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ABSTRACT 

The benefit or detriment of a mutation cannot be determined on its own, but rather 

must be considered in connection with the expression of other genes.  Furthermore, 

expression as a whole can be altered by the organism’s external environment.  In this 

study, we examine the interactions between five coevolved alleles, and how those 

interactions may be affected by changes to the external environment.  We find that 

despite being selected for in a single environment, these mutations remain beneficial 

across a broad range of metabolites.  We also find that the epistasis underlying the 

adaptive landscape is highly dependent on the resource environment.  These results have 

implications for the study of the adaptive landscape in an environmental context.  
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CHAPTER I 

ADAPTATION, EPISTASIS, AND THEIR RELATIONSHIP WITH METABOLIC 

ENVIRONMENT IN ESCHERICHIA COLI 

 

Introduction 

 Adaptation, chance, and history have been shown to influence an organism’s 

fitness, and in turn, evolutionary trajectory (Travisano et al. 1995). The order of the 

introduction of new mutations is important because the fitness effect of any individual 

allele depends on the genetic as well as ecological environments in which it arises.  This 

is especially true in asexual populations where beneficial allelic combinations cannot be 

brought together through recombination.  In asexual populations, the order of past 

mutations establishes the history, each new mutation is a chance event and the ecological 

environment in combination with these two factors determines the course of adaptation.  

No studies have looked at the mechanistic interplay of all of these factors across a broad 

range of environments.  Using a set of 32 genetic constructs based on five beneficial 

alleles (Khan et al. 2011) in concert with 8 different resource environments, we 

investigate the mechanistic basis of history, chance and adaptation.  Exploration of these 

dynamics can inform us of how evolutionary processes like adaptation and speciation 

occur or may be constrained. 



2 
 

The fitness consequence of a new allele is not inherent to the allele itself.  Instead 

its effect must be determined functionally in context with the genetic background from 

which it arose and the challenges and opportunities presented by the physical 

surroundings (Wright 1982). The most common incarnation of the landscape shows one 

or more “peaks” corresponding to fitness (sub-)optima of a population. Normally a 

landscape is intended to represent the influence of genetic interactions in a given 

environment.  In this heuristic, selection is expected to drive populations towards the top 

of a local peak.  Multiple peaks are separated by “valleys.”  It is not possible for one 

population to travel through a valley to another peak without the influence of a force 

other than natural selection (e.g. drift, recombination or an increase in phenotypic 

variation).  In effect, adaptive landscapes define the evolutionary boundaries available to 

a population (Wright 1982). 

Travisano et al. defined three conceptually and mathematically distinct processes 

useful in illustrating how a clonal population arising from a single genotype explores an 

adaptive landscape during its evolution.  “History” refers to the original genotype from 

which all future genotypes must arise.  “Chance” is the process by which stochastic 

variation is increased in a population through events like the migration, drift, or 

mutations in the genetic code.  “Adaptation” refers to the selective increase in frequency 

of an allele that provides a benefit to the organism in its current environment.  In context 

of an adaptive landscape, “history” is a genetic starting position on the fitness surface at 

the outset of evolution (Wright 1982).  “Chance” is any process through which the 

population is allowed to explore the surface due to the introduction of stochastic 
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variation.  “Adaptation” is the process by which the genotype moves closer to its adaptive 

peak due to chance events (Travisano et al. 1995). 

 When attempting to measure the effects of individual alleles in context with 

others, we must take into account that combinations of alleles may not produce the fitness 

outcome predicted by the behavior of single ones.  Several null models have been 

proposed in certain circumstances (Mani et al. 2008) but a multiplicative model (Khan et 

al. 2011) best suits the E. coli-based system employed in this study.  Under the 

multiplicative model, we expect genotypes with two or more of our focal alleles to have 

fitness values equal to the product of the fitness values produced by each allele expressed 

alone in the same background.  Deviations between observed and expected values of 

fitness are defined as epistatic interactions. 

