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                                                               ABSTRACT 

 

Selecting a set of highly discriminant genes for biological samples is an important task for 

designing highly efficient classifiers using DNA microarray data. The wavelet transform is a very common 

tool in signal processing applications, but its potential in the analysis of microarray gene expression data is 

yet to be explored fully.  

In this thesis, a simple wavelet based feature selection method is presented that assigns scores to 

genes for differentiating samples between two classes. The term ‘gene expression signal’ is used to refer to 

the gene expression levels across a set of pre-grouped samples. The expression signal is decomposed using 

several levels of the wavelet transform. The scoring method is based on the observation that the third level 

1-D wavelet approximation of a gene expression signal captures the differential expression levels of the 

gene between two classes. The genes with the highest scores are selected to form a feature set to be used for 

sample classification. The method was implemented using MATLAB
®
. Experiments based on three real 

microarray gene expression datasets were carried out to examine the efficiency of the method. The 

classification performance of the method was compared to two standard filter based methods: the t-test and 

BSS/WSS methods using the 3-Nearest Neighbor Classifier. The results show that the wavelet-based 

method performs at least as well as the sum of squares and the wavelet based method in classifying cancer 

samples. 

The results demonstrate that 1-D wavelet analysis can be a useful tool for studying gene 

expression patterns across pre-grouped samples.  
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                                                              CHAPTER I 

INTRODUCTION 

 

1.1. Overview 

The most important challenge facing cancer biology is the identification of distinct tumor sub-

types and development of specific therapies for these sub-types, which will maximize efficiency and 

minimize toxicity (Golub T, 1999).  

Cancer is a class of diseases caused by the buildup of genetic and epigenetic changes, which 

results from alterations of sequences or expression of cancer-related genes like oncogenes, tumor 

suppressor genes, those involved in cell cycle control, adhesion, apatosis, DNA repair and angiogenesis 

(Squire, 2002). The traditional methods of cancer classification based on morphological appearance (shape 

and size) of the tumors have serious limitations, as tumors having very similar appearances can be of 

different sub-types and might respond completely differently to the same therapy.  

DNA microarrays provide us a completely different perception of the different classes of cancer, 

one based on gene expression profile instead of morphological characteristics. For each sample, it gives a 

vector of expression levels of thousands of genes at the time of sample preparation. The gene expression 

profile, being a snap-shot of the functional state of the tissue being studied at the time of sample 

preparation, can characterize the different classes of cancer –normal from cancerous, one stage from the 

next, one sub-type from another – based on genomic characteristics which are the true causes of the 

changes rather than morphological features which are just “some of the effects” of the changes. Besides, it 

allows the application of systematic and unbiased pattern recognition techniques in place of the earlier 

methods, which depended on biological insights for classifying cancer (Golub T, 1999).  
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In pattern recognition, in order to design an unbiased and low variance classifier which performs 

well over the entire population, we need the sample size to be very large when compared to the number of 

variables. However, at least for now, the available sample size is very small compared to the number of  

variables  involved in gene expression data. This raises several critical issues regarding design of classifiers 

using microarrays (Edward R. Dougherty, 2005) of which a method to somehow select a small subset of 

features or variables (genes) from the entire variable space which can classify accurately, not only the 

training set, but also the entire population. 

The aim of this thesis is to explore the potential of using the 1-Dimensional Wavelet Transform as 

a feature selection (gene selection) tool. The idea is based on the hypothesis that a gene is informative for a 

given classification problem if it is differentially expressed in the different classes being studied. The 

method was tested on three publicly available Affymetrix datasets (Golub T 1999) (Shipp 2002) (Alon U. 

1999). 

  The absolute value of the difference of mean between the classes of the signal recreated from the 

3
rd

 approximation of the 1-D Discrete wavelet transform   is used as a score for ranking the genes, one at a 

time. The few highest ranked genes were used for classification and the feature sets tested using their 

classification accuracy. 

Different wavelets were tried for the two-class problem.  Db-3, Db-8   and   Coiflet-3   wavelets 

gave the best classification results. The selected features were used to classify the test samples using 3-

Nearest Neighbor classifiers.   

The results show that the wavelet-based method out-performs  two most commonly used  filter 

based gene selection methods - the T-test method and the BSS/WSS methods in many cases tested, 

particularly when a higher number of features are selected to construct the classifiers. 

 

1.2. DNA microarrays 

DNA microarray chips allow simultaneous monitoring of the expression of thousands of genes in 

clinical specimens. This gives us huge sets of data points, ( The oligonucleotide microarrays give 
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approximately 16,000 data-points for each sample studied) which combine together to form a sort of 

molecular fingerprint of the state of the samples being studied. 

The microarray technology is based on two basic principles: (1) Nucleotide sequences tend to 

hybridize to their complementary base pairs. (2) The differential levels of mRNA in the samples represent 

differential levels of gene expression. 

The mRNA extracted from the tissue samples are hybridized onto tagged nucleotides to form 

tagged cDNAs. These in turn are hybridized onto an array of spotted cDNAs (cDNA microarrays which 

provide relative gene expression between specific cells or tissue samples) (Schena M, 1995) or 

oligonucleotide probes (Affymetrix Gene chips which give direct quantification of mRNA expression) 

(Lipshutz RJ, 1999). The excess cDNAs are washed away and the chips are scanned with laser beams 

which are characteristic of the fluorescent tags used. 

The images obtained are processed and normalized to obtain a single number, the level of gene 

expression, for each gene on the array. Dudoit et al. (Yang, 2002) provides very good discussion on the 

normalization procedures and some of the important issues to be considered when designing normalization 

procedures. 

Carrying out microarray assay requires special skills and it is not easy to obtain cancer tissue 

samples for analysis. With ever-increasing interest in the microarray dataset based studies, it becomes 

important that researchers, who do not have molecular biology laboratory skills or simply do not have the 

funds to carry out these experiments, have access to these datasets in a standard format. This has lead to the 

formation of microarray databases, which are maintained by major research labs like the Stanford 

Microarray Database and other agencies like the Gene Expression Omnibus (GEO). (Christopher J. Penkett 

and Jurg Bahler, 2004) A typical dataset will be grouped into training sets and testing sets having the 

samples listed along the columns and the genes along the rows of a 2 dimensional matrix . Each cell 

represents the expression of gene   g   listed along the row with its corresponding   n   th sample listed along 

the columns.(A screenshot of a typical dataset is shown in Chapter 7).  There will also be a   .cls   class file 

carrying the correct class labels of the samples. 
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1.3. Gene expression studies in cancer 

In his landmark paper on class discovery and classification of cancer (Golub T, 1999), T.R.Golub 

et.al. has explained the importance of discovery of subclasses in cancer. The morphology of the tumor, 

which is currently the most important feature for classification, has been proven to have serious limitations. 

Several cases were identified where the tumors, supposedly in the same class, responded differently to 

therapy. In that paper, he proposed for the first time, gene expression monitoring using DNA microarrays 

as a possible tool for class discovery and further classification in cancer. This paper created a completely 

new area of functional genomics, called cancer genomics, which deals with using the gene expression 

profile as a tool in cancer diagnosis and therapy. Several research papers followed which applied gene 

expression monitoring to address cancer classification, discovery of tumor specific biomarker and studying 

drug sensitivity. Easier availability of the gene expression datasets has allowed researchers from a wide 

spectrum of fields including biology, statistics, signal processing etc. to concentrate on analysis of the 

expression data to look for inherent information in the datasets. 

 

1.4. Classification using gene expression data 

The classification problem in cancer studies relates to early diagnosis of the presence or absence 

of the tumor (L.Dyrskjot, 2003), the correct sub-type of the tumor (Golub T, 1999) or several other criteria . 

A classifier should take a vector of gene expression values as input and give the class label as output. There 

has been a lot of literature applying different classifier algorithms to microarray gene expression data. I 

have referred to some of the important ones in the literature review section. One issue, which is 

omnipresent in all microarray studies (at least for now), is the small sample size available for study relative 

to the huge feature size associated with the gene expression studies. 

There are three major issues identified with this mismatch between sample and feature size 

(E.R.Dougherty, 2001). (1) How to generalize a classifier designed using a small sample set to the general 

population? (2) How to estimate the error for the classifier using the small sample set? (3) How to select the 

most relevant features needed for classification when the sample size is small? 
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All these three questions are being heavily researched right now. The objective of this thesis is to 

address the feature selection problem, i.e. how to select the genes most relevant for classification, from the 

thousands of genes in the gene expression profiles available. 

 

1.5. Feature selection 

Feature selection, as the name suggests, refers to selecting the most relevant features from all the 

variables, such that it contains enough information about the samples to classify them into the defined 

classes.  

Most of the methods used now for feature selection from microarray datasets are based on 

statistical methods. There are two main approaches for selecting the relevant features. 

(1) Filter method – where the genes are ranked according to some general properties like 

correlation, discriminative power etc. that are relevant for the problem being studied. An example of the 

filter method is the one proposed in (Dudoit, 2000) where a ratio of between class sum of squares to within 

class sum of squares is used to rank the genes. 

(2) Wrapper method – formed to restrain the set of factors so that a given classification method s 

performance is improved. The prediction accuracy of the chosen classification method for all possible 

combinations of the genes is considered and the best set is chosen. 

 

1.6. Feature extraction 

Feature extraction refers to extracting the relevant information from the dataset. In this case, the 

extracted features need not be in the same domain as that of the datasets and therefore need not make any 

intuitive sense on first look. Methods like Principal Component Analysis, Singular Value Decomposition 

etc have been used before for feature extraction in microarray gene expression data with considerable 

success.  
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1.7. Wavelet transforms 

The wavelet transform breaks down any arbitrary function into a superposition of wavelets. The 

wavelets are generated from a mother wavelet by dilation and translation operations.  

The 1-D Discrete Wavelet Transform (DWT) of a signal is implemented by passing an input 

signal simultaneously through high-pass and low-pass filters followed by down sampling. A typical 

decomposition is shown below and the decomposition is discussed in detail in later chapters. 

 

 

Figure 1.1. A 1,024 point signal decomposed to level 5 using the Sym 4 wavelet. The low frequency 

approximation signals are shown on the left pane and high frequency detail signals on the right side. 

Coefficients at different levels are also shown. (Implemented using wavelet toolbox of MATLAB
®
). 

 

The decomposition of a signal using the wavelet transform is represented by equation (1.1).  In 

Figure(1), decomposition of s can be represented by equation in (1.2) : 

 

1

1

1

n

n k

k

s a d

−

−

=

= +∑

 (1.1) 
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1.8. Hypotheses 

 

Null Hypotheses.  

 The probability p1 of the wavelet based method to make an accurate classification is the same as 

its probability p2 to make an incorrect classification. (p1=p2). 

 

Alternate Hypotheses. 

 The probability p1 of the wavelet based method to make an accurate classification is greater than 

its probability p2 to make an incorrect classification. (p1>p2). 

Apriori Significance Level α = 0.01 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1. Microarrays in biology 

It was Schena et al (Schena M, 1995).who proposed a procedure to monitor the expression levels 

of multiple genes in parallel in their study of the expression profiles of 45 genes of Arabidopsis by two-

colored fluorescent hybridization. They then extended the proposed method to the human genome (Mark 

Schena, October 1996) by creating a microarray imprinted with 1,046 human cDNAs to study the genes 

affected by heat shock. This was followed by the work of Lokhart et al (Lipshutz RJ, 1999) from 

Affymetrix where they proposed the oligonucleotide-based gene chips which were the first commercially 

available microarray chips. These landmark papers were followed by hundreds of publications which 

focused on addressing questions in oncology, cell biology, pathology, pharmacology and toxicology 

(J.Derisi, 1996) (D.J. Duggan, 1999)  (Lettieri, 2006) (Stoughton, 2005) (Winzeler, 2000). 

 

2.2. Noise removal and normalization  

The fluorescent intensities showing expression levels obtained from the microarray chips at each 

location have to be denoised and normalized to obtain values indicating the expression level of the mRNA 

in that sample at the time of the assay. Bozinov and Rahnenfuhrer (Bozinov, 2002) and Smyth et al. 

(Smyth, 2002) have reviewed the current methods available for image processing of microarray data for 

noise removal. Brown et al(2001) addressed the need of a metric to evaluate the precision of each spot on a 

spotted microarray chip to get a measure of the reliability of the expression profile (Brown, 2001). 

Different approaches are needed for cDNA arrays and Oligonucleotide arrays. When it comes to cDNA 

arrays, there have been several image analysis tools proposed for removing noise artifacts like circular 

spots and irregular shapes. ScanAlyze (Eisen, 1999), GenePix (Axon Instruments in., 1999) and Quantarray  
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(GSI Lumonics Inc., 1999) (for segmentation) and Spot (Buckley, 2000)(for background estimation) are 

some of the software. Yang et al. (Yang, 2002) has  published a very interesting comparative study of the 

different segmentation and background estimation methods available for cDNA microarray studies. The 

spot software doesn’t work well when artifacts fall into the background area. The Imagene (BioDiscovery 

Inc., 1997) has been found to be a good alternative in this case.   

 

2.3. Microarray databases  

Carrying out microarray assay requires special skills and it is not easy to obtain cancer tissue 

samples for analysis. With ever increasing interest in the microarray dataset based studies, it becomes 

important that researchers, who do not have molecular biology laboratory skills or simply do not have the 

funds to carry out these experiments, have access to these datasets in a standard format. This has lead to the 

formation of microarray databases which are maintained by major research labs like the Stanford 

Microarray Database and other agencies like the Gene Expression Omnibus (GEO). Reviews of the 

different microarray datasets and their formats are available.(Christopher J. Penkett and Jurg Bahler, 2004). 

 

2.4. Classification 

The classification problem basically requires design of a classifier which takes a vector of gene 

expression as input and outputs a vector indicating the class label of the input sample vector.  Golub et. al. ( 

(T.R.Golub, 1999) were the first to address the issue of class discovery and classification when they used 

the expression profiles of 50 genes to classify Leukemia samples into Acute Lymphoid Leukemia and 

Acute Myeloid Leukemia. This was followed by numerous studies where classifiers were designed to 

classify between different types of cancer, different cancer stages, cancerous and noncancerous samples 

etc. I have listed some of the papers addressing classification problem in microarray data: (A.Ben-Dor, 

2000) (M.Bittner, 2000) (G.Callagy, 2003) (L.Dyrskjot, 2003) (T.SFurey, 2000) (I.Hedenfalk, 2001).  

There are three critical statistical issues related to addressing the classification problem using the 

expression data which are all caused by the huge dimension mismatch between the number of variables and 

the number of samples: 
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(1) How to generalize the classifier designed from a small sample set to the entire population? 

(2) How to estimate the error with the limited data? 

(3) How to select a subset of relevant features from the huge number of features? 

There has been a lot of work in the literature addressing the importance of these issues.   

(E.R.Dougherty, 2001), (A.K.Jain, 1991), (D.Zongker, 1997), (J.Slansky, 2000) address the issue of feature 

selection and the limitations caused by the small sample sizes for designing classifiers in pattern 

recognition. 

For the first issue of designing classifiers which will perform well on the general population, 

several methods of regularization have been proposed (Edward R. Dougherty, 2005). This can be achieved 

by either regularizing the classifier parameters or the data (Friedman, 1989). A typical case of regularizing 

data is ‘noise injection’ where a Gaussian distribution is kept at each data point and a large number of new 

data points are injected to the variable space, thereby shifting the balance of the variable – sample 

dimension mismatch (M. Skurichina,2000).  

Error Estimation in the context of small sample microarray data has also been addressed in the 

literature (C. Sima, 2005). “Leave one out” cross validation is the most common method, but it has been 

found to be severely limited by high variances in its estimation (Dougherty, 2004). Several alternatives 

have been proposed, including bolstered error estimation where a method similar to noise injection is used 

to estimate the error term as a fraction (0-1) rather than just 0 or 1 (0 misclassification,1 classified 

correctly) (Dougherty, 2004). 

  

2.5 Feature selection 

The third problem is closely associated to a very common problem in machine learning and is 

called the ‘curse of dimensionality’ problem (A.K.Jain, 1991). A large number of feature selection methods 

are already in the machine learning literature. Many of them have been directly used in the microarray 

applications and many have been modified to meet the applications (Yvan Saeys, 2007). 

A recent review on the different gene expression data analysis methods (Jafari, 2006) has 

identified t-test and ANOVA as the most common features selection tool.  
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The ANOVA and t-test are typical cases of univariate parametric methods, where each variable 

(genes) is assumed to have an underlying distribution (Churchill, 2003). The t-test and ANOVA assume the 

distribution to be Gaussian. Regression modeling (Thomas, 2001) and Gamma modeling  (Newton, 2001) 

have also been used in place of Gaussian modeling in parametic testing. Several modifications of the t-test 

and ANOVA have been proposed to address the small sample issues (Churchill, 2003). There is  ambiguity 

associated with the underlying assumptions about the gene expression profiles and the limited sample sizes 

have made it very difficult to validate the assumptions. This has lead to the use of model free non-paramtric 

methods for univariate gene selection (Troyanskaya, 2002). Several scoring methods like Wilcoxon rank 

sum method (Troyanskaya, 2002), BSS/WSS method (Dudoit, 2002) etc. have been proposed in the 

literature.  

Univariate methods like the t-test and Wilcoxon method are simple to estimate and intuitive to 

comprehend, but have problems with the basic assumptions. The assumption in selecting genes using the 

univariate approach is that a set of the best N genes which are differentially expressed between the classes 

will form the best feature set of size ‘N’. This approach completely ignores redundancy in the data.  

There are several multivariate methods in the literature which account for gene-gene interaction by 

looking at the correlation between the variables. They include correlation based feature selection ranging 

from high dimensional (Wang, 2003), minimum redundancy – maximum relavance methods  (Ding, 2003) 

and uncorrelated shrunken centroid approach  (Yeung, 2003) to simple bivariate method where two genes 

are considered together at a time  (Bo, 2002). 

Feature selection methods which use classifiers embedded in them ( wrapper methods) have also 

been proposed. Here the gene space is explored for the best feature set using several methods such as the 

hill climbing method, forward search method, sequential floating forward search methods (Edward 

R.Dougherty, 2005) until the classifier performance is optimized.  

Embedded methods where the feature selection methods are part of the classifier are also in use. A 

random forest approach where many single decision trees are combined to evaluate gene relevance (Dıaz-

Uriarte, 2006) and support vector machine based approach  (Guyon, 2002) are two examples. 
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2.6 Wavelet transform in microarray studies 

There are two ways of applying the 1-dimensional wavelet transform on gene expression   

datasets:  (1) Along the time axis, where we are looking at the expression of a particular gene at different 

resolutions. One very interesting case is the one by Klevec, R.R et al (Klevecz, 2000) where he discovered  

inherent oscillation in the expression of yeast genes. He found two periodicities, one of ~40 minutes and 

another ~80 minutes. Another case is the one by Rajendra Sahu et al (Subramani Prabakaran, 2006) where 

they used the Haar power spectrum to rank each gene.  Also, (2) along the genes, one sample at a time. In a 

paper by Siew Hong Leong, Amit Aggarwal et al (Aggarwal Amit, 2005 ) studied the local and global 

effects of Aneuploidy (a genetic aberration observed in human cancers) on the genome using the 

continuous wavelet transform, the low scale analysis giving aberrations occurring locally in the genome 

and the high scale analysis revealing the aberrations occurring globally. Another very interesting case is the 

paper by Shutao Li et al (Li Shutao, 2006). They took the 1-D DWT of the gene expression data and 

applied an algorithm based on thresholding to choose the most important coefficients and used these 

coefficients as the feature inputs to SVM based classifiers.  
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                                                        CHAPTER III 

                                                  DNA MICROARRAYS 

 

3.1. The cell 

The Webster dictionary defines  cell  as a small, usually microscopic mass of protoplasm bounded 

externally by a semi-permeable membrane, usually including one or more nuclei and various other 

organelles with their products, capable alone or interacting with other cells of performing all the 

fundamental functions of life, and forming the smallest structural unit of living matter capable of 

functioning independently.  Every single event within a cell is the result of highly coordinated activity of a 

multitude of specific chemical transformations. These transformations involve a wide range of small 

organic molecules like carbohydrates and fatty acids and macromolecules like DNA and amino acids.  

Most of the structural, functional and regulatory activities of life are performed and regulated by 

different combination of 20 unique amino-acids, called proteins. All the information about when, where 

and how to produce these proteins are carried in the genetic material called  Deoxyribonucleic acid  (DNA) 

contained in the nucleus of every single living cell (Lodish H, 2000).  The entire genome is packaged by 

folding into the chromosomes in the nucleus and is replicated in a complex DNA replication process during 

cell division. (Figure 3.1) 

 

3.2. Genes 

The  information  in the DNA strands lies in the order in which the sequence of four nucleotides 

(Adenine, Guanine, Cytosine and Thymine) are arranged. Even though the DNA is millions of base pairs 

long (chromosome 1 of human genome has 220 million base pairs), the information bearing regions are 

discrete functional units ranging from a few thousand to a few tens of thousands of nucleotides called genes 
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The  coding region of the genes encode its protein and  regulatory regions  defines when and where it gets 

expressed. 

