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ABSTRACT 

 

 An analytical solution was derived for obtaining the large amplitude, damped 

response of a crushable foam core sandwich beam subjected to pressure pulse loading.  

The simply-supported sandwich beam, comprised of aluminum facesheets and a PVC 

foam core, was analyzed for its response to a uniformly distributed pressure pulse load.  

The equations of motion for the sandwich beam were developed considering first-order 

shear deformation and membrane stretching.  The initial response of the beam was elastic 

until the onset of plasticity, when transverse shear stresses in the foam core exceeded the 

transverse shear yield strength of the foam.  The facesheets remained elastic, while the 

core was elastic-plastic, throughout the entire load – unload cycle.  Analytical results 

were compared to results from finite element analysis using ABAQUS Explicit and good 

agreement was found between them.  The analytical solution can be used to design 

sandwich beam experiments for extracting foam damping properties. 
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CHAPTER I 

INTRODUCTION 

 

Lightweight sandwich structures with polymer foam cores have significant energy 

absorption properties which have made them especially favorable in protecting various 

structures from impact or blast loads.  Benefits to using polymer foam core sandwich 

structures are numerous, including their high strength to weight ratios, resistance to water 

damage, low cost, and ability to be produced from recycled materials.  For instance, foam 

boards and foam granules can be produced from recycled polyvinyl chloride (PVC) and 

used in construction and packaging applications. 

 

Polymer foam core sandwich panels can protect structures from impact or blast 

loads by deforming viscoelastically and viscoplastically, damping the amplitude of 

vibration initiated by the impact force on the system.   Energy is absorbed by the micro-

inertial resistance developed in the material planes of the foam.  As the foam crushes, the 

cellular walls in the foam eventually collapse resulting in viscoelastic behavior at an 

almost constant flow stress.  Strain energy and kinetic energy are absorbed by the 

aluminum facesheets bonded to the foam core while the foam core itself absorbs energy 

by hysteresis which occurs as a response to stress wave propagation and structural 

vibration.  Polymer foam cores exhibit hysteresis behavior due to cellular wall buckling, 
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fracture, and friction between the material planes.  In order to effectively apply and 

utilize the energy absorption properties of the foam, it is important to understand the 

behavior and response of the foam core under impact and blast loading. 

 

The purpose of this study is to develop analytical solutions for designing a simple 

experiment in which the plastic and viscous damping of the foam may be evaluated.  

Analytical solutions will be derived and verified by finite element analysis (FEA) in 

order to define initial conditions for properly designing the experiment to extract the 

desired material properties.  The arrangement analyzed, both analytically and with FEA, 

is the same arrangement which will be used in the experiment.  The arrangement consists 

of a symmetric rectangular sandwich beam with aluminum facesheets and a Divinycell 

H100 foam core.  Aluminum facesheets are ideal in this arrangement because they are 

cost-effective, have a high yield strength, and are lighter in weight than carbon steel.  The 

Divinycell PVC H100 polymer foam has excellent shock-absorptive properties, is 

lightweight, and is resistant to environmental corrosion. 

 

An impact or blast load applied to a composite beam will transfer kinetic energy 

to the beam system.  The load induces free vibration response of the system which will 

continue until the energy is dissipated and the system comes to rest.  Energy dissipates 

through cell wall crushing and viscoelasticity of the foam core.  If the deflection is large 

enough to exceed the yield strength of the foam core, it behaves as an elastic-plastic 

material.  Below the yield strength, the foam core will behave “viscoelastically” which is 
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elastic behavior with some damping to be evaluated in the experiment recommended later 

in this study. 

 

While many studies have been conducted to evaluate the elastic-plastic damping 

polymer foam core sandwich structures, most have focused on plastic deformation of the 

foam core and failure modes of the structure.  This study will present analytical solutions 

for an experiment that will be able to characterize the viscoelastic behavior that occurs 

after plastic deformation when the structure rebounds from the impact or blast load.  The 

characterization of the damping that occurs in the viscoelastic phase of the foam core is 

state-of-art and has not yet been evaluated.  Cyclic vibration loads at high strain rates 

may be applied to foam core when the sandwich foam core is used to protect a structure 

from impact or blast loads.  As the structure vibrates, it transfers kinetic energy to the 

foam that will be eventually damped out by the foam’s unique damping properties – both 

in the elastic-plastic phase and the viscoelastic phase of the stress-strain curve.  From a 

design perspective, the stress-strain response of the structure and foam core system is of 

particular interest so that the polymer foam core sandwich shock absorbers can be 

designed and placed such that the capabilities of a system are maximized. 

 

A majority of previous studies done on the impact response of composite 

sandwich beams evaluated the plastic deformation of the foam core but do not go beyond 

this to characterize the viscoelastic behavior that occurs when the beam rebounds from 

the load.  The elastic and plastic response of a composite sandwich beam subjected to an 

impact load will be evaluated analytically in this thesis.  A new analytical technique is 
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applied, extended from solutions developed by Vinson [1] and Chapagain [2] for 

composite sections with plastic deformations.  Analytical results are used to design an 

experiment in which the viscous damping of the Divinycell H100 foam core may be 

effectively evaluated.  Viscous damping behavior of the foam core is exhibited after 

initial elastic loading and plastic shear deformations have taken place.   

  

Analytical results of the elastic and plastic response of the composite sandwich 

beam subject to a uniformly distributed pressure pulse load are verified using a finite 

element analysis (FEA).  The FEA model uses ABAQUS Explicit software to simulate 

the response when a uniformly distributed pressure pulse load is applied to the beam.  

Verifying and evaluating the elastic and plastic response of the section by both analytical 

results and FEA is critical in order to properly design the experiment.   

