
FRAMEWORK FOR AN EXPERT SYSTEM GENERATOR

A Thesis

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Jacob Cernik

May, 2009

ii

FRAMEWORK FOR AN EXPERT SYSTEM GENERATOR

Jacob Cernik

Thesis

Approved: Accepted:

__________________________ ___________________________
Advisor Dean of the College
Dr. Chien-Chung Chan Dr. Chand Midha

__________________________ ___________________________
Committee Member Dean of the Graduate School
Dr. Kathy J. Liszka Dr. George R. Newkome

__________________________ ___________________________
Committee Member Date
Dr. Zhong-Hui Duan

Department Chair
Dr. Wolfgang Pelz

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES .. v

CHAPTER

I. INTRODUCTION AND MOTIVATION 1

II. EXPERT SYSTEMS AND THEIR DRAWBACKS 4

2.1 What is A Rule Based Expert System 4

2.2 Creating An Expert System 7

2.3 Drawbacks To Expert Systems 8

2.4 Solution: An Expert System Generator 9

III. CREATING AN EXPERT SYSTEM GENERATOR 12

3.1 PMML ... 12

3.2 Creating A PMML Generator 17

3.3 Expert System Generator 17

3.4 Bringing It All Together 18

IV. IMPLEMENTATION 20

4.1 Design Requirements 20

4.2 ESCore Library 21

V. DEMO: A RULE BASED EXPERT SYSTEM GENERATOR 24

5.1 Creating Transformations To Be Used 24

iv

5.2 Using The Expert System Generator 25

VI. FUTURE WORK ... 28

VII. CONCLUSIONS .. 30

BIBLIOGRAPHY .. 32

APPENDICES .. 33

APPENDIX A. WEKA EXAMPLE 34

APPENDIX B. BLEM EXAMPLE 35

APPENDIX C. PMML EXAMPLE 36

APPENDIX D. BLEM2 TO PMML TRANSFORMATION 38

APPENDIX E. PMML TO CLIPS TRANSFORMATION 41

v

LIST OF FIGURES

Figure Page

1 Expert System Architecture.............................. 4

2 Creating a Rule Base.................................... 7

3 Sample PMML Dictionary................................. 13

4 Sample PMML Rule Set Model............................. 14

5 Sample PMML Rule Set................................... 15

6 Defining a PMML Transformation......................... 17

7 Defining an Expert System Transformation............... 18

8 ESCore Objects... 21

9 Expert System Generator Edit Defaults Screen........... 25

10 Expert System Generator Main Screen................... 26

11 Expert System Viewer Main Screen...................... 27

 1

CHAPTER I

INTRODUCTION AND MOTIVATION

With the growth of knowledge management in the

business world, it has become crucial to codify knowledge

into the work process. Codified knowledge is knowledge that

has been obtained from a domain expert and transferred into

electronic form. This transference of knowledge then helps

businesses automate, streamline, and preserve knowledge

into a central shareable source. Decisions and training

specifics can then be derived from the knowledge using

analysis tools or other domain experts. One way to

implement this knowledge is through the use of rule-based

expert systems. A rule based expert system is a program or

hardware configuration that uses a set of preconditions and

rules to come up with expert answers to a situation. These

programs have already found a niche in the market place.

Hospitals have used expert systems to help then diagnosis

patients. Doctors can supply an expert system a set of

 2

symptoms and it will return back a diagnosis to aid in the

final decision making process. These systems are not

limited to the medical industry. These systems can be

useful to companies who wish to automate various forms of

validation, statistical analysis, and diagnostics within

their company or organization.

However, creating and updating an expert system can be

a slow and painful process. It involves understanding

various syntax and semantics of knowledge sources and

expert system language. This fact alone makes it hard to

generate an expert system and even harder to teach a

computer to build one. In a competitive atmosphere this is

enough to turn potential users away, because of the time

they would need to invest in building just one expert

system.

The goal of this research is to teach a computer how

to generate an expert system and remove the end user from

having to worry about specific syntax, semantics, and in-

depth coding involved in creating an expert system. By

removing the end user from having to worry about coding and

translating rules, a rule-based expert system can be

generated and updated faster and without the help of a

programmer. The ability to quickly and easily create or

 3

update an expert system would allow a business to codify

and automate or assist new business decisions quickly and

as close to real time as possible. Therefore, the main

beneficiaries of such a system are people who want to

create or constantly update an expert system with very

little prior knowledge about expert systems

 4

CHAPTER II

EXPERT SYSTEMS AND THEIR DRAWBACKS

2.1 What is A Rule Based Expert System

There are three parts to an expert system: a rule

base, working memory, and an inference engine.

Figure 1 Expert System Architecture

The first part in an expert system is the rule base. This

is comprised of two parts: a rule set and a dictionary. The

rule set defines expert knowledge in the form of rules

 5

that can be thought of as a collection of cause and effect

sentences. An example rule is “if your eyes are brown and

your hair is brown then you are likely to have glasses”.

Furthermore, rules can also carry uncertainty information

[8]. Uncertainty information contains information about how

the rules were obtained and how accurate or plausible the

rule assertions are. One example form of uncertainty uses

rough set theory [4, 5]. While expert systems can differ on

what form of uncertainty they use, this research will focus

on using rough set theory but be implemented in a way to

accommodate for future changes.