 

3.3. Introduction 

The coded genetic information in the DNA is converted into proteins through a two step series – 

Transcription in the nucleus where the RNA polymerase enzyme catalyzes a copy of the information 

content of the DNA on to messenger RNA, and the Translation step by the ribosome in the cytoplasm, 

where the preprocessed mRNA is translated to amino-acid chains following a universal genetic code of 

translation. These series of processes constituting the transfer of information from DNA to RNA and then 

to proteins is called  gene expression .     

 

Figure 3.1. The three molecular genetics processes. Transcription, RNA preprocessing and Translation: 

(http://ghr.nlm.nih.gov/handbook/illustrations/proteinsyn.jpg).  

 

3.4. Gene expression 

 The genes have coding and regulatory regions. The coding regions are divided into informative  

exons  and non-informative  introns . An enzyme called  RNA polymerase  attaches to sites upstream from 
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the start sites of each gene, called promoters, and catalyzes the linkage of rNTPs (ribo Nucleoside Tri 

Phosphate monomers) to form something called  pre-mRNA chains . This step is Transcription. 

In the next stage, first, a 7-methyl guanylate cap is added at the 5’ ( 5 prime) end. This cap 

protects the mRNA from enzymatic degradation. The cap is also bound by a protein factor which is 

required to begin translation in the cytoplasm. Then, the poly (A) polymerase enzyme catalyzes the 

addition of a string of Adenylic acid residues to the 3’ end. This results in a 100-250 base long poly (A) 

tail. This tail has importance in DNA microarray technology as it is used in the reverse transcription 

process of mRNA. The final product after the preprocessing of the pre-mRNA is the messenger RNA.  

The preprocessed mRNA now leaves the nucleus and enters the cytoplasm.  The mRNA attaches 

to the transfer RNA in the ribosomal subunits.  A very complex process which involves the ribosomal 

RNAs, several protein complexes and transcription factors use the codons (triplets of nucleotides) on the 

mRNAs to assemble and connect together amino acid sequences based on a nearly universal genetic code. 

This process is Translation.  

The entire process from Transcription of genes to RNAs to their subsequent translation to amino 

acid sequences is gene expression. 

Table 3.1. The genetic code.  

 T C A G 

 

T TTT Phe (F) 

TTC” 

TTA Leu(L) 

TTG” 

TCT Ser (S) 

TCC” 

TCA” 

TCG” 

TAT Tyr(Y) 

TAC 

TAA Ter 

TAG Ter 

TGT Cys(C) 

TGC 

TGA Ter 

TGG Trp(W) 

C CTT Leu(L) 

CTC” 

CTA” 

CTG” 

CCT Pro (P) 

CCC 

CCA” 

CCG” 

CAT His (H) 

CAC” 

CAA Gln(Q) 

CAG” 

CGT Arg(R) 

CGC” 

CGA” 

CGG’ 

A ATT Ile(I) 

ATC” 

ATA” 

ATG Met(M) 

ACT Thr(T) 

ACC” 

ACA” 

ACG” 

AAT Asn(N) 

AAC” 

AAA 

LYS(K) 

AAG” 

AGT Ser(S) 

AGC” 

AGA 

ARG(R) 

AGG” 

G GTT Val(V) 

GTC” 

GTA” 

GTG” 

GCT Ala (A) 

GCC” 

GCA” 

GCG” 

GATAsp (D) 

GAC 

GAA Glu(E) 

GAG” 

GGT Gly(G) 

GGC” 

GGA” 

GGG” 
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3.5. The need for dna microarrays 

The latest estimate puts the number of protein coding genes in humans to be around 20,000 

(Consortium, 2004).  Some of these are expressed more or less to a constant extent as they are involved in 

basic reactions in the cells. They are called  housekeeping genes . The rest of the genes are only expressed 

selectively! This means that the genes expressed in a cell at a given point of time depend on several factors 

like the stage of the organism s growth,  the location of the tissue studied, the health of the tissue studied, 

the time of the day, etc. If we can find out simultaneously, which genes are expressed and to what extent 

are they expressed at any point in time, if we can somehow quantify this notion of gene expression, it can 

act as a very powerful tool for understanding almost all the biological processes in the cell.                           

 

3.6 Monitoring gene expression 

As we discussed above, there are two main stages in gene expression. The important thing with 

cellular control is that the cellular control, and its failure, is the result of interaction between thousands of 

genes and their products. Even though DNA, RNA and the proteins are in different levels of the gene 

expression process, they show very high interaction levels. We do need to combine all three levels to get 

complete information about the cellular processes. But at the same time, each individual level does have 

considerable information available in itself, which makes study of individual levels very relevant.  

As of now, we know most of the protein producing genes in us, but still have to go a long way in 

identifying all the proteins involved. The efforts are now focused on the mRNA expression levels because 

of the measurement considerations.   

One issue that comes up here is to save all the genomic information is some form of library for 

further study.  Many of the sequences in the DNA are non-informative. A better option is to save the 

mRNA information. It is is much easier to isolate as it is present in the cytoplasm and it is far shorter in 

length as all the introns and regulatory information is lost in the preprocessing stages after transcription, as 

was explained earlier. An enzyme called Reverse Transcriptase first discovered in retroviruses is used to 

reverse transcribe mRNA to what is called  complementary DNAs (cDNAs) . Almost all the gene expression 

studies conducted today are based on the cDNAs. 
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Before the sequencing of the genomes of many organisms, there were several techniques available 

for studying one gene at a time under different conditions – the most important of this being screening 

using oligonucleotide probes and blotting techniques. Both these techniques are based on hybridization. 

3.6.1. Hybridization 

 The nucleotides in DNA and RNA will preferentially associate with their corresponding 

complementary base-pairs. (Adenine – Thymidine/Uracil & Guanine – Cytosine). The double helix DNA 

strands can be denatured by heating in dilute solution at high temperatures (annealing). If the temperature is 

brought back and the ion concentration raised (near neutral pH, 40-65 C and .3-.6 M NaCl solution), the 

single strands will hybridize back to complementary strands. This re-association will take place even if 

other non-complementary strands are present. The hybridization property is the basis for probing and 

blotting techniques. 

The idea of using probes to scan for the presence of specific genes in a sample, is to make a 

tagged, short (of the order of 20 nucleotides) oligonucleotide sequence from the cDNA being studied and 

hybridizing it with the sample, fragmented using restriction enzymes and separated by electrophoresis. The 

amount of cDNA present can be studied by autoradiography. The Southern Blotting looks for cDNA 

fragments while Northern Blotting looks for mRNAs.  

The microarrays are basically conducting thousands of Northern Blotting experiments in parallel. 

Instead of distributing the probes on the samples, the microarray experiments involve attaching thousands 

of oligonucleotide probes onto some surface. The samples are tagged fluorescently and added on to the 

array surface and allowed to hybridize. The excess unhybridized samples are washed away and the 

hybridized material excited by laser using a laser beam scanner. We end up with the intensity of laser at 

each location on the chip which corresponds to the expression level of each gene (represented by the probes 

at each location) in the sample being studied. 

This means that instead of looking at a few genes at a time, microarrays allow simultaneous 

monitoring of thousands of genes at the same point of time. This opens innumerable possible experimental 

designs for researchers. We can study change of gene expression in different stages of growth of on 

organism, disease condition, different stages of disease, effect of drugs, effect of a particular treatment etc. 
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3.6.2. Microarray technology platforms 

There are three main types of DNA microarray technology platforms(Lee,2004) (Knudsen,2004): 

(1) spotted cDNA arrays, (2) spotted oligonucleotide arrays and (3) in-situ oligonucleotide arrays. They are 

different in the ways the arrays are produced and the types of probes used on the arrays.  

Spotted cDNA microarrays involve using the full length cDNA clones or short sequences which 

represent the cDNA sequences (Expressed Sequence Tags) as probes. This method is of particular 

importance in cases where the genes are not completely known.  

Spotted oligonucleotide microarrays involves referring to some genome database like 

GENEBANK for the gene we want to study and using  synthetic oligonucleotide sequence (20 – 80 

nucleotides long) which is characteristic of the gene to be studied instead of the entire cDNA to be used. 

This avoids a lot of the noise associated with the cloning, spotting and PCR stages of the cDNA based 

method. This method also gives more control over the specific part of the gene to be studied. This becomes 

important in cases where the transcripts are highly similar and give cross hybridization problems in cDNA 

microarrays. 

Both the spotted methods give a tremendous amount of design flexibility for researchers, but 

involve considerable noise and tendency for cross hybridization.  

In the case of in-situ oligonucleotide microarrays, a large number of probes (25-mer oligos to the 

order of 50,000 per square 1.28 square cm) are synthesized on to the surface of the chip using a 

combination of photolithography and oligonucleotide chemistry. The Affymetrix gene chips have much 

higher density compared to the spotted arrays, but there is no control for the researchers over the probes.  

The test and reference samples have to be hybridized separately and the intensity values represent 

gene expression in the sample. The test and reference samples are mixed and hybridized together and the 

intensity values represent the ratio of the gene expression of one sample with respect to the other. The 

scanning and image analysis methods are also different. 
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3.6.3. Selecting and synthesizing the probes  

cDNAs allow great flexibility for the researchers for selecting the probes they want to explore. 

The cDNA can be created from the cDNA libraries discussed earlier. cDNAs obtained from the libraries are 

amplified using an assay for amplification of the number of nucleotide chains called Polymerase Chain 

Reaction (Lodish H, 2000). The strategy used for selecting templates for the studies depend on the 

organisms (Lee, 2004).  

In the case of oligonucleotide probes, the public sequence databases like GeneBank, dbEST etc. 

can be used to obtain the exact sequence of the genes to be studied. But there are several questions to be 

answered about the sequence of the oligonucleotide made. 

Firstly, how long should the oligonucleotide sequence be? Obviously, the longer the sequence, the 

better it is. But, it is going to be more expensive to synthesize long sequences. So how small can it be? 20 

nucleotides can represent 4
20

genes! Therefore, it is reasonable to use 20 to 70 nucleotides.  

Secondly, how similar are two oligos in the same array? If they are too similar, the cross-

hybridization can take place and might cause loss of information. Therefore, care should be taken to keep 

all oligos as different as possible. 

Thirdly, do all probes have similar hybridization properties? For example, for all the oligos to 

perform similarly, their melting temperatures should be similar. 

Several other issues like the location of the probe in the gene and self-hybridization properties 

should be considered. 

In the in-situ oligonucleotide arrays, around 20 nucleotide long probes are synthesized on to the 

surface directly. They are organized as a pair of Perfect-Match and Mismatch probes. The Perfect-match 

forms the complementary to the target sequence and the Mismatch probe has all but one sequence forming 

the complementary to the target sequence. The central nucleotide in the Mismatch probe is deliberately 

made a mismatch to the target sequence. The MM probe act as control for cross hybridization. A probe set 

of 16-20 probe pairs are used for each transcript. 
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3.6.4. Manufacturing the arrays 

The in-situ oligonucleotide arrays use photolithography for manufacturing the arrays. The support 

is covered with a protective chemical which can be deactivated by light.  A mask with holes is used to 

select the locations onto which a particular nucleotide is needed. The light through the hole will expose the 

locations on the surface through the holes in the mask. The process is repeated for different nucleotides by 

varying the location of the holes and thereby selecting the location on the surface. 

In the case of spotted cDNA microarrays, cDNAs are prepared away from the surfaces. The 

probes are deposited and then attached to the surface robotically. Different materials ranging from plastic 

polymers to glass are used for making the surface materials. The surface of the materials is covered by 

background reducing materials like poly-lysine coatings or complex 3D molecular matrix layers.  

The cDNAs or oligos are spotted using two main methods: Using capillary action for picking up 

the cDNAs from their solution and depositing onto the support surface. This method is called Contact 

spotting. The other method doesn t involve contact, as the oligos are sprayed on to the surface with high 

precision using a technology similar to that used in ink-jet printing.  

Once the oligos or cDNAs are spotted onto the surface of the support, they have to be attached 

covalently to the surface. The cDNAs are attached using Ultra Violet cross-linking where attachments are 

formed randomly across the probe molecules. The oligonucleotide is more often linked by using linker 

molecules. The oligonucleotide is attached with a linker at its end, which chemically binds to the surface 

which has appropriate reactive groups.  

 

3.6.5. Labeling the targets 

There are several labeling techniques available. Three very common approaches used for labeling 

the targets are summarized below (Lee M.-L. T., 2004).  
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Figure 3.2. Three labeling methods used for target labeling- Direct, Using Aminoallyl nucleotides and in 

vitro transcription based method. RT – Reverse Transcription; IVT – In vitro transcription. 

 

The first method basically involves reverse transcription of the mRNA to cDNA strands where the 

nucleotides included are modified by attaching a dye to it. For the spotted microarrays ( both cDNA and 

Oligonucleotide), two test and reference samples, are tagged separately, but mixed together before 

hybridizing onto the microarray slides. In the case of the direct reverse transcription method, the dye 

molecules can be incorporated to the reference and the test sample with different efficiency.  

This problem is addressed in the second method by using Aminoallyl group for reverse 

transcription as it is less sensitive to structural bias of the dye to the cDNA molecules.  

The third method, the in vitro transcription based methods has the advantage of using very small 

RNA quantities (of the order of 10-20µg). This involves amplification processes like PCR which comes 

with a disadvantage that the different mRNAs can be amplified disproportionately. 
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This is overcome in vitro transcription by using a oligo-dT primer with a promoter sequence 

extension. The cDNA generated can be used to generate any number of cRNA needed by transcription from 

the promoter sequence.  

IVT is used for in situ oliogonucleotide arrays. Biotin-modified nucleotides are used for 

Affymetrix chips as biotin modifications are used for attaching the dyes and fragmenting them gives 

uniform hybridization properties.   

 

3.6.6. Scanning and analyzing the images obtained 

Once hybridization is completed, the microarrays are scanned for the fluorescence of the tags 

using confocal microscopes to measure light at wavelengths characteristic of the dyes.  The high resolution 

monochrome images are captured using scanners and a high resolution image is obtained. The spots are 

identified using  Gridding  where a grid is placed on the image to obtain the approximate locations of the 

spots. The  Segmentations  process separates the background noise from the foreground signals. 

This is followed by  intensity extraction  step which extracts intensity values for each spot which 

represents the expression level at each spots. 

 

3.6.7. Microarray data 

The final microarray data obtained after all the processing is a two-dimensional matrix with the 

expression levels of each gene along the rows and the samples along the columns. Either the actual 

numerical value can represent expression levels of each probe in the case of in situ oligonucleotide arrays 

and ratios or log transformed log ratios of differential expression between the test and the reference sample. 

 



23 

 

  CHAPTER IV 

FEATURE SELECTION IN MICROARRAY BASED CLASSIFICATION 

 

In an ideal setting, i.e. in a case where we know the underlying distribution of the class labels and 

the samples, the expected error of the classifier will decrease monotonously with increasing number of 

variables in the feature set. But, in most real situations, as in the case with the microarray data, we do not 

know and cannot estimate the underlying distribution as we are severely limited by the available sample 

sets. All the gene expression values obtained from microarrays are potential features. But using the entire 

variable (gene) set as the feature set will result in over fitting the data (Over fitting results in the classifier 

performing well in the given sample set, but not on new samples). This problem is inherent in classification 

problems and is called curse of dimensionality. Here, the classifier error decreases with increasing size of 

the feature set until it reaches an optimal number of variables in the feature set after which it starts 

increasing. This is called peaking phenomenon (A.K.Jain, 1991).  

In order to optimize the performance of the classifiers, it becomes imperative to choose a small 

subset of the variables which can give optimum classification results for the chosen classifier. A very 

important question to be addressed here is to find out the optimal size of the feature set. Empirical studies 

have indicated that the optimal number of variables in a feature set depends on the number of samples, the 

classifier being used, redundancy in the variables selected and even on the error estimation method used for 

evaluating the classifier (J. Hua, 2005) (Chao Sima, 2005).  

A straight forward approach to select the best feature set will be to try every possible combination 

of variables (genes) on the chosen classifier and find out which one gives the minimum error. Considering  

the fact that every single gene is a potential feature, testing every combination of thousands of genes is 

computationally impractical.   
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The need for Feature Selection algorithms which can give suboptimal performance on the 

classifier can thus be summarized by three main reasons: (a) To overcome the curse of dimensionality 

problem, (b) To give cost effective, computationally efficient methods which select features sets which 

gives close to optimal classification performance and (c) To provide small feature sets which can act as 

potential diagnostic tools for a particular disease condition. 

The Feature Selection techniques currently used are grouped into three categories depending on 

how they are linked to the classifiers. Some of the most commonly used methods are discussed below with 

their advantages and disadvantages. 

 

4.1. Filter methods 

 The approach in filter methods is to calculate a score of relevance for all the variables, taken one 

at a time. The assumption is that most relevant features taken together will give a good feature set and thus 

very good classification results. They are completely independent of the classification algorithms and the 

computations are simple and fast.  

The simplest and a naïve method for identifying differential expression will be to look for fold 

changes between the different conditions. This basically comes down to finding the ratio of average 

expression levels of the gene being considered between the different conditions. A threshold ratio is chosen 

and genes which cross this threshold are selected as relevant genes (MARK SCHENA, 1996). The main 

problem with this approach is the lack of a score which indicates the relevance of a gene.  

Several univariate filter based approaches have been proposed after that. There are two subtypes 

of filters based on the assumption about the underlying distribution of the variables - Parametric methods 

where the variables are assumed to have an underlying Gaussian distribution and Non-parametric methods 

where there are no such assumptions.  

 

4.1.1. Parametric methods 

 The two sample sets might come from patients at different stages of a disease. The problem 

definitions have to be different for cases where more than one samples is obtained from the same patient. 
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The null hypotheses will be that there is no difference in the expression levels between the conditions. The 

interpretation of the hypotheses depends on the experimental design. In the case of cDNA microarrays 

where the two samples are hybridized together, the ratio of the expression between the two samples should 

be one. In the case of cDNA arrays where the two samples are hybridized seperately against a common 

reference, there should be no difference between there ratios. If log transformed expression ratios are used, 

then the difference should be zero. The same hypotheses will apply for the oligonucleotide data also. It is 

worth mentioning here that the definition of hypotheses assumes the samples to come from independent 

biological sources (Churchill, 2003). 

 

4.1.1.1. T-test 

The 2 sample t-test is one of the most common tools used for finding differentially expressed 

genes in two condition cases (Jafari, 2006) (Callow MJ, 2000).  The t-test does a statistical assessment to 

see if two groups of samples are statistically different from each other (Table 4.1). But the power of the t-

test is severely limited by the small number of samples available for each condtions. If, merely by chance, 

the variance of a samples from a condition is very small, then the t score end up showing a false high value 

even when the difference in mean is small.  

 

4.1.1.2. Modified t-test 

One possible solution to solving the effect of small samples has been to use a variance obtained 

from pooling the samples in the class across all genes. This ends up giving the same effect as a fold-change 

test as the variance for each genes across the class types are not accounted for (Table 4.1). In “Significance 

analysis of microarrays” method, a constant is to added to the denominator term which will bring the score 

tg down when the difference of mean is small, but the variance term in one of the classes is also small  

(Churchill, 2003)(Virginia Goss Tusher, 2001).  

In regularized t-test, a weighted average of both local and global variances are accounted for to 

avoid local variances from giving high score even when the difference in mean is very small (Baldi P, 

2001). 
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B-test statistic applies a bayesian approach to the entire data-set to estimate prior probabilites for 

the genes to be differentially expressed and for it to not to be differentially expressed between the 

classes.The ratio of these probabilites is used as a test statistic (Lonnstedt I, 2002). 

 

Table 4.1. The summary of t-test and its modifications.  

t-test  for gene g, classes i and j  
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A constant term sc is added to prevent a small SEi or SEj 

from affecting the t-static measure.  (Virginia Goss 

Tusher, 2001)  
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A parameter v0 which determines the relative 

contributions of gene specefic variance to the global 

variance(Churchill, 2003). 
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4.1.1.3. Analysis of variance 

Analysis of Variance(ANOVA) is a generalization of the t-test to multiple class cases. The null 

hypotheses is that expression of genes in all the conditions studied have the same mean and the alternate 

hypotheses is that the gene is differentially expressed.  

A typical gene selection method using ANOVA is described below  (Churchill, 2003): 

The model is for cDNA microarray data and we deal with logarithm of intensity and not the ratio 

here. There are two stages in the design of the model. 

Stage 1: The normalization model which accounts for the effects of the arrays(i), the dyes(j) used and the 

measurement(r). The log transformed intensity value y is modelled as: 

 

jijgr i ij ijgry A D AD rµ= + + + +

 (4.4) 

Stage 2: Gene Specefic model where the residual term ijgr
r from the normalized model is used to model one 

gene at a time. G is the mean across gene  g .  VG  accounts for variation caused by samples,  DG  by dye 

and  AG  by arrays, across the gene  g . 

