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ABSTRACT

The development of nanoscience and nanotechnology has important impli-

cations for advances of electronics, biology, medicine, photonics, and other areas.

The growing knowledge in this field will lead to profound progress in the ways that

materials, devices, and systems are understood and created. Numerical simulation

is an indispensabe tool for understanding nanoscale systems, as our usual intuition

may be misleading at the nanoscale.

This dissertation focuses on two classes of numerical methods: the finite

element method (FEM) and finite difference (FD) methods with their generaliza-

tion known as the flexible local approximation method (FLAME). FEM is a versatile

numerical method that is widely applied in all areas of engineering analysis. This

method remains powerful for many physical nanoscale models, especially prob-

lems invloving complex geometries and inhomogeneous media, provided that the

required number of finite elements is not too large. However, for a large number

of objects, the complexity and the computational overhead of FE meshes and the

related data structures become too high.

Based on the simple Taylor expansions, FD method has significant advan-

tage for geometrically simple problems. However, the accuracy of FD deteriorates

for problems with geometrically complex boundaries and material interfaces not
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conforming to the FD grid lines. The Taylor expansion breaks down at material

interface boundaries because the solution is not sufficiently smooth for such prob-

lems. FLAME is a generalized FD calculus recently developed. It replaces the Taylor

expansion with a physically and mathematically more accurate local approximation.

By this way, this method reduces or even eliminates the “staircase” noise at slanted

or curved material interfaces. FLAME is first applied in the simulations of electro-

static and magnetostatic multiparticle problems. It shows higher accuracy both in

two dimensions (2D) and three dimensions (3D) compared with the finite differ-

ence (FD) method and FEM. FLAME also exhibits flexibility in the interpolation of

the potential, electric field, and the calculation of the force. For the problems in

which components are in close proximity to each other, analytical/numerical bases

and adaptive mesh algorithms are developed based on FLAME for better accuracy

without increasing the complexity of the calculation.

The FLAME method, including analytical/numerical bases and adaptive

mesh algorithms, is also applied to wave scattering problems. The computational

cost of FLAME in many cases is much lower than that of other methods at compa-

rable levels of numerical accuracy.

As a novel application of FLAME, this method is used to explore electro-

static interactions for macromolecules (e.g. protein molecules) in electrolytes. In

the conventional model, the whole domain is divided into two layers: the inner

macromolecular core and the outer solvent. The inner layer is governed by the

Poisson equation with the existance of point charge, and the outer one is governed
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by the Poisson-Boltzmann equation due to the Boltzmann-like distribution of ions.

Results show that this model has great accuracy for short-distance interaction. How-

ever, the accuracy for long-distance interaction is not as good as for short-distance

interaction. To improve the whole accuracy, an interim layer with a low dielectric

permittivity is introduced to simulate the region between macromolecular core and

solvent. The simulation based on FLAME shows significant accuracy improvement

compared with that of the conventional FD method. The accuracy in FLAME is high

even for the area around point charge singularities.

FEM is applied to a ferrofluid model that is of interest in magneticly driven

assembly of micro- and nanoparticles [1, 2]. The ferrofluid particles are charac-

terized by their volume density with a Boltzmann-like distribution function in the

magnetic field. The problem is formulated in terms of the scalar , rather than vector,

magnetic potential, which significantly reduces the computational cost.

FEM is used for the problem of nano-focusing of light by a self-similar cas-

cade of silver nanoparticles. The goal is to explore the electrodynamic effects af-

fecting the very high local field enhancement. The results lead to appreciable cor-

rections of field enhancement in real applications.
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CHAPTER I

INTRODUCTION

This chapter presents an overview of selected problems in nanotechnology,

and numerical methods that may be applied to these problems. The organization

of this thesis is summarized.

1.1 General Overview

Nanotechnology seeks to discover and manipulate the properties of matter at the

nanoscale in order to develop new applications across many fields, such as electron-

ics, photonics, medicines, and materials [3,4]. These materials and systems can be

designed to exhibit novel and significantly improved physical, chemical, and bio-

logical properties, phenomena, and processes as a result of the limited size of their

constituent particles or molecules. For example, in the field of nanoscale electron-

ics, one development would be further miniaturizing the electronic circuits, which

leads to faster, more sophisticated, and more portable devices [5].

Nanotechnology includes the integration of nanoscale structures into larger

material’s components, systems, and architectures. However, within these larger-

scale systems, the control and construction remains at the nanoscale. This scale
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leads to dealing with a very large number of elements. Taking integrated electronic

systems as an example, modern microelectronic systems contain up to 100 million

devices on a single chip. Nanoelectronics might push this number up to 1 billion

or more devices [6]. The primary problem is not only the large number of devices,

but also the development time and the time for testing such systems.

Nanotechnology is a very broad concept that includes many research branches.

It is impossible to cover all of them in this thesis. This thesis presents the research

and development of computational methods for electrostatic and magnetostatic in-

teractions of nanoparticles, wave scattering problems, electrostatic interactions of

proteins, self-assembly of colloidal systems and electrodynamic effects of nanoop-

tics.

1.2 Multiobject Systems

Analysis of systems composed of many objects can be computationally expensive,

and even unfeasible if the number of objects is too large. Simplification of such

systems is necessary for simulations. It may involve focusing on a few key geometric

and physical parameters.

For the analysis of multiobject systems, it is very important to have a proper

mathematic model. Different parts of multiobject systems can often be represented

by different parameters and even by different mathematic equations. As an exam-

ple, the protein model discussed in Chapter 6 includes inside and outside domains

governed by different equations.
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The focus of this thesis is on the calculation of electromagnetic quantities,

such as potential, field, and force. All macroscopic electromagnetic phenomena are

governed by Maxwell’s equations, a set of four partial differential equations that

relate the electric and magnetic fields to their sources, charge density, and current

density [7]. With the emphasis on frequency domain calculation in this thesis, the

time-harmonic form of Maxwell’s equations for complex phasors of the fields (with

the time dependence ejωt implied) is as follows:















































∇ · ǫE = ρ Guass′s law

∇ ·B = 0 Guass′s law for magnetism

∇×E = − jωµH Faraday′s law

∇×H = J + jωǫE Ampère′s law

(1.1)

where E is the electric field, B and H are magnetic field quantities interrelated

by B = µH, ǫ and µ are the electrical permittivity and the magnetic permeability

separately, and ρ and J are the electric charge and the current densities.

For electrostatic problems with ω = 0, (1.2) can be deduced from Faraday’s

law

∇× E = 0 (1.2)

Therefore, the electric field is conservative and φ =
∫

C
Edl is path-independent (for

a simply connected domain), where C is an arbitrary path connecting the point

with zero potential to the point under consideration. The field is

E = −∇φ (1.3)
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With this relation, (1.4) can be obtained from Gauss’s law.

−∇ · ǫ∇φ = ρ (1.4)

If the medium contains no free charges, (1.4) reduces to

−∇ · ǫ∇φ = 0 (1.5)

Assuming the electric permittivity to be constant, (1.4) and (1.5) can be

simplified to the Poisson equation (1.6) and the Laplace equation (1.7).

∇2φ = − ρ

ǫ
(1.6)

∇2φ = 0 (1.7)

In electrodynamic analysis (ω 6= 0), either of the fields (E or H) can be

eliminated from the system of Maxwell’s equations. Then, time-harmonic wave

equations assume the form

∇×
(

1

µ
∇× E

)

− ω2ǫE = − jωJ (1.8)

∇×
(

1

ǫ
∇×H

)

− ω2µH = ∇×
(

1

ǫ
J

)

(1.9)

Equations (1.1) as well as (1.8) and (1.9) are general and applicable to a broad

range of electromagnetic problems. In this thesis, we consider several types of

problems governed by these equations. In Chapter 5, a 2D model is used for wave-

scattering from cylindrical particles. In Chapter 6, the Poisson-Boltzmann equation

is used to simulate the Boltzmann-like distribution of the ions for determining elec-

trostatic interactions in macromolecules. In Chapter 8, the wave equation is used

to explore the electrodynamic effects in plasmonic nanolenses.
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1.3 Numerical Methods Applicable to Nanoscale Simulation

Experimental investigation of nanoscale systems is generally difficult due to the

small size of components. This makes the development of efficient and reliable

simulation techniques particularly important. Simulation is indispensable for the

design, synthesis, monitoring, and testing of nanoscale systems. The first critical

step of the analysis is to formulate a mathematical model of systems (e.g. a set

of differential equations with boundary conditions). Making sure that a particular

mathematical model is valid on the nanoscale is not an easy task. The main thrust

of this thesis is efficient methods of solving the engineering and physical nanoscale

problems for which reasonably accurate models are already established. However,

in some special cases, such as the protein simulation in Chapter 6, we do discuss

the validity of the physical mode and possible amendments to it.

Except for a few simple cases, exact analytical solutions of numerical mod-

els are usually not available and it is necessary to resort to numerical approxima-

tions. There exist several well-established numerical methods. One of the oldest

is the finite difference (FD) method. FD started to gain prominence in the 1920s

and has been applied to solve different field problems [8]. It historically was the

first numerical technique for boundary value problems in general physics, and in

electromagnetism in particular. But it has salient disadvantages. The notorious

“staircase” effect at slanted or curved boundaries decreases the accuracy of this

method [9,10].
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An important category of FD methods is the finite-difference time-domain

(FDTD) techniques. FDTD can be used in nanoscale simulation, for example in

application to 3D photonic structures [11,12]. FDTD still suffers from the staircase

effect along curved boundaries. To extract the frequency domain information from

FDTD simulations, one typically needs to apply the Fourier transform (FT) to long

runs in time domains, which can render the simulation inefficient.

Another popular and powerful computation technique is the finite element

method (FEM), which has been successfully used to solve a large variety of physical

problems [13]. FEM belongs to the broad class of variational methods. Many

commercial software packages based on FEM, such as Ansoft HFSS and COMSOL

Multiphysics, are widely used. Both FEM and FD subdivide the computation domain

into small subdomains; regular grids in various coordinate systems are typical in FD,

whereas geometrically complex meshes are typical in FEM. For FEM, the overhead

(mesh generation, data structures) could be significant for multiobject systems.

In nanoscale simulations, the large number of objects may lead to a very

large number of grid nodes or elements to achieve the desired level of accuracy

for FEM and FD. This complexity will be even greater when the objects are mov-

ing. For moving particles, the fast multipole method (FMM) works well. FMM is

a mathematical technique based on the multipole expansion that was developed to

speed up the calculation of long-ranged forces [14]. However, the computational

advantage of this method manifests itself only when the number of objects is ex-

tremely large. FMM is also ineffective for heterogeneous media (e.g. finite-size

6



particles with dielectric or magnetic parameters different from those of free space),

especially when the problem is governed by nonlinear equations.

Flexible local approximation method (FLAME) is one of the methods that

play a central role in this thesis. It is a recently developed generalized FD calcu-

lus that incorporates accurate local analytical approximations of the solution into

schemes [15, 16]. These approximations take into account specific local behavior

of the solution. Examples of such approximations are exponentials, spherical har-

monics, plane waves, polynomials, etc.

1.4 Organization of the Dissertation

This thesis presents the development of numerical simulation techniques for nanoscale

systems, with the focus on FEM and FLAME. These two numerical methods are in-

troduced in Chapters 2 and 3. Then, this thesis discusses applications of FLAME

to electrostatic and wave scattering problems. Chapter 4 concentrates on applica-

tions of FLAME to eletrostatic multiparticle models in both 2D and 3D. In these

models, all calculations of the potential, the electric field, and the electromagnetic

force acting on the particles are presented in detail. Chapter 5 focuses on the 2D

model of wave scattering by cylindrical particles. Chapter 6 presents the applica-

tion of FLAME to the elecrostatic model of macromolecules. The model includes

several layers of different materials with different dielectric properties. Two other

nanoscale models, magnetic assembly of ferrofluid particles and electrodynamic

nanolenses, are described in Chapters 7 and 8. Both models use FEM for numer-

7



ical simulations. Magnetic assembly of colloidal particles relies on a combination

of applied magnetic fields and fields of permanent magnets. For electrodynamic

nanolenses, the significant field enhancement achieves notable attention, but its

small scale makes the experiment difficult. The nanolens model based on numer-

ical simulation is applied to discover electrodynamic effects. Finally, Chapter 9

presents the conclusion of this thesis and recommendations for future research and

potential application.
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CHAPTER II

THE FINITE ELEMENT METHOD

This chapter serves as an introduction to the finite element method (FEM)

that is used extensively in this thesis. The first part reviews the history of FEM and

its application in electromagnetics. Then, the main principle of FEM is introduced.

A simple illustrative example of FEM is demonstrated. The last section is a summary

of FEM.

2.1 The Origin of FEM

FEM is a versatile and powerful numerical method that is widely applied to solve

problems covering almost the whole spectrum of engineering analysis. Common

applications include static, dynamic, and thermal behavior of physical systems, and

their components. FEM belongs to the broad class of variational methods and is

used for finding approximate solutions of partial differential equations (PDE) as

well as of integral equations. This section follows an introductive review of the

history of FEM in [17]. The original mathematical treatment of FEM can be traced

to papers by Hrennikoff (1941) and Courant (1942). Some pioneering research

was conducted by Turner, Clough, Martin, and Topp (1956) and Argyris (1960)
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before the name of finite element method firstly used by Clough in 1960. The early

use of FEM was restricted to the application of the techniques for structural related

problems. It was not applied to electromagnetic problems until 1968 [8].

In this thesis, the emphasis is put on electromagnetic problems. It is usually

possible to formulate such problems in a bounded domain, with given boundary

conditions. A generic form of the governing differential equation in a domain Ω is

Lφ = f (2.1)

where L represents a differential operator, f is the excitation or force function, φ

is the unknown function to be found. For electromagnetic problems, the form of

the governing differential equation ranges from the Laplace or Poisson equation

to scalar and vector wave equations. The boundary conditions range from simple

Dirichlet and Neumann conditions, to complicated radiation or perfectly matched

laayer (PML) conditions (introduced in Chapter 8).

2.2 The Variational Principles in FEM

Boundary value problems can be cast in a variational form. Instead of directly solv-

ing the PDE, it is possible to replace the problem of integrating a PDE by the equiv-

alent problem of seeking a function that give a minimum value of some integral.

This is the basis of variational principle. Based on it, the solution is approximated

with an expansion.
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φ̃ =
N
∑

j=1

cjψj = {c}T{ψ} = {ψ}T{c} (2.2)

where ψj are the chosen expansion functions, cj are coefficients to be determined.

Depending on the variational principle, there are two popularly used approaches

for FEM: Rayleigh-Ritz and Galerkin.

According to Mikhlin [18], if operator L in (2.1) is real, self-adjoint, and

positive definite, the solution of (2.1) can be obtained by minimizing the functional

I(φ) =
1

2
< Lφ, φ > − < φ, f > (2.3)

where the inner product, denoted by the angular bracket, is defined as

< φ, ψ > =

∫

Ω

φψ∗dΩ (2.4)

An approximational solution can be obtained by minimizing the functional (2.3) in

a finite dimensional subdomain. That is the essence of the Ratleigh-Ritz method.

Substituting the approximated solution (2.2) into (2.3), the approximated varia-

tional functional is obtained.

I(φ̃) =
1

2
{c}T

∫

Ω

{ψ}L{ψ}TdΩ{c} − {c}T

∫

Ω

{ψ}fdΩ (2.5)

Generally speaking, substituting φ̃ for φ results in a nonzero residual.

r = L(φ̃− φ) = Lφ̃− f 6= 0 (2.6)

A suitable approximation is obtained if the residual is required to be zero in some

weighted-average sense.

Ri =

∫

Ωi

wirdΩ = 0 (2.7)
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where wi is a judiciously chosen weighted function. Substituting (2.2),

Ri =

∫

Ωi

(wiL{ψ}T{c} − wif)dΩ = 0 (2.8)

The Galerkin method selects the weighting functions wi to be the same

as the basis functions. When the operator is a positive definite linear differential

operator of an even order, the Galerkin method is equivalent to the Rayleigh-Ritz

method. Other choices of weighted functions lead to other methods, such as the

point collocation method, the subdomain collocation method and the least squares

method.

FEM provides a discretization procedure for the variational form by subdi-

viding the computational domain into elements. Finite elements of various geo-

metric shapes are commonly used in FE analysis. In 2D, the common shapes are

triangle and quadrangle. In 3D, the common shapes are tetrahedron and hexa-

hedron. The choice of the element types depends on the physical problem, the

required accuracy and geometric convenience of discretization. Several types of

elements could be mixed in a single mesh. Curved elements are commonly used as

well, to approximate non-planar boundaries with high accuracy.

Making the mesh finer over parts or all of the domain is known as h-

refinement. Increasing the order of elements is termed p-refinement. Both refine-

ment techniques can improve the calculation accuracy. Naturally, higher accuracy

typically entails higher computational cost.
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2.3 An Illustrative Example for FEM

For illustrative purpose, an example of a 2D boundary value problem is demon-

strated in this section. The Rayleigh-Ritz method is applied to the Helmholtz equa-

tion

∇2φ+ κ2φ = f (2.9)

Assuming linear triangular elements are selected, numerical solution φ̃within

an element e is of the form

φ̃e(x, y) = ae1 + ae2x+ ae3y (2.10)

It is convenient to switch to the nodal basis functions.

φ̃e(x, y) =

3
∑

i=1

ψei(x, y)cei (2.11)

Here i represents the node’s number of triangular element e. Each of these basis

functions is equal to 1 at one of the nodes of the mesh and zeros at all other nodes,

as shown in Figure 2.1. The basis functions can be calculated to be described by

the following expression.