 

Previous studies done on foam core sandwich beams and PVC foams are 

reviewed in Chapter II.  Experiments used to derive material properties required for the 

analysis are described in Chapter III.  Analytical techniques for evaluating the foam core 

sandwich beam under blast loads are presented in Chapter IV.  The finite element 

analysis of the foam core sandwich beam under blast load is discussed and compared to 

the analytical results in Chapter V.  Finally, conclusions and recommendations of this 

study are made in Chapter VI.  
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CHAPTER II 

LITERATURE REVIEW 

  

 There are many studies investigating the shock absorption properties of foam core 

sandwich beams and sections.  Most of these studies address the bending and axial 

response of a sandwich beam under a drop type impact load or a cyclic dynamic load and 

evaluate the structure’s design capacity.  However, few studies address the dynamic 

damped response of a sandwich beam due to its viscoelastic foam core.  Understanding 

this characteristic behavior of foam core sandwich beams is critical in order to properly 

use these materials for damping and shock absorption in structures under impact and blast 

loads.  Previous work done on foam core sandwich structures will be reviewed in this 

chapter.  Work done on testing polymeric foams is discussed, followed by a review of 

work done on impact tests on polymer foam core sandwich structures, as well as a review 

of cyclic load tests conducted on these type of sandwich structures.    

 

2.1 Polymeric Foams under Uniaxial Impact Loads 

 

 While much research has been done on the shock absorption of polymeric foams 

under drop-type impact loads, very few studies have analyzed the viscoelastic 

deformation that occurs as a response to the impact loads.  Instead these studies have 
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addressed the penetration or total compaction of the foam core under the compressive 

drop-type loads.  This section provides a brief review of some of these studies. 

 

Belingardi et al. [3] studied the impact response of a PVC foam with a density of 

80 kg/m3.  A drop dart testing machine was used to deliver the impact via a cylindrical 

impactor with a flat end.  Two different impact velocities (2620 m/s and 3163 m/s) were 

used to examine strain-rate effects for the foam core.  Within the range of their testing, 

the results of the dynamic impact tests did not reveal any significant strain-rate 

dependence on the dynamic response of the foam core.  The PVC foam was used as the 

core layer in a composite section.  They concluded that the compressive stiffness of the 

foam core was inadequate to support the facesheets for an impact, and that adding resin 

membranes between the facesheets would greatly improve the performance of the 

composite section for impact.  

 

Green et al. [4] conducted dynamic uniaxial stress tests on two different 

polyurethane foams.  One foam was a water-blown ester polyurethane while the second 

foam tested was from a castor-oil base.  Samples of three different densities of the water-

blown ester foam were tested (56 kg/m3, 115.3 kg/m3, and 240.3 kg/m3) while the castor-

oil base foam only was available in a 155.4 kg/m3 density.  The samples were 

dynamically loaded at medium strain rates (10-3in./in./sec to 102in./in./sec) with a gas 

operated machine with a movable piston.  Higher strain rates were also applied with a 

split-Hopkinson bar device with impact velocities up to 36.6 m/s.  In general, they found 

that the strength and stiffness of the polyurethane foam increased with the rate of loading.  
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The water-blown ester based foam was more rigid, and its tensile fracture stress was 

independent of load rate.  The castor-oil based foam was less rigid and showed more 

dependence on load rate for the tensile fracture stress.  Both foams showed increased 

stiffness at higher loading rates, with a similar stiffness in compression and tension.  The 

rigid water-blown ester foam withstood large uniaxial compressive loads at low loading 

rates and crushed at higher loading rates, especially the samples with the highest density.  

In contrast, the semi-rigid castor-oil based foam withstood large compressive loads for all 

the loading rates tested.   

 

Nemat-Nasser et al. [5] studied the dynamic response of aluminum foam core and 

metal facesheets independently in order to characterize the behavior of the components of 

the sandwich structure subject to high-rate inertial loads.  The aluminum foam specimens 

were impacted with a projectile to impose dynamic compressive loads.  Deformation of 

the specimen was measured using a high-speed camera, and the force transmitted was 

measured by a strain gage.  The impact velocity ranged from 30 m/s to 55 m/s.  At the 

lower impact velocity, they observed that the face of the specimens contacting the 

impactor deformed more significantly at first, but then the far end of the specimens began 

to deform at more as time elapsed.  The non-uniform strain distribution was attributed to 

the compressive stress pulse reflecting through the sample and causing an increase in 

total stress at the far end of the specimen.  In contrast, at the higher impact velocity 

showed significant deformation at the impactor contact surface which eventually 

distributed to a uniform stress throughout the specimen.  Split-Hopkinson bar tests were 

also conducted on the aluminum foam core to obtain dynamic stress-strain curves.  They 
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found that there were no strain-rate effects on the foam in the range tested.  When 

compared to the literature regarding uniaxial polymeric foam tests, their observations 

indicate metallic foams deform more elastically than polymeric foams and stress 

distributions tend to be more uniform in response to impact loads in metallic foams [3-5].        

  

2.2 Foam Core Sandwich Structures under Impact Loads 

 

 Many studies have also addressed the failure of foam core sandwich structures 

under impact loads in order to better understand failure modes and limitations of such 

structures.  Several studies have attempted to parameterize the foam core properties such 

as density and stiffness with failure modes and will be briefly reviewed in this section.    

 

Belingardi et al. [3] also studied the impact response of composite sandwich 

plates constructed of the PVC foam core with glass-fiber and epoxy composite 

facesheets.  The 100 m x 100 m specimens were subjected to both quasi-static penetration 

tests and dynamic impact tests.  The quasi-static tests were conducted using a servo-

hydraulic machine with the load applied at a constant velocity.  The results from these 

tests were used to determine the required drop height for the dynamic impact tests.  For 

delivering the impact load, a 20 kg mass was dropped from a maximum height of 2 m 

using a drop dart testing machine.  The load-stroke graphs from the impact tests showed a 

peak in the load at the “piercing” of the top facesheet, followed by a “plateau” zone 

which was attributed to the friction of the drop dart against the fractured layers as well as 

compression of the foam core, and lastly followed by another peak at the piercing of the 
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bottom facesheet.  Based on preliminary tests conducted to define the material properties, 

they found that the response of the sandwich structure depended largely on the strength of 

the foam core.  No strain-rate effects were observed for the facesheets, foam core, or 

sandwich structure for the strain rates applied in this study.  