 

ijgr ij j i ijr
r G VG DG AG ε= + + + +

 (4.5) 

The null hypotheses will be that the effect of interaction between the Variation across samples 

term and Gene term is  zero  and the alternate hypotheses is that there is at least one pair of samples for 

which the interactions are not equal. Both  Fixed Effect  and  Mixed Effect  design are possible based on 

the assumptions about the terms (Dragichi, 2003). All the variations of the  t-test  can be extended to the  

ANOVA  also. 

Regression modeling (Thomas, 2001) and Gamma modeling  (Newton, 2001) have also been used 

in place of Gaussian modeling in the parametic testing. 
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4.1.2. Non-parametric methods  

 The uncertainity associated with the assumptions about the underlying distributions and the 

problems associated with the small sample settings has lead to proposal of several non-parametric methods 

for gene selection.  

 

4.1.2.1. Non-parametric t-test 

Non parametric t-test does not assume normal distribution in the data. Instead the probability 

distribution of the  p-value  is estimated by permutation of the dataset several thousand times and counting 

how many times the t statistic for each gene  j  exceeds the true t-statistic (Troyanskaya, 2002). The p value 

is then corrected for multiple testing using Bonfferoni correction(Dragichi, 2003). 
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 (4.6) 
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p m p= ×
 

4.1.2.2. Wilcoxon rank sum test  

It is a non-parametric alternative to t-test which works with the  rank  of the data. The genes are 

ranked according to their expression levels across the samples. The null hypothesis is that the difference 

between the mean of the ranks is zero and the alternative hypothesis is that it is not zero. The p-values are 

assumed to be normally distributed when sample sizes of both groups are over 8. The estimations involved 

are shown below (Troyanskaya, 2002). 

Group 1 has n1 samples and Group 2 has n2 samples.  

 

11 samplew ranks=∑

 (4.7) 

 

1 1 1 ( 1 1) / 2u w n n= − × +

 (4.8) 
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1 1 2 / 2umean n n= ×

 (4.9) 

 

1var 1 2 ( 1 2 1) /12u n n n n= × × + +

 (4.10) 

 

1 1( 1 ) / varu uz u mean= −

 (4.11) 

 

z Є N(1,0) if n1,n2 > 8 

 

4.1.2.3. Sum of Square method 

This is a very intuitive and one of the most commonly used non-parametric statistics for finding 

differentially expressed genes (Dudoit, 2000). The score will be high if spread of class average with respect 

to joint average is high and the spread within each class is small. score for j
th

 gene when I is the indicator 

taking 1 if i
th 

sample belong to k
th

 group and 0 otherwise.  
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Score j
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= −

= =

= −

∑∑

∑∑

 (4.12) 

4.2. Multivariate methods for gene selection 

There is a fundamental problem with the underlying hypotheses used in univariate approach for 

gene selection for classification. The assumption is that a set of genes which are most differentially 

expressed in the different classes will give the best feature set for classification. This is not true in practice! 

The univariate approach completely ignores the interactions between the selected variables and thereby 

results in redundant feature set. The problem with this approach is two prone. For example, if the set 

feature set size is 10, the univariate methods will choose 10 most relevant genes which discriminates one 

condition from another. If 4 of these selected genes are highly correlated with the rest of them, we are not 
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only wasting the 4 genes but also limiting the space of the dataset represented by the selected features by a 

dimension of 4. The Multivariate methods address this problem and looks to minimize correlation between 

the selected features to make them less redundant. 

Some of the multivariate methods proposed in the literature are discussed below. 

 

4.2.1.Correlation based feature selection   

Here (Hall, 1999.) a subset of features (genes) is considered together instead of ranking one 

feature at a time. 

 

( 1)

cf

s

ff

kr
CFS

k k k r
=

+ −

 (4.13) 

sCFS  is score of feature subset having  k  features, 
cfr  is the average feature to class correlation and 

ffr is 

average feature to feature correlation.  

 

4.2.2. Minimum redundancy maximum relevance method 

This method(Ding, 2003) selects feature sets which maximizes some Relevance criteria and 

minimizes some Redundancy criteria. Both F – statistic is used as a measure of relevance and both the 

absolute value of correlation criterion and Euclidean distance between the selected features are used as 

measure of Redundancy. 

A typical optimization criterion used is: 

 

1
max [ ( , ) ( ( , ))]

( )Si

j S

MID F i h abs c i j
abs S

∈Ω

∈

= − ∑

 (4.14) 

        

 

where F(i,h) is the F-statistic of i
th

 feature and h
th 

class and c(i,j) is the correlation between i
th

 and 

j
th 

features. 
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4.2.3. Uncorrelated shrunken centroid based method  

Overall Centroid (Yeung, 2003) is the average expression level of a gene across all samples, class 

Centroid is the average expression level of a gene within each class, ∆ is the shrinkage threshold and ρ is 

the correlation threshold. The estimations are made for a set level of ∆ and ρ.  The algorithm starts by 

selecting a number of genes for which the difference between the class Centroid and the overall Centroid is 

the higher than the shrinkage threshold ∆ and the correlation coefficient between the genes is less than 

correlation threshold ρ. The features are tested for classification accuracy and the values of ∆ and ρ which 

optimize the classification accuracy are used for the selecting the best feature set. 

 

4.3. Wrapper methods  

The wrapper method(Edward R.Dougherty, 2005) uses a multivariate approach but includes the 

classifier bias into the search procedure thereby optimizing the performance for a given classifier. The 

classifier block acts as a black box in the wrapper based feature selection methods, so it can be applied 

directly to a wide range of classification algorithms.  

In a typical wrapper based method, the entire dataset is divided into small blocks. All except one 

block is given to a feature selection and parameter estimation stage where the best feature set which 

minimizes optimization criteria is estimated. A typical optimization criterion the sequential search 

algorithm looks for is given below (Edward R.Dougherty, 2005). 
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( ( ) ( ( ),... ( ); ))

( , )

n

i ik

t

Y t g X t X t

J
n

ϑ

ϑ γ
=

−

=

∑

 (4.15) 

{i1..ik} is the feature set, θ is the classifier parameters, 1( ( ),... ( ); )i ikg X t X t ϑ  is the classifier 

error for the selected feature set and n is the number of samples. 

The left out block is now used to estimate the classification error of the selected feature set. The 

method is repeated for all the blocks and average of the classification error is estimated.  
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There are several approaches for implementing the search for optimal feature in the feature 

selection and optimization stage. A naïve one will be the  Hill Climbing  approach where the gene selection 

starts with one gene. The entire variable space is searched and the gene which minimizes the classifier error 

is added to the feature set. The process is continued until none of the candidates perform better than the 

current feature set. 

One disadvantage of this method is that once a variable (gene) is included in the feature set, it 

cannot be excluded later (nesting property). The  Sequential Floating Forward Search  is an approach where 

after every single feature is added a back tracking process looks for better classification results, if one of 

the selected genes are removed from the feature set. The forward search process resumes after this. This 

method has been reported to give better results but is computationally more demanding. 
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 CHAPTER V 

WAVELET TRANSFORM 

 

The wavelet transform breaks a signal into a sum of scaled and translated versions of localized waveforms 

called   wavelets. A waveform has to fulfill the following mathematical criteria for it to be classified as a 

wavelet.   

(1) It should have finite energy. i.e. for a wavelet ,  

                                                   

2
( )E t dtψ

∞

−∞

= < ∞∫
                                                             (5.1) 

(2) Admissibility condition:  

  

                                                         �� = �
��� (
)�

�






�  �� < ∞                                                                 (5.2) 

where  

                                                         ��(�) = � �(�)� ��(��
)� 

�
 ��                                                        (5.3) 

(3) The Fourier transform of the wavelet should be real and it should vanish for negative frequencies. 
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Figure 5.1. Some commonly used wavelets. Coiflet, Daubechies, Morlet and Mexican hat (Clockwise). 

The wavelet transform is extremely useful in analyzing highly noisy, aperiodic and broken signals. 

It has found applications in a wide variety of applications ranging from climate analysis, seismology, 

financial measures, biological applications like ECG, EMG and recently even in studying genomic 

data(Addison 2002).  

There are a large number of wavelets available for analyzing signals. The best wavelet for a 

particular application depends on the nature of the data and what the user is looking for in the data The 

localized small waveforms, typical cases of which are shown in the figure are called   mother wavelets  . 

Each wavelet is characterized by its   pass-band center frequency.  

The pass-band central frequency is given by: 
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ˆ ( )
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ψ

ψ

∞

∞
=

∫

∫
 (5.4) 

where ˆ ( )fψ  gives the Fourier spectrum of the mother wavelet. 

The characteristic frequency of a scaled wavelet is given by fc/a where a is the scale. 
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5.1. The continuous wavelet transform (cwt) 

The CWT of a signal can be thought of its cross- correlation with the dilated and translated 

versions of a mother wavelet. The CWT of a signal x(t) is expressed as: 

                                                             

*

,( , ) ( ) ( )a bT a b x t t dtψ

∞

−∞

= ∫
                                 (5.5)   

where                                                                                                  

  

                                                             

,

1
( ) ( )

a b

t b
t

aa
ψ ψ

−
=

                                               (5.6)                                                                           

The   b   term accounts for the   translation   and   a   accounts for   dilation   of the mother 

wavelet. An illustration of analysis of a sine wave with varying frequency using a Mexican hat wavelet is 

shown below. 

 

Figure 5.2. Continuous wavelet transform of the sine wave with different frequencies using a Mexican hat 

wavelet. The sampling frequency of the signal is 1000 Hz and the mother wavelet is scaled from 1 to 64 in 

step sizes of 1.The heat map scale is shown below the plot. (Implemented using Wavelet Toolbox of 

MATLAB
®
). 

 

The mother wavelet is a Mexican hat wavelet shown in the figure 5.1. The transform operation is 

carried out in the computer by discretizing integral of the wavelet transform equation. Each point on the 
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transform plot is obtained by multiplying the signal with the mother wavelet with the scale,   a   ranging 

from 1 to 64 and the location parameter   b   ranging from 1 to 1000. It is clear from the figure that the 

lower scales emphasize the higher frequencies while the higher scales emphasize lower frequency signals.  

The original signal can be recovered from the transform by: 

 

, 20

1
( ) ( , ) ( )

a b

g

dadb
x t T a b t

C a
ψ

∞ ∞

−∞

= ∫ ∫

 (5.7) 

where T(a,b) is the wavelet transform of the signal, ,
( )

a b
tψ is the wavelet at scale   a   and 

location   b   and x(t) is the reconstructed signal. The inner integral over all the values of   b   for each scale   

a, gives the reconstruction of the signal at each scale. Integrating all the reconstructed levels gives the 

signal. 

 

5.2. The discrete wavelet transform (dwt)  

The DWT involves using discrete values of dilation and translation parameters instead of the 

continuous integrals used in the CWT. A typical approach is to take logarithmic steps in the scaling 

parameter   a   and defining the steps in the location parameter   b   in terms of   a  .  
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 (5.8) 

 where a0  and b0 are constants. 

The scaling term is represented as a power of a0 and the translation term is a factor of a0
m
.The most 

common choice for the parameters a0  and b0 are 2 and 0 (dyadic grid scaling).  

The dyadic grid wavelet is expressed as: 
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 (5.9) 
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 The dyadic grid wavelets are designed to be orthonormal. This means that they are both 

orthogonal and they have unit energy. These conditions can be expressed as: 

 

, ', '( ) ( ) {1 : ' '/ 0 :
m n m n

t t dt for m m andn n otherwiseψ ψ

∞

−∞

= = =∫

 (5.10) 

So, the DWT for a continuous signal x(t) using a dyadic wavelet and its reconstruction from the 

DWT back to the signal x(t) can be expressed as: 

 

, ,( ) ( )
m n m n

T x t t dtψ

∞

−∞

= ∫

 (5.11) 
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= ∑ ∑

 (5.12) 

It is very clear from the equations that the transform values are taken at discrete points of m and n 

of the wavelet and the signal can be reconstructed from the wavelet coefficients over all values of m and n. 

 

5.2.1. Multi resolution analysis  

The wavelet functions are associated with the details in the signal. Another set of functions called   

scaling functions   are associated with dyadic wavelets. They basically have the same form as the wavelet 

functions. 

 

/2

, ( ) 2 (2 )m m

m n t t nφ φ
−

= −

 (5.13) 

 The scaling functions have a smoothing effect on the signal. It give a approximation of the signal 

in terms of the wavelet used. The 0,0( ) 1tφ

∞

−∞

=∫ and the scaling function is orthogonal only to its 

translations and not its dilations. 

 

The   approximation coefficients   of a signal x(t) are given by: 
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m n m n

S x t t dtφ
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−∞

= ∫

 (5.14) 

The inverse transform of the approximation coefficients will give us the approximation of the 

signal at a particular scale given by: 

 

, ,
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m m n m n

n

x t S tφ

∞

=−∞

= ∑

 (5.15) 

The original signal x(t) can be expressed as a sum of approximation coefficients at m0
th

 scale and 

the sum of all details from - ∞  to m0. This can be expressed as: 
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So x(t) at any level   m   can be found by adding the approximation and detail reconstruction at the 

level   m+1  , which can be expressed as:  

 

1 1( ) ( ) ( )
m m m

x t x t d t
+ +

= +

 (5.19) 

This idea of getting the approximation signal at a lower scale (higher resolution) by simply 

adding the approximation and detail reconstructions of the higher scale is called   Multi Resolution 

Analysis  . 
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The idea of multi resolution analysis can be illustrated with an example.  

  
Figure 5.3. Multi Resolution Analysis of a highly noisy signal using db3 wavelet transform decomposed to 

the 3
rd

 level. The original signal is shown at the upper left hand side and coefficients are shown in the upper 

right hand corner. The approximation signals at each level are shown on the left side and details on the 

right side. s = a3+d3+d1+d2. (Implemented using wavelet toolbox of MATLAB
®
). 

 

 

5.2.2. Scaling and detail coefficients 

The scaling and detail functions at a given scale can be described in terms of shifted versions of 

the next smaller scale, each multiplied by their respective scaling and wavelet coefficients. The wavelets 

are assumed to have   compact support  . i.e. they have a finite number of these coefficients.  
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 (5.21) 

The scaling functions are required to be orthogonal to each other and the   ck   values should add to   2.  
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The scaling coefficients   ck   are reversed and their signs are changed before using them as 

wavelet coefficients. This ensures orthogonality among the scaling and its corresponding wavelet function. 

i.e.  

 

1( 1)k

k Nk kb c
− −

= −

 (5.24) 

   
This ensures that information contained in the approximation and detail coefficients are unique. 

 

5.3. Fast wavelet transform 

The use of smaller scale functions to evaluate the next higher scale function can be extended to the 

estimation of scaling coefficients. It can be proved(Addison 2002) that the approximation coefficients and 

detail coefficients at the level   m+1   can be estimated from the approximation coefficients at the next 

lower level. 
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 This allows estimation of approximation and detail coefficients of all higher levels without even 

knowing the signal x(t) once, we know the coefficients for a particular level. The estimation reduces to 

simple filtering operation, where the (
1

2
)ck coefficients correspond to low-pass filter and the (

1

2
) bk 

terms corresponds to high pass filter. Once we know the coefficients at a particular level, the higher levels 

can be estimated by iteratively sending the estimated coefficients through the filters.  

The schematic of signal filtering and reconstruction is illustrated below: 

 

 

 

 

 

 

 

 

Figure 5.4. The schematic of signal filtering and reconstruction. The first block shows the approximation 

coefficients undergoing successive filtering and down sampling to get the next level approximation and 

detail coefficients and the second block shows the reconstruction of the lower level coefficients by 

reversing the filter coefficients and up sampling successively from the higher level coefficients (Addison 

2002). 

 

In normal cases, the input signal is discrete and of finite length. The most common approach is to 

extend the signal to a power of 2 and feed it to the multi resolution filters as S0,n approximation coefficients.  

There is no loss of information during wavelet decomposition. This means that the transformation 

has effectively compressed the information content of the signal towards the approximation coefficients. 

This property of wavelets has made them a very power tool for data compression and feature extraction 

applications(Addison 2002). The ability to selectively reconstruct the signal using altered or chosen 

coefficients makes the wavelet analysis extremely useful for dealing with noise in the signals. 
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5.4. Smoothing using wavelets  

Smoothing is illustrated in the examples shown below. All the detail coefficients which account 

for fluctuations in the signal are removed. 

 

Figure 5.5. Wavelet smoothing operation. The panel on the left side shows a noisy sine wave decomposed 

by using sym-level 4 wavelet to the 5
th

 level. In the right panel, only the 5
th

 level approximation 

coefficients are used for reconstructing the signal. (Illustrated using wavelet toolbox of MATLAB®). 

 

 

This shows how smoothing operation is carried out by choosing to reconstruct the signal using 

coefficients less than a threshold level. 

 ��,� =  �0 	
 � ≥ 
ℎ���ℎ��� ′�′
��,�  �
ℎ���	�� �  (5.27)

We use Daubechies wavelet – D8 and Coiflet wavelet – Coif3 for the gene selection process. The 

wavelets and their corresponding filters are illustrated below using MATLAB wavelet toolbox. 



43 

 

 

Figure 5.6. The scaling and wavelet functions of Db8 (Left) and Coif3 (Right) wavelets with their 

corresponding filter coefficients. (Illustrated using MATLAB
®
 wavelet toolbox). 
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                                                                         CHAPTER VI 

                                                        K-NEAREST NEIGHBOR CLASSIFIER 

 

The K-Nearest Neighbor is a very simple procedure for classifying samples based on the majority 

voting among their neighbors is implemented as below. 

1. Each test samples are taken one at a time.  

2. The Euclidean distance from the test sample to all the training samples in estimated. 

3. The class labels of the K – Nearest training samples of the test labels are identified where 

K is always taken as an odd number. 

4. The test sample is assigned to the class which has the majority number of training 

samples in the K- Nearest Neighbors.  

The Euclidean Distance from test sample ‘Test’ having ‘G’ features to training sample ‘Train’ is 

given by: 
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  (6.1) 
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The 3-Nearest Neighbor method used in this thesis is illustrated below for a classification problem 

with 2 features. 

 

 

Figure 6.1. Illustration of 3-NN classifiers. The Euclidean distance from the test samples (the ‘+’ and the 

‘0’ samples) to the entire training set (the square samples belonging to class 1 and circular samples 

belonging to class 2). The three samples closest to the test samples are identified and the class labels of 

theses samples are put to vote. If 2 from the three nearest neighbors belong to class 1, the sample is 

assigned to class 1, otherwise to class 2.  
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CHAPTER VII 

THE METHOD 

 

7.1.Preprocessing   

A portion of the Leukemia dataset(Golub T, 1999), which is a typical publicly available dataset, is 

shown below to illustrate the arrangement of data points in the datasets.  

Table 7.1. Illustration of a typical microarray dataset. The  15 genes are arranged along the rows. The 3 

Acute Lymphoblastic Leukemia (ALL) samples are along the columns. 

 

 

 

The preprocessing involves thresholding the data. This involves making all the values below a 

lower threshold value equal to the lower threshold value and making all values above an upper threshold 

value equal to the upper threshold value. 

The datasets were thresholded at the levels used in the original papers. In particular, the Leukemia 

dataset was thresholded at 100 and 16,000. The B-cell Lymphoma dataset and the Colon dataset were each 

thresholded at 20 and 16,000.  
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The thresholded data is then normalized to the range 0-1 by the relation: 
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                                                                          (7.1) 

  

where eij is the expression value of gene i in sample j, ije'  stands for the normalized expression value of 

gene i in sample j and M represents the number of samples in the dataset.  

7.2. The gene selection method 

1. The Preprocessed and Normalized data has the gene expression values of the samples arranged 

along the columns with each row corresponding to the genes (An illustration is included below). 

Table 7.2.  A sample of the preprocessed and normalized data-points from the leukemia dataset. 

 sample

1 

sample

2 

sample

3 

sample

4 

sample

5 

sample

6 

sample

7 

sample

8 

sample

9 

sample

10 

gene

1 

0.0032 0.0241 0.0011 0.0225 0.0485 0.0162 0 0 0.0094 0.0004 

gene

2 

0.0113 0.0011 0.0061 0.0042 0.0123 0.0053 0.0006 0.0046 0.0030 0.0052 

gene

3 

0 0 0.0086 0 0 0.0018 0 0.0028 0 0.0015 

gene

4 

0 0.0109 0.0132 0.0019 0 0.0036 0.0547 0.0250 0.0015 0.0167 

gene

5 

0.0442 0.0873 0.0139 0.0194 0.0612 0.0332 0.0543 0.0281 0.0357 0.0646 

gene

6 

0.0174 0.0104 0.0285 0.0133 0.0086 0 0.0526 0.0747 0.0161 0.0245 

gene

7 

0.0160 0.0097 0.0294 0.0114 0.0122 0.0079 0.0418 0.0116 0.0232 0.0097 

gene

8 

0.0659 0.0615 0.0252 0.0790 0.1043 0.0346 0.0524 0.0162 0.0457 0.0437 

gene

9 

0.0036 0.0086 0.0050 0 0.0027 0 0.0081 0.0028 0.0022 0.0154 

gene 

10 

0.0414 0.0605 0.0454 0.0608 0.0852 0.0410 0.0394 0.0530 0.0342 0.1636 

gene

11 

0.0283 0.0348 0.0412 0.0230 0.0574 0.0128 0.0491 0.0518 0.0238 0.0666 
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Table 7.2. A sample of the preprocessed and normalized data-points from the leukemia dataset. 

