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ABSTRACT

Field emission from conducting nanofibers has a significant importance due to its
possible application in electronics like flat panel displays, x-ray machines, sensors,
etc. The standard theoretical model describing field emission is the Fowler-Nordheim
model, which is valid for bulk material, constant applied electric field and O°K. A
more general theoretical model is required in the realistic cases of arbitrary electro-
magnetic fields and arbitrary but finite temperature.

This work presents an asymptotic procedure for calculating field emission
from nanofibers of finite length for static and dynamic fields at arbitrary finite tem-
perature. It investigates the behavior of a nanofiber in the presence of electrostatic
and EM fields. The resultant field potentials outside the system are obtained by em-
ploying the slender-body approximation ([1], [2], [3]) . The total external potential is
used in conjunction with the the Wentzel-Krammers-Brillouin approximation [4] to
estimate the tunneling probability of the electrons in the fiber due the total external
field. Unlike the standard Fowler-Nordheim method [5], the current density of the
field emission is obtained by using quantum wire density of states.

In addition, this work investigates radiative and scattering properties of con-

ducting nanofibers for the purpose of nanoantenna applications . The results for the
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distributions of the induced currents are compared to the results from the solution of
Hallen’s integral equation [6] and the corresponding radiation patterns are compared.

The results are extended for the case of a broadside uniform array of NV aligned fibers.
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CHAPTER I

INTRODUCTION

The advent of modern physics in the last century lead to better understanding of
solid state phenomena both qualitatively and quantitatively. Quantum mechanics
and solid state physics gave satisfactory explanation of the properties and behavior
of semiconductors, which lead to the invention of the point contact transistor by John
Bardeen and Walter Brittain in 1947 and the junction transistor by William Shockley
four years later. The first integrated circuit (IC) and the planar technology followed
soon. The subsequent development of the planar technology lead to decreasing the
size of the integral elements and thus increasing the scale of integration, i.e. the
number of transistors per IC.

Currently electronics is in the realm of the ultra large scale of integration and
the size of the integral elements is on the nanoscale. This is the driving force behind
the recent vigorous research in the area of nanoscale systems.

One of the possible areas of nanoscale research is the investigation of the
properties of conductive nanofibers/ nanowires, which in this work we refer to sim-
ply as nanofibers. Nanofibers have the potential of being used in several different
applications: they can serve as parts of integral elements for ICs or devices [7], [8],

[9], [10], [11], [12], nanoantennas [13], [14], [15], [16], waveguides [17], photonic crys-



tals [18], field emission electron guns in electron microscopes and x-ray machines
[19], [20], nanolithography [21] or in flat panel displays [22], [23], [24], etc. This
motivates the investigation of the behavior of nanofibers in the presence of electro-
magnetic fields. Such problems include scattering, radiative properties, electronic
transport, field emission, etc. Even though these problems are interlinked and it is
impossible to treat them separately, they represent different physical phenomena and
the investigation of each of them requires employment of several different theoretical
constructs. Another difficulty comes from the fact that the size of the systems in
question is at a scale where classical phenomena are less present and quantum ef-
fects become more pronounced. This leads to an inherent ambiguity about choosing
the correct model for description of the underlying physics of the system. Although
some experimental data exists, we are only beginning to develop qualitative picture
of the processes on nanoscale. In this work we focus on field emission from conductive
nanofibers/nanowires, as well as some of their radiative properties.

Field emission is emission of electrons from a material due to an external
field. The emitting body is called cathode. In order to observe field emission from
cathodes with macroscopic dimensions, one needs strong electric fields. However,
for small distances and small cathode dimensions, field emission is possible for small
applied voltages.

Field emission is entirely a quantum mechanical effect, the emission current
is a result of a quantum tunneling of electrons through a potential barrier. The first
emission from metal was observed by Wood [25] in 1897. Schottky [26] made the first
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attempt to theoretically describe field emission in 1923 based on classical physics.
His model failed to match the experimental results.

The next attempt belongs to Fowler and Nordheim [5] in 1928. They em-
ployed quantum mechanical concepts to describe the electrons tunneling through
surface potential barrier. The original calculation employed a triangular potential
barrier due to a constant external electric field from a semi-infinite piece of metal
at 0°K. Later, calculations were extended by other authors to square barriers [27],
trapezoidal barriers [28], repulsive o-function barrier [29], parabolic potential [30],
ete.

Field emission (FE) from nanostructures has recently attracted attention due
to its possible applications. The first reported FE from a nanofiber (carbon nanotube)
was in 1995 by [31]. Subsequently, more experimental results were reported for FE
from semiconductor and metallic nanowires [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [43], as well as some applications [44], [45], [46], [47].

It is our goal in this work to create a consistent and realistic mathemat-
ical model of field emission from nanofibers by going beyond the standard Fowler-
Nordheim model [5]. As an input for the field emission calculation we need an analytic
expression for the potential energy of the field. This requires the investigation of the
electromagnetic scattering from a nanofiber of finite length for the usual static as
well as the dynamic case. Also, we use the dynamic scattering results for the purpose
of investigating the radiative properties of the nanofiber (or an array in the general
case) due to the induced eddy currents by obtaining the current distribution in the
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fiber and obtaining the radiation pattern for a single/system of fibers. The results are
compared to the corresponding results from the solution of Hallen’s integral equation.

This work is structured in the following way: In Chapter II we discuss the
foundations of the FE theory. We introduce a model for the calculation of FE cur-
rent and compare it to the standard Fowler-Nordheim model. We also motivate the
necessity for solving the EM scattering problem in Chapter III.

In Chapter III we investigate the EM scattering properties from nanofibers.
We consider two cases - static and dynamic. Since the systems under investigation
have a large aspect ratio (length to width), we employ the slender body approximation
[1], [2]. For the static case we consider static electric field and solve for the resultant
potential. The result is used to evaluate the potential energy, which is used as an
input for the field emission calculations. For the dynamic case we consider both axial
and transverse incidence of the electric field. The results from the axial case are used
in a conjunction with the Lorentz-Lorenz gauge in order to determine the potential
energy of the dynamic field, which just as in the static case is used as an input for
the field emission calculations. The results from the case of transverse incidence are
generalized in Chapter IV. Here we derive an expression allowing us to determine the
current distribution in the fiber and the resulting radiation pattern of the fiber as a
scatterer. Furthermore, we generalize the results for IV aligned fibers.

In Chapter V we present the numerical results based on the work in Chapters
IT, TIT and IV. First we evaluate the field emission current for Ni nanofibers in the
case of static incident field for four different values of e. We compare our results to
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the results from the Fowler-Nordheim model as well as recent experimental results
[48]. We also evaluate the field emission current due to axial dynamic field for three
different frequencies and four different values of €. Next, we present the current
distributions and radiation patterns predicted by our model and compare them with
the current distributions and radiation patterns resulting from numerical evaluation
of the Hallen’s delta gap case [49], and thus essentially comparing the properties of
the fiber as a scatterer and radiator. Finally, we extend the results to the case of
an array of N aligned fibers and investigate the array radiation pattern for several
different numbers of elements, several frequencies and several different values of e.
Additionally, there are two appendices: Appendix A and Appendix B. Ap-
pendix A contains intermediate results in the derivation of the electric and magnetic
fields due to an electric and a magnetic dipole in the dynamic case in Chapter III.
Appendix B contains the derivation of the asymptotic expansions of the integral

operators occurring in both the static and the dynamic case in Chapter III.



CHAPTER II

FIELD EMISSION

Consider an electron in a metal in the presence of an external electric field. The work
needed to overcome the potential barrier on the metal vacuum interface is A = ep
(see Fig.(2.1)), where ¢ is the work function, which is specific for the material and e is
the electric charge of the electron. According to classical physics, in order to leave the
surface of the cathode, the energy of the electron has to be higher than the height of
the potential barrier, i.e. in the classical case the barrier is completely nontransparent
for electrons with energies lower than its height. Quantum mechanical laws, however,
allow the particle to tunnel through the barrier instead of overcoming it. This is
known as the tunneling effect, which is responsible for emission of electrons from the
metal /vacuum interface.

The transparency of the barrier 7', which is the probability of an electron
with a certain energy to tunnel through a barrier with a specific height and shape
is obtained by invoking 1-D WKB approximation. Here we are following closely the
derivation in [4].

Consider an electron with energy W moving in constant potential V' and with

momentum given by:

p=\/2m (W — V). (2.1)



V(r)A

Metal 0 Air

\

ro

Bottom of
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Figure 2.1: Energy diagram of the metal/air interface

The one dimensional Schrodinger equation in energy representation is:

[£;+%ﬁ%mywmzo

(2.2)

Here m, is its mass, ¥ (r) is the wave function, r is the dimensional spatial coordinate,

h is the Planck’s constant. Therefore, 1) will propagate in space with a constant

wavelength A\ = 27h/p and the phase shift per unit length p/h is constant, too.

Our next step is to assume that the potential V' is not a constant anymore,

but instead that it is slowly varying. Then ) will behave like a plane wave locally,

however the wavelength will be a function of the position, i.e.:

2 2
M) = mh mh

p(r)  \2m, W — V(1))

(2.3)



and

d\

< 1.
dr

If we write the solution of the Schrédinger equation in the form
is(r)
U(r)=exp |—
) =ew |
and insert this into the Schrodinger equation, we will obtain
—(s)2 +ihs + p*(r) = 0.
If we expand s in series in terms of A,

s = so+ hsy + h%sy + ...

and make this substitution for s in eq.(2.2), we find:

—(50)? +12(r) + (isy — 25150) 7+ O(h*) = 0.

(2.4)

(2.5)

(2.7)

(2.8)

Since h ~ 1073*J.s, the WKB approximation is widely valid, because any potential

can be considered slowly varying in this limit. Keeping only the leading term we

obtain:
SO = :i:p(’l"),

or

so(r) = & /mrp(r’)dr’.

Therefore the leading order in the WKB approximation will result in

B(r) = U(ry) exp [i—% / p(r’)dr’] |

8
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(2.11)



The transmission probability given by

T @ O = E)Pep -2 [ VIR | 2)

and since |¥(rg)|? = 1, for a slowly varying potential V', T(WW) becomes

T(W) = exp [—% BN T W)dr’] | (2.13)

where ry and 7 represent the classical turning points, i.e. where V(r) = W.

The total current density J will be

J= 2, ij / T DWW FWYT (W)W, (2.14)

where E; is the Fermi level of the material, D(W) is the electron density of states.

Also, the Fermi distribution function f(W) is given by:

1
W—-E

fW) = :
W)=y

(2.15)

where kp is the Boltzmann’s constant, and T}, is the temperature in Kelvin.
In the case of the standard Fowler-Nordheim model it is assumed [5], [50],

[51] that the:
e material has a free-electron structure (i.e free electron model is valid)
e clectrons are in thermal equilibrium
e temperature in the material is 0°K

e uniform constant electric field is uniform above the emitting surface (triangular

potential barrier )



e tunneling probability can be calculated by the WKB approximation

The assumption for the constant electric field allows direct integration in eq.(2.13)
and a simple analytic expression for the tunneling probability. The 0°K assumption
and the free electron density of states simplify the expressions for f(W) and D(W),
respectively [5]. As a result, the current density ( eq.(2.14)) predicted by the Fowler-
Nordheim model becomes a simple analytic expression.

Clearly, the Fowler-Nordheim theory is a crude model with built-in assump-
tions which are hardly valid in the case of field emission from nanofibers. A realistic
field emission model for nanofibers should take into account several important fac-
tors. Generally, in applications, field emission occurs at room temperature and so a
temperature dependent model is desired. The temperature dependence is reflected in
the Fermi distribution function (eq.(2.15)).

Also, the electron density of states (DOS) in a nanofiber differs significantly
from the free electron model, which is best suited for bulk material. This is due to
the fact that the transverse size of the nanofiber is on the nanoscale and therefore
the energy quantization rules forbid anisotropy unlike the case of bulk material. This
means that a nanofiber exhibits the DOS of a 1D quantum system. Thus the DOS

of a quantum wire [52], [53], [54] is:

D(W) = — (—)1/2 w2, (2.16)
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In addition to these considerations, the model should give predictions for a
broad class of applied fields (static and dynamic) and potential barriers which take
into account both the incident and the scattered fields.

To our knowledge, currently there is no theoretical model involving dynamic
fields, since there are several significant difficulties to be overcome. One of them is
that in the dynamic case, the potential cannot be obtained directly, one first has to
solve for the electric field and subsequently, relate the electric field and the potential
through some kind of gauge conditions. Trying to solve for the electric field, however,
might present a problem by itself, since there are singularities at both ends of the
fiber. In this work we avoid the singularity problem by employing the slender body
approximation in both the static and the dynamic cases. Additionally, in the dynamic
case, we use the Lorentz-Lorenz gauge in order to relate the results for the electric
field to the field potential.

Thus for a given incident field, we should be able to obtain an analytic expres-
sion for the potential due to the external field, which defines the shape and height of
the potential barrier in eq.(2.13). For a given electron energy W the current density
will depend on the transition probability 7(W), the number of electron sates D(W)
available at that energy and the probability F'(W) of these states being occupied.

