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CHAPTER I 

 
INTRODUCTION AND MOTIVATION 

 
 
 

With the growth of knowledge management in the 

business world, it has become crucial to codify knowledge 

into the work process. Codified knowledge is knowledge that 

has been obtained from a domain expert and transferred into 

electronic form. This transference of knowledge then helps 

businesses automate, streamline, and preserve knowledge 

into a central shareable source. Decisions and training 

specifics can then be derived from the knowledge using 

analysis tools or other domain experts. One way to 

implement this knowledge is through the use of rule-based 

expert systems. A rule based expert system is a program or 

hardware configuration that uses a set of preconditions and 

rules to come up with expert answers to a situation. These 

programs have already found a niche in the market place. 

Hospitals have used expert systems to help then diagnosis 

patients. Doctors can supply an expert system a set of 
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symptoms and it will return back a diagnosis to aid in the 

final decision making process. These systems are not 

limited to the medical industry. These systems can be 

useful to companies who wish to automate various forms of 

validation, statistical analysis, and diagnostics within 

their company or organization. 

However, creating and updating an expert system can be 

a slow and painful process. It involves understanding 

various syntax and semantics of knowledge sources and 

expert system language. This fact alone makes it hard to 

generate an expert system and even harder to teach a 

computer to build one. In a competitive atmosphere this is 

enough to turn potential users away, because of the time 

they would need to invest in building just one expert 

system. 

The goal of this research is to teach a computer how 

to generate an expert system and remove the end user from 

having to worry about specific syntax, semantics, and in-

depth coding involved in creating an expert system. By 

removing the end user from having to worry about coding and 

translating rules, a rule-based expert system can be 

generated and updated faster and without the help of a 

programmer. The ability to quickly and easily create or 
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update an expert system would allow a business to codify 

and automate or assist new business decisions quickly and 

as close to real time as possible. Therefore, the main 

beneficiaries of such a system are people who want to 

create or constantly update an expert system with very 

little prior knowledge about expert systems
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CHAPTER II 
 

 
EXPERT SYSTEMS AND THEIR DRAWBACKS 

 

 

 

2.1 What is A Rule Based Expert System 

There are three parts to an expert system: a rule 

base, working memory, and an inference engine.  

 

 

Figure 1 Expert System Architecture 

 
The first part in an expert system is the rule base. This 

is comprised of two parts: a rule set and a dictionary. The 

rule set defines expert knowledge in the form of rules
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that can be thought of as a collection of cause and effect 

sentences. An example rule is “if your eyes are brown and 

your hair is brown then you are likely to have glasses”. 

Furthermore, rules can also carry uncertainty information 

[8]. Uncertainty information contains information about how 

the rules were obtained and how accurate or plausible the 

rule assertions are. One example form of uncertainty uses 

rough set theory [4, 5]. While expert systems can differ on 

what form of uncertainty they use, this research will focus 

on using rough set theory but be implemented in a way to 

accommodate for future changes. 

 The dictionary defines the metadata for all of the 

knowledge variables, such as type, domain, and name. In the 

previous example the dictionary would contain at least 

three variables eye color, hair color, and whether or not 

they need glasses. Specifically the dictionary would define 

hair color is a discrete value and it can be white, blonde, 

brown, or black. 

The second part of the expert system is the working 

memory. This is a collection of preconditions, which are a 

collection of variables defined in the dictionary. Using 

the previous example, a sample working memory could assert 

that student A’s eyes are blue and their hair is blond.  
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The working memory and rule base are then used by an 

inference engine and which will attempt to assert new 

conditions. The process of processing rules can be 

different depending on what type of inference engine you 

are using. Two of the most commonly used algorithms are 

forward chaining and backwards chaining. Forward chaining 

attempts to take the preconditions and see if the rule base 

can assert anything from them. Backwards chaining works by 

supplying the post condition and then asserts the 

preconditions. If the preconditions match what is in 

working memory it can assert that something is true.  

Regardless of the inference technique if a rule is 

satisfied, new facts will be added to working memory. This 

process usually continues until no new assumptions can be 

made. At this point working memory can be parsed to find 

out what information can be derived from the preconditions. 

Using the preconditions “blonde hair” and “blue eyes” it 

could assert statements such as “is German” and/or “likely 

to be born in April”. 

The rule base is the cornerstone of the expert system. 

The rule base defines a domain experts knowledge into a 

codified form, and defines what attributes are important. 

These attributes are then defined in the dictionary and 

used in working memory. Due to its importance the goal of 
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the expert system generator will be to create the rule base 

for a given expert system. 

2.2 Creating An Expert System 

 
To create an expert system a user must have: an expert 

source of knowledge, an inference engine, an understanding 

on how to build a rule base, and knowledge of how to enter 

and retrieves IO from the expert system.  The hardest part 

is obtaining the knowledge to create the rule base. These 

knowledge sources can come from various places, such as 

domain expert, data mining, and other legacy devices. 

Examples of such knowledge sources can be seen in Appendix 

A and B.  