ψe1 =
1

2Ae
[(xe2ye3 − xe3ye2) + (ye2 − ye3)x+ (xe3 − xe2)y]

ψe2 =
1

2Ae
[(xe3ye1 − xe1ye3) + (ye3 − ye1)x+ (xe1 − xe3)y] (2.12)

ψe3 =
1

2Ae

[(xe1ye2 − xe2ye1) + (ye1 − ye2)x+ (xe2 − xe1)y]

where Ae is the area of element e.
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(a) First order 1D elements
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(b) First order 2D elements

Figure 2.1: Linear basis function for 1D and 2D of first order elements.

For the PDE (2.9), the variation functional for element e is

I(φ̃e) =
1

2

∫

Ωe

[

|∇φ̃e|2 − κ2φ̃e
2
+ 2fφ̃e

]

dΩ (2.13)

Here Ωe represents the domain of the element e. To minimize the I(φ̃e), its differ-

ential operation with cei together with (2.11) yields

∂I(φ̃e)

∂cei
=

3
∑

j=1

cej

∫

Ωe

(

∂ψei

∂x

∂ψej

∂x
+
∂ψei

∂y

∂ψej

∂y
− κ2ψeiψej + fψei

)

dxdy i = 1, 2, 3

(2.14)

This equation can be simplified to
{

∂I(φ̃e)

∂ce

}

= [Ke]{ce} − {be} (2.15)

Here
{

∂I(φ̃e)
∂ce

}

= [∂I(φ̃e)
∂ce1

, ∂I(φ̃e)
∂ce2

, ∂I(φ̃e)
∂ce3

]T , and {ce} = [ce1, ce2, ce3]
T . The entire of

matrix [Ke] are calculated as

Keij =

∫

Ωe

(

∂ψei

∂x

∂ψej

∂x
+
∂ψei

∂y

∂ψej

∂y
− κ2ψeiψej

)

dxdy i, j = 1, 2, 3 (2.16)
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The elements of vector {be} are calculated as

bei =

∫

Ωe

fψeidxdy i = 1, 2, 3 (2.17)

By including all N elements, we can get

{

∂I(φ̃)

∂c

}

=

N
∑

e=1

{

∂I(φ̃e)

∂ce

}

=

N
∑

e=1

([Ke]{ce}−{be}) = [K]{c}−{b} = 0 (2.18)

Proper amendments to (2.18) must be made to take into account the boundary

conditions; the relevant procedures are well known and described in the FE litera-

tures [19–21].

1 2

3

4

56

 

Figure 2.2: Quadratic triangular element.

The brief description above is for first order elements. As mentioned, the

accuracy of FEM can be improved not only by h-refinement (mesh refinement),

but also by p-refinement (increasing the order). Here let us consider quadratic

triangular elements for illustration.
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As shown in Figure 2.2, the quadratic triangular element has six nodes. In

this element, the form of approximation for φ̃ is

φ̃e(x, y) = ae1 + ae2x+ ae3y + ae4x
2 + ae5xy + ae6y

2 (2.19)

The corresponding element basis functions are calculated as

Ψei = (2ψei − 1)ψei, i = 1, 2, 3

Ψe4 = 4ψe1ψe2, Ψe5 = 4ψe2ψe3 (2.20)

Ψe6 = 4ψe3ψe1

Here ψi
e, i = 1, 2, 3 is as (2.12).

Matrix assembly is performed in a similar manner as for first order ele-

ments. Higher accuracy of the numerical result can usually be expected with higher

order, but at a higher computational cost.

2.4 Conclusion

FEM is a numerical method based on variational principles and special basis func-

tions defined over the finite elements in the computation domain. These functions

approximates the field in a piece-wise way. The solid variational foundation of FEM

makes the method remarkably robust. The numerical approximation depends not

only on the mesh refinement, but also on the order of the elements. Hp-refinement

(especially incorporating adaptive algorithms discussed in Chapter 8) aims at the

most effective use of the computational resources. Overall, FEM is a popular nu-

merical method that has wide applications in a variety of areas.
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CHAPTER III

THE FLEXIBLE LOCAL APPROXIMATION METHOD (FLAME)

FLAME is a new numerical method that has already demonstrated its strengths

in several applications [15, 16, 22, 23]. The main ideas of the method and the con-

struction of FLAME schemes are presented below. Several examples are given, rang-

ing from the 1D Laplace equation to the 3D linerized Poisson-Boltzmann equation.

3.1 Development of FLAME

The flexible local approximation method (FLAME) has been developed since 2004

[15, 16, 22]and has already been applied to a wide variety of problems: colloidal

systems, photonic crystal waveguides, electrostatic interactions in solute-solvent

systems, and more [21,23,24]. This method is a substantial generalization of clas-

sical FD method.

The FD method typically uses local Taylor expansions in the vicinity of a

grid stencil to generate a scheme on grids that are usually simple and regular with

respect to one of the standard coordinate systems. The relative simplicity makes

FD easy to use and may be a significant advantage for geometrically simple prob-

lems. But the accuracy of FD deteriorates for problems with geometrically complex
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boundaries and material interfaces not conforming to the FD grid lines. As an obvi-

ous example, Figure 3.1(a) shows that the curved boundary of a circular particle is

represented inaccurately as a “staircase” on a regular FD grid. In FD (flux balance)

schemes (see Chapter 4), the circular particle is approximated by the dashed-line

pattern. This introduces the “staircase” noise, especially when the mesh is relatively

coarse. Although the geometric interpretation of this effect is obvious, the algebraic

origin of the noise lies in the Taylor expansion, which breaks down at material in-

terface boundaries because the solution is not sufficiently smooth. The easiest way

to reduce the error is to refine the mesh, but it will increase the computational cost.

 

(a) FD mesh

 

(b) FEM mesh

Figure 3.1: Sample mesh for FD and FEM.

For comparison, the Finite Element Method (FEM, Chapter 2) employs ge-

ometrically conforming meshes, as illustrated in Figure 3.1(b). This is one of the
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reasons why FEM is so powerful in a variety of problems, especially where the

geometry is complex. The flexible choice of various geometric shapes for finite ele-

ments and hp-refinement make FEM even more powerful. However, the computa-

tional overhead of mesh generation and matrix assembly in FEM cannot be brushed

aside. As an example, for the problems with a large number of moving particles,

the generation of geometrically conforming FE meshes is quite complicated or even

impractical.

It is desirable to look for a method that could operate on a simple grid and

yet would reduce or even eliminate the “staircase” noise at slanted or curved inter-

faces. Then the accuracy could be significantly improved, while keeping the grid

and the numerical algorithm relatively simple. Since, as mentioned above, the alge-

braic nature of the numerical noise is in the breakdown of the Taylor expansion at

curved interfaces, it is only natural to replace the Taylor expansion with a physically

and mathematically more accurate local approximation. In the “Trefftz” version of

FLAME, the approximating functions are chosen to satisfy the governing equation

of the problem (along with the interface boundary conditions).

It should be emphasized that the approximating functions are defined lo-

cally, within small subdomains around each grid node. Unlike accurate global solu-

tions, local ones are usually relatively easy to derive, as many examples in this thesis

and in the papers cited above demonstrate. More specifically, fields around spher-

ical particles can be approximated by several spherical harmonics; fields scattered

from cylinders are by Bessel functions, and so on. Such analytical approximations
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are incorporated directly into the difference scheme. Furthermore, if an analyt-

ical or quasi-analytical local approximation of the solution cannot be found, the

approximation by other numerical method will be used.

3.2 Introduction to the FD Method

A general approach for constructing FD schemes is by Taylor’s series. According to

the well-known expansion,

f(x0 + ∆x) = f(x0) + ∆xf ′(x0) +
1

2!
(∆x)2f ′′(x0) +

1

3!
(∆x)3f ′′′(x0) + · · · (3.1)

and

f(x0 − ∆x) = f(x0) − ∆xf ′(x0) +
1

2!
(∆x)2f ′′(x0) −

1

3!
(∆x)3f ′′′(x0) + · · · (3.2)

By subtracting (3.2) from (3.1)

f(x0 + ∆x) − f(x0 − ∆x) = 2∆xf ′(x0) +O(∆x)3 (3.3)

Here O(∆x)3 is the error of truncating the series. Usually it is called the error of the

order (∆x)3, and even simply the 3rd order. To get the approximation, the O(∆x)3

will be neglected to get

f ′(x0) =
f(x0 + ∆x) − f(x0 − ∆x)

2∆x
(3.4)

Adding (3.1) and (3.2), and neglecting the term O(∆x)4, it yields

f ′′(x0) =
f(x0 + ∆x) − 2f(x0) + f(x0 − ∆x)

(∆x)2
(3.5)
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By taking more terms in Taylor expansions, higher-order approximations, and cor-

respondingly better accuracy, are obtained.

h

1/1'
4

2

3

54'

2'

5'

3'

pε

 

Figure 3.2: An example on the FD scheme.

A 2D example is shown in Figure 3.2 where the FD scheme spans both the

particle and the outside region with different dielectric constants. This example is

used to describe the construction of FD scheme based on the flux balance. An area

is imagined, as the gray square shown. Each triangle points is the center of two

element nodes. By the relation between electrical field and potential, (3.6) can be

derived

En′ = −∇Vn′ = − Vn − V1

dn1

n = 2, 3, 4, 5 (3.6)

where dn1 is the distance between points n and 1. Based on the flux balance, and

assuming that there is no any source in the square area, we can get

5
∑

n=2

En′ · εn′ · h = 0 (3.7)
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Here h is the mesh size. For the example in Figure 3.2, points 2′ and 5′ belong to

the particle area, with ε2′ = εp, ε5′ = εp. The dielectric constant for points 1′, 3′ and

4′ is the same as that of a vacuum. Therefore, the FD scheme will be

εpV2 + ε0V3 + ε0V4 + εpV5 − (2ε0 + 2εp)V1 = 0 (3.8)

In this example, it is clear that the FD mesh does not conform to the material

interface. To demonstrate the accuracy of FLAME, it is meaningful to use results

based on conventional FD for comparison. In this thesis, all FD calculations are

based on the flux balance, which is introduced in this section.

3.3 The Trefftz-FLAME Schemes

Now let’s go to the FLAME method. As discussed in Section 3.1, FLAME replaces

the Taylor expansions of classical FD calculus with more accurate approximating

functions. In the main version of FLAME, these functions are the local analytical

solutions of local problem that includes one or none particle, which takes account

the interface boundaries mentioned in Section 3.1.

Conceptually, one considers a set of overlapping patches (Ω(i)) covering

the computational domain Ω = ∪Ω(i), i = 1, 2, ..., n (Figure 3.3). The solution is

approximated locally over each patch. Associated with each patch Ω(i) ia a local

approximation space,

Ψ(i) = span{ψ(i)
α }, α = 1, 2, . . .m (3.9)
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Figure 3.3: The stencil of one FLAME scheme example.

Here m is the number of approximating functions. The local solution u
(i)
h in space

Ω(i) is a linear combination of the local basis functions ψ
(i)
α .

u
(i)
h =

m
∑

α=1

c(i)α ψ
(i)
α (3.10)

The definition of these basis functions depends on the specific physical prob-

lem, which will be illustrated by several examples in Section 3.6. For the time being,

let us assume that the basis functions ψ
(i)
α have been determined. By relating the

coefficient vector c(i) ≡ c
(i)
α to the vector u(i) ≡ u

(i)
α , we can get

u(i) = N (i)c(i) (3.11)
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where matrix N (i) comprises the nodal values of the basis functions on the patch.

N (i) =

























ψ
(i)
1 (r1) ψ

(i)
2 (r1) . . . ψ

(i)
m (r1)

ψ
(i)
1 (r2) ψ

(i)
2 (r2) . . . ψ

(i)
m (r2)

. . . . . . . . . . . .

ψ
(i)
1 (rM) ψ

(i)
2 (rM) . . . ψ

(i)
m (rM)

























(3.12)

The vector s ∈ RM of the difference FLAME scheme is sought to yield

s(i)Tu(i) = 0 (3.13)

Together with (3.11),

s(i)TN (i)c(i) = 0 (3.14)

For this to hold for any set of coefficients c(i), s(i) can be calculated as [23]

s(i) ∈ Null(N (i)T ) (3.15)

In other words, the coefficient vector of the FLAME scheme is in the null

space of the nodal matrix. Typically, for the null space to be one-dimensional

(thereby defining the scheme uniquely), the number of basis functions should be

one less than the number of stencil nodes M . For example, four and eight basis

functions are typically needed for the five- and nine-point FLAME schemes in 2D.

So far, the discussion is only for homogeneous governing equations. As for

Inhomogeneous equations (i.e. with a nonzero right hand side) of the generic form,

Lu = f (3.16)
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they are handled by introducing a local splitting.

u(i) = u
(i)
0 + u

(i)
f (3.17)

Here u
(i)
f can be any particular solution of the inhomogeneous equation. u

(i)
0 is the

solution of the homogeneous equation. The choice of u
(i)
f depends on the specific

physical problem (the 2D Poisson equation serves as an example in Section 3.6.2).

Then,

Lu(i)
0 = 0; Lu(i)

f = f (3.18)

For the homogeneous solution, the coefficient vector s(i) can be calculated

by (3.15). Then the inhomogeneous FLAME scheme is

s(i)Tu(i) = s(i)Tu
(i)
f (3.19)

In the presence of sources in the vicinity of a given grid stencil, the right hand side

of (3.19) is formed, as indicated, by applying the differential operator to the nodal

values of the particular solution u
(i)
f .

The construction of Trefftz-FLAME scheme can be summarized as follows.

1. Generating regular grids and forming a set of overlapping patches.

2. Finding, for each patch, a set of local basis functions satisfying the governing

differential equations and interface boundary conditions.

3. Computing the nodal matrix N (i) of the basis functions.

4. Generating the difference scheme by finding the null space of N (i)T .
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3.4 Trefftz FLAME Schemes of Varying Order

The accuracy of FLAME and the order of approximation depend on the grid stencil

chosen. In 2D, the five- and nine-point stencils are especially popular (Figure 3.4).

Similarly, in 3D seven- and nineteen-point stencils are commonly used (Figure 3.5).

 

(a) Five-point stencil.

 

(b) Nine-point stencil.

Figure 3.4: 2D Standard FLAME stencils.

 

(a) Seven-point stencil

 

(b) Nineteen-point stencil

Figure 3.5: 3D Standard FLAME stencils.
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3.5 The Treatment of Boundary Conditions

For different patches, the FLAME approximations are completely independent. At

the domain boundaries in particular, any standard FD schemes can be used. Alter-

natively, it may be possible to incorporate special features into the scheme at the

boundary if such features are known [21].

3.6 Case Studies for Trefftz FLAME

The Trefftz FLAME basis functions depend on the governing equations of the specific

physical problem. For illustrative purposes, several examples are given below. We

start with simple 1D problems to fix ideas.

3.6.1 1D Laplace and Helmholtz Equations

h

ii-1 i+1

hhh h h

)( iΩ

3h/4h/2 pε

0ε

i+2 i+3

)2( +Ω i

 

Figure 3.6: Sample problem for 1D Laplace equation with uniform distribution of

nodes.
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Consider a 1D electrostatic problem with two dielectrics (ε0 and εp, Fig-

ure 3.6). Within each material, the electrostatic potential is governed by the Laplace

equation.

uxx = 0; (3.20)

A regular Cartesian mesh is shown in Figure 3.6, and a three-node stencil is

chosen. The two basis functions satisfying the Laplace equation, ψ1 = 1 and ψ2 = x,

are chosen for the three-node patch. Then the numerical approximation over the

patch is uh = c1ψ1 + c2ψ2.

First, let us choose the (i+2)th patch (including nodes i+1, i+2 and i+3),

and the (i+ 2)th node is treated as the origin of the Cartesian system. In this case,

the three chosen nodes are located in the domain with unique material. The nodal

matrix N (i) comprises the nodal values of basis functions (ψ1 = 1, ψ2 = x):

N (i) =

















1 +h

1 0

1 −h

















(3.21)

The null space of N (i)T yields the Trefftz FLAME scheme as [1, -2, 1], which coin-

cides with the standard three-node scheme for the Laplace equation.

Now let us consider a more complex example, with the ith patch (including

nodes i − 1, i and i + 1) chosen, and assume εp = 10ε0. For simplification, the

ith node is treated as the origin of the Cartesian coordinate system. To construct

a FLAME scheme, one starts with the basis functions for this patch. These basis
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functions satisfy not only the governing equation, but also the boundary conditions

of the interface Γ.

uin|x=x0
= uout|x=x0

on Γ, (3.22)

εp
∂uin

∂x
|x=x0

= ε0
∂uout

∂x
|x=x0

on Γ, (3.23)

Here x0 is the coordinate of the interface, which is −h
2

for the left interface, and 3h
4

for the right interface in the example. We first choose the basis functions for the

section with εp as ψ1 = 1 and ψ2 = x. Then, the basis functions of ε0 sections are

calculated as {ψ1 = 1, ψ2 = 10x− 27h
4
} in the right part, and {ψ1 = 1, ψ2 = 10x+ 9h

2
}

in the left part through the boundary conditions. The corresponding nodal matrix

N (i) is calculated as

N (i) =

















1 +13h
4

1 0

1 −11h
2

















(3.24)

The Trefftz FLAME scheme then is Null(NT ) = [1.6923 -2.6923 1]. Because this

scheme comes from the analytical solution, it represents that solution perfectly even

though the mesh is not geometrically conforming to the interface boundary.

Another example, still for the 1D Laplace equation, is shown in Figure 3.7,

and illustrates that FLAME grid does not need to be uniform. The same procedure

as above is used to calculate the scheme of ith patch. The nodal matrix then is

N (i) =

















1 +h
2

1 0

1 −h

















(3.25)
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Figure 3.7: Sample problem for 1D Laplace equation with nonuniform distribution

of nodes.

The scheme is calculated as Null(NT ) = [2, -3, 1]. This forms the basis of adaptive

FLAME, and the much more complicated algorithms and meshes will be introduced

in Chapter 4.
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Figure 3.8: Sample problem for 1D Helmholtz equation.