In this case, unlike the Fowler-Nordheim case the total current density J
(eq.(2.14)) cannot be evaluated explicitly. Here we propose a numerical evaluation
technique of eq.(2.14) based on the following observations. Even though eq.(2.14) de-
fines an improper integral, in reality both of the integration limits are finite. Detailed
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Figure 2.2: Fermi distribution f(W) at 0°K and 300°K for Ef = 11.83 eV

analysis of the integrand shows that it is nonzero only for a small range of energies.
This behavior is dictated by both F(W) and T'(W).

At 0°K, F(W) =1for W < E; and zero for W > E;. At room temperature
(300°K), F(W) — 0 rapidly for energies slightly above E; (see Fig.(2.2)).

The physical interpretation of this fact is that there are no available electrons
with energies higher than the Fermi energy, and thus essentially replacing the upper
integration limit in eq.(2.14) with E; + AE, where AE; can be defined in such a
way that f(Ef+ AEy) =1/2 or any other reasonable value.

On the other hand T'(W) depends on the area enclosed by the potential
barrier and W (see fig.2.1). For sufficiently sharp and thin barriers and appropriate

w,

/ I V) = Wdr ~h and  T(W) £0, (2.17)

and this truncates the lower integration limit. It is important noting that for a given

12



system at given temperature, T'(WW) would vary drastically for different incident fields.
That implies that one and the same system subject to different external field should
produce drastically different field emission currents. Therefore, the field emission

calculation can be split in two separate problems:

1. Scattering: Given a conducting fiber and and incident static or dynamic electric
field, the goal is to determine the scattered field as a function of type and mag-
nitude of the incident field as well as the geometry and the physical properties

of the material of the fiber.

2. Electron Tunneling Probability and Current Density: Given a fiber with known
physical properties and geometry interacting with a given incident field, the
goal is to calculate the tunneling probability and the current density of the field

emission.
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CHAPTER III

SCATTERING

In this chapter we investigate the scattering properties of a finite dimensional fiber
due to both static and dynamic fields. In a realistic case a nanofiber is rotationally
symmetric and has a large aspect ratio (™3* << 1). This is why we introduce the
slender body approximation models [1], [2], [55], [56], [57], [58], [3] and modify them
for our goals. The slender body approximation is applied to bodies of revolution with
length L. A small parameter € is defined through ¢ = =%+ << 1. The system is
nondimensionalized by L, so that the new length is 1 and the maximum radius is
€. This method is applicable for a large class of geometries, as long as there are no
sharp tips at both ends. However, for the purpose of modeling a realistic nanofiber
geometry, we can choose a cylinder with spherical caps. For simplicity, but without
loss of generality, it can be assumed that the axis of revolution is the z-axis. Thus
the surface I' of a body of revolution, given by r = em . For the fiber geometry
we choose a cylinder with unit length and spherical caps with radius € (see Fig.(3.1)).
Here we investigate the properties of the fiber as a scatterer in both the static and
dynamic cases. We derive results using the slender body approximation technique for
a general slender body geometry and then apply them for our geometry in particular

(fig.3.1).
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Einc

Figure 3.1: Fiber geometry

In the static case we represent the potential as a linear superposition of point
sources with unknown distribution f(z,€) along the rotational axis of the body (z-
axis)[2]. The unknown distribution f must satisfy a linear integral equation. Our
goal is to obtain a uniform asymptotic expansion of the integral operator and thus
obtain a uniform solution for f.

In the dynamic case point charge representation is not sufficient. However
[59] allows us to represent the scattered electric field as a linear superposition of both
magnetic and electric dipoles with unknown densities g(z,€) and h(z,€) along the
z-axis. One of the BC requires vanishing tangential components of the total electric
field on the surface of the system which leads to a system of two integral equations
for the unknown ¢ and h. Again, our goal is to obtain uniform solutions for them by

obtaining uniform asymptotic expansions of the integral operators involved.
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The proposed technique is based on the assumption that the charge/dipole
densities f, g and h also have an asymptotic series in € with expansion coefficients
which are smooth functions of z. In both cases (static and dynamic), the integral

operators resulting from the BC are of the form

a(e)
/ Gi(€, 2) F (€, €)dE, (3.1)

where G;(r, z) represent the operator kernels and F' represent the charge/dipole den-
sities f, g and h.

In both the static and dynamic cases we apply a similar procedure. First, the
integral is represented as a sum of two new integrals by introducing an intermediate
integration limit. Each of the resulting integrals undergoes a change of variables,
expansion of the integrand and term regrouping. The goal is to represent each of
the resultant integrals as asymptotic sum of linear operators [1], [2], [55], [56], [57],
[58], [3], [60]. This could be achieved through additional expansions, regrouping or
integration by parts.

The expansion resulting from such a procedure is not automatically guar-
anteed to be uniform. Clearly, the uniformity and nonsingularity of the asymptotic
expansions of the integrals above would depend on the unknown integration limits
a(e) and [(e). In the limit ¢ — 0, i.e. for an infinitely long body of revolution, a
uniform expansion does exist and there is no singularity. However, in the case of finite

L, analysis shows that trouble occurs when o« = 0 and 3 = 1. These two observations
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suggest that a and ( should be of the form

a=ome+ et + ... = Zane2n (3.2)
n=1
and
B=1-pe = foet — =1 B, (3.3)
n=1

Part of the solution is determining the unknown integration limits a(e) and [(e)
given by eq.(3.2) and eq.(3.3). Choosing particular a;’s and 3;’s will allow us to have
an asymptotic expansion which is uniform even close to the end of the fiber. The
resulting uniform expansion allows us to solve for the unknown f, g and h up to the
desired correctional order and thus obtain an analytic result for the total electrostatic
potential (static case) and the total electric field (dynamic case) outside the fiber. An
important fact is that «(e) and ((e) depend entirely on the geometry and they are
easily obtained for a given S(z). This would be convenient even when one is pursuing
a numerical solution to the problems described above. In that case the unknown
densities f, g and h can be obtained numerically, however knowledge of a and [ is
still necessary in order to avoid issues with singularity. Even though possible, such
an approach is not justified, since the analytic results we obtain are derived for any

general slender body geometry.

3.1 STATIC CASE

Counsider a finite dimensional nanowire with a surface I' and incident electric field

with potential ®°. The electrostatic potentials inside and outside I' must satisfy
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Laplace’s equations, i.e.:

V' =0 in R3\T, (3.4)

VU =0 in R3\T. (3.5)

Here I is a body of revolution, given by r = em , where S(z) is a function chosen
appropriately for a given geometry and e is the ratio of the largest diameter to the
length.

The requirement for continuity of the electrostatic potential on the boundary

implies that on I', U and ®° must satisfy the following BC:
C=U+ ", (3.6)

where C'is constant. Also U must vanish at infinity, i.e. U — 0 as r — oc.

U must be a solution to eq.(3.5) subject to eq.(3.6). However, analytical
solutions exist only for the simplest geometries. Instead of attempting to solve eq.(3.5)
directly, we take a different approach: we represent U as potential due to unknown

charge distribution along the z-axis, i.e we seek U(z,7) in the form ([2]):

(P9 e
Uz,r) = A(E) G T2d§, (3.7)

where 0 < a@ < § < 1 are to be determined as part of the solution, as well as the
unknown function f(&,¢). Here a and [ are the same as in eq.(3.2) and eq.(3.3).

On the boundary,

U(z,r)

(T
- e, (3.8)
- /a V(z =82 +e5(2)

18



Also, the total charge in the system is zero, i.e.

8
/ (€, €)dE = 0. (3.9)

Thus the BC (3.6) becomes a linear integral equation. Our goal is to obtain a uni-
form asymptotic expansion of both sides of eq.(3.6), and hence a uniform asymptotic
expansion of the integral representation of U in terms of powers of e. We want the
expansion terms of f(z,€) with respect to e to be smooth and so each of them to be
analytic for z € [0,1] ([1], [2]). This leads to realizing the conditions necessary to
determine the coefficients in « and [3.

Consider the integral

(2,6, F) dg. 3.10
/ V=€ 625( ) . (3.10)
U will be exactly of the same form as Is(z,¢, F'), provided f(§,€) = F(£). Usually

asymptotic problems in the case of slender body geometry involve both ¢ and log e

terms. Thus we expect I4(z, €, F') to have an asymptotic expansion of the form:

(2,6, F) ZZ loge (L; + Gjloge)F(2). (3.11)

m=1 j=0

To show that, let

F(§)
(.. F) / Viz—¢ —|-€2S \/ (z—&)2+€e25(z )df. (3.12)

Make the substitution v = z — £ in the first integral and v = £ — z in the second to

find:
— Bz
(z,¢, F) (z—v) dv—l— F<Z+U)
\/112 €2S(z 0 v2 4 €25(z
=1 (2,6, F)+I1(z¢F). (3.13)
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For I*(z,¢, F) we have

Hz,6,F)=F(z B_ZLU P F(z 4 ) - F(Z)
Iz F) = F(2) | WOH/O m

BZFZ—FU — F(z)

dv

o [ ot )

s B 2 ~1/2
+/ F(z+v) — F(2) <<1+65(2)> —1)dv:ff§+]2J;+I§§-
0

v v?
Similarly for I~ (z,¢, F')

/ dv—i—/z CF(z—v)— F(z
VU?+ 625 0 v? + 625(2)

F(z—v)—F(2)

I7(z,¢, F) =

s

dv

d+/

/ U2+ 625 !
TRz —v)— F(z €25 (2)\ ~1/2 _ _ _

+/0 (=) <><<1+%> —1)dv=[18+128+[35.

v

For each of the integrals I, , Iss, I3, as well as ®° we need to find a uniform
asymptotic expansion (see Appendix B: Static case).

Combining the expansions from eq.(B.1-B.21) above with eq.(3.11) results in

GoF(z) = —F(z),

() = ()
LyF(z) = /1_Z F(z+v3} — F )dv—l—/z F(z —vj} il )dv+F( ) log (422(2_)2)
Assume f(z,€) is of the form

€)= Zoz—l lo;e o frm



The BC (eq.(3.6)) becomes

D Dj(2)eY S (2 C:ZZZ(E

j=0 n=0 m=1 j=0

.

where

€2
(log c (Lj + Gj 10g E)fm (Z)

e2+2 2j+4
+ (Lj + Gjloge) fi(z) + @(Lj + Gilog€) fa1(2) + v

€2d €27+2
+ <(10g 6)2 (Lj + Gj 10g E)f02(2’) + m([z] + Gj log €)f12(z)

25+
log €) foo(2) + . | + ...,
+ (IOgE) ( +G Oge)f22(z) +
Hence

(I)(] — b = G0f01 (terms O(EO)>

<I>15 == G1f01 + G0f11 terms 0(62)

y5? = Gofor + G fi1 + Gafa terms O(€*)
0= Lofo1r + Gofoo terms O(e/ log )
0= Lifo1 + Lofi1 + G1foz + Gofrz terms O(e®/ loge)

0= Lafor + L1fu1 + Lofoar + Gafoz + G1f12 + Gofaz terms O(e'/loge)
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Employing the fact that GoF(z) = —F(z), we have that

n—1
fn,m-i-l = —(CI)n(z)S"( ) C’5710 mo T ZLn pfpm + ZG" pfp m+1 N> 0,m >0
p=0 p=0
and assuming that C' is of the form
C= nmu
>3 G
n=0 m=1
n—1
Famet = a0+ Com + 3 L fom + 3 Gyt 12 0, > 0.
p=0 p=0

The second BC can be written in the form

B8 © o0 en 8
/ feaie=>"3" o [ dmterie 0.

n=0 m=1

If we expand [ aﬁ Jam(£)dE in a Taylor series,

[ funterac = Z + (o [ e

e:o) : (3.14)

and
oo 00 00 62n-i-2j (d] 8 )
;;;ﬂ<log€)m G [ )|
Suppose m is fixed. Then
0 X €2TL—|—2]
J! (dezﬂ/ Frm (€ df) 0:0>

nO]O

and thus by collecting like terms in €*"
1
| fmterac = - ( 5 [ hmterie) |

22
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By integrating both sides of f,, 11 = ®n(2)S™(2)dmo +Cnm+ZZ:o Lypfom+

Zn ! Gn pfp7m+1 we get

n—1
/ fnm+1 dé- / [ m0+Cnm+ZLn pfpm+ZGn pfpm—l—l] 5

p=0 p=0

(3.15)

Combining this result with the expression from eq.(3.14) yields
1
Cnm:/ (I)n Z mO_ZLn p.fpm ZGn pfpm—i—l 6

fn—jim df)
=1 (de% / —smi1(6

which after substitution in eq.(3.15) becomes

Y

=0

1
fn m+1 — / [(I)n(Z)S mO - Z Ln pfpm Z Gn p.fp m—i—l] d€

j= 1< €2J/ Jn—jma1( dﬁ)