 Epistasis can be thought of as having both a magnitude and direction of effect on 

fitness.  Effect direction describes the force of selection on mutations as they are added 

and can be beneficial (positive) or detrimental (negative) to the organism. Effect 

magnitude describes the deviation between observed fitness and predicted fitness for a 

genotype with two or more mutations under a directly multiplicative model.  Instances 

where the observed effect is greater than expected are said to exhibit synergistic epistasis 

while those effects less than expected are experiencing antagonistic epistasis (Desai et al. 

2007).  In special cases, sign epistasis may occur, in which selection acts negatively on 

mutations in some combinations but positively in others (Weinreich et al. 2005). 
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Figure 1 – Potential outcomes of epistasis.  Linearized fitness values are plotted against 
an increasing number of mutations.  Predicted fitness (black), antagonistic epistasis (red), 
synergistic epistasis (green) and sign epistasis (purple) are modeled here for beneficial 
mutations. 
 

We expand the Desai et al. (2007) epistasis model to include multiplicative fitness 

effects using the equation: 

                             

where, ω is relative fitness, k is number of mutations, s is the cost/benefit of each allele 

and ∈ is the sign and magnitude of epistasis.  This equation produces the green 

(synergistic), black (expected) and red (antagonistic) lines in Figure 1 above where s is 

0.1 corresponding to a 10% gain in fitness for each mutation and the value of epistasis is 

±0.25.  The Desai model does not include sign epistasis.  We add one (of many possible) 

examples of sign epistasis here modeled as:  

                             

where the direction of effect of a novel mutation is altered by the presence of previous 
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In a previous long-term evolution experiment of E. coli, Richard Lenski’s lab 

found a clear pattern of decelerating improvement in fitness emerged after 2,000 

generations of evolution and persisted through at least 20,000 generations (Lenski et al. 

1991; Lenski and Travisano 1994; Barrick et al. 2009).  This pattern is found across other 

strains of E. coli (Moore and Woods 2006).  Antagonistic epistasis is thought to be the 

driving force behind this pattern of diminishing returns (Khan et al. 2011).  Similar 

results are found in another study of beneficial mutations in a strain of Methylobacterium 

extorquens (Chou et al. 2011). 

Altering genetic history through a single mutational event can have measurable 

impacts on fitness.  Khan et al. (2011) prepared a suite of bacterial constructs consisting 

of all possible combinations of alleles resulting from five mutations that spread 

sequentially through Lenski’s evolving population.  Analysis of these constructs in the 

context of the evolved environment showed a smooth adaptive landscape with a single 

peak (Figure 2).  Though the evolutionary pathway that was taken followed steps that 

increased fitness with the addition of each new allele, the steps taken were not necessarily 

the fittest possible combination.  The order in which alleles were added to the ancestral 

background determined which pathways through the landscape were available without 

having to cross an adaptive “valley”.  In this case, where the optimum genotype 

contained all five of the focal alleles, order may actually seem relatively unimportant.  

All allowable pathways lead to the same local optimum.  However, in a landscape with 

multiple peaks, order of chance events may determine what optima are possible to reach. 
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Figure 2 – Mutational network describing the adaptive landscape of 32 genetic constructs 
in glucose-supplemented media. (From Khan et al. 2011.) 
 
 The fitness phenotype is a product of interactions among individual genes, as well 

as the interaction of the entire genome with its environment.  Plasticity refers to 

variability in phenotype governed by ecological factors, such as temperature and 

available nutrients.  Single mutations are sufficient to produce measureable gene-by-

environment interactions.  Altering the environment has been shown to change both 

fitness effect and variance associated with a given set of mutations and external 

conditions (Remold and Lenski 2001).  In that study of random insertion mutations, it 

appears that plastic effects are dependent on genetic background, meaning phenotypic 

plasticity consistently depends on underlying epistasis.  

 Gene-environment interactions tend to follow one of three main patterns.  

Antagonistic pleiotropy is a system of true trade-offs.  Interactions between genes and 

their surroundings may be beneficial in the environment in which it arose, but deleterious 

in most others.  Examples of antagonistic pleiotropy have been found in Lenski’s 10,000-
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generation study of clonal populations of E. coli in a minimal glucose environment 

(Cooper and Lenski 2000).  Evolved lines in this study had a nearly 25-percent reduction 

in their ability to utilize multiple sources of carbon for energy.  The same mutations that 

lead to the reduction of the catabolic repertoire were themselves beneficial in the limited 

glucose environment.  This illustrates the importance of the evolutionary environment as 

a selection pressure that favors reduced costs and increased efficiency of essential 

functions (Cooper and Lenski 2000).  While reduction of diet breadth may prove costly 

under the wrong environmental conditions, the evolved strains had higher fitness than the 

ancestor in the evolved environment, as well as in novel environments where resource 

utilization was possible (Cooper 2002).   