The examples above are all for the Laplace equation. Now let us consider

the problem governed by the 1D Helmholtz equation.

uxx + κ2x = 0 (3.26)

where κ is a given parameter. As Figure 3.8 shows, a series of nodes is generated.

Two basis functions satisfying the Helmholtz equation are ψ1 = cos(κx) and ψ2 =

sin(κx). For the ith patch (assuming the coordinate value for ith node is 0), the
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nodal matrix is as

N (i) =

















cos(κh) sin(κh)

1 0

cos(−κh) sin(−κh)

















(3.27)

The corresponding Trefftz-FLAME scheme is Null(NT ) = [1 − 2cos(κh)1].

3.6.2 2D Laplace, Poisson and Helmholtz Equations

 

q
1

2 3 4
5123

4 5 6

7 8 9

Figure 3.9: Five-node and nine-node stencils for the 2D Laplace and Poisson equa-

tions.

A 2D electrostatic example - a circular particle with permittivity εp in a

vacuum (ε0)- is shown in Figure 3.9. A point charge is located inside the particle.
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The governing equations are,

Lu = −∇ · εp∇u =
∑

α

qαδα Inside the particle (3.28)

Lu = −∇ · ε0∇u = 0 Outside the particle (3.29)

One five-node stencil and one nine-node stencil are chosen to demonstrate the con-

struction of FLAME schemes

For the five-node stencil (dashed diamond in Figure 3.9), the presence of

a point charge makes the equation inhomogeneous (nonzero r.h.s.). As discusses

in Section 3.3, FLAME scheme is first constructed for the respective homogeneous

equation. In this problem, the basis functions for the five-point FLAME scheme can

be chosen as [1, x, y, x2 − y2]. Then the nodal matrix for this patch is (node #3 is

treated as the origin of 2D Cartesian coordinates and the grid length is h in both X

and Y direction):

N (i) =

































1 −h
2

h
2

0

1 −3h
2

−h
2

2h2

1 −h
2

−h
2

0

1 h
2

−h
2

0

1 −h
2

−3h
2

−2h2

































(3.30)

The corresponding FLAME scheme is [1 1 -4 1 1], which is the same as the standard

five-point FD scheme.
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For the inhomogeneous equation (nonzero source within or in the vicinity

of the patch), any particular solution u
(i)
f of the inhomogeneous equation is needed.

In this problem, this solution is given simply by

uf =
q

2πεp
ln r (3.31)

This gives the FLAME scheme in accordance with equation (3.19).

In (3.31), r cannot be zero because of the logarithmic term. Therefore

there must be no grid node right at the charge. Otherwise, the singularity renders

the FLAME scheme invalid. A similar requirement also exists in 3D.

Now let us consider the nine-node stencil. For the construction of a nine-

point FLAME scheme, the four-function basis set for the five-point FLAME is amended

by four additional functions {xy, x3 −3xy2, y3−3yx2, x4−6x2y2 +y4}. For a patch

at an interface boundary, two harmonic functions in each of the materials can be

written in the polar system and matched via the interface boundary conditions.

More specifically, the Laplace equation in polar coordinates [25] is

Lu = ∇2u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2

∂2u

∂θ2
= 0 (3.32)

The solution can be expressed by separation of variables:

u =

∞
∑

l=0

(Alr
l +Blr

−l)(C1cos(lθ) + C2sin(lθ)) (3.33)
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where Al, Bl, C1, C2 are coefficients to be determined via the boundary conditions.

Assuming there is no free charge on the particle surface, these boundary conditions

are:

uin|r=r0
= uout|r=r0

on Γ, (3.34)

εp
∂uin

∂n
|r=r0

= ε0
∂uout

∂n
|r=r0

on Γ, (3.35)

where n represents the normal direction.

Consider the basis function x (inside particle) as an example. Its form in

the polar coordinates is r cos(θ). The corresponding function in a vacuum, is of

the form (A1r + B1
1
r
) cos(θ). Though the boundary conditions, the constants are

calculated as A1 = ε0+εp

2ε0

and B1 = ε0−εp

2ε0

r2
p, where rp is the radius of the circular

particle. In the particular case of εp = ε0, A1 = 1 and B1 = 0, and the function is

the same as r cos(θ).

Now consider the 2D Helmholtz equation, shown in Figure 3.10, for two

domains with different κ. The interface boundary conditions are the same as in the

previous example.

∇2u+ κ2u = 0 (3.36)

In the polar coordinates with the center of the particle taken as the origin, the

analytical solution is















ψ
(i)
α = anJn(kpr)exp(inθ), r ≤ r0

ψ
(i)
α = [bnH

(2)
n (k0r) +H

(1)
n (k0r)]exp(inθ), r > r0

(3.37)
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Figure 3.10: Five-node and nine-node stencils for the 2D Helmholtz equation.

where Jn is the Bessel function, H
(1)
n and H

(2)
n are the Hankel functions of the first

and second kinds. an and bn are coefficients to be determined. These coefficients

can be found according to the standard conditions of the interface between the

circular particle and the outer region.

To construct a five-point FLAME scheme, four basis functions are chosen:

the monopole harmonic (n = 0), two harmonics of order 1 (n = 1), and one

harmonic of order 2 (n = 2). For the eight-point FLAME scheme, in addition to

the four functions for five-point FLAME, another four functions are needed. They

can be the other harmonic of order 2 (n = 2), two harmonics of order 3 (n = 3),

and one harmonic of order 4 (n = 4). With these basis functions, it is easy to

generate the nodal matrices N (i) for any five-point patch or nine-point patch. The

corresponding scheme is again the null space of NT .
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3.6.3 3D Laplace and the Linearized Poisson-Boltzmann Equations

So far we have described examples of 1D and 2D problems. This section covers a

few 3D cases. FLAME schemes for the Laplace equation in 3D are found in complete

analogy with the 2D case. For the standard seven-point stencil within uniform

domain, six basis functions {1, x, y, z, x2 − y2,−x2 − z2} are used to construct

the scheme. The corresponding FLAME scheme is calculated to be [1, 1, 1, -6, 1,

1, 1], which coincides with the standard FD scheme. For the nine-point stencil (a

3 × 3 cluster of nodes), another 12 basis functions are added: {xy, xz, yz, x3 −

3xy2, y3 − 3x2y, x3 − 3xz2, z3 − 3x2z, y2 − 3yz2, z3 − 3y2z, x4 − 6x2y2 + y4, x4 −

6x2z2 + z4, y4 − 6y2z2 + z4}.

A more complex example is a spherical particle immersed in a solvent. The

potential inside the particle is governed by the Laplace equation. The region out-

side the particle is governed by the linearized Poisson-Boltzmann equation (see

Chapter 6).

∇2u− κ2u = 0 (3.38)

As for the linearized Poisson-Boltzmann equation, it will be introduced specifically

in Chapter 6. For this problem, FLAME basis functions are written in the spherical

coordinates:

ψmn =















Pm
n (cos θ) exp(imφ)rn Region inside particle

Pm
n (cos θ) exp(imφ)(fmnjn(ikr) + gmnnn(ikr)) Region outside particle

(3.39)
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Here Pm
n (cos θ) is the associated Legendre polynomials, jn(z) = (π/(2z))1/2Jn+1/2(z)

and nn(z) = (π/(2z))1/2Yn+1/2(z) are the spherical Bessel functions of the first and

second kinds, respectively. They are expressible in terms of the hyperbolic sine and

cosine functions and are therefore fairly easy to work with. The coefficients cmn,

dmn, fmn, gmn are found through the interface boundary conditions [15].

Chapters 4, 5 and 6 will cover several types of problems closely related to

the above illustrative examples for FLAME schemes. Other applications of FLAME

are considered in [15,16,22].

3.7 Conclusion

FLAME is a generalized FD calculus that generates FD schemes on regular grids

(and even meshless versions of FLAME are possible [21]). In FLAME, the compu-

tational domain is covered by a system of overlapping patches. Within each patch,

local basis functions satisfying the governing differential equation are found ana-

lytically, semi-analytically or numerically. The coefficients of the difference scheme

are calculated as the null space of the nodal matrix as equation (3.15).

The construction of FLAME scheme depends on the specific physical prob-

lem. The examples of this chapter serve as a demonstration. In the following

chapters, a number of practical applications are presented. In the future, FLAME

could be extended to other classes of problems. Of particular interest are schemes

for Maxwell equations in the time domain and schemes for nonlinear problems.
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CHAPTER IV

ELECTROSTATIC PARTICLE INTERACTIONS IN SIMPLE DIELECTRIC MATERIALS

FLAME is applied to simulate electrostatic interactions in 2D and 3D elec-

trostatic multiparticle problems. This chapter describes the calculation of the po-

tential, electric field and force. Two approaches, analytical/numerical bases and

adaptive mesh refinement, are developed to improve the accuracy when there are

several particles in close proximity to one another.

4.1 Introduction

Electrostatic and magnetostatic multiparticle problems are important for the simu-

lation of colloidal systems, polymers, macromolecules, magnetically driven assem-

bly, drug delivery, and other applications [26, 27]. When these problems extend to

the nanoscale, the number of objects in the system is usually significant. For this

type of problem, conventional numerical methods have serious limitations. For ex-

ample, the FEM requires geometrically conforming meshes that become extremely

complex because of the large number of objects. The FMM is not effective either

for dielectric/magnetic particles of finite size or for nonlinear problems.

38



FLAME was presented in detail in Chapter 3. The electrostatic problems

can serve as models for testing this new computational technique. The following

sections discuss the applications of FLAME to both 2D and 3D electrostatic multi-

particle problems.

4.2 Case 1: Well-Separated Particles in 2D

2D multiparticle problems, being less complex than 3D ones, provide a good initial

test for FLAME. 3D applications are considered in sections 4.4 and 4.5. Before pre-

senting more realistic examples, it is helpful to separate the multiparticle problems

into two cases. In the first case, any pair of particles are “well-separated” in the

sense that the gap between them is greater than the mesh size. In the second case

(“poorly-separated” particles), one or more such gaps are comparable to or smaller

than the mesh size. This section deals with the case of well-separated particles, and

the following section is for poorly-separated particles.

For definiteness, consider a 2D example with ten circular dielectric parti-

cles in a homogeneous dielectric medium (Figure 4.1). All particles have the same

radius that is for convenience normalized to unity. The electrostatic potential is gov-

erned by the Laplace equation both inside and outside the particles, with standard

boundary conditions [7] for the potential and its normal derivative across particle

boundaries.

In the test example, the computational domain is chosen as a square 16×16,

where the particles are placed quasi-randomly. To ensure sufficient gaps between
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Figure 4.1: Geometric setup of the electrostatic well-separated multiparticle with

ten particles. All particles have the same radius, for convenience normalized to

unity.

them in the case with well-separated particles under consideration, the distance

between any two particles (center to center) is set to be greater than 3 times the

particle radius. The relative dielectric constants of all particles are chosen as 10.

The medium around the particles is air. A uniform external field is applied. To

eliminate the numerical error associated with the approximation of boundary con-

ditions, the exact Dirichlet boundary condition is imposed on the outer boundary,

as described in the following subsection.
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4.2.1 Quasi-Analytical solution for the 2D Multiparticle Problem

For the 2D problem with a limited number of circular particles, the multipole-

multicenter expansion can be used to obtain a quasi-analytical solution. This method

is based on the binomial expansion [28] that can be used to translate the potential

in one polar coordinate system to another polar system. This expansion is repre-

sented by the equation

(r − r′)n =
∞
∑

k=−∞









υ

k









rkr′
(n−k)

(4.1)

where









υ

k









is the binomial coefficient. The r and r′ are radial coordinate values

of the two polar coordinate systems and n is an arbitrary integer.

For the multipole-multicenter expansion, the global potential is the summa-

tion of all the potentials that related to all particles, plus the external field applied.

Here, the potential related to particle is referred to as the local potential. The local

potential related to particle p can be expanded into cylindrical harmonics.

u =















∑∞
i=0 gip(rpe

iθp) Inside particle p

∑∞
i=0 dip(rpe

−iθp) Outside particle p

(4.2)

Here, gip and dip are the coefficients that need to be determined, and rp and θp are

the coordinate values in the polar system, with the origin at the center of the particle

p. The corresponding boundary conditions at the particle interface boundary Γ can

be used to determine the coefficients gip and dip.
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According to (4.2), there are two equations corresponding to each harmonic

of one particle, one for the inside area and the other one for the outside area. If

there are m particles altogether, then 2m equations are needed for each harmonic.

If n harmonics are useed, the total number of equations is n × 2m. Knowing the

applied external field, the coefficients gip and dip can be calculated based on these

equations. After these calcuations are made, the local potential related to each

particle is obtained. Further, the global potential is calculated. Assuming there are

total number of particles are q, the global potential distribution will be

φ =















φext +
∑∞

i=0 gip(rpe
iθp) +

∑q
j=1,j 6=p

∑∞
i=0 dij(rje

iθj ) Inside particle p

φext +
∑q

j=1

∑∞
i=0 dij(rje

−iθj ) Outside all particles

(4.3)

In practice, the potential converges rapidly as the number of harmonics

increases. For all 2D multiparticle problems in this chapter, the harmonics are trun-

cated at the term when the magnitude of the corresponding potential is 10−10 to

obtain a quasi-exact solution for verification purposes.

4.2.2 Potential Calculation of Mesh Nodes

When FLAME is applied to the 2D electrostatic multiparticle problem, part of the

procedure is the same as for the conventional FD method. Regular Cartesian grids

are typically used. FLAME schemes for each grid stencil are generated as described

in Chapter 3. This leads to a system of algebraic equations with a sparse matrix; the

sparsity structure of this matrix is the same as it would be for the conventional FD
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on the same grid stencils. The system of equations is solved to obtain the potential

at the grid nodes.

The relative root mean square error (RMSE) is used to evaluate the numer-

ical accuracy in this chapter.

relative RMSE =

√

∑
(

F (m) − F̂ (m)
)2

√
∑

F 2(m)
(4.4)

Here, F (m) is the theoretical result and F̂ (m) is the numerical result.

The numerical accuracy of the nodal potentials are plotted on the logarith-

mic scale as a function of the number of nodes, n, as shown in Figure 4.2. For

comparison, the accuracy plots for standard five-point FD based on the flux bal-

ance, as well as first order and second order FEMs are also provided. The vertical

axis shows the relative RMSE, which includes all the mesh nodes inside the domain

(excluding the boundary nodes). In Chapters 4 and 5, all the FEM calculation re-

sults are obtained with the commercial software package, COSMOL Multiphysics.

This software is a powerful, interactive environment for FE modeling of scientific

and engineering problems.

From Figure 4.2, it can be seen that the order of convergence of the five-

point FLAME scheme is approximately O(n−0.6), which is similar to that of the five-

point FD. However, the accuracy of the five-point FLAME is about ten times higher

than the accuracy of the five-point FD. Further, for a small number of nodes, the

accuracy of the five-point FLAME is greater than the accuracy of the first order FEM.
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Figure 4.2: Numerical accuracy of the nodal potentials for the 2D electrostatic mul-

tiparticle problem with well-separated particles.

Among all methods, the nine-point FLAME has the highest accuracy and the highest

order of convergence (O(n−1.8)).

4.2.3 Potential Interpolation

The result in Section 4.2.2 is limited to the potentials at mesh nodes. It would be

more useful if we were able to obtain the potential at any point in the geometry

with a high level of accuracy. Referring to equation (3.10), it is clearly seen that the

potential of any point in a given patch can be approximated by a linear combination

of the basis functions. Therefore, to determine the corresponding potential value at

any point, the patch that the point belongs to needs to be found and the coefficient

series, c
(i)
α , based on the nodal potentials of the patch needs to be calculated.
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(a) Regular 5-point FLAME

 

(b) Regular 9-point FLAME

Figure 4.3: Potential interpolation for the FLAMEs.

Figure 4.3 presents an example of a patch to which the interpolation point

(triangle in the figure) belongs, for both five-point and nine-point schemes. The

gray parts are the local patches chosen for interpolation because their centers are

closest to the interpolation point. By moving the matrix N (i) from the right to the

left in equation (3.11) of Chapter 3, the coefficient series is calculated by dividing

the potential vector of the nodes in the patch into the matrix N (i), which can be got

based on the basis functions for the patch. Then, the interpolation potential can be

calculated by this coefficient series and the basis functions.

In the 2D electrostatic multiparticle model shown in Figure 4.1, 1000 sam-

pling points are chosen randomly in the computational domain for testing. Fig-

ure 4.4 shows the interpolation errors at these sampling points. The errors of the

nodeal potentials are included for comparison. For both five-point and nine-point
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Figure 4.4: Numerical accuracy of the potential interpolation for the 2D electro-

static multiparticle problem with well-separated particles.

FLAME schemes, the interpolation accuracy at random points is comparable with

that of the nodal potentials, especially for finer meshes. Furthermore, the accu-

racy of the nine-point FLAME is much greater than the accuracy of other numerical

schemes, such as five-point FLAME, first and second order FEMs.

4.2.4 Electric Field Interpolation at Random Points

The same approach as above is applied to the interpolation of the electric field at

any point in the domain. The relationship between the potential and the electric

field is

E = −∇u (4.5)
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Since the potential can be expressed by a linear combination of the FLAME basis

functions, the electric field will be the corresponding linear combination of the

gradients of the basis functions. Combining equations (4.5) and (3.10), one writes

the electric field as

Ẽ = −∇
n
∑

k=1

ckψk =
n
∑

k=1

(−ck∇ψk) (4.6)

To demonstrate the accuracy of this electric field interpolation, the same 1000 sam-

pling points as in Section 4.2.3 are used for testing.
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Figure 4.5: Numerical accuracy of the electric field interpolation for 2D electrostatic

multiparticle problem with well-separated particles.