 

 

Figure 2 Creating a Rule Base 
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To currently create an expert system a programmer must take 

the knowledge source and translate it into rule form. While 

this may sound easy, it involves the programmer having a 

partial understanding about the knowledge that is being 

codified and the expert system language you are coding in. 

After the knowledge has been transferred to a rule base, 

the user must supply input into the expert system, in the 

form of the working memory. This input can come from a GUI, 

console, or script depending on the type of application. 

Once this is complete the user can run the expert system 

and translate the answer from working memory. 

2.3 Drawbacks To Expert Systems 

 
While Expert systems in general are useful in 

knowledge codification, they do have several drawbacks. The 

first and main drawback to an expert system is that expert 

system programmers need to have an understanding on how to 

create the expert system and domain knowledge. To create an 

expert system the user must understand how to: mine rules 

from a dataset, transform those rules into an expert 

system, and run those rules. This alone is a major 

deterrent and time-consuming endeavor. Most companies don’t 

want to spend the time and money teaching their employees 

how to code, understand, and maintain expert systems. 
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The second drawback is that end users are sometimes 

overwhelmed by expert systems. Even after it has been 

created they are unsure on how the system comes up with its 

decisions or maintains them as knowledge changes. This is 

only compounded by the fact that expert systems are hard to 

create and develop [7, 9]. However if expert systems were 

easier to implement, end users could spend more time 

understanding the mechanics of how the system works and 

less about its syntax and grammar. 

The final problem is that even if you decide to use an 

expert system, the process of turning expert knowledge into 

an expert system lacks standardization. First of all, the 

user can mine knowledge from various sources, such as 

learning strategies and interviewing. After the knowledge 

has been obtained it must be converted into the expert 

system of the user choice such as Clips or Jess. 

Furthermore, each of these choices can affect the 

reliability, speed, and reusability of an expert system.  

2.4 Solution: An Expert System Generator 

 
These drawbacks are often enough to keep a user from 

using or creating an expert system, because of its 

complexity and the initial startup cost associated with 

training employees to use them. The solution to this 
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problem is to abstract the end user from as much of the 

complexity of expert system programming language and 

knowledge transformation as possible. The problem can be 

solved by creating an expert system generator. 

An expert system generator would be responsible for 

taking in a knowledge source and creating a ready to use 

expert system with very little input or knowledge from the 

creator. However, the main problem with creating an expert 

system generator is the lack of a unified starting point. 

The knowledge used to create the expert system can come in 

many forms: learning strategies, databases, personal 

knowledge, xml files, and many more. Each of these forms 

has a different syntax and semantics for its rules and a 

user will have to translate those rules to an expert system 

rule base. This is a problem for the computer because 

unlike humans, it is harder for a computer to learn and 

adapt to each new form. The solution to this problem is to 

create a standard to be used as an input to the expert 

system generator. While this may add an additional step to 

the process it will also help create a standard in all 

forms of rule-based knowledge within a company. 

 The second problem to address is how to create an 

expert system generator. An expert system generator must be 

able to parse the standard file and store all of the 
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information in memory and perform a transformation on that 

data to a specific expert system. 
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CHAPTER III 
 
 

CREATING AN EXPERT SYSTEM GENERATOR 
 

 
 

While simple expert system generators exist, they are 

tailored strictly from knowledge source A to expert system 

B. This means that there could be a countless number of 

generators all differing in implementations [3, 6]. When 

creating a generic expert system generator the goals are to 

standardize all of the implementations, to eliminate 

repeated work and to centralize many different generators 

into one. There are two steps to creating this expert 

system generator: creating a standardized input file and 

generating an expert system from that standard.  

 3.1 PMML 

 
Predictive Model Markup Language, or PMML for short, 

was found to be the best candidate for the standard input 

file. PMML is an xml extension written by the Data Mining 

Group, and was created to be a standard between various 

data mining models. PMML was originally created in the late 
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1990’s. Since then it has evolved and grown to cover 

various types of data mining models in version 3.1.  Since 

PMML’s conception, it has found itself a useful asset in 

data mining and manipulation.  

PMML is a prime candidate for input to an expert 

system generator for two reasons: PMML was designed to be a 

standard in data mining models and it is easily parsed. 

Since PMML was designed to be used for different models, 

its design is flexible enough to be used for a rule based 

expert system or even a tree based expert system. 

A PMML file consists of many different tags and 

attributes. A PMML document is comprised of two parts: a 

DataDicationary and the RuleSet. The first section in a 

PMML document is the Dictionary, which holds all of the 

information about the attributes that are used in the rule 

set. 