For the system’s geometry we consider a cylinder with unit length and spher-

O_CDn(Z)S mO+ZLn pfpm‘l'ZGn p.fpm—i—l

p=0

ical caps with radius € (see fig.(3.1)), which yields S(z) to be:

r? =2z — 22 = €29,(2) for0<z<e
r? = ¢ fore<z<1-—c¢
12 =22(1—¢€) — 2* + 2 — 1 = €5,(2). forl—e<z<1. (3.16)

Finally, we choose

O(z,1%€) = M= (3.17)
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and so

o= [ wu(erte a0t =21 (-2,

1-2z 4z(1-—2) 1-26 46(1-¢)
7 %8 g _/0 > TS dg)’

a) + B c—d;
=M )
2 8

f02=M<2z—1+

fu=M (3.18)

Using the results for the expansion coefficients ¢; and d; from Section 3.4, we obtain

, 2 S7(0 2
01251(0)22 Cy = 12(>:—€—2 03:0
SY(1 2
dlz—Sé(l):Q/E dgz 22( ) :_6_2 d3:0

and since

€ €

2 4 €\ 6
_ N\ € 2\ (€ 8
oz—cl<2> 102 <2) + c1(cre3 + 2¢3) (2) + O(€%),
1 (5Y V' 2) (€)° 8
B=1—d (2) +d1d2<2> dy(drds + 2d2) (2) +O(e),
for our particular choice of geometry
a=c+O0(e),

B=1—e+0(d). (3.19)

Also, for the given geometry

/11—2510g4£<1—£>d€:0
0

2 S(6)
fllea1+ﬁlecl_d1:0, (3.20)
2 8
and thus
1 /1 1 1-2z, 42(1-2)
f(z,e)—@(§ z—l—@(% 1+ 5 log S02) )) (3.21)
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Hence,

1—e 1/2_§+C’1 (25—1—}—(1/2—5)10g4§(1_§))
Ulz,r)=C; %
(2,7) / (z— 62+ 12 ‘

3.2 DYNAMIC CASE: AXIAL INCIDENCE

Now suppose we have a incident plane wave in the z-direction, i.e.
i(kz—wt)s
Einc =€ ( )1X7

1 .
i(kz—wt)s
H;.. = —ell )1y.

(3.22)

(3.23)

(3.24)

Then outside I' the electric and magnetic fields will satisfy the free space source-free

Maxwell’s equations:

V-E=0,
V-H=0,
oOH
VXE__/"LE7
OE
H=c—
V x 681&’

where E = E;,,. + Es. Taking into account that k = w,/ue as well as

the last two equations take the form

V x E =iuwH = iknH,

V xH = —iweE = —iEE,
n

25

(3.25a)
(3.25h)
(3.25¢)

(3.25d)

(3.26)

(3.27a)

(3.27h)



and e~ is suppressed. By manipulation of the last two equations, it follows that

the total external electric field must satisfy the Helmholtz equation
V’E + v°E = 0, (3.28)

where v = k.
Since the tangential components of the electric field on the surface of the
body vanish, the BC is:

n x Ejne = —n x Eq. (3.29)
Also, the total electric field must satisfy the Sommerfeld radiation condition:

lim (R x (V x E) + ikRE) = 0, (3.30)

R—o0

where R = zix + yiy + 2i, and R = \/m

Solving the Helmholtz equation (3.28) subject to the BC (eq.(3.29)) and
(eq.(3.30)) is not trivial except for simple geometries. Therefore we will take a dif-
ferent approach. We will represent the scattered electric field as a field generated by
electric and magnetic dipoles (due to the Schelkunoff Equivalence Principle [59])with
unknown distributions g(z,€) and h(z,€) [3] along the z-axis in the interval [a, [3].
Here the expressions for @ and [ are the same as eq.(3.2) and eq.(3.3) and the ar-
guments for the expansion coefficients «a,, and 3, are identical to the ones discussed
above.

The magnetic vector potential A, due to an electric dipole p and the vector
potential A,, due to a magnetic dipole m are given by [61]

ik R

Ae = —ka?, (331)
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. 6ikR 1
A,, =ik(ir X m) 7 1- TR ) (3.32)

where p is the electric dipole moment, m is an magnetic dipole moment R = xi, +

Yiy + 2, R = /22 +y? + 2% and ip = 3.
Since the electric field E, the magnetic field B and the magnetic vector po-

tential A are related through

B=VxA, (3.33)

E:%VXB, (3.34)

and since for any scalar ¢ and vector A, V x (pA) = ¢V X A+ Vo x A,

_ kR  cikR . kR
B, =V xA,=—ikV X ( 7 p) = —ik 7 pr—sz( = ) xp. (3.35)

Also, since V x p = 0, the expression for B, becomes

Be = —sz <€R ) Xp= —ik (—%elkR+ thlgResz) X p

2eikR 1 .

The electric field due to a single electric dipole is given by

B - VxB, = 'UxTxA =VxVx(p (3.37)
e—k 6—]{5 e — pR . .

For an arbitrary vector V, V x V x V=V (V-V) — V2?V. Hence

eikR eikR ) eikR
E. = = . —
v (o) =7 (v () ) - 7 (v )
eikR eikR eikR
IV(R(Vp%H»V(R))—wWV(}%) (3.38)
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Using the identities

kR kR kR
v (eR ) - ikeR ir — %iR, (3.40)
ekl 1 . oan( K 2k 2
V( R (Zk_ﬁ)> = 1Rre (-E—ﬁ—i‘ﬁ), (341)

allows us to express the electric field E. (A.11) in the form

6ikR 6ikR eikR eikR
Ee =V <p . (Zkf R iR — ﬁiR)> — pV . <'lk R iR — ﬁiR)
. eikR . 1 eikR . 1 .

_p(ei]]j (Z’]{;—%)V~p+iR~V(eZR (m-%))) (3.42)

Also, since
R 1 1 3 R-ig 2
ip=V-—=—=-V-R+R- — == - = — 4
V:-ir=V 7 RV + V<R> 7 7 7 (3.43)
. T+ + p3z 1
. i
= % — (ir - P)%> (3.44)

the expression for the electric field E, (A.12) becomes

. 22k 2 p in ) cikR 1
— : ikR . .
B =ir(p-ir)e <_E_ﬁ+ﬁ) i (E_OR'p)E) R (Zk_ﬁ)

o an( K 3k 3\ .k ik 1

If we choose p = ix , i.e. p=(1,0,0) the electric field is given by:

iy + zyly + 22, g kK 3ik 3 . an (K ik 1
Ee = R2 (& (—E — ﬁ + ﬁ) +15€ (E + ﬁ — ﬁ) . (346)
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Transforming the expression for E. into cylindrical coordinates using the

following relations

r =rcosf ix = cos i, — sinfiy

y =rsinf i, = sin i, + cos fiy

and taking R = (r2 + (z — £)?)"/2 leads to (A.13):

E _ (r? cos@ir+rzcosé’iz)eikR kR 3k 3
‘o R? R R R
K* ik 1

+ (cos 0i, — sin fig)e™* (E + 2 ﬁ)

= k?i, cos 9% (—2r2f1 —(z— 5)2f2) +

IR | r e 1
+ ik?ip sin HEfg + ik?i, cos 6, ﬁrz(fz —2f1), (3.47)

. 1 l , 1 {
__ kR _ JikR |
where fi=e (kR+k2R2) and fa=e (z——kR—k2R2).

For magnetic induction B, we have

kR 1 Tiy + yly + 2i kR 1
B = 2€ 1— — . _ X y Z e 712 1
=M ( z’kR) (i > p) R L La* ( z’kR)
ikR 1
B (‘%Z * %iy) K eR (1 Bl z'kR) ' (3.48)

Therefore B, becomes (A.15)

ikR
(Y. | ZLN 20 T . C
B. = ( Rlz+ Rly) k I (1 ikR) =k Rfl(ZSIIlelr—l-ZCOSng rsin 6i,).

(3.49)
Now we can calculate the electric field E,, and the magnetic induction B,, due to a

single magnetic dipole m. Recall that the vector potential A,, due to the magnetic
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dipole m is

. eikR 1
A,, =ik(ir X m) B (1 - ikR) (3.50)

and so the corresponding magnetic induction B,, is (A.16)

6ikR 1
Bm:VxAm:ika<(RiR><m) (1 ))

R* \" kR
6ikR . 1 eikR . 1 .
Since V x (Rig X m) = —2m,

ikR 1 1 ikR ikR kR
v (6R2 (m - E)) = (m - E) (z’kiReR2 - 2iR%) tiRpr  (352)

and ig X (Rig X m) = R(—m + ig(ir - m)), the expression for B,, is (A.17)

6ikR 1 eikR 1
B,=VxA=-2m 2 <ik—§)+V<R2 <ik—§)) X (Rig X m)

kR

RZ

kR

RZ

1
=m (m + kR — E) + ig(ir.m) (-sz — 3ik + %) . (3.53)

Note that the expression for the magnetic field for the magnetic dipole is the same
as the expression for the electric field for the electric dipole if we replace p with m.

Employing the fact that E,, = éV x By,

E —EVX meikR ikﬁLsz—l +ig(i m)eikR —k:2R—3ik:+i
™k R? R RUR R2 R

; kR ; kR
v <€R2 (z‘k:+k:2R— %)) xm+ o (632 (ik+k2R— %)) V xm
; kR
(2 e 2 ) i
i eikR 3
+7 ( = <—k2R — 3ik + E) (ir - m)) V X i (3.54)
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Therefore for the electric field E,, (A.19) we have:

E, — v e z‘k+k21~z—l «m— Ly e 1<:2113+37;k;—i (ir -m) | x
"k \ R R koo R R)E

. ieikR 2 .13 . geikR 1 .
X ig = T (—k + ik R) (ir xm) =k —— — 1| (ir x m). (3.55)

R2
The expression for the electric field for the magnetic dipole is the same as the negative

of the expression for the magnetic field for the electric dipole if we replace p with m.

Since we choose m to be m = (0, 1,0),

. Tix +yiy + 21, T, z.
iR Xxm = i Xy = 2l — pix
r . < . . e
= g o8 0i, — E(cos i, — sinfip). (3.56)

Converting the results for E,, in cylindrical coordinates (A.20) yields

6ikR 1

E,, = k* = (k—R — 1) (r cos i, — z cos bi, + zsin Oig)

i

1
= —k?’ﬁfl(r cos i, — z cosbi, + zsinbip). (3.57)
Since

. 20 . 2

in(in.m) — - + oY _ L Sin G+ sin O, (3.58)

the expression for B,, in cylindrical coordinates (A.21) becomes

6ikR 1 eikR 3
Bm =m R2 (Zk‘ + k’2R - E) + iR(iR . m) R2 <—]{32R — 3ik + E)
. ikR . ik 2 3 2
_ sinelr% (zk:R FRIRY —1— P2 - er + é)
ikR 15 1 ikR ik 3
+ cos iy eR <k2 + % - ﬁ) — rzsinfi, €R3 (k2 + % + ﬁ) . (3.59)
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Finally, since (A.22)

B 3ikr? 37“2) B k2

ikR( ; 2 2 27.2 2 2
e (szJrkR—l—rk ) = (@ (- O%h)  (3.60)
, 1k 1 k? , ik 3 k?
as well as e”“R<k:2 + i ﬁ) = 7f2 and e”“R</<:2 + N3 + ﬁ) = 7(f2 - 2f1),
the expression for B,, becomes:
B —k—2 i in@i(2r2f +(z—§)2f)+il Ofy —1i in@i(f—Qf)
m = rS 3 1 2 eRCOS 2 zl'ZS R3 2 1) -

(3.61)
We want to represent the scattered electric field Eg as a linear superposition
of fields due to electric and magnetic dipoles along the z-axis with unknown densities

g and h . This allows us to write the expression for the scattered electric field Eg as:

B sinf . cos 0
R3 R R

p 0
Efz/’( (@ 4 (2= € fo)le + o folg + o (= — €)(f2 — 21
’h . e .
x g(&,€e)dé + / R (—(z — &) cosbiy + (2 — &) sinbig + rcosbi,) h(&, e)dE.  (3.62)

Since the tangential components of the electric field on the surface of the body vanish,

the BC become

n x Ejne = —n x Eq. (3.63)
Let ¢ =r —e4/S(z). Then
06, 06,
V(b = Elr + &lz (364)

and the unit vector normal to the surface is

n= |gz‘ _ 12 — <ir —g - iz> = ai, + bi, (3.65)
1 + EZ S(z§ (Z)
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Therefore

n x Eine = (aiy + bi,) x (e*%(cos 0i, — sin ig))

= ¢**(bsin Oi, + bcos fig — asin bi,) (3.66)

and

n x Eg = (ai, + bi,) X

; |
. [ / (_CORSf (221 + (2 = € fo)ie + %fﬁe + R—9< ~&)(f— 2f1)iz)

B
x g(&,e)dE + / % (—(z — &) cosbi, + (z — &) sinbig + 7 cos bi,) h(E, e)dﬁ]

p i
- [ a ( L LS 2f1)ie) g(€. )