Figure 4.5 shows the electric field interpolation results for both five-point

and nine-point FLAME schemes. The results of the mesh-node potentials are in-
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cluded for comparison. The accuracy of the electric field interpolation for both

five-point and nine-point schemes are about ten times lower than the accuracy of

the mesh-node potentials. This accuracy loss for gradients is not surprising. The

accuracy of the five-point FLAME in the field interpolation is much greater than

the accuracy of first order FEM. The same conclusion is drawn by comparing the

nine-point FLAME with second order FEM. Overall, FLAME produces more accurate

values of the electric field at any point than FEM (five-point FLAME to first order

FEM, nine-point FLAME to second order FEM).

4.2.5 Electromagnetic Force Calculation for Particles

There are two different approaches to the calculation of electromagnetic forces.

The first one is based on the energy conservation, while the second one comes from

direct source-field interaction, such as Coulomb’s force on the dipole of equivalent

magnetic charge and Lorentz’s force on conduction or equivalent magnetization

currents [29]. The Maxwell stress tensor [30], which belongs to the first category, is

adopted in this section to calculate the electromagnetic forces among the particles.

In the calculation of 2D problems, the Maxwell stress tensor is given as

T =









Txx Txy

Tyx Tyy









=









E2
x − E2

2
Ex · Ey

Ey ·Ex E2
y − E2

2









(4.7)

where E is the electrostatic field, x and y are the Cartesian coordinates.
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The electromagnetic force acting on each particle can be calculated by the

integration of the stress tensors:














Fx =
∫

l
Txxnxdl +

∫

Txynydl

Fy =
∫

l
Tyxnxdl +

∫

Tyynydl

(4.8)

where n represents the normal direction. Computationally, equations (4.7) and

(4.8) are found as numerical quadratures, as illustrated by examples below. To

determine the accuracy of the force calculation, the quasi-exact value of the force is

calculated using the Maxwell stress tensor for the semi-analytical electric fields (via

the multipole-mutilcenter method) of 100,000 sampling points. These sampling

points are the points even distributed in the circle path around one particle (R =

1.1r).

One important requirement for the integration path is that it must be a

closed path outside the designated particle. In this section, a circlular path of radius

d around a particles of radius r is chosen for the force calculation, as Figure 4.6

shows.

The force calculation shows that similar results can be obtained with differ-

ent R as long as the condition R > r is satisfied. The difference among calculations

with R = 1.01r, 1.1r, 1.2r are in 10−9. For the calculations below, R is fixed as

1.1r. To make numerical quadratures quasi-exact, the number of integration knots

is chosen to be 40,000 for all of the calculations.

Figure 4.7 the results of five-point and nine-point FLAME schemes. The

results of first and second order FEMs with the same number of integration points
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Figure 4.6: Field integration path for the force calculation.

are used for comparison. In general, the accuracy of the FLAME is higher than the

accuracy of the FEM. Of all the calculations, the nine-point FLAME demonstrates

the greatest accuracy. It is also found that the accuracy of force calculation is about

ten times lower than the accuracy of the nodeal potentials, which is similar to the

results of the electric field interpolation. This result is not surprising since the force

calculation is based on electric fields that are less acurate than the potential.

4.3 Case 2: Poorly-Separated Particles in 2D

Calculations above are all for the 2D well-separated particles. Now let’s go to the

2D poorly-separated particles. For these problems with poorly-separated particles,

regular FLAME usually needs the side length of mesh grid is at most the smallest gap

between two particles to get great accuracy. Therefore, the number of mesh nodes
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Figure 4.7: Numerical accuracy of the force calculation for the 2D electrostatic

multiparticle model.

needs to be relatively large. This requirement makes regular FLAME computational

impractical for the system that has a large number of components, unless some

extra strategies are used.

4.3.1 An Illustration for Two Poorly-Separated Particles

Before discussing strategies for problems with poorly-separated particles, it first

needs to be made clear why this situation leads to poor accuracy in regular FLAME.

The FLAME scheme in the vicinity of any given particle is obtained by matching

spherical harmonic expansions inside and outside the particle. This approach works

well, but its area of applicability has limitations. If the shape of particles (or other

dielectric objects) is not cylindrical or spherical, it is substantially more difficult to

construct accurate local analytical approximations of the potential. Furthermore, if
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two or more particles are separated by the distances (surface to surface) equal to

or smaller than the grid size, the nodes associated with a patch may “belong” to

different particles, as shown in Figure 4.8.

1

2

3

4

5

)(iΩ

 

Figure 4.8: Patch Ω(i) (dashed line) intersects two nearby particles.

A simple example of a pair of circular particles with the same radii is used

to demonstrate the relationship between the numerical accuracy and the separa-

tion distance of the particles. As shown in Figure 4.9, two particles, with a gap d,

have the same relative dielectric constant of 10. A uniform external field along the

x-coordinate is applied. To determine the overall accuracy of the FLAME, the rela-

tive RMSE of potentials is calculated based on more than 1,000 randomly selected

points.

To verify the numerical accuracy as a function of the separation distance,

the grid size is fixed at one-quarter of the particle radius in both x and y directions,

and the five-point FLAME is chosen for the sample calculation. Figure 4.10 shows

52



pr pr

d

pε pε

0ε

x

y

 

Figure 4.9: Example problem with two circular particles.

that the relative RMSE of potentials quickly increases with the decrease in the gap.

When the gap is equal to rp, the relative RMSE is only 0.089%, which proves that the

regular FLAME works well as long as the particles are well-separated. When the gap

diminishes to 0.125rp, which is relatively small compared to the grid size of 0.25rp,

the relative RMSE increases by more than two orders of magnitude, to ∼23.2%. For

this case, the particles are too close to each other for the local approximation based

on just one of them to be physically meaningful.

The easiest method would be to refine the global mesh and to make the

grid size smaller than the smallest gap. This method works for simple problems,

such as the problem shown in Figure 4.9 when the gap is 0.125rp. However, for

problems with a large number of particles, or with some of the gaps between the

particles much smaller than their radii, refining the global mesh would increase the

computational cost tremendously.
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Figure 4.10: The relative RMSE as a function of the gap (expressed as a fraction of

the radius).

4.3.2 Analytical vs. Numerical Bases

Two practical strategies for the FLAME, analytical/numerical bases and adaptive

meshing, are proposed to improve the calculation accuracy by increasing rela-

tively little computation complexity. The analytical/numerical bases FLAME treats

a group of particles that are in close proximity to one another (compared with the

grid size) as an auxiliary local problem and generates the corresponding FLAME

bases, as shown in Figure 4.11. The local domain, which includes the clustered

particles, is much smaller than the global domain, and therefore FLAME bases can

be computed at a relatively low cost. Two ways for creating such bases are intro-

duced in this section.

The multipole-multicenter expansion, which was introduced in Section 4.2.1,

can produce analytical solutions to be used as the bases. On the other hand, in cases
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Figure 4.11: Local domain chosen for the analytical/numerical bases FLAME.

where local analytical approximations are unavailable, FLAME bases can be found

as accurate numerical solutions of a local problem in the patch containing any given

stencil. Among all traditional numerical methods, FEM is the most powerful tool

that can be used toward this end. Solution of the local problem is relatively in-

expensive because it does not require the construction of globally conforming FE

meshes.

4.3.3 Adaptive FLAME

Adaptive FLAME refines the mesh locally in the areas where the particles are in close

proximity to each other. Adaptive algorithms have a long history in FE analysis [31].

For FLAME, the computational domain is comprised of a system of overlapping

patches. When two or more patches intersect, there is a discrepancy between the
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potential interpolations. Once the grid is refined, this discrepancy is expected to

diminish.

1

2

 

(a) Two overlapping patches

1

2

3

4

 

(b) Four overlapping patches

Figure 4.12: Overlapping patches carrying the different local FLAME approxima-

tions (after [32], (c) 2008 IEEE).

More specifically, consider two overlapping patches, patch 1 and patch 2,

as shown in Figure 4.12(a). The potential of the edge midpoint (black dot) can

be interpolated using either patch 1 or patch 2, as explained in Section 4.2.3. The

discrepancy between these two interpolated values at the edge midpoint may serve

as an a posteriori error measure. One possible error indicator for a grid cell is the

sum of the indicators at the four edge midpoints of the cell [32].

There are many other choices for error indicator. As shown in Figure 4.12(b),

the nearest four patches can be used to interpolate the potential of the cell midpoint
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(black dot). Either the standard deviation or the sum of the four interpolational dis-

crepancies can be used as an error indicator for adaptive refinement.

 

Figure 4.13: One-step gradual refinement strategy (after [32], (c) 2008 IEEE).

Although there are many choices for adaptive refinement strategies, one

specific refinement strategy referred to as “One-step gradual refinement” is adopted

here, as shown in Figure 4.13. Let the mean value of the error indicator over all

cells be ǫmean. Cells with the indicator below ǫmean are not refined. Cells with the

indicator in the range [ǫmean, 2ǫmean] are subdivided into 2×2 subcells. Cells with the

indicator in the range [2ǫmean, 3ǫmean] are subdivided into 4 × 4 subcells, etc. To this

end, for each cell subdivided into 2l × 2l subcells, all neighboring cells are forced to

be subdivided into at least 2l−1 × 2l−1 subcells. Obviously, there are many possible

variations of this strategy [32].
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4.3.4 Numerical Results for Analytical/Numerical Bases FLAME

10=pε

0ε

d=0.1

1=r

 

Figure 4.14: A 2D model with four particles for analytical/numerical bases FLAME.

The analytical/numerical bases FLAME is tested with the sample problem

shown in Figure 4.14. The particles in the air have the relative dielectric constant

ǫp = 10. A uniform external field is applied. All particles have the same radius that

is normalized to unity. To eliminate the numerical error associated with the approx-

imation of global boundary conditions, the semi-analytical (multipole-multicenter)

Dirichlet condition is applied on the domain boundary. In this model, the two clos-

est particles, which have the gap of one tenth of the radii, are treated as a local

group for the purpose of constructing a FLAME basis. Two types of FLAME bases

introduced in Section 4.3.2 are used, one of which is the local multipole-multicenter

expansion and the other, purely numerical, is computed using FEM.
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The overall accuracy of the analytical/numerical bases FLAME is dependent

on two main factors. One source of the error is the finite-difference discretization

by FLAME itself. This error primarily depends on the grid size of the global Carte-

sian mesh in FLAME. The other source of the error is the function of the accuracy

of the local bases. For the analytical bases FLAME constructed by the multipole-

multicenter expansion, this error is governed by the number of harmonics chosen.

For the numerical bases FLAME determined by FE analysis, this error is governed

by the FEM parameters, such as the FE mesh size, the order of finite elements, and

the geometric shape of the elements.
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Figure 4.15: Numerical accuracy of analytical base FLAME for the electrostatic

problem with poorly-separated particles.

Figure 4.15 shows the FLAME simulation result for the analytical bases con-

structed by the multipole-multicenter expansion. It can be easily seen that the accu-
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racy of FLAME is much higher than that of the standard FD based on flux balance.

When the grid size is greater than half of the smallest gap between the particles, FD

provides a very crude approximation at best. The accuracy of standard FD begins

to improve only after the grid size falls below half of the smallest gap.

For the five-point FLAME scheme with multipole-multicenter bases, pro-

vided that a sufficient number (in our example 40) of harmonics are used to gen-

erate the FLAME basis, the accuracy improves as the global mesh is refined. For

a smaller number of harmonics (10), the FLAME accuracy increases only to some

saturation level commensurate with the accuracy of the FLAME bases themselves.

Similar observations are valid for the nine-point FLAME scheme (compare the error

plots in Figure 4.15 for 10 and 40 harmonics in the construction of the basis).

The accuracy of the nine-point FLAME scheme is much greater than the

accuracy of the five-point FLAME scheme. From our numerical data, the asymptotic

behavior of the error in the potential is approximately O(n−0.8) for the five-point

scheme and O(n−1.85) for the nine-point scheme.

For the numerical bases FLAME, the FEM is applied to calculate the local

bases. Two FLAME basis functions computed by COSMOL Multiphysics are plotted

in Figure 4.16. The functions correspond to two particles with a gap of one tenth

of the radii.

Figure 4.17 shows the FLAME simulation result with the numerical bases.

The number of FE degrees of freedom (d.o.f.) is a simulation parameter that affects

the accuracy of the FE solution for the numerical FLAME bases. For the five-point
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Figure 4.16: Examples of FLAME basis functions generated by FEM for a pair of

nearby cylindrical particles, Left: basis function corresponding to the external ap-

plied field with potential uext = y, Right: uext = x2 − y2.

scheme, 5,401 d.o.f. and 59,371 d.o.f. yield similar accuracies, which shows that

the numerical error in this case is primarily due to FLAME, rather than to the local

FEM discretization.

The plot for the nine-point FLAME scheme with 59,371 d.o.f. has an anomaly.

When the number of nodes becomes greater than 10,000, the accuracy deteriorates.

This is caused by the limited accuracy of the FE solution for the FLAME bases. With

limited accuracy, the null space of matrix NT chas dimension greater than one in

some patches. Fortunately, the dimension of the null space is not hard to monitor.

If it becomes greater than one, the accuracy of the local FE solution needs to be

increased (via h- or p-refinement).

61



1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

100 1000 10000 100000 1000000

Number of nodes (log scale)

R
el

at
iv

e 
R

M
SE

 (
lo

g 
sc

al
e)

FD (5-point flux balance)
5-point FLAME, 5401 d.o.f
5-point FLAME, 59371 d.o.f
9-point FLAME, 59371 d.o.f
9-point FLAME, 236941 d.o.f

 

Figure 4.17: Numerical accuracy of numerical base FLAME (finite-element) for elec-

trostatic problem with poorly-separated particles.

4.3.5 Numerical Result for Adaptive FLAME

As mentioned in Section 4.2, five-point and nine-point FLAME schemes are suitable

for 2D models. After grid refinement, the schemes become distorted, as shown in

Figure 4.18. Calculation shows that the five-point scheme on nonstandard sten-

cils leads to much higher error compared to the nonstandard nine-point scheme.

This error reduces or eliminates any advantage of adaptive grid refinement for the

five-point FLAME scheme. On the other hand, the result in Section 4.2 shows that

the nine-point scheme produces much greater accuracy than the five-point scheme.

Therefore, our focus here is on the nine-point FLAME scheme for adaptive refine-

ment.
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(a) Standard five

point scheme

 

(b) Nonstandard five point scheme

 

(c) Standard nine

point scheme

 

(d) Nonstandard nine point scheme

Figure 4.18: Examples of standard and nonstandard stencils (after [32], (c) 2008

IEEE).

The specific problem used to test adaptive FLAME involves the arrangement

of four particles, as shown in Figure 4.19. The relative dielectric permittivities of

the particles are ǫp = 2, 4, 6, 8. A few of the particles are deliberately placed in close

proximity to one another, to make the problem nontrivial for standard FD analysis

with a relatively coarse mesh. To eliminate the numerical error associated with the

approximation of boundary conditions, the exact (theoretical) Dirichlet condition

is applied on the exterior domain boundary.

Figure 4.20 shows a coarse Cartesian grid 11 × 11, as well as the grid ob-

tained by gradual refinement. It can be seen that the mesh refinement is sensible
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Figure 4.19: A 2D model with four particles for adaptive FLAME (after [32], (c)

2008 IEEE).

overall; the grid is refined in the “right” places, where two or more particles are in

close proximity to one another. In such places, the behavior of the potential is more

complicated than the potential’s behavior in other regions.

The numerical accuracy of the potentials at 81 sample points is plotted in

Figure 4.21 on the logarithmic scale as a function of the number of nodes. For

comparison, accuracy plots for the standard five-point FD flux balance scheme, the

regular FLAME scheme, and the first order and second order non-adaptive FEMs

are also provided. Convergence of adaptive FLAME with gradual refinement is

much faster than that of other methods. The asymptotic behavior of the accuracy is

approximately O(n2.2).
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(a) Initial grid

 

(b) Grid after refinement

Figure 4.20: Adaptive gradual grid refinement for 2D model of adaptive FLAME

(after [32], (c) 2008 IEEE).

4.4 Case 3: Well-Separated Particles in 3D

All results presented in the preceding sections of this chapter have come from 2D

electrostatic multiparticle problems. However, it is desirable to demonstrate the

applications of FLAME in 3D. 3D problems are also divided into situations with

well-separated and poorly-separated particles for discussion. This section focuses

on the case with well-separated particles.

4.4.1 Quasi-Analytical solution for the 3D Multiparticle Problem

Similar to the 2D electrostatic model, quasi-analytical solution is used for accuracy

evaluation in 3D problems. The multipole-multicenter expansion is used in the 3D
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Figure 4.21: Numerical accuracy of adaptive FLAME for the poorly-separated elec-

trostatic multiparticle problem (after [32], (c) 2008 IEEE).

model. However, this expansion is now based on the multipole algorithm instead

of on the binomial expansion used in the 2D model. The multipole algorithm also

relies on the transformations of the potential from one coordinate system to another

one [14].

In the multipole-multicenter expansion, the global potential distribution is

the summation of all the potentials that related to each particle, plus the external

field applied for a 3D multiparticle system. The potential related to one particle’s

center can be expressed as

φ =















∑∞
n=0

∑n
m=−nD

m
n ρ

nY m
n (θ, ϕ) Inside the particle

∑∞
n=0

∑n
m=−nO

m
n /ρ

n+1Y m
n (θ, ϕ) Outside the particle

(4.9)
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and

Y m
n (θ, ϕ) =

√

n− |m|!
n + |m|! · P

|m|
n (cosθ) eimϕ (4.10)

where Pm
n is the associated Legendre function, and Dm

n and Om
n are the coefficients

that need to be determined from the boundary conditions. The potentials are re-

ferred to as the local expansion inside of the particle and the multipole expansion

outside of the particle, as equation (4.9) shows.
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Figure 4.22: Coordinate translation for multipole-multicenter expansion.