 The dictionary defines the metadata for all of the

knowledge variables, such as type, domain, and name. In the

previous example the dictionary would contain at least

three variables eye color, hair color, and whether or not

they need glasses. Specifically the dictionary would define

hair color is a discrete value and it can be white, blonde,

brown, or black.

The second part of the expert system is the working

memory. This is a collection of preconditions, which are a

collection of variables defined in the dictionary. Using

the previous example, a sample working memory could assert

that student A’s eyes are blue and their hair is blond.

 6

The working memory and rule base are then used by an

inference engine and which will attempt to assert new

conditions. The process of processing rules can be

different depending on what type of inference engine you

are using. Two of the most commonly used algorithms are

forward chaining and backwards chaining. Forward chaining

attempts to take the preconditions and see if the rule base

can assert anything from them. Backwards chaining works by

supplying the post condition and then asserts the

preconditions. If the preconditions match what is in

working memory it can assert that something is true.

Regardless of the inference technique if a rule is

satisfied, new facts will be added to working memory. This

process usually continues until no new assumptions can be

made. At this point working memory can be parsed to find

out what information can be derived from the preconditions.

Using the preconditions “blonde hair” and “blue eyes” it

could assert statements such as “is German” and/or “likely

to be born in April”.

The rule base is the cornerstone of the expert system.

The rule base defines a domain experts knowledge into a

codified form, and defines what attributes are important.

These attributes are then defined in the dictionary and

used in working memory. Due to its importance the goal of

 7

the expert system generator will be to create the rule base

for a given expert system.

2.2 Creating An Expert System

To create an expert system a user must have: an expert

source of knowledge, an inference engine, an understanding

on how to build a rule base, and knowledge of how to enter

and retrieves IO from the expert system. The hardest part

is obtaining the knowledge to create the rule base. These

knowledge sources can come from various places, such as

domain expert, data mining, and other legacy devices.

Examples of such knowledge sources can be seen in Appendix

A and B.

Figure 2 Creating a Rule Base

 8

To currently create an expert system a programmer must take

the knowledge source and translate it into rule form. While

this may sound easy, it involves the programmer having a

partial understanding about the knowledge that is being

codified and the expert system language you are coding in.

After the knowledge has been transferred to a rule base,

the user must supply input into the expert system, in the

form of the working memory. This input can come from a GUI,

console, or script depending on the type of application.

Once this is complete the user can run the expert system

and translate the answer from working memory.

2.3 Drawbacks To Expert Systems

While Expert systems in general are useful in

knowledge codification, they do have several drawbacks. The

first and main drawback to an expert system is that expert

system programmers need to have an understanding on how to

create the expert system and domain knowledge. To create an

expert system the user must understand how to: mine rules

from a dataset, transform those rules into an expert

system, and run those rules. This alone is a major

deterrent and time-consuming endeavor. Most companies don’t

want to spend the time and money teaching their employees

how to code, understand, and maintain expert systems.

 9

The second drawback is that end users are sometimes

overwhelmed by expert systems. Even after it has been

created they are unsure on how the system comes up with its

decisions or maintains them as knowledge changes. This is

only compounded by the fact that expert systems are hard to

create and develop [7, 9]. However if expert systems were

easier to implement, end users could spend more time

understanding the mechanics of how the system works and

less about its syntax and grammar.

The final problem is that even if you decide to use an

expert system, the process of turning expert knowledge into

an expert system lacks standardization. First of all, the

user can mine knowledge from various sources, such as

learning strategies and interviewing. After the knowledge

has been obtained it must be converted into the expert

system of the user choice such as Clips or Jess.

Furthermore, each of these choices can affect the

reliability, speed, and reusability of an expert system.

2.4 Solution: An Expert System Generator

These drawbacks are often enough to keep a user from

using or creating an expert system, because of its

complexity and the initial startup cost associated with

training employees to use them. The solution to this

 10

problem is to abstract the end user from as much of the

complexity of expert system programming language and

knowledge transformation as possible. The problem can be

solved by creating an expert system generator.

An expert system generator would be responsible for

taking in a knowledge source and creating a ready to use

expert system with very little input or knowledge from the

creator. However, the main problem with creating an expert

system generator is the lack of a unified starting point.

The knowledge used to create the expert system can come in

many forms: learning strategies, databases, personal

knowledge, xml files, and many more. Each of these forms

has a different syntax and semantics for its rules and a

user will have to translate those rules to an expert system

rule base. This is a problem for the computer because

unlike humans, it is harder for a computer to learn and

adapt to each new form. The solution to this problem is to

create a standard to be used as an input to the expert

system generator. While this may add an additional step to

the process it will also help create a standard in all

forms of rule-based knowledge within a company.

 The second problem to address is how to create an

expert system generator. An expert system generator must be

able to parse the standard file and store all of the

 11

information in memory and perform a transformation on that

data to a specific expert system.

