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ABSTRACT 

 

DNA Microarray technology provides a convenient way to investigate expression 

levels of thousands of genes in a collection of related samples during different biological 

processes. Researchers from diverse disciplines such as computer science and biology 

have found it interesting as well as meaningful to group genes based on the similarity of 

their expression patterns. Different clustering algorithms such as hierarchical clustering, 

k-means clustering, self-organizing maps have been applied to group of genes with 

similar expression patterns. However these traditional clustering algorithms suffer from 

various limitations. Beside these clustering algorithms, there are other algorithms to 

group similar items together. Ford Fulkerson algorithm which is based on maximum flow 

– minimum cut approach is one of them and it is widely used for community discovery in 

web graphs. The aim of this research work is, to group genes with similar expression 

pattern using two different approaches: one is the k-means clustering combined with 

hierarchical clustering and the other is maximum flow – minimum cut approach in 

association with Dijkstra’s algorithm to select source and sink nodes. 

We use a publicly available microarray data on Adenocarcinoma which is the 

most common type of non-small-cell cancers. This dataset is available in the Gene 

Expression Omnibus which is a public domain functional genomics data repository. This 
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dataset contains samples of five different groups: normal tissue, tissues with EGFR 

mutation, tissues with KRAS mutation, tissues with EML4-ALK fusion and tissues with 

EGFR, KRAS, EML4-ALK negative cases. We investigate a number of representative 

genes from the group of normal tissue and from the group of KRAS mutation tissues 

which is also termed as KRAS positive groups in this study. We clustered the genes for 

both of these groups. Finally we used Gene Ontology database to find changes in the 

enrichment of molecular functions of the genes contained in each cluster discovered by 

the above mentioned approaches for both normal and KRAS positive dataset.  

We discovered that both of these approaches can group genes with similar 

expression pattern together and hence we proposed that these approaches can be used in 

future for clustering microarray data. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Overview 

DNA microarray technology which has become a very useful tool to get 

information for diagnosis of different diseases often requires algorithms to analyze DNA 

microarray datasets accurately. Clustering algorithms play an important role in gene 

analysis by separating a dataset of heterogeneous genes into homogeneous groups 

containing similar genes. It helps to analyze a group of genes instead of analyzing each 

one individually. After getting appropriate clusters, researchers can further investigated 

the clusters to find distinct pattern for each cluster as well as find more information about 

functional similarities and gene interactions. A large number of algorithms have been 

developed for clustering DNA microarray data so far. Tavazoie et al. applied the k–

means clustering algorithm for yeast data [1] and Luo et al. used hierarchical clustering 

algorithm in genomic research [2]. Unfortunately both of these algorithms suffer from 

some limitations such as the performance of k-means clustering depends of how 

efficiently the initial number of cluster is determined and hierarchical clustering 

algorithm requires high computational complexity to discover optimal cluster.  
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There is also another clustering algorithm which uses maximum flow minimum 

cut approach which is mostly used in clustering web graph for web community discovery 

[3]. Algorithms based on this approach are relatively fast and simple, and have been used 

in the past for clustering web graphs [4 –5].   We believe this approach can be used for 

gene clustering as well. 

In this research work, we propose two approaches for gene clustering which 

includes an algorithm that combines both hierarchical clustering and k-means clustering. 

The other approach uses the maximum flow minimum cut algorithm. The first approach 

first uses the hierarchical clustering to decide the initial number of clusters and then feed 

this information to k-means clustering to obtain the final clusters.  The second approach 

requires a weighted graph. So we represented the DNA microarray data by a weighted 

graph where the genes are represented as the nodes of the graph and the weight of the 

edges are represented by the Pearson Correlation coefficient value between the 

corresponding genes. The graph can be partitioned into two disjoint sub graphs by each 

graph cut. The algorithm is applied recursively on the sub graphs until no new cluster can 

be discovered. After getting the new clusters from these two approaches, at the end, we 

explored the change in enrichment of molecular functionalities of the genes of each 

cluster for normal tissue and cancer tissue by using Gene Ontology (GO) annotations. 
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1.2 Research Goals 

The goals of this research work are listed below: 

1. Implementing a combined clustering algorithm that uses hierarchical 

clustering and k-means clustering algorithm.  

2. Implementing a clustering algorithm that uses maximum flow minimum cut 

algorithm. 

3. Developing software to be used as a platform for the proposed approaches. 

4. Finding an appropriate dataset to be used as the input data source. 

5. Analyzing the change in enrichment of the genes’ molecular functionalities 

genes in the clusters discovered by the proposed approaches using Gene 

Ontology annotations. 

1.3 Organization of the thesis 

 Chapter 1 introduces the necessity of gene clustering as well as the goals of 

this research work.  

 Chapter 2 explains the background necessary to understand the materials and 

methods used here. This chapter discusses about the algorithms used along 

with a brief discussion about the Pearson correlation coefficient which we use 

as the similarity matric, gene expression and gene ontology.  

 Chapter 3 gives an overview of previous research works.  
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 Chapter 4 explains the materials and methods used for clustering genes. This 

chapter describes in detail about the data set used and also how the algorithms 

were used for clustering the genes given in the data set.  

 Chapter 5 discusses the results of this research work and analyzes the result 

using Gene Ontology annotations.  

 Chapter 6 concludes the research work presented here. 
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CHAPTER II 

BACKGROUND 
 

This chapter describes necessary background concepts related to this work. A 

brief description of the gene expression is given. It is followed by the Pearson Correlation 

Coefficient which is used as the similarity score among the genes is given in this chapter. 

K-means and hierarchical clustering algorithms are also explained in detail along with 

Dijkstra’s shortest path algorithm and Ford Fulkerson algorithm. We also discuss about 

Gene Ontology which is used for gene enrichment analysis. 

2.1 Gene Expression 

In gene expression, gene products such as proteins or RNA are created from the 

inheritable information contained in a gene [6]. So far traditional molecular biology has 

focused on studying individual genes in isolation for determining gene functions, but it is 

not suitable for determining complex gene interactions as well as explaining the nature of 

complex biological processes. For this purpose, examining the expression pattern of a 

large number of genes in parallel is required [7]. DNA microarray technology which is 

one of the most important tools now-a-days for the analysis of gene expression has made 

it possible to view thousands of genes expression levels in parallel [8]. It is believed that 

a group of genes with similar gene expressions are likely to have related gene functions 
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[9]. Hence identifying genes with similar expression levels in different phases of the cell 

cycle or in different environmental conditions is an important task. 

2.2 Pearson Correlational Coefficient 

The Pearson correlation coefficient developed by Karl Pearson from a related idea 

introduced by Francis Galton [10 - 11] is a measure of the correlation between two 

variables X and Y, giving a value between +1 and −1 inclusive. It is widely used as a 

measure of the strength of linear dependence between two variables. In this study, each 

variable represents the expression level of a gene which is also referred as an object in 

this thesis. 

Let’s consider the expression levels of gene X and Y, X = {x1, x2, x3, ……….., xn} 

and Y = {y1, y2, y3, ……….., yn} where xi is the expression level of gene x in sample i. The 

Pearson correlation coefficient between these genes can be defined as 

   
 

 
∑(

    ̅

  
) (
    ̅

  
)

 

   

 
(2.1) 

where  ̅ is the average of values in X, and    is the standard deviation of these 

values.  

The values for Pearson correlation coefficient range from -1 to 1.  If a linear 

equation describes the relationship between x and y perfectly and all data points lies on a 

line, with the correlation value 1 it means y increases as x increases and the correlation 

value -1 means the completely opposite thing i.e., y decreases as x increases. With a 
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correlation value 0 it means x and y are completely uncorrelated and there is no linear 

relation between them.  

There are many ways of theorizing the correlation coefficient. If we consider a 

scatterplot of the values of x against y i.e. pairing x1 with y1, x2 with y2 and so on, then the 

Pearson correlation coefficient r reports how well we can fit a line to the values as shown 

in Figure 2.1.  

