGF MEIS1 C20o0rf46 SYNPO COPBI1 ATXN3
CBFA2T3 | GATA2 PBX1 MYHI0 NFIA DST
FIGN LIN7A NR2F1 GRIAI LRRFIP1 RYR2
PIK3R1 SH3BP5 TNIP1 FRMD3 NEGRI1 PIK3R1
ENAH FRMD3 DOCK4 PLAGLI1 ADAMTSS PRDMS
CYCS NOTCH4 FIGN LSAMP CD34 RUNXITI
LRCH2 GSTM3 CRIM1 ACACB KCTDI16 NFIA
COL4A3 | ACACB RHOJ PREX2 SPTBNI1 WASF3
FHL1 TACCI1 ITM2A KIAA1324L | ACACB CNKSR2
ERG SH2D3C DOK6 FGDS5 ANO2 DOK6
FZD4 TENCI1 ITGA8 KCNK3 ANGPT1 CLECIA
GRKS5 TNSI LEFTY2 ADRAITA DACHI PECAMI
TBX2 CAB39L RERG SASH1 ERG PKNOX2
ITGAS PKNOX2 TACCI HOXAS PGR MYHI0
SYNEI FRMD3 PAK4 GPR146 BMP5 LDB2
VWF RHOJ RAPGEF4 FAT3 SHANK3 VAPA
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SASHI TGFBR3 TMODI1 ARHGAP6 | BAI3 SASHI
TBXS RHOJ NEBL PPPIR14A PTPRB SNCA
RBPMS PELO TGFBR3 SHROOM4 | GATA2 MYLK
FXYDI1 SEMAG6A | PDK4 LPHN2 ERG NECABI
PKNOX2 | GPX3 AGTRI1 NPR1 TEK FHLI
DACHI1 CDHI19 S1PRI1 GHR PTPRB ID4
PDZD2 CDHS5 FOXF1 RNF182 ADAMTSS LPHN3
LPHN3 CDH19 TSPAN7 ACTN2 TALI1 PTPRB
TCF21 KL LRRTM4 TNXB EDNRB KCNK3
TNXA /// | MFAP4 TNXA /// AGTRI1 TNXA /// SDPR
TNXB TNXB TNXB

FREM3 FAT3 FHLI1 USHBP1 ADAMTSS EDNRB
FHLI GPIHBP1 | TCF21 CLEC3B AOC3 NCKAPS
LRRN3

Table A.5: List of genes contained in Cluster 3 for the KRAS positive dataset

PTPRM AHNAK ZHX3 TNSI1 DCHSI1 ABCC9
TCF4 TCF4 BMPR2 PTRF PRKCH DCN
PDLIM2 HEGI1 LATS2 AKAP2///PA | MACF1 RHOJ
LM2-
AKAP2
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FHLI FERMT?2 PTGIR GYPC FBXL7 PKIG
LRRFIP1 KCTD15 DST DZIP1 ITGA1 LMCDI
PLAGLI1 ARAP3 DST DST ZEB2 PTPRM
QKI TCF4 LMO2 CCBEl DCN DNAJB4
KCTD15 GUCY1A3 QKI RNF207 ARHGAP31 CNRIP1
PTPRG RHOJ CAV1 NCALD DNAJB4 P2RY 14
ENG CD93 PRELP IDS STARDI3 FSTLI
KCNIJ8 PRKDI1 AKAP2/// | ITGA1 NEXN RHOJ

PALM2-

AKAP2
KCNIJ8 PTPRG PTRF ZEBI HEGI UACA
KIF26A PDE2A CFL2 CREB5 TIE] PKIA
PTPRD NEXN CD93 ZEB2 AKT3 FBLNI1
PTPRD CCDC50 AKAP2/// | PECAMI1 HSPB2 FEZ1

PALM2-

AKAP2
TBX2 FGF2 CDH13 ECM2 SLIT3 PRELP
RADIL RHOJ EMLI1 THBD MAMDC2 ADRB2
RECK BDNF COLI13A1 | CAV2 QKI CCBEl
CORO2B LTBP4 CAV1 ACVRLI1 NTNGI STX11
SLIT2 SVEP1 BMPER LYVEI] CCBE1 FABP4
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FABP4

SGCG

Table A.6: List of genes contained in Cluster 4 for the KRAS positive dataset

SRSF3 RNF144B COPZ1 ARHGAP24 | PER1 EFEMP1
BMP5 PDE3B NR2Cl1 EFEMP1 SHROOM4 NPNT
SVEP1 Cl3orfl5 FLT4 KIF17 CDKNIC LIMCH1
SVEP1 IFTS57 SH3BP5 PRKCH DAPK2 ESAM
DLC1 TALI1 WwC2 PTPRM AFF2 CDKNIC
ID4 GPR133 LIMCH1 | CELF2 WWC2 CLICS
NOSTRIN | DAPK2 Cl3orfl5 | ANGPTI1 LIFR TPPP
GPX3 WwC2 Cl13orfl5 | LIFR FBLNS CD36
CNTN6 LIFR CLICS LIFR SYNPO2L HBAL //

HBA2
COL6A6 HBB FGFR4 CLICS GPC3 SDPR
KCNK3 HBB RXFP1 SPTBNI1 GDF10 CD36
MASP1 HBB EDNRB FIGF RSPOI1 GRIALI
FGFR4 AGER AGER
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APPENDIX B

GO GRAPH FOR CLUSTERS

Figure B.2: GO graph for cluster 3 of KRAS positive data set.
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Figure B.3: Comparative GO graph for comparing GO enrichment status of Cluster 2
of normal tissue dataset and Cluster 3 of KRAS positive dataset.
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Figure B.5: GO graph for cluster 4 of KRAS positive data set.
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Figure B.6: Comparative GO graph for comparing GO enrichment status of Cluster 3
of normal tissue dataset and Cluster 4 of KRAS positive dataset.

Figure B.8: GO graph for cluster 2 of KRAS positive data set.
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Figure B.9: Comparative GO graph for comparing GO enrichment status of Cluster 4
of normal tissue dataset and Cluster 2 of KRAS positive dataset.

73