 A true trade-off system does not account for all the patterns of gene-environment 

interaction seen in laboratory and wild populations.  Allelic changes may have no effect 

on fitness (i.e. neutral mutations) when they are fixed in a population, but may be 

deleterious effects in alternate environments (Funchain et al. 2000).  This type of 

interaction may be especially important in asexual populations, where independently-

arising beneficial mutation cannot be recombined, but rather compete through clonal 

interference (Fisher 1930; Muller 1932; Gerrish and Lenski 1998).  Moreover, changing 

environment does not necessitate a decrease in fitness.   Some selected mutations may 

have globally beneficial (or neutral) results, but the degree of benefit may be linked to 

external conditions (Fry 1993; Fry 1996). 

 To summarize, epistasis and gene-environment interactions play a critical role in 

defining the pathways of evolution available to a population. We have a slowly growing 

body of evidence of this critical role. Travisano et al. (1995) examines how changing the 
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evolved environment affects evolutionary trajectory in real time, but it lacks mechanistic 

detail at the genetic level.  Khan et al. (2011) provides an excellent breakdown of the 

epistatic interactions between evolved beneficial mutations, but characterizes these 

interactions only for the evolved environment (glucose).  Flynn et al. (2013) is the first to 

use a design combining populations of known clonal genotypes with multiple 

environments.  However, the number and types of environments limit the generality of 

those results.  In order to more generally explore the effects of mutational order (genetic 

history) across environments, we extend the system used in Flynn et al. (2013). 

 In this study, we investigate the mechanistic basis of adaptation, chance, and 

history by measuring fitness in 256 combined environments.  We examine 32 constructed 

genotypes representing the adaptive mutations found in one evolving population (Lenski 

et al. 1991, Khan et al. 2011) across 8 resources.  We examine the potential role of 

epistatic interactions and ecological environment in determining the likely path of 

adaptation. 

 

Materials and Methods 

 Mutations and Bacterial Constructs 

 The first five beneficial mutations to fix in Lenski et al.’s (1991) population of 

Escherichia coli REL606 are utilized in this study.  These mutations were fixed in 

evolving populations in minimal glucose conditions The individual effects of these 

mutations have been characterized and are presented below (Table 1) in the order in 

which they appear to have arisen.  First, ribose catabolism is lost via the deletion of the 

rbs operon (Cooper et al., 2001).  Second, a nonsynonymous point mutation in topA leads 
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to an increase in DNA supercoiling (Crozat et al., 2005).  Third, a nonsynonymous point 

mutation in spoT reduces the amount of time spent in lag phase and increases the 

maximum growth rate (Cooper et al., 2003).  Fourth, a 1-base pair insertion reduces the 

expression of the glmUS operon involved in cell wall production (Stanek et al., 2009).  

Lastly, insertion of IS150 into the pykF gene results in a loss of function of pyruvate 

kinase I (Schneider et al., 2000).  Constructs representing all 31 possible combinations of 

these five mutations were engineered by the lab of T.F. Cooper (University of Houston).  

Their assembly has been described previously (Khan et al., 2011).   

Table 1 –Five focal mutation events and their consequent effects. 
 
Gene  Mutation type  Effect  
rbs (‘r’)  deletion (~3kb)  -Loss of ribose catabolism 

-high mutation rate  
topA (‘t’) nonsynonymous point 

mutation  
-Increased DNA supercoiling  

spoT (‘s’) nonsynonymous point 
mutation  

-Increased max growth rate  
-Stringent response  

glmUS (‘g’) deletion (1bp)  -Altered promoter 
-Reduced expression of genes involved in cell wall 
synthesis  

pykF (‘p’) insertion (IS150)  -Loss of function of pyruvate kinase I  
 
 Experimental Design 

 The relative fitness of each combination of mutations (25 = 32 genotypes) was 

measured in 8 metabolic environments.  The experiment was performed in five blocks for 

a total N = 1280.  42 data points could not be included in the analysis due to non-growth 

of both strains in competition for a final N = 1238.  All mutation-by-resource 

combinations are represented by at least four valid measures.   