 

Figure 2.1: Scatter diagrams with different values of Pearson correlation coefficient 
(r) 

2.3 Calculating the distance matrix from Pearson Correlation Coefficient 

The first step in the hierarchical clustering discussed later is to calculate the 

distance between all pairs of object to be clustered. This distance is the opposite of the 

similarity. The distance between X and Y can be calculated using the following equation: 

               (2.2) 

where r is the value of Pearson correlation coefficient. 
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2.4 K-means Clustering Algorithm
 

K-means clustering is a well-known method for cluster analysis which partitions 

expression levels of n genes into k clusters where each gene belongs to the cluster with 

the nearest mean. Normally, the existing heuristic algorithms are used until the clustering 

converges quickly to a local optimum. 

Let’s consider a set of expression value of n genes (x1, x2,…, xn). It is a vector 

with d-dimension where d is the number of samples in the dataset and k-means clustering 

algorithm partitions the n genes into k sets (k ≤ n) S = {S1, S2, …, Sk} until the criterion 

function converges. Typically, the square-error criterion given in equation (2.3) is used to 

measure whether an optimal is reached 

   ∑ ∑‖      ‖
 

     

 

   

 
(2.3) 

where E is the sum of the square error for all genes in the data set and    is the 

mean of points in   . Here for each gene in each cluster, the distance from the genes to its 

cluster center is squared and, the squares are summed up. This criterion tries to make the 

resulting k clusters as compact and as separate as possible. The clustering process is 

summarized in Figure 2.2. 
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Figure 2.2: Illustration of the k-means clustering algorithm. 
 

In Figure 2.2 a circle represents a gene and cross represents the centroid of a 

cluster of genes. Here step (a) shows the original dataset containing the genes. Step (b) 

shows the initial cluster centroids selected randomly. Steps (c) to (f) show the illustration 

of running two iterations of k-means. In every iteration, each gene is assigned to the 

closest cluster centroid, shown by painting the gene the same color as the cluster centroid 

to which is assigned.  Then each cluster centroid is moved to the mean of the points 

assigned to it. 

 The Algorithm for k-means clustering is given below: 

 Input: 

 k: the number of clusters 

 S: a dataset containing n genes 
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Output: A set of k clusters 

Steps: 

1. arbitrarily choose k genes from S as the initial cluster centers; 

2. repeat 

a. (re) assign each gene to the cluster to which the gene is the most 

related, based on the means value of the genes in the cluster; 

b. update the cluster means, i.e., calculate the mean value of the genes for 

each cluster; 

3. until no change in the clusters take place. 

Advantages of using this technique are: 

1. It is computationally faster than other clustering algorithm (ex. hierarchical 

clustering) with a large number of variables. 

2. It produces tighter cluster than hierarchical clustering. 

Disadvantage of using this technique is: 

It is difficult to select what should be the value of k.       

2.5 Hierarchical Clustering 

In gene clustering, hierarchical clustering is a method for cluster analysis which 

builds a hierarchy of clusters. This clustering method organizes genes in a tree structures 

based on their relation.  The basic idea is to assemble a set of genes into a tree, where 
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genes are joined by very short branches if they have very high similarity to each other 

and by increasingly long branches as their similarity decreases.  

 The approaches for hierarchical clustering can be classified into two groups: 

agglomerative and divisive. The agglomerative approach is a ―bottom up‖ approach 

where each gene starts in its own cluster and pairs of clusters are merged as one moves 

up the hierarchy. On the other hand, divisive approach is a ―top down‖ approach where 

all genes starts in one cluster and splits are performed recursively as one moves down the 

hierarchy. Figure 2.3 summarizes both approaches. 

 

Figure 2.3: Agglomerative and Divisive approaches for hierarchical clustering. 
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In hierarchical clustering, the first step is to calculate the distance matrix between 

the genes in the data set. The clustering starts once this matrix of distances is computed. 

The agglomerative hierarchical clustering technique consists of repeated cycles where the 

two closest genes having the smallest distance are joined by a node. In this study this new 

node has been termed as pseudo node. The two joined genes are removed from the list of 

genes being processed and replaced by the pseudo node that represents the new branch. 

The distances between this pseudo node and all other remaining genes are computed, and 

the process is repeated until only one node remains.  

There are a variety of ways to compute distances while dealing with pseudo node: 

centroid linkage, single linkage, complete linkage, and average linkage. 

2.5.1 Centroid Linkage 

In centroid linkage clustering, an average expression profile also knows as 

centroid is calculated in two steps. First, the mean in each sample of the expression 

profiles is calculated for all genes in a cluster. Then, distance between the clusters is 

measured as the distance between the average expression profiles of the two clusters.  

2.5.2 Single Linkage Clustering 

 In single linkage clustering, distance between two clusters of genes is calculated 

as the minimum distance between all possible pairs of genes, one from each cluster. This 

method has an advantage that it is insensitive to outliers. This method is also known as 

the nearest neighbor linkage. Unlike centroid linkage clustering, once the distance matrix 
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is known, no further distance need to be calculated in single linkage clustering. Hence, 

single linkage clustering is much faster and more memory efficient. 

2.5.3 Complete Linkage Clustering 

 In complete linkage clustering, distance between two clusters of genes is 

calculated as the maximum distance between all possible pairs of genes, one from each 

cluster. The disadvantage of this method is that it is sensitive to outliers. This method is 

also known as the farthest neighbor linkage. In complete linkage clustering, once the 

distance matrix is known, no more distance need to be calculated. 

2.5.4 Average Linkage Clustering 

 In average linkage clustering, distance between two clusters of genes is calculated 

as the average of distances between all possible pairs of genes in the two clusters. In 

bioinformatics this one is also known as UPGMA (Unweighted Pair Group Method with 

Arithmetic Mean) which is used to produce guide trees for more sophisticated 

phylogenetic reconstruction algorithms. 

 Figure 2.4 shows the algorithms discussed above to find distance between two 

clusters of genes.  
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Figure 2.4: Different algorithms to find distance between two clusters 
 

Figure 2.5 illustrates an example of hierarchical clustering that uses single linkage 

algorithm for calculating distance between two clusters. [12] 

 

Figure 2.5: Illustration of hierarchical clustering with single linkage algorithm 
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 In Figure 2.5, black circles represent the genes in the dataset. There are five genes 

and the distances between the genes are given in the first table. At step 1, genes that are 

close to each other and the distances are re-calculated by using the single linkage 

algorithm. This steps repeats until all genes are grouped into one cluster. This procedure 

is shown in the dendrogram and length of a branch represents the distance between genes 

and clusters. 

Advantages of using hierarchical clustering are: 

1. Does not require the number of clusters to be known in advance 

2. Computes a complete hierarchy of clusters. 

Disadvantage is: 

1. There is no automatic discovering of ―optimal‖ clusters. 

2.6 Dijkstra’s Algorithm 

Let’s consider a weighted directed graph G = (V, E) where V is the set of genes 

and E is the set of edges in G. Here also consider that all edge weights are nonnegative 

i.e. , w(u,v) ≥ 0 for each edge (u, v) ϵ E. In this study, the weights represent the distance 

between the genes. Dijkstra’s algorithm is a graph search algorithm that solves the single 

source shortest path problem for G. This algorithm is often used in GPS technology to 

find shortest route. 
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In the implementation shown below, Dijkstra’s algorithm maintains a set S of 

genes whose final shortest-path weights from the source s have already been determined. 