 12

CHAPTER III

CREATING AN EXPERT SYSTEM GENERATOR

While simple expert system generators exist, they are

tailored strictly from knowledge source A to expert system

B. This means that there could be a countless number of

generators all differing in implementations [3, 6]. When

creating a generic expert system generator the goals are to

standardize all of the implementations, to eliminate

repeated work and to centralize many different generators

into one. There are two steps to creating this expert

system generator: creating a standardized input file and

generating an expert system from that standard.

 3.1 PMML

Predictive Model Markup Language, or PMML for short,

was found to be the best candidate for the standard input

file. PMML is an xml extension written by the Data Mining

Group, and was created to be a standard between various

data mining models. PMML was originally created in the late

 13

1990’s. Since then it has evolved and grown to cover

various types of data mining models in version 3.1. Since

PMML’s conception, it has found itself a useful asset in

data mining and manipulation.

PMML is a prime candidate for input to an expert

system generator for two reasons: PMML was designed to be a

standard in data mining models and it is easily parsed.

Since PMML was designed to be used for different models,

its design is flexible enough to be used for a rule based

expert system or even a tree based expert system.

A PMML file consists of many different tags and

attributes. A PMML document is comprised of two parts: a

DataDicationary and the RuleSet. The first section in a

PMML document is the Dictionary, which holds all of the

information about the attributes that are used in the rule

set.

- <DataDictionary numberOfFields="2">
- <DataField name="Size" optype="categorical" dataType="String">

 <Value value="small" />
 <Value value="medium" />
 <Value value="big" />

 </DataField>
- <DataField name="Attitude" optype="categorical" dataType="String">

 <Value value="positive" />
 <Value value="negative" />

 </DataField>
</DataDictionary>

Figure 3 Sample PMML Dictionary

The dictionary is composed of 3 main tags: DataDictionary,

DataField, and Value. A DataDictionary is the opening tag

 14

for the dictionary and symbolizes the start of the

dictionary. The DataDictionary tag has one attribute that

specifies the number of variables described in the

dictionary. In Figure 3 the dictionary contains two

attributes: size and color. The DataField tag defines the

name, type, and domain of the attribute. The first

attribute is called color and its domain is categorical,

with its values represented as strings. The final tag is

the Value tag. The value tag defines the possible values

that the parent tag takes on. In this example the possible

values of “size” are “small”, “medium”, and “large”.

 The next portion of a PMML document is the portion of

the document describing how the rules were obtained and how

they should be interpreted.

<RuleSetModel modelName="ESCore Generated">
<MiningSchema>
 <MiningField name="Size" usageType="active" />
 <MiningField name="Attitude" usageType="predicated" />
</MiningSchema>

Figure 4 Sample PMML Rule Set Model

The RuleSetModel tag tells how the rules will be displayed

as a rule set. Since PMML covers various mining models

there are other forms that rules could be displayed in,

such as trees. The mining schema defines what attributes

will be used from the dictionary and which is the decision

attribute. Each Attribute will be represented as a

 15

MiningField tag. The decision attribute will also be

displayed as having a usage type of “predicated”.

<RuleSet>
 <RuleSelectionMethod criterion="firstHit" />

<SimpleRule id="0" value="positive" weight="3" confidence="1">
- <CompoundPredicate booleanOperator="and">

 <SimplePredicate field="Size" operator="equal"
value="big" />

 </CompoundPredicate>
 </SimpleRule>

</RuleSet>
</RuleSetModel>

Figure 5 Sample PMML Rule Set

The RuleSet tag delimits the beginning of the rule

section. The RuleSelectionMethod defines how the rules are

to be selected. In this case we have declared that rules

are fired by first hit. The SimpleRule tag specifies the

rules unique id, the value that the decision value takes

on, and the rule’s uncertainty. The next tag is the

CompoundPredicate tag. Every child of this tag is connected

by the booleanOperator, which is usually “and” or “or”.

Next, each value in the rule is specified using

SimplePredicate. Using the and/or connectives complex rules

can be made, such as “if you have studied and your GPA is

4.0 then you will get an A on the final”. The

SimplePredicate specifies a rule’s preconditions. For this

instance, Rule 0 is defined to be: the attitude is positive

where the Size is equal to big. Finally all of the tags can

 16

be closed off to finish off the PMML file. A full PMML

example can be seen in Appendix C.

 The second reason PMML was chosen was its parse

ability. Since the PMML is an extension of XML, many

libraries have been developed to aid in parsing XML syntax.

This will have two benefits: accuracy and repeatability.

The most important is accuracy. When retrieving the data

from the PMML, it will be easier to parse out the data

using language-supplied libraries. This will help eliminate

errors while parsing a messy regular expression. Secondly,

since most languages include a library to parse XML files,

this approach to an expert system generator can be

duplicated in another programming language.

While PMML offers the best solution as an input, it

lacks the ability to represent all forms of uncertainty.

The current PMML language only allows for certainty factor

theory as its form of uncertainty. To be an accurate input

file for rough set theory, several attributes will have to

be added to the rule tag: certainty, coverage, strength,

probability, and support. With a standard rule form, all

that is left is to define a transformation that transforms

an original rule source into PMML [1, 2].