 

Lim et al. [6] investigated the impact failure modes and impact energy absorption 

characteristics of sandwich beams constructed of E-glass/Epoxy facesheets and a PVC 

foam core.  Varying densities of the Divinycell HT grade foam core were studied (54, 70, 

97, and 117 kg/m3).  Prior to investigating impact load response of the sandwich beams, 

Lim et al. [6] studied the response under static loading and constructed a static failure 

mode map for each foam core material.  This failure mode map predicted which failure 

mode controlled (core shear, core compression, or facesheet fracture) for certain 

dimensionless parameters based on sandwich beams.  Similar failure mode maps were 

constructed for impact loading.  These mode maps predict failure in the core or face 

based on impact duration and face thickness for each foam core material.  Failure modes 

due to impact were predicted using finite element analysis software and modeling the 

foam core as having elastic-perfectly plastic stress-strain response.  Impact tests were 

then conducted using a pneumatic cylinder with impact speeds up to 30 m/s, the results of 

which correlated well with the finite element analysis.  Lim et al. [6] found that the 

impact energy absorption capability of the sandwich beam was optimized if designed to 

fail in the facesheet failure mode.     
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Compston et al. [7] tested a PVC foam core sandwich panel for impact loads 

delivered by a swinging pendulum.  Impact energies started at 5 J and increased in 5 J 

increments to 25 J.  Each impact energy was applied to a new sample.  The foam core 

consisted of Klegecell R200 (density of 200 kg/m3) and the facesheets were a composite.  

Absorbed energy was calculated by taking the difference between incident potential 

energy and the energy at the rebound peaks.  A deformation profile was generated and 

residual indentation depths were also calculated.  In addition, advanced deformation and 

strain analysis using a real-time strain analysis system were utilized to characterize the 

post-impact response.  The same experiments were also conducted on aluminum foam 

core sandwich specimens.  The energy absorption and deformation were then compared 

to the response of the PVC foam core sandwich panels.  They found that the absorbed 

energy was linear for the impact loads tested and similar for both core materials.  Damage 

modes, however, for the two core materials varied significantly.  Low energy impact in 

the PVC core sample resulted in a more localized indentation, whereas the aluminum 

core displayed significant out-of-plane damage as well as some cell buckling.  The higher 

energy impact results showed skin fracture and core crushing for the PVC core and only 

minor skin fracture for the aluminum core along with cell buckling and out-of-plane 

plastic deformation.  It was observed that the PVC core had very minor out-of-plane 

damage and less permanent damage than the samples with aluminum cores.  Post-impact 

responses of the two core materials also varied in that the PVC core had a higher, more 

localized strain at the impact point.  Compston et al. [7] concluded that based on the more 

ductile failure modes and lower post-impact strain response of the aluminum foam core 
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samples, it appeared that the aluminum core samples had better damage tolerance when 

compared to the PVC core samples. 
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CHAPTER III 

MATERIAL PROPERTIES AND TESTING ON PVC H100 FOAM 

  

Tests were conducted on PVC H100 foam specimens in order predict the behavior 

of the foam core in response to crushing and energy absorption.    Uniaxial compression 

monotonic and cyclic tests were conducted at varying strain rates and strain amplitudes to 

obtain the stress-strain response of the PVC H100 specimens.  Using an MTS 831 servo-

hydraulic machine, the tests were conducted on one-inch cube specimens.  The foam core 

sandwich beam in this study consists of two isotropic aluminum (Al 6061) facesheets and 

a Divinycell H100 foam core.  No material testing of the Al 6061 facesheets was required 

as standard plate stock was used and the analysis was designed not to exceed the elastic 

limit of the facesheets at any point. 

 

3.1 Manufacturer Data Specification 

 

 The foam core material used in this study is Divinycell H100 PVC foam.  This 

foam consists of a cross-linked closed cell structure with cell size of 400 μm.  Properties 

of the PVC H100 foam are listed in Table 3.1 and have been provided by DIAB [8].   
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Table 3.1 Material properties of the Divinycell H100 foam [8]. 

 

 

The foam was purchased in approximately one-inch thick sheets which were 12 inch x 12 

inch.   

 

3.2 Testing of PVC H100 Foam 

 

 The one-inch cube foam specimens were glued to aluminum grips to maintain 

uniform loading in both uniaxial tension and compression.  The aluminum grips were 

then placed in the MTS 831 servo-hydraulic machine and connected to the actuator arm 

using a specially designed “C” clamp shown in Figure 3.1.  The compression tests were 

conducted according to ISO 844 “Rigid Cellular plastic-Determination of Compression 

Properties” [9].  
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Figure 3.1 Test apparatus set-up for conducting uniaxial tests with MTS machine. 

  

 3.2.1 Monotonic Compression Tests 

 

 Monotonic compression tests were conducted to characterize the stress-strain 

response of the PVC H100 foam specimens prior to the densification region.  Strain-rate 

effects were investigated by using varying strain rates from 10-4 s-1 up to 10-1 s-1 and 

applying strain amplitudes up to 25%.  The compressive modulus was obtained by the 

linear portion of the stress-strain curve per the method defined by the ISO 844 standard.  
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 3.2.2 Cyclic Compression Tests 

 

 Cyclic compression tests were also conducted to characterize the stress-strain 

response of the foam upon consecutive loading.  Strain rates varied from 5x10-4 s-1 to  

5 s-1.  Strain amplitudes applied ranged from 2% and increased in 2% increments up to 

10%.  

      

3.3 Test Results 

 

3.3.1 Monotonic Test Results 

 

The ISO 844 test standard provides a method to define the linear portion in the 

elastic region on the stress-strain curve. The method provided is demonstrated in Figure 

3.2, and was used to calculate Young’s modulus for various strain rates.  The nonlinear 

portions at the beginning and the end of elastic region are removed, and the remaining 

portion  is defined as the linear elastic region.  Young’s Modulus of the material is 

then calculated by the slope of .  
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Figure 3.2 ISO 844 test standard method to define the linear portion of the curve 

in the elastic region. 

 

The stress-strain response of the PVC H100 foam at varying strain rates shows 

that the material is viscoelastic and viscoplastic, as can be seen in Figure 3.3.  The 

viscoelasticity of the material is demonstrated by a slight change in compressive modulus 

with increasing strain rate.  Viscoplasticity of the material is demonstrated by a change in 

the yield stress with increasing strain rate.   
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Figure 3.3 Compressive stress-strain behavior under monotonic loading at varying strain 

rates. 