The algorithm repeatedly selects the vertex (gene) u ϵ V - S with the minimum shortest-

path estimate, adds u to S, and relaxes all edges leaving u. This implementation uses a 

min-priority queue Q of vertices, keyed by their distance values, d [13] 

 DIJKSTRA (G, w, s) 

1. INITIALIZE-SINGLE-SOURCE (G, s) 

2. S = Φ // Initializes the set S to the empty set 

3. Q              V // Initializes the min-priority Q queue to contain all the vertices 

(genes) in V 

4. while Q ≠ϕ // Until Q is not empty 

5.   u = EXTRACT-MIN (Q) // extract a vertex (gene) u from Q = V-S 

6.   S = S   {u} // add the extracted vertex (gene) u to set S 

7.   for each vertex v which is adjacent to u 

8.    RELAX (u,v,w) 

INITIALIZE-SINGLE-SOURCE (G, s) 

1. for each vertex v ϵ V 

2.   v.d = ∞ // initially the shortest-path estimate for node v is infinite 

3.   v.π = NIL // v.π means predecessor attribute of v 

4.  s.d = 0 // initially the shortest-path estimate for the source node s is zero 

RELAX (u,v,w) 
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1. if v.d > u.d + w(u,v) // if any path found which is shorter than the previously 

found shortest path 

2.   v.d = u.d + w(u,v) // update the shortest-path estimate of v 

3.   v.π = u // update the predecessor attribute of v 

The process of relaxing an edge (u,v) in the function RELAX consists of testing 

whether the shortest path to v found so far can be improved by going through u and if any 

such path found, then update v.d and v.π. This process may decrease the value of the 

shortest-path of v i.e. v.d and update the predecessor attribute of v i.e. v.π. 

Figure 2.6 illustrates an example of the Dijkstra’s algorithm. In this figure s is the 

source node, dashed edges indicate predecessor values. In this figure black vertices are in 

the set S, and white vertices are in the min-priority queue Q = V - S. 
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Figure 2.6: Example of Dijkstra’s algorithm 
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 2.7 Maximum-flow Minimum-cut Theorem 

Maximum-flow Minimum-cut theorem states that in a flow network, the 

maximum amount of flow passing from the source node to the sink node is equal to the 

minimum capacity. If this minimum capacity is removed from the network in a specific 

way, it causes the situation that no flow can pass from the source to the sink node.  

 Let’s consider N = (V, E) be a directed graph which represents a network and s 

and t are the source and the sink node of N respectively. The capacity of an edge is c(u,v) 

that represents the maximum amount of flow that can pass through that edge (u,v). A 

flow is f(u,v) which is subject to the following constraints: 

1. 0 ≤ f(u,v) ≤ c(u,v) for all u,v ϵ V 

2. ∑  (   )         ∑  (   )        for all u ϵ V – {s, t} 

The maximum-flow problem is to maximize |f| where |f| is defined by |f| = 

∑  (   )       where s is the source of N. The purpose is to route as much flow as 

possible from source node s to sink node t.  

The minimum-cut problem is to minimize c(S, T) where c(S, T) is defined by c(S, 

T) = ∑  (   ) (   )      and the purpose is to determine S and T such that the capacity of 

S-T cut is minimal. Here S and T are two disjoint sets and S  T = V.  

2.7.1 Ford Fulkerson Algorithm 

The Ford-Fulkerson algorithm computes the maximum flow in a flow network. The 

idea behind the algorithm is as long as there is a path from the source to sink node, with 
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available capacity on all edges in the path, flow should be sent along one of these paths. 

Then another path is found and so on. Here a path with available capacity is known as 

augmenting path. 

Let’s consider N = (V, E) be a directed graph which represents a network and s 

and t are the source and the sink node of N respectively. Here V is set of vertices and E is 

the set of edges in the graph. The residual network of N is a network Gf(V, Ef) with 

capacity cf(u,v) = c(u,v) - f(u,v) and no flow.  

FORD-FULKERSON(G, c, s, t) 

// G is the graph, c contains the capacity for all edges, s is the source node and t is 

the sink node 

1. f(u, v) = 0 for all edges (u, v) 

2. while there is a path p from s to t is Gf such that cf(u,v) > 0 for all edges 

(u,v) ϵ p // Gf  is the residual network and cf is the residual capacity. 

3.   find cf(p) = min { cf(u,v): (u,v) ϵ p } 

4.   for each edge (u,v) ϵ p 

5.    f(u, v) = f(u, v) + cf(p) // send flow along the path 

6.    f(v, u) = f(v, u) - cf(p) // the flow might be returned later 

The path in step can be found using Breadth First Search (BFS) or Depth First 

Search (DFS). Figure 2.7 shows an example of the Ford-Fulkerson algorithm.  
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Figure 2.7: An example of Ford-Fulkerson algorithm 
 

In Figure 2.7 steps (a) to (e) show the successive iteration of the while loop. 

The residual network Gf is shown at the left side of each part with a dashed 

augmenting path p. The right side of each part shows the new flow f resulted from 

the augmenting path f by fp. Here the network shown in (a) is the input network and 
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the network shown in (f) is the residual network with no augmenting path. Therefore 

the flow f shown in (e) is a maximum flow and the value of the maximum flow is 23.  

2.8 Gene Ontology 

Gene Ontology (GO) is a set of associations relating biological phrases to 

specific genes. GO is designed to encapsulate the known relationships between 

biological terms and genes that are instances of these terms. It is helpful for 

biologists to make inferences about a group of genes without investigating each one 

individually. Hence by using GO, each gene can be assigned its respective attributes 

automatically. 

Terms are also separated into three categories/ontologies: Biological Process, 

Molecular Function and Cellular Component. 

Biological Process describes biological phenomena such as a series of 

commonly known biological events that affects the state of an organism. Examples 

of biological process include cell cycle, replication of DNA etc.  

Molecular Function defines the activities that take place at molecular level. It 

also defines the function that is carried out by a gene product. Examples of molecular 

function include retinoic acid receptor, glycine dehydrogenase, amino methyl 

transferace etc. 
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Cellular Component describes the location in a cell where a gene acts, where 

a gene product functions takes place. Examples of cellular components include 

nuclear inner membrane, ubiquitin ligase complex, integral membrane protein etc.  

This chapter discusses in detail about the algorithms implemented in this 

thesis work and also gene ontology which is used to analyze gene enrichment. 
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CHAPTER III 

RELATED RESEARCH 
 

This chapter discusses about some previous works related to gene clustering, k-

means clustering with hierarchical clustering and use of maximum-flow minimum-cut 

algorithm for web community discovery. This chapter contains an overview of the 

different algorithms previously used for gene clustering. This way the problem domain 

and existing solutions have been introduced in this chapter. 

3.1 Research Works Related to Gene Clustering 

In microarray data analysis, clustering genes to find out the biologically relevant 

groups based on their expression profiles is one of the basic techniques. Similarity in 

gene expression profiles indicates similarity in their gene functionalities also [14]. Hence 

the problem of grouping the genes with similar functionality that participates in the same 

biological process can be mapped as a clustering problem that clusters the genes based on 

their expression profiles [14]. 

So far many algorithms have been implemented for clustering gene expression 

data. These algorithms include hierarchical clustering [15–16], k-means clustering [1], 

self-organizing maps [17 – 19], support vector machines [20], Bayesian networks [21], 
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fuzzy logic approach [22]. Beside these algorithms, some algorithms use other genomic 

information along with gene expression data in order to improve clustering efficiency. 

These algorithms include [22] that use gene ontology data with gene expression data and 

[24–26] that clusters genes by using information of upstream regions of the coding 

sequences with gene expression profiles to get more biologically relevant clusters.  

3.2 Research Works Related to Hierarchical Clustering Combined with k-means 

Traditional clustering algorithms such as k-means and hierarchical clustering 

algorithms have already been implemented for gene clustering [1, 15–16]. As discussed 

in chapter 2, both k-means and hierarchical clustering method suffer from some 

limitation. Moreover, these algorithms are computationally expensive which impede the 

wide use of these algorithms in gene expression data analysis [27–29]. To overcome 

these limitations, a combined hierarchical k-means clustering method has been proposed 

in [30] which firstly applies k-means algorithm in each cluster to determine k cluster and 

then feed those clusters to hierarchical clustering technique to shorten merging clusters 

time while generating a tree-like dendrogram. But still this algorithm suffers from 

limitation of determining the initial value for k. 

3.3 Research Works Related to Graph Clustering Using Maximum-Flow Minimum-Cut 

Algorithm 

After calculating the correlation coefficient for all genes, a weighted graph can be 

created where each gene can be represented as node in the graph and at this stage 

clustering these genes can be mapped as a graph clustering problem. In recent research 
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works, solutions to the graph clustering problem have been formalized by modeling the 

clustering problem into a maximum-flow minimum-cut problem of the underlying graph. 