 Competitive Fitness Assays 

 Each of the 31 constructed strains and the progenitor strain (REL606) used in this 

study are unable to utilize arabinose (Ara-).  This allows for direct competition with an 
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Ara+ strain that is otherwise identical to the progenitor (REL607).  Ara- strains appear 

red and Ara+ strains appear white on tetrazolium-arabinose (TA) agar.  This allows for 

the proportions of ancestral and recombinant competitors to be counted directly.  

Competitions took place in Davis minimal salts supplemented 8 different carbon 

resources as summarized in Table 2.  The amount of each supplement was chosen due to 

its ability to support equivalent densities of the common ancestor REL 606.  

Table 2 – Media supplements for fitness assays. 
 
Supplement  Type  [mg/L]  
Glucose Monosaccharide (PTS) 25  
Acetate Short chain fatty acid 12.5  
Beef Extract Peptides, amino acids, nucleotides, organic acids, 

minerals, vitamins 
300 

Casamino Acids  Amino acids  70  
Milk Protein Hydrolysate  Peptides, amino acids, simple and complex 

carbohydrates 
180 

N-Acetylglucosamine (NAG)  Monosaccharide (PTS) 125 
Rhamnose  Monosaccharide (Non-PTS) 60 
Trypsin  Whole protein  20 

 
 Prior to the start of competition, strains were allowed to acclimate to the assay 

conditions for 24 hours.  Following this habituation, Ara- strains were mixed in equal 

volumes and diluted 100-fold into new media.  A sample of this culture was taken 

immediately and plated on TA agar to establish initial proportions.  The culture was 

propagated at 37°C, shaken at 120 rpm for approximately 48 hours with a 100-fold 

dilution due to transfer to fresh media occurring after 24 hours.  Final samples were 

plated at the close of competition.  Malthusian parameters (m) were calculated for both  

Ara+ and Ara- strains in each competition using the formula  
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where N0 and (N2*the dilution factor) represent initial and final densities respectively.  

Relative fitness values were calculated by dividing the Malthusian parameter of the 

constructed strains by that of their ancestor.  Prior to analysis, all relative fitness values 

were scaled within resource by dividing each measure by the average fitness of the 

ancestor, REL606 relative to its Ara- competitor REL607, in that resource.  Absolute 

epistasis was calculated as the deviation from predicted fitness determined using a 

multiplicative model  

          

   

 

where    is the observed relative fitness of a genotype with two or more mutations from 

set M and predicted fitness is equal to the product of the relative fitnesses of the 

individual constituent mutations, i (da Silva et al., 2010). 

 Statistical Analyses 

 All statistical analyses were performed using JMP Pro 10.  An ANOVA was used 

to examine mutation type and resource as potential sources of variance for the fitness of 

strains containing only a single mutation.  ANCOVAs with number of mutations and 

metabolic environment as main effects were run to assess the contributions of 

accumulated mutations and external environment both to overall fitness and to epistasis.     

 

Results 

Fitness of individual mutations in multiple environments 

 A full-factorial ANOVA revealed that mutation-type, test environment, and the 

interaction between these two factors each contribute significantly to the fitness of 

genotypes containing only one of this study’s five focal mutations (Table 3).  Figure 3 



12 
 

displays the average fitness of each individual mutation-resource combination.  Thirteen 

of forty (13/40) combinations exhibit greater relative fitness than their ancestor in a given 

resource, while twenty-two combinations (22/40) were neutral in effect, and five (5/40) 

yielded relative fitness values lower than that of their ancestor.  Significance of these 

results was determined by 40 separate two-tailed t-tests (α = 0.05). 

 
Figure 3 – Average relative fitness values for five focal adaptive mutations (rbs, topA, 
spoT, glmUS, pykF) in eight test environments.  Dotted line references ancestral fitness.  
Error bars indicate 95% confidence intervals. 
 