(Continued). 

 

gene

12 

0.0306 0.0347 0.0565 0.0417 0.0323 0.0060 0.0337 0.0320 0.0344 0.0320 

gene

13 

0.0018 0.0029 0.0089 0.0006 0 0 0.0232 0.0074 0.0023 0.0264 

gene

14 

0.0646 0.0505 0.0589 0.0538 0.0418 0.0200 0.0794 0.0472 0.0242 0.0815 

gene

15 

0.0107 0.0197 0.0186 0.0250 0.0270 0.0159 0.0123 0.0179 0.0125 0.0161 

 

2. The Preprocessed samples are grouped such that samples belonging to each class are arranged together.  

3. The expression data corresponding to each gene are decomposed using the 1-dimensional discrete 

wavelet transform using the selected wavelets to the third  level.   

4. All the detail coefficients are filtered out and the signal is reconstructed using just the approximation 

coefficients. 

5. An absolute value of the difference between the mean of the reconstructed signal in each class is taken as 

the score of the gene.  

 

1 21 2

1 1
Score ( ) l l

i ij ij

j C j C

gene e e
n n

∈ ∈

= −∑ ∑

 (7.2) 

where 
l

ije  represents the expression level of gene i in sample j after passing the l
th

 level of the wavelet filter 

(we note that in this study l is taken to be 3); n1 and n2 stand for the number of samples in class 1 and 2 

respectively; C1 and C2 represent the two sets of samples from class 1 and 2 respectively.  

6. All the genes are ranked according to their corresponding scores and the required number of genes are 

selected from the list. 

7. The samples are classified using a k-nearest neighbor based classifier.  
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Figure 7.1. The plot shows the gene scoring process for gene CST3 (Cystatin C). The expression levels of 

CST3 in different samples are arranged into two groups along the x-axis based on their classes. The signal 

is decomposed using Db-8 wavelet. (S) shows the original expression levels of CST3. (a1), (a2), and (a3) 

represent the approximations of the signal at level 1, 2, and 3 respectively, when using Db-8 wavelets. (RS) 

illustrates the overlay of the original signal (S) and its level 3 approximation (a3). (d3), (d2) and (d1) 

represent the detail signals at their corresponding levels. 
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Figure 7.2. The plot illustrates the original expression signal of an informative gene LDHA (Lactate 

dehydrogenase A) (a) and its 3
rd

 level approximation obtained using db-8 wavelet (b). The original 

expression signals of a non-informative gene SEMA3C (Semaphorin E) and its 3
rd

 level approximation are 

shown in (c) and (d) respectively.  

 

7.3. Application 

The proposed method was evaluated using three publicly available datasets. The first two datasets 

were obtained from the Broad Institute and the third one was obtained from the Princeton University.  

Table 7.3. The Datasets studied with the two classes of samples and the Number of Samples in each Class. 

Dataset Class 1 Number of 

Samples  

in Class 1 

Class 2 Number of 

Samples 

 in Class 2 

 The Leukemia 

dataset 

(Golub T, 1999) 

 

Acute 

Lymphoblastic Leukemia 

47  Acute   Myeloid 

Leukemia 

25 

The B-Cell 

Lymphoma dataset 

(Shipp, 2002). 

Diffuse Large B-Cell 

Lymphoma 

58 Follicular 

Lymphoma 

19 

Colon Cancer dataset 

(U. Alon, 1999) 

Normal 22 Tumor 40 

 

7.4. Experiments 

 A series of experiments were carried out to compare the performance of the proposed gene selection 

method with the two standard methods – t-test and sum of square, study the genes selected and for testing 

the stability of the proposed method. 
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7.4.1. Classification performance of the different methods 

The classification accuracy of the genes selected by the proposed method was verified using 3NN 

classifiers (Richard O. Duda, 2001) on the datasets. A confusion matrix was estimated for each sub-

sampling step and for each increment of gene size (variable size). The confusion matrices were used to 

evaluate the classification performance of each gene selection methods using three parameters: 

 

7.4.1.1. Confusion matrix and the measures of classification performances 

The confusion matrix is very commonly used to study the classification performances of 

classifiers. The confusion matrix is illustrated below. 

Table 7.4. The Confusion matrix. 

 

 

PREDICTED VALUES 

ACTUAL VALUE 

POSITIVE NEGATIVE 

POSITIVE True Positive False Positive 

NEGATIVE False Negative True Negative 

 

1.  The Sensitivity: It is a measure of how many of the positive samples have been identified as positive.  

 

( )

True Positive
Sensitivity  

 True Positive  False Negative
=

+

                      (7.3) 

2. The Specificity: It is a measure of how many of the negative samples have been identified as negative. 

 

( )

True Negative
Specificity  

True Negative  False Positive
=

+

 (7.4) 

 3. The Accuracy of the classification:  

( )

( )

True Positive  True Negative
Accuracy   

 True Positive  TrueNegative  False Positive  False Negative

+

=

+ + +

                                                                                                                                                              (7.5) 
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The classification performances were compared to a standard parametric filtering method –‘T-test’ 

and a standard non-parametric filtering method – ‘Between Within method’ (Jafari, 2006).  

The evaluation was carried out using the MonteCarlo-Cross Validation (Sub-Sampling) strategy 

(A.-L.Boulesteix, 2007). ‘N minus10’ samples, randomly sampled from the data, are used as training data 

to select the relevant genes and the remaining 10 samples are used to evaluate the classification 

performance of the selected genes on test samples. The sub-sampling was repeated 250 times for each 

dataset.  

 

7.4.2. Shuffling test 

One of the main reasons for not using the 1-dimensional wavelet transform directly for gene 

selection applications is the presumed dependence of the wavelet coefficients of a signal on the order in 

which the samples are arranged within each class. We studied the effect of the order in which samples are 

arranged within groups on the proposed method by shuffling the pre-grouped training data within each 

class 100 times each.  

 

7.4.3. Gene study  

The genes selected the most number of times during the sub-sampling process were studied. The 

selected genes were compared with the top 100 genes selected by the standard methods and the most 

important genes identified in the original papers where the datasets were first discussed. 
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                                                                       CHAPTER VIII 

                                             RESULTS AND DISCUSSION 

 

8.1. Classification results 

Sensitivity: The average sensitivity of ’Db-3’, ‘Db-8’ and ‘Coif-3’ wavelets along with the standard 

methods for the three datasets are plotted below. 

Figure 8.1. Mean Sensitivity for the different methods for the B-cell Lymphoma Dataset. 
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Figure 8.2. Mean Sensitivity for the different methods for the Leukemia Dataset. 

 

Figure 8.3. Mean Sensitivity for the different methods for the Colon Cancer Dataset. 
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Specificity: The average sensitivity of the best three wavelets along with the standard methods for the three 

datasets is plotted below. 

Figure 8.4. Mean Specificity of the different methods for the B-cell Lymphoma Dataset. 

Figure 8.5. Mean Specificity of the different methods for the Leukemia Dataset. 
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Figure 8.6. Mean Specificity of the different methods for Colon Cancer Dataset. 

Mean classification accuracy: The average classification accuracy of the best three wavelets along with the 

standard methods for the three datasets is plotted below. 

 

Figure 8.7. Mean classification Accuracy of the different methods for the B-cell Lymphoma Dataset. 
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Figure 8.8. Mean classification Accuracy of the different methods for the Leukemia Dataset. 

 

Figure 8.9. Mean classification Accuracy of the different methods for Colon Cancer Dataset. 

The classification performance of the different gene selection method seems to depend on the 

different datasets. The sensitivity and specificity measures were used to study the performance on each 

class of samples, one at a time. For finding the sensitivity and specificity measures, one of the classes has 
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to be defined as positive and the other as negative. The table 8.1 shows the definition of the  classes as 

positive and negative for each of the datasets. 

Table 8.1. Division of Classes into Positive and Negative for estimating the Sensitivity and Specificity. The 

number of samples in each classes are indicated in the brackets. The ratio of true positives to total number 

of positives results is the sensitivity and the ratio of true negatives to the total number of negatives is  

specificity. 

 

Dataset Positive Negative 

Leukemia Dataset ALL(47) AML(25) 

B-Cell Lymphoma Dataset B-Cell Lymphoma(58) Follicular Cancer (19) 

Colon Cancer Tumor(40) Normal(22) 

 

A two sample t-test was used to compare the classification accuracy, the sensitivity and the 

specificity terms between the sum of squares, the t-test and the wavelet methods in all the three datasets. 

The t-test was performed at 30 levels of gene size (from 5 to 150 in steps of 5). The results of the statistical 

analysis are provided in the Appendix B.  

The sum of squares method has high sensitivity when compared to the t-test while the t-test 

outperforms the sum of squares method in terms of its specificity. All the positive classes have higher 

number of samples compared to the negative classes. The performance of the t-test and the Sum of squares 

method, therefore seems to depend on the number of samples in the classes being studied. This is clearly 

illustrated in the One-Way ANOVA and Tukey's HSD Test  results (Appendix B) of B-cell Lymphoma and 

Leukemia datasets . The wavelet based method, on the other hand, consistently gives a more stable 

classification performance in most of the cases. 

Sensitivity: The sensitivity term represents the performance of the three methods in classifying the positive 

classes (the ALL class in the Leukemia data, the B-Cell Lymphoma class in the Lymphoma dataset and the 

Tumor class in the Colon cancer dataset) of the datasets. 

The One way ANOVA and Tukey’s HSD tests were conducted for comparing the sensitivity of 

the wavelet based method, the sum of squares method and the t-test. For the Lymphoma dataset, the sum of 

squares and the wavelets have significantly higher sensitivity when compared to the t-test at all the 30 

levels of gene size (5 to 150 in steps of 5). The wavelet method has significantly higher sensitivity when 
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compared to the sum of squares method when the number of genes is between 25 and 75. For Leukemia 

data, the sum of squares method and the wavelet method again always had significantly higher sensitivity 

compared to the T-test. In the case of the Colon cancer data, the difference is not as clear as the other two 

datasets. The sum of squares and the wavelet methods has significant advantage over the t-test till around 

45 genes after which there is no significant difference. There is no significant difference between the 

wavelet method and the sum of squares method except at 5 genes, when, the sum of squares method gave a 

significantly higher sensitivity compared to the wavelet method. 

Specificity: The specificity term represents the performance of the three methods in classifying the negative 

classes (the AML class in the Leukemia data, the Follicular cancer class in the Lymphoma dataset and the 

Normal class in the Colon cancer dataset) of the datasets. 

The One way ANOVA and Tukey’s HSD tests were again used for comparing the specificity of 

the wavelets, the sum of squares and the t-test methods. As mentioned earlier, there was a switch in the 

performance of the sum of squares and the t-test methods. For the lymphoma data, the T-test significantly 

outperformed the sum of squares method when the number of genes ranged from 5-25and 80-150 and also 

at ,35,40,50. There were no significant difference for the gene sizes in between. The wavelet method 

always significantly outperformed the sum of squares method while its sensitivity was significantly better 

than t-test at some cases (number of genes from 25 to 55 and 70). There was no significant difference 

between the specificity of the wavelet and the t-test at the remaining gene sizes. For Leukemia data, like in 

the case of the Lymphoma data, the t-test showed significantly higher specificity when compared to the 

sum of squares method in all cases. The wavelet method outperformed the sum of squares method in five 

cases (for gene sizes – 5, 60, 80, 90, 100). The t-test gave significantly higher specificity compared to 

wavelets methods in 12 out of the 30 gene sizes (5 to 55, 65 and 75). In the remaining gene sizes, there was 

no significant difference in specificity between the wavelets and the t-test. There is no significant 

difference between the specificity of the three methods in the colon cancer data for most gene sizes. But, 

the pattern of switching between the sum of squares and t-test methods is clearly followed here also as can 

be seen on the plot. (figure 8.6). The sum of squares has significant gain over the other two methods when 

the gene size was less than 25. 
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Overall Accuracy: When it comes to overall accuracy, the wavelet method outperforms both the other 

methods in the case of B-cell Lymphoma dataset. But in the case of the other two datasets, there is no 

significant difference between the studied methods as illustrated in the statistical results (Appendix B).    

In the case of B-cell Lymphoma data, the wavelet method significantly outperforms the sum of 

squares method when the gene size ranges from 5 to 100 (after which there is no significant difference). It 

outperforms the t-test in all cases except when the gene size is 10. The clear advantage in the B-cell 

Lymphoma is not observed in the other two datasets.  Even though there is no statistically significant 

improvement, the average classification performs is at least as good as the other two methods in most of the 

cases as can been seen in the plots 8.7, 8.8 and 8.9. In the case of Leukemia, the classification accuracy is at 

least as good as that of the sum of squares method. The wavelet method has a significant advantage over 

the sum of squares method when the number of genes is 5 and 90. It has significant advantage over t-test 

when the number of genes is 5 and 45. In the case of colon data, the sum of squares has a significant 

advantage over the wavelet method till when the gene size is 35 after which there is no significant 

difference between the two types. The wavelet method outperforms the t-test for 5 and 10 genes after which 

there is no significant difference. Even though, there is no significant difference between the classification 

results of the different types, the wavelets gave the highest mean accuracy (86%) when compared to the 

sum of squares method and the t-test as illustrated in the figure 8.9. It has to be noted that the wavelet based 

method gave the highest average accuracy in all the three datasets (95.88% at 35 genes for B-Cell 

Lymphoma Data, 95.48% at 110 genes for Leukemia data and 85.4% at 140 genes for the colon cancer 

dataset).  

 

8.2. Gene study 

A record was kept of the genes selected in each of the 250 sub-samplings and a study was done of 

the top 100 genes which frequented the lists with the highest scores. The lists are included in the appendix. 

A list of the top 10 genes identified by the wavelet method from each of the three datasets are tabulated 

below.  
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Table 8.2. The top 10 genes from the three datasets identified by the Db-8 wavelet with their scores. 

Rank Leukemia dataset Lymphoma dataset Colon cancer dataset 

Gene 

Symbol 

Average 

score 

Gene 

Symbol 

Average 

score 
EST ID 

Average 

score 

1  CST3 0.475 MTL5 0.443 T95018 0.236 

2   MPO 0.404 LDHA 0.428 M63391 0.199 

3  AZU1 0.387 ENO1 0.407 T58861 0.170 

4  IL8 0.384 CTSB 0.370 T61609 0.168 

5  FTL 0.340 PKLR 0.318 T92451 0.153 

6  GPX1 0.297 PAPLN 0.310 U14971 0.141 

7 TCL2 0.294 CLU 0.305 T57619 0.137 

8 CFD 0.292 MIF 0.298 R22197 0.133 

9 LYZ 0.288 IFI30 0.296 M87789 0.132 

            10 SDC1 0.285 APOE 0.292 T72863 0.131 

 

8.2.1. Leukemia data 

2168 (out of 7070) genes left after preprocessing were scored by the wavelet method. Of the top 

ten genes CST3, IL8, AZU1, LYZ have been identified as some of the most important genes in 

distinguishing ALL from AML in the original study (Golub T, 1999).  Myeloperoxidase and TCL2 have 

also been identified to be associated with AML and ALL respectively. Most of the genes reported as 

important in the original study were ranked very highly by the wavelet-based method and featured in the 

top 100 genes list in all the 100 resamplings. The list of top 100 genes with their corresponding scores are 

listed in the appendix. 

 

8.2.2. Lymphoma data 

2814 (out of 7070) genes left after preprocessing were scored using the wavelet method. Several 

of the genes found to be informative by the original study were ranked very highly by the wavelet-based 

method. LDHA (lactose dehydrogenase A) is a known biomarker for B-cell lymphoma as reported in the 

original paper (2). CTSB, CLU and ENO1 in the top 10 list had also been identified as very important. 

Many of the genes identified as relevant in the original study received very high scores and most of them 

featured in the top 100 list in all the 250 re-sampling studies. For example HMG-1 ranked 12
th

 and CTSD 

ranked 16
th

. The list of the top 100 genes and their corresponding scores are listed in the appendix.   
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8.2.3. Colon data 

 In the case of colon data, the original study reports the importance of soft muscle related ESTs in 

identifying colon cancer. They use the average intensity levels of 17 ESTs as a muscle index, with a lower 

index identifying tumors (3). The wavelet-based method gave high scores to most of these 17 ESTs. The 

list of top 100 genes and their corresponding scores are listed in their appendix.
 

The top 100 genes were compared with the ones identified by t-test and BSS/WSS. A matrix 

showing the numbers of common genes selected by different methods for the three datasets is presented in 

Table 6. As we can see, almost 100% of the genes found by the three wavelets are the same, indicating the 

consistency of the three wavelet methods. About 32% of the top 100 genes obtained by the wavelet based 

methods and the t-test were found to be common in the three datasets. About 38 % of the top 100 genes 

obtained by the wavelet based methods and BSS/WSS were common. On the other hand, the number of 

common genes selected by the t-test and the BSS/WSS method is much higher. The relative low percentage 

of common genes identified by wavelet based methods and by t-test or BSS/WSS indicates that the wavelet 

based methods offer a different perspective in terms of differentially expressed genes. Therefore, the 

proposed wavelet based gene selection method can facilitate the identification of differentially expressed 

genes which might be otherwise neglected. At the same time, the genes which are common in all the three 

methods are definitely very important for the problem being studied. 

Table 8.3. Number of genes in the list of top 100 genes, common to different methods. 

            Feature Selection    

method 

Leukemia dataset 

db-3 db-8 coif-3 BSS/WSS T-test 

db-3  99 100 42 31 

db-8 99  99 42 31 

coif-3 100 99  43 31 

BSS/WSS 42 42 43  53 

T-test 31 31 31 53  

Feature 

Selection method 

Lymphoma dataset 

db-3 db-8 coif-3 BSS/WSS T-test 

db-3  99 99 32 30 

db-8 99  99 33 30 

coif-3 99 99  32 30 

BSS/WSS 32 33 32  65 

T-test 30 30 30 65  
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Table 8.3. Number of genes in the list of top 100 genes, common to different methods. (continued). 

Feature 

Selection method 

Colon cancer dataset 

db-3 db-8 coif-3 BSS/WSS T-test 

db-3  99 99 34 33 

db-8 99  100 33 33 

coif-3 99 100  33 33 

BSS/WSS 34 33 33  82 

T-test 33 33 33 82  

 

Table 8.4. The genes from the top 100 list common for all the three gene selection method studied. 

Dataset Genes Common between Sum of squares, T-test and 

the wavelet method.  

B-Cell Lymphoma Data 25 

Leukemia Data 25 

Colon Cancer Data 30 

 

8.4. Some observations  

1.Several wavelets – Haar, Bior1.5, Bior 6.8, reverse Bior 1.5, reverse Bior 3.9 and Symlet8 were 

tried, but their performances were not as good as the three wavelets eventually used for the study- Db-

3,Db-8 and Coiflet-3. The best wavelet and the best decomposition level might depend on the sample size 

of the dataset studied.  

2. For the methods studied in this thesis, combining the method with multivariate methods made 

the results worse.  Removing the most correlated genes from the list was expected to remove redundancy 

and give the same results at lower number of genes, but the results indicate otherwise. The method was also 

combined with sequential floating forward search, but the results became worse.  

3. The classification accuracy was studied using 1-NN,3-NN, 5-NN and 3-NN gave the best 

results.  
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8.5. Limitations 

1. Even though the sheer size of the microarray datasets has been growing at a very fast rate, the 

lack of standardization in the microarray assays and processing of the data makes the validation of a feature 

selection method very difficult.  

2. The samples used for the analysis is obtained from patients whose disease state has already been 

diagnosed. There is no guarantee that the same genes might express differentially in the beginning of the 

disease state, when the diagnosis will be useful.   

 

8.6. Significance of the Study 

1. The proposed wavelet smoothing based method gives the gene expression signal a score, which 

quantifies the differential expression of a gene in the different cases studied. The study shows that wavelet 

transformation can be a very powerful tool for studying and quantifying differential expression of genes   

 

8.7. Future works 

1.  A clustering can be done of the genes and those in the feature list which come from the same 

clusters can be selectively removed to see if it has an effect on the classification performances. 

2. The method can be extended to multi-class problems. A study has to be conducted to find out 

the best wavelet and the best decomposition level for getting the best reconstructed gene expression signal. 
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CHAPTER IX 

CONCLUSIONS 

 

A 1-D discrete wavelet transform based gene selection method was proposed. It was developed 

based on the observation that the 3
rd

 level 1-D wavelet approximation captures the differential microarray 

gene expression between sample classes. The genes that exhibit high differences between the average 

wavelet approximations of the expression levels are selected to form a feature set for sample classification. 

The experiments illustrate that: 

(1) The results of the study rejected the null hypotheses and accepted the alternate hypotheses that the 

probability of the gene sets selected by the proposed wavelet transform based method making a correct 

classification is higher than it making an incorrect classification (Appendix A). 