This approach has been used in problems like web community discovery [31–32], image 

segmentation etc. In [33] the authors used this approach to produce clusters and it has 

been shown that this approach works remarkably in practice [33]. However, in spite of 

wide applications of this algorithm, as the algorithm requires processing of the entire 

graph, if changes happen in graph structure during run time, using this algorithm 

becomes infeasible for dynamic graph [34]. Note that, we are using static graph in our 

research work, so we are not considering this limitation in this case. 
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CHAPTER IV 

MATERIALS AND METHODS 

 

The goal of this research work is to cluster genes where genes with similar 

expression level will remain in same cluster and compare their change in molecular 

functions for normal and cancer samples. We are using microarray data and two different 

approaches namely k-means clustering combined with hierarchical clustering and Ford 

Fulkerson algorithm for graph clustering. For determining the differentially expressed 

genes, we performed t-test, Bonferroni correction and calculated the value of fold change 

of genes in the whole dataset. This chapter discusses about the dataset used for this 

purpose followed by the whole process that has been carried out.   

4.1 Dataset 

Lung cancer is one of the leading causes of death caused by cancer worldwide 

[35–36]. Adenocarcinoma is the most frequent type of non-small-cell lung cancers 

(NSCLC) and it accounts for more than 50% of NSCLC and the percentage is increasing 

[37]. Recent studies have shown that activation of the EGFR, KRAS and ALK genes 

defines 3 different pathways which are responsible for a considerable fraction (30%–

60%) of development of lung adenocarcinoma [38–42]. The remaining lung 
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adenocarcinomas i.e., those without EGFR, KRAS, and ALK mutations (also designated 

as ―triple-negative adenocarcinomas‖), develop with mutations of several other genes 

such as HER2, BRAF etc. However, these are known to be mutated also mutually 

exclusively with the EGFR, KRAS, and ALK genes though their frequencies of 

mutations are very low (<5%) [38–41].  

 The dataset used in this research work contains expression profiles for 246 

samples where 20 samples belong to normal tissue. Out of 226 lung adenocarcinomas 

samples 127 are with EGFR mutation, 20 with KRAS mutation, 11 with EML4-ALK 

fusion and 68 samples are with triple negative cases. Platform used for this dataset is 

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. This 

dataset was collected from GEO database (accession number GSE31210).  

 Typically expression data are analyzed in matrix form where each row represents 

a gene and each column represents a sample. In this study, the dataset contains 54675 

genes and 40 samples which include 20 samples from normal tissue and 20 samples from 

KRAS positive tissues. We represent the data matrix by the symbol X and denote the data 

as shown in Figure 4.1. In this Figure, for example x22 represents the expression value of 

gene x2 for Sample 2. 
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Figure 4.1: Matrix representation of the dataset 
 

An overview of the final dataset is given in table 5.1.    

4.2 Finding the Differentially Expressed Genes 

To determine the differentially expressed genes, we performed t-test and 

Bonferroni correction followed by the calculation of the value of fold change of the 

genes. Brief descriptions of t-test, Bonferroni correction and fold change are given below.  

4.2.1 T-Test 

A t-test is a statistical hypothesis test which is used to determine if data from two 

sets are significantly different from each other. This test is most commonly applied to the 

test statistic which follows a normal distribution and the value of a scaling term in the test 

statistic is known.  

Generally there are two types of t-test: unpaired and paired t-test. Unpaired t-test 

is used for the two datasets to be compared where the members of the datasets are 

randomly selected or otherwise not related. On the other hand, paired t-test is used for the 
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two datasets to be compared where the members of the datasets are related to each other 

and the second datasets contains the same members as the first one. 

 In this study, as we are comparing the value of the same gene for both normal 

tissue dataset and KRAS positive dataset, we used a paired t-test. Given two paired sets X 

and Y of n measured values, the paired t-test determines whether they differ from each 

other in a significant way under the assumptions that the paired differences are 

independent and identically normally distributed. The t statistic to test whether the means 

are different can be calculated as follows: 

   
 ̅   ̅

       √
 
 

 
(4.1) 
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     √
 

 
(  

    
 ) 

(4.2) 

 

Here SXY is the grand standard deviation. The denominator of t in Equation (4.1) 

is the standard error of the difference between two means.  ̅ and  ̅ represent the mean 

values of dataset X and Y respectively,    and    represent the standard deviation for 

dataset X and Y respectively and n is the size of the dataset. 

4.2.2 Bonferroni Correction 

The Bonferroni correction is a simple as well as conservative statistical method 

used to make adjustment to p-values when several dependent or independent statistical 
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tests are being performed simultaneously on a single data set. This correction aims to 

reduce the chances of obtaining false-positive results when multiple pairwise tests are 

performed on a single set of data. In order to perform a Bonferroni correction, we need to 

divide the critical p-value (α) by the number of comparisons being made. For example, if 

10 hypotheses are being tested, the new critical p-value would be  
  

. The statistical power 

of the study is then calculated based on this modified p-value. 

Let’s consider a researcher is testing 20 hypotheses simultaneously, with a critical 

p-value of 0.05. In this case, if P denotes the probability, then the following would be 

true: 

P (at least one significant result)  = 1 – P (no significant results) 

= 1 – (1-0.05)20 

= 0.64 

This example shows that, performing 20 tests on a data set yields a 64% chance of 

identifying at least one significant result, even if all of the tests are actually not 

significant. It means while a given α may be appropriate for each individual comparison, 

it may not be appropriate for the set of all comparisons. 

In short, Bonferroni correction tries to mitigate the risk of producing erroneous 

false-positive conclusions when testing multiple hypotheses on a single set of data and an 

appropriate use of this correction can ensure the integrity of studies in which a large 

number of significance tests are used. 



32 
 

In this study, after performing Bonferroni correction, we selected the genes as the 

most differentially express which have p-values ≤ 0.05. 

4.2.3 Fold Change 

 Fold change represents a measure of how much a quantity changes going from its 

initial stage to a final stage. For example, if a variable has an initial value of 30 and a 

final value of 60, it means there is a fold change of 2, in other words, a 2-fold increase. 

As another example, a change from 80 to 20 would be a fold change of 0.25. Fold change 

is calculated simply as the ratio of the final value to the initial value. For example, if the 

initial value is A and final value is B, the fold change is  
 
. In some cases, a fold-change 

value that is less than 1 can be replaced by the negative of its inverse, such as a change 

from 80 to 20 would be a fold change of -4, in other words, a four-fold decrease. 

In this study, we considered only those genes where the value of fold change 

(increase or decrease) is significant. In the final dataset, we put the genes 

where           , where f is the value of fold change for gene xi and x is the set of 

genes. 

Beside these preprocessing, we considered only those genes that are associated 

with molecular functions according to the Gene Ontology (GO). Figure 4.2 shows the 

flow diagram of the data preprocessing 
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Figure 4.2: Flow diagram of data preprocessing 

4.3 Methods 

In this study, we investigated two approaches for grouping genes with similar 

expression profiles:  

1. K-means clustering combined with hierarchical clustering 

2. Ford-Fulkerson algorithm that uses maximum-flow minimum-cut algorithm. 

We developed a tool written in Java which is used as the platform for these two 

approaches. Figure 4.2 shows the GUI of the tool developed in this research work.  
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Figure 4.3: GUI of the tool developed in this research work.   

4.3.1 K-means Clustering Combined with Hierarchical Clustering 

As discussed in chapter 2, k-means clustering method produces tighter cluster 

than hierarchical clustering and also this algorithm is computationally faster than 

hierarchical clustering. But the performance of k-means clustering largely depends on the 

initial selection of the number of clusters. On the other hand, hierarchal clustering 
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produces a complete hierarchy of clusters which makes it easy to understand how the 

objects group while clustering. So to overcome the limitation of k-means clustering, here 

we used a combined approach to decide the number of clusters for the k-means clustering 

from the output of hierarchical clustering. Flow chart of this approach is shown in Figure 

4.3. 