 

 Strain rate effects on the stress-strain behavior of the foam specimens are 

summarized in Table 3.2.  With increasing strain rates, it can be observed that there is an 

increase in the compressive modulus, the compressive strength, and plateau stress.  For 

all the strain rates tested, yielding occurred at about 3% strain. 

  

Table 3.2 Strain Rate Effects for PVC H100 foam. 
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    3.3.2 Cyclic Test Results 

 

Cyclic compression tests were also conducted on PVC H100 foam specimens.  

Varying strain rates and amplitudes were applied to the specimens.  The stress-strain 

responses of the specimens at strain amplitude of 10% and five different strain rates are 

shown in Figure 3.4.  Viscoplasticity of the material is demonstrated by the permanent 

(plastic) strain on the stress-strain curves in Figures 3.4, as the material does not re-trace 

its initial loading path on consecutive cycles.    

 

 

Figure 3.4 Compressive stress-strain curves for specimens at strain amplitude of 

10% and varying strain rates. 

 

Inspection of the stress-strain curves at the same strain rate and varying strain 

amplitudes reveals that the compressive engineering stress is reduced for each 

consecutive cycle at all strain amplitudes tested.  This is particularly evident for a strain 
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rate of 0.50 s-1, as demonstrated in Figure 3.5.  Cyclic behavior of specimens loaded in 

ten consecutive compressive cycles are shown in Figure 3.6.  It can be seen that each 

consecutive cycle experiences some amount of additional damage to the cell structure.  

The damage that occurs to the internal structure is what produces the damping behavior 

of the foam core in a sandwich beam application.     

 

 

Figure 3.5 Stress-strain curves in compression at a strain rate of 0.50 s-1 and 

various strain amplitudes. 
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Figure 3.6 Stress-strain curves of ten consecutive compressive cycles at a strain 

rate of 0.50 s-1 at various strain amplitudes. 

 

3.4 Conclusions Based on Test Results 

 

 Material testing and a review of the material properties allow several conclusions 

to be made about the impact response behavior of PVC H100 foam.  Based on the 

compressive monotonic load tests, it can be concluded that PVC H100 foam is linear 

elastic-plastic.  Both the monotonic and cyclic compressive stress-strain curves at various 

strain rates show that the PVC H100 foam is viscoelastic and viscoplastic.  The 

compressive cyclic stress-strain curves show that damage is sustained by the foam on 

consecutive loading cycles which will provide damping to a dynamic system.  This 

damping is primarily viscoelastic.  It is indicative of the energy absorption that can occur 

in a foam-core sandwich beam under pressure pulse loading. 
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CHAPTER IV 

ANALYSIS OF SANDWICH BEAM UNDER PRESSURE PULSE LOADING 

 

A pressure pulse or “blast” load applied to a sandwich beam will transfer kinetic 

energy to the beam system.  The pressure pulse load is a form of impulsive load which is 

applied uniformly across the surface of one of the facesheets.  It is characterized by a 

steep rise in amplitude and then an exponential decay in time.  An idealization of the 

pressure pulse is a triangular distribution with a steep rise and a linear decrease in 

amplitude over a short period of time.  When the pressure pulse load is removed from the 

system, the energy transferred to the system causes the sandwich beam to vibrate until the 

energy has been dissipated by damping primarily in the foam core.  The sandwich beam 

deflects in the direction of the load until the velocity decreases to zero and becomes 

negative, creating a reverse deflection.  This cycle will continue in the form of free 

vibration response of the beam system until the energy is completely dissipated and the 

system comes to rest.   

 

4.1 Problem Formulation 

 

 Consider a simply-supported rectangular sandwich beam as shown in Figure 4.1.  

The sandwich beam is comprised of two isotropic facesheets of thickness h and density 
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ρf, as well as a crushable foam core of thickness H and density ρc.  The notation can be 

found in Appendix A. 

 

 

  

 

 

Figure 4.1 Rectangular sandwich beam with crushable foam core. 

 

 

Let the Cartesian coordinate system (x, y, z) be oriented as shown if Figure 4.1 with the 

facesheets located in the xy plane and z-axis along the through-thickness direction.  The 

sandwich beam is symmetric about the x-axis (the facesheets are both equidistant from 

the centerline of the foam core).  A uniformly-distributed pressure pulse po is applied 

across the surface of one facesheet of the rectangular sandwich beam as shown in  

Figure 4.2.   
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Figure 4.2 Uniformly-distributed pressure pulse load applied to sandwich beam 

and resulting static shear diagram. 

 

The pressure pulse load p can be described by 

⎪
⎩

⎪
⎨

⎧

Δ>

Δ≤⎟
⎠
⎞

⎜
⎝
⎛

Δ
−

=
Tt

Tt
T
tp

tp
,0

,1
)( 0

            (4.1)

 

where 0p is the peak pressure, TΔ is the load duration and t is time. 

 

4.1.1 Facesheet Material Properties 

 

 The Al 6061 facesheets are considered to be less than ¼ inch thick.  The 

facesheets are assumed to be perfectly bonded to the foam core for the entire duration of 

the response of the sandwich beam to a pressure pulse load.  Only elastic properties for 

the facesheets are considered since the facesheets are not to exceed the elastic limit at any 

point in the analysis.  Properties for the Al 6061 facesheets are summarized in Table 4.1, 

per ASME Section II Part D [10]. 
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Table 4.1 Material properties of the Al 6061 facesheets [10]. 

 

  

4.1.2 Foam-Core Material Behavior 

 

 As demonstrated by the monotonic compression test results discussed in Chapter 

III, the PVC H100 foam core is elastic-plastic.  For simplicity, an idealized elastic-

perfectly plastic curve is shown in Figure 4.3.  The initial stress-strain curve is linear up 

until the yield stress where the stress-strain curve becomes flat at a constant flow stress.  

In this study, strain rates will be limited to less than 20% and therefore any changes in the 

density of foam as it undergoes loading will be insignificant.  