(2) A two sample t-test was used to compare the performance of the proposed method to two standard gene 

selection methods and the results (Appendix B) indicate that the method significantly outperforms the two 

standard methods for Lymphoma dataset, as good as the other methods and better than them in some cases 

for the Leukemia dataset and as good as the other methods in most cases for the colon cancer data (the sum 

of square method gives significantly better performance for gene sizes 5-30 for Colon dataset).  

(3) The classification performance for both the classes were consistently high for the wavelet while the t-

test seems to give high specificity and low sensitivity (higher performance in class with lesser number of 

samples)  and the sum of square method gave high sensitivity and lower specificity (higher performance in 

class with higher number of samples) as illustrated by the sensitivity/specificity study in Appendix B .  

(4) Shuffling the samples within  the groups does not affect the accuracy of the classifier which shows that 

the methods does not depend on the order in which the samples are arranged. 
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(5) The study gave a short list of features (25 in case of B-cell Lymphoma data and Leukemia data and 30 

ESTS in case of Colon cancer data) as illustrated in the gene study section (8.3).  

(6) The wavelet analysis is a valuable tool for studying gene expression patterns. The wavelet based gene 

selection method can be used to identifying and quantifying patterns in gene expression DNA microarray 

data.  
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APPENDIX A 

STATISTICAL ANALYSIS FOR NULL HYPOTHESES 

 

Null Hypotheses (H0):  

1. The probability of the gene-sets selected by the wavelet method to classify the test sample accurately 

(p1) = the probability of the the gene-sets selected by the wavelet method to classify the test sample 

inaccurately (p2). 

  

 

Alternate Hypotheses (H1): 

1. The probability of the gene-sets selected by the wavelet method to classify the test sample accurately 

(p1) > the probability of the the gene-sets selected by the wavelet method to classify the test sample 

inaccurately (p2).  

  

 

The Hypotheses was tested using Pearson’s Chi-Square testing.  

The number of test samples: n = 10. 

 The number of Repetitions: R = 250.              

p1 = p2 = 0.5 

α = 0.01 
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The expected values are estimated for p1 = p2 = 0.5 using the equation: 

Expected Value
r� =  n!
r! × 
n − r�! × p1� × p2��� × R 

where r – number of accurate classifications. 

The χ
2 
term is estimated from the Expected and the Observed Values by:    

χ2 =  � 
ExpectedValue
r� − ObservedValue
r�� 

ExpectedValue
r�
�

�!"

 

The critical value for α = 0.01 and degree of freedom ‘10’, the critical value is 23.21. 

Table A.1.The estimation for B-Cell Lymphoma Data. 

B-CELL LYMPHOMA DATA (NUMBER OF GENES = 50) 

Accurate Classifications Expected Value (E) Observed Value(O) (E - O)^2 (E - O)^2./E 

10 0.244 124 15315.513 62732.340 

9 2.441 95 8567.093 3509.081 

8 10.986 26 225.410 20.517 

7 29.297 5 590.338 20.150 

6 51.270 0 2628.565 51.270 

5 61.523 0 3785.133 61.523 

4 51.270 0 2628.565 51.270 

3 29.297 0 858.307 29.297 

2 10.986 0 120.699 10.986 

1 2.441 0 5.960 2.441 

0 0.244 0 0.060 0.244 

   Sum of Chisquare term   66489.120 
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Table A.2. The estimation for Leukemia Data. 

LEUKEMIA DATA (NUMBER OF GENES = 50) 

Accurate Classifications Expected Value (E) Observed Value(O) (E - O)^2 (E - O)^2./E 

10 0.244 137 18702.165 76604.068 

9 2.441 92 8020.742 3285.296 

8 10.986 21 100.274 9.127 

7 29.297 0 858.307 29.297 

6 51.270 0 2628.565 51.270 

5 61.523 0 3785.133 61.523 

4 51.270 0 2628.565 51.270 

3 29.297 0 858.307 29.297 

2 10.986 0 120.699 10.986 

1 2.441 0 5.960 2.441 

0 0.244 0 0.060 0.244 

   Sum of Chisquare term   80134.819 
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Table A.3. The estimation for The Colon Cancer Data. 

COLON CANCER DATA(NUMBER OF GENES = 75) 

Accurate Classifications Expected Value (E) Observed Value(O) (E - O)^2 (E - O)^2./E 

10 0.244 41 1661.040 6803.620 

9 2.441 89 7492.390 3068.883 

8 10.986 76 4226.778 384.731 

7 29.297 34 22.119 0.755 

6 51.270 9 1786.713 34.849 

5 61.523 1 3663.086 59.540 

4 51.270 0 2628.565 51.270 

3 29.297 0 858.307 29.297 

2 10.986 0 120.699 10.986 

1 2.441 0 5.960 2.441 

0 0.244 0 0.060 0.244 

   Sum of Chisquare term   10446.616 

 

Results 

1. The estimated χ
2
 parameter value is very high compared to the critical value 23.21 in all the three 

datasets studied. Therefore, the NULL HYPOTHESES IS REJECTED and THE ALTERNATE 

HYPOTHESES IS ACCEPTED. 

2. The Probability of the gene sets selected by the wavelet based method making an accurate classification 

(p1) > the probability of the gene sets selected by the wavelet based method making an inaccurate 

classification (p1). 
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APPENDIX B 

STATISTICAL ANALYSIS OF THE CLASSIFICATION RESULTS 

 

The three methods studied in the thesis are compared using Analysis of Variance and Tukey’s 

Honestly Significant Difference (HSD) post hoc test. 

Here, the classification performances (Accuracy, Sensitivity and the Specificity) of each of the 

three methods studied, the wavelet based method (D8), the Sum of Squares method (BW) and the T-test (T) 

form the three samples.  There are 250 values available for each gene sizes (from 5 to 150 in steps of 5).  

The following steps are followed for finding significant difference between there performances at different 

gene sizes. 

(1) The ANOVA is carried out between the three samples. 

(2)  The critical value, Q, is obtained from  the studentized range statistic table for α = 0.05, sample size  = 

3 and degrees of freedom within as ∞.  

(3) The critical difference is estimated using the equation: 

Critical Difference = Q × ���������
�                                                                                            (B.1) 

Where the Q is obtained from step 2, �������� is the mean square within term for the two samples 

considered (obtained from the ANOVA results in step 1) and n is the number of values in each sample (250 

for all cases).   
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 (4) The difference between the two mean of the two samples are estimated. If  we are comparing two 

samples A and B, the result of the Hypotheses is obtained by: 

�����ℎ���� 
����� = �               1   �� ���(�� −  ��) > �������� ���������� �� ��  > ��        −1   �� ���(�� −  ��) > �������� ���������� �� �� <  ��0   �� �� −  �� < �������� ���������� # 

                                                                                                                                                          (B.2) 

The results obtained are summarized in the tables below. 

Table B.1. Summary of results of Tukey HSD post hoc test for the classification accuracy of  B-cell 

Lymphoma Data for α=0.05. N – Number of Genes. C – Critical Difference, MeanSS – Mean accuracy of 

Sum of Square method (SS). MeanD8 – Mean Accuracy of wavelet (D8). MeanT – Mean accuracy of T-

test(T).  

 

 

 

 

N 

B-Cell Lymphoma Data  - Accuracy 

(α=0.05) 

C 

(α= 

0.05) 

MeanSS  

 

MeanD8 MeanT MeanSS 

- 

MeanD8 

SS 

v/s 

D8 

MSS 

- 

MT 

SS 

v/s 

T 

 

MD8-

MT 

D8 

v/s 

T 

5 0.0215 0.8420 0.8920 0.8360 -0.0490 -1 0.0060 0 0.0550 1 

10 0.0211 0.8590 0.8676 0.8516 -0.0080 0 0.0080 0 0.0160 0 

15 0.0208 0.8500 0.8800 0.8556 -0.0240 -1 0.0004 0 0.0244 1 

20 0.0214 0.8610 0.8904 0.8444 -0.0288 -1 0.0172 0 0.0460 1 

25 0.0212 0.8590 0.9108 0.8364 -0.0512 -1 0.0232 1 0.0744 1 

30 0.0205 0.8650 0.9240 0.8404 -0.0588 -1 0.0248 1 0.0836 1 

35 0.0200 0.8690 0.9340 0.8440 -0.0644 -1 0.0256 1 0.0900 1 

40 0.0196 0.8760 0.9328 0.8464 -0.0564 -1 0.0300 1 0.0864 1 

45 0.0197 0.8750 0.9340 0.8468 -0.0584 -1 0.0288 1 0.0872 1 

50 0.0199 0.8730 0.9352 0.8492 -0.0616 -1 0.0244 1 0.0860 1 

55 0.0201 0.8770 0.9364 0.8496 -0.0588 -1 0.0280 1 0.0868 1 

60 0.0202 0.8840 0.9356 0.8536 -0.0508 -1 0.0312 1 0.0820 1 

65 0.0203 0.8890 0.9344 0.8500 -0.0448 -1 0.0396 1 0.0844 1 

70 0.0204 0.8890 0.9352 0.8492 -0.0460 -1 0.0400 1 0.0860 1 

75 0.0207 0.8932 0.9324 0.8488 -0.0392 -1 0.0444 1 0.0836 1 

80 0.0210 0.8948 0.9308 0.8464 -0.0360 -1 0.0484 1 0.0844 1 

85 0.0210 0.8956 0.9296 0.8496 -0.0340 -1 0.0460 1 0.0800 1 

90 0.0208 0.8980 0.9296 0.8524 -0.0316 -1 0.0456 1 0.0772 1 

95 0.0209 0.9004 0.9272 0.8520 -0.0268 -1 0.0484 1 0.0752 1 
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Table B.1. Summary of results of Tukey HSD post hoc test for the classification accuracy of  B-cell 

Lymphoma Data for α=0.05. (Continued). 

100 0.0212 0.9012 0.9248 0.8512 -0.0236 -1 0.0500 1 0.0736 1 

105 0.0206 0.9060 0.9224 0.8516 -0.0164 0 0.0544 1 0.0708 1 

110 0.0209 0.9056 0.9212 0.8528 -0.0156 0 0.0528 1 0.0684 1 

115 0.0207 0.9060 0.9224 0.8516 -0.0164 0 0.0544 1 0.0708 1 

120 0.0208 0.9072 0.9208 0.8548 -0.0136 0 0.0524 1 0.0660 1 

125 0.0211 0.9080 0.9212 0.8540 -0.0132 0 0.0540 1 0.0672 1 

130 0.0207 0.9084 0.9192 0.8556 -0.0108 0 0.0528 1 0.0636 1 

135 0.0204 0.9100 0.9204 0.8540 -0.0104 0 0.0560 1 0.0664 1 

140 0.0207 0.9108 0.9200 0.8576 -0.0092 0 0.0532 1 0.0624 1 

145 0.0201 0.9124 0.9204 0.8580 -0.0080 0 0.0544 1 0.0624 1 

150 0.0199 0.9124 0.9184 0.8596 -0.0060 0 0.0528 1 0.0588 1 

 

Table B.2. Summary of results of Tukey HSD post hoc test for the classification accuracy of  Leukemia 

Data for α=0.05. N – Number of Genes. C – Critical Difference, MeanSS – Mean accuracy of Sum of 

Square method (SS). MeanD8 – Mean Accuracy of wavelet (D8). MeanT – Mean accuracy of T-test(T).  

 

 

 

 

N 

Leukemia Data  - Accuracy 

(α=0.05) 

C 

(α= 

0.05) 

MeanSS  

 

MeanD8 MeanT MeanSS 

- 

MeanD8 

SS 

v/s 

D8 

MSS 

- 

MT 

SS 

v/s 

T 

 

MD8-

MT 

D8 

v/s 

T 

5 0.0148 0.9092 0.9524 0.9292 -0.0432 -1 -0.0200 -1 0.0232 1 

10 0.0147 0.9340 0.9380 0.9520 -0.0040 0 -0.0180 -1 -0.0140 0 

15 0.0151 0.9408 0.9424 0.9368 -0.0016 0 0.0040 0 0.0056 0 

20 0.0147 0.9420 0.9360 0.9336 0.0060 0 0.0084 0 0.0024 0 

25 0.0153 0.9372 0.9372 0.9308 0.0000 0 0.0064 0 0.0064 0 

30 0.0156 0.9360 0.9332 0.9344 0.0028 0 0.0016 0 -0.0012 0 

35 0.0152 0.9348 0.9392 0.9320 -0.0044 0 0.0028 0 0.0072 0 

40 0.0156 0.9328 0.9400 0.9296 -0.0072 0 0.0032 0 0.0104 0 

45 0.0156 0.9340 0.9460 0.9264 -0.0120 0 0.0076 0 0.0196 1 

50 0.0149 0.9392 0.9464 0.9320 -0.0072 0 0.0072 0 0.0144 0 

55 0.0147 0.9396 0.9480 0.9380 -0.0084 0 0.0016 0 0.0100 0 

60 0.0145 0.9376 0.9476 0.9368 -0.0100 0 0.0008 0 0.0108 0 

65 0.0145 0.9380 0.9428 0.9412 -0.0048 0 -0.0032 0 0.0016 0 

70 0.0142 0.9384 0.9444 0.9428 -0.0060 0 -0.0044 0 0.0016 0 

75 0.0140 0.9384 0.9464 0.9460 -0.0080 0 -0.0076 0 0.0004 0 

80 0.0135 0.9392 0.9500 0.9484 -0.0108 0 -0.0092 0 0.0016 0 
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Table B.2. Summary of results of Tukey HSD post hoc test for the classification accuracy of  Leukemia 

Data for α=0.05. (Continued). 

85 0.0136 0.9392 0.9484 0.9448 -0.0092 0 -0.0056 0 0.0036 0 

90 0.0136 0.9396 0.9532 0.9444 -0.0136 -1 -0.0048 0 0.0088 0 

95 0.0135 0.9436 0.9520 0.9472 -0.0084 0 -0.0036 0 0.0048 0 

100 0.0134 0.9440 0.9532 0.9492 -0.0092 0 -0.0052 0 0.0040 0 

105 0.0132 0.9452 0.9544 0.9484 -0.0092 0 -0.0032 0 0.0060 0 

110 0.0131 0.9468 0.9548 0.9512 -0.0080 0 -0.0044 0 0.0036 0 

115 0.0129 0.9488 0.9544 0.9504 -0.0056 0 -0.0016 0 0.0040 0 

120 0.0130 0.9508 0.9528 0.9516 -0.0020 0 -0.0008 0 0.0012 0 

125 0.0131 0.9504 0.9520 0.9500 -0.0016 0 0.0004 0 0.0020 0 

130 0.0129 0.9496 0.9540 0.9516 -0.0044 0 -0.0020 0 0.0024 0 

135 0.0128 0.9492 0.9548 0.9536 -0.0056 0 -0.0044 0 0.0012 0 

140 0.0129 0.9484 0.9540 0.9544 -0.0056 0 -0.0060 0 -0.0004 0 

145 0.0130 0.9472 0.9548 0.9548 -0.0076 0 -0.0076 0 0.0000 0 

150 0.0130 0.9472 0.9536 0.9536 -0.0064 0 -0.0064 0 0.0000 0 

 

Table B.3. Summary of results of Tukey HSD post hoc test for the classification accuracy of  Colon Cancer 

Data for α=0.05. N – Number of Genes. C – Critical Difference, MeanSS – Mean accuracy of Sum of 

Square method (SS). MeanD8 – Mean Accuracy of wavelet (D8). MeanT – Mean accuracy of T-test(T).  

 

 

 

 

N 

Colon Cancer Data  - Accuracy 

(α=0.05) 

C 

(α= 

0.05) 

MeanSS  

 

MeanD8 MeanT MeanSS 

- 

MeanD8 

SS 

v/s 

D8 

MSS 

- 

MT 

SS 

v/s 

T 

 

MD8-

MT 

D8 

v/s 

T 

5 0.0268 0.8408 0.7968 0.7100 0.0440 1 0.1308 1 0.0868 1 

10 0.0264 0.8404 0.7800 0.7464 0.0604 1 0.0940 1 0.0336 1 

15 0.0271 0.8344 0.7684 0.7608 0.0660 1 0.0736 1 0.0076 0 

20 0.0262 0.8400 0.7812 0.7784 0.0588 1 0.0616 1 0.0028 0 

25 0.0249 0.8364 0.7996 0.7940 0.0368 1 0.0424 1 0.0056 0 

30 0.0241 0.8408 0.8080 0.8128 0.0328 1 0.0280 1 -0.0048 0 

35 0.0231 0.8448 0.8160 0.8232 0.0288 1 0.0216 0 -0.0072 0 

40 0.0232 0.8424 0.8200 0.8236 0.0224 0 0.0188 0 -0.0036 0 

45 0.0231 0.8408 0.8288 0.8268 0.0120 0 0.0140 0 0.0020 0 

50 0.0231 0.8392 0.8308 0.8312 0.0084 0 0.0080 0 -0.0004 0 

55 0.0225 0.8380 0.8356 0.8356 0.0024 0 0.0024 0 0.0000 0 

60 0.0219 0.8380 0.8384 0.8416 -0.0004 0 -0.0036 0 -0.0032 0 

65 0.0213 0.8368 0.8452 0.8444 -0.0084 0 -0.0076 0 0.0008 0 
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Table B.3. Summary of results of Tukey HSD post hoc test for the classification accuracy of  Colon Cancer 

Data for α=0.05. (Continued). 

70 0.0215 0.8384 0.8448 0.8464 -0.0064 0 -0.0080 0 -0.0016 0 

75 0.0219 0.8388 0.8464 0.8468 -0.0076 0 -0.0080 0 -0.0004 0 

80 0.0217 0.8396 0.8476 0.8436 -0.0080 0 -0.0040 0 0.0040 0 

85 0.0215 0.8404 0.8528 0.8420 -0.0124 0 -0.0016 0 0.0108 0 

90 0.0213 0.8392 0.8516 0.8404 -0.0124 0 -0.0012 0 0.0112 0 

95 0.0213 0.8396 0.8508 0.8384 -0.0112 0 0.0012 0 0.0124 0 

100 0.0215 0.8396 0.8512 0.8404 -0.0116 0 -0.0008 0 0.0108 0 

105 0.0215 0.8396 0.8484 0.8384 -0.0088 0 0.0012 0 0.0100 0 

110 0.0213 0.8404 0.8508 0.8380 -0.0104 0 0.0024 0 0.0128 0 

115 0.0214 0.8416 0.8500 0.8392 -0.0084 0 0.0024 0 0.0108 0 

120 0.0215 0.8424 0.8488 0.8404 -0.0064 0 0.0020 0 0.0084 0 

125 0.0211 0.8436 0.8504 0.8400 -0.0068 0 0.0036 0 0.0104 0 

130 0.0212 0.8452 0.8520 0.8404 -0.0068 0 0.0048 0 0.0116 0 

135 0.0212 0.8448 0.8524 0.8408 -0.0076 0 0.0040 0 0.0116 0 

140 0.0213 0.8444 0.8540 0.8400 -0.0096 0 0.0044 0 0.0140 0 

145 0.0214 0.8448 0.8528 0.8404 -0.0080 0 0.0044 0 0.0124 0 

150 0.0212 0.8456 0.8528 0.8428 -0.0072 0 0.0028 0 0.0100 0 

 

Table B.4. Summary of results of Tukey HSD post hoc test for the classification sensitivity of  B-cell 

Lymphoma data for α=0.05. Sensitivity is the fraction of samples identified as positive which are actually 

positive. For B-cell Lymphoma Samples are Positive and Follicular Cancer samples are Negative.N – 

Number of Genes. C – Critical Difference, MeanSS – Mean sensitivity of Sum of Square method (SS). 

MeanD8 – Mean Sensitivity of wavelet (D8). MeanT – Mean sensitivity of T-test(T).  
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B-Cell Lymphoma Data – Sensitivity 

(α=0.05) 
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MeanSS  

 

MeanD8 MeanT MeanSS 
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MeanD8 

SS 
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SS 

v/s 

T 

 

MD8-

MT 

D8 

v/s 

T 

5 0.0248 0.8715 0.8957 0.8407 -0.0242 0 0.0308 1 0.0550 1 

10 0.0253 0.8817 0.8665 0.8393 0.0152 0 0.0425 1 0.0272 1 

15 0.0249 0.8752 0.8794 0.8414 -0.0042 0 0.0337 1 0.0379 1 

20 0.0255 0.8740 0.8898 0.8306 -0.0158 0 0.0435 1 0.0593 1 

25 0.0251 0.8716 0.9075 0.8259 -0.0359 -1 0.0457 1 0.0816 1 

30 0.0247 0.8792 0.9175 0.8307 -0.0383 -1 0.0485 1 0.0868 1 

35 0.0241 0.8867 0.9284 0.8340 -0.0417 -1 0.0528 1 0.0944 1 

40 0.0237 0.8932 0.9301 0.8377 -0.0370 -1 0.0554 1 0.0924 1 
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Table B.4. Summary of results of Tukey HSD post hoc test for the classification sensitivity of B-cell 

Lymphoma Data for α=0.05. (Continued). 