4.3.2 Ford Fulkerson Algorithm for Graph Clustering 

From the dataset, a weighted graph can be created where each node is represented 

by a gene and the weight (capacity) between two nodes is the value of Pearson 

correlation coefficient between the corresponding genes. After creating the weighted 

graph, Ford Fulkerson algorithm can be applied to get the clusters where genes with 

similar expression profile will group together.  

To apply Ford Fulkerson algorithm, we need to specify a source node and a sink 

node. For this purpose we used Dijkstra’s algorithm for each pair of nodes and then the 

two nodes with maximum shortest distance were selected as source and sink nodes. Note 

that, as Dijkstra’s algorithm deals with distance, we used Pearson correlation distance 

while applying Dijkstra’s algorithm. After getting the minimum cut graph from Ford 

Fulkerson algorithm in the form of two disjoint sets, we recursively apply Ford Fulkerson 

algorithm again to each set until the cardinality of the disjoint set is less than or equal to 

2. In this approach, clustering is done in a top down fashion. Figure 4.4 shows the flow 

diagram of the clustering process. 



36 
 

 

Figure 4.4: Flow diagram of K-means clustering combined with hierarchical 
clustering 
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Figure 4.5: Work flow diagram of applying Ford Fulkerson algorithm for clustering   

4.4 Comparing Molecular Functions of the Genes 

We explored the molecular functions captured in each cluster of genes using Gene 

Ontology (GO). For each cluster, the molecular functions obtained from normal lung 

tissues are compared to the ones from the KRAS positive tissues. The result illustrates the 

change in molecular functions which is the underlying reason for cancer formation and 

development. 
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CHAPTER V 

RESULTS AND DISCUSSION 

 

In this study, we used two approaches for clustering the genes based on their 

expression levels. These approaches are: k-means clustering combined with hierarchical 

clustering and a maximum-flow minimum-cut based approach. In this chapter the results 

obtained by these two approaches are presented and a comparative study of the molecular 

functions of the genes in the clusters is done using gene ontology annotation. Section 5.1 

briefly shows dataset containing highly expressed genes we obtained after preprocessing 

using t-test, Bonferroni correction and calculating the value of fold change. Section 5.2 

presents the results obtained by using the k-means clustering combined with hierarchical 

clustering approach and followed by the result obtained from the maximum-flow 

minimum-cut approach which is presented in section 5.3. The molecular function of the 

genes captured in each cluster for cancer and normal data are explored using gene 

ontology annotation and presented in section 5.4. 

5.1 Preprocessing of Dataset 

Initially the dataset contained 54675 genes and 40 samples (20 for normal tissues 

and 20 for KRAS positive tissues). We determined the highly expressed genes using the 

t-test followed by Bonferroni correction and calculating the value of fold change. After 
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performing t-test we obtained 21880 genes which had significant p value (≤ 0.05). We 

performed Bonferroni correction on these genes and found 1988 genes which had a 

significant adjusted p value (≤ 0.05). As the total number of genes was still too high, we 

calculated the value of fold change and got 1005 genes which had           , where f 

is the value of fold change for gene xi and X is the set of genes. We then performed 

another step of filtering to keep only those genes that have Gene Ontology (GO) terms 

and responsible for molecular functions. Finally we came up with 464 genes in the 

dataset. The final dataset is given partially in Table 5.1 and the complete dataset is 

available in [43]. 

Table 5.1: A brief overview of the final dataset 
Affymatrix 
ID 

Gene 
Symbol 

Samples 

GSM773551 GSM773552 … GSM773784 GSM773785 

1555579_s_at PTPRM 3441.222 2205.079 … 3569.134 5426.586 
211986_at AHNAK 4395.679 3074.898 … 7080.395 8986.732 
222392_x_at PERP 21707.73 11773.66 … 11350.53 9255.438 
236715_x_at UACA 1303.009 685.552 … 1867.759 2359.538 
244704_at NFYB 124.0794 103.3855 … 277.4942 303.6087 

… … … … … … … 
211237_s_at FGFR4 22.41334 6.840419 … 11.07046 134.4622 
203980_at FABP4 257.254 28.62955 … 920.4353 5008.182 
207302_at SGCG 47.08894 4.437844 … 9.613587 368.0018 
210081_at AGER 241.6255 26.12709 … 2001.279 4878.16 
217046_s_at AGER 132.4155 21.06835 … 1016.052 2485.816 

 

5.2 Clustering Results from K-means Combined with Hierarchical Clustering 

As discussed earlier, k-means clustering algorithm requires the initial number of 

clusters before starting the clustering and the performance as well as the subsequent 
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interpretation of the clusters largely depends on this number. In this approach we tried to 

overcome the limitation of k-means clustering by getting the initial number of clusters 

from the result of hierarchical clustering. Figure 5.1 shows the hierarchical clustering of 

normal tissue dataset. 

 

Figure 5.1: Hierarchical Clustering of normal tissue dataset 
 

There are 463 nodes in this tree generated from the hierarchical clustering. To 

decide the number of clusters from the output of hierarchical clustering we used a bar 

graph to show the difference of height between two consecutive nodes and it is shown in 

Figure 5.2. 
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Figure 5.2: Bar graph of the difference of height between two consecutive nodes in 
the tree generated from the hierarchical clustering of normal tissue dataset. 

  

From Figure 5.2 we can see that the difference is the maximum for node 461 and 

node 462. As there are total 463 nodes in the tree, node 461 is in level 3 from the top. So 

according to the approach we are discussing here, the total number of clusters for k-

means clustering should be 4. 
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List of the genes for cluster 1 for normal tissue dataset is given in Table 5.2. List 

of the genes for cluster 2, 3, 4 are given in the appendix (See Table App 1.1, App 1.2 and 

App 1.3). Note that, some genes may have same gene symbols though they have different 

Affymatrix IDs. So there are some duplicate gene symbols in the tables. 

Table 5.2: List of the genes contained in Cluster 1 for the normal tissue dataset 
PERP TSSC1 ADCY4 SRSF3 P4HB COPZ1 
ATP6V0A2 PCM1 PCBD2 UGGT1 RHOJ MYO7A 
IDE KGFLP2 SSR4 CANT1 KIF2A ATP2A2 
EFEMP1 SYNPO PAK1 COPB1 IDS CYCS 
SEC24A IFT57 RHOJ ID4 ECT2 RHOJ 
RALGPS2 SFN RBPMS CDC25A SFN RALGPS2 
FERMT1      

 

Similarly we can perform the combined clustering on KRAS positive dataset. 

Figure 5.3 shows the hierarchical clustering of KRAS positive dataset. 
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Figure 5.3: Hierarchical Clustering of KRAS positive dataset 
 

There are 463 nodes in this tree generated from the hierarchical clustering. To 

decide the number of clusters from the output of hierarchical clustering we used a bar 

graph to show the difference of height between two consecutive nodes and it is shown in 

Figure 5.4. 
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Figure 5.4: Bar graph of the difference of height between two consecutive nodes in 
the tree generated from the hierarchical clustering of KRAS positive dataset. 
 

From Figure 5.4 we can see that the difference is the maximum for node 461 and 

node 462. As there are total 463 nodes in the tree, node 461 is in level 3 from the top. So 

according to the approach we are discussing here, the total number of clusters for k-

means clustering should be 4. 

List of the genes for cluster 1 for KRAS positive dataset is given in Table 5.3. List 

of the genes for cluster 2, 3, 4 are given in the appendix (See Table App 1.4, App 1.5 and 
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App 1.6). Note that, some genes may have same gene symbols though they have different 

Affymatrix IDs. So there are some duplicate gene symbols in the tables. 