 

    

   

  

 

 

Figure 4.3 Elastic-Perfectly Plastic Stress-Strain Curve. 
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4.1.3 Elastic Response 

 

At the onset of loading, energy is transferred through the elastic deflection of the 

aluminum facesheets as well as viscoelastic behavior of the foam core.  The facesheets 

are assumed to remain elastic throughout the entire response until the system comes to 

rest.  The transverse shear stress τxz in the foam core will continue to increase linearly 

with increasing deflection of the sandwich beam until the shear stress reaches the shear 

yield stress τo.  Under the pressure pulse load 0p , the maximum transverse shear stress 

occurs at the supports of the beam as can be seen in the transverse shear force diagram in 

Figure 4.2.  The material behavior transitions from elastic to plastic at Point A of Figure 

4.4, and corresponds to the point at which τxz equals τo and the transverse shear strain γxz 

equals γo. 

 

   

 

 

 

 

 

 

 

 

Figure 4.4 Shear stress vs. shear strain graph of the behavior of the foam core. 
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4.1.4 Elastic – Plastic Response 

 

If the deflection of the beam is large enough to cause the transverse shear stress in 

the foam core to exceed the transverse shear yield stress τo, the behavior of the foam core 

will be assumed to be perfectly plastic as is shown by the flat section of the shear stress-

strain curve between Point A and Point B in Figure 4.4. 

 

4.1.5 Unloading and Viscous Damping Behavior     

 

As the beam deflects back towards the neutral position, or the “unloading” of the 

system, the foam core will behave viscoelastically with some shear viscosity.  The shear 

viscosity will provide damping to the foam core sandwich beam system in the unloading 

portion of the curve (between Points B and C on the curve in Figure 4.4).  An experiment 

for evaluating the shear viscosity of the foam core will be suggested in Chapter VI of this 

study.  If the energy applied to the system is not enough to cause reverse yielding, the 

foam core will produce a viscoelastic hysteresis curve and cycle between Points C and D 

on Figure 4.4 until the system comes to rest.  

 

4.2 Sandwich Plate Theory 

 

 Sandwich plate theory developed by Vinson [1] and Chapagain [2] will be applied 

for analyzing a sandwich beam structure.  Consider the elastic response due to a forced 
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vibration of a foam core sandwich beam with geometry as shown in Figure 4.1.  Plastic 

effects will be discussed later in this chapter.   

 

 The assumed displacement field is given by 

           (4.2) 

           (4.3) 

 

where uo is the in-plane deformation, w is the transverse deflection at the beam mid-

plane, and α  is the shear rotation in the x-direction as shown in Figure 4.5.  The in-plane 

deformation uo is considered to be the sum of a translation and α  is the rotation of linear 

element in the through-thickness direction of the beam.  Deformations in the y-direction 

are not considered for a beam structure because it is so narrow (classical beam 

assumption). 

 

 

 

 

 

 

 

 

Figure 4.5 Displacement and shear rotation of a symmetric prismatic beam. 
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The general Lagrangian tensor expression for strain components of a three dimensional 

body is the following Ref. [2]: 

 

kijijkkjjk uuuu ,,,,2 ++=ε    (4.4) 

 

where the commas denote partial differentiation with respect to the following subscripted 

symbol, i, j, k = x, y, z.  Recall that the y direction will not be considered in the analysis 

of a sandwich beam. 

 

Substituting Equations (4.2) and (4.3) into (4.4) provides the explicit form of the strain-

displacement relationships: 
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       (4.5) 
 

 

                     0=zε  

 

According to classical sandwich beam theory, there are additional expressions to 

approximate stress at a point.  The membrane stress resultant (Nx), the bending stress 

resultant (Mx), and the transverse shear resultant (Qx) are given by 

 

            (4.6) 
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          (4.7) 

 

          (4.8) 

 

 

where i is the layer number, N is the total number of layers, ho is the total thickness of the 

sandwich beam and the depths of the layers measured from the neutral axis are as shown 

in Figure 4.6.   

 

 

 

 

 

 

 

 

Figure 4.6 Distances through thickness of the sandwich beam, measured from the neutral 

axis of the beam. 
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Since both the facesheets and foam core are considered to be elastic in this phase, the 

following equations define the stresses in the beam: 

            (4.9) 

            

(4.10)  

 

Per the geometry defined in Figure 4.1: 

          (4.11) 

 

The motion of the beam is a special case of the Euler-Lagrangian equations of 

motion of a sandwich plate under uniform pressure pulse load which are presented by 

Chapagain [2].  These equations are given in terms of displacement and rotation for fully 

elastic response to an applied pressure pulse load: 

 

           (4.12) 

 

           (4.13) 

 

where p is the pressure pulse load described by Equation (4.1), M is effective mass and I 

is effective rotary inertia of the membrane, bending and transverse shear resultants are 
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           (4.15) 

 

           (4.16)  

 

where A11 is the membrane stiffness, D11 is the bending stiffness and A55 is the transverse 

shear stiffness. 

 

The membrane stiffness term A11 is 

 

           (4.17) 

 

 

Distances through the thickness of the sandwich beam, measuring from the neutral axis to 

the inner and outer surfaces of the facesheet are shown in Figure 4.6.  Integrating over the 

thickness of the sandwich beam, this expression reduces to 

  

           (4.18) 

 

where Ef  is the elastic modulus of the facesheet and Ec  is the tensile modulus of the foam 

core.  
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The bending stiffness D11 in Equation (4.15) is defined by 

 

           (4.19) 

 

Integrating through the thickness of the sandwich beam this expression becomes 

 

           (4.20) 

 

 

Likewise, the transverse shear stiffness A55 for a sandwich beam can be calculated 

from 

 

        

           (4.21) 

 

Integrating over the thickness of the sandwich beam, Equation (4.21) reduces to 

 

            

(4.22) 

 

where Gf is the shear modulus of the facesheet and Gc is the shear modulus of the foam 

core.   
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Per Vinson [1], if h << H per the geometry defined in Figure 4.1, Equation (4.22) can be 

approximated by 

           (4.23) 

 

 

For the symmetric sandwich beam, the equivalent mass and rotary inertia are 

     

    (4.24) 

 

and     

    (4.25) 

  

  

 Integrating through the thickness of the beam gives 

     

    (4.26) 

and    

     (4.27) 

 

where ρc is the density of the foam core and ρf is the density of the facesheets. 
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Assume the following shape functions which satisfy the simply-supported 

boundary condition of the beam: 

           (4.28)  

 

           (4.29) 

    

 

Equations (4.28) and (4.29) are a first-term approximation of a complete Fourier series 

representation of w and α . 