45 0.0239 0.8908 0.9317 0.8383 -0.0409 -1 0.0525 1 0.0934 1 

50 0.0238 0.8891 0.9350 0.8381 -0.0459 -1 0.0509 1 0.0969 1 

55 0.0242 0.8890 0.9352 0.8377 -0.0461 -1 0.0513 1 0.0974 1 

60 0.0244 0.8948 0.9335 0.8412 -0.0387 -1 0.0536 1 0.0923 1 

65 0.0244 0.8996 0.9340 0.8360 -0.0344 -1 0.0636 1 0.0980 1 

70 0.0249 0.8987 0.9324 0.8345 -0.0338 -1 0.0641 1 0.0979 1 

75 0.0250 0.9038 0.9300 0.8321 -0.0262 -1 0.0717 1 0.0979 1 

80 0.0251 0.9069 0.9285 0.8284 -0.0216 0 0.0785 1 0.1001 1 

85 0.0252 0.9080 0.9264 0.8311 -0.0184 0 0.0769 1 0.0953 1 

90 0.0248 0.9114 0.9264 0.8344 -0.0150 0 0.0770 1 0.0919 1 

95 0.0249 0.9138 0.9223 0.8340 -0.0085 0 0.0798 1 0.0884 1 

100 0.0248 0.9137 0.9222 0.8341 -0.0085 0 0.0796 1 0.0881 1 

105 0.0242 0.9188 0.9196 0.8337 -0.0008 0 0.0851 1 0.0859 1 

110 0.0244 0.9193 0.9179 0.8351 0.0015 0 0.0842 1 0.0828 1 

115 0.0244 0.9177 0.9174 0.8322 0.0003 0 0.0855 1 0.0852 1 

120 0.0241 0.9211 0.9177 0.8332 0.0034 0 0.0879 1 0.0845 1 

125 0.0245 0.9224 0.9163 0.8324 0.0060 0 0.0900 1 0.0839 1 

130 0.0245 0.9219 0.9142 0.8342 0.0076 0 0.0876 1 0.0800 1 

135 0.0244 0.9220 0.9151 0.8323 0.0070 0 0.0897 1 0.0827 1 

140 0.0245 0.9215 0.9125 0.8345 0.0090 0 0.0869 1 0.0780 1 

145 0.0241 0.9219 0.9125 0.8348 0.0094 0 0.0871 1 0.0777 1 

150 0.0239 0.9212 0.9092 0.8361 0.0120 0 0.0851 1 0.0731 1 

 

Table B.5. Summary of results of Tukey HSD post hoc test for the classification sensitivity of  Leukemia 

data for α=0.05. Sensitivity is the fraction of samples identified as positive which are actually positive. For 

Acute Lymphoblastic Leukemia samples(ALL) are Positive and Acute Myeloid Leukemia(AML) samples 

are Negative.N – Number of Genes. C – Critical Difference, MeanSS – Mean sensitivity of Sum of Square 

method (SS). MeanD8 – Mean Sensitivity of wavelet (D8). MeanT – Mean sensitivity of T-test(T).  

 

 

 

 

N 

Leukemia Data - Sensitivity 

(α=0.05) 

C 

(α= 

0.05) 

MeanSS  

 

MeanD8 MeanT MeanSS 

- 

MeanD8 

SS 

v/s 

D8 

MSS 

- 

MT 

SS 

v/s 

T 
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5 0.0154 0.9687 0.9988 0.9348 -0.0300 -1 0.0339 1 0.0639 1 

10 0.0124 0.9910 0.9974 0.9489 -0.0063 0 0.0421 1 0.0485 1 

15 0.0141 0.9973 0.9984 0.9330 -0.0011 0 0.0643 1 0.0654 1 

20 0.0144 0.9979 0.9988 0.9273 -0.0009 0 0.0706 1 0.0714 1 

25 0.0138 0.9993 0.9965 0.9311 0.0028 0 0.0682 1 0.0654 1 
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Table B.5. Summary of results of Tukey HSD post hoc test for the classification sensitivity of  Leukemia 

Data for α=0.05. (Continued). 

30 0.0140 0.9992 0.9944 0.9388 0.0048 0 0.0604 1 0.0557 1 

35 0.0139 0.9992 0.9938 0.9357 0.0054 0 0.0635 1 0.0581 1 

40 0.0145 0.9991 0.9943 0.9357 0.0047 0 0.0634 1 0.0587 1 

45 0.0142 0.9987 0.9973 0.9361 0.0013 0 0.0625 1 0.0612 1 

50 0.0136 0.9992 0.9968 0.9447 0.0024 0 0.0545 1 0.0521 1 

55 0.0134 0.9978 0.9968 0.9520 0.0010 0 0.0459 1 0.0449 1 

60 0.0132 0.9978 0.9927 0.9522 0.0052 0 0.0456 1 0.0404 1 

65 0.0128 0.9978 0.9911 0.9580 0.0067 0 0.0398 1 0.0331 1 

70 0.0122 0.9978 0.9927 0.9623 0.0051 0 0.0355 1 0.0303 1 

75 0.0116 0.9974 0.9931 0.9639 0.0043 0 0.0334 1 0.0291 1 

80 0.0114 0.9983 0.9921 0.9681 0.0062 0 0.0303 1 0.0240 1 

85 0.0119 0.9967 0.9913 0.9649 0.0054 0 0.0318 1 0.0264 1 

90 0.0109 0.9974 0.9926 0.9657 0.0047 0 0.0317 1 0.0269 1 

95 0.0107 0.9967 0.9904 0.9684 0.0063 0 0.0283 1 0.0221 1 

100 0.0105 0.9967 0.9922 0.9711 0.0045 0 0.0256 1 0.0211 1 

105 0.0102 0.9966 0.9934 0.9710 0.0031 0 0.0255 1 0.0224 1 

110 0.0098 0.9970 0.9934 0.9764 0.0037 0 0.0206 1 0.0170 1 

115 0.0099 0.9975 0.9939 0.9740 0.0036 0 0.0235 1 0.0199 1 

120 0.0101 0.9983 0.9926 0.9746 0.0057 0 0.0237 1 0.0180 1 

125 0.0096 0.9983 0.9938 0.9744 0.0045 0 0.0240 1 0.0195 1 

130 0.0093 0.9983 0.9944 0.9765 0.0039 0 0.0219 1 0.0180 1 

135 0.0088 0.9983 0.9954 0.9781 0.0030 0 0.0202 1 0.0172 1 

140 0.0087 0.9978 0.9950 0.9787 0.0028 0 0.0191 1 0.0163 1 

145 0.0085 0.9978 0.9954 0.9800 0.0024 0 0.0178 1 0.0154 1 

150 0.0087 0.9978 0.9948 0.9799 0.0030 0 0.0179 1 0.0149 1 
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Table B.6. Summary of results of Tukey HSD post hoc test for the classification sensitivity of  Colon 

cancer data for α=0.05. Sensitivity is the fraction of samples identified as positive which are actually 

positive. For Tumor samples are Positive and Normal samples are Negative.N – Number of Genes. C – 

Critical Difference, MeanSS – Mean sensitivity of Sum of Square method (SS). MeanD8 – Mean 

Sensitivity of wavelet (D8). MeanT – Mean sensitivity of T-test(T).  
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v/s 
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5 0.0600 0.6910 0.6501 0.5850 0.0408 0 0.1059 1 0.0651 1 

10 0.0583 0.7125 0.5932 0.6097 0.1194 1 0.1028 1 -0.0166 0 

15 0.0576 0.7129 0.5722 0.6516 0.1407 1 0.0613 1 -0.0794 -1 

20 0.0568 0.7163 0.5994 0.6811 0.1169 1 0.0352 0 -0.0817 -1 

25 0.0569 0.7170 0.6423 0.7045 0.0747 1 0.0125 0 -0.0622 -1 

30 0.0552 0.7225 0.6696 0.7366 0.0529 0 -0.0141 0 -0.0670 -1 

35 0.0538 0.7303 0.6867 0.7488 0.0436 0 -0.0185 0 -0.0621 -1 

40 0.0549 0.7308 0.6919 0.7442 0.0389 0 -0.0135 0 -0.0523 0 

45 0.0541 0.7300 0.7153 0.7490 0.0147 0 -0.0190 0 -0.0337 0 

50 0.0543 0.7296 0.7158 0.7471 0.0139 0 -0.0175 0 -0.0313 0 

55 0.0535 0.7299 0.7206 0.7575 0.0092 0 -0.0276 0 -0.0368 0 

60 0.0535 0.7301 0.7268 0.7688 0.0032 0 -0.0387 0 -0.0419 0 

65 0.0530 0.7279 0.7401 0.7678 -0.0122 0 -0.0399 0 -0.0277 0 

70 0.0529 0.7287 0.7457 0.7758 -0.0169 0 -0.0471 0 -0.0301 0 

75 0.0530 0.7297 0.7500 0.7783 -0.0203 0 -0.0486 0 -0.0283 0 

80 0.0528 0.7292 0.7545 0.7753 -0.0253 0 -0.0461 0 -0.0208 0 

85 0.0525 0.7341 0.7648 0.7733 -0.0307 0 -0.0392 0 -0.0086 0 

90 0.0521 0.7336 0.7605 0.7700 -0.0269 0 -0.0364 0 -0.0095 0 

95 0.0521 0.7336 0.7629 0.7653 -0.0292 0 -0.0316 0 -0.0024 0 

100 0.0522 0.7383 0.7615 0.7689 -0.0232 0 -0.0306 0 -0.0074 0 

105 0.0523 0.7406 0.7573 0.7646 -0.0166 0 -0.0240 0 -0.0074 0 

110 0.0520 0.7413 0.7615 0.7654 -0.0202 0 -0.0241 0 -0.0039 0 

115 0.0518 0.7468 0.7565 0.7679 -0.0098 0 -0.0212 0 -0.0114 0 

120 0.0518 0.7464 0.7555 0.7676 -0.0091 0 -0.0212 0 -0.0121 0 

125 0.0516 0.7469 0.7579 0.7667 -0.0110 0 -0.0198 0 -0.0089 0 

130 0.0520 0.7478 0.7587 0.7665 -0.0109 0 -0.0188 0 -0.0079 0 

135 0.0519 0.7478 0.7588 0.7689 -0.0110 0 -0.0211 0 -0.0101 0 

140 0.0516 0.7488 0.7613 0.7715 -0.0125 0 -0.0228 0 -0.0103 0 

145 0.0518 0.7548 0.7575 0.7727 -0.0026 0 -0.0179 0 -0.0153 0 

150 0.0518 0.7514 0.7602 0.7795 -0.0088 0 -0.0280 0 -0.0193 0 
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Table B.7. Summary of results of Tukey HSD post hoc test for the classification specificity of B-cell 

Lymphoma data for α=0.05. Specificity is the fraction of samples identified as negative which are actually 

negative. Follicular cancer samples are labeled as Negative and B-cell Lymphoma samples as Positive. N – 

Number of Genes. C – Critical Difference, MeanSS – Mean specificity of Sum of Square method (SS). 

MeanD8 – Mean Specificity of wavelet (D8). MeanT – Mean specificity of T-test (T).  
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5 0.0570 0.7715 0.8820 0.8466 -0.1106 -1 -0.0752 -1 0.0354 0 

10 0.0514 0.8041 0.8829 0.9082 -0.0788 -1 -0.1041 -1 -0.0254 0 

15 0.0485 0.8178 0.8981 0.9182 -0.0803 -1 -0.1004 -1 -0.0201 0 

20 0.0489 0.8287 0.9079 0.9106 -0.0792 -1 -0.0819 -1 -0.0027 0 

25 0.0494 0.8286 0.9374 0.8838 -0.1088 -1 -0.0552 -1 0.0536 1 

30 0.0462 0.8434 0.9538 0.8831 -0.1105 -1 -0.0398 0 0.0707 1 

35 0.0465 0.8384 0.9588 0.8866 -0.1205 -1 -0.0482 -1 0.0722 1 

40 0.0460 0.8410 0.9497 0.8889 -0.1087 -1 -0.0479 -1 0.0608 1 

45 0.0457 0.8432 0.9524 0.8881 -0.1092 -1 -0.0450 0 0.0642 1 

50 0.0455 0.8470 0.9421 0.8964 -0.0951 -1 -0.0493 -1 0.0457 1 

55 0.0456 0.8633 0.9424 0.8977 -0.0792 -1 -0.0345 0 0.0447 0 

60 0.0438 0.8744 0.9402 0.9065 -0.0658 -1 -0.0321 0 0.0337 0 

65 0.0436 0.8807 0.9362 0.9070 -0.0555 -1 -0.0263 0 0.0293 0 

70 0.0419 0.8801 0.9495 0.9076 -0.0694 -1 -0.0276 0 0.0418 0 

75 0.0413 0.8786 0.9464 0.9196 -0.0678 -1 -0.0411 0 0.0268 0 

80 0.0414 0.8743 0.9442 0.9230 -0.0700 -1 -0.0487 -1 0.0212 0 

85 0.0407 0.8753 0.9439 0.9276 -0.0686 -1 -0.0524 -1 0.0162 0 

90 0.0406 0.8746 0.9442 0.9286 -0.0696 -1 -0.0541 -1 0.0156 0 

95 0.0407 0.8741 0.9445 0.9273 -0.0705 -1 -0.0533 -1 0.0172 0 

100 0.0412 0.8797 0.9395 0.9267 -0.0598 -1 -0.0470 -1 0.0128 0 

105 0.0418 0.8821 0.9354 0.9277 -0.0534 -1 -0.0457 -1 0.0077 0 

110 0.0420 0.8815 0.9349 0.9277 -0.0534 -1 -0.0463 -1 0.0071 0 

115 0.0412 0.8861 0.9432 0.9313 -0.0572 -1 -0.0453 -1 0.0119 0 

120 0.0411 0.8832 0.9357 0.9394 -0.0526 -1 -0.0563 -1 -0.0037 0 

125 0.0417 0.8808 0.9360 0.9381 -0.0552 -1 -0.0573 -1 -0.0021 0 

130 0.0420 0.8813 0.9329 0.9409 -0.0516 -1 -0.0596 -1 -0.0080 0 

135 0.0405 0.8876 0.9330 0.9429 -0.0454 -1 -0.0553 -1 -0.0099 0 

140 0.0395 0.8943 0.9417 0.9463 -0.0474 -1 -0.0521 -1 -0.0047 0 

145 0.0392 0.8961 0.9427 0.9479 -0.0466 -1 -0.0518 -1 -0.0052 0 

150 0.0378 0.9001 0.9480 0.9492 -0.0479 -1 -0.0491 -1 -0.0012 0 
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Table B.8. Summary of results of Tukey HSD post hoc test for the classification specificity of Leukemia 

data for α=0.05. Specificity is the fraction of samples identified as negative which are actually negative. 

Acute Myeloid Leukemia(AML) samples are labeled as Negative and Acute Lymphoblastic 

Leukemia(ALL) samples as Positive. N – Number of Genes. C – Critical Difference, MeanSS – Mean 

specificity of Sum of Square method (SS). MeanD8 – Mean Specificity of wavelet (D8). MeanT – Mean 

specificity of T-test (T).  
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5 0.0424 0.7826 0.8602 0.9066 -0.0776 -1 -0.1240 -1 -0.0465 -1 

10 0.0424 0.8110 0.8190 0.9511 -0.0079 0 -0.1401 -1 -0.1322 -1 

15 0.0415 0.8246 0.8284 0.9375 -0.0039 0 -0.1130 -1 -0.1091 -1 

20 0.0417 0.8306 0.8101 0.9337 0.0205 0 -0.1031 -1 -0.1237 -1 

25 0.0448 0.8092 0.8160 0.9158 -0.0067 0 -0.1066 -1 -0.0999 -1 

30 0.0440 0.8082 0.8144 0.9127 -0.0061 0 -0.1045 -1 -0.0984 -1 

35 0.0431 0.8074 0.8317 0.9137 -0.0243 0 -0.1063 -1 -0.0819 -1 

40 0.0442 0.8000 0.8308 0.9043 -0.0309 0 -0.1044 -1 -0.0735 -1 

45 0.0448 0.8021 0.8429 0.8923 -0.0408 0 -0.0903 -1 -0.0494 -1 

50 0.0438 0.8174 0.8454 0.8920 -0.0280 0 -0.0746 -1 -0.0466 -1 

55 0.0424 0.8235 0.8528 0.8969 -0.0293 0 -0.0735 -1 -0.0441 -1 

60 0.0431 0.8116 0.8606 0.8925 -0.0490 -1 -0.0809 -1 -0.0319 0 

65 0.0435 0.8112 0.8462 0.8979 -0.0350 0 -0.0867 -1 -0.0517 -1 

70 0.0439 0.8123 0.8485 0.8893 -0.0362 0 -0.0770 -1 -0.0408 0 

75 0.0430 0.8133 0.8518 0.8981 -0.0385 0 -0.0847 -1 -0.0462 -1 

80 0.0431 0.8117 0.8650 0.8936 -0.0533 -1 -0.0819 -1 -0.0286 0 

85 0.0429 0.8197 0.8616 0.8883 -0.0419 0 -0.0687 -1 -0.0267 0 

90 0.0432 0.8161 0.8727 0.8884 -0.0566 -1 -0.0723 -1 -0.0157 0 

95 0.0417 0.8352 0.8765 0.8911 -0.0413 0 -0.0559 -1 -0.0146 0 

100 0.0419 0.8341 0.8768 0.8909 -0.0427 -1 -0.0568 -1 -0.0141 0 

105 0.0417 0.8376 0.8782 0.8885 -0.0406 0 -0.0510 -1 -0.0104 0 

110 0.0411 0.8439 0.8797 0.8865 -0.0358 0 -0.0426 -1 -0.0068 0 

115 0.0411 0.8459 0.8759 0.8899 -0.0301 0 -0.0441 -1 -0.0140 0 

120 0.0400 0.8565 0.8747 0.8940 -0.0182 0 -0.0375 0 -0.0193 0 

125 0.0403 0.8542 0.8711 0.8910 -0.0169 0 -0.0368 0 -0.0199 0 

130 0.0400 0.8491 0.8772 0.8953 -0.0281 0 -0.0462 -1 -0.0181 0 

135 0.0400 0.8483 0.8763 0.8969 -0.0280 0 -0.0485 -1 -0.0206 0 

140 0.0401 0.8477 0.8762 0.8987 -0.0285 0 -0.0510 -1 -0.0225 0 

145 0.0401 0.8451 0.8788 0.8971 -0.0336 0 -0.0519 -1 -0.0183 0 

150 0.0406 0.8445 0.8754 0.8924 -0.0310 0 -0.0479 -1 -0.0170 0 
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Table B.9. Summary of results of Tukey HSD post hoc test for the classification specificity of Colon 

Cancer data for α=0.05. Specificity is the fraction of samples identified as negative which are actually 

negative. Normal samples are labeled as Negative and Tumor samples as Positive. N – Number of Genes. C 

– Critical Difference, MeanSS – Mean specificity of Sum of Square method (SS). MeanD8 – Mean 

Specificity of wavelet (D8). MeanT – Mean specificity of T-test (T).  
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5 0.0300 0.9227 0.8876 0.7887 0.0351 1 0.1340 1 0.0989 1 

10 0.0283 0.9107 0.8936 0.8338 0.0171 0 0.0768 1 0.0598 1 

15 0.0290 0.9032 0.8854 0.8334 0.0178 0 0.0698 1 0.0520 1 

20 0.0290 0.9085 0.8928 0.8415 0.0158 0 0.0671 1 0.0513 1 

25 0.0281 0.9030 0.8966 0.8522 0.0064 0 0.0507 1 0.0444 1 

30 0.0267 0.9068 0.9003 0.8624 0.0066 0 0.0444 1 0.0378 1 

35 0.0253 0.9083 0.8998 0.8698 0.0085 0 0.0385 1 0.0300 1 

40 0.0250 0.9037 0.9019 0.8714 0.0019 0 0.0323 1 0.0305 1 

45 0.0247 0.9018 0.9053 0.8766 -0.0035 0 0.0253 1 0.0288 1 

50 0.0245 0.8995 0.9074 0.8856 -0.0079 0 0.0139 0 0.0218 0 

55 0.0239 0.8973 0.9115 0.8887 -0.0143 0 0.0086 0 0.0228 0 

60 0.0238 0.8975 0.9095 0.8901 -0.0120 0 0.0073 0 0.0193 0 

65 0.0232 0.8973 0.9121 0.8926 -0.0148 0 0.0047 0 0.0195 0 

70 0.0235 0.8991 0.9071 0.8919 -0.0081 0 0.0071 0 0.0152 0 

75 0.0238 0.8991 0.9082 0.8921 -0.0092 0 0.0070 0 0.0162 0 

80 0.0239 0.9006 0.9069 0.8901 -0.0062 0 0.0105 0 0.0168 0 

85 0.0238 0.8995 0.9101 0.8876 -0.0107 0 0.0119 0 0.0225 0 

90 0.0238 0.8985 0.9091 0.8877 -0.0106 0 0.0108 0 0.0214 0 

95 0.0239 0.8998 0.9067 0.8867 -0.0070 0 0.0131 0 0.0201 0 

100 0.0240 0.8988 0.9080 0.8865 -0.0092 0 0.0123 0 0.0214 0 

105 0.0241 0.8973 0.9061 0.8866 -0.0088 0 0.0107 0 0.0195 0 

110 0.0243 0.8986 0.9066 0.8852 -0.0081 0 0.0133 0 0.0214 0 

115 0.0244 0.8966 0.9087 0.8865 -0.0122 0 0.0100 0 0.0222 0 

120 0.0242 0.8980 0.9077 0.8884 -0.0097 0 0.0096 0 0.0193 0 

125 0.0241 0.8997 0.9088 0.8879 -0.0091 0 0.0118 0 0.0209 0 

130 0.0239 0.9007 0.9121 0.8892 -0.0114 0 0.0114 0 0.0228 0 

135 0.0240 0.9002 0.9121 0.8887 -0.0119 0 0.0115 0 0.0233 0 

140 0.0242 0.9001 0.9121 0.8855 -0.0120 0 0.0146 0 0.0266 1 

145 0.0243 0.8980 0.9126 0.8857 -0.0146 0 0.0123 0 0.0269 1 

150 0.0244 0.8993 0.9115 0.8863 -0.0122 0 0.0130 0 0.0252 1 
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APPENDIX C 

 

GENE LISTS 

 

Table C.1. Top 100 genes selected by Db -8 wavelet from Leukemia dataset. 