R R3
’h . :
+ ay ((z — &) sinbi, — rcosbip) h(&, €)dE
5 .
b [0 (<S ik - Rl - T i) a6, o
’h . .
+ / bﬁ (—(z = &) cosbig — (2 — &) sinbi,) h(§, €)dE. (3.67)

By linear independence

B B
= [ Ryeaa+ [ 2 -onie g (3.68)
and
bet — | Calr = ) —2f)ge e+ [ alienie, e
— ), ‘R 27 2JUIL YRS

6 8
T / bs(2r i+ (2 — €7 gl e + / W~ (e, de. (369
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The last equation can be rewritten as

€ S'(2) Sk _ p oy _opy_ € S'(2) e 2= )2f, g(faf)d

s e = ), (=2 - G (o= 0 ) T
p e S'(2) fi

[ (=3 S~ 0) phe e, (3.70)

and since 7 = €4/5(z), it becomes

B
S () = - / (25()(z = O(f = 201) = S (V@S () fy + (2 = €°F2))

K~ [ (2565 ()~ ) e, gae. (3.71)

We are going to show that S'(z)e*

. s _ ch
Elz—e% <d%/a 6ikRLR§)h(§’€)d§—ik;/ eZth(g,e)dg) (3.72)

«

= —F; — E5, where F; and FE5 are given by

and

p kR / BeikR
Sé /ae <1+_) (f,e)d§+i5(z)/a —9(& e)dg

- z)di/a e;“j (1+;) g(€, e)de. (3.73)

Using the fact that

dR _ 2(z =& +€95(2)

dz °R ) (3.74)
d%em(z . £ _ 62R+ik(z—§)ezR 2(z — 5)2;; €25'(2) —(z—g)e;:j 2z — 5)2;; 28'(2)
(3.75)
and
d%e“fR (% + %) _ ei;R (zk (% + %) + (—% - %)) (2(2—€)+€25(2)),
(3.76)
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the expression for E) can be rewritten as

. B ikR B 2
El = ——622;2 eR (]. + Zk(z — 5)2(’2 g;; € S(Z)
_ 25 R2
LG 52) . (2) _ 21k ) h(E, e (3.77)

Therefore, by (A.23)

i /ﬁ ekl (2(2 — )2 +228(2) — 2(2 — €)% — (2 — )25 (2)
« R R?

2202 =€) + (2 — )25 (2) — 225(2) — 2(2 — €)°

)h(E,e)de

B
_ / %((z _6)S'(2) — 28(2))h(€, e)de. (3.78)

For E, we have (A.24)

Ey = —Sl(z)/a ek (kim + /4;2ZR3 — %) g(&, €)d¢
b ' 1 2 3 ,
=5 [ (45~ 1 - - o) (2~ 9+ €8 (a(e, e

B
= / (S/(Z)<2€2S(Z>f1 + f2(Z — 5)2) — QS(Z)(Z — g)(fz _ 2f1)> g(é»g

) ae.
(3.79)

Therefore the last BC can be rewritten as

; B _ B
_€2SI(Z)eikR — % {%/ esz(zRg)h(f’e)dé- —Zk'/ eith(f,E)df}

g 5 kR , , B _ikR
L€ k:(Z)/a €R2 (Hﬁ) g(€, €)d¢ — ie*S (Z)/a eR 9(&, €)dg

2628(2) d [P ehh i
+ 2 %/a R (1 + @) g({,e)d{’ (380)
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Recall that the BC are

6 8
o — / P g6 e + / 5o~ onle e (3.81)

and

E
S'(z)e = —/ (25(2)(z = &) (fo = 2/1) = ' ()25 (2) i + (2 = €)* f2))

£, f
X g(R;)d Elh

/8 !
- / (25(2) — 5'(2)(= — ) L ne. eyde. (3.82)

Multiplying eq.(3.81) by 4S5(z) + €25™(z) and eq.(3.82) by —€%S’(z) and adding the

resultant equations yields

B B
18 =15() [ Rye. e +156) [ - onte. g

B B
+ 625/2(2’)/ %g(&, €)dé + 625/(2)/ (25(2)(2 —&)(fa—2f1)
9(&, )

_ S,(z)(Qezs(Z)f1 + (Z - £)2f2)> R3

B8
dé +25'(z2) / QS(z)%h(g,e)dg,

(3.83)

which after division by 25(z) results in:

. & 8
20 =2 [ Rgc.qds vz [ - Onie o

E2 2 > 3 ; 62 (s 3
+ 25;(2))/0 %g(£7€)d§+ 2?((Z>)L (25(z)(2—§)(f2—2f1)

g9(§,€)
R3

B
- S @A+ - 005) S Dac 4 es) [ Dneode (350
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Furthermore, the last equation can be rewritten as (A.25)
e _o [0 12 ’h 2
27 =2 | Fg(§ )l + —(2(2 — &) +e5(2)h(E, €)dE

. 25@ / P2 e e + 25’(<)> / (25()(= = ©)(f2 — 2)

S (RSN + (- —£>2f2>) 269 ge
B ﬁfz e’S'(2) IR (&, €)
_2/a 2l d§+2/ f1 g + — /(f2—2f)2—z e,
(3.85)
By using the identities
1 de*® 1 ik 1N\OR  af ] i \OR _
T e L)L SR (- Ry P e SR
ikR ikR
%—ieR —;R (1+é) (3.87)
and (A.26)
d e+ ; k OR
(14 5) = 25 (3.88)

the BC finally become

Ny N N v
—625 (Z)esz:k_;{E/a elkR(ZRg)h(f,E)df—Zk/ elth(f,e)df}

07

g 5 kR , , B _ikR
L€ k:(Z)/a €R2 (Hﬁ) g(€, €)d¢ — ie*S (Z)/a %g(ﬁ,e)dﬁ

2628(2) d [P ehh i

200 [ (14 ) st o (3.89)

and
, 2 d [P eikR B LikR
20 = b [ hte.ad v [ Sate e
2 [P ek i 25'(z) d [P e*h i
_E/a R (14‘@) (£,€)d£+7k E/a ﬁ <1+ﬁ> (5 E)dg
(3.90)
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Let

B cikR
(e ) = [ S P (3.91)
B B (5 _ Z)eikR
hoeF) = [ SR, (3.92)
B
Jee F) = [ eMP©, (3.93)

and

B pikR i
Iy(z, €, F):/a 7 <1+ﬁ) F(€)de, (3.94)

where R = ((z — £)*+ 625(2))1/2 on the surface of the system. Expressed in terms of

In(z,¢6, F), I1(z,¢, F), J(z,¢, F) and I5(z,€, F'), the BC become:

Ny 2i d e25'(z)
ikz .
—e2S (2)e™* = = {—%Il(z, e, h) —ikJ(z, e, h)} +— I(z,€,9)
/ 2¢2
—ie2S (2)1o(2, €, 9) + ‘ S(Z)ib(z,e,g) (3.95)
kE dz
and
: 2 d , 2 €25'(2) d
ikz
2e = ﬁ%IO(Zaea h)+22[0(21, 679) - E12(27679)+ L E[2(Za 679)' (396)

Solving the BC in the form of integral equations (eq.(3.95) and eq.(3.96))
will give us the much needed density of electric and magnetic dipoles along the z-
axis, i.e g(z,€) and h(z,€). Before we attempt that, however, we need to analyze
the behavior of the integral operators Io(z, €, F'), I1(z,¢, F'), J(z,¢, F) and I5(z, €, F).
Recall that we imposed the requirement on the unknown densities ¢(z, €) and h(z,¢€)

to have an asymptotic expansion in terms of powers of € as well as analyticity of the
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expansion coefficients as functions of the z coordinate. Hence the behavior of the
integral operators Iy, I;, J and I is closely related to the behavior of their kernels,

1.e

CikR (€ — 2)eihR . CikR ;
—_ ! 1+ — .
o S e (1 D) 3.97

respectively. One important observation is that for sufficiently high frequency /wavenumber
k, all the kernels above become highly oscillatory. Also, in the case when o = 0 and
G =1, the kernels of Iy and I; become singular. To avoid this, we require no dipoles
on the tips (@ > 0, 8 < 1) as well as a and ( to have the expansion of the form
ale) =>07  ane® and B(e) =1 — 577 B,€*". Such an expansion solves the prob-
lem with the singularities occurring at both ends. However, it does not automatically
solve the problem with the uniformity of the asymptotic expansions of the four inte-
gral operators Iy, I, J and I,. This can be achieved by choosing the coefficients «;
and f; as discussed in Chapter 3.4, i.e. achieving uniformity of the expansions can
simultaneously lead to determination of the integration limits av and 3. Our next goal
will be obtaining uniform asymptotic expansions of Iy(z, €, F'), I1(z,¢, F), J(z,¢, F)

and Ir(z,¢, ).

3.2.1 EXPANSION OF Iy(z,¢, F)

Let us start with the integral

F(€)de. (3.98)

; ( F) B eik\/(z—f)z-l—szs(z)
2,6, F) =
" /a V(2 =62+ e25(2)
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We are looking for an expansion of Iy(z,¢€, F) in the form [5§]
Iy(z,6, F) ~ —log ®F + G1F + € log €Go F + O(€?), (3.99)

where the operators G, G5 and Gj3 are to be determined from the following asymp-
totic expansion. Let

Iy=1Iy + I, (3.100)

where

VE—2+E5(z)
/Vz— —= )F(g)dg (3.101)

and

V0TS
/ \/ = F(&)dE. (3.102)

2+ e25(2)
Changing of variables v = z — & for I; and v = £ — 2 for I leads to

z—a zk v2+€e25(2 )

0 \/U2+€2S

Iy = —v)dv (3.103)
and

B—z zk v2+€25(2)
I = F(z 4 v)dv. (3.104)

0 \/U2+€2S

Since the Taylor expansion of F'(z + v) and F'(z — v) for small v are

Fz+v) = F(2) +vF (2) +i?ﬂF(J
F(z—v) = F(z) — vF'(2) +Z _ )

the expression becomes

B—z ezk\/v2+623(z) v2
2) +oF (2) + —F"(2))dv

0 \/U2—|—€2S 2

B—z zk v2+e2S(2 ) 2 ’UjF(j) z
: m)_z%,w
0 \/112 +€25(z =
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)dv. (3.105)



Also, since

iky/v2+€25(2) ikv Leikv ikv
e e 5 ike e 4
S S — O , 3.106
v2 4 €25(2) v +es) ( v? v? ) TOl) ( )
we obtain
z zk 1)2 €285 z
fo e [T P R0 = PG

V2 + €5(2) €25(z v
, —z ik U2+€2S( ) ' F” B—=z iky/v2+€25(z)
+F (z)/ bl gy 1) / R
0 v ) 0 v

2+ e3S(z 2 24+ €e25(2)
2 Bz LIy al0)) ;
ikv € S(Z) ikv Vv F (Z) ik 1
+ + ' T I + +

Combining the results for the integral operators W, Wi, W5" and W, in
the expansion of I (and similarly W, ", W, W5 and W, in I;) from eq.(B.32)-

eq.(B.100), for I, we get:

1— 1—2z _Jiku _ 1 z tku __ 1
IONF(Z){—210g6+log(Z( Z>)+/ ‘ du+/ ‘ du}
0 0

15(2) u u
+e logeS(Z) (K2F(2) + F"(2)) + /01_2 Flzt “3} = F) g,
+ /O Pz = Uz = PG gy 1 oe). (3.108)
Let
V() = log (zils(_z)z )) + /0 - eikuu_ L+ /0 ) eikuu_ Laus1. (3.109)
Then
6F =) - 1FE) ¢ [ T gy [TEEZZEE) ey,

(3.110)
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and

GoF = SELZ) (K2F(2) + F"(2)) (3.111)
are the operators in the expansion of
Io(z,6, F) = —log @F 4+ G1F + € log Gy F + O(€?). (3.112)

3.2.2 EXPANSION OF I1(z,¢, F)

Recall that the second integral arising from the BC (eq.3.95 and eq.3.96)

8 (¢ = 2)etV/ P50
]1 (Za €, F) =

F(&)dE. 3.113
GO ase o )

We expect an asymptotic expansion of I1(z, €, F') of the form [58]

z 1
L(z, e F)=— / e*EOP(€)de + / e*EAP(€)dE + €2 log €2 Lyy + €2 L1y + HOT.
0 z

(3.114)
Let
=1 +1, (3.115)
where
I = /a (5\;(;%2@ F(€)de (3.116)
and
I = /Zﬁ (f\;(j)im F(€)de. (3.117)

Changing variables v = z — £ in I; and v = & — z in I} in conjunction with
F&)=FE)+Fz—v)—FE&)=F¢)+F(z—v)—(F(z) —vEF'(2) + 0), (3.118)

FE)=FE)+F(z+v)—F&) =F&) +F(z+v)— (F(z) +vF'(2) + O), (3.119)
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leads to

_ ikr /0242
z avezk v2+€25(z)

I =— ——F(z —v)dw. 3.120
e = LE (3.120)
and
B—=z Ueik«/vz—l—ezS(z)
It = (3.121)

————F(z +v)dv.
0o U2+ erS(z) ( )
Combining the results from eq.(B.106)-eq.(B.120) leads to an asymptotic ex-

pansion for I; of the form eq.(3.114), where the linear operators Li; and Ljs are given

by:

S(z)
2

and

+ e*F(0)ay — e* A (1) 5. (3.123)
3.2.3 EXPANSION OF J(z,¢, F)

The next integral to be expanded is

ﬁ ; 2 2
J(z,6, F) = | e*VEOHESE pg)qae. (3.124)

07

We expect J(z,¢€, F) to be of the form [58]

z 1
J(z,6, F) = / RO R () de+ / eFE2 R (€)de+ €2 log T, +e2 T+ HOT. (3.125)
0 z
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Let

J=J +J%
where
J = /Z 6ik\/(z—§)2+525(z)F(§)d€
and

y / 212
J-l-:/ ezk (z—&)%+€ S(Z)F(g)dé-

Changing variables v =2z —{in J-,v=§ — z in J* and

F(&) = F(2) + F(z —v) = F(2),

F) =F(2)+ F(z+v)— F(2),

leads to

= [ eSO (s g)du

0

and

B—z
J-I— — ezk«/02+e25(z)F(z + ’U)d’U.