 17

3.2 Creating A PMML Generator

To create a PMML generator one needs to know the

syntax and semantics of the rules and metadata/dictionary

information. Once the syntax of the original rule set has

been identified, one can parse the rule and metadata

information, and then translate it into a form

understandable to a computer.

Figure 6 Defining a PMML Transformation

This can be accomplished by storing the dictionary and rule

base as objects in an object oriented language. Once the

information is stored in a computer as objects, it can be

translated into PMML for permanent storage.

3.3 Expert System Generator

With a well-defined input it is now possible to create

an expert system generator. The computer can parse through

the PMML information and store it back into its object

form, and then translate the objects into an expert system.

Figure 7 Defining an Expert System Transformation

3.4 Bringing It All Tog

 Based on these assumptions two things are needed to

create an expert system: transformations and objects. The

framework will need two transformations: one to transform

knowledge sources

file to an expert system. There can be many types of these

two transformations depending on your input and output. For

example there can be a transformation that transforms rules

in a database to PMML and another th

from a learning strategy to PMML. While the user will have

to create the original transformation, once it is defined

the end user is abstracted from it when defining new rules.

 The second thing needed

the information between transformations and interact with

PMML. The object list will be defined as all objects used

as inputs and outputs to an expert system. Since PMML is

18

the PMML information and store it back into its object

form, and then translate the objects into an expert system.

Defining an Expert System Transformation

3.4 Bringing It All Together

Based on these assumptions two things are needed to

create an expert system: transformations and objects. The

framework will need two transformations: one to transform

s to PMML and another to convert the PMML

file to an expert system. There can be many types of these

two transformations depending on your input and output. For

example there can be a transformation that transforms rules

in a database to PMML and another that transforms rules

from a learning strategy to PMML. While the user will have

to create the original transformation, once it is defined

the end user is abstracted from it when defining new rules.

e second thing needed is a list of objects to

the information between transformations and interact with

PMML. The object list will be defined as all objects used

as inputs and outputs to an expert system. Since PMML is

the PMML information and store it back into its object

form, and then translate the objects into an expert system.

Defining an Expert System Transformation

Based on these assumptions two things are needed to

create an expert system: transformations and objects. The

framework will need two transformations: one to transform

to PMML and another to convert the PMML

file to an expert system. There can be many types of these

two transformations depending on your input and output. For

example there can be a transformation that transforms rules

at transforms rules

from a learning strategy to PMML. While the user will have

to create the original transformation, once it is defined,

the end user is abstracted from it when defining new rules.

is a list of objects to hold

the information between transformations and interact with

PMML. The object list will be defined as all objects used

as inputs and outputs to an expert system. Since PMML is

 19

the central pillar the expert system generator, the objects

should also be able to interact with a PMML document.

 20

CHAPTER IV

IMPLEMENTATION

4.1 Design Requirements

 Expert systems are embedded into many types of

applications. While most are simple windows applications,

they can be web applications or embedded into other

mechanical devices. To account for this the generator

framework should be as portable as possible. The solution

is to create an external library called ESCore. This

library will provide the framework for creating an expert

system generator: the objects to be used and the

transformations. When an end user wants to create an expert

system generator all that is needed is to include the

ESCore library.

 There are also different goals for an expert system

generator. The first approach is to embed a generator into

an existing application. In this case, users will create a

generator from rule form A to expert system B. This is

useful if an end user never changes rule form A or

 21

expert system B, but constantly needs to update their rule

base. The other approach is to create a generic expert

system generator where users can change the transformations

at will. Both requirements can be met by creating the

transformation external libraries to ESCore. While ESCore

will provide the interface for these transformations, as

libraries they can be easily swapped in and out using

reflection.

4.2 ESCore Library

ESCore can be thought of in two different parts:

transformations and objects. The object list was selected

from all of the physical objects in an expert system. There

are seven ESCore objects that are used to hold information

between the transformations. The seven objects can be seen

in Figure 8 as the first seven objects.

Object Description

Rule Object that represent one rule in a rule
file or expert system, and its certainty.

RuleSet An object that represents a collection of
rules to be used in the expert system.

Fact A knowledge fact.
FactList A collection of facts.
Attribute A representation of an attribute and its

values.
Dictionary A collection of Attributes to be used in

the expert system.

Figure 8 ESCore Objects

 22

Certainty Certainty of a rule.
ExpertSystemGene
rator

Defines the interface for the
transformation between PMML and the expert
system.

PmmlGenerator Defines the interface for the
transformation between a rule file and
PMML.

InferenceEngine Defines the structure for an inference
engine.

Figure 8 ESCore Objects (Continued)

 While these objects can probably be found in any

expert system program what makes them unique is their

interaction with PMML. All of the objects can be translated

into or from their PMML forms. For example, passing in a

PMML document can populate a RuleSet or Dictionary object.

Similarly if an empty RuleSet or dictionary is created and

filled later, the object will have functions defined to

translate it to its PMML equivalent.

 The second part of ESCore is its transformation

interfaces. ESCore provides the interface for all

transformations in an expert system generator. The first

transformation is a conversion from a knowledge source to

its PMML form. The PmmlGenerator class covers this type of

transformation. To create a PMML generator all one has to

do is extend the PmmlGenerator class and override the

abstract methods. There are two methods that need to be

overridden. The first one takes in metadata information and

 23

returns a dictionary. The second function takes in the

dictionary and rule information and returns a rule base

object. After these functions have been written the user

can call the parent code to create the PMML file.