Rank Gene Name Average 

Score 

1 '''CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage' 0.475 

2 '''MPO Myeloperoxidas' 0.404 

3 '''Azurocidin gen' 0.387 

4 '''INTERLEUKIN-8 PRECURSO' 0.384 

5 '''FTL Ferritin, light polypeptid' 0.340 

6 '''GPX1 Glutathione peroxidase ' 0.297 

7 '''TCL1 gene (T cell leukemia) extracted from H.sapiens mRNA for Tcell 

leukemia/lymphoma ' 

0.294 

8 '''DF D component of complement (adipsin' 0.292 

9 '''Lysozyme gene (EC 3.2.1.17' 0.288 

10 '''PRG1 Proteoglycan 1, secretory granul' 0.285 

11 '''LYZ Lysozym' 0.282 

12 '''Cystic fibrosis antigen mRN' 0.277 

13 '''LYZ Lysozym' 0.268 

14 '''PROBABLE G PROTEIN-COUPLED RECEPTOR LCR1 HOMOLO' 0.258 

15 '''MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-BINDING 

PROTEIN MAD' 

0.246 

16 '''Interleukin 8 (IL8) gen' 0.244 

17 '''GLUL Glutamate-ammonia ligase (glutamine synthase' 0.240 

18 '''SM22-ALPHA HOMOLO' 0.240 

19 '''ENO1 Enolase 1, (alpha' 0.238 

20 '''IGHM Immunoglobulin m' 0.236 

21 '''CTSD Cathepsin D (lysosomal aspartyl protease' 0.234 

22 '''FTH1 Ferritin heavy chai' 0.231 

23 'MB-1 gene' 0.227 

24 '''Histone H2A.2 mRN' 0.227 
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Table C.1. Top 100 genes selected by Db -8 wavelet from Leukemia dataset. (Continued). 

25 '''(hybridoma H210) anti-hepatitis A IgG variable region, constant region, 

complementarity-determining regions mRN' 

0.226 

26 '''26-kDa cell surface protein TAPA-1 mRN' 0.223 

27 '''Terminal transferase mRN' 0.219 

28 '''ALDOA Aldolase ' 0.213 

29 '''PSAP Sulfated glycoprotein ' 0.207 

30 '''ELA2 Elastatse 2, neutrophi' 0.205 

31 '''ADA Adenosine deaminas' 0.203 

32 '''CCND3 Cyclin D' 0.196 

33 '''CATHEPSIN G PRECURSO' 0.194 

34 '''LYZ Lysozym' 0.194 

35 '''Metallothionein isoform ' 0.191 

36 '''Neutrophil elastase gene, exon ' 0.188 

37 '''HMG1 High-mobility group (nonhistone chromosomal) protein ' 0.185 

38 '''PROTEASOME IOTA CHAI' 0.182 

39 '''Immunoglobulin lambda gene locus DNA, clone:123E' 0.182 

40 '''Ig alpha 2=immunoglobulin A heavy chain allotype 2 {constant region, germ 

line} [human, peripheral blood neutrophils, Genomic, 1...'' <' 

0.181 

41 '''LGALS1 Ubiquinol-cytochrome c reductase core protein I' 0.180 

42 '''PAGA Proliferation-associated gene A (natural killer-enhancing factor A' 0.178 

43 '''mRNA fragment encoding beta-tubulin. (from clone D-beta-1' 0.178 

44 '''CYBA Cytochrome b-245, alpha polypeptid' 0.177 

45 '''GRN Granuli' 0.171 

46 '''Polyadenylate binding protein I' 0.169 

47 'Zyxin' 0.168 

48 'YMP mRNA' 0.163 

49 '''PTMA gene extracted from Human prothymosin alpha mRN' 0.163 

50 '''GAMMA-INTERFERON-INDUCIBLE PROTEIN IP-30 PRECURSO' 0.160 

51 '''THYMOSIN BETA-1' 0.159 

52 '''Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRN' 0.158 

53 'CYSTATIN A' 0.155 

54 '''KIAA0085 gene, partial cd' 0.154 

55 'Calcyclin' 0.153 

56 '''SELL Leukocyte adhesion protein beta subuni' 0.152 

57 '''PLACENTAL CALCIUM-BINDING PROTEI' 0.152 

58 '''TOP2B Topoisomerase (DNA) II beta (180kD' 0.150 

59 '''NPM1 Nucleophosmin (nucleolar phosphoprotein B23, numatrin' 0.148 

60 '''C-myb gene extracted from Human (c-myb) gene, complete primary cds, and 

five complete alternatively spliced cd' 

0.148 
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Table C.1. Top 100 genes selected by Db -8 wavelet from Leukemia dataset. (Continued). 

61 '''CALGRANULIN ' 0.146 

62 '''HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, F ALPHA CHAIN 

PRECURSO' 

0.145 

63 'Macmarcks' 0.142 

 

64 

 

'''LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) (NOTE: 

redefinition of symbol' 

 

0.141 

65 '''PERIPHERAL-TYPE BENZODIAZEPINE RECEPTO' 0.133 

66 '''60S RIBOSOMAL PROTEIN L1' 0.129 

67 '''TCRB T-cell receptor, beta cluste' 0.127 

68 '''Catalase (EC 1.11.1.6) 5''flank and exon 1 mapping to chromosome 11, band 

p13 (and joined CDS' 

0.126 

69 '''APLP2 Amyloid beta (A4) precursor-like protein ' 0.124 

70 '''VIL2 Villin 2 (ezrin' 0.116 

71 'LPAP gene' 0.115 

72 '''SELL Leukocyte adhesion protein beta subuni' 0.112 

73 '''ZFP36 Zinc finger protein homologous to Zfp-36 in mous' 0.111 

74 '''Omega light chain protein 14.1 (Ig lambda chain related) gene, exon ' 0.109 

75 '''INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION 

PROTEIN MCL' 

0.107 

76 '''LTB Lymphotoxin-bet' 0.107 

77 '''CD24 signal transducer mRNA and 3'' regio' 0.100 

78 '''HSPB1 Heat shock 27kD protein ' 0.097 

79 '''Fc-epsilon-receptor gamma-chain mRN' 0.097 

80 '''54 kDa protein mRN' 0.097 

81 '''Kazal-type serine proteinase (HUSI-II) gen' 0.096 

82 '''Immunoglobulin mu, part of exon ' 0.094 

83 '''RPS3 Ribosomal protein S' 0.089 

84 '''PLCB2 Phospholipase C, beta ' 0.085 

85 '''Oncoprotein 18 (Op18) gen' 0.083 

86 '''G-gamma globin gene extracted from H.sapiens G-gamma globin and A-

gamma globin genes''' 

0.075 

87 '''IL7R Interleukin 7 recepto' 0.072 

88 '''VIM Vimenti' 0.071 

89 '''Histone H1' 0.068 

90 '''CALM1 Calmodulin 1 (phosphorylase kinase, delta' 0.067 

91 '''EIF4A2 Eukaryotic translation initiation factor 4A (eIF-4A) isoform ' 0.066 

92 '''NF-IL6-beta protein mRN' 0.065 

93 '''SAT Spermidine/spermine N1-acetyltransferas' 0.063 

94 '''High mobility group protein (HMG-I(Y)) gene exons 1-' 0.060 
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Table C.1. Top 100 genes selected by Db -8 wavelet from Leukemia dataset. (Continued). 

95 '''X BOX BINDING PROTEIN-' 0.058 

96 '''PIM1 Pim-1 oncogen' 0.057 

97 '''SOD-2 gene for manganese superoxide dismutas' 0.057 

98 '''T-lymphocyte specific protein tyrosine kinase p56lck (lck) abberant mRN' 0.054 

99 '''JUNB Jun B proto-oncogen' 0.050 

100 '''SOX4 SRY (sex determining region Y)-box ' 0.049 

 

Table C.2. Top 100 probes selected by D-8 wavelets from Lymphoma Dataset. 

Rank Gene Name Average 

Score 

1 'Metallothionein isoform 2' 0.443 

2 'LDHA Lactate dehydrogenase A' 0.428 

3 'ENO1 Enolase 1, (alpha)' 0.407 

4 'Cathepsin B' 0.370 

5 'PKM2 Pyruvate kinase, muscle' 0.318 

6 'PSAP Sulfated glycoprotein 1' 0.310 

7 'CLU Clusterin (complement lysis inhibitor; testosterone-repressed prostate 

message 2; apolipoprotein J)' 

0.305 

8 'Macrophage migration inhibitory factor (MIF) gene' 0.298 

9 'GAMMA-INTERFERON-INDUCIBLE PROTEIN IP-30 PRECURSOR' 0.296 

10 'APOE Apolipoprotein E' 0.292 

11 '60S RIBOSOMAL PROTEIN L13' 0.288 

12 'High mobility group protein (HMG-I(Y)) gene exons 1-8' 0.284 

13 'Tubulin, Beta 2' 0.283 

14 'mRNA fragment for elongation factor TU (N-terminus)' 0.265 

15 'mRNA fragment encoding beta-tubulin. (from clone D-beta-1)' 0.264 

16 'CTSD Cathepsin D (lysosomal aspartyl protease)' 0.261 

17 'Triosephosphate Isomerase' 0.254 

18 'Alpha-1 collagen type I gene, 3'' end' 0.252 

19 'LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) (NOTE: 

redefinition of symbol)' 

0.249 

20 'Humig mRNA' 0.249 

21 'PAGA Proliferation-associated gene A (natural killer-enhancing factor A)' 0.247 

22 'HSPD1 Heat shock 60 kD protein 1 (chaperonin)' 0.246 

23 'Brain-expressed HHCPA78 homolog [human, HL-60 acute promyelocytic 

leukemia cells, mRNA, 2704 nt]' 

0.242 

24 'CLTA Clathrin light chain A' 0.238 
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Table C.2. Top 100 probes selected by D-8 wavelets from Lymphoma Dataset. (Continued). 

25 'ALDOA Aldolase A' 0.237 

26 'PGAM1 Phosphoglycerate mutase 1 (brain)' 0.228 

27 'FTH1 Ferritin heavy chain' 0.227 

28 'PABPL1 Poly(A)-binding protein-like 1' 0.219 

29 'HLA-A MHC class I protein HLA-A (HLA-A28,-B40, -Cw3)' 0.211 

30 'Proteasome activator hPA28 subunit beta' 0.210 

31 'PGK1 Phosphoglycerate kinase 1' 0.199 

32 'SLC' 0.198 

33 'Metallothionein isoform 2' 0.197 

34 'HMG1 High-mobility group (nonhistone chromosomal) protein 1' 0.197 

35 'SNRPB Small nuclear ribonucleoprotein polypeptides B and B1' 0.196 

36 'Nucleolin gene' 0.190 

37 'Cytochrome c oxidase subunit VIII (COX8) mRNA' 0.187 

38 'MMP2 Matrix metalloproteinase 2 (gelatinase A; collagenase type IV)' 0.182 

39 'CTSH Cathepsin H' 0.180 

40 '26-kDa cell surface protein TAPA-1 mRNA' 0.178 

41 'Cystatin B gene' 0.177 

42 'Omega light chain protein 14.1 (Ig lambda chain related) gene, exon 3' 0.174 

43 'TCRB T-cell receptor, beta cluster' 0.172 

44 'BRCA2 region, mRNA sequence CG037' 0.170 

45 'Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA' 0.168 

46 'CD20 RECEPTOR' 0.166 

47 'PTMA gene extracted from Human prothymosin alpha mRNA' 0.166 

48 'ANT2 Adenine nucleotide translocator 2 (fibroblast)' 0.165 

49 'CAPG Capping protein (actin filament), gelsolin-like' 0.162 

50 'C1QB Complement component 1, q subcomponent, beta polypeptide' 0.159 

51 'HSPB1 Heat shock 27kD protein 1' 0.153 

52 'ANT3 Adenine nucleotide translocator 3 (liver)' 0.152 

53 'PHAPI2b protein' 0.151 

54 'COX7C Cytochrome c oxidase VIIc subunit' 0.149 

55 'Elongation factor-1-beta' 0.148 

56 'CD37 CD37 antigen' 0.146 

57 'Liver mRNA fragment DNA binding protein UPI homologue (C-terminus)' 0.143 

58 'Nucleoside Diphosphate Kinase Nm23-H2s' 0.141 

59 'TXN Thioredoxin' 0.140 

60 'MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-BINDING 

PROTEIN MAD3' 

0.140 

61 'DbpB-like protein mRNA' 0.138 
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Table C.2. Top 100 probes selected by D-8 wavelets from Lymphoma Dataset. (Continued). 

62 'Stimulator of TAR RNA binding (SRB) mRNA' 0.138 

63 '54 kDa protein mRNA' 0.138 

64 'FN1 Fibronectin 1' 0.136 

65 'Myosin, Light Chain, Alkali, Smooth Muscle (Gb:U02629), Non-Muscle, Alt. 

Splice 2' 

0.135 

66 'NME1 Non-metastatic cells 1, protein (NM23A) expressed in' 0.135 

67 'SOD1 Superoxide dismutase 1 (Cu/Zn)' 0.133 

68 'MLN50 mRNA' 0.132 

69 'ATP5B ATP synthase, H+ transporting, mitochondrial F1 complex, beta 

polypeptide' 

0.129 

70 'NMB Neuromedin B' 0.127 

71 'LTB Lymphotoxin-beta' 0.124 

72 'GAPD Glyceraldehyde-3-phosphate dehydrogenase' 0.124 

73 'ATP5A1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha 

subunit, isoform 1, cardiac muscle' 

0.123 

74 'CYTOCHROME C OXIDASE POLYPEPTIDE VIA-LIVER PRECURSOR' 0.117 

75 'ARH9 Aplysia ras-related homolog 9' 0.117 

76 '''L44L gene (L44-like ribosomal protein) extracted from Human Bruton''s 

tyrosine kinase (BTK), alpha-D-galactosidase A (GLA), L44-l...'' <Preview 

truncated at 128 characters>' 

0.112 

77 'Small Nuclear Ribonucleoprotein, Polypeptide C, Alt. Splice 2' 0.101 

78 'Immunoglobulin mu, part of exon 8' 0.101 

79 'IMMUNOGLOBULIN J CHAIN' 0.100 

80 '5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoti de 

transformylase/inosinicase' 

0.098 

81 'EIF4A1 Eukaryotic translation initiation factor 4A (eIF-4A) isoform 1' 0.097 

82 'LGALS1 Ubiquinol-cytochrome c reductase core protein II' 0.094 

83 'Protein Phosphatase 1, Alpha Catalytic Subunit' 0.093 

84 'RPS3 Ribosomal protein S3' 0.091 

85 'COX4 Cytochrome c oxidase subunit IV' 0.091 

86 'GARS Glycyl-tRNA synthetase' 0.089 

87 'Arp2/3 protein complex subunit p41-Arc (ARC41) mRNA' 0.089 

88 'Major Histocompatibility Complex, Class I, E (Gb:M21533)' 0.089 

89 'Lactate dehydrogenase B gene exon 1 and 2 (EC 1.1.1.27) (and joined CDS)' 0.087 

90 'JunD mRNA' 0.083 

91 'SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-

ALPHA/BETA' 

0.082 

92 'FBP1 Fructose-bisphosphatase 1' 0.082 

93 '''COX6B gene (COXG) extracted from Human DNA from overlapping 

chromosome 19 cosmids R31396, F25451, and R31076 containing COX6B 

an...'' <Preview truncated' 

0.078 

94 'Bcl-2 related (Bfl-1) mRNA' 0.076 
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Table C.2. Top 100 probes selected by D-8 wavelets from Lymphoma Dataset. (Continued). 

95 'GRN Granulin' 0.074 

96 'Ribosomal Protein S12' 0.073 

97 'Mitochondrial ATP synthase subunit 9, P3 gene copy, mRNA, nuclear gene 

encoding mitochondrial protein' 

0.072 

98 'SAT Spermidine/spermine N1-acetyltransferase' 0.066 

99 'THYMOSIN BETA-10' 0.064 

100 'TCRB T-cell receptor, beta cluster' 0.061 

 

Table C.3. Top 100 ESTs selected by DB-8 wavelet from Colon Dataset. 

Rank Gene Name Average 

Score 

1 '''Hsa.4689        T95018  3'' UTR  2a      120032  40S RIBOSOMAL 

PROTEIN S18 (Homo sapiens) 

0.135 

2 '''Hsa.8147        M63391  gene    1               "Human desmin gene, complete 

cds.                                                

0.099 

3 '''Hsa.140 M87789  gene    1               IG GAMMA-1 CHAIN C REGION 

(HUMAN);.                                                      

0.094 

4 '''Hsa.5398        T58861  3'' UTR  2a      77563   60S RIBOSOMAL PROTEIN 

L30E (Kluyveromyces lactis)                                

0.085 

5 '''Hsa.878 T61609  3'' UTR  1       78081   LAMININ RECEPTOR 

(HUMAN);.                                                               

0.085 

6 '''Hsa.1534        J00231  gene    1               Human Ig gamma3 heavy chain 

disease OMM protein mRNA.                            

0.081 

7 '''Hsa.1131        T92451  3'' UTR  1       118219  "TROPOMYOSIN, 

FIBROBLAST AND EPITHELIAL MUSCLE-TYPE (HUMAN);.                    

0.077 

8 '''Hsa.3004        H55933  3'' UTR  1       203417  H.sapiens mRNA for 

homologue to yeast ribosomal protein L41.                     

0.075 

9 '''Hsa.3002        R22197  3'' UTR  1       130829  60S RIBOSOMAL PROTEIN 

L32 (HUMAN);.                                              

0.072 

10 '''Hsa.3087        T65938  3'' UTR  1       81639   TRANSLATIONALLY 

CONTROLLED TUMOR PROTEIN (HUMAN);.                               

0.071 

11 '''Hsa.539 U14971  gene    1               "Human ribosomal protein S9 mRNA, 

complete cds.                                          

0.071 

12 '''Hsa.8068        T57619  3'' UTR  2a      75437   40S RIBOSOMAL PROTEIN 

S6 (Nicotiana tabacum)                                     

0.068 

13 '''Hsa.750 T72863  3'' UTR  1       84277   FERRITIN LIGHT CHAIN 

(HUMAN);.                                                           

0.066 

14 '''Hsa.1737        T72175  3'' UTR  1       85528   IG KAPPA CHAIN 

PRECURSOR V-III REGION (HUMAN);.                                  

0.063 

15 '''Hsa.43279       H64489  3'' UTR  2a      238846  LEUKOCYTE ANTIGEN 

CD37 (Homo sapiens)                                            

0.062 

16 '''Hsa.10755       R78934  3'' UTR  2a      146232  ENDOTHELIAL ACTIN-

BINDING PROTEIN (Homo sapiens)                                 

0.062 

17 '''Hsa.1130        Z24727  gene    1               "H.sapiens tropomyosin isoform 

mRNA, complete CDS.                               

0.061 
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Table C.3. Top 100 ESTs selected by DB-8 wavelet from Colon Dataset. (Continued). 

18 '''Hsa.5444        T48804  3'' UTR  1       70269   40S RIBOSOMAL PROTEIN 

S24 (HUMAN).                                               

0.059 

19 '''Hsa.538 T56940  3'' UTR  1       68306   P24050 40S RIBOSOMAL 

PROTEIN.                                                            

0.059 

20 '''Hsa.1221        T60155  3'' UTR  1       81422   "ACTIN, AORTIC SMOOTH 

MUSCLE (HUMAN);.                                           

0.059 

21 '''Hsa.957 M26697  gene    1               "Human nucleolar protein (B23) mRNA, 

complete cds.                                       

0.058 

22 '''Hsa.467 H20709  3'' UTR  1       173155  "MYOSIN LIGHT CHAIN 

ALKALI, SMOOTH-MUSCLE ISOFORM (HUMAN);.                              