 

- <DataDictionary numberOfFields="2"> 
- <DataField name="Size" optype="categorical" dataType="String"> 

  <Value value="small" />  
  <Value value="medium" />  
  <Value value="big" />  

  </DataField> 
- <DataField name="Attitude" optype="categorical" dataType="String"> 

  <Value value="positive" />  
  <Value value="negative" />  

  </DataField> 
</DataDictionary> 

Figure 3 Sample PMML Dictionary 

 

The dictionary is composed of 3 main tags: DataDictionary, 

DataField, and Value. A DataDictionary is the opening tag 
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for the dictionary and symbolizes the start of the 

dictionary. The DataDictionary tag has one attribute that 

specifies the number of variables described in the 

dictionary. In Figure 3 the dictionary contains two 

attributes: size and color. The DataField tag defines the 

name, type, and domain of the attribute. The first 

attribute is called color and its domain is categorical, 

with its values represented as strings. The final tag is 

the Value tag. The value tag defines the possible values 

that the parent tag takes on. In this example the possible 

values of “size” are “small”, “medium”, and “large”. 

 The next portion of a PMML document is the portion of 

the document describing how the rules were obtained and how 

they should be interpreted.  

 

<RuleSetModel modelName="ESCore Generated"> 
<MiningSchema> 
  <MiningField name="Size" usageType="active" /> 
   <MiningField name="Attitude" usageType="predicated" /> 
</MiningSchema> 

Figure 4 Sample PMML Rule Set Model 

 
The RuleSetModel tag tells how the rules will be displayed 

as a rule set. Since PMML covers various mining models 

there are other forms that rules could be displayed in, 

such as trees. The mining schema defines what attributes 

will be used from the dictionary and which is the decision 

attribute. Each Attribute will be represented as a 
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MiningField tag. The decision attribute will also be 

displayed as having a usage type of “predicated”. 

 

<RuleSet> 
  <RuleSelectionMethod criterion="firstHit" /> 

<SimpleRule id="0" value="positive" weight="3" confidence="1"> 
- <CompoundPredicate booleanOperator="and"> 

  <SimplePredicate field="Size" operator="equal" 
value="big" />  

  </CompoundPredicate> 
  </SimpleRule> 

</RuleSet> 
</RuleSetModel> 
 

Figure 5 Sample PMML Rule Set 

 
The RuleSet tag delimits the beginning of the rule 

section. The RuleSelectionMethod defines how the rules are 

to be selected. In this case we have declared that rules 

are fired by first hit. The SimpleRule tag specifies the 

rules unique id, the value that the decision value takes 

on, and the rule’s uncertainty. The next tag is the 

CompoundPredicate tag. Every child of this tag is connected 

by the booleanOperator, which is usually “and” or “or”. 

Next, each value in the rule is specified using 

SimplePredicate. Using the and/or connectives complex rules 

can be made, such as “if you have studied and your GPA is 

4.0 then you will get an A on the final”. The 

SimplePredicate specifies a rule’s preconditions. For this 

instance, Rule 0 is defined to be: the attitude is positive 

where the Size is equal to big. Finally all of the tags can 
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be closed off to finish off the PMML file. A full PMML 

example can be seen in Appendix C. 

 The second reason PMML was chosen was its parse 

ability. Since the PMML is an extension of XML, many 

libraries have been developed to aid in parsing XML syntax. 

This will have two benefits: accuracy and repeatability. 

The most important is accuracy. When retrieving the data 

from the PMML, it will be easier to parse out the data 

using language-supplied libraries. This will help eliminate 

errors while parsing a messy regular expression. Secondly, 

since most languages include a library to parse XML files, 

this approach to an expert system generator can be 

duplicated in another programming language.  

While PMML offers the best solution as an input, it 

lacks the ability to represent all forms of uncertainty. 

The current PMML language only allows for certainty factor 

theory as its form of uncertainty. To be an accurate input 

file for rough set theory, several attributes will have to 

be added to the rule tag: certainty, coverage, strength, 

probability, and support. With a standard rule form, all 

that is left is to define a transformation that transforms 

an original rule source into PMML [1, 2]. 
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3.2 Creating A PMML Generator 

 
To create a PMML generator one needs to know the 

syntax and semantics of the rules and metadata/dictionary 

information. Once the syntax of the original rule set has 

been identified, one can parse the rule and metadata 

information, and then translate it into a form 

understandable to a computer. 

 

Figure 6 Defining a PMML Transformation 

 
This can be accomplished by storing the dictionary and rule 

base as objects in an object oriented language. Once the 

information is stored in a computer as objects, it can be 

translated into PMML for permanent storage. 

3.3 Expert System Generator   

 
With a well-defined input it is now possible to create 

an expert system generator. The computer can parse through 



  

the PMML information and store it back into its object 

form, and then translate the objects into an expert system.

Figure 7 Defining an Expert System Transformation

 

3.4 Bringing It All Tog

 
 Based on these assumptions two things are needed to 

create an expert system: transformations and objects. The 

framework will need two transformations: one to transform 

knowledge sources

file to an expert system. There can be many types of these 

two transformations depending on your input and output. For 

example there can be a transformation that transforms rules 

in a database to PMML and another th

from a learning strategy to PMML. While the user will have 

to create the original transformation, once it is defined

the end user is abstracted from it when defining new rules.

 The second thing needed

the information between transformations and interact with 

PMML. The object list will be defined as all objects used 

as inputs and outputs to an expert system. Since PMML is 
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the PMML information and store it back into its object 

form, and then translate the objects into an expert system.