Referring to Figure 4.22, there are two translations that are important for

the multipole algorithm. One is the conversion from a multipole expansion to a

local expansion. The other is the translation between local expansions. For the

translation between multipole and local expansions, the multipole expansion with
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coefficient Om
n based on (X, Y, Z) can be converted to the local expansion based on

(X ′′, Y ′′, Z ′′).

φ =

∞
∑

j=0

j
∑

k=−j

Lk
j (ρ′′)

j
Y k

j (θ′′, ϕ′′) (4.11)

where

Lk
j =

∞
∑

n=0

n
∑

m=−n

Om
n · i|k−m|−|k|−|m|·Am

n ·Ak
j · Y m−k

j+n (θ′, ϕ′)

(−1)nAm−k
j+n · (ρ′)j+n+1 (4.12)

with Am
n defined by the formula

Am
n =

(−1)n

√

(n−m)! · (n+m)!
(4.13)

In regard to translation between local expansions, the local expansion with

coefficient Dm
n based on (X, Y, Z) is translated to the other local expansion based

on (X ′′, Y ′′, Z ′′).

φ =

p
∑

j=0

j
∑

k=−j

Lk
j (ρ′′)

j
Y k

j (θ′′, ϕ′′) (4.14)

with

Lk
j =

p
∑

n=0

n
∑

m=−n

Dm
n · i|m|−|m−k|−|k|·Am−k

n−j ·Ak
j · Y m−k

n−j (θ′, ϕ′) · (ρ′)n−j

(−1)n+j ·Am
n

(4.15)

By combining these two translations, the boundary condition and the ap-

plied external uniform field, the coefficients Dm
n and Om

n can be calculated. Then,

the potential distribution of the 3D multiparticle problem is the superposition of the

potentials related to all the particles, plus the external potential applied. For all 3D

electrostatic models in this chapter, the harmonics are truncated at the magnitude

of 10−8 for the potential.
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4.4.2 Accuracy of Nodal Potentials

A model with five particles in air is used as a 3D example with well-separated

particles. All particles have the same radius, normalized to unity. The dielectric

constants of all particles are 10. The distances between any two particles (center to

center) are kept greater than 3.6 times the radii. A uniform external field is applied.

To eliminate the influence of the boundary condition, the semi-analytical Dirichlet

boundary condition is imposed on the outer boundary.

Figure 4.23 displays the nodal potential errors. For comparison, the results

of standard seven-point FD based on flux balance, first order FEM and second order

FEM are also provided. The errors are calculated in relative RMSE for the nodes

excluding those at the outer boundary.

In this 3D electrostatic multiparticle model, the overall accuracy of the

seven- and nineteen-point FLAMEs is much better than the other methods listed

in Figure 4.23. The accuracy of the seven-point FLAME converges with the order

O(n−0.7). The nineteen-point FLAME, which is in the order O(n−1.61), is much bet-

ter than the seven-point FLAME. The relative RMSE is on the order of 10−8 when

the number of grid nodes is 274625, when the corresponding grid size is 1/8 of the

particles’ radii.

4.4.3 Potential Interpolation at Random Points

Using the theory introduced in Section 4.2.3, the potential at any point can be

interpolated using the FLAME basis functions. To determine the accuracy, 1,000
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Figure 4.23: Numerical accuracy in mesh nodes potentials for problem with 3D

well-separated particles.

points are randomly chosen in the domain. The overall accuracy is demonstrated

by the relative RMSE.

Figure 4.24 shows the accuracy of potential interpolation for the seven-

point and nineteen-point FLAME schemes. The accuracy of nodal potentials are

also included for comparison. The nineteen-point FLAME shows the best accuracy

compared with the seven-point FLAME, first and second order FEMs. It is of course

not surprising that the accuracy of the interpolated potential is a little worse than

that of the nodal potentials.
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Figure 4.24: Numerical accuracy in potential interpolation for problem with 3D

well-separated particles.

4.5 Case 4: Poorly-Separated Particles in 3D

Now let us consider 3D problems with poorly-separated particles. The example

includes four particles with the same normalized radii rp = 1 and the dielectric

constant ǫp = 2. The particles are immersed in a medium (e.g. a solvent) with

ǫs = 80. There are two particles that are in close proximity to one another, with the

gap of ∼0.1459 between them. A uniform external field is applied. For comparison

and verification, the analytical solution is obtained via the multipole-multicenter

expansion (truncated at the terms with the magnitude of 10−8). To eliminate the

effects of domain truncation, the semi-analytical Dirichlet condition is imposed on

the boundary.
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Figure 4.25: Accuracy in potential of grid nodes for electrostatic problem with the

3D poorly-separated particles based on multipole-multicenter expansion.

As Figure 4.25 shows, the nineteen-point scheme yields much greater ac-

curacy than the seven-point scheme when the FLAME bases are computed with

sufficient accuracy. The asymptotic convergence rate for the potentials is ∼ O(n1.5)

for the seven-point scheme and ∼ O(n3.5) for the nineteen-point scheme.

4.6 Conclusion

FLAME is a new finite-difference calculus that incorporates accurate local approx-

imations into the difference scheme. For particles that are well-separated (gaps

greater than the mesh size), regular FLAME provides greater accuracy compared

with the standard FD based flux balance, first and second order FEMs.
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The special situation, where particles are in close proximity to one another,

is more difficult. Two approaches, analytical/numerical base FLAME and adaptive

FLAME, are proposed and tested with electrostatic multiparticle models. The an-

alytical/numerical base FLAME treats the area that has poorly-separated particles

as a local problem, and two strategies of computing the basis functions are sug-

gested. The first strategy employs a local multipole-multicenter expansion. The

second strategy is purely numerical, and the FEM is used to generate FLAME bases.

In either case, solving local problems requires much less computation than solving

the global problem, since no complicated meshes and no large systems of equations

are involved.

Adaptive FLAME borrows some general ideas from adaptive FEM but, being

a finite-difference method, is substantially different. The solution is approximated

on the individual subdomains (patches) covering the global computational domain.

The discrepancy between the patch-wise numerical solutions in the areas of overlap

serves as an a posteriori error indicator. Electrostatic problems with multiple dielec-

tric particles provide meaningful test cases for grid refinement. The error indicator

correctly identifies the regions around particle clusters and small air gaps as target

areas for grid refinement. As a result, convergence of the adaptive algorithm as a

function of the number of nodes is much faster than that of global refinement.

Numerical examples show that the accuracy of FLAME is much higher than

that of the standard FD (flux balance), even that of FEM. This paves the way for

solving problems with a large number of particles on relatively coarse grids, and
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with mesh sizes comparable to or even greater than the radii of the particles, and

the separation distances between them.
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CHAPTER V

WAVE SCATTERING FROM CYLINDRICAL DIELECTRIC PARTICLE MATERIALS

This chapter introduces the applications of FLAME to structures composed

of cylindrical dielectric particles. Such strucutres have many promising applications

in photonics; of particular interest are photonic crystals [34]. The construction of

FLAME schemes is discussed, together with analytical calculations for wave scatter-

ing problems. Several examples are demonstrated for FLAME simulation in both

situations with well-separated and poorly-separated particles.

5.1 Introduction

Electromagnetic wave scattering is a general physical phenomenon that is governed

by the Maxwell equations. The study of electromagnetic wave scattering has many

applications, such as in radar systems, astronomy, optics, and solid state physics

[33]. Figure 5.1 shows a scattering problem of waveguide composed of cylindrical

particles, where the field varies in the XY-plane and there is no variation in the Z

direction. The problem can then be formulated in 2D as the scalar time-harmonic
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wave equations can be used as the governing euqations.

[
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Ez = jωJz (5.1)
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(

1

ǫ
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)

+
∂
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(

1

ǫ
Jx

)

(5.2)

There are two basic modes in a homogeneously filled waveguide: transverse elec-

tric (TE) mode and transverse magnetic (TM) mode. TE mode has no electric field

component in the propagation direction, and TM mode has no magentic field com-

ponent in that direction instead. The general wave problems can be treated as a

linear combination of these two modes.

X
Y

Z

 

Figure 5.1: Wave propagation and scattering from cylindrical particles can be

treated as a 2D problem in the xy-plane.
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Numerical calculation plays an important role in the analysis and design.

FDTD is a very useful and versatile method for wave scattering problems in gen-

eral and for optical devices in particular [11, 34]. FEM has also been widely used,

especially in recent years due to substantial improvements in commercial FE soft-

ware [35]. As mentioned in Chapter 1, both methods have their advantages and

disadvantages for this type of problem. For problems with a large number of par-

ticles, FDTD and FEM need extremely fine meshes to achieve reasonable accuracy,

which makes the computation difficult. FLAME has been proved to be successful in

solving the electrostatic multiparticle problems in Chapter 4. In this chapter, this

method is applied to wave scattering.

5.2 FLAME for Wave Scattering from Cylindrical Particles

According to (5.1) and (5.2), the scalar wave equations of TM and TE modes are

derived assuming no source current exists.

∇ · µ−1∇Ez + ω2ǫEz = 0 TM mode (5.3)

∇ · ǫ−1∇Hz + ω2µHz = 0 TE mode (5.4)

The FLAME basis functions, which satisfy the scalar wave equations ((5.3)

for TM mode, (5.4) for TE mode), are chosen as cylindrical harmonics in the vicinity
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of each particle based on cylindrical coordinate.

ψ(i)
α =















anJn(kcylr)exp(inθ), r ≤ r0

[bnH
(2)
n (koutr) +H

(1)
n (koutr)]exp(inθ), r > r0

(5.5)

where Jn is the Bessel function, H
(1)
n and H

(2)
n are the Hankel functions of the first

and second kinds, respectively, an and bn are coefficients to be determined via the

boundary conditions.

For the five-point FLAME scheme, four basis functions are required. They

can be chosen as one monopole harmonic (n = 0), two dipole harmonics (n =

±1), and one quadrupole harmonic (n = 2). For the nine-point FLAME scheme,

harmonics with n = 0, n = ±1, n = ±2, n = ±3, n = 4 are retained for eight

basis functions. Using these basis functions, the schemes for all patches can be

constructed.

5.3 Quasi-Analytical Calculation for Wave Scattering from Cylindrical Particles

The quasi-analytical result is used to evaluate the accuracy of FLAME in cylindrical

wave scattering problems. Similar to the 2D and 3D electrostatic problems, such

result is obtained using multipole-multicenter expansion. According to multipole-

multicenter expansion for wave scattering problems, the global field distribution

is the summation of all the fields that related to each particle, plus the external

field applied. Assuming one cylinder in the wave scattering model is centered at

the origin, the electric field (TM mode) or magnetic field (TE mode) related to this
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cylinder can be expressed as

u =















∑∞
m=−∞Gnr

nJn(κrr)e
inθ Inside particle

∑∞
m=−∞ Fnr

nH
(p)
n (κrr)e

inθ Outside particle

(5.6)

Here, u is the electric field for the TM mode or the magnetic field for the TE mode,

Jn(x) is the Bessel function, H
(p)
n (x) represents the Hankel function where p is its

order, Gn and Fn are constant coefficients to be determined.

The coefficients Gn and Fn can be calculated based on the addition theorem

[36] by matching the boundary conditions between particles and the surrounding

medium. The addition theorem expresses wave functions in one coordinate system

as functions of another coordinate system (Figure 5.2). For the Hankel function,

this translation is

H(p)
m (kr|r − r′|)eimθ′′ =















∑∞
n=−∞ Jn−m(krr

′)H
(p)
n (krr)e

inθ−i(n−m)θ′ , r > r′

∑∞
n=−∞H

(p)
n−m(krro

′)Jn(krr)e
inθ−i(n−m)θ′ , r < r′

(5.7)

For the Bessel function, the translation is

Jm(kr|r − r′|)eimθ′′ =

∞
∑

n=−∞

Jn−m(krr
′)Jn(krr)e

imθ−i(n−m)θ′ (5.8)

For two contiguous media, the tangential and normal components of E, D,

B, and H must satisfy equation (5.9), where n̂ is the normal direction:











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




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
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









n̂× (E1 − E2) = 0

n̂ · (D1 −D2) = ρs

n̂× (H1 −H2) = Js

n̂ · (B1 − B2) = 0

(5.9)

79



X

Y
X''

Y''

'r

r

'rr −

θ'θ

''θ

 

Figure 5.2: Translation between two cylindrical coordinate systems.

Once the coefficients Gn and Fn for all cylinders are calculated, the field

distribution can be determined. In practice, the result converges rapidly as the

number of harmonics n in (5.6) increases. For all the cylindrical wave scattering

problems in this chapter, the harmonics are truncated at the magnitude of 10−9 to

obtain a quasi-exact solution for verification purposes.

5.4 Case 1: Wave Scattering from the Well-Separated Cylindrical Particles

As in the case of electrostatic multiparticle problems, wave scattering problems are

separated into two categories for discussion: well-separated and poorly-separated

particles. Figure 5.3 shows a wave scattering example with well-separated particles,

which includes six cylinders with equal radii rp = 40 nm. The relative permittivities

of all nonmagnetic cylinders in the air are shown in the figure. The incident wave
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Figure 5.3: 2D geometric setup for wave scattering from well-separated cylindrical

particles.

with λ = 600 nm propagates in the x-direction. To eliminate any numerical error

associated with the domain boundary, the quasi-exact Dirichlet field is imposed on

this boundary.

Figures 5.4 and 5.5 show the results for the wave scattering problems with

well-separated cylindrical particles for the TM and TE modes. For both modes, the

five-point FLAME scheme yields greater accuracy than first order FEM. A similar

conclusion can be drawn for the nine-point FLAME scheme as compared with sec-

ond order FEM. For TM mode, the accuracy of the nine-point FLAME scheme is

increased quickly as the number of nodes increases, and then maintains when the
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Figure 5.4: Relative accuracy vs. the number of nodes, well-separated particles,

wave scattering, TM mode.

nodes goes to certain number due to the accuracy limitation of analytical calcula-

tion. Overall, FLAME yields greater accuracy than FEM for this problem.

5.5 Case 2: Wave Scattering from the Poorly-Separated Cylindrical Particles

The wave scattering example with poorly-separated particles includes four cylinders

with equal radii rp = 40 nm and relative permittivities ǫp = 2, 4, 6, 8 (Figure 5.6).

All materials are nonmagnetic. The first three cylinders are placed close to each

another and relatively far from the fourth one. The incident wave with λ = 600 nm

propagates in the x-direction. The same adaptive refining strategy introduced in

Section 4.3.3 of Chapter 4 is used in this problem.

A Cartesian 15 × 15 grid, with and without refinement, is shown in Fig-

ure 5.7. It is clear that the entire area around the three-cylinder cluster has been
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Figure 5.5: Relative accuracy vs. the number of nodes, well-separated particles,

wave scattering, TE mode.

refined. In this particular example, the refinement pattern happens to coincide for

the TM and TE modes, but this is not necessarily the case in general.

Figures 5.8 and 5.9 demonstrate the accuracy of FLAME for the TM and TE

modes in this sample with poorly-separated particles. For both modes, the overall

accuracy of adaptive gradual grid refinement is greater than those of other methods,

with the asymptotic convergence rate for the field in the range of O(n−1.6)–O(n−1.8).

It is interesting to note the anomalously rapid convergence of FLAME when the

number of nodes n is around 1000 . With n in the order of a few thousand, the

grid sizes become smaller than the gaps between the particles. As a result, nodes

of the same patch can no longer belong to different particles, which bodes well for

convergence.
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Figure 5.6: 2D geometric setup for the wave scattering problem with poorly-

separated cylindrical particles (after [32], (c) 2008 IEEE).

5.6 Conclusion

The emphasis of this chapter is on the application of FLAME to wave scattering by

cylinders. The results of FLAME are compared with those of FEM, and demonstrate

higher accuracy. For the situation with poorly-separated particles, the proposed

error indicator (refer to Chapter 4) is used to identify correctly the areas that have

small air gaps for grid refinement. The convergence of the adaptive algorithm is

much faster than that of the global refinement.

This chapter deals only with scattering from infinite cylinrical particles,

which can be formulated as a 2D problem. Applications of FLAME to 3D elec-

tromagnetic problems may also be expected to yield greater accuracy but need

substantial further development and investigation [24].
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(a) Initial grid

 

(b) Grid after refinement

Figure 5.7: Adaptive gradual grid refinement for wave scattering (after [32], (c)

2008 IEEE).
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Figure 5.8: Relative error vs. the number of nodes, poorly-separated particles, wave

scattering, TM mode (after [32], (c) 2008 IEEE).
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Figure 5.9: Relative error vs. the number of nodes, poorly-separated particles, wave

scattering, TE mode (after [32], (c) 2008 IEEE).
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CHAPTER VI

ELECTROSTATIC INTERACTIONS FOR THE PARTICLES IN ELECTROLYTES

This chapter applies FLAME to electrostatic interactions for macromolecules

(e.g., protein molecules) in solvents. The background and formation of the problem

are presented first. Then, the construction of FLAME schemes and the analytical

calculation of the field are introduced. Finally, numerical results demonstrate the

efficiency of this model.

6.1 Electrostatic Interactions for Macromolecules in Solvents

Proteins are large organic compounds made of amino acids arranged in a linear

chain. The patterns of molecular surface groups and absorbed counter-ions around

the surface strongly affect the electrostatic interaction in proteins [37, 38]. The

electrostatic interactions depend strongly on the structure and configuration of the

molecule [39]. The electrostatic interactions play a critical role in defining the

structure, stability, and chemical properties of proteins [40].

Experiments and computer simulations have been used extensively to probe

the electrostatic and dielectric properties of proteins. Research by Kumar et al. [41]

shows that electrostatic interactions are sensitive to protein flexibility, since they
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depend upon the location and orientation of the interacting charges as well as their

neighborhoods. For this type of problem, the traditional numerical method, such

as FEM and FD method, usually requires extremely complex mesh generation to

maintain certain accuracy.