 
Table 3 - ANOVA of fitness with respect to type of single mutation and resource. 
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Source df MS F-ratio P-value 
Mutation 5 0.3893 53.9927 <0.0001 
Environment 7 0.0933 12.9341 <0.0001 
Mutation*Environment 35 0.0244 3.3841 <0.0001 
Error 186 0.0072     
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 The relationship of fitness to number of mutations across environments 

 A full-factorial ANCOVA with number of mutations and resource as main effects 

was calculated based on mean of the natural log transformed fitness for each construct in 

each resource.  The number of mutations present and resource used were significant 

sources of variation in fitness (Table 4).  The effect of number of mutations also varies 

from resource to resource (Table 4).  

Table 4 - ANCOVA of natural logarithm transformed fitness with respect to number of 
mutations and resource. 
 

 
 
 An additional analysis was performed for each resource comparing expected and 

observed linearized fitness measures.  Values were averaged for each construct and 

plotted against the number of mutations present.  Regression lines based on treatment 

means were fit to both the observed and expected data.  Observed data points are labeled 

with the corresponding letters of the mutant alleles they contain and, for clarity, expected 

data points are not shown (Figures 4a-4h).  General linear models were used to test for 

deviation of observed from expected lines for each resource (Figures 4a-4h). 

We found two cases of a significant synergistic epistasis trend with increasing 

number of mutations (milk protein hydrolysate – Fig. 4e and glucose – Fig. 4d) and three 

cases of significant antagonistic trend in epistasis (acetate – Fig. 4a, casamino acids – 

Fig. 4c and trypsin – Fig. 4h).  We found no significant epistatic trend with increase in 

loci for three resources (beef extract – Fig. 4b, NAG – Fig. 4f , and rhamnose – Fig. 4g). 

 

Source df MS F-ratio P-value 
Mutation Count 1 2.9375 59.7062 <0.0001 
Environment 7 0.8399 17.2872 <0.0001 
Mutation Count*Environment 7 0.3020 3.8720 0.0005 
Error 240 0.0142   
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Figure 4 – Expected and observed fitness of constructs grown on (a) acetate (p <0.0001), 
(b) beef extract (p=0.5620), (c) casamino acids (p=0.0289), (d) glucose (p=0.0555), (e) 
milk protein hydrolysate (p=0.0273), (f) NAG (p=0.9251), (g) rhamnose (p=0.2043), and 
(h) trypsin (p<0.0001).  P-values associated with testing for differences between slopes of 
observed and expected lines. 
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General patterns in adaptive peaks across resource  

In all environments except glucose (Figure 4d) and milk protein hydrolysate 

(Figure 4e), the highest fitness is seen in a clonal population other than the one containing 

all five mutant alleles (‘rtsgp’) although these fitness peaks may not differ significantly 

from all other genotypes.  In acetate (Figure 4a), the highest fitness genotype contains 

only the ‘t’ mutant allele.  In beef extract (Figure 4b) and casamino acids (Figure 4c), 

peak fitness is achieved by the ‘rsg’ genotype.  In NAG (Figure 4f), the maximum fitness 

value is in the ‘tsp’ construct.   

For three of the resource environments, access to peak fitness is potentially 

blocked by an adaptive valley.  In milk protein hydrolysate (Figure 4e), the absolute peak 

is achieved by ‘rtsgp’.  If the highest fitness genotypes are fixed in order of benefit a local 

peak at ‘rt’ would lead to an adaptive dead end.  Similar patterns are seen in rhamnose 

(with a local peak at ‘t’ and an absolute peak at ‘rts’ – Figure 4g) and trypsin (with a local 

peak at ‘rt’ and an absolute peak at ‘rsg’ – Figure 4h).  While these populations appear to 

have fitness valleys we did not test for significance of each valley. 

 General patterns of epistasis across environments 

 While fitness tends to improve with number of mutations regardless of resource, 

measures of absolute epistasis vary greatly with environment.  An analysis of covariance 

found no direct effect of the number of mutations on absolute epistasis.  However, 

environment contributes significantly to variation in absolute epistasis.  The number of 

mutations does significantly influence the level of epistasis in a resource environment 

specific manner with a range of synergistic, neutral and antagonistic epistasis (Table 5, 
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Figure 5).  Significant epistatic trends are seen in five of eight resources (GLM, p<.005), 

including acetate, casamino acids, glucose, milk protein hydrolysate, and trypsin.   