Table 5.3: List of genes contained in Cluster 1 for the KRAS positive dataset 
PERP TSSC1 P4HB TIMP3 FAM69A ITPR1 
GAPDH PCBD2 UGGT1 MYO7A IDE CBR4 
SSR4 ICAM2 AKT3 CANT1 KIF2A ATP2A2 
FANCD2 CDKN1C PAK1 SEC24A AKAP12 AKAP12 
E2F2 SPOCK2 RUNX1 SKA3 ECT2 RALGPS2 
SFN GPR82 CDC25A SFN RALGPS2 FERMT1 

 

5.3 Clustering Results from Maximum Flow Minimum Cut Approach 

After calculating the Pearson Correlation Coefficient, a weighted graph can be 

formed where each node is represented by a gene and the weight of the edge between two 

genes can be represented by the corresponding Pearson correlation coefficient. As 

discussed in Chapter 4, maximum flow minimum cut approach can be used for graph 

clustering and Ford Fulkerson algorithm is commonly used in clustering web graph to 

discover web communities. In this research work, we used this approach for clustering 

the gene graph so that genes with high similarity can be grouped together. Note that, Ford 

Fulkerson algorithm requires source and sink node at the beginning and we used 

Dijkstra’s algorithm to find out the source and the sink node as discussed in Chapter 4. 

Figure 5.5 shows a brief overview of how the maximum flow minimum cut 

algorithm works to a small part of the normal tissue dataset. 

Let’s consider Set1 which contains all the genes. Hence, 

Step 1: Set1 = {CYCSKIF2A, IDE, FERMT1SFN, SFN, ATP2A2, SEC24A, 

UGGT1, ECT2, PAK1, COPZ1, CANT1, P4HB} 
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Step 2: After applying the Ford-Fulkerson algorithm to Set1, we get two 

disjoint sets, say Set1, 1 and Set1, 2. 

Set1, 1 = {CYCSKIF2A, IDE, FERMT1SFN, SFN, ATP2A2, SEC24A, 

UGGT1, ECT2} 

Set1, 2 = {PAK1, COPZ1, CANT1, P4HB} 

Step 3: After applying the Ford-Fulkerson algorithm to Set1,1, we get two disjoint 

sets, say Set1, 1, 1 and Set1, 1, 2. 

  Set 1, 1, 1 = {CYCSKIF2A, IDE, FERMT1SFN, SFN, ATP2A2} 

  Set1, 1, 2 = {SEC24A, UGGT1, ECT2} 

In Step4, the algorithm is applied to the Set 1, 1, 1and this process is applied to all 

sets, until the set has a cardinality which is less than or equal to 2. In this way, the tree for 

clustering is formed in a top to bottom fashion. 

After applying the Ford-Fulkerson algorithm on the dataset of normal tissue and 

KRAS positive tissues, we found that the clustering result were same as the hierarchical 

clustering hence it proves the correctness of this maximum flow minimum cut based 

approach. 
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Figure 5.5: A brief overview of how the maximum flow minimum cut algorithm 
works.   

5.4 Discussion and Analysis 

In this section we explain the change molecular function of the genes captured in 

the clusters of both normal tissue and KRAS positive datasets using Gene Ontology (GO) 
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annotations. For comparing the molecular function of the clusters of normal tissue and 

KRAS positive tissues, we took one cluster from normal tissue dataset and one from 

KRAS positive dataset which have maximum number of common genes. Table 5.10 

shows the clusters we have selected for comparing their molecular functions with the 

number of genes they have in common. 

Table 5.4: List of the clusters to be compared for the change in molecular function 
Clusters to compare Number if genes in common 

Normal Tissue dataset KRAS positive 
dataset 

Cluster 1 Cluster 1 20 
Cluster 2 Cluster 3 52 
Cluster 3 Cluster 4 46 
Cluster 4 Cluster 2 69 

 

We explained the molecular functions of the genes in each cluster using GO 

annotations and the relationship are represented using a Directed Acyclic Graph (DAG) 

which is termed as GO graph in this study. To generate these graph we used a web based 

tool named GOEAST which stand for Gene Ontology Enrichment Analysis Software 

Toolkit [44]. This graph displays enriched GOIDs and their hierarchical relationships in 

"molecular function" GO categories. Here boxes represent GO terms, labeled by its Gene 

Ontology ID (GOID), term definition, p-value etc. Note that significantly enriched GO 

terms are marked yellow. The degree of color saturation of each node is positively 

correlated with the significance of enrichment of the corresponding GO term. Non-

significant GO terms within the hierarchical tree are shown as white boxes. In this graph, 

edges stand for connections between different GO terms. Edges with red color stand for 

relationship between two enriched GO terms, black solid edges stand for relationship 
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between enriched and un-enriched terms; black dashed edges stand for relationship 

between two un-enriched GO terms. 

5.4.1 Comparing Cluster 1 of Normal Tissue with Cluster 1 of KRAS Positive Tissues 

Figure 5.6 and 5.7 shows the GO graph for the cluster 1 of normal tissue dataset 

and cluster 1 of KRAS positive dataset respectively.  

 

Figure 5.6: GO graph for cluster 1 of normal tissue data set. 
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Figure 5.7: GO graph for cluster 1 of KRAS positive data set 
  

In brief, from these two figures we see that, the significant GO terms GO: 

0005488 (binding) and GO: 0005515 (protein binding) remain same in both clusters. GO 

terms such as GO: 0030234 (Enzyme Regulator Activity), GO: 0019207 (Kinase 

Regulator Activity), GO: 0019210 (Kinase Inhibitor Activity), GO: 0019887 (Protein 

Kinase regulator Activity) and GO: 0004860 (Protein Kinase Inhibitor Activity) which 

are un-enriched in normal tissue, become highly enriched in the KRAS positive tissues. 

For better comparing the enrichment status of the two clusters, we used Multi-

GOEAST which is an advanced version of GOEAST and it is helpful to identify the 
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hidden correlation between the two clusters.  Figure 5.8 shows the comparative GO graph 

of the clusters discussed above. 

 

Figure 5.8 Comparative GO graph for comparing GO enrichment status of Cluster 1 
of normal tissue dataset and Cluster 1 of KRAS positive dataset. 

 

In the comparative GO graph, significantly enriched GO terms in both clusters are 

marked yellow, light yellow color indicates the GO terms which are enriched in both 

clusters. Nodes marked with coral pink indicate the GO terms which are enriched in 

normal tissue dataset but not in KRAS positive dataset. In addition to that, nodes with 

green color represent the GO terms which are un-enriched in normal tissue but enriched 

in KRAS positive tissues. Note that, the degree of color saturation of each node is 

positively correlated with the significance of enrichment of the corresponding GO term. 

Table 5.5 lists the genes associated with the GO terms which are enriched in the 

cluster 1 of KRAS positive tissue dataset but not enriched in the cluster 1 of normal tissue 
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dataset and these GO terms which are marked with green color in the comparative GO 

graph shown in Figure 5.8. These are responsible for the change in the molecular activity 

of the genes that causes the development of lung cancer. 

Table 5.5: GO Terms and pathways which are enriched in molecular functions of the 
genes of Cluster1 of KRAS positive tissue but un-enriched in the genes of Cluster1 of 

Normal tissue dataset 
GO ID GO Term Associated 

Genes 
Pathway 

GO:0030234 Enzyme 
Regulator 
Activity 

TIMP3 Matrix_Metalloproteinases 

CDKN1C G1_to_S_cell_cycle_Reactome 
PAK1 Integrin 

mediated_cell_adhesion_KEGG 
ECT2 ----- 

RALGPS2 ----- 
SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0019207 Kinase 
Regulator 
Activity 

CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0004857 Enzyme 
Inhibitor 
Activity 

TIMP3 Matrix_Metalloproteinases 

CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0019887 Protein 
Kinase 

Regulator 
Activity 

CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0019210 Kinase 
Inhibitor 
Activity 

CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 
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GO:0004860 Protein 
Kinase 

Inhibitor 
Activity 

CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0051018 Protein 
Kinase A 
Binding 

AKAP12 G_Protein_Signaling 

GO:0008179 Adenylate 
Cyclase 
Binding 

AKAP12 G_Protein_Signaling 

 

Similarly we can generate and compare the GO enrichment graph for the rest of 

the clusters listed in Table 5.4 which are given in the Appendix. 