6.2 Model of Macroscopic Continuum Electrostatics

The model of macroscopic continuum electrostatics is one of the most widely used

to evaluate electrostatic interactions in the protein-solvent systems (e.g. [42–45]).

In this model, the protein medium is considered as a region with low dielectric con-

stant (around 2-4 [38]). It is immersed in an aqueous solvent. The solvent has a

relatively high dielectric constant (∼80). Such a model provides reasonable accu-

racy in determining the short-distance interactions within the interior of proteins.

In the long-distance interactions, however, the result is not good enough in estimat-

ing these interactions accurately within any region of a protein due to the existance

of point charges [46].

The concept of non-local electrostatics and phenomenological theory of the

polar solvent is used by Rubinstein et al. [46]. The electrostatic problem with

the standard boundary conditions is solved for a planar interface in terms of the

spatial Fourier transforms ǫ1(k). The ǫ1(k), which is the dielectric function, char-

acterizes the bulk properties of the two condensed media in contact. As discussed,

the protein-like medium is considered as a uniform dielectric with a low dielectric

constant: ǫ1(k) = ǫ1 = 4. The orientation Debye polarization in an aqueous sol-
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vent (determined by the hindered rotations of the water dipoles due to hydrogen-

bonding chains in bulk water) is considered by the simplest approximation of the

dielectric function:

ǫ2(k) = ǫ∗ +
ǫs − ǫ∗

1 + (Lk)2ǫs/ǫ∗
(6.1)

where ǫ∗ = 6 and ǫs = 78.3 are short- and long-wavelength dielectric constants

of the solvent at room temperature. L, the correlation length of water dipoles, is

proportional to the characteristic length of the hydrogen-bonding network of water

molecules (∼ 5 Å). For short-range pair-wise electrostatic interactions (inter-charge

distances < L) in protein in close proximity (< L) to the interface, the value of the

effective dielectric function is found to be very low.

According to research of Rubinstein et al. [46], this suggests that the low

value of the effective dielectric function in the protein in close proximity to the

interface is a result of a low-dielectric interfacial solvent layer from the physical

standpoint. The thickness of this layer is comparable with the correlation length

L. The effective dielectric permittivity of the layer in close proximity to the di-

electric boundary is determined by the short-wavelength dielectric constant of the

bulk phase of the solvent (ǫ∗ = 6), which is much smaller than the bulk value ǫs.

This model is consistent with the experimental data on partially structured bound-

ary water layer (‘dynamically ordered water’) on the surface of the protein native

structure [47]. Overall, the data obtained by Rubinstein et al. [46] suggests that

the low-dielectric solvent layer on the protein surface is a critical factor that de-

termines the electrostatic fields in the vicinity of the protein-solvent interface. The
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significant decrease in the screening of the field at the protein-solvent interface has

been underestimated in traditional electrostatic models.

 

Figure 6.1: Schematic diagram of one protein sample.

Figure 6.1 shows a protein sample. The protein core is tightly packed,

surrounded by the solvent. Accordingly, a practical model with three dielectric

layers is proposed as Figure 6.2. The protein molecule is simplified as a spherical

particle with radius 30 Å, which is the inner layer. The intermediate layer is the

solvent ( ∼6 Å) adjacent to the protein molecule; the dielectric constant of this layer

is determined by the short-wavelength dielectric constant of the sovlent ε∗ = 6.
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Finally, the outer layer represents the bulk phase of the solvent, with the relative

dielectric constant of ∼80.

q

qr 0r

pε

sε

radial line

*ε

*r

 

Figure 6.2: Two dimensional representation of model with three layers (after [23],

(c) 2008 IEEE).

For the inner and intermediate layers, the potential u is governed by the

electrostatic equation

∇ · ε∇u =
∑

α

qαδ(r − rα) (6.2)

where qα are the point charges corresponding to the protein atoms at locations rα

inside the protein.

The solvent plays a significant role in determining the electrostatic potential

energy of the protein [48]. For the outer solvent layer, under the assumption of
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mean-field theory, the Poisson-Boltzmann equation (PBE) is used to determine the

electrostatic potential.

The main physical assumption of the PBE is that each mobile charge is in

the mean field of all other charges, and has the Boltzmann probability of a given

energy level [49]. The charge density ρ due to the microions in the solvent is

ρ =
∑

α

nαzαq (6.3)

where nα is the number of charges per unit volume (refer to as number density),

zα = ±1 which depends on the polarity of charge, q is the unit value of ion (1.6 ×

10−19 Coulomb). Let

qα = zαq (6.4)

The number density of ions is given by the Boltzmann equation

ni = n0
i exp

(

− qαφ

kBT

)

(6.5)

where kB is the Boltzmann constant, and T is the absolute temperature. Together

with the Poisson equation, (6.6) can be obtained

−∇ · ε∇φ =
∑

α

n0
αqα exp

(

− qαφ

kBT

)

(6.6)

The nonlinearity of the PBE due to the exponential dependence of the mobile ion

concentrations on the potential complicates the numerical solution, especially for

complex geometries and charge distributions [13].

When the electrostatic energy of ions is much lower than their thermal

energy, the term qαu/(kBT ) ≪ 1. Therefore, the PBE can be linearized by retaining
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the first two terms of the Taylor series of the exponential part [50, 51]. Due to the

electroneutrality,
∑

α nαqα = 0, the linearized PBE becomes

∇2u − κ2u = 0, κ2 =
∑

α

nαq
2
α

kBTεs
(6.7)

This equation is also known as the Debye-Hückel model. The potential will

typically exhibit an exponential decay with the rate controlled by κ. The inverse of

κ is the Debye-Hückel length.

In the three-layer protein-solvent model, the solvent is modeled as a con-

tinuum function that is approximated by PBE, while the protein is modeled using

discrete atoms. It makes traditional numerical methods difficult to use for this type

of problem. FLAME incorporates accurate local approximations of the solution into

the difference scheme and often yields greater accuracy on simple Cartesian grids

than classical FD and even than FEM with its complex meshes. This protein-solvent

model is treated as an initial step for testing and validating of the applications of

FLAME for the simulation of macroscopic continuum electrostatics.

6.3 FLAME Applied in the Protein-Solvent Model

For the protein-solvent model, a set of basis functions satisfying the Poisson equa-

tion and PBE are needed to generate a FLAME scheme. The basis functions can be

constructed using spherical harmonics:
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ψmn =































Pm
n (cos θ) exp(imφ)rn Inner layer

Pm
n (cos θ) exp(imφ)(cmnr

n + dmnr
−n−1) Intermediate layer

Pm
n (cos θ) exp(imφ)(fmnjn(ikr) + gmnnn(ikr)) Outer layer

(6.8)

Here jn(z) = (π/(2z))1/2Jn+1/2(z) and nn(z) = (π/(2z))1/2Yn+1/2(z) are the spherical

Bessel functions of the first and second kinds, respectively. They are expressible in

terms of the hyperbolic sine and cosine functions and are therefore fairly easy to

work with. The coefficients cmn, dmn, fmn, gmn are determined from the interface

boundary conditions [15].

Figure 6.2 shows a prototype protein-solvent problem with point charge.

It originates from the two-layer protein-solvent problem developed by Gilson et

al. [43]. Due to the existance of point charge, it makes governing equation inho-

mogeneous (i.e. the right hand side is nonzero). The FLAME scheme is then con-

structed by splitting the solution as equation (3.17) of Chapter 3. For this model,

seven- and nineteen-point FLAME schemes are considered.

In the traditional FD method, the point charge is usually projected onto

the nearest eight grid points [52]. This charge discretization introduces additional

errors, especially when the charge is located close to the protein boundary [53]. For

FLAME scheme construction based on potential splitting, the electrostatic potentials

at charge site are accurately determined using the exact analytic forms according

to Coulomb’s law. Using the potential splitting and Coulomb’s law, there is no
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numerical error due to the potential of point charges, as this potential is represented

analytically and exactly.

6.4 Quasi-Analytical Calculation for the Particle in an Electrolyte

In the model shows in Figure 6.2, the point charge inside the molecule is the source

of the field. The location of this charge may vary. Assuming a point charge q is laid

in the place with radius rq, the potential in the molecular layer is calculated by the

equation below.

φ =
q

4πεp |r − rq|
(6.9)

The outer layer is governed by the linear PBE. The analytical solution there can

be written as a linear combination of spherical Bessel functions of first and second

kinds. So, the potential of the three layers can be separately represented as

φ =































q
4πεp|r−rq|

+
∑∞

n=0Bnr
nPn (cosθ) Inner layer

∑∞
n=0 [Cnjn (ikmidr) +Dnnn (ikmidr)]Pn (cosθ) Intermediate layer

∑∞
n=0GnF [jn (ikoutr) , nn (ikoutr)]Pn (cosθ) Outer layer

(6.10)

where Pl(x) = 1
2ll!

dl

dxl (x
2 − 1)l, jr(z) is the Legendre polynomial, jr(z) and nr(z) are

the spherical Bessel functions of first and second kinds, respectively, and F [jn (ikoutr),

nn (ikoutr)]=i
n+2jn (ikoutr) + in+3nn (ikoutr).
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According to the translation theorem for the multipole expansion [14],

equation (6.9) can be translated to

q

4πεp |r − rq|
=

∞
∑

n=0

Anr
−n−1Pn (cosθ) (6.11)

By matching the boundary conditions of layers’ interfaces, the coefficients An, Bn,

Cn, Dn and Gn can be determined and the electrostatic potential distribution in

the whole domain can be found. The accuracy of the analytical result depends on

the number of harmonics and the location of the point charge. In this chapter, the

analytical result is truncated at the terms with the magnitude of potential less than

10−5.

6.5 Numerical Result for the Protein-Solvent Model

In the protein-solvent model, the origin of the coordinate system is at the center of

the prototype protein molecule. The relative error in the numerical calculations is

defined as

err(x, y, z) =
|unum(x, y, z) − uan(x, y, z)|

|unum(x, y, z)| × 100% (6.12)

where unum is the numerical potential and uan is the quasi-analytic result introduced

in Section 6.4. To eliminate the numerical error associated with the approximation

of boundary conditions, the exact (theoretical) Dirichlet condition is applied on the

domain boundary.

First, let the point charge be located inside the molecule, 6 Å from the

surface, at (x, y, z) = (0, 0, 24 Å). The mesh size is 1.5 Å in each of the three direc-
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tions. The error as a function of distance from the center of the protein molecule

is evaluated as the relative RMSE over 100 points on any spherical surface of a

given radius. These sample points are distributed evenly with respect to the θ and

φ angles and with the step of 1 Å in the radial direction over all three layers of the

protein-solvent model.
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Figure 6.3: Errors as a function of distance from the center of protein. The protein

has radius 30 Å, and the charge is located 6 Å below the protein surface (after [23],

(c) 2008 IEEE).

Figure 6.3 shows that the accuracy of the FLAME solutions is much greater

than that of standard FD with charge assignment. Note that the accuracy of FLAME

is great even in the area around the point charge, where the potential is singular;

this is because the potential of the charge is represented in FLAME exactly, by the
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potential splitting described above. The average RMSE of seven-point FLAME and

nineteen-point FLAME are 1.98% and 0.32% respectively compared to 8.96% for

standard FD method. The nineteen-point FLAME scheme yields greater accuracy, at

the increase of computation complexity.

In the second example, the point charge is much closer to the protein sur-

face. Since in actual calculations all charges would lie at least 1 Å below the surface,

the charge is assumed to be located at (x, y, z) = (0, 0, 29 Å), the worst-case sce-

nario. In this case, to achieve high accuracy, the particular solution u
(i)
f needs to

contain a large number of harmonics in the expansion.

In the second example, the numerical errors are evaluated the same way as

previous (Figure 6.4). FLAME again has much greater accuracy than the standard

FD method. The average relative RMSE for the seven-point and nineteen-point

FLAME schemes are 1.70% and 0.54%, respectively, compared with that for the

standard FD scheme of 12.62%. Similar to the previous example, the accuracy for

the seven-point FLAME scheme is slightly worse in the outer solvent layer; for the

nineteen-point FLAME. the accuracy is high throughout the entire computational

domain.

6.6 Conclusion

This chapter introduces a new computational model for the electrostatics of macro-

molecules (e.g. protein molecules) in solvents. Three dielectric layers are used:

the interior of the protein with a low dielectric constant of ∼2 – 4; a thin layer of
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Figure 6.4: Errors as a function of distance from the center of the molecule. The

radius of the molecule is 30 Å, and the charge is located 1 Å from the protein

surface. u
(i)
f is approximated by 50 harmonics (after [23], (c) 2008 IEEE).

solvent near the molecule with the dielectric constant of ∼6; and the bulk of the

solvent, with the dielectric constant of ∼80. The electrolyte in the solvent layer

is described by the linearized PBE. This model takes into account both short- and

long-range dielectric response of solvent accurately.

The new general FD calculus of FLAME is used to discretize the electrostatic

problem. With point charges as sources of the field, the potential splitting is used

in FLAME instead of the conventional charge allocation to the grid. The numerical

result shows much greater accuracy of FLAME, as compared with the standard FD

analysis.
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The accuracy of FLAME depends on the particular solution u
(i)
f in the poten-

tial splitting. In the model problem, Coulomb’s potential is used as this particular

solution. A more accurate approximation, via spherical harmonics, may be needed

if the point charge is close to the surface. Standard FD with charge allocation to the

grid leads to substantially high errors, especially in the vicinity of the point charge

due to the singularity [44]. FLAME produces great accuracy even for the area that

is very close to the charge.
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CHAPTER VII

MODELING OF FERROFLUID WITH VARYING CONCENTRATION

In this chapter, a model based on FEM is introduced to model the behavior

of ferrofluids in the presence of external magnetic fields. This problem is important,

in particular, for magnetic assembly of micro- and nanoscale systems, the technol-

ogy developed by G. Friedman and B. Yellen [59, 60]. First, the background of

magnetic self-assembly is presented. Then, this chapter focuses on the formula-

tion of the ferrofluid concentration model. Finally, several simulation results are

demonstrated to show the efficiency of the model.

7.1 Introduction

On the nanoscale, systems are difficult to fabricate or assemble, especially in tra-

ditional ways such as by humans with tweezers and microscopes or with high-

precision pick-and-place robots. Self-assembly has been advocated as an automatic

technology for forming a disordered system of pre-existing components into an or-

ganized structure or pattern as a consequence of specific local interactions [54].

This approach can be used as a controlled and directed nanofabrication process for

desired patterns and functions.
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Self-assembly techniques can be based on chemical recognition, surface ten-

sion, stress, electric, magnetic or optical forces [55]. Among these different types,

only a few can easily program or dynamically control the movement and placement

of individual components. Magnetically driven assembly is one of such techniques.

This technology can be used to fabricate devices in low-temperature environments

and in solvents compatible with virtually any biological material [56–58]. The mag-

netic force is usually not as strong as the electrostatic, Van der Waals, and surface

tension forces [1]. However, it has advantages that facilitate its application in self

assembly technology. The magnetic force in liquids can act over a much longer

range than Van der Waals and surface tension forces, and the range can be varied

(nanometers to meters) according to real applications. Also, the magnetic force can

take advantage of the nonlinear behavior of magnetic materials [59]. Furthermore,

magnetic interactions are insensitive to the surrounding medium and to the details

of surface chemistry [54].

7.2 Magnetic Control of Ferrofluids

A ferrofluid contains tiny magnetic nanoparticles, roughly 10 to 20 nm in diame-

ter, suspended in a non-magnetic liquid carrier. Due to the small size, ferrofluid

particles remain stably suspended even under the influence of either gravity or

moderate magnetic fields. The magnetic control of ferrofluid particles can be ap-

plied to prevent a given material from reaching a surface desired. This technology
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is very important for the monolithic integration, photolithographic synthesis, and

so on [61,62].

For magnetic self-assembly of ferrofluid, the large number of ferrofluid par-

ticles poses an enormous computational challenge. To investigate the assembly

process, a model is developed in this chapter to simulate magnetic self-assembly of

ferrofluid. In this model, the phenomenon of ferrofluid accumulation is studied as

a function of applied external field and the position with respect to the magnetic

traps [1]. With different external fields, the ferrofluid is attracted variously to the

magnetic trap, as Figure 7.1 shows [25].

 

(a) Upward applied magnetic field

 

(b) Downward applied magnetic field

 

(c) Rightward applied magnetic field

 

(d) Leftward applied magnetic field

Figure 7.1: Ferrofluid assembly with different applied magnetic fields.

Based on the analysis of Yellen & Friedman [1, 2], the general relationship

between particle concentration and magnetic field can be found by considering the
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flux of particles and the quasi-continuum description of ferrofluid concentration.

Caused by magentic forces, the flux can be separated into two components: one is

due to diffusion and the other is due to drift [63].

~J = ~Jdiff + ~Jdrift = −D∇c+ c~v (7.1)

where D is the diffusion coefficient for the ferrofluid particle, ~v is the velocity of

the particles, c is their volume concentration.