 The second transformation is the expert system

generator. This interface is defined in the

ExpertSystemGenerator class. When creating a transformation

that extrends this class the user must overide one method

createExpertSystem. This method will take in a dictionary,

RuleSet, and an expert system indentifier. The

transformation will use this information to create the

expert system, which can be identified by supplied

indentifier.

 To accomodate testing purposes, ESCore also includes

another set of objects to run the expert system. These

objects are the factlist, fact, and inference engine

object. A user can extend the inferenceEngine object to

encapsulate the workings of an inference engine of a

specific expert system. The working memory can then be

supplied as a factlist.

 24

CHAPTER V

DEMO: A RULE BASED EXPERT SYSTEM GENERATOR

There are two applications associated with the expert

system generator: the actual generator and the expert

system viewer to test the results. The expert system

generator will generate the expert system, and standardize

the rule base into PMML. The viewer will allow you to enter

facts into working memory and run the expert system.

5.1 Creating Transformations To Be Used

 The expert system generator currently has two

transformations: a transformation between a BLEM2 learning

strategy file to PMML and another that converts a PMML file

to a Clips rule based expert system. The CLIPS expert

system is a prime candidate for the first transformation.

The clips inference engine forward chaining expert system

that is both transformations, are stored in their own dll

 25

Files, separate from the ESCore library. These

transformations can be found in Appendix D and E.

5.2 Using The Expert System Generator

When launching the expert system generator, the first

step is to set up the default information for the

generator. The defaults specify the default location where

the rule base and the PMML file. The defaults page also

specifies what transformations to use.

Figure 9 Expert System Generator Edit Defaults Screen

After the defaults have been specified, an expert system

can be generated. By specifying the metadata file, the rule

 26

file, and the name of the PMML document, a PMML file can be

generated. Then the generator can load the PMML file and

create an expert system from it with the given expert

system identifier. The status window will display the

status of each transformation.

Figure 10 Expert System Generator Main Screen

Once the expert system is created it can be tested

using the expert system viewer. The viewer allows users to

add facts to the working memory by filling out the fields

and pressing the add button. After the working memory has

been populated, the expert system can be executed by

clicking the run button.

 27

Figure 11 Expert System Viewer Main Screen

The results of the expert system will be displayed in

the output window. The user will then be able to evaluate

and process the output of their expert system.

 28

CHAPTER VI

FUTURE WORK

 While the basic principles are laid down in this

research, there are many enhancements that can be done. The

main work left to do is to create more transformation

libraries. In its current state, the general expert system

generator can only transform BLEM2 files to a Clips rule

based expert system. Future libraries will allow users to

input other sources of knowledge and create other types of

expert systems.

 Secondly, the library only accommodates rough set

theory as the main form of uncertainty. While the

uncertainty object can easily be swapped out and changed

with a new form. It is not done in this research. However

this would require multiple versions of ESCore. This would

also means there should be an XML validation for each

version of PMML. This would prohibit a transformation that

uses one form of uncertainty from loading in another form.

 29

When a transformation picks up a PMML file, it would need

to verify that the file meets the standard for that

specific transformation.

 Another enhancement is to improve how the first

transformation is selected. In the current implementation,

a user must specify the dll transformation they wish to

use. A better answer is to create a chain of

transformations. In this scenario the user would only need

to supply the input files, then the generator would select

which transformation to apply. By creating a validation

method in each of the libraries, a library can check to see

if it can understand the data. If the transformation can

validate the data it will do the transformation. Otherwise,

it will see if the next transformation is valid.

 The final enhancement is to extend the expert system

generator to cover other forms of expert systems. PMML also

allows for expert knowledge to be stored in tree form.

Using the provided framework, new methods and objects can

be created to account for these changes.

 30

CHAPTER VII

CONCLUSIONS

 The expert system generator is a valuable asset for

anyone who wishes to create or update an expert system

generator. An end user now has the ability to quickly

create a new expert system using the current generator. The

work also allows users to embed the generator framework

into their own applications to create their own custom

generator. Furthermore, once a set of transformations has

been defined the end user should be abstracted form having

to worry about the actual coding and updating process. This

will open up a wider opportunity for expert systems to be

used in the business world by spending less time creating

the expert system and more time utilizing them.

However at, this time, the number of transformations

provided is limited. Anyone who wishes to create a new

transformation must take on the burden of writing the

 31

transformations. While this may be unappealing at first,

the idea of stream lining the creation of expert system

should help offset the transformation creation process.

Once the transformations are created, they can be reused

and shared so that others can benefit from them.

 32

BIBLIOGRAPHY

[1] Data Mining Group , PMML Version 3.0
.<http://www.dmg.org/pmml-v3-0.html> .

[2] Stefan Raspl, An Overview of PMML Version 3.0

[3] Saima Rahman. “RuleBased Generator Using JESS”
May,2002.

[4]Pawlak Z. “Rough sets: basic notion”, Int. J. of
Computer and Information Science 11.