0

Using the results from eq.(B.121)-eq.(B.134), for J we obtain

: 42(1 — 1-z zku_]_ z iku __
J:e25(z)lk<logu—loge2+/ ‘ du+/ ‘
0 0

2 S(z)

u

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)

(3.132)

1 z
+ [ MEIP(Edg+ [ MR - IR (1), - IOy
z 0

+ e2iki(2) (/01_2 ei:” (F(z +v) — F(z))dv + /OZ ei:U (F(z —v) — F(z))dv)
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Comparing the expression for J with eq.(3.125) implies that for the operators J; and

Jo we get

NE(z) = —ik )

F(z)

3.2.4 EXPANSION OF L(z,¢, F)

Recall that

B ; L ik
= [ () Fleade = [ e (G- ) Feade

We are going to seek an asymptotic expansion for I5(z, €, F') of the form:

1 1
[2(2, €, F) = 6_2L20 + 6—2(62 lOg €2L21 + €2L22 + 0(64 log 62)).

First, consider the expression:

45

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)



which will allow us to rewrite the integral

B pikR 1
/ 7 (Zk - E) g(&, e)d¢. (3.142)

The kernel of the integral above is a Helmholtz kernel as well as the kernels of the

integrals

w7 N~ A B
I :/ e Z T _Hﬁ F(&, e)d€. (3.143)
«a j=1

provided A; and B; meet the following criteria(eq.(B.137)-eq.(B.167)):

B, = —kA, for n =1,

k(1 —2j+mn)

‘ d for n>1.
(j —n)(1+2j)

Aj = Bjn
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Forn=1and Ay =1/2, B = —k/2 and

2 R R2
B ik R i
- 262;(2) / (% ((f —z) R ) ZkelkR) (B=8(E —a)F(&§)dS
1 B 6ikR o ~
- 2€2S(Z)</a (€= 2) 7 ge (B = O = ) F(©))de

+ik /a ’ GRR(B —£)(€ — a)F(g)dg) = 52503 (11 (z ‘2—?) VikJi(z, F)).

(3.144)
On the other hand,

7 ar( 1 i Y P T
[2— 3 [ ﬁ_'_@ F(g,E)dg——E . (& ﬁ_ﬁ F(g,E)dg, (3145)
and thus
21

I, = =1 3.146
2= (3.146)

Using the results from eq.(B.171)-eq.(B.179), and combining the results for

for I (z, €, %—?) and Ji(z, F'), we get
F .
L (z, €, 8_) +ikJy(z, F) = —22(1 — 2)F(2) + ¢ log 2L,
23
+ €2(Ly 4+ 26%(B12 + o (1 — 2))F(2) — e*0=2) 3, F (1)
— e**q, F(0)) + ik(? log €J, + €2.J,) + HOT.  (3.147)

Finally, for the linear operators Ly, Ji, Ly and Js,

_ 5(22) <%z(1 — 2DE(:) + (1 - 2)F () (3.148)

47



and

d _ .
Ly +ikJy = Ly <Ez(1 — z)F(z)) +ikJo(2(1 — 2)F(2))
— =D P18 — e*F(0)ay + 2(Biz + ar (1 — 2))F(2). (3.149)
The results for the scattered field obtained from evaluation of eq.(3.62) can

be compared to the explicit results for a simple geometry. For the case of prolate

spheroid the far field explicit results given in [62], [63] and [64] are:

E; = e;'j: ni::l (alnw + Bl"w) Ccos ¢, (3.150)
Ej = —e]j: g:l (BlnL;g;ose) + alan(if; 9)) sin ¢, (3.151)

where P!(cos#) are Legendre functions,
o = -2 (1- & (221052, (3.152)
an = 3¢ (5 - P) , (3.153)
a1y = ¢k, (3.154)
By = %c?’gl; (1 — L (22 = 10Q/,11; = 403,151)) , (3.155)
iy = — 5 (g%; . 5%) , (3.156)
Biz = —62750”21;. (3.157)
(3.158)

Here
1
c= §kd’
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the interfocal distance d is

d=V1—4¢e2

and P! and Q} are Legendre functions of the first and second kind evaluated at

& =1/d.

For small k, by considering only the terms involving ¢3, we get

23P11

o = —=C —,
)
_ 23P1’1
= —C — .
R

Also, since

P} (cosf) = —sinb,

J B
%Pl (cos @) = — cosb,

the ¢ component scattered field in the axial direction becomes

ikR

kR

E, (a1 + Byq cos 0) sin ¢. (3.159)

On the other hand, in terms of the slender body approximation, the prolate spheroid

geometry is defined by:

Wherer:emandogzgl.
For this particular geometry, the dipole densities g and h are
gle,z) = (z —a) (B — Z){2i62k26ikz — 4i(e* log ) ke + 0(64)},
he,z) = 22 k%2(1 — 2)e™ + 4(e* log €)k*2(1 — 2)e™ + O(e*), (3.160)
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and o and [ are given by:

a=e+e+285+0(f),

B=1—e—e" -2+ 0(e).

In the far field, i.e. R= (124 (z — €)%z — R = (1% + 22)2 — 00 and

T2 422 24 22

1/2
(r2 +(z— 5)2)1/2 _ (7,2 + 22— 226+ 52)1/2 _ (7,2 + 22)1/2 (1 _ 22€ % )

22

:(72_'_22)1/2 (1_712j_£ —|—HOT) :R(I—st—l—HOT),

where R = (r? + 22)2 and thus we can expand e in the following way

6ik(r2+(z—§)2)1/2 _ ¢ikR —ikzE/R

(3.161)

By substituting eq.(3.161) into the expression for the scattered field Eg (eq.(3.62)),
in the far field we get

eikR Jé] ' - 22
Es = B ik </a e~ kB (¢ e)dg) {ﬁ oS @i, + sin Piy — T2 08 qbir} +
B
—ikz¢/R 1 . i ] . i .
+ (/a e h(&, e)dﬁ) [R Cos P, + 7 Sin Py T 008 ¢1r} } (3.162)

Suppose we define p and m through

CA
p— ik / R € e)de

B
m = / e~ mE/Bp (¢ €)de (3.163)
Then the ¢ component of the scattered field is

6ikR

Ey ~ 7 (p +mcosf)sin ¢

(3.164)
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For small a

1—€2 1—€2
/ (1 — x)e*dx ~ / z(1 —2)(1+ azx)dz

T I I (3.165)

In our case a = ik(1 — cos#), where cos @ = z/R and ir = (zix + yiy + 2i,)/R. In the
axial direction # = 7w and combining eq.(3.163) with eq.(3.160) and eq.(3.165) and

taking the leading order results in :

k‘3 2

p~ —TE (3.166)
k‘3 2

m ~ Te (3.167)

Fig.3.2 shows the radial dependence for the scattered field from prolate spheroid for
small k£ in the far field from both the slender body calculation and [63], [62]. The
comparison yields exact agreement between the two models.

x10° x10°

151 Slender body | | 15 Stevenson etal. ||

\/ \J V| \/ \/ Va

100 120 140 160 180 200 100 120 140 160 180 200

Figure 3.2: Electric field scattered from a prolate spheroid
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3.2.5 CALCULATION OF h AND g: AXIAL CASE
By substitution of the asymptotic expansions for Iy(z, €, F'), I1(z, €, F'), I5(z, ¢, F') and

J(z,€, F') into the BC (eq.(3.95) and eq.(3.96)) we get

, 2 d
ikz _ < 7| 2 o 2
2e"™* = 73 dz[ log € h+G1h} +22[ log € g+G1g]
2i g v AT 2(1—2). 9, .
_ k:2{ S (2 )dz}[ S02) g+ loge L219+L22g] (3.168)
and
, d
2 ikz __ _ :
e2S'(z)e == [Qh €2 log € <dzL1 +sz1)h ( Ly —I—sz2> ]
: 2ie dyrlz(l1—z2).
_ 2/ _ 2 - / . s
zeS(z)[ logeg—l—Glg]—i- 12 {S() 25(z )dz}[z S02) 17
+1og €L + Laa (3.169)
where
9(276) = (Z—@)(B—Z)Q(Z,E), (3170>
le.
g(z,€) = (z — a)(B — 2)(§o(2)€® + Gu(2)e* log € + Go(2)e* + ....) (3.171)
and
h(z,€) = ho(2)€* + hi(2)e* log € + hy(2)e* + ... (3.172)
In particular, by collecting terms of O(1) from eq.(3.168) we get
: 4iz2(1 —z) _
2 thz _ 77 1
s () (3173
and so the expression for go(z) yields
_ ik’ 5(2)



By collecting terms of O(e?) from eq.(3.169) we get

and the expression for hy(z) is

By collecting terms of O(e?log €?) from eq.(3.168) we get

2 d 21' 2(1—2)_ 5
0=———ho—2igo — ( ( )91+L2190),

ik?dz S(z)
d
0= —d—ho+k29 + 2 (S( ) 2 g1 + 2L21 o,
and therefore
Z(l - Z) ~ Zk4 ikz k ! ikz ZkA ikz
1 [ik* ik d? ik? ik
5(76 SE+ g >)
and
Z(l—Z)~ _ Zk2 ikz QI
2 S(z) g1 = 4 §7(2)
Hence
~ ik2 ikz QN S(Z)
=g S (Z)z(l —

By collecting terms of O(e*log €?) from eq.(3.169) we get

21

0= <2h1—<iL1+ikJ1)ho>+iS( )go—l—k2{5’( )+25(z)i}[ 21 —2)

k2 dz

23

(3.175)

(3.176)

(3.177)

(3.178)

(3.179)

(3.180)

(3.181)

91+L2190]

(3.182)



or

1/d _ K, 1., dYyrz(1—2)._ _
h §ng+mLym—ZS&Mw7ﬁS@Hﬂﬂd@}[S@ g1+ Lango|,
(3.183)
leading to
1d Sz)d [k T P YRR | ihz
ME=SE e d: <7S<Z>€ TSR - SRS
1 ! d Zk2 ikz QN 1 Zk4 ikz Zk2 d2 ikz
IO B[ — 3 (T + T eS|
(3.184)
and
kS d d ikz K 2 ikz ik! / ikz
hl = g@S(Z)%S(Z)e + ZS (2)6 - ?S (Z)S(Z>e
1 / d k3 ikz Qf
—i{su)+25@kg}zf S'(2). (3.185)
Finally, for hy, we get
k3 :
hy = —~€;5(z)SW(z)emz. (3.186)

For the particular choice of geometry (fig.3.1, eq.(3.1)), S'(z) = S"(z) = 0

fora<z<pg

hy = 0. (3.187)
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So far, we have obtained the solution to the scattering problem in the axial
dynamic case in terms of the electric field. However, for the field emission calculations,
we need an analytic expression for the potential due to the total electric field (incident
and scattered).

We know that

B=VxA, (3.188)

and therefore

0 0A
VXE——E(VXA)—VX (—E) , (3.189)

and therefore E can be chosen to be

0A
E=—— i 1
BT \A% (3.190)
On the other hand
1 OE
V x EVXA—ga, (3191)
and hence
0 0A
and finally
A oV
. J— 2 e - J— -
V(V-A)-V°A s +V( el ) (3.193)

A has to satisfy the wave equation, a condition which can be fulfilled by choosing

ov 1oV

which is known as the Lorentz-Lorenz gauge.
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Since we assume that the incident field is time-harmonic, the potential has

to be time-harmonic as well, i.e.

w 1k
A==V =— 1
\Y 2 . V, (3.195)
and thus
V. = _%v A, (3.196)
vV, = —%v A, (3.197)
where
ik
A, = —ikp—, 3.198
tkp— (3.198)
6ikR 1
A, = ik(ir X m) I (1 — z'kR) : (3.199)
Employing the following vector identities
V:-(aA)=aV-A+ (Va)-A (3.200)
and
V- (AxB)=—-A(VxB)+(VxA)-B (3.201)
leads to
o ik 1 ; k i
V- Ao = —ikze® (ﬁ — ﬁ) = kr cos OB (ﬁ + ﬁ) (3.202)

and similarly, for V - A,

1
1— —
(=

eikR

R

eikR

VA, =ik
! R

) V-(ip xm)—+ik <v

o6

1— —
(-

1

)) (i xm), (3.203)



which leads to

CikR GFR 9 GikR
K
R R? ik R?