After an external magnetic field is applied, a transient flux of particles will

occur until a new balance state is reached (the net fluid velocity becomes zero again

at the new balance). In the new balance, the magnetic force acting on a uniformly

magnetized particle is proportional to the difference in the particle magnetization

and average fluid magnetization [64]. Then, the particle’s velocity, approximately

proportional to the magnetic force, is

~v = γ ~Fm = γµ0V ( ~Mp −
〈

~M
〉

) · ∇ ~H (7.2)

where ~Fm is the magnetic force, γ is the mobility, ~H is the local magnetic field,

~Mp is the particle magnetization (magnetic moment per unit volume),
〈

~M
〉

is the

average magnetization of the fluid surrounding the particle, µ0 is the permeability

of a vacuum, and V is the particle volume. The average magnetization is given as

〈

~M
〉

= ~Mpc (7.3)

The flux is zero ( ~J = 0) at equilibrium. Combining equations (7.2) and

(7.3), we get

D∇c = γµ0V c(1 − c) ~Mp · ∇ ~H (7.4)
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This equation can be further transformed as

1

c(1 − c)
∇c =

γ

D
µ0V ~Mp · ∇ ~H (7.5)

The left side can be written as

1

c(1 − c)
∇c =

(∇c
c

+
∇c

1 − c

)

= ∇ ln
c

1 − c
(7.6)

According to the Einstein relation [65], the ratio of mobility of diffusivity is

γ

D
=

1

kBT
(7.7)

where kB is the Boltzmann constant and T is the absolute temperature. Together

with (7.5) and (7.6), we get

1

c(1 − c)
= A exp

(

µ0V ~Mp

kBT
~H

)

(7.8)

where A is a constant to be determined. When there is no magnetic field applied

( ~H = 0), the ferrofluid particles are uniformly distributed (assuming the initial

corresponding concentration of ferrofluid is ci). Based on this condition, it is easily

calculated as A = ci

1−ci
.

Using field-dependent effective susceptibility [66], we can get

~Mp = χ( ~H) ~H (7.9)

where the initial susceptibility χ( ~H) (later written simply as χ) is equal to µ0V Ms
2

3kBT

when assuming there are no magnetic interactions among the particles. Here Ms

is saturation magnetization of particles. From now on, it can be seen that the
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ferrofluid concentration is a function of ~H. The ferrofluid concentration is then as

c( ~H) =
1

1 + A−1exp
(

−B2 ~H2

6

) (7.10)

where B = µ0VpMs

kBT
.

Having found the general relationship between particle concentration and

magnetic field, we can now formulate a self-consistent problem for the magnetic

field. The magnetic field of the domain outside the trap is governed by

∇ · B = ∇ ·
(

χc( ~H) + 1
)

µ0
~H = 0 (7.11)

Here, the concentration c
(

~H
)

, instead of magnetic potential or field, is the

main variable of interest for the ferrofluid assembly model. The scalar magnetic

potential instead of the vector one is used to reduce the computational cost sub-

stantially. By the relation of ~H = −∇Ψ where Ψ is the scalar magnetic potential,

(7.11) goes to

−∇ · (χc (Ψ) + 1)µ0∇Ψ = 0 (7.12)

Inside the magnetic trap, the governing equation is

−∇ ·
(

µ0∇Ψ − ~M
)

= 0 (7.13)

7.3 The Setup for the Ferrofluid Concentration Model

In the real experiment, there are several magnetic traps forming a regular pattern

on the substrate (Figure 7.2) [1]. The whole structure is placed in a container filled
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with ferrofluid. An external magnetic field that is parallel or perpendicular to the

direction of the magnetic traps is applied.

 
+

+

+

+

+

+

Figure 7.2: Placement of magnetic traps.

The previous chapters dealt primarily with FLAME. In this Chapter, we use

FEM, as the most powerful tool for problems with complex geometries and non-

homogeneous media. COSMOL MultiphysicsTM is used for the simulation. This

requires setting up the geometry, boundary conditions and governing equations.

The bigger the computational domain, the more accurate the numerical result will

generally be. However, the computational cost is greater for larger domains. To

reduce this cost, only one magnetic trap is modeled. A large, rectangular micro-

magnet trap of approximately 100nm in thickness is used in the simulation with

planar dimensions of 4 by 20µm. The computational domain is as 40 by 40µm in

the surface of the substrate and 20µm in perpendicular direction, which is large

enough to get sufficient accuracy with reasonable computation cost. The geometric

setup is shown in Figure 7.3.
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Figure 7.3: Setup for ferrofluid assembly.

In the simulation, ferrofluid is assumed to be a suspension particle about

15nm in diameter with saturation magnetization of 4600 Gauss, with the initial

concentration of 1% solids by volume. On the YZ interface the Dirichlet condition

and on the XZ interface the Neumann condition are imposed. Due to the sufficient

separation between the boundary and the trap in the Z direction, the XY interface

could also be set as a Dirichlet condition.

7.4 Numerical Results for the Ferrofluid Concentration Model

When the magnetic trap is magnetized as in Figure 7.3 and an uniform magnetic

field is normal to the plane, the ferrofluid accumulates near one magnetic pole de-

pending on the direction of the field bias with respect to the trap’s magnetization,

as Figure 7.1 (a) and (b) shows. Figure 7.4 demonstrates the ferrofluid distribution

with an external magnetic field in an external 150 Gauss magnetic field applied
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Figure 7.4: Ferrofluid concentration profiles in the horizontal lines with a field

applied upward.

upward. The ferrofluid concentration is depicted as a function of position. In ref-

erence to Figure 7.3, the magnetic trap is located from -10µm to 10µm along the X

axis, -2µm to 2µm along the Y axis, and 0 to 100 nm along the Z axis. The line in

Figure 7.4 labeled as “(a) 200 nm” represents the horizontal line in the X direction,

with Z = 200 nm. Similar definitions are used for other three lines.

When the magnetic trap is uniformly magnetized from left to right, the

applied field is the same upward direction as the externally applied field on the right

side and the ferrofluid accumulates on the right side, with an intuitive explanation

that “opposite poles attract” (refer to Figure 7.1(a)). Solution of (7.12) for the

right side of the trap shows that the concentration decreases away from the trap,

as can be expected Figure 7.5. The starting point on the horizontal axis in the
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figure corresponds to the top of the trap (100 nm). The simulation result can be

approximated accurately enough by the simple rational function f(x) = a1

x
+ a2.

 

Figure 7.5: Ferrofluid concentration simulation and approximation for applying

upward field.

Similarly, the ferrofluid accumulates on the left side of the trap when the

external magnetic field is applied downward. Figure 7.6 shows the ferrofluid distri-

bution with an external magnetic field of 150 Gauss applied downward. Figure 7.6

has the same definition for the lines as Figure 7.4 and exhibits an almost opposite

result compared with Figure 7.4.

When the external magnetic field is applied horizontally, the ferrofluid ac-

cumulates either on top of or extends to the edges of the micro-magnet depending

on the orientation of the external field with respect to the trap’s direction of mag-
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Figure 7.6: Ferrofluid concentration profiles in the horizontal lines with a field

applied downward.

netization. The diagram in Figure 7.7 shows the ferrofluid arrangement with the

external magnetic field applied anti-parallel or parallel to the trap’s magnetization.

Due to the symmetric ferrofluid distribution, for both the anti-parallel and

parallel applied magnetic field, Figure 7.7 only shows the left part of the geometry

(trap). Anti-parallel or parallel is related to the direction of the trap’s magnetiza-

tion. Since “opposite poles attract”, the ferrofluid tends to accumulate on the trap

for the anti-parallel applied field. When the external magnetic field is parallel, the

ferrofluid extends off the ends of the trap.

In order to give a general idea of how the ferrofluid concentration varies as

a function of the magnitude of the applied magnetic field, a graph is provided in

Figure 7.8. The series of curves in the graph represents the ferrofluid concentrations
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Figure 7.7: Ferrofluid concentration profiles in the horizontal lines with anti-

parallel and parallel external applied field.

with 0, 50, 100, and 150 Gauss magnetic fields applied toward the right of the trap’s

magnetization. These curves are for the horizontal line that is 400 nm above the

bottom surface of the magnetic trap. This graph indicates that the stronger the

magnetic fields applied, the higher the ferrofluid concentration above the trap, and

the concentration extends farther off the trap.

7.5 Conclusion

This chapter introduced a model of ferrofluids with varying magnetic particle con-

centration. The magnetic self-assembly technology can be very useful in monolithic

integration and photolithographic synthesis because the ferrofluid has several ad-
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Figure 7.8: Ferrofluid concentration profiles in the horizontal lines, with a field

applied parallel.

vantages as a masking material. With the quasi-continuum approach of ferrofluid

concentration, the general relationship between particle concentration and mag-

netic field is approximated by the equation (7.11). To further minimize the com-

putational cost, the field problem is formulated in terms of the scalar, rather than

vector, magnetic potential.

The simulation of this chapter is based on FEM, and only one magnetic trap

is selected for simplification. The results correspond to the analysis as Figure 7.1

shows. The determining factors are the direction and magnitude of both the mag-

netic trap’s magnetization and the external applied magnetic field. Simulations

provide a useful insight into experiments and analysis of magnetic self-assembly.
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CHAPTER VIII

ELECTRODYNAMIC EFFECTS IN PLASMONIC NANOLENSES

In this chapter, plasmonic field enhancement is studied using the FEM. A

nanolens comprised of three spherical metal particles (also refer to as particle cas-

cade) produces very high plasmonic field enhancement. Electrodynamic resonances

are identified and a significant local field enhancement (by a factor of hundreds) is

found for different sizes and fractal ratios of the particle cascade system, and for

different polarizations and directions of incidence of the excitation radiation. The

simulation results give an insight into the optimal design of such nanolenses for

their applications in spectroscopy and sensing.

8.1 Introduction

The study of optical phenomena related to the electromagnetic response of metals

on the nanoscale has been termed as nanoplasmonics. It is one of the key in-

vestigations in nanooptics, which is experiencing a period of explosive growth in

both its fundamental development and applications. This rapidly growing field of

nanoscience is primarily concerned with the control of optical radiation on the sub-

wavelength scale. Nanoplasmonics has practical applications in many areas, such
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as sensor technology, apertureless near-field spectroscopy, optoelectronics, high-

density lithography, and biomedical labeling. It deals with electric (surface plas-

mons [SPs]) and electromagnetic (surface plasmon polaritons [SPPs]) excitations

at metal surfaces and metal/dielectric interfaces. The noble metals, such as gold

and silver, can efficiently excite the SPs using their similar free-electron behavior.

When the particles are much smaller than the wavelength of the exciting light, all

conduction electrons of the particles are excited in phase, which leads to remark-

able SPs. The frequency of the highest SPs depends on the particle material, the

particle structure, and the refractive index of the surrounding medium [69].

Optical near-fields are localized either in the source region of optical radia-

tion or in the materials’ surfaces that interact with free radiation. These near-fields

determine the enhancement of the plasmonic fields. This enhancement plays a key

role in many effects and applications of nanoplasmonics, particularly in near-field

scanning optical microscopy (NSOM) and in detectors of chemical and biological

objects. Both SPs and near-fields deal with optical interactions on a subwavelength

scale [67, 68]. For the optical structure excited by light, the size needs to be at the

nanometer level, which is less than the wavelength of the exciting light.

The surface plasmons exist in various nanostructures, from thin metal films

to small noble metal particles of different shapes. Plasmon resonances are de-

pendent on the type of metal used and the dielectric constant of the surrounding

medium. They are also strongly dependent on the size and shape of the nanos-

tructure [70, 71]. Many plasmonic effects can be analyzed in the framework of
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classical electrodynamics [71]. Therefore, the electrodynamics theory can be used

to explore the properties of nanostructures.

8.2 Modeling of Electrodynamic Effects in Plasmonic Nanolenses

We use numerical simulation to explore the large field enhancement by nanoparti-

cles, with wave effects taken into account. According to equation (1.8) in Chapter 1,

electric field E is governed by the following wave equation (in the absence of source

currents):

∇×
(

1

µ
∇× E

)

− ω2ǫE = 0 (8.1)

where the standard notations for the angular frequency ω and the (absolute) per-

mittivity and permeability ǫ and µ are used. All interface boundaries that cause

scattering are assumed to be inside the computational domain Ω. The solution of

(8.1) can be decomposed into two parts, the incident field Einc and the scattered

field Es, i.e.

E = Einc + Es (8.2)

where

Einc = E0e
−j(ωct−θ0) (8.3)

Here, E0 and θ0 are the amplitude and phase of the incident field. Thus, the gov-

erning equation for the scattered field is (µ = µ0 for nonmagnetic material)

∇×∇× Es − ω2µ0ǫEs = −(∇×∇× Einc − ω2µ0ǫEinc) (8.4)
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The differential operators should be understood in the sense of distributions that

include surface delta functions for charges and currents. The right side of the equa-

tion is nonzero due to these surface terms and the volume term inside the particles.

The incident field is governed by the wave equation with the wavenumber of free

space.

A significant problem in plasmonics is the design and arrangement of metal

particles that would produce the strongest possible field enhancement. One pos-

sible solution to this problem is a self-similar chain of particles with decreasing

diameters, as depicted in Figure 8.1.

1r
2r3r

12d

23d

 

Figure 8.1: A two dimensional representation of the metal cascade.

In this model, the three nanoparticles have the radii r1, r2, and r3, with

air gaps of d12 and d23. They follow the relation as r1 = κr2, r2 = κr3, d12 =

κd23, d12 = ηr1, where κ and η are constants that are both less than 1. Under the

plasmon resonance condition [72], the middle particle experiences the electric field
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that is strongly enhanced by the large one. The middle particle further amplifies

the field at the location of the small particle. If the parameters of the system are

chosen judiciously, extremely high local field enhancement is produced near the

small particle. This phenomenon can be interpreted as “nano-focusing”. The field

enhancement in this chapter is defined as g = |E| / |Einc|. As analyzed in Li et

al. [73], the greatest field enhancement that the small nanoparticle of the silver

cascade can achieve is really high. In reality, the field enhancement is affected

by the size of the cascade, the material of the nanoparticles, the wavelength, the

direction and polarization of the incident wave. The field behavior needs to be

analyzed as a funtion of multiple varying factors.

Silver and gold nanoparticles exhibit relatively stronger plasmonic enhance-

ment compared with other materials or morphologies [73, 74]. The simulations in

the present chapter focus on silver models. The model problem is formulated in an

unbounded spatial domain. It is common practice to enclose the bounded domain

of real interest with an artificial computational boundary. The boundary conditions

for the scattered field should accurately represent the outward radiation of energy.

Thus outgoing waves should be absorbed by the computational boundary so that

no artificial reflections are sent back into the interior. Two kinds of boundary condi-

tions, perfectly matched layers (PML) and radiation boundary conditions, are used

for this purpose.

The PML is a fictitious layer specially designed to absorb the electromag-

netic waves without reflection from the vacuum layer interfaces [75]. The perme-
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ability and the permittivity of this fictitious material are complex anisotropic [76].

The radiation boundary condition is [77]

(∇×E)tan = jk0Etan − j

h0
∇tan × (∇tan ×Etan) +

j

k0
∇tan(∇tan ·Etan) (8.5)

where Etan is the component of the E-field that is tangential to the surface, and k0 is

the free space phase constant ω
√
µ0ǫ0. The accuracy of the approximation depends

on the distance between the boundary and the object from which the radiation

emanates.

8.3 A Crude Approximation of the Cascade Enhancement

To get higher plasmonic enhancement, the wavelength of the incident light should

be much longer than the structure. With this in mind, the electrostatic crude anal-

ysis can be used as a first approximation. We consider silver nanoparticles in free

space, with frequency dispersion ǫ = ǫ(ω) taken into account. In the example under

consideration, the dimensions are r1 = 5nm, κ = 1
3

and η = 0.6, so the total length

of the structure is 142 nm.

For a single silver nanoparticle, the field enhancement is easily calculated

via the respective dipole field. Assuming the incident light has the frequency 814.8

THZ, the corresponding dielectric constant is calculated as −2.7407 + 0.2320i ac-

cording to Johnson & Christy [78]. Using this value, the field enhancement for one

particle is gstatic = 10.93. In the three-particle cascade of Figure 8.1, the middle

particle is relatively small compared with the large one. The field that is induced
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by the large particle can be treated as the incident light for the middle one. The

same crude approximation can be considered for the relation between the middle

nanoparticle and the smallest one. Thus, finally, the small nanoparticle will yield

the greatest field enhancement, on the order of g3
static (about 1, 000).

8.4 Numerical Results for Silver Nanoparticles

The silver cascade model with three particles is shown in Figure 8.2. The physical

dimension is the same as for quasistatic analysis in Section 8.3. Under the electro-

static analysis, the maximum field enhancement is calculated to occur in the near-

ultraviolet zone at ~ω = 3.37 eV, with the corresponding wavelength of ∼367.9 nm

(the same frequency was taken in Section 8.3).

Four independent combinations of the directions of wave propagation and

polarization (left-right and up-down direction are in reference to Figure 8.2) are

considered:

• The incident wave propagates from right to left. Electric and magnetic fields

are both perpendicular to the axis of the cascade. (Mnemonic label: ⇐⊥.)

• Same as above, but the wave impinges from the left. (⇒ ⊥)

• The direction of propagation and electric field are both perpendicular to the

axis of the cascade. (⇑ ⊥)

• The direction of propagation is perpendicular to the cascade axis and the

electric field is parallel to it. (⇑ ‖)
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Figure 8.2: Two dimensional representation of the silver cascade of three particles

and the wave propagation (after [79], (c) 2008 APS).

Several popular numerical methods can be used for nanooptics simulations.

Optical excitations on a single silver nanosphere and nanosphere composites were

investigated by FDTD method [11]. As mentioned in Chapter 1, FDTD method

is subject to the notorious “staircase effect” at curved boundaries. Thus spherical

boundaries of the nanoparticles produce relatively significant errors in the simu-

lation. COMSOL Multiphysics, a software package based on FEM, was used to

simulate the field distribution of optical antennas constiting of several nanopar-

ticles [35]. Since field enhancement is very highly localized and decreases very

rapidly away from the “hot spot” in the structure, the area around the hot spot

requires an extremely fine mesh.
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For wave analysis, we use the commercial software package HFSSTM by

Ansoft corporation. Caution should be exercised when representing the measured

Johnson & Christy data [78], with its exp(−iωt) convention for phasors, as the

HFSS input, with its exp(+iωt) default. In the electrostatic case, we use COMSOL

Multiphysics. Both HFSS and COSMOL are FEM based; second-order triangular

nodal elements for the electrostatic problem and tetrahedral edge elements with 12

degrees of freedom for wave analysis are used. HFSS employs automatic adaptive

mesh refinement for greater accuracy. Either radiation boundary or PML is used to

truncate the unbounded domain.