[5] Chien-Chung Chan, “Rough Sets Theory and Its
Applications” Department of Mathematics and Computer
Science University of Akron.

[6] Chien-Chung Chan, Zhicheng Su. ”From Data to Knowledge:
an Integrated Rule-Based Data Mining System”, Department of
Computer Science University of Akron.

[7] John McCarthy. “SOME EXPERT SYSTEM NEED COMMON
SENSE” Computer Science Department Stanford University
Stanford, CA 94305.

[8] BRUCE G. BUCHANAN, RICHARD 0. DUDA. “Principles of
Rule-Based Expert Systems” Department of Computer Science
Stauford University Stanford, CA.

[9] DANIEL G. BOBROW, SANJAY MITTAL, and MARK J. STEFIK
“EXPERT SYSTEMS: PERILS AUD PROMISE”, Communications of the
ACM September 1986 Volume 29 Number 9.

[10] Gary Riley “What is CLIPS”
<http://www.ghg.net/clips/WhatIsCLIPS.html> October 22,
2007

 33

APPENDICES

 34

APPENDIX A

WEKA EXAMPLE

Dictionary Rules

@relation golf
@attribute outlook { sunny,
overcast, rain}
@attribute temperature real
[0.0,100]
@attribute humidity real
@attribute windy { true, false}
@attribute class { Play, 'Dont
Play' }
@data
% 14 instances follow
sunny, 85, 85, false, 'Dont Play'
sunny, 80, 90, true, 'Dont Play'
overcast, 83, 78, false, Play
rain, 70, 96, false, Play
rain, 68, 80, false, Play
rain, 65, 70, true, 'Dont Play'
overcast, 64, 65, true, Play
sunny, 72, 95, false, 'Dont Play'
sunny, 69, 70, false, Play
rain, 75, 80, false, Play
sunny, 75, 70, true, Play
overcast, 72, 90, true, Play
overcast, 81, 75, false, Play
rain, 71, 80, true, 'Dont Play'

% Rule 1 - Length 1
'class'('Play') :- (
'outlook'('overcast')).
% Rule 2 - Length 2
'class'('Play') :- ('humidity'(X_2),
X_2 =< 75),
('outlook'('sunny')).
% Rule 3 - Length 2
'class'('Dont Play') :- (
'humidity'(X_4), X_4 > 75),
('outlook'('sunny')).
% Rule 4 - Length 2
'class'('Dont Play') :- (
'outlook'('rain')),
('windy'('true')).
% Rule 5 - Length 2
'class'('Play') :- ('outlook'('rain')
),
('windy'('false')).

 35

APPENDIX B

BLEM EXAMPLE

RULE FLIE
big,?,?,?,positive,3,1.0000,0.2308,0.4286
?,red,?,?,positive,1,1.0000,0.0769,0.1429
small,yellow,soft,?,positive,2,1.0000,0.1538,0.2857
?,blue,?,?,negative,2,1.0000,0.1538,0.3333
?,green,?,?,negative,1,1.0000,0.0769,0.1667
?,?,moderate,?,negative,1,1.0000,0.0769,0.1667
?,?,?,metal,negative,1,1.0000,0.0769,0.1667
?,?,hard,wood,positive,1,0.5000,0.0769,0.1429
?,?,hard,wood,negative,1,0.5000,0.0769,0.1667

META DATA FILE
5
5
Size c 3
small medium big
Color c 4
yellow green red blue
Feel c 3
soft moderate hard
Material c 3
plastic metal wood
Attitude c 2
positive negative

 36

APPENDIX C

PMML EXAMPLE

- <PMML version="3.1" xmlns="http://www.dmg.org/PMML-3_1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Header copyright="Example.com" />

- <DataDictionary numberOfFields="5">

- <DataField name="Size" optype="categorical" dataType="String">

 <Value value="small" />

 <Value value="medium" />

 <Value value="big" />

 </DataField>

- <DataField name="Color" optype="categorical" dataType="String">

 <Value value="yellow" />

 <Value value="green" />

 <Value value="red" />

 <Value value="blue" />

 </DataField>

- <DataField name="Feel" optype="categorical" dataType="String">

 <Value value="soft" />

 <Value value="moderate" />

 <Value value="hard" />

 </DataField>

- <DataField name="Material" optype="categorical" dataType="String">

 <Value value="plastic" />

 <Value value="metal" />

 <Value value="wood" />

 </DataField>

- <DataField name="Attitude" optype="categorical" dataType="String">

 <Value value="positive" />

 <Value value="negative" />

 </DataField>

 </DataDictionary>

<RuleSetModel modelName="ESCore Generated" functionName="Classifciation"

algorithmName="RuleSet">

- <MiningSchema>

 <MiningField name="Size" usageType="active" />

 <MiningField name="Color" usageType="active" />

 <MiningField name="Feel" usageType="active" />

 <MiningField name="Material" usageType="active" />

 <MiningField name="Attitude" usageType="predicated" />

 </MiningSchema>

-
<RuleSet>

 <RuleSelectionMethod criterion="firstHit" />

- <SimpleRule id="0" value="positive" weight="3" confidence="1">

- <CompoundPredicate booleanOperator="and">

 37

 <SimplePredicate field="Size" operator="equal" value="big" />

 </CompoundPredicate>

 </SimpleRule>

- <SimpleRule id="1" value="positive" weight="1" confidence="1">

- <CompoundPredicate booleanOperator="and">

 <SimplePredicate field="Color" operator="equal" value="red" />

 </CompoundPredicate>

 </SimpleRule>

- <SimpleRule id="2" value="positive" weight="2" confidence="1">

- <CompoundPredicate booleanOperator="and">

 <SimplePredicate field="Size" operator="equal" value="small" />

 <SimplePredicate field="Color" operator="equal" value="yellow"