 

For a simply-supported beam, the following boundary conditions apply at x=0 

and x=L: 

uo=0 

w=0 

M=0 

 

The membrane strain εxo can be written as 
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Assume that membrane strain εxo 
 
is constant so that 
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0=
∂
∂

oxx
ε

L
xWw πsin1=

L
xπα cos1Γ=

(4.30) 



 

35 
 

Now, let  

           (4.33) 

            
 

 

Integrating both sides of Equation (4.33) over the length of the beam and solving for 2Δ

gives 

          (4.34) 

 

 

Applying boundary conditions for uo in Equation (4.30) gives 

 

          (4.35) 

 

 

Upon substituting the shape function defined in Equation (4.28) into (4.35) one gets 

            

(4.36) 

 

 

After integrating over the length of the beam, Equation (4.36) reduces to  

          (4.37) 
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Substituting Equation (4.14) into (4.12) gives 

          (4.38) 

 

 

Differentiating with respect to x, this expression becomes 

          (4.39) 

 

 

Substituting the shape function defined in Equation (4.28), the expression for εxo defined 

in Equation (4.33) and the expression for 2Δ defined in Equation (4.37), one gets 

              

(4.40) 

 

  

 4.2.1 Forced Elastic Response 

 

 Substituting Equations (4.14) through (4.16), (4.28) and (4.29) into Equations 

(4.12) and (4.13) gives 
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where the uniformly distributed pressure pulse load is  

 

    (4.43) 

 

and p(t) is defined in Equation (4.1).  Note that 1p is the first term of a Fourier series 

representation of a uniform pressure load. 

 

 4.2.2 Elastic-Plastic Response 

 

During elastic-plastic response plasticity is only induced in the foam core.  The 

facesheets remain linear elastic.  To derive equations of motion for elastic-plastic 

response, it is assumed that the bending moment and membrane stress resultant, xM and 

,xN are elastic and given by expressions used in Section 4.2.1.  This is because xM and 

xN are primarily due to the facesheets, which are linear elastic.  Plasticity is introduced 

into the beam in the transverse shear resultant .xQ     

 

Recall that the PVC H100 is assumed to behave perfectly plastic once the 

deflection of the beam is large enough to cause the transverse shear stress in the foam 

core to exceed the transverse shear yield stress τo.  The perfectly plastic behavior is 

shown by the flat section of the shear stress-strain curve between Point A and Point B in 

Figure 4.4.  The transverse shear Qx can be calculated from the yielding transverse shear  

 

 

π
)(4

1
tpp =



 

38 
 

stress and the geometry given in Figure 4.1 by 

           

(4.44) 

  

 

The relationship between transverse shear resultant Qx and transverse shear strains 

γxz is shown in Figure 4.7.  The slope of the linear portion of the curve is A55 the 

transverse shear stiffness of the beam. 

 

   

 

 

 

  

Figure 4.7 Tranverse shear vs. Transverse shear strain. 

 

 

The plastic region of the foam core will first develop at the point of maximum transverse 

shear stress and propagate down the length of the beam as long as the transverse shear 

stress remains at or above the yielding transverse shear stress.  The transverse shear strain 

is given by             

(4.45) 
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For a uniform pressure pulse load on a simply-supported prismatic beam, the 

maximum transverse shear stresses occur at the supports as shown by the static shear 

force diagram in Figure 4.2.  In this analysis, the length of the plastic region of the PVC 

H100 foam will be referred to as ζo,  as shown in  Figure 4.8. 

 

 

 

 

 

 

 

 

Figure 4.8 Plastic zones along the length of the beam. 

 

 

The amplitude of the transverse shear strain can be locally defined as 

 

           (4.46) 

 

At the yielding transverse shear strain, Equation (4.46) is equal to γo.   
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Based on the dimensions defined in Figure 4.7 and substituting Equation (4.46) 

into (4.45), one gets 

      

          (4.47) 

 

Solving Equation (4.47) for the region ζo gives 

 

           (4.48) 

  

 

 

The transverse shear resultant then becomes 

 

           (4.49) 

 

 

 

Substituting Equation (4.49) into the Euler-Lagrangian equations of motion 

defined generically in Equations (4.12) and (4.13) gives equations of motion in three 

separate regions. 
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For the plastic region ox ς<<0 : 

          (4.50) 

 

           (4.51) 

 

 

For the elastic region oo Lx ςς −<< : 

           (4.52) 

 

            

(4.53) 

 

 

For the plastic region LxL o <<−ς : 

           (4.54) 

 

            

(4.55) 

 

 

As mentioned earlier, the bending and membrane force resultants, xM and ,xN remain 

the same as in purely elastic response and are given by expressions in Section 4.2.1. 
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One can solve these equations of motion, Equations (4.50) through (4.55), for the 

entire beam using the  method described in Appendix B.  The elastic-plastic equations of 

motion then become 

 

          (4.56) 

 

and 

 

(4.57) 
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CHAPTER  V 

FINITE ELEMENT ANALYSIS 

 

Finite element analysis using ABAQUS Explicit was completed on a foam core 

sandwich beam subjected to a pressure pulse load in order to verify the analytical solution 

discussed in Chapter IV.  The beam geometry and loading are described in Figures 4.1 

and 4.2.  Details and parameters used to develop the finite element analysis (FEA) model 

will be discussed in this chapter. 