 

Defining an Expert System Transformation

3.4 Bringing It All Together 

Based on these assumptions two things are needed to 

create an expert system: transformations and objects. The 

framework will need two transformations: one to transform 

s to PMML and another to convert the PMML 

file to an expert system. There can be many types of these 

two transformations depending on your input and output. For 

example there can be a transformation that transforms rules 

in a database to PMML and another that transforms rules 

from a learning strategy to PMML. While the user will have 

to create the original transformation, once it is defined

the end user is abstracted from it when defining new rules.

e second thing needed is a list of objects to

the information between transformations and interact with 

PMML. The object list will be defined as all objects used 

as inputs and outputs to an expert system. Since PMML is 

the PMML information and store it back into its object 

form, and then translate the objects into an expert system. 

Defining an Expert System Transformation 

Based on these assumptions two things are needed to 

create an expert system: transformations and objects. The 

framework will need two transformations: one to transform 

to PMML and another to convert the PMML 

file to an expert system. There can be many types of these 

two transformations depending on your input and output. For 

example there can be a transformation that transforms rules 

at transforms rules 

from a learning strategy to PMML. While the user will have 

to create the original transformation, once it is defined, 

the end user is abstracted from it when defining new rules. 

is a list of objects to hold 

the information between transformations and interact with 

PMML. The object list will be defined as all objects used 

as inputs and outputs to an expert system. Since PMML is 
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the central pillar the expert system generator, the objects 

should also be able to interact with a PMML document.
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CHAPTER IV 
 

 

IMPLEMENTATION 
 
 
 

4.1 Design Requirements 

 
 Expert systems are embedded into many types of 

applications. While most are simple windows applications, 

they can be web applications or embedded into other 

mechanical devices. To account for this the generator 

framework should be as portable as possible. The solution 

is to create an external library called ESCore. This 

library will provide the framework for creating an expert 

system generator: the objects to be used and the 

transformations. When an end user wants to create an expert 

system generator all that is needed is to include the 

ESCore library. 

 There are also different goals for an expert system 

generator. The first approach is to embed a generator into 

an existing application. In this case, users will create a 

generator from rule form A to expert system B. This is 

useful if an end user never changes rule form A or 
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expert system B, but constantly needs to update their rule 

base. The other approach is to create a generic expert 

system generator where users can change the transformations 

at will. Both requirements can be met by creating the 

transformation external libraries to ESCore. While ESCore 

will provide the interface for these transformations, as 

libraries they can be easily swapped in and out using 

reflection.  

4.2 ESCore Library 

 
ESCore can be thought of in two different parts: 

transformations and objects. The object list was selected 

from all of the physical objects in an expert system. There 

are seven ESCore objects that are used to hold information 

between the transformations.  The seven objects can be seen 

in Figure 8 as the first seven objects. 

 

Object Description 

Rule Object that represent one rule in a rule 
file or expert system, and its certainty. 

RuleSet An object that represents a collection of 
rules to be used in the expert system. 

Fact A knowledge fact. 
FactList A collection of facts. 
Attribute A representation of an attribute and its 

values. 
Dictionary A collection of Attributes to be used in 

the expert system. 

 

Figure 8 ESCore Objects 
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Certainty Certainty of a rule. 
ExpertSystemGene
rator 

Defines the interface for the 
transformation between PMML and the expert 
system. 

PmmlGenerator Defines the interface for the 
transformation between a rule file and 
PMML. 

InferenceEngine Defines the structure for an inference 
engine. 

 

Figure 8 ESCore Objects (Continued) 

 
 While these objects can probably be found in any 

expert system program what makes them unique is their 

interaction with PMML. All of the objects can be translated 

into or from their PMML forms. For example, passing in a 

PMML document can populate a RuleSet or Dictionary object. 

Similarly if an empty RuleSet or dictionary is created and 

filled later, the object will have functions defined to 

translate it to its PMML equivalent. 

 The second part of ESCore is its transformation 

interfaces. ESCore provides the interface for all 

transformations in an expert system generator. The first 

transformation is a conversion from a knowledge source to 

its PMML form. The PmmlGenerator class covers this type of 

transformation. To create a PMML generator all one has to 

do is extend the PmmlGenerator class and override the 

abstract methods. There are two methods that need to be 

overridden. The first one takes in metadata information and 
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returns a dictionary. The second function takes in the 

dictionary and rule information and returns a rule base 

object. After these functions have been written the user 

can call the parent code to create the PMML file. 

 The second transformation is the expert system 

generator. This interface is defined in the 

ExpertSystemGenerator class. When creating a transformation 

that extrends this class the user must overide one method 

createExpertSystem. This method will take in a dictionary, 

RuleSet, and an expert system indentifier. The 

transformation will use this information to create the 

expert system, which can be identified by supplied 

indentifier. 