/>

 <SimplePredicate field="Feel" operator="equal" value="soft" />

 </CompoundPredicate>

 </SimpleRule>

- <SimpleRule id="3" value="negative" weight="2" confidence="1">

- <CompoundPredicate booleanOperator="and">

 <SimplePredicate field="Color" operator="equal" value="blue" />

 </CompoundPredicate>

 </SimpleRule>

- <SimpleRule id="4" value="negative" weight="1" confidence="1">

- <CompoundPredicate booleanOperator="and">

 <SimplePredicate field="Color" operator="equal" value="green" />

 </CompoundPredicate>

 </SimpleRule>

- <SimpleRule id="5" value="negative" weight="1" confidence="1">

- <CompoundPredicate booleanOperator="and">

 <SimplePredicate field="Feel" operator="equal" value="moderate"

/>

 </CompoundPredicate>

 </SimpleRule>

- <SimpleRule id="6" value="negative" weight="1" confidence="1">

- <CompoundPredicate booleanOperator="and">

 <SimplePredicate field="Material" operator="equal"

value="metal" />

 </CompoundPredicate>

 </SimpleRule>

- <SimpleRule id="7" value="positive" weight="1" confidence="0.5">

- <CompoundPredicate booleanOperator="and">

 <SimplePredicate field="Feel" operator="equal" value="hard" />

 <SimplePredicate field="Material" operator="equal" value="wood"

/>

 </CompoundPredicate>

 </SimpleRule>

 </RuleSet>

 </RuleSetModel>

 </PMML>

 38

APPENDIX D

BLEM2 TO PMML TRANSFORMATION

using System;

using System.Collections.Generic;

using System.Text;

using ESCore;

using System.IO;

namespace BlemPmmlGenerator

{

 class GenerateFromBlem : PmmlGenerator

 {

 //Call the base constructor

 public GenerateFromBlem(String RuleFile, String MetaDataFile, String PmmlFileName)

: base(RuleFile, MetaDataFile, PmmlFileName)

 { }

 //Create a RuleSet object by reading in the rule and metadata file

 public override RuleSet createRuleSet(String ruleFile, Dictionary blemDictionary)

 {

 //Open the rule file

 StreamReader ruleReader = new StreamReader(ruleFile);

 String line = ruleReader.ReadLine();

 RuleSet myRuleSet = new RuleSet("BLEM Generated RuleSet");

 char[] seps ={ ',' };

 int ruleNumber = 0;

 String[] aRuleForm;

 String[] fullForm;

 Rule aRule;

 Certainty ruleCert;

 Boolean wildcardExists = false;

 //Make sure wildcard isn't in dictionary as a possible value

 for (int j = 0; j < blemDictionary.getSize(); j++)

 {

 if (blemDictionary.getAttributeAt(j).containsValue("?"))

 wildcardExists = true;

 }

 //Read in the Rules

 while (line != null)

 {

 //Read and Add to ruleset

 fullForm = line.Split(seps);

 aRuleForm = line.Split(seps, blemDictionary.getSize())

 39

 //Replace ? wildcard with Custom wildcard if ? is not a value

 if (!wildcardExists)

 {

 for (int i = 0; i < aRuleForm.Length; i++)

 {

 aRuleForm[i] = aRuleForm[i].Replace("?", Rule.wildcard);

 }

 }

 //Filter out just the rule form

 String a = aRuleForm[blemDictionary.getSize() - 1];

 aRuleForm[blemDictionary.getSize() - 1] = a.Split(seps)[0];

 Console.WriteLine();

 Console.WriteLine(fullForm[blemDictionary.getSize() + 0]);

 Console.WriteLine(fullForm[blemDictionary.getSize() + 1]);

 Console.WriteLine(fullForm[blemDictionary.getSize() + 2]);

 Console.WriteLine(fullForm[blemDictionary.getSize() + 3]);

 Console.WriteLine(fullForm[blemDictionary.getSize() + 4]);

 Console.WriteLine();

 //Create the rules Uncertainty

 ruleCert = new Certainty(

 Convert.ToDouble(fullForm[blemDictionary.getSize() - 1]),

 Convert.ToDouble(fullForm[blemDictionary.getSize() + 0]),

 Convert.ToDouble(fullForm[blemDictionary.getSize() + 1]),

 Convert.ToDouble(fullForm[blemDictionary.getSize() + 2]),

 Convert.ToDouble(fullForm[blemDictionary.getSize() + 3])

);