 

5.1 Finite Element Analysis Model 

 

 A symmetric simply-supported foam-core sandwich beam with aluminum 

facesheets was considered.  The full span of the beam is L=762mm, but due to symmetry 

about the centerline of the beam, only half of the beam was modeled.  Hence a portion 

containing one support and a length of 381mm was used.  The width of the facesheets 

and foam core was b=51mm.  The thickness of each aluminum facesheet was 

h=3.175mm, while the thickness of the PVC H100 foam core was the purchased 

thickness of the foam sheet, H=25mm.  The FEA model for the simply-supported foam 

core sandwich beam and the global coordinate system are shown in Figure 5.1. 
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Figure 5.1 Finite element analysis model of foam-core sandwich beam. 

 

 

 The facesheet material is aluminum (Al 6061).  Properties of the facesheet 

material are listed in Table 4.1.  The foam core is Divinycell PVC H100, the properties of 

which are listed in Table 3.1.  The material properties for the aluminum facesheets were 

specified as elastic and isotropic.  Material properties of the foam core included the 

elastic isotropic definition, as well as a plastic definition.  The plastic definition was 

specified as *Crushable Foam, hardening=ISOTROPIC, and the plastic Poisson’s ration 

was specified to be zero.  The plasticity curve for the foam core was taken from Mines et 

al. [11].   

 

 A uniform pressure pulse load was applied to the top facesheet of the foam core 

sandwich beam.  The pressure pulse load was specified as a triangular pressure pulse 
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load, with magnitude was po (2.758 MPa) and time duration ∆T (0.1 ms).  The pressure 

load time history is described by Equation (3.1). 

 

 The simply-supported boundary condition for the beam support was created using 

frictionless, rigid rollers on the top and bottom facesheet.  A short length of beam was set 

to overhang the roller supports to prevent slippage at any point during the vibration of the 

beam.  Per Chapagain [2], the roller supports were required due to concentrated localized 

stresses that would occur in the polymeric foam if supports were directly attached to the 

foam material.  The frictionless rollers were fixed to a reference point.  Since only half of 

the beam was modeled, the XSYMM boundary condition was used to constrain the 

symmetry plane of the beam.  Boundary constraints used in the FEA model are shown in 

Figure 5.2. 

 

   

   

Figure 5.2 Boundary conditions of the foam-core sandwich beam model. 

X-SYMMETRY 
RIGID ROLLER 
(TYP.)
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 Interaction relationships were applied at several points in the model.  The 

interaction between the frictionless rollers and the facesheets was defined as *Interaction, 

surface-to-surface contact (Explicit), with the mechanical constraint formulation *Penalty 

contact method.  The interaction properties assigned to the frictionless roller to facesheet 

interface was *Interaction, tangential behavior, friction formulation, frictionless.  In the 

normal direction the property assigned was *Interaction, normal behavior, hard contact.  

Both the top and bottom facesheet were tied to the foam core using *Tie constraint, 

surface to surface discretization method.  The top and bottom surface of the foam core 

were each tied as slave surfaces to move similarly with the facesheet (master surface).  

 

The facesheets and core were meshed using eight-node linear brick elements 

(C3D8).  Full-integration and default distortion control was chosen for the integration 

type.  A finer mesh was used near the support where the region of plasticity was expected 

to develop in the foam core.  The mesh is shown in Figure 5.3. 

  

 

 

 

Figure 5.3 Meshed finite element analysis model of the foam-core sandwich beam. 
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 The model was then analyzed in ABAQUS software using the Dynamic Explicit 

solver.  Effects due to nonlinear geometry were activated.   

 

5.2 Elastic Response 

  

In the purely elastic response, the foam was modeled as a linear elastic isotropic 

material (i.e., the crushable foam properties were suppressed).  The purely elastic 

response of the sandwich beam to an applied pressure pulse load was obtained from the 

FEA.  The output of the FEA was graphed and compared to the analytical results 

obtained by the analytical method described in Chapter IV.  The deflection of the 

centerline of the beam (the axis of symmetry) was plotted against analytical results in 

Figure 5.4.  The deflections were measured at the midplane of the foam (the neutral axis 

of the beam).  In addition, the transverse shear strains at the midplane of the foam core 

near the frictionless roller support were plotted against the transverse shear strains 

calculated by MATHCAD software using the analytical method and are shown in  

Figure 5.5.  The FEA results agree well with the analytical results. 
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Figure 5.4 Comparison of FEA and analytical deflection at midspan of the beam. 

 

 

Figure 5.5 Comparison of FEA and analytical transverse shear strain at midplane of the 

foam-core near the roller supports. 

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 2 4 6 8 10

D
is

pl
ac

em
en

t (
m

)

Time (ms)

FEA

Analytical

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10

Tr
an

sv
er

se
 S

he
ar

 S
tra

in
 (γ

13
)

Time (ms)

FEA

Analytical



 

49 
 

5.3 Elastic-Plastic Response 

 

 In the elastic-plastic response, the foam plasticity was included in addition to 

elastic behavior.  The PVC H100 foam core was modeled as crushable foam with 

isotropic hardening with a compression yield stress ratio of 1.732.  Plasticity develops in 

the foam core when the transverse shear strains reach the transverse yielding strain (γo in 

Figure 4.4).  Plasticity in the foam core will first develop near the frictionless roller 

supports where the transverse shear stresses in the beam are at maximum.  The transverse 

shear strains in the foam core from the FEA are shown in Figure 5.6.  Plasticity occurs 

when the transverse shear strain is greater than 0.02925, and thus plastic regions occur at 

the locations expected by analytical results (i.e. plastic region shown in Figure 4.8).  The 

facesheets have been removed in the FEA so that transverse strains in the core are more 

visible.  The deflections at the centerline of the beam taken at the midplane of the foam 

core were plotted against analytical results in Figure 5.7.  There is relatively good 

agreement in the centerline deflection.  Transverse shear strains at the midplane of the 

foam core near the frictionless roller support were also plotted against analytical results 

in Figure 5.8.  There is also relatively good agreement between the two results with the 

exception that the peak strain in the FEA occurred a little later.  The results obtained by 

FEA using ABAQUS agree well with the analytical results calculated using MATHCAD.   
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Figure 5.6 Plastic regions in the foam-core per finite element analysis. 