 To accomodate testing purposes, ESCore also includes 

another set of objects to run the expert system. These 

objects are the factlist, fact, and inference engine 

object. A user can extend the inferenceEngine object to 

encapsulate the workings of an inference engine of a 

specific expert system.  The working memory can then be 

supplied as a factlist.
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CHAPTER V 
 
 

DEMO: A RULE BASED EXPERT SYSTEM GENERATOR 
 

 
 

There are two applications associated with the expert 

system generator: the actual generator and the expert 

system viewer to test the results. The expert system 

generator will generate the expert system, and standardize 

the rule base into PMML. The viewer will allow you to enter 

facts into working memory and run the expert system. 

5.1 Creating Transformations To Be Used 

 
 The expert system generator currently has two 

transformations: a transformation between a BLEM2 learning 

strategy file to PMML and another that converts a PMML file 

to a Clips rule based expert system. The CLIPS expert 

system is a prime candidate for the first transformation. 

The clips inference engine forward chaining expert system 

that is both transformations, are stored in their own dll 
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Files, separate from the ESCore library. These 

transformations can be found in Appendix D and E. 

5.2 Using The Expert System Generator 

 
When launching the expert system generator, the first 

step is to set up the default information for the 

generator. The defaults specify the default location where 

the rule base and the PMML file. The defaults page also 

specifies what transformations to use. 

  

 

Figure 9 Expert System Generator Edit Defaults Screen 

 

After the defaults have been specified, an expert system 

can be generated. By specifying the metadata file, the rule 
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file, and the name of the PMML document, a PMML file can be 

generated. Then the generator can load the PMML file and 

create an expert system from it with the given expert 

system identifier. The status window will display the 

status of each transformation. 

 

Figure 10 Expert System Generator Main Screen 

 

Once the expert system is created it can be tested 

using the expert system viewer. The viewer allows users to 

add facts to the working memory by filling out the fields 

and pressing the add button. After the working memory has 

been populated, the expert system can be executed by 

clicking the run button. 
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Figure 11 Expert System Viewer Main Screen 

 

The results of the expert system will be displayed in 

the output window. The user will then be able to evaluate 

and process the output of their expert system.
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CHAPTER VI 
 

 

FUTURE WORK 
 

 
 

 While the basic principles are laid down in this 

research, there are many enhancements that can be done. The 

main work left to do is to create more transformation 

libraries. In its current state, the general expert system 

generator can only transform BLEM2 files to a Clips rule 

based expert system. Future libraries will allow users to 

input other sources of knowledge and create other types of 

expert systems.  

 Secondly, the library only accommodates rough set 

theory as the main form of uncertainty. While the 

uncertainty object can easily be swapped out and changed 

with a new form. It is not done in this research. However 

this would require multiple versions of ESCore. This would 

also means there should be an XML validation for each 

version of PMML. This would prohibit a transformation that 

uses one form of uncertainty from loading in another form. 
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When a transformation picks up a PMML file, it would need 

to verify that the file meets the standard for that 

specific transformation. 

 Another enhancement is to improve how the first 

transformation is selected. In the current implementation, 

a user must specify the dll transformation they wish to 

use. A better answer is to create a chain of 

transformations. In this scenario the user would only need 

to supply the input files, then the generator would select 

which transformation to apply. By creating a validation 

method in each of the libraries, a library can check to see 

if it can understand the data. If the transformation can 

validate the data it will do the transformation. Otherwise, 

it will see if the next transformation is valid.   

 The final enhancement is to extend the expert system 

generator to cover other forms of expert systems. PMML also 

allows for expert knowledge to be stored in tree form. 

Using the provided framework, new methods and objects can 

be created to account for these changes.
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CHAPTER VII 
 

 

CONCLUSIONS 
 
 
 

 The expert system generator is a valuable asset for 

anyone who wishes to create or update an expert system 

generator. An end user now has the ability to quickly 

create a new expert system using the current generator. The 

work also allows users to embed the generator framework 

into their own applications to create their own custom 

generator. Furthermore, once a set of transformations has 

been defined the end user should be abstracted form having 

to worry about the actual coding and updating process. This 

will open up a wider opportunity for expert systems to be 

used in the business world by spending less time creating 

the expert system and more time utilizing them.   

However at, this time, the number of transformations 

provided is limited. Anyone who wishes to create a new 

transformation must take on the burden of writing the 
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transformations. While this may be unappealing at first, 

the idea of stream lining the creation of expert system 

should help offset the transformation creation process. 