V- AL, =1k (zk ) ir - (ir X m). (3.204)
But ig - (ir X m) = 0, and thus
VA, =0. (3.205)

Hence

6 .
V=cr cos@/ ek h (% + %) g(&, €)dg. (3.206)

3.3 DYNAMIC CASE: TRANSVERSE INCIDENCE

Choose the incident field to be
Eine = e*resfi, (3.207)

and the scattered field to be

s 0 in 6 0
Es = /a <—00ng (2% fr 4+ (2 = €)* fo)ir + %fﬁe + %7“(2 —&)(fa - 2f1)iZ)

B
x G(0,¢,€)dE + / % (—(z = &) cosbi, + (z — &) sinBig + rcosbi,) H(O, &, €)dE.
(3.208)
Since the tangential components of the electric field on the surface of the body vanish,

the BC become

n x Bype — —n x B, (3.209)
and
1 !
n— ;z‘ _ — (ir -5 SS(Z) iz> — ai, + biy, (3.210)
€2 z
1 + 4 S(z) <Z)



gihreosfy (3.211)

nx E;,c = (air + biz) % (eikrcose(iz) - g4 5

and

n x Eg = (ai, + bi,) X

ﬁ |
(S = i+ T o+ e~ O~ 200 )

B
x G(0,¢,€)d¢ +/ % (—(z — &) cosbi, + (2 — &) sinbig + rcosbi,) H(0,E,€)dE =

ﬁ .
_ / a (Slgefziz - ‘%"r(z—&)(fz —2f1)ie) G(6, ¢, €)de+

B
+ a%((z—g) sin 6i, — rcosfig) H(0, &, €)dé+

/8 .
0 (‘00;36(27“21“1 (5 € )i — Slfffﬂf) G(0.€ e+
b A . e
+ / bE (—(z = &) cosbig — (2 — &) sinbi,) H(O, &, €)dE. (3.212)
By linear independence,
B ; B ;
0= /a > S];nea(e, ¢, e)dé + /a L S];“H(z — ) H(0€, €)de (3.213)

and

8 B
6ikrcos€ = / a <—C§397(2 - 5)(./:2 - 2f1)) G(ev 5, E)df + / CL% (—’l“ CO8S 9)

cos 8

B
x H(0,¢,€)dE —i—/a b (— 7 (2r°f1 + (2 — 5)2f2)) G(0,¢,€)dE

B8
+/ b% (—(z=&)cosO) H(O, &, €)dE, (3.214)
which can be rewritten as

B 16
0= / L,G(0.€, )t + / fi(z — E)H(0,€, )de, (3.215)
5%



and

B
glkreost — _ 0089/ —5 (r(z =& (fa = 2f1) + b(2r? fi + (2 = £)*f2)) G(6, &, €)de

—cos@/j%(r+b(z—§))H(9,§,e)d§. (3.216)

ike\/S cos 0

Assume H(,&,¢) = €

eiks\/§ cos 6

h(§,€) and G(0,&,€) = “—5—g(&, €). Hence

8 8
0= / fogl€, e)de + / fi(z — Eh(E, e (3.217)
and
B8
= / — (r(z =& (f2a—2f1) +b(2r? fr + (2 — )*f2)) 9 (€, €)dE
B
| 3ot - € e e (3.218)

Using the fact that r = €4/.5(%2), the last equation can be rewritten as

p € / z €
1= (/ST - 0~ 20) - 5Tk s + (- ) S
A € / z 1
v [/ - o - e i (3.219)

and since 7 = €4/5(z), it becomes

’ €
2VEG = [ S — € -2 - S ()RS + (- ) LD

7 / fi
+/ (25(2) = S (2)(z — f))ﬁh(f, €)d¢ = —Ey — Fs. (3.220)

But

~ B _ B
B = _62% { diz /a em%h(&g)dg ik /a eZth(f,e)df} (3.221)
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and

! B ,ikR ; B ,ikR
=20 [ (1 st is o) [ ot

k R2 kR N
25(z) d [P eikR i
_ ]5 >%/ = (Hﬁ) (€, €)de. (3.222)

Therefore the second BC can be rewritten as

; B _ B
—2ey/S(z) = % {dilz/ eikR%h(g,e)dg —z'k/ eith(f,e)df}

e «

2o B ikR ; P gikR
+ 0 [ (14 g ) st —ies' ) [ ate. e

k R2 kR o
) 2622@)% /j 6;: (1 n é) g(€, e)de. (3.223)
Recall that the BC are
o/ gteqac+ / B onteoa (3.224)
and
“VsE = | @8I~ O~ 2) ~ S (S + - 2 ) e
-/ (25() — 5 (9 — ) e, . (3.225)

Multiplying eq.(3.224) by 4S5(z) +€25"(2) and eq.(3.225) by —€25’(z) and adding the

resultant equations yields:

8 6
265/(2)/5(2) = 45(2) / B y(e e+ as(z) / Do ome e

B B
—|-62S'2(z)/ %g(f,e)d§+625'(2)/ (25(2)(2 — &) (fo—2f1)

B8
g(éf)d§+e25'(z) / 25(2)%h

«

~ S ()RESE) i+ (2~ ) (& ©)de.

(3.226)
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Division by 25(z) yields:

S'Gz) (" " h
e / % g6, e +2 / Sz = (e e

e5”(2) [7 fo 25 (z) [P
+ 250:) /a R I )de + /a<25(z)(z—§)(f2_2fl)

25(z)

B8
- SEEESE + 2 - 02) LiTde + a5 [ fnie
and
S [Tk ’ L OR
e = / Rg<s,e>ds+2 / fi 5 (€, )
29/(2 aR
But
1 de*® 1 ik OR _ yp( 1 i \OR _
i2dz R zk2ekR<R R2> 2 ek3<ﬁ k:2R2) fl
and
f2 .eikR 1€2kR i
= v Ut
and

8_R
0z

7 (0 ) = i )+ (- 5 )

= k- (i_ Y- —Z>— =k (f2 —2f1)§

0z R?
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(3.227)

(3.228)

(3.229)

(3.230)

(3.231)



Thus the BC become

—26\/5(z2) = % {d% /B gn 2 ;z g)h(ﬁ, €)d¢ — ik /5 e h(g, e)di}

e ] e

262S(2) d [P eE i
P 2R e (14 ) st (3232

and

S/ 2 d B sz . B _ikR
ek = | et [ ot

9 [P gikR : 625(2) d B ¢ikR
_E/a R <1+ﬁ> (& eds+— %/a R (1 k:R) 9(& €)dt.

(3.233)

By substituting Iy, I, I and J with their asymptotic expansions, for the BC we

obtain
26/ S 2h — €*1 A v ikn)h— (L, + k)
o - Ao s (- (et 1))
i€25'(2) | — log g + Gg| + - {S(z)—l—QS(z)dz}
12(1-2)
X |:€2 S( ) g+loge L219+L229] (3234)
and
S'(z)  2d 2 : 2
—c S(z)_i/ﬁdz[ log e h+G1h}+2z[ logeg—l—Glg]
21 oy, ATl 2(1—2)_ 9 - N
_k;2{ S()dz}[ ) g+1ogeL21g+L22g}, (3.235)
where
g(z,€) = (2 — a)(B = 2)(o(2)€® + §1(2)€’ log € + Ga(2)€” + ....), (3.236)
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and

h(z,€) = ho(2)e + hi(2)e* log € + hy(2)€ + ... (3.237)
3.3.1 CALCULATION OF h AND ¢g: TRANSVERSE CASE
Collecting O(e) from eq.(3.234) leads to
43
—24/8(z) = ﬁho(z) (3.238)
and
ik?
ho(z) = 5 S(z) (3.239)
Collecting O(e) from eq.(3.235),
S'(z) 2 d 4 2(1—2).
— = ——G1h 24
S T se ) (3210
and therefore
_ ik? \/S(2)5'(2)
go(z) = T2 (3.241)
Collecting O(e?log €?) from eq.(3.234)
2i d :
0= ﬁ |:2h1 — (@Ll + Zk’Jl)ho], (3242)
1/d , ik? 1 d :
hl = 5 (%Ll + Zk’J1>h0 = T (@Ll + ’lk’Jl) \V S(Z) (3243)
Using the fact that L F = 22 F and J;F = - 253
. ik? s d ’ 9 3/2\ _ ik? (1d / 2 3/2
h = (ZSEEE)) +1S(2)72) = = (5 (VES) + K5(2)2)
= — ) 244
— (3 e THSG) ) (3.244)
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Collecting O(e3log €?) from eq.(3.235),

S(Z) g1 + L2190] ) (3245>

and

| 210

where the operator Lo is defined as

Lo1go = —E [Lg(i\/gS') + ik:JQ(\/gS’) +2(B1z + ay (1 — Z))ivS(z)S’(z)] .
(3.247)

The operator GG; has the form

Gihi(2) = (V(2) = D)ha(2) +/0 7wzt v) — (z)

(Y
[z
0

dv

dv,

; (3.218)
and 50

Ll (2)] = L[V = D] + o (n0) = ha(2)) = S (1) = ha(2)

= L) = ()] + o) (S - ), (3.219)

where

L) - ome)] = & [( | e / s

+ log %)hl(z)l _ <e“fzz— 1 e“f(ll‘j)z— = C%(log %)) ha(2)+

+ ( /0 eikuu— Lt /0 -2 emuu— L+ 1og %) B (o). (3.250)
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d%(log 4z§(;) Z>> = 4z(51(z—> 2 (4(1 _52)_ - 42(15_22)5/» (3:251)
and for our choice of geometry (eq.(3.1)), §'(z) = §"(z) = 0 for & < z < 8
gole, 2) = gile, z) =0, (3.252)
ho(e, 2) = ? S(2), (3.253)
hi(e, 2) = %S(z)?’/?. (3.254)

3.4 CALCULATION OF a AND g3

So far, we have assumed that the charge distribution f(z, €) in the static case and the
electric and magnetic dipoles of unknown densities g(z,€) and h(z,€) in the dynamic
case, are situated between «(e) and [(e). We have also assumed the analyticity of

S(z) and particularly around the edges

— . 5™ (0)
S(z) = nEZI CnZ with ¢, = T (3.255)
Ry n : _ (=nmst()
S(z) = nEZI dp(1—2) with d, = o . (3.256)

The integrals above have a uniform asymptotic expansion if the expressions

(SIS

u=[(z—a(e)’ +5(z)]?, (3.257)
w=[(B(e) — 2)? + 25(2)]? . (3.258)

have a uniform expansions of the form

- )
w = Z 2wy (2), (3.260)

> Fu(2), (3.259)
k=0
k=0
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where

k 1
up(z) = %% [( —afe))? + 625(2)} 2 - (3.261)
and
1 d* 9 9 1
wi(z) = Tk [(B(e) — 2)> + €5(2)] 2 Y (3.262)

It is clear, however, that the u;’s are going to be singular except for certain values
of a; and wy’s are going to be singular except for certain values of ;. By choosing
appropriate «; and [3;, we can remove the singularities in eq.(3.261) and eq.(3.262),
respectively, and thus make them regular [1]. This will allow us to determine «(e)
and [(€) in such a way, that the asymptotic expansions for the integrals Iy, I;, I and

J are uniform. To see this, let’s look at the expansion for w.

For k=0
Uy = 2. (3.263)
For k=1
—2(z—a)& + 5
w2z @uatSE o SE) (3.264)
2[(z —afe))* + 5(2)]7 | 2z
For k =2
_1@P-GoagE| (26— +56)
275 u 2 4u?
e=0 e=0
1 a2z (220 +S(2)%) 1 a? 1 S(2)\2
—5( PR 123 )—§<—2a2+7—;(—0“” > ) )
(3.265)

which can be rewritten as

Uy = —ap + % (a% - (al - 52(5))2) . (3.266)
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Recall that

S(2) = c1z + 2% + 32> + ..., (3.267)
which yields
S
(Zz) =) 4 oz + 322 + ... and so liII(l) @ = c. (3.268)
zZ— z

Obviously ug and u; are regular, however u, has a singular part, which vanishes if we

make the choice

o? — (a1 - 52@)2 =0, (3.269)

which can be written as

2
a? — (al - %) —0, (3.270)
or
C1 C1
(90 — _) _ 271
. ( -3 =0, (3.271)
and therefore
&
ay = Zl’ (3.272)

For k=3

= [35—a§—a — (o) (@)’ - (- a)gk du

6 u u? de?