 

 

 

 

Figure 5.7 Comparison of FEA and analytical deflection at midspan of the beam. 
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Figure 5.8 Comparison of FEA and analytical transverse shear strain at midplane of the 

foam-core near the roller supports. 
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CHAPTER VI 

CONCLUDING REMARKS 

 

An analytical solution for obtaining the large amplitude, damped response of a 

crushable foam-core sandwich beam subjected to pressure pulse loading has been 

presented in this study.  The simply-supported sandwich beam comprised of aluminum 

facesheets and a PVC foam core was analyzed for its response to an applied uniformly 

distributed pressure pulse load.   

 

Material testing was first conducted on PVC H100 foam specimens under uniaxial 

monotonic and cyclic compressive loading.  Based on the compressive monotonic load 

tests, it can be concluded that PVC H100 foam is linear elastic-perfectly plastic.  Both the 

monotonic and cyclic compressive stress-strain curves at various strain rates show that 

the PVC H100 foam is viscoelastic and viscoplastic.  The compressive cyclic stress-strain 

curves show that damage is sustained by the foam on consecutive loading cycles which 

will provide additional damping to a dynamic system.  This damping is primarily 

viscoelastic.   
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The equations of motion for the sandwich beam were developed considering first 

order shear deformation and membrane stretching.  The facesheets of the sandwich beam 

were considered to be elastic and isotropic whereas the polymeric foam core material 

behavior was elastic-plastic.  The initial response of the beam was elastic until the onset 

of plasticity when stresses in the foam core exceeded the yield strength of the foam.  

Analytical results were verified by finite element analysis using ABAQUS Explicit.  The 

deflections of the beam at the midspan and the transverse shear strains obtained by finite 

element analysis agreed well with the analytical results.  The analytical model of the 

foam-core sandwich beam could be further developed to incorporate consecutive 

unloading / loading cycles with viscoelastic damping.  This could be the foundation of an 

experiment to extract viscoelastic damping properties of the foam.  

 

In order to evaluate the damping properties of the PVC H100 foam, an experiment 

is recommended which would evaluate the response of a simply-supported beam under an 

impact load.  The sandwich beam would be comprised of elastic facesheets and a PVC 

H100 foam core which would be bonded to the facesheets.  To avoid high localized 

stresses in the foam core, it is recommended that frictionless rollers be used to support the 

beam.  The frictionless rollers should be placed symmetrically on both facesheets in order 

to maintain consistent support regardless of the direction of the beam deflection.  

Analytical results using the method outlined in this study should be used to predict the 

load which will induce plasticity in the foam core, but limit the plastic region to only a 

portion of the beam span.  It is recommended that the impact load applied to the 
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sandwich beam is a uniformly distributed pressure pulse load for ease of analysis and 

experimental logistics.   

 

Experiments conducted on the foam-core sandwich beam should encompass the 

entire load-unload cycle of the beam in response to an impulsive load.  Facesheets used in 

the sandwich beam structure should be designed such that they remain elastic throughout 

the entire load-unload cycle and do not contribute to the damping of the system so that 

foam core properties can be isolated and extracted from the results.        
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APPENDIX A 

LIST OF NOTATIONS 

 

A11   membrane stiffness  

55A    transverse shear stiffness  

D11   bending stiffness  

E c   Young’s modulus of the foam 

Ef
   Young’s modulus of facesheet 

Gc
   shear modulus of the foam  

Gf
   shear modulus of facesheet  

h    facesheet thickness 

0h    entire thickness of sandwich beam  

H    foam core thickness 

I    effective rotary inertia of the sandwich beam 

L   length of beam between supports 
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Mx
   bending stress resultant 

M    effective mass of the sandwich beam 

Nx
   membrane stress resultant 

n    total number of layers 

p    pressure pulse 

0p    peak pressure 

1p    one-term approximation for pressure pulse 

dp    plastic damping pressure  

Qx
   transverse shear  resultant 

HQ 00 τ=    transverse shear yield strength  

uo
   in-plane deformations 

w    transverse deflection 

W1
   amplitude of 

 
transverse deflection 

x   in-plane direction coordinate 

z    through thickness direction coordinate 

α    shear rotations associated with x- direction 

TΔ    load duration 
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εij
   strains 

γ13
   transverse shear strain 

γo
   transverse shear strain at yield 

Г1
   amplitude of shear rotation associated with x- direction

 

ijσ    stresses 

0τ    transverse shear yield strength 

τ13    transverse shear stress 

0ζ    length of plastic region in the x-direction 

cρ    foam core density 

fρ    facesheet density 

0σ    uniaxial tensile or compressive yield strength 
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APPENDIX B 

ELASTIC-PLASTIC INTEGRATION FUNCTIONS 

  

  

 The equations of motion for the elastic-plastic response are defined in three 

regions by the following equations. 

 

For the plastic region ox ς<<0 : 

          (B.1) 

 

           (B.2) 

 

 

For the elastic region oo Lx ςς −<< : 

           (B.3) 
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For the plastic region LxL o <<−ς : 

            

(B.5) 

            

(B.6) 

 

 

Here xM and xN are given by 

x
DM x ∂

∂
=

α
11     (B.7)  

and  

oxx AN ε11=      (B.8)  

 

For the simply-supported beam, the transverse deflection and shear rotation are again 

assumed as 
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Following arguments in Section 4.2, the membrane term in the above equations of motion 

can be replaced by  

           (B.11) 

  

  

To derive equations of motion for the entire beam, a werak form of the variational 

principle is used.  The Euler-Lagrangian equations of motion are pre-multiplied by 

variations of the respective deformations and integrated over the entire length of the 

beam.  After substituting Equations (B.9) and (B.12) into the  Euler-Lagrangian equations 

of motion, Equations (B.1), (B.3) and (B.5) are pre-multiplied by 
L
xπsin and integrating 

along the entire length of the beam: 
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After substituting Equations (B.9) and (B.12) into the  Euler-Lagrangian equations of 

motion, Equations (B.2), (B.4), and (B.6) are pre-multiplied by 
L
xπcos and also integrated  
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along the entire length of the beam: 

 

  

 

           

      

   

The equations of motion for the elastic-plastic response along the entire beam then 

become 
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           (B.18) 

 

 

Integrating along the length gives 
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