Once the transformations are created, they can be reused 

and shared so that others can benefit from them.
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APPENDIX A  

WEKA EXAMPLE 

 

 

 

    
 

Dictionary Rules 

@relation golf 
@attribute outlook { sunny, 
overcast, rain} 
@attribute temperature real 
[0.0,100] 
@attribute humidity real 
@attribute windy { true, false} 
@attribute class { Play, 'Dont 
Play' } 
@data 
% 14 instances follow 
sunny, 85, 85, false, 'Dont Play' 
sunny, 80, 90, true, 'Dont Play' 
overcast, 83, 78, false, Play 
rain, 70, 96, false, Play 
rain, 68, 80, false, Play 
rain, 65, 70, true, 'Dont Play' 
overcast, 64, 65, true, Play 
sunny, 72, 95, false, 'Dont Play' 
sunny, 69, 70, false, Play 
rain, 75, 80, false, Play 
sunny, 75, 70, true, Play 
overcast, 72, 90, true, Play 
overcast, 81, 75, false, Play 
rain, 71, 80, true, 'Dont Play' 

% Rule 1 - Length 1 
'class'('Play') :- ( 
'outlook'('overcast') ). 
% Rule 2 - Length 2 
'class'('Play') :- ( 'humidity'(X_2), 
X_2 =< 75 ), 
( 'outlook'('sunny') ). 
% Rule 3 - Length 2 
'class'('Dont Play') :- ( 
'humidity'(X_4), X_4 > 75 ), 
( 'outlook'('sunny') ). 
% Rule 4 - Length 2 
'class'('Dont Play') :- ( 
'outlook'('rain') ), 
( 'windy'('true') ). 
% Rule 5 - Length 2 
'class'('Play') :- ( 'outlook'('rain') 
), 
( 'windy'('false') ). 
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APPENDIX B  

BLEM EXAMPLE 

 

 

 
RULE FLIE 
big,?,?,?,positive,3,1.0000,0.2308,0.4286 
?,red,?,?,positive,1,1.0000,0.0769,0.1429 
small,yellow,soft,?,positive,2,1.0000,0.1538,0.2857 
?,blue,?,?,negative,2,1.0000,0.1538,0.3333 
?,green,?,?,negative,1,1.0000,0.0769,0.1667 
?,?,moderate,?,negative,1,1.0000,0.0769,0.1667 
?,?,?,metal,negative,1,1.0000,0.0769,0.1667 
?,?,hard,wood,positive,1,0.5000,0.0769,0.1429 
?,?,hard,wood,negative,1,0.5000,0.0769,0.1667 
 
META DATA FILE 
5  
5  
Size c 3  
small medium big  
Color c 4 
yellow green red blue  
Feel c 3  
soft moderate hard  
Material c 3  
plastic metal wood 
Attitude c 2 
positive negative 
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APPENDIX C  

PMML EXAMPLE 

 
- <PMML version="3.1" xmlns="http://www.dmg.org/PMML-3_1" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

  <Header copyright="Example.com" />  

- <DataDictionary numberOfFields="5"> 

- <DataField name="Size" optype="categorical" dataType="String"> 

  <Value value="small" />  

  <Value value="medium" />  

  <Value value="big" />  

  </DataField> 

- <DataField name="Color" optype="categorical" dataType="String"> 

  <Value value="yellow" />  

  <Value value="green" />  

  <Value value="red" />  

  <Value value="blue" />  

  </DataField> 

- <DataField name="Feel" optype="categorical" dataType="String"> 

  <Value value="soft" />  

  <Value value="moderate" />  

  <Value value="hard" />  

  </DataField> 

- <DataField name="Material" optype="categorical" dataType="String"> 

  <Value value="plastic" />  

  <Value value="metal" />  

  <Value value="wood" />  

  </DataField> 

- <DataField name="Attitude" optype="categorical" dataType="String"> 

  <Value value="positive" />  

  <Value value="negative" />  

  </DataField> 

  </DataDictionary> 

<RuleSetModel modelName="ESCore Generated" functionName="Classifciation" 

algorithmName="RuleSet"> 

- <MiningSchema> 

  <MiningField name="Size" usageType="active" />  

  <MiningField name="Color" usageType="active" />  

  <MiningField name="Feel" usageType="active" />  

  <MiningField name="Material" usageType="active" />  

  <MiningField name="Attitude" usageType="predicated" />  

  </MiningSchema> 

- 
<RuleSet> 

  <RuleSelectionMethod criterion="firstHit" />  

- <SimpleRule id="0" value="positive" weight="3" confidence="1"> 

- <CompoundPredicate booleanOperator="and">
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  <SimplePredicate field="Size" operator="equal" value="big" />  

  </CompoundPredicate> 

  </SimpleRule> 

- <SimpleRule id="1" value="positive" weight="1" confidence="1"> 

- <CompoundPredicate booleanOperator="and"> 

  <SimplePredicate field="Color" operator="equal" value="red" />  

  </CompoundPredicate> 

  </SimpleRule> 

- <SimpleRule id="2" value="positive" weight="2" confidence="1"> 

- <CompoundPredicate booleanOperator="and"> 

  <SimplePredicate field="Size" operator="equal" value="small" />  

  <SimplePredicate field="Color" operator="equal" value="yellow" 

/>  

  <SimplePredicate field="Feel" operator="equal" value="soft" />  

  </CompoundPredicate> 

  </SimpleRule> 

- <SimpleRule id="3" value="negative" weight="2" confidence="1"> 

- <CompoundPredicate booleanOperator="and"> 

  <SimplePredicate field="Color" operator="equal" value="blue" />  

  </CompoundPredicate> 

  </SimpleRule> 

- <SimpleRule id="4" value="negative" weight="1" confidence="1"> 

- <CompoundPredicate booleanOperator="and"> 

  <SimplePredicate field="Color" operator="equal" value="green" />  

  </CompoundPredicate> 

  </SimpleRule> 

- <SimpleRule id="5" value="negative" weight="1" confidence="1"> 

- <CompoundPredicate booleanOperator="and"> 

  <SimplePredicate field="Feel" operator="equal" value="moderate" 