0.058 

23 '''Hsa.316 M94132  gene    1               Human mucin 2 (MUC2) mRNA 

sequence.                                                      

0.057 

24 '''Hsa.6080        J02763  gene    1               "Human calcyclin gene, complete 

cds.                                             

0.056 

25 '''Hsa.285 T62972  3'' UTR  1       80738   P02403 60S RIBOSOMAL 

PROTEIN ;.                                                          

0.056 

26 '''Hsa.891 M19045  gene    1               "Human lysozyme mRNA, complete 

cds.                                                      

0.055 

27 '''Hsa.13491       R39465  3'' UTR  2a      23933   EUKARYOTIC 

INITIATION FACTOR 4A (Oryctolagus cuniculus)                          

0.053 

28 '''Hsa.2597        T49423  3'' UTR  1       67494   BREAST BASIC 

CONSERVED PROTEIN 1 (HUMAN).                                        

0.050 

29 '''Hsa.20836       R02593  3'' UTR  2a      124094  60S ACIDIC RIBOSOMAL 

PROTEIN P1 (Polyorchis penicillatus)                        

0.050 

30 '''Hsa.1977        T51496  3'' UTR  1       71488   60S RIBOSOMAL PROTEIN 

L37A (HUMAN).                                              

0.048 

31 '''Hsa.1985        T52185  3'' UTR  1       71940   P17074 40S RIBOSOMAL 

PROTEIN.                                                    

0.047 

32 '''Hsa.692 M76378  gene    1               "Human cysteine-rich protein (CRP) 

gene, exons 5 and 6.                                  

0.047 

33 '''Hsa.692 M76378  gene    1               "Human cysteine-rich protein (CRP) 

gene, exons 5 and 6.                                  

0.047 

34 '''Hsa.692 M76378  gene    1               "Human cysteine-rich protein (CRP) 

gene, exons 5 and 6.                                  

0.046 

35 '''Hsa.474 L28809  gene    1               "Homo sapiens dbpB-like protein 

mRNA, complete cds.                                      

0.046 

36 '''Hsa.8125        T71025  3'' UTR  1       84103   Human (HUMAN);.                                                          0.045 

37 '''Hsa.2688        X60489  gene    1               Human mRNA for elongation 

factor-1-beta.                                         

0.045 

38 '''Hsa.954 T72938  3'' UTR  1       84350   QM PROTEIN (HUMAN);.                                                             0.045 

39 '''Hsa.832 T51023  3'' UTR  1       75127   HEAT SHOCK PROTEIN HSP 90-

BETA (HUMAN).                                                  

0.044 

40 '''Hsa.5363        R01182  3'' UTR  1       123748  60S RIBOSOMAL PROTEIN 

L38 (HUMAN);.                                              

0.044 

41 '''Hsa.3566        T57633  3'' UTR  1       75467   40S RIBOSOMAL PROTEIN 

S8 (HUMAN).                                                

0.044 
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Table C.3. Top 100 ESTs selected by DB-8 wavelet from Colon Dataset. (Continued). 

42 '''Hsa.7877        R86975  3'' UTR  1       197282  40S RIBOSOMAL PROTEIN 

S28 (HUMAN);.                                              

0.044 

43 '''Hsa.31  T57780  3'' UTR  1       80626   IG LAMBDA CHAIN C REGIONS 

(HUMAN).                                                       

0.0434 

44 '''Hsa.489 T47144  3'' UTR  1       74837   JN0549 RIBOSOMAL PROTEIN 

YL30.                                                           

0.043 

45 '''Hsa.1119        T59954  3'' UTR  1       79441   THYMOSIN BETA-4 

(HUMAN);.                                                        

0.043 

46 '''Hsa.831 M22382  gene    1               MITOCHONDRIAL MATRIX 

PROTEIN P1 PRECURSOR (HUMAN);.                                      

0.043 

47 '''Hsa.13491       R39465  3'' UTR  2a      23933   EUKARYOTIC 

INITIATION FACTOR 4A (Oryctolagus cuniculus)                          

0.042 

48 '''UMGAP                                                                                                                           0.042 

49 '''UMGAP                                                                                                                     0.042 

50 '''UMGAP                                                                                                                     0.042 

51 '''UMGAP                                                                                                                           0.042 

52 '''Hsa.678 H55758  3'' UTR  1       203413  ALPHA ENOLASE (HUMAN);.                                                          0.041 

53 '''Hsa.2800        X55715  gene    1               Human Hums3 mRNA for 40S 

ribosomal protein s3.                                   

0.041 

54 '''Hsa.733 M14200  gene    1               "Human diazepam binding inhibitor 

(DBI) mRNA, complete cds.                              

0.040 

55 '''Hsa.31  T57780  3'' UTR  1       80626   IG LAMBDA CHAIN C REGIONS 

(HUMAN).                                                       

0.040 

56 '''Hsa.1832        J02854  gene    1               "MYOSIN REGULATORY LIGHT 

CHAIN 2, SMOOTH MUSCLE ISOFORM (HUMAN);contains element 

0.040 

57 '''Hsa.3016        T47377  3'' UTR  1       71035   S-100P PROTEIN (HUMAN).                                                         0.039 

58 '''Hsa.1447        T55131  3'' UTR  1       73931   "GLYCERALDEHYDE 3-

PHOSPHATE DEHYDROGENASE, LIVER (HUMAN).                        

0.0382 

59 '''Hsa.2794        T48904  3'' UTR  1       70455   HEAT SHOCK 27 KD 

PROTEIN (HUMAN).                                                

0.037 

60 '''Hsa.2948        H54676  3'' UTR  1       203220  60S RIBOSOMAL 

PROTEIN L18A (HUMAN);.                                             

0.036 

61 '''Hsa.1902        L05144  gene    1               "PHOSPHOENOLPYRUVATE 

CARBOXYKINASE, CYTOSOLIC (HUMAN);contains Alu repetitive el 

0.036 

62 '''Hsa.558 R34698  3'' UTR  1       136738  INTERFERON-INDUCIBLE 

PROTEIN 9-27 (HUMAN);.                                              

0.035 

63 '''Hsa.2221        T52015  3'' UTR  1       72642   ELONGATION FACTOR 1-

GAMMA (HUMAN).                                               

0.034 

64 '''Hsa.5710        T63484  3'' UTR  1       81437   "Human ornithine 

decarboxylase antizyme (Oaz) mRNA, complete cds.                

0.034 

65 '''Hsa.451 D21261  gene    1               SM22-ALPHA HOMOLOG 

(HUMAN);.                                                             

0.033 

66 '''Hsa.24464       H09263  3'' UTR  2a      46514   ELONGATION FACTOR 1-

ALPHA 1 (Homo sapiens)                                       

0.033 
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Table C.3. Top 100 ESTs selected by DB-8 wavelet from Colon Dataset. (Continued). 

67 '''Hsa.41315       U37012  gene    1               "Human cleavage and 

polyadenylation specificity factor mRNA, complete cds.       

0.033 

68 '''Hsa.3006        T61602  3'' UTR  1       78084   40S RIBOSOMAL PROTEIN  0.032 

69 '''Hsa.3835        H79852  3'' UTR  2a      239944  60S ACIDIC RIBOSOMAL 

PROTEIN P2 (Babesia bovis)                                  

0.032 

70 '''Hsa.541 U14973  gene    1               "Human ribosomal protein S29 mRNA, 

complete cds.                                         

0.031 

 

71 

 

'''Hsa.951 M36981  gene    1               "Human putative NDP kinase (nm23-

H2S) mRNA, complete cds.                                

 

0.030 

72 '''Hsa.2555        X63432  gene    1               H.sapiens ACTB mRNA for 

mutant beta-actin (beta''-actin).                         

0.029 

73 '''HSAC07                                                                                                                    0.029 

74 '''HSAC07                                                                                                                    0.029 

75 '''Hsa.2588        H40560  3'' UTR  1       175410  THIOREDOXIN (HUMAN);.                                         0.029 

76 '''HSAC07                                                                                                                    0.029 

77 '''HSAC07                                                                                                                    0.029 

78 '''Hsa.3306        X12671  gene    1               Human gene for heterogeneous 

nuclear ribonucleoprotein (hnRNP) core protein A1.  

0.028 

79 '''Hsa.37937       R87126  3'' UTR  2a      197371  "MYOSIN HEAVY 

CHAIN, NONMUSCLE (Gallus gallus)                                   

0.027 

80 '''Hsa.2361        T51534  3'' UTR  1       72396   CYSTATIN C PRECURSOR 

(HUMAN).                                                   ...'' Preview truncated at 128 

characters>' 

0.027 

 

81 

 

''Hsa.5821        X57351  gene    1               INTERFERON-INDUCIBLE 

PROTEIN 1-8D (HUMAN);contains MSR1 repetitive element ;.    

 

0.027 

82 '''Hsa.36952       H43887  3'' UTR  2a      183264  COMPLEMENT FACTOR 

D PRECURSOR (Homo sapiens)                                     

0.026 

83 '''Hsa.27685       R50158  3'' UTR  2a      153229  MITOCHONDRIAL LON 

PROTEASE HOMOLOG PRECURSOR (Homo sapiens)                      

0.025 

84 '''Hsa.1836        T51574  3'' UTR  1       72258   40S RIBOSOMAL PROTEIN 

S24 (HUMAN).                                               

0.025 

85 '''Hsa.1254        M18216  gene    1               "Human nonspecific crossreacting 

antigen mRNA, complete cds.                     

0.024 

86 '''Hsa.20836       R02593  3'' UTR  2a      124094  60S ACIDIC RIBOSOMAL 

PROTEIN P1 (Polyorchis penicillatus)                        

0.024 

87 '''Hsa.2665        T68848  3'' UTR  1       82178   PEPTIDYL-PROLYL CIS-

TRANS ISOMERASE A (HUMAN);.                                  

0.023 

88 '''Hsa.773 H40095  3'' UTR  1       175181  MACROPHAGE MIGRATION 

INHIBITORY FACTOR (HUMAN);.                                         

0.022 

89 '''Hsa.37254       R85482  3'' UTR  2a      180093  SERUM RESPONSE 

FACTOR (Homo sapiens)                                             

0.022 

90 '''Hsa.1205        R08183  3'' UTR  1       127228  "Q04984 10 KD HEAT 

SHOCK PROTEIN, MITOCHONDRIAL ;.                               

0.021 

91 '''Hsa.3348        X15880  gene    1               Human mRNA for collagen VI 

alpha-1 C-terminal globular domain.                   

0.021 
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Table C.3. Top 100 ESTs selected by DB-8 wavelet from Colon Dataset. (Continued). 

 

92 

 

'''Hsa.2357        T52342  3'' UTR  1       72028   Human tra1 mRNA for human 

homologue of murine tumor rejection antigen gp96.      

 

0.019 

93 '''Hsa.8831        T49941  3'' UTR  1       69828   PUTATIVE INSULIN-LIKE 

GROWTH FACTOR II ASSOCIATED (HUMAN).                       

0.019 

94 '''Hsa.98  T93094  3'' UTR  1       118704  ANNEXIN II (HUMAN);.                                                             0.019 

95 '''Hsa.5346        T63370  3'' UTR  2a      81523   GUANINE NUCLEOTIDE-

BINDING PROTEIN BETA SUBUNIT-LIKE PROTEIN 12.3 (Homo 

sapiens) 

0.019 

96 '''Hsa.1098        M33680  gene    1               "Human 26-kDa cell surface 

protein TAPA-1 mRNA, complete cds.                    

0.018 

97 '''Hsa.45604       H88360  3'' UTR  2a      252849  "GUANINE 

NUCLEOTIDE-BINDING PROTEIN G(OLF), ALPHA SUBUNIT (Rattus 

norvegicus)    

0.018 

98 '''Hsa.1978        T72879  3'' UTR  1       84299   60S RIBOSOMAL PROTEIN 

L7A (HUMAN);.                                              

0.016 

99 '''Hsa.2753        X68314  gene    1               H.sapiens mRNA for glutathione 

peroxidase-GI.                                    

0.016 

100 '''Hsa.1732        U12255  gene    1               "Human IgG Fc receptor hFcRn 

mRNA, complete cds.                                 

0.014 

 

Table C.4. Genes Common between all the three methods for B-Cell Lymphoma Data. 

Gene 

Rank 

Gene ID Score 

1 'ENO1 Enolase 1, (alpha)' 0.408 

2 'LDHA Lactate dehydrogenase A' 0.429 

3 'High mobility group protein (HMG-I(Y)) gene exons 1-8' 0.284 

4 'PKM2 Pyruvate kinase, muscle' 0.318 

5 'Metallothionein isoform 2' 0.442 

6 'Macrophage migration inhibitory factor (MIF) gene' 0.299 

7 'Triosephosphate Isomerase' 0.254 

8 'Cathepsin B' 0.371 

9 'ALDOA Aldolase A' 0.236 

10 '60S RIBOSOMAL PROTEIN L13' 0.288 

11 'GAMMA-INTERFERON-INDUCIBLE PROTEIN IP-30 PRECURSOR' 0.295 

12 'HSPD1 Heat shock 60 kD protein 1 (chaperonin)' 0.248 

13 'PGAM1 Phosphoglycerate mutase 1 (brain)' 0.229 

14 '5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleotide 

transformylase/inosinicase' 

0.124 

15 'CTSD Cathepsin D (lysosomal aspartyl protease)' 0.259 

16 'PAGA Proliferation-associated gene A (natural killer-enhancing factor A)' 0.247 
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Table C.4. Genes Common between all the three methods for B-Cell Lymphoma Data. (Continued). 

17 'Tubulin, Beta 2' 0.282 

18 'PSAP Sulfated glycoprotein 1' 0.309 

19 'CLTA Clathrin light chain A' 0.237 

20 'LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) (NOTE: 

redefinition of symbol)' 

0.248 

21 'Proteasome activator hPA28 subunit beta' 0.211 

22 'NME1 Non-metastatic cells 1, protein (NM23A) expressed in' 0.137 

23 'SNRPB Small nuclear ribonucleoprotein polypeptides B and B1' 0.196 

24 'APOE Apolipoprotein E' 0.291 

25 'Bcl-2 related (Bfl-1) mRNA' 0.121 

 

Table C.5. Genes Common between all the three methods for Leukemia Data. 

Gene 

Rank 

Gene ID Score 

1 'CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)' 0.476 

2 'MPO Myeloperoxidase' 0.404 

3 'Azurocidin gene' 0.388 

4 'FTL Ferritin, light polypeptide' 0.341 

5 'GPX1 Glutathione peroxidase 1' 0.296 

6 'DF D component of complement (adipsin)' 0.293 

7 'PRG1 Proteoglycan 1, secretory granule' 0.285 

8 'PROBABLE G PROTEIN-COUPLED RECEPTOR LCR1 HOMOLOG' 0.260 

9 'CTSD Cathepsin D (lysosomal aspartyl protease)' 0.234 

10 'MB-1 gene' 0.228 

11 '26-kDa cell surface protein TAPA-1 mRNA' 0.2224 

12 'Terminal transferase mRNA' 0.221 

13 'ALDOA Aldolase A' 0.214 

14 'CCND3 Cyclin D3' 0.196 

15 'PROTEASOME IOTA CHAIN' 0.184 

16 'Immunoglobulin lambda gene locus DNA, clone:123E1' 0.183 

17 'Zyxin' 0.169 

18 'TOP2B Topoisomerase (DNA) II beta (180kD)' 0.151 

19 'C-myb gene extracted from Human (c-myb) gene, complete primary cds, and 

five complete alternatively spliced cds' 

0.149 

20 'Macmarcks' 0.143 

21 'APLP2 Amyloid beta (A4) precursor-like protein 2' 0.125 

22 'VIL2 Villin 2 (ezrin)' 0.119 
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Table C.5. Genes Common between all the three methods for Leukemia Data. (Continued). 

23 'LPAP gene' 0.116 

24 'Oncoprotein 18 (Op18) gene' 0.103 

25 'ATP6C Vacuolar H+ ATPase proton channel subunit' 0.092 

 

Table C.6. ESTs Common between all the three methods for Colon Cancer Data. 

Gene 

Rank 

EST ID Score 

1 '''Hsa.4689        T95018  3'' UTR  2a      120032  40S RIBOSOMAL 

PROTEIN S18 (Homo sapiens)                                        ...''  

0.236 

2 '''Hsa.8147        M63391  gene    1               "Human desmin gene, complete 

cds.                                               ...''  

0.199 

3 '''Hsa.5398        T58861  3'' UTR  2a      77563   60S RIBOSOMAL PROTEIN 

L30E (Kluyveromyces lactis)                               ...''  

0.168 

4 '''Hsa.878 T61609  3'' UTR  1       78081   LAMININ RECEPTOR 

(HUMAN);.                                                              ...''  

0.168 

5 '''Hsa.1131        T92451  3'' UTR  1       118219  "TROPOMYOSIN, 

FIBROBLAST AND EPITHELIAL MUSCLE-TYPE (HUMAN);.                   

...''  

0.154 

6 '''Hsa.539 U14971  gene    1               "Human ribosomal protein S9 mRNA, 

complete cds.                                         ...''  

0.139 

7 '''Hsa.8068        T57619  3'' UTR  2a      75437   40S RIBOSOMAL PROTEIN 

S6 (Nicotiana tabacum)                                    ...''  

0.136 

8 '''Hsa.5444        T48804  3'' UTR  1       70269   40S RIBOSOMAL PROTEIN 

S24 (HUMAN).                                              ...''  

0.119 

9 '''Hsa.957 M26697  gene    1               "Human nucleolar protein (B23) 

mRNA, complete cds.                                      ...''  

0.117 

10 '''Hsa.692 M76378  gene    1               "Human cysteine-rich protein (CRP) 

gene, exons 5 and 6.                                 ...''  

0.095 

11 '''Hsa.692 M76378  gene    1               "Human cysteine-rich protein (CRP) 

gene, exons 5 and 6.                                 ...''  

0.095 

12 '''Hsa.1985        T52185  3'' UTR  1       71940   P17074 40S RIBOSOMAL 

PROTEIN.                                                   ...''  

0.095 

13 '''Hsa.692 M76378  gene    1               "Human cysteine-rich protein (CRP) 

gene, exons 5 and 6.                                 ...''  

0.092 

14 '''Hsa.8125        T71025  3'' UTR  1       84103   Human (HUMAN);.                                                          

...''  

0.091 

15 '''Hsa.832 T51023  3'' UTR  1       75127   HEAT SHOCK PROTEIN HSP 90-

BETA (HUMAN).                                                 ...''  

0.089 

16 '''Hsa.831 M22382  gene    1               MITOCHONDRIAL MATRIX 

PROTEIN P1 PRECURSOR (HUMAN);.                                     ...''  

0.087 

17 '''Hsa.678 H55758  3'' UTR  1       203413  ALPHA ENOLASE (HUMAN);.                                                                 

...''  

0.083 
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Table C.6. ESTs Common between all the three methods for Colon Cancer Data. (Continued). 

18 '''Hsa.2800        X55715  gene    1               Human Hums3 mRNA for 40S 

ribosomal protein s3.                                  ...''  

0.082 

19 '''Hsa.1832        J02854  gene    1               "MYOSIN REGULATORY 

LIGHT CHAIN 2, SMOOTH MUSCLE ISOFORM (HUMAN);contains 

element...''  

0.080 

20 '''Hsa.3016        T47377  3'' UTR  1       71035   S-100P PROTEIN (HUMAN).                                                         

...''  

0.078 

21 '''Hsa.37937       R87126  3'' UTR  2a      197371  "MYOSIN HEAVY 

CHAIN, NONMUSCLE (Gallus gallus)                                  ...''  

0.062 

22 '''Hsa.951 M36981  gene    1               "Human putative NDP kinase (nm23-

H2S) mRNA, complete cds.                               ...''  

0.062 

23 '''Hsa.2588        H40560  3'' UTR  1       175410  THIOREDOXIN 

(HUMAN);.                                                           ...''  

0.061 

24 '''Hsa.36952       H43887  3'' UTR  2a      183264  COMPLEMENT FACTOR 

D PRECURSOR (Homo sapiens)                                    ...''  

0.061 

25 '''Hsa.3306        X12671  gene    1               Human gene for heterogeneous 

nuclear ribonucleoprotein (hnRNP) core protein A1. ...''  

0.060 

26 '''Hsa.1205        R08183  3'' UTR  1       127228  "Q04984 10 KD HEAT 

SHOCK PROTEIN, MITOCHONDRIAL ;.                              ...''  

0.057 

27 '''Hsa.773 H40095  3'' UTR  1       175181  MACROPHAGE MIGRATION 

INHIBITORY FACTOR (HUMAN);.                                        ...''  

0.0566 

28 '''Hsa.5346        T63370  3'' UTR  2a      81523   GUANINE NUCLEOTIDE-

BINDING PROTEIN BETA SUBUNIT-LIKE PROTEIN 12.3 (Homo 

sapiens)...''  

0.054 

29 '''Hsa.4252        T51529  3'' UTR  2a      72384   ELONGATION FACTOR 1-

DELTA (Artemia salina)                                      ...''  

0.053 

30 '''Hsa.33965       H05803  3'' UTR  2a      44039   "DIHYDROPRYRIDINE-

SENSITIVE L-TYPE, SKELETAL MUSCLE CALCIUM CHANNEL  

0.050 

 