 //Create a Rule
 aRule = new Rule(ruleNumber.ToString(), aRuleForm, blemDictionary.getDecisionPosition(), blemDictionary, ruleCert);

 myRuleSet.add(aRule);

 ruleNumber++;

 line = ruleReader.ReadLine();

 }

 return myRuleSet;

 }

 public override Dictionary createDictionary(String metaFile)

 {

 StreamReader metaReader = new StreamReader(metaFile);

 String line;

 int dictionarySize;

 //Get the dictionary size

 dictionarySize = Int32.Parse(metaReader.ReadLine().Trim());

 Console.WriteLine("Size of Dictionary: " + dictionarySize);

 //Get the position of the key attribute

 int keyAttributePos = Int32.Parse(metaReader.ReadLine().Trim()) - 1;

 Dictionary blemDictionary = new Dictionary(dictionarySize, keyAttributePos);

 Console.WriteLine("Key Attribute: " + keyAttributePos);

 40

 //Read in the rest of the Dictionary

 String attributeName = "";

 char[] seps = { ' ' };

 String[] values;

 ESCore.Attribute anAttrib;

 for (int i = 0; i < dictionarySize; i++)

 {

 //Get Attribute Name

 line = metaReader.ReadLine().Trim();

 line = line.Replace(" "," ");

 //If I see a blank line interpret as extra line

 if (line == "")

 break;

 //Get attribute information

 values = line.Split(seps);

 attributeName = values[0].Trim();

 //Get Attribute Values

 line = metaReader.ReadLine();

 line = line.Trim();

 line = line.Replace(" ", " ");

 values = line.Split(seps, Int32.Parse(values[2].Trim()));

 //Create and add Attribute to Dictionary

 anAttrib = new ESCore.Attribute(attributeName, values);

 blemDictionary.add(anAttrib);

 }

 metaReader.Close();

 return blemDictionary;

 }

 }

}

 41

APPENDIX E

PMML TO CLIPS TRANSFORMATION

using System;

using System.Collections.Generic;

using System.Text;

using ESCore;

using System.IO;

namespace ClipsGenerator

{

 public class ClipsGenerator:ExpertSystemGenerator

 {

 public ClipsGenerator(RuleSet aRuleSet, Dictionary aDictionary, String ID)

 : base(aRuleSet, aDictionary, ID)

 { }

 public ClipsGenerator(String pmmlFile, String ID)

 : base(pmmlFile, ID)

 { }

 public override void createExpertSystem(RuleSet aRuleSet, Dictionary aDictionary, String ID)

 {

 //Create the clips file content

 String code = "";

 int predicatedPos = aDictionary.getDecisionPosition();

 //Define the Rough Fact
 code = "(deftemplate RoughFact \n \t(slot rule (type STRING)) (slot coverage) (slot strength)\n)\n\n";

 //Set fact Duplication to true

 code = code + ";(set-fact-duplication TRUE)\n\n";

 //Create the method for combing similar facts in CLIPS
 code = code + "(defmethod combine-RoughFacts((?c1 NUMBER)(?s1 NUMBER)(?c2 NUMBER)(?s2 NUMBER))\n";

 code = code + "\t(max (* ?c1 ?s1)(* ?c2 ?s2))\n)\n\n";

 //Combine Coverage

 code = code + "(defrule combine-Coverage \n";

 code = code + "\t (declare (auto-focus TRUE))\n";

 code = code + "\t ?RFact1<- (RoughFact (rule ?r)(coverage ?c1)(strength ?s1))\n";

 code = code + "\t ?RFact2<- (RoughFact (rule ?r)(coverage ?c2)(strength ?s2))\n";

 code = code + "\t (test (neq ?RFact1 ?RFact2))\n";

 code = code + "\t =>\n";

 code = code + "\t\t (retract ?RFact1)\n";

 code = code + "\t\t (modify ?RFact2 (coverage (combine-RoughFacts ?c1 ?s1 ?c2 ?s2)))\n";

 code = code + ")\n\n";

 42

 //Create the ruleset

 Rule aRule = null;

 String predicate;

 for (int i = 0; i < aRuleSet.getSize(); i++)

 {

 predicate = "";

 aRule = aRuleSet.getRule(i);

 code = code + "(defrule Rule_" + aRule.getName().Trim() + "\n";

 for (int j = 0; j < aRule.getNumAttributes(); j++)

 {

 if (aRule.getValueAt(j).Trim() != Rule.wildcard && predicatedPos != j)
 code = code + "\t (RoughFact (rule \"" + aRule.getNameAt(j) +

" is " + aRule.getValueAt(j) + "\")(coverage ?c)(strength ?s))\n ";

 if (predicatedPos == j)
 predicate = "\t\t (assert (RoughFact (rule \"" + aRule.getNameAt(j) + " is " +

 aRule.getValueAt(j) + "\")(coverage ?c)(strength ?s)))\n";

 }

 code = code + "\t =>\n";

 code = code + predicate;

 code = code + ")\n\n";

 }

 //create a clips file

 FileStream file = new FileStream(ID, FileMode.OpenOrCreate, FileAccess.Write);

 StreamWriter sw = new StreamWriter(file);

 sw.Write(code);

 sw.Close();

 file.Close();

 }

 }

}