/>  

  </CompoundPredicate> 

  </SimpleRule> 

- <SimpleRule id="6" value="negative" weight="1" confidence="1"> 

- <CompoundPredicate booleanOperator="and"> 

  <SimplePredicate field="Material" operator="equal" 

value="metal" />  

  </CompoundPredicate> 

  </SimpleRule> 

- <SimpleRule id="7" value="positive" weight="1" confidence="0.5"> 

- <CompoundPredicate booleanOperator="and"> 

  <SimplePredicate field="Feel" operator="equal" value="hard" />  

  <SimplePredicate field="Material" operator="equal" value="wood" 

/>  

  </CompoundPredicate> 

  </SimpleRule> 

  </RuleSet> 

  </RuleSetModel> 

  </PMML> 
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APPENDIX D  

BLEM2 TO PMML TRANSFORMATION 

using System; 

using System.Collections.Generic; 

using System.Text; 

using ESCore; 

using System.IO; 

namespace BlemPmmlGenerator 

{ 

    class GenerateFromBlem : PmmlGenerator 

    { 

        //Call the base constructor 

       public GenerateFromBlem(String RuleFile, String MetaDataFile, String PmmlFileName) 

: base(RuleFile, MetaDataFile, PmmlFileName) 

        { } 

 

        //Create a RuleSet object by reading in the rule and metadata file 

        public override RuleSet createRuleSet(String ruleFile, Dictionary blemDictionary) 

        { 

            //Open the rule file 

            StreamReader ruleReader = new StreamReader(ruleFile); 

            String line = ruleReader.ReadLine(); 

            RuleSet myRuleSet = new RuleSet("BLEM Generated RuleSet"); 

 

            char[] seps ={ ',' }; 

            int ruleNumber = 0; 

            String[] aRuleForm; 

            String[] fullForm; 

            Rule aRule; 

            Certainty ruleCert; 

            Boolean wildcardExists = false; 

 

            //Make sure wildcard isn't in dictionary as a possible value 

            for (int j = 0; j < blemDictionary.getSize(); j++) 

            { 

                if (blemDictionary.getAttributeAt(j).containsValue("?")) 

                    wildcardExists = true; 

            } 

            

            //Read in the Rules 

            while (line != null) 

            { 

                //Read and Add to ruleset 

                fullForm = line.Split(seps); 

                aRuleForm = line.Split(seps, blemDictionary.getSize())
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                //Replace ? wildcard with Custom wildcard if ? is not a value 

                if (!wildcardExists) 

                { 

                    for (int i = 0; i < aRuleForm.Length; i++) 

                    { 

                        aRuleForm[i] = aRuleForm[i].Replace("?", Rule.wildcard); 

                    } 

                } 

 

 

 

                //Filter out just the rule form 

                String a = aRuleForm[blemDictionary.getSize() - 1]; 

                aRuleForm[blemDictionary.getSize() - 1] = a.Split(seps)[0]; 

 

                Console.WriteLine(); 

                Console.WriteLine(fullForm[blemDictionary.getSize() + 0]); 

                Console.WriteLine(fullForm[blemDictionary.getSize() + 1]); 

                Console.WriteLine(fullForm[blemDictionary.getSize() + 2]); 

                Console.WriteLine(fullForm[blemDictionary.getSize() + 3]); 

                Console.WriteLine(fullForm[blemDictionary.getSize() + 4]); 

                Console.WriteLine(); 

              

  //Create the rules Uncertainty 

                ruleCert = new Certainty( 

                    Convert.ToDouble(fullForm[blemDictionary.getSize() - 1]),  

                    Convert.ToDouble(fullForm[blemDictionary.getSize() + 0]), 

                    Convert.ToDouble(fullForm[blemDictionary.getSize() + 1]), 

                    Convert.ToDouble(fullForm[blemDictionary.getSize() + 2]), 

                    Convert.ToDouble(fullForm[blemDictionary.getSize() + 3]) 

                    ); 

 

                //Create a Rule 
                aRule = new Rule(ruleNumber.ToString(), aRuleForm, blemDictionary.getDecisionPosition(), blemDictionary, ruleCert); 

                myRuleSet.add(aRule); 

 

                ruleNumber++; 

                line = ruleReader.ReadLine(); 

            } 

            return myRuleSet; 

        } 

 

        public override Dictionary createDictionary(String metaFile) 

        { 

            StreamReader metaReader = new StreamReader(metaFile); 

            String line; 

            int dictionarySize; 

 

            //Get the dictionary size 

            dictionarySize = Int32.Parse(metaReader.ReadLine().Trim()); 

            Console.WriteLine("Size of Dictionary: " + dictionarySize); 