C2(-2(2— a) + 5(2))(2 (%) - 2(2 — a)29) L (20— )% +5(2))° du
4u3 4ut de?

1| 6aiap —6za 3(04% — 2z0)(—2z00 + 5(2))  (of = zap)(—2z0n + S(2))

6 z 223 23
_ 3
gz J;S(Z)) ] (3.273)
8z
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so that

1|6ajay —6zas _(af —2za0)(—2zaq + S(2))  _(—2za; + S(2))?
us = = — 3 + 3
6 z 223 8z2°
_ i — 203 (o} — 2za9)(—2za; + S(2)) N (—2zaq + S(z))?” (3.274)
z 423 162°

which can be rewritten as

3
Uz = —Qi3 + ke — L(Oé% — 220&2) <—061 + S(Z)) + % <_061 + S(Z)) .

z 222 2z 2z

(3.275)

The singularity in uz can be removed by choosing

102 2
o0y — 55% —2aq0a0 = 0, (3.276)
leading to
1

Qg = —1—60102, (3277)

and so on. By apply similar arguments about the expansion coefficients of w, we get

a=c (%)2 — C109 (%)4 + ci(ercs + 2¢3) (%)6 +O(e%),

B=1-d (2)2 +dids (§>4 — dy(duds +243) (5

)+ o),

which for our particular choice of geometry yields

2 S0 2
01251(0)22 Cy — 12():_6_2 03:0

2 Sy (1 2
dlz_Sé(l):E d2: 22( ) :_6_2 d3:0,
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and so

a=¢e+O(,
B=1—e+O(d).

(3.278)
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CHAPTER IV

SCATTERING AND RADIATIVE PROPERTIES

In this chapter, we investigate the scattering and radiative properties of nanofibers.
In Chapter III we obtained results for the scattered electric field in both the axial
and the transverse cases. As pointed out before, the results from the axial case will
be used only for estimation of the field potential in the field emission calculation.
Here we investigate the transverse incidence results and extend them for the case
when the fiber is at an arbitrary distance ¢ from the origin along the z-axis. These
results are used to obtain the current distribution in the fiber and the corresponding
radiation pattern. Finally, we investigate the antenna array properties of N fibers
aligned along the z-axis.

We start with a fiber situated between ¢ and ¢ 4+ 1 on the z-axis (fig.4.1).

Just as before, the incident field is
Einc — eikr cos Giz (41>

The resultant scattered electric field Eg as a linear superposition of fields due to
electric and magnetic dipoles along the z-axis with unknown densities g and h in

between «a. and f3., where

Qe =+ 162 + age’ + .., (4.2)
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x

Figure 4.1: Fiber at an arbitrary distance ¢ from the origin

ﬁc =c+1-— 6162 — 5264 + .. (43)

The scattered electric field Eg is:

Be in
b /ac (—C;,Sge(%zfl 4 (2= )2 )i + %fzig + C(;z—sfr(z —&)(fe — 2f1>iz)

Be
x G(0,¢,€)dE + % (—(z — &) cosbip + (2 — &) sinig + rcos bi,) H(, &, €)dE.

(4.4)

The tangential components of the electric field on the surface of the body ( r =

€/ S(z) ) vanish, i.e.

n x Ejne = —n x Eq, (4.5)
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and so the BC are

% fysinf Be £ ging
O:/ac R G(0.¢ e + / C honli —omweade,  (@0)

and

| e 0
6zerOS€ — / a (_COS T(Z — 5)(]“2 — 2f1)) G(e,f, €>d£

R3
B 9
—/ac aJ];rcoseH(Hg )d§ — / b (2r2f1 + (2 — €)% f2)G(0, €, €)dE
+/ac b% (—(z — &) cos ) H(0, €, €)de, (4.7)

which by assuming that H(6,&,€) = %h(&,e) and G(6,&,¢) = eikécfgoseg(g,e)

and after manipulation can be rewritten as
Be Be
0= [ Rocote+ [ L - onie g (1.

and

2 o ! 2 2 g
—vS() = —/ (25:(2) (= = €)(f2 = 2f1) = S5(2)(2€°52(2) fi + (2 = €)72)) =3

Be
- [ @8i2) - Sif)z - ) me e, (49)

1.e.

—9e\/5(2) = QZ{i /ﬁ e, ya i / Beith(f,e)df}

k2 | dz
5o gikR , Be _ikR
5 [ (1+—) o€ e —ieS' () [ praté g
262S(z) d  [Pe ehF U
e @/ac i <1+ﬁ) g(&,€)d¢ (4.10)
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and

S/(Z) 2 d Be sz . Be eikR ) Be eikR i
2 - 14
5G] ), R GIET Z/ AR k/a 7 (1 15)

Q¢

2 d [Pe kR ;
<oleds + 5L [T (14 st o (a1)

—€

which after substitution of the asymptotic expansions for I.o(z, €, F'), I.1(z, €, F),

Io(z,¢, F) and J.(z, €, F') become

S'(z) 2 d 5 , 5
—€ 56) = @%[_ log e h+Gclh} +22[— loge® g+ Gag
2i 2g dYrl(z—=¢)(c+1—2)._ 0, - _
- k:2{ S'(z )dz} [ 55(2) g+ 1og € Lea1g + Leaag
(4.12)
and
~2¢\/5(2) = [Qh log ¢ (j ot zk:Jl)h 2(%@2 + 2'ch2> h]
2i€ d
a2 _ 2 /
i€ S2(z)[ log e g+G01g] g%y {S (2) +25(= )dz}
l(z=c)(c+1—2)._ 9 - N
X |:€—2 S(Z) g + 10g € L021g + L022g:| , (413)
where
_ ~ 3, ~ 5 2 | ~ 5
g(z,€) = (2 — a.)(B. — 2) (go(z)e + g1(2)e’log e + go(2)€” + ) (4.14)
and
h(z,€) = ho(2)e + h1(2)€’ log € + ha(2)e® + ... (4.15)
The linear operators G, V.(2), Leo and Legs are given by
c+1—=z2
G F = (Vi +/ Pl tv) = F() it g,
0
+ / Fz= ”) F(2) o, (4.16)
0
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and

(Z o C)(C 4 1— Z) /c+1—z ez’ku -1 /z—c eiku -1
= d d 1
Ve(2) log< 1502) + i —du+ i —du+1,

(4.17)

2

Leo = —% (%(z (et 1—2))F(2) + Kz —e)(c+1— z))ﬁ’(z)), (4.18)

and

1 d ,
Loy = —m (Lg <%(z —c)(c+1—- z)F(z)) +ikJy(z —c)(c+1—2)F(2))

— MDA R (e +1)8) — eFEIRP D)y + 2(By(2 — ¢) + an(c+ 1 — Z))F(Z)> -

(4.19)
By collecting O(¢) and O(€® log €?) from eq.(4.12) and eq.(4.13), we get

e

ho(2) 5 S(z),

0(2) _E \/S(2)5(2)
Jore) = (z—¢c)(c+1—2)

hy = %(\@25 "+ f/g S (2)2)),
(R T
For our choice of geometry, i.e.
r? =2e(z —c) — (z — ¢)* = €5.(2) forc<z<c+e
r? = é forc+e<z<c+1l-—ce¢

P=20z-c)l—€)—(z—c)+2—1=¢€5(2) forc+l—e<z<c+1
(4.21)
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between the integration limits a,. and 3., go = g1 = 0 and

.k2 .k4
h(z,€) = ho(2)e + hi(2)e* log € = %e + %63 loge* + O(€®). (4.22)

Scattering and antenna properties are closely related: An incident electric
field on the surface of a conducting fiber induces surface current, which radiates and
generates the scattered field. In the case of a fiber acting as an antenna, the incident
field is produced by the antenna feed. In the case of a fiber acting as a scatterer,
the induced current is simply an Eddy current. Here we are going to assume that
the fiber is a scatterer and that the induced current distribution is due to incident
transverse plane wave (eq.(4.1)).

Recall that the magnetic vector potential due to a single magnetic dipole at

the origin is A,, = ik(ir X m) EZ;;R (1 — -%) and we choose m to be m = (0, 1,0), so

for a magnetic dipole at a distance £ from the origin

. ik +yly + (2 — i, . x, z-¢,
IR X1 = yR le:EIZ—TIX
=L cos 0i, — - 5(cos i, — sin fip). (4.23)

R
Therefore the z component of the magnetic vector potential A due to magnetic dipoles

distributed with density H(z,¢,0) along the z-axis is given by

By ikR 1
A. = rcosd / (m _ —) H(E, €, 0)de, (4.24)

R R
where R = +/(z — §)? +r2.

On the surface of the fiber, between a. and (., A, becomes

tke cos 6 e eikR : 1
A, =ee IE ik — I h(&, €)dg, (4.25)

C
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where R = /(2 — £)2 + €2S(2).
Furthermore, for wavelengths comparable to the size of the nanofiber, k ~ 1

and e*<cs? ~ O(1). Therefore

Be i
A, ~e /a QJ;R (m - %) h(E, €)de. (4.26)

On the other hand, for a thin center-fed antenna aligned along the z-axis, the current
can be assumed to be 6 independent and only on the surface and the magnetic vector
potential is :

Azzﬁ e+l ,—ikR
AT /. R

J(&)dE. (4.27)

In the limit € — 0, i.e in the case of a very thin antenna, a. — ¢ and 5. — c+ 1. This
corresponds to the case of a regular cylinder and allows us to compare the RHS of
eq.(4.27) to the known magnetic vector potential from eq.(4.26). Such a comparison
yields a Fredholm integral equation of the first type with the standard Helmholtz
kernel.

We are going to solve for the unknown current density distribution J by
using the Method of Moments, i.e. discretizing the length of the antenna and solving
numerically. For a given current density distribution, the radiation pattern of a single

fiber due to the induced currents is given by:
c+1 y
| f.(0)] = sin 6 / T (2)e*= sy (4.28)

Once we have the current density distribution J of a single fiber, we can

align an arbitrary number of them (see fig.4.2) and investigate the array properties.
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Figure 4.2: N cylinder problem

The total field is a linear superposition of the fields of each of them. If the current
distribution is the same in each fiber (which is the case in antenna arrays), the total
field is the field of a single fiber multiplied by an array factor, which depends on
the number of array elements, the current phase difference between them, as well
as their spatial separation. Since the incident electric field is a transverse plane
wave, the induced current in all the fibers have the same current distribution and
the same phase. Such arrays are called uniform broadside arrays. In the case of 2NV
fibers aligned symmetrically with respect to the origin, separated by a distance ¢ in

between, the array factor for them is [65]:

N

Farray(0) = Y emkdeost, (4.29)

n=—N

where d = ¢ + 1 is the distance separating the centers of the fibers. Note that the
7



array factor from eq.(4.29) depends only on the number of elements and the separation

between them.
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CHAPTER V

RESULTS AND DISCUSSION

In this chapter we present the results obtained using the derivations in Chapters II,
IIT and IV. First, we investigate the theoretical field emission results in the static case
and compare them to the Fowler-Nordheim model, as well as with recent experimental
data [48] for field emission from Ni nanowires. Next, we investigate the theoretical
field emission results in the dynamic case. Finally, we investigate the results for
the current distributions in a fiber due to an incident transverse plane wave, and
compare them with the results with the numerical results obtained from the solution
of Hallen’s equation, compare the radiation patterns and extend the results for the

case of a uniform broadside array of 2N fibers.

5.1 FIELD EMISSION: STATIC CASE

In this section we demonstrate the results from the calculation for the FE current
density from Ni nanofibers in the static case and compare it to the Fowler-Nordheim
model as well as with recent experimental data [48].

For the the electrostatic energy of the external field, we derived and analytic
expression (eq.(3.22)), using the slender body approximation. Recall that this ap-

proximation is applicable for bodies with rotational symmetry along one of their axis
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(z-axis in our case) and a large aspect ratio (here we investigate the cases € = 0.1,
e = 0.01, e = 0.001 and € = 0.0001 ). We use the results from eq.(3.22) in conjunction
with the 1D WKB approximation (eq.(2.13)), the quantum wire DOS (eq.(2.16)) in
order to estimate the tunneling current density (eq.(2.14)) as described in Chapter II.
We also take into account the fact that the electron leaving the surface of the cathode
influences the shape of the potential barrier by introducing a mirror image term [61]

1

where d is the distance between the charge and the surface.
In the static case, we can compare our results to the Fowler-Nordheim model,

in which the current density is given by
J=aE% P, (5.2)

where E is the electric field strength, a = 1.56 x 107'°8%/¢, b = 6.83 x 10°¢*/?/4,
¢ = 5.15eV is the work function for Ni and $ = 1300 is the field enhancement factor
[48]. Figure 5.1 shows the current density J from Ni nanowires as a function of
applied electric field for the Fowler-Nordheim case with a, b and 3 provided by [48].