 

Table 5– ANCOVA of absolute epistasis with respect to number of mutations and 
resource.   

 

 

Figure 5 - Plot of absolute epistasis versus number of mutations using only genotypes 
where two or more of the focal mutations are present.  Y-intercept is forced through the 
point (1,0) to reflect removal of background influence and within-resource scaling. 
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Discussion 

 We find that the underlying basis of adaptive landscapes, epistasis, is highly 

dependent on the resource environment in which those mutations are expressed (Table 5, 

Figure 4a-h).  When looking across a haphazard array of eight resource environments we 

find that there is no predictable pattern in epistatic effect with increasing number of 

mutations.  Neither synergistic nor antagonistic epistasis dominates in this set of 

mutations.  Current models of adaptation and evolution are flexible but require an 

understanding of the stability of the architecture of adaptive landscapes.  History is 

recorded in the location of a population in a genetic space.  We find that the impact of 

that history on the expected direction of adaptation is highly contingent on the external 

environment. Not just because selection on the phenotype changes, but because the 

genetic interactions creating the phenotype change, altering the way in which a response 

to selection can occur. 

 The ruggedness of an organism or population’s adaptive landscape has an effect 

on its ability to repeat evolution given relatively equal genetic and environmental starting 

conditions.  Melnyk and Kassen (2011) found that in Pseudomonas fluorescens, as 

evolution proceeds in two environments adaptation becomes a larger contributor to 

variance than history or chance.  This is consistent with Travisano et al.’s 1995 original 

study.  However Melnyk and Kassen also show that history and chance together 

contribute more in a novel environment than in the evolved environment, indicating that 

the adaptive landscape is more “rugged” under unfamiliar conditions.  One reason that 

the landscape may be more rugged in novel environments is because there are more 

pathways to adaptation (at a metabolic level) than for the evolved environment (Melnyk 
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and Kassen, 2011).  We find evidence of a general basis for this type of observation.  

Pathways to adaptive optima can be opened or closed by alterations of the genetic and 

physical environments.  In this sense we extend the findings of Flynn et al. (2013) with a 

broader and more random selection of environments.   

 A population’s genetic history can determine how a particular population evolves.  

Moore and Woods (2006) founded multiple long-term evolution experiments using 

different genetic backgrounds of E. coli in the same limited glucose environment.  Fitness 

increased after 2000 generations of evolution for all measured lines, though the rate and 

degree of that improvement differed by strain.  This illustrates how the underlying 

genetic architecture may constrain evolution, even when physical conditions are similar.   

As in previous studies, rates of fitness improvement decelerated over time, reaching 

plateaus after approximately 1000 generations (Moore and Woods 2006).  This rate was 

inversely related to the absolute fitness of the ancestor in that new environment 

(preadaptation). However, even after removing the role of preadaptation to the 

environment, phylogenetic history played a significant role in determining adaptive rate. 

 By examining a specifically set of controlled genetic and environmental contexts, 

our study demonstrates the contingent dynamics of individual beneficial mutations in 

evolution.  Single mutations conferring smaller effect sizes can combine to produce 

benefits greater than the individual parts under the right conditions.  This highlights the 

importance of mutational neutrality (Kimura 1968) and pleiotropy (Ostrowski et al. 2005) 

in asexual populations.  Mutations may have negligible measurable effect when they 

arise, but if they are fixed either through drift or by a small selective advantage, they may 

have larger and more far-reaching effects than originally anticipated when paired with 
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additional mutations.  Individually, these beneficial mutations are generally neutral or 

beneficial across environments.  Notable exceptions include poor performance of all 

individual mutations in trypsin and poor performance of the pykF mutation across all 

resources (Figure 3).  As mutations are added, fitness trends positively in all 

environments.  This suggests that the possible mechanism of gene-environment 

interaction most heavily influencing this system is selection for globally beneficial 

mutations (Fry 1993; Fry 1996). 