This chapter discusses about the result of applying both of the clustering 

approaches to the dataset. Additionally, this chapter analyzes the change in GO 

enrichment of molecular functions of the genes captured in the clusters for both normal 

tissue and KRAS positive tissues. 
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CHAPTER VI 

CONCLUSION 

 

The aim of the study is to group biologically relevant genes by using different 

approaches of gene clustering. In the first approach a combined algorithm is used to 

cluster genes using k-means clustering algorithm where the initial number of clusters is 

decided from the output of hierarchical clustering. This approach overcomes the 

limitation of both k-means clustering and hierarchical clustering discussed in previous 

chapters. In the second approach, we used maximum-flow minimum-cut based algorithm 

Ford-Fulkerson algorithm which is a commonly used algorithm for discovering web 

communities by clustering web graphs. This approach produced similar result as the 

hierarchical clustering hence proves the correctness of this approach in gene clustering.  

In this study we examined 40 samples and 464 genes from the dataset of 

Adenocarcinoma which is the most frequent type of non-small-cell lung cancers. Out of 

the 40 samples, 20 were from normal tissue and 20 were from KRAS positive tissues. We 

applied t-test, Bonferroni correction and Fold Change to find the significantly 

differentially expressed genes and included only these genes in the final dataset.  

After applying the clustering algorithms we obtained 4 clusters for both normal 

tissue dataset and KRAS positive dataset. Hereafter, we examined the genes contained in 
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each cluster with respect to their molecular functions based on Gene Ontology (GO) 

annotation to see what are the changes in the enrichment of the molecular functions of the 

genes took place from normal tissues to KRAS positive tissues.  

The k-means clustering algorithm combined with hierarchical clustering takes the 

advantage of hierarchical clustering to get a complete hierarchy of clusters and using this 

information it decides the initial number of clusters to be used in k-means clustering 

which produces a tighter cluster than hierarchical clustering. This way it overcomes the 

limitation of k-means clustering. In the second approach we found that the maximum-

flow minimum-cut based gene clustering produces same result as hierarchical clustering 

hence it proves the correctness of this approach. Therefore, we propose that both of these 

approaches can be used for clustering microarray data.  
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APPENDIX A  

LIST OF GENES IN THE CLUSTER  

Table A.1: List of genes contained in Cluster 2 for the normal tissue dataset 
ZHX3 TNS1 RLIM MPDZ PBX1 NR2F2 

ABCC9 CCDC50 TCF4 TCF4 NT5C2 FAM69A 

DCN PER1 ITPR1 GAPDH SETBP1 LATS2 

EFEMP1 HBB FERMT2 PTGIR GYPC FBXL7 

DIXDC1 SSBP2 SETBP1 PKIG TMOD1 LOC100506948 

DZIP1 PLSCR4 DST ZEB2 MPDZ TCF4 

ALS2CR4 FLT1 DCN DNAJB4 GUCY1A3 NFIA 

VLDLR CNRIP1 ID2 HGF NCALD DNAJB4 

PBX1 MYH10 NFIA PRELP FSTL1 FHL1 

NEGR1 ENAH NEXN AKAP12 LSAMP CD34 

KIF26A GSTM3 PDE2A KCTD16 NFIA CREB5 

AKAP12 NEXN TACC1 ZEB2 AKT3 ITM2A 

FBLN1 PTPRD CCDC50 CNKSR2 HSPB2 FEZ1 

FGF2 CDH13 ITGA8 ECM2 LEFTY2 SLIT3 

PRELP CAB39L RERG ERG THBD ITGA8 
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SEPT8 RECK TACC1 PGR MYH10 SYNE1 

TPPP PAK4 VWF LTBP4 TMOD1 FBLN5 

SASH1 RHOJ FXYD1 PDK4 AGTR1 FHL1 

GHR HBA1///HBA2 LPHN3 LPHN3 HBB SVEP1 

LYVE1 GPC3 TNXB FABP4 FHL1 TNXA///TNXB 

HBB MAMD2 MFAP4 TNXA TNXB FHL1 

FABP4      

 

Table A.2: List of genes contained in Cluster 3 for the normal tissue dataset 
AHNAK NFYB NR2F1 GABARAPL1 RNF125 RNF144B 

BMPR2 ARHGAP24 PHACTR2 PTRF PRKCH PDLIM2 

HEG1 SNRK MACF1 PHACTR2 KIAA1324L ATXN3 

BMP5 HUWE1 KCTD15 IL11RA VAPA DNAJC18 

LMCD1 ARAP3 ARHGAP24 PHACTR2 PTPRM ICAM2 

PLCE1 QKI ANKS1A CDKN1C LMO2 CRIM1 

CCBE1 KCTD15 SNX1 QKI RNF207 CDKN1C 

ARHGAP31 PTPRG MYLIP MEIS1 SHROOM4 RHOJ 

ATXN3 GATA2 ENG CD93 STARD13 KCNJ8 

FRMD3 PIK3R1 FRMD3 PRKD1 FLT4 KIF17 

ADAMTS8 PRDM5 KCNJ8 PTPRG NOTCH4 PTRF 

ZEB1 HEG1 RUNX1T1 LRCH2 CDKN1C SVEP1 
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CFL2 COL4A3 TIE1 SH3BP5 PKIA PRKCH 

DAPK2 ESAM SPTBN1 WASF3 DLC1 E2F2 

TAL1 CD93 WWC2 KIAA1324L PTPRM AKAP2/// 

PALM2-

AKAP2 

ERG SH2D3C PECAM1 FGD5 SPOCK2 FZD4 

CDKN1C GPR133 CLEC1A TNS1 ADRA1A PECAM1 

CELF2 WWC2 CLIC5 RADIL EML1 NOSTRIN 

DAPK2 PKNOX2 ADRB2 BDNF HOXA5 ANGPT1 

COL13A1 CAV2 FRMD3 LIFR QKI GPR146 

BMP5 LDB2 CCBE1 CORO2B CAV1 VAPA 

SASH1 ACVRL1 TGFBR3 LIFR NTNG1 BAI3 

STX11 NEBL PTPRB SNCA TGFBR3 SHROOM4 

GATA2 SEMA6A LPHN2 CD36 ERG CNTN6 

NECAB1 TEK S1PR1 LIFR ID4 PDZD2 

CDH5 FOXF1 RNF182 CLIC5 LIFR SYNPO2L 

ADAMTS8 TSPAN7 SLIT2 TAL1 PTPRB FGFR4 

KL BMPER CLIC5 CCBE1 SDPR EDNRB 

RXFP1 SPTBN1 GDF10 SDPR FREM3 USHBP1 

CD36 MASP1 ADAMTS8 EDNRB EDNRB GPIHBP1 

TCF21 FIGF CLEC3B NCKAP5 RSPO1 LRRN3 
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GRIA1 FGFR4 SGCG AGER AGER  

 

 

Table A.3: List of genes contained in Cluster 4 for the normal tissue dataset 
PTPRM UACA GABARAPL1///

GABARAPL3 

INPP5A KLHDC1 DCHS1 

EXT1 TIMP3 ARHGAP24 TNS1 AKAP2///PAL

M2-AKAP2 

PLAGL1 

LRRFIP1 TBX5 DST CBR4 ITGA1 PECAM1 

PDE3B PLAGL1 APBB2 DST SIK2 EFHA2 

AKT3 NR2C1 RORA CACNA1D PCDHB6 FANCD2 

C20orf46 CAV1 CBFA2T3 NPNT SVEP1 P2RY14 

DST FIGN LIN7A NR2F1 GRIA1 LRRFIP1 

RYR2 C13orf15 PIK3R1 SH3BP5 DOCK4 AKAP2 /// 

PALM2-

AKAP2 

ITGA1 PLAGL1 RHOJ FIGN UACA CRIM1 

ACACB LIMCH1 ACACB PTPRD PREX2 FHL1 

ACACB AFF2 DOK6 TBX2 ANO2 RUNX1 

DOK6 TENC1 SKA3 KCNK3 ANGPT1 GRK5 

DACH1 LIMCH1 TBX2 SASH1 PKNOX2 C13orf15 

GPX3 WWC2 C13orf15 RHOJ RAPGEF4 FAT3 
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SHANK3 ARHGA