To assess the numerical accuracy of HFSS, wave scattering from a single

particle is analyzed by HFSS and the Mie theory [80] for comparison. The Mie

theory is a complete analytical solution of Maxwell’s equations for the scattering of

electromagnetic radiation by spherical particles. For the radius of a single particle

varying from 5 to 60 nm, the numerical accuracy for the electric field at the “hottest

spot” is within 1.2–3.5% for a dielectric particle with ε = 10 and within 3.4–6.3%

for a silver particle with ε = −2.7407 + 0.2320i.

Figure 8.3 illustrates a sample distribution of the magnitude of the total

electric field in the cross section of the cascade. In this sample, the incident wave

is polarized along the axis of the cascade and propagates downward. It shows that

the area around the smallest silver particle has the greatest field enhancement.

An example mesh created by HFSS is shown in Figure 8.4. The entire com-

putational domain is subdivided into 99,168 tetrahedral elements for wave analysis.
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Figure 8.3: Electric field enhancement factor around the cascade of three plasmonic

spheres (after [79], (c) 2008 APS).

HFSS adopts adaptive mesh refinement. The smallest side length of the tetrahedra

is only about 0.5 nm compared with the wavelength, which is 367.9 nm. To make

the mesh clearer, a hybrid 2D/3D view is used in Figure 8.4, with some of the

elements in the volume omitted.

Table 8.1 shows field enhancement factors at the reference points for cases

(i)–(iv) (see Figure 8.2). The hottest spot, i.e. the point of maximum enhancement,

is indicated in bold and is different in four cases. Here, the field enhancement is

measured by the ComplexMag E:

ComplexMag E =
√

|Ex|2 + |Ey|2 + |Ez|2 (8.6)

When the electric field is perpendicular to the axis of the cascade, the local field

is amplified by a very modest factor g < 40. Not surprisingly, the enhancement is
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Figure 8.4: A sample HFSS mesh around the cascade , hybrid 2D–3D rendition of

the 3D mesh used for visual clarity (after [79], (c) 2008 APS).

much greater (g ≈ 250) in case (iv), when the field and the dipole moments that it

induces are aligned along the axis.

The corresponding COMSOL Multiphysics electrostatic model related to

case (iv) above, shows the field enhancement of ∼640. This enhancement is much

greater than in the electrodynamic case. To gauge the influence of electrodynamic

effects, more simulations are conducted to analyze the field enhancement as a func-

tion of the system size. Scaling is applied across the board: all the radii of the par-

ticles and the air gaps between them are multiplied by the same factor. The radius

of the smallest particle, with its original value of 5 nm as reference, is used as the

independent variable for plotting the result (Figure 8.5).
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Table 8.1: Field enhancement at the reference points (Figure 8.2) for different

propagation and polarization of the incident wave (after [79], (c) 2008 APS).

Case Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9

⇐⊥ 5.45 17.3 10.2 9.43 34.4 10.7 5.53 10.4 3.21

⇒⊥ 6.37 6.49 2.41 1.43 4.17 3.39 3.91 11.2 2.00

⇑⊥ 2.44 8.48 6.65 7.60 23.3 8.31 4.69 10.1 2.61

⇑‖ 90.8 35.9 250 146 10.3 70.9 51.9 2.72 6.47

The enhancement factor drops rapidly as the system expands for r1 > 3nm.

This can be easily explained by dephasing effects. The result also shows an inter-

ference pattern typical for antennas with very low enhancement numbers around

r1 = 7.5nm and r1 = 15nm, where destructive interference takes place. The en-

hancement factor stays near the value g = 630 (the quasistatic approximation at

Ref. [73]) for r1 < 1nm and is close to this value for r1 ≤ 2.5nm. At r1 = 1.2nm,

the nanolens exhibits an electrodynamic resonance with g ≈ 750, which exceeds

the quasistatic value significantly.

The result in Figure 8.5 applies to the nanolens with the fractal ratio κ =

3. The highest enhancement factor happens when the radii of the silver particles

are r1 = 1.2nm, r2 = 3.6nm, r3 = 10.8nm, and the particle gaps d12 = 0.72nm,

d23 = 2.16nm. In practice, these dimensions are too small. Therefore, optimization

of the nanolens for maximum enhancement as a function of the fractal ratio κ is of
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Figure 8.5: Maximum field enhancement vs. radius of the smallest particle, all di-

mensions of the system are scaled proportionately (LSB: dimensions as in the spe-

cific example in [73]; the radius of the smallest particle 5 nm, ES: the electrostatic

limit, After [79], (c) 2008 APS).

interest. The relevant simulation results is shown in Figure 8.6. The wavelength

and the polarization of the incident wave are the same as those of Figure 8.5.

The greatest field enhancement is found at κ ≈ 2.6 and is approximately 25%

greater than for the original value, κ = 3. The electrostatic calculation based on the

multipole-multicenter expansion is also shown in Figure 8.6. It is found that the

quasi-static enhancement factor keeps increasing with the fractal ratio κ.

In the actual application of an optical sensor or antenna, the system is very

likely to be placed on a substrate, as shown in Figure 8.7. The substrate is chosen to

be constituted by the silicon dioxide (ǫ = 1.5). In the simulation, the smallest par-
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Figure 8.6: Maximum field enhancement vs. coefficient κ, with the smallest radius

of silver particle 5 nm and the smallest air gap 3 nm (after [79], (c) 2008 APS).

ticle and air gap goes to 5 nm and 3 nm, respectively. Two kinds of incident waves

are considered in the simulations: (I) One wave travels vertically, and is polarized

parallel to the substrate; (II) The other wave travels vertically, and is polarized par-

allel to the cascade line. The enhancement factors at two points, shown as a and b

in Figure 8.7, are listed in Table 8.2.

Comparing points a and b, the greater enhancement factor always happens

at point a, no matter which kind of incident wave is applied. This is not surprising,

since point a is the closest point from the smallest particle to other particles. It is

found that the applied incident field in case I will cause a greater enhancement fac-

127



2SiO

0E

k
Case I:

0E
kCase II:

a

b

 

Figure 8.7: Particle cascade on a substrate (after [79], (c) 2008 APS).

tor than that of case II. Interestingly, the maximum enhancement is found when the

excitation field is polarized at an angle (approximately 22.5o) to the axis of the cas-

cade for both situations, with and without the substrate. The multipole-multicenter

calculation for cylindrical silver particles yields qualitatively similar results.

8.5 Conclusion

While electrostatic analysis provides a useful insight into plasmonic field enhance-

ment, electrodynamic effects lead to appreciable corrections. The results confirm

that field enhancement factors are on the order of a few hundred. For a self-cascade

of silver nanoparticles, there exists a pronounced nanofocus where the local field is

significantly enhanced (by a factor of several hundreds) with respect to the incident

field. These simulations, both in wave and electrostatic situations, show that elec-
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Table 8.2: Maximum field enhancement factor with and without substrate (after

[79], (c) 2008 APS).

With substrate Without substrate

Case I Case II Case I Case II

Point a 292 209 338 250

Point b 217 154 252 178

trodynamic effects are determined by the dimensions of nanolenses system if keep

the particle’s parameters and incident wavelength unchanged, with both positive

and negative resonances possible. The positive resonance part shows significantly

greater enhancement than the quasistatic case. The negative resonance part, the

greatest enhancement vanishes quickly with the increase of the system dimensions.

Maximum enhancement does not necessarily correspond to polarization along the

axis of the cascade and to the electrostatic limit; hence, the size of the system is

a nontrivial variable in the optimization of optical nanolenses. Another clear pos-

sibility for optimizing and improving the nanofocusing of optical radiation would

be to decrease the air gaps between nanoparticles. However, for smaller gaps, the

continuous electrodynamics approach is no longer applicable.
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CHAPTER IX

CONCLUSION

A number of simulation models for multiobject nanoscale systems have

been developed, studied and implemented in the thesis. The models are focused on

electromagnetic interactions, both quasistatic and dynamic, and employ traditional

as well as novel computation techniques. Multi-object systems are quite challenging

to model, as they typically require substantial or even impractical computation re-

sources. The thesis explores new methods and ways to overcome these difficulties.

The main developments and models are summarized below.

9.1 Brief Summary of Models

Computer simulation includes two major steps, (i) development of a physical and

mathematical model; (ii) efficient solution. In practice, a multitude of factors are

involved, and a perfect model is impossible to formulate. Simplifications need to

be made, with a focus on key geometric and physical parameters.

In the nanoscale world, a system usually has thousands or even millions

or more components. These components can be included in the model either ex-

plicitly or implicitly; for the latter, a discrete distribution (e.g. of particles) is ap-
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proximated by a continuous one. For example, the distribution of small particles

in the magnetic self-assembly model of Chapter 7 is represented by a continuous

density. In the protein model of Chapter 6, the distribution of microions in the

solvent is treated as continuous and is assumed to be governed by the Poisson-

Boltzmann equation. Also, proper boundary conditions can greatly facilitate the

simulation. Examples include radiation and PML boundary conditions in the model

of a “nanolens” (Chapter 8), as well as periodic boundary conditions common in

molecular dynamics.

There are many numerical techniques for solving physical problems. No one

is perfect and all-powerful, and each has its own advantages and disadvantages. It

is impossible to cover all the techniques in one dissertation or book. In this thesis,

the focus is on FLAME and FEM, with their applications to nanoscale systems.

FLAME is a recently developed generalized finite difference (FD) method.

Standard FD relies on Taylor expansions around grid nodes to derive a difference

scheme. One of the unwelcome implications of this approach is the notorious “stair-

case” effect at slanted and curved interfaces between different materials. By re-

placing the Taylor expansions with more accurate approximating functions, FLAME

reduces or eliminates the staircase effect. The approximating functions are local-

defined only over a small subdomain covering a grid stencil. These functions can

be obtained either analytically or numerically, as described in Chapter 3. In this

thesis, FLAME is applied primarily to problems in bounded domains, but it can also

be used to derive absorbing boundary conditions for unbounded problems [81].
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In Chapter 4, FLAME is applied to electrostatic multiparticle problems that

are important, for example, in the analysis of colloidal or macromolecular systems.

The large number of objects (e.g. colloidal particles) makes traditional methods

such as FEM and FD difficult to apply. FLAME is an interesting alternative, as it

operates on regular grids and yet takes advanyage of high-quality local approxima-

tions. FLAME is demonstrated to have very good accuracy in multiparticle simula-

tions even on fairly coarse grids.

Accurate local approximations satisfying the governing equation are key in

the “Trefft” version of FLAME. These approximations can often be obtained analyt-

ically or semi-analytically. For example, for multiparticle problems where particles

are separated by distances greater than the mesh size, FLAME bases can be con-

structed using cykindrical (in 2D) or spherical (in 3D) harmonics. In cases where

particles are in close proximity to one another, or when particles have complex

shapes, the analytical computation is not available. Two methods (semi-analytical

bases and adaptive FLAME) are proposed and implemented in the thesis to over-

come this difficulty.

Adaptive strategies are already well established in FEM but involve a sep-

arate new development for FLAME (Chapter 4). Adaptive schemes take advantage

of the fact that FLAME is not restricted to regular meshes. Adaptive FLAME refines

the grid locally in regions where the numerical errors are estimated (a posteriori) to

be higher. The discrepancy between the patchwise numerical solutions in the areas

where two adjacent patches (subdomains) overlap serves as the error indicator.
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Both semi-analytical bases and adaptive FLAME are applied to multiparticle

problems in Chapter 4. The numerical results for particles in close proximity to one

another show that these two strategies yield high accuracy on fairly coarse grids.

The results show that these strategies can be a useful part of the overall simulation.

FLAME, including analytical/numerical bases and adaptive mesh strategies,

is also applied to wave scattering problems in Chapter 5. The study of wave scat-

tering is important in a variety of areas including radar systems, astronomy, optics,

photonics and solid state physics. Our test problems and applications of FLAME in-

volve electromagnetic wave scattering from dielectric or metal particles and are cur-

rently limited to 2D problems. (However, applications of FEM to three-dimensional

scattering are considered in Chapter 5.) Similar to the static case, FLAME bases

are constructed for problems where particles may or may not be well separated

(relative to the grid size). FLAME again proves to have much higher accuracy than

standard FD schemes.

In Chapter 6, FLAME is applied to electrostatic interactions in macromolecules

(e.g. protein molecules). Proteins contain amino acids with charged groups. The

electrostatic fields produced by the charges influence the spatial distribution of the

microions in the solvent. Electrostatic interactions are critical for the formation and

stability of the protein structure and for its function. Under reasonable physical

assumptions, this distribution can be described by the Poisson-Boltzmann equation.

A conventional protein model contains two regions: the macromolecular

core and the solvent. In the core layer, the protein nuclei are viewed as point
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charges. Recently a more accurate model that accurately takes into account both

short- and long-range dielectric response of water, was developed by A. Rubinstein

and his co-workers [46]. In one practical version of this new model, an intermediate

layer with a low dielectric permittivity is introduced. FLAME is applied to this

problem in Chapter 6.

The numerical treatment is encumbered by the inhomogeneities of the me-

dia and the presence of singularities (point charges). FLAME overcomes these dif-

ficulties using potential splitting and accurate analytical bases (see Chapter 6 for

details). FLAME again exhibits much higher accuracy than conventional FD.

While FLAME is demonstrated to be a useful tool in selected applications,

the finite element method (FEM) still remains the most powerful and versatile nu-

merical technique for problems with complex geometries and inhomogeneous me-

dia. The generality of the method makes it possible to develop general purpose

computer programs for solving a wide range of problems. In this thesis, FEM is ap-

plied to two electromagnetic problems: magnetostatic in the case of self assembly

of ferrofluid structures (Chapter 7) and electrodynamic in the case of plasmonic

nanolenses (Chapter 8).

Fabrication and assembly of nanoscale systems are quite involved. Self-

assembly is the most promising general way for getting highly ordered structures or

materials. Magnetic self assembly pioneered by G. Friedman and B. Yellen [1,59,60]

is one of such technologies. In this technology, particles are magnetized by an ap-

plied magnetic field, and their motion may be controlled by fixed magnetized traps
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pre-patterned on the substrate (Chapter 7). FEM is used to simulate the distribu-

tion of the ferrofluid density for different applied magnetic fields. The scalar, rather

than vector, potential formulation reduces the computational complexity greatly.

Nanolenses, formed by a cascade of plasmonic particles, are of great interest

due to enormous electromagnetic field enhancement, with potential applications in

ultrahigh-resolution optical microscopy and sensing technology. The computational

challenge is that the high enhancement of the field is highly localized and, being

produced at a resonance, is very sensitive to all physical and geometric parame-

ters. In Chapter 8, FEM with adaptive mesh refinement is used to simulate the

field distribution around the nanolenses. It is found, somewhat counterintuitively,

that the quasi-static limit does not produce the highest enhancement, despite the

absence of retardation and dephasing in that limit. Furthermore, again somewhat

counterintuitively, the highest enhancement does not necessarily occur in direction

of polarization of the incident field. These findings emphasize the importance of

detailed electrodynamic simulations of nanolenses, and highlight the limitations of

existing electrostatic analyses of plasmonic field enhancement.

Overall, the contributions of this thesis can be summarized as follows.

• Systematically implement and apply the new generalized finite difference cal-

culus of FLAME to electrostatic and wave scattering problems. All the results

demonstrate high accuracy and flexibility of FLAME.
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• Extend the application of FLAME by developing two strategies: semi-analytical

bases and adaptive mesh refinement.

• These strategies are applied to in electrostatic multiparticle problem. The sim-

ulation results show substantial accuracy improvement even on fairly coarse

grids. (Chapter 4)

• FLAME (including adaptive mesh refinement) is applied to wave scattering

from cylindrical particles; the feasibility of FLAME is thus demonstrated for

wave scattering problems.

• Implemented FLAME for a new protein model with an intermediate dielectric

layer. The new model accurately takes into account both short- and long-

distance dielectric response. The analytical and semi-analytical approxima-

tions in FLAME accurately represent the behavior of the potential due to the

singularities and inhomogeneities of the media. As a result, FLAME outper-

forms the conventional FD methods. (Chapter 6)

• Implemented FEM simulations of ferrofluids. The ferrofluid particle concen-

tration is treated as a continuum density. The model is further simplified by

formulating the problem in terms of the of scalar magnetic potential instead

of the vector one. (Chapter 7)

• Simulated the field distribution of plasmonic nanolenses using adaptive FEM.

Results indicate that the quasi-static limit does not produce the highest en-

hancement and the highest enhancement does not necessarily occur in direc-
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tion of polarization of the incident field, which both are counterintuitive. The

simulation of electrodynamic effects lead to appreciable corrections for the

research of nanoplasmonics.(Chapter 8)

9.2 Future Outlook

FLAME has proved to have useful applications in multiparticle problems, cylindrical

wave scattering problems, and macromolecular simulation. For cases in which par-

ticles are in close proximity to each other, analytical/numerical bases and adaptive

mesh strategies are proposed and proved to be effective. However, future research

needs to be conducted to enhance FLAME further. In this thesis, electromagnetic

force is calculated only for “well-separated” particles; this needs to be extended to

the 2D “poorly-separated” particles and to 3D as well. Adaptive algorithms need to

be extended to 3D models. Also, this thesis does not cover time domain problems

which are worthy of future research.

A prototype test model for macromolecular simulation was explored in the

thesis. It would be very interesting to apply FLAME to large-scale macromolecular

simulations, including for example problems of protein folding, docking, drug de-

sign and discovery; this will, however, require a very substantial effort of multiple

research groups.

Overall, the thesis has demonstrated that traiditional methods such as FEM

and the new finite-difference calculus of FLAME can be successfully applied to chal-

lenging problems involving multi-object nanoscale systems.
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