 A fundamental question in evolution revolves around the utility of sexual 

recombination given its inherent cost. The stability of epistatic effects on fitness is central 

to theories of maintenance of sex. Kondrashov’s mutational deterministic hypothesis 

argues that sexual reproduction is advantageous due to sex’s ability to break deleterious 

epistatic interactions through recombination (Kondrashov 1994).  Recombination also 

allows independent beneficial alleles to come together at a much faster rate than in 

asexual populations (Muller 1932). In this way, sex can remove the importance of 

ordering effects.   

 In the Kondrashov model, deleterious mutations must interact synergistically for 

sex to be an advantageous way of purging harmful alleles.  Elena argues that deleterious 

alleles do not necessarily act synergistically, and provides evidence that there are no net 

synergistic interactions between deleterious mutations in E. coli (1997).  Indeed, 

Kondrashov and Kondrashov (2001) describe circumstances under which sexual 

reproduction hampers the fixation of adaptive mutations, and caution that 

multidimensional epistasis must be examined in an ecological context (Kondrashov and 

Kondrashov 2001).  We find synergistic, antagonistic and multiplicative effects all to 
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exist in the same genetic combinations, but that the nature of the interactions was 

environmentally contingent, justifying caution of studies in a single environment 

(Kondrashov and Kondrashov 2001). 

 It is not always clear when certain phenotypic changes are due to genetics verses 

phenotypic plasticity.  Inherently, there may be an energetic cost to maintaining a plastic 

phenotype.  When this is the case, and when the environment is stable, plasticity is 

selected against.  Environmental changes, however, can lead to changes in the fitness 

landscape seen by a population.  Plasticity can persist when costs are small enough or 

environmental perturbations are frequent enough to make maintaining unused genes 

beneficial on a multi-generational time scale (Price et al. 2003). Cooper and Lenski 

(2010) evolved replicate populations of the same E. coli under either constant or variable 

resource environments.  In all cases, the evolved lines were significantly more fit in the 

evolved environment than the ancestor, but the degree of fitness increase varied with 

environment type.  Populations that evolved in a fluctuating environment had the most 

sustained variation, showing that diverse ecological history is left in the genetic record.  

We further find that each gene combination differs in the extent to which its effects are 

plastic across environment (Figure 4a-h).  

 In Lenski’s long-term lines, fitness advantages in glucose-evolved replicate 

populations were correlated with fitness gains when exposed to novel sugar environments 

whose method of uptake (the PTS system) was the same as glucose and those that did not 

share this uptake system.  However, more variation in fitness was seen with non-PTS 

sugars.  Converging strategies appeared in the pathway under the strongest selection in 

that environment (Travisano and Lenski, 1996).  We find that for these five beneficial 
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mutations, fixed during evolution in glucose, there are diverse fitness effects that are 

contingent on genetic environment as well as resource. Interestingly, the highest fitness 

gains we found were not in glucose but in milk protein hydrolysate. 

 The dynamics of adaptation depend upon the underlying adaptive landscape of the 

population under study.  Models can be built for predicting mean fitness and number of 

accumulated mutations based on a landscape.  Kryazhimskiy et al. (2009) present a 

model in which such predictions are governed largely by the expected fixation probability 

and expected fitness change of each mutation.  Under this model, neutral mutations can 

still arise and propagate even when other mutations are under strong selection.  Neutral 

mutations are important modifiers of adaptive landscapes because in combination with 

other mutations, they may bring about previously inaccessible benefits.  We see many 

examples of this in our study.  For example, the ‘g’ mutant allele is nearly neutral across 

all test environments when alone, but can provide significant fitness increases over the 

ancestor when expressed with other mutant alleles (Figure 4a-4h). 

 Across a range of resource environments, we found two cases of increasing 

synergistic epistasis, three cases of increasing antagonistic epistasis and three cases where 

epistasis did not track with increasing number of mutations.  These findings suggest that 

patterns of absolute epistasis are not inherent to the suite of mutations in question.  Rather 

they are heavily influenced by environment.  Because of this influence, adaptive 

landscapes must be viewed in an environmental context.  The effect of genetic history 

can vary greatly due to present environment. 
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