P6 

TBX5 PPP1R14A PELO MYLK 

GPR82 PKNOX2 GPX3 NPR1 DACH1 CDH19 

PTPRB CDH19 COL6A6 ACTN2 TCF21 LRRTM4 

KCNK3 KCNK3 AGTR1 FAT3 AOC3  

 

Table A.4: List of genes contained in Cluster 2 for the KRAS positive dataset 
UACA NFYB ADCY4 NR2F1 GABARAPL

1 

RLIM 

GABARA

PL1 

///GABAR

APL3 

MPDZ INPP5A KLHDC1 PBX1 NR2F2 

EXT1 CCDC50 RNF125 ARHGAP24 NT5C2 ATP6V0A

2 

PHACTR

2 

TNS1 PCM1 SNRK SETBP1 PHACTR2 

KGFLP2 KIAA1324

L 

ATXN3 DIXDC1 SSBP2 SETBP1 

HUWE1 PLAGL1 TMOD1 TBX5 IL11RA LOC10050

6948 
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VAPA PECAM1 PLSCR4 DNAJC18 APBB2 ARHGAP2

4 

MPDZ PHACTR2 PLCE1 SIK2 EFHA2 ANKS1A 

CDKN1C ALS2CR4 CRIM1 FLT1 RORA CACNA1D 

PCDHB6 SNX1 NFIA VLDLR MYLIP ID2 

HGF MEIS1 C20orf46 SYNPO COPB1 ATXN3 

CBFA2T3 GATA2 PBX1 MYH10 NFIA DST 

FIGN LIN7A NR2F1 GRIA1 LRRFIP1 RYR2 

PIK3R1 SH3BP5 TNIP1 FRMD3 NEGR1 PIK3R1 

ENAH FRMD3 DOCK4 PLAGL1 ADAMTS8 PRDM5 

CYCS NOTCH4 FIGN LSAMP CD34 RUNX1T1 

LRCH2 GSTM3 CRIM1 ACACB KCTD16 NFIA 

COL4A3 ACACB RHOJ PREX2 SPTBN1 WASF3 

FHL1 TACC1 ITM2A KIAA1324L ACACB CNKSR2 

ERG SH2D3C DOK6 FGD5 ANO2 DOK6 

FZD4 TENC1 ITGA8 KCNK3 ANGPT1 CLEC1A 

GRK5 TNS1 LEFTY2 ADRA1A DACH1 PECAM1 

TBX2 CAB39L RERG SASH1 ERG PKNOX2 

ITGA8 PKNOX2 TACC1 HOXA5 PGR MYH10 

SYNE1 FRMD3 PAK4 GPR146 BMP5 LDB2 

VWF RHOJ RAPGEF4 FAT3 SHANK3 VAPA 
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SASH1 TGFBR3 TMOD1 ARHGAP6 BAI3 SASH1 

TBX5 RHOJ NEBL PPP1R14A PTPRB SNCA 

RBPMS PELO TGFBR3 SHROOM4 GATA2 MYLK 

FXYD1 SEMA6A PDK4 LPHN2 ERG NECAB1 

PKNOX2 GPX3 AGTR1 NPR1 TEK FHL1 

DACH1 CDH19 S1PR1 GHR PTPRB ID4 

PDZD2 CDH5 FOXF1 RNF182 ADAMTS8 LPHN3 

LPHN3 CDH19 TSPAN7 ACTN2 TAL1 PTPRB 

TCF21 KL LRRTM4 TNXB EDNRB KCNK3 

TNXA /// 

TNXB 

MFAP4 TNXA /// 

TNXB 

AGTR1 TNXA /// 

TNXB 

SDPR 

FREM3 FAT3 FHL1 USHBP1 ADAMTS8 EDNRB 

FHL1 GPIHBP1 TCF21 CLEC3B AOC3 NCKAP5 

LRRN3      

 

Table A.5: List of genes contained in Cluster 3 for the KRAS positive dataset 
PTPRM AHNAK ZHX3 TNS1 DCHS1 ABCC9 

TCF4 TCF4 BMPR2 PTRF PRKCH DCN 

PDLIM2 HEG1 LATS2 AKAP2///PA

LM2-

AKAP2 

MACF1 RHOJ 
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FHL1 FERMT2 PTGIR GYPC FBXL7 PKIG 

LRRFIP1 KCTD15 DST DZIP1 ITGA1 LMCD1 

PLAGL1 ARAP3 DST DST ZEB2 PTPRM 

QKI TCF4 LMO2 CCBE1 DCN DNAJB4 

KCTD15 GUCY1A3 QKI RNF207 ARHGAP31 CNRIP1 

PTPRG RHOJ CAV1 NCALD DNAJB4 P2RY14 

ENG CD93 PRELP IDS STARD13 FSTL1 

KCNJ8 PRKD1 AKAP2///

PALM2-

AKAP2 

ITGA1 NEXN RHOJ 

KCNJ8 PTPRG PTRF ZEB1 HEG1 UACA 

KIF26A PDE2A CFL2 CREB5 TIE1 PKIA 

PTPRD NEXN CD93 ZEB2 AKT3 FBLN1 

PTPRD CCDC50 AKAP2///

PALM2-

AKAP2 

PECAM1 HSPB2 FEZ1 

TBX2 FGF2 CDH13 ECM2 SLIT3 PRELP 

RADIL RHOJ EML1 THBD MAMDC2 ADRB2 

RECK BDNF COL13A1 CAV2 QKI CCBE1 

CORO2B LTBP4 CAV1 ACVRL1 NTNG1 STX11 

SLIT2 SVEP1 BMPER LYVE1 CCBE1 FABP4 
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FABP4 SGCG     

 
 

Table A.6: List of genes contained in Cluster 4 for the KRAS positive dataset 
SRSF3 RNF144B COPZ1 ARHGAP24 PER1 EFEMP1 

BMP5 PDE3B NR2C1 EFEMP1 SHROOM4 NPNT 

SVEP1 C13orf15 FLT4 KIF17 CDKN1C LIMCH1 

SVEP1 IFT57 SH3BP5 PRKCH DAPK2 ESAM 

DLC1 TAL1 WWC2 PTPRM AFF2 CDKN1C 

ID4 GPR133 LIMCH1 CELF2 WWC2 CLIC5 

NOSTRIN DAPK2 C13orf15 ANGPT1 LIFR TPPP 

GPX3 WWC2 C13orf15 LIFR FBLN5 CD36 

CNTN6 LIFR CLIC5 LIFR SYNPO2L HBA1 /// 

HBA2 

COL6A6 HBB FGFR4 CLIC5 GPC3 SDPR 

KCNK3 HBB RXFP1 SPTBN1 GDF10 CD36 

MASP1 HBB EDNRB FIGF RSPO1 GRIA1 

FGFR4 AGER AGER    
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APPENDIX B 

GO GRAPH FOR CLUSTERS  

 

 Figure B.1: GO graph for cluster 2 of normal tissue data set. 
 

 

Figure B.2: GO graph for cluster 3 of KRAS positive data set. 
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Figure B.3: Comparative GO graph for comparing GO enrichment status of Cluster 2 
of normal tissue dataset and Cluster 3 of KRAS positive dataset. 

 

 

Figure B.4: GO graph for cluster 3 of normal tissue data set. 
 

 

Figure B.5: GO graph for cluster 4 of KRAS positive data set. 
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Figure B.6: Comparative GO graph for comparing GO enrichment status of Cluster 3 
of normal tissue dataset and Cluster 4 of KRAS positive dataset. 

 

 

Figure B.7: GO graph for cluster 4 of normal tissue data set. 
 

 

Figure B.8: GO graph for cluster 2 of KRAS positive data set. 
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Figure B.9: Comparative GO graph for comparing GO enrichment status of Cluster 4 
of normal tissue dataset and Cluster 2 of KRAS positive dataset. 