 

            //Get the position of the key attribute 

            int keyAttributePos = Int32.Parse(metaReader.ReadLine().Trim()) - 1; 

            Dictionary blemDictionary = new Dictionary(dictionarySize, keyAttributePos); 

            Console.WriteLine("Key Attribute: " + keyAttributePos); 
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            //Read in the rest of the Dictionary 

            String attributeName = ""; 

            char[] seps = { ' ' }; 

            String[] values; 

            ESCore.Attribute anAttrib; 

 

            for (int i = 0; i < dictionarySize; i++) 

            { 

                //Get Attribute Name 

                line = metaReader.ReadLine().Trim(); 

                line = line.Replace("  "," "); 

 

                //If I see a blank line interpret as extra line 

                if (line == "") 

                    break; 

                 

                //Get attribute information  

                values = line.Split(seps); 

                attributeName = values[0].Trim(); 

 

                //Get Attribute Values 

                line = metaReader.ReadLine(); 

                line = line.Trim(); 

                line = line.Replace("  ", " "); 

                values = line.Split(seps, Int32.Parse(values[2].Trim())); 

 

 

                //Create and add Attribute to Dictionary 

                anAttrib = new ESCore.Attribute(attributeName, values); 

                blemDictionary.add(anAttrib); 

            } 

            metaReader.Close(); 

            return blemDictionary; 

        } 

 

    } 

}
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APPENDIX E  

PMML TO CLIPS TRANSFORMATION 

using System; 

using System.Collections.Generic; 

using System.Text; 

using ESCore; 

using System.IO; 

namespace ClipsGenerator 

{ 

    public class ClipsGenerator:ExpertSystemGenerator 

    { 

        public ClipsGenerator(RuleSet aRuleSet, Dictionary aDictionary, String ID) 

            : base(aRuleSet, aDictionary, ID) 

        { } 

 

        public ClipsGenerator(String pmmlFile, String ID) 

            : base(pmmlFile, ID) 

        { } 

 

        public override void createExpertSystem(RuleSet aRuleSet, Dictionary aDictionary, String ID) 

        { 

            //Create the clips file content 

            String code = ""; 

            int predicatedPos = aDictionary.getDecisionPosition(); 

 

            //Define the Rough Fact 
            code = "(deftemplate RoughFact \n \t(slot rule (type STRING)) (slot coverage) (slot strength)\n)\n\n"; 

 

            //Set fact Duplication to true 

            code = code + ";(set-fact-duplication TRUE)\n\n"; 

 

            //Create the method for combing similar facts in CLIPS 
            code = code + "(defmethod combine-RoughFacts((?c1 NUMBER)(?s1 NUMBER)(?c2 NUMBER)(?s2 NUMBER))\n"; 

            code = code + "\t(max (* ?c1 ?s1)(* ?c2 ?s2))\n)\n\n"; 

 

            //Combine Coverage 

            code = code + "(defrule combine-Coverage \n"; 

            code = code + "\t (declare (auto-focus TRUE))\n"; 

            code = code + "\t ?RFact1<- (RoughFact (rule ?r)(coverage ?c1)(strength ?s1))\n"; 

            code = code + "\t ?RFact2<- (RoughFact (rule ?r)(coverage ?c2)(strength ?s2))\n"; 

            code = code + "\t (test (neq ?RFact1 ?RFact2))\n"; 

            code = code + "\t =>\n"; 

            code = code + "\t\t (retract ?RFact1)\n"; 

            code = code + "\t\t (modify ?RFact2 (coverage (combine-RoughFacts ?c1 ?s1 ?c2 ?s2 )))\n"; 

            code = code + ")\n\n";
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            //Create the ruleset 

            Rule aRule = null; 

            String predicate; 

            for (int i = 0; i < aRuleSet.getSize(); i++) 

            { 

                predicate = ""; 

                aRule = aRuleSet.getRule(i); 

 

                code = code + "(defrule Rule_" + aRule.getName().Trim() + "\n"; 

                for (int j = 0; j < aRule.getNumAttributes(); j++) 

                { 

                    if (aRule.getValueAt(j).Trim() != Rule.wildcard && predicatedPos != j) 
                        code = code + "\t (RoughFact (rule \"" + aRule.getNameAt(j) +  

" is " + aRule.getValueAt(j) + "\")(coverage ?c)(strength ?s))\n "; 

                    if (predicatedPos == j) 
                        predicate = "\t\t (assert (RoughFact (rule \"" + aRule.getNameAt(j) + " is " + 

 aRule.getValueAt(j) + "\")(coverage ?c)(strength ?s)))\n"; 

                } 

                code = code + "\t =>\n"; 

                code = code + predicate; 

                code = code + ")\n\n"; 

            } 

 

            //create a clips file 

            FileStream file = new FileStream(ID, FileMode.OpenOrCreate, FileAccess.Write); 

            StreamWriter sw = new StreamWriter(file); 

            sw.Write(code); 

            sw.Close(); 

            file.Close(); 

        } 

    } 

} 