Recent experimental work [48] reports FE current densities in the range 3.0 x
107 - 1.0 x 1073A/em?, ie. 3.0 x 107° - 1.0 x 10A/m? with threshold electric field
strength 4V/um, i.e. 4x10°V/m. Comparison of our theoretical results to the Fowler-
Nordheim model and the experimental data leads to several important observation.
One of them is that both the Fowler-Nordheim and our theoretical model predict

tunneling (and resulting FE currents) at lower voltages, i.e 2.3-2.7 x 105V /m versus
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Figure 5.1: Current density: Fowler-Nordheim model

the experimentally determined threshold of 4 x 10V /m. There are several possible
factors that might cause that difference: the electrostatic interaction of the tunneling
electron with the surface charges of the fiber, the imperfect geometry of the fibers
in the experiment, the nonuniform applied electric field, etc. Another important
observation is that within the range of applied electric field intensities, our theoretical
model predicts FE current densities which are two orders of magnitude closer to the
experimental results than the Fowler-Nordheim model. Thus could be explained by
the fact that the Fowler-Nordheim model assumes 0°K and DOS for a bulk material.
Also, the Fowler-Nordheim model is derived for a flat surface and thus it is insensitive

to the geometry (radius and length) of the fiber.
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Figures 5.2, 5.3, 5.4 and 5.5 show the results for the current density J from Ni
nanowires as a function of applied static electric field as calculated by the proposed
model in Chapter II for the cases of € = 0.1, ¢ = 0.01, ¢ = 0.001 and ¢ = 0.0001,
respectively. Results show that as the fiber radius e decreases, so does the FE current

density.
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Figure 5.3: Current density: Static case, ¢ = 0.01
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5.2 FIELD EMISSION: DYNAMIC CASE

In this section we demonstrate the results from the field emission calculations for
the dynamic case. We use the results for the potential V' due to incident axial
dynamic electric field derived in Chapter III in conjunction to the numerical method
we developed in Chapter II for the calculation of the field emission. Analogously
to the static case, we introduce a mirror image term to the expression for the total
potential.

Figures 5.6, 5.7, 5.8 and 5.9 show the results for the current density J from
Ni nanowires as a function of applied dynamic electric field (k=3.3, A = 1.904um)
as calculated by the proposed model in Chapter II for the cases of e = 0.1, € = 0.01,
e = 0.001 and € = 0.0001, respectively.

Figures 5.10, 5.11, 5.12 and 5.13 show the results for the current density
J from Ni nanowires as a function of applied dynamic electric field (k=3.5, A =
1.795um) for the cases of € = 0.1, e = 0.01, € = 0.001 and € = 0.0001, respectively.

Figures 5.14, 5.15, 5.16 and 5.17 show the results for the current density
J from Ni nanowires as a function of applied dynamic electric field (k=3.7,A =
1.698uum) for the cases of € = 0.1, e = 0.01, € = 0.001 and € = 0.0001, respectively.

To our knowledge, there are no theoretical models or published experimental
results we can refer to for comparison to our calculated values. However, our model
predicts the following important results: Just like in the static case, as the system

radius € decreases, so does the FE current density for a given frequency. Also, for
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a fixed geometry (i.e. € and L), the FE current density increases as the frequency
of the incident electric field increases. Since we assumed realistic geometry for the
nanofiber, as well as realistic conditions, both the static an dynamic FE results from

our model could be experimentally validated.

86



52 T T T T T

5.15 A

51r A

5.05 A

a
T
|

4.95 i

»
©
T

|

Current Density [A/mz]

4.85F i
4.8 i

4.75F i

3.2 3.4 3.6 3.8 4 4.2 4.4
Electric Field [\VV/m] 6

Figure 5.6: Current density: Dynamic case (k=3.3, A = 1.904um), e = 0.1

x 10

4.05F i

IN
T
|

3.95 i

Current Density [A/mz]

3.9 i

3.2 3.4 3.6 3.8 4 4.2 4.4

Electric Field [VV/m] % 10°
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x 10~

Current Density [A/mz]

3.2 3.4 3.6 3.8 4 4.2 4.4

Electric Field [VV/m] x 10°

Figure 5.11: Current density: Dynamic case (k=3.5, A = 1.795um ), ¢ = 0.01
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Figure 5.17: Current density: Dynamic case (k=3.7, A = 1.698um), e = 0.0001

92



5.3 SCATTERING AND RADIATIVE PROPERTIES

Next we present the results from the scattering and radiative calculations. Recall that
in Chapter IV we obtained a method for calculation of the current distribution in the
fiber due to transverse incident electric field. Here we present the current distribution
results from our model for three different frequencies and three different fiber radii
and compare them with the delta gap antenna feed results from the Hallen’s equation
for the same frequencies and fiber geometries.

Figures 5.18, 5.19, 5.22, 5.23, 5.26, 5.27, 5.30, 5.31, 5.34, 5.35, 5.38, 5.39,
5.42, 5.43, 5.46, 5.47, 5.50, and 5.51 represent the results for the current distributions

kzj, and Hallen’s equation for a delta gap

due to transverse incident field Ej,. = €’
source for k = 27, k = 37 and k = 47 and antenna radii ¢ = 0.01, ¢ = 0.001 and
e = 0.0001.

Results show that currents induced by the transverse incident field and the
delta gap antenna feed are of similar magnitudes. Another important observation
is that away from the ends of the fiber, the current distribution is similar in both
cases. Close to the edges, however, our model displays oscillatory behavior. There
are several possible explanations for this phenomenon. One of them is that we use
an approximate kernel in the numerical evaluation scheme, which is known to cause
oscillations close to the ends of the antenna. This effect is discussed in detail in [66],

[67], [68], [69], and others. The oscillatory behavior could also be explained with the

fact that our model investigates the z-component of the induced Eddy current, which
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is not 'linear’ unlike the current from the delta gap feed Hallen’s case. In both cases
the calculated currents are sufficiently large to induce experimentally measurable
electromagnetic fields.

The data for the current distribution from our model as well as Hallen’s
equation allows us to obtain and compare the radiation patterns for both of the
cases. Figures 5.20, 5.21, 5.24, 5.25, 5.28, 5.29, 5.32, 5.33, 5.36, 5.37, 5.40, 5.41, 5.44,
5.45, 5.48, 5.49, 5.52 and 5.53 represent the element radiation patterns corresponding
to current distribution due to transverse incident field F;,. = €**i, and Hallen’s
equation for a delta gap source for k = 27w, k = 37 and k£ = 47 and antenna radii
e = 0.01, ¢ = 0.001 and ¢ = 0.0001 . Results show that the radiation patterns
due to currents induced by transverse incident electric field show very high degree of
similarity to the radiation patterns due to delta gap antenna feed, i.e. the properties

of the fiber as a scatterer and a radiator are very similar. In both cases the radiation

patters are typical for the one- and the half-wavelength antennas.
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Figure 5.20: Radiation pattern: E = e**i,, k = 2m, (A = 1um), e = 0.01
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Figure 5.21: Radiation pattern: Hallen’s, k = 27, (A = 1um), e = 0.01
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Figure 5.22: Current distribution: E = e¥*?i,, k = 27,(A = 1um), e = 0.001

x 10~

W A
T T

Current Density [A/m]
N

1) .
—-0.5 o

Antenna Length: nondimensional units

Figure 5.23: Current distribution: Hallen’s, k = 27,(A = 1um), e = 0.001
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Figure 5.24: Radiation pattern: E = e¥*®i,, k = 27, (A = 1um), € = 0.001
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Figure 5.25: Radiation pattern: Hallen’s, k = 2w, (A = 1um), e = 0.001
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Figure 5.28: Radiation pattern: E = e¥*®i,, k = 27, (A = 1um), e = 0.0001
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Figure 5.29: Radiation pattern: Hallen’s, k = 27, (A = 1um), e = 0.0001
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Figure 5.30: Current distribution: E = e¥*?i,, k = 37, (A = 0.67um), ¢ = 0.01
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Figure 5.31: Current distribution: Hallen’s, k = 3w, (A = 0.67um), e = 0.01
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Figure 5.32: Radiation pattern: E = e**i,, k = 3, (A = 0.67um), € = 0.01
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Figure 5.33: Radiation pattern: Hallen’s, k = 3w, (A = 0.67um), e = 0.01
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Figure 5.36: Radiation pattern: E = e¥**i,, k = 3, (A = 0.67um), € = 0.001

270

Figure 5.37: Radiation pattern: Hallen’s, k = 37, (A = 0.67um), e = 0.001
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Figure 5.38: Current distribution: E = e™**i,, k = 37, (A = 0.67um), € = 0.0001
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Figure 5.39: Current distribution: Hallen’s, k = 37, (A = 0.67um), € = 0.0001
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Figure 5.40: Radiation pattern: E = e¥**i,, k = 37, (A = 0.67um), ¢ = 0.0001
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Figure 5.41: Radiation pattern: Hallen’s, k = 37, (A = 0.67um), e = 0.0001
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Figure 5.42: Current distribution: E = e¥*?i,, k = 47, (A = 0.5um), ¢ = 0.01
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Figure 5.43: Current distribution: Hallen’s, & = 4w, (A = 0.5um), e = 0.01
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Figure 5.44: Radiation pattern: E = e¥*®i,, k = 47, (A = 0.5um), € = 0.01
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Figure 5.45: Radiation pattern: Hallen’s, k = 47, (A = 0.5um), e = 0.01
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Figure 5.48: Radiation pattern: E = e**i,, k = 4w, (A = 0.5um), e = 0.001
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Figure 5.49: Radiation pattern: Hallen’s, k = 4w, (A = 0.5um), e = 0.001
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Figure 5.51: Current distribution: Hallen’s, k = 47, (A = 0.5um), e = 0.0001
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Figure 5.52: Radiation pattern: E = e¥*®i,, k = 4m, (A = 0.5um), € = 0.0001
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Figure 5.53: Radiation pattern: Hallen’s, k = 47, (A = 0.5um), e = 0.0001
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Figure 5.54: Array factor fuqy(6) for 2, 4, 6 and 8 elements, separated by ¢ = 0.01,
(0.01um )

Our next step is to investigate the array factor for of a uniform broadside
array as a function of interelement separation and different number of array elements.
Figures 5.54, 5.55 and 5.56 show the array factors for the separations ¢ = 0.01,
(0.01um), ¢ = 0.1, (0.1um) and ¢ = 1, (1um) and for 2, 4, 6 and 8 array elements,
respectively:

From figures 5.54, 5.55 and 5.56 it is evident that uniform broadside arrays

are end firing, i.e. the largest lobes in the array factor are along the z-axis. With the
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Figure 5.56: Array factor fu.,q,(6) for 2, 4, 6 and 8 elements, separated by ¢
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increase of the number of elements in the array, the existing side lobes become less
and less pronounced, while the end firing effect becomes more dominant. This fact is
important, since the array factor might suppress radiation in directions in which the
element radiation pattern reaches its maximum.

The total array radiation pattern is a product of the element radiation pattern
and the array factor. Figures 5.57, 5.58, 5.59, 5.60, 5.61 and 5.62 show the total
array radiation pattern for k = 27w, k = 3w, antenna radii ¢ = 0.01, ¢ = 0.001
and ¢ = 0.0001, an interelement separations ¢ = 0.1 and 2, 4, 6 and 8 elements,

respectively.
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Figure 5.57: Array radiation pattern for 2, 4, 6 and 8 elements, k = 27, (A = 1um),
¢ = 0.01 and separation ¢ = 0.1, (0.1um)

117



Figure 5.58: Array radiation pattern for 2, 4, 6 and 8 elements, k = 27, (A = 1um),
e = 0.001 and separation ¢ = 0.1, (0.1um)
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Figure 5.59: Array radiation pattern for 2, 4, 6 and 8 elements, k = 27, (A = 1lum),
e = 0.0001 and separation ¢ = 0.1, (0.1um)
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Figure 5.60: Array radiation pattern for 2, 4, 6 and 8 elements, k = 3w, (A = 0.67um),
¢ = 0.01 and separation ¢ = 0.1, (0.1um)
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Figure 5.61: Array radiation pattern for 2, 4, 6 and 8 elements, k = 3w, (A = 0.67um),
¢ = 0.001 and separation ¢ = 0.1, (0.1um)
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Figure 5.62: Array radiation pattern for 2, 4, 6 and 8 elements, k = 37, (A = 0.67um),
¢ = 0.001 and separation ¢ = 0.1, (0.1um)

Results show that radiation is suppressed almost everywhere except in planes
perpendicular to the z-axis, an effect that becomes more pronounced as the number
of array elements increases. This phenomenon can be explained by the fact that the
array radiation pattern is a product of the element radiation pattern and the array

factor of the broadside uniform array.
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5.4 DISCUSSION

In this work we developed a technique for calculating field emission current from
a conducting nanofiber of finite length due to both static and dynamic field in the
axial direction. We also investigated the scattering/radiative properties of a single
nanofiber and a uniform array of nanofibers due to transverse incident electric field.
For the field emission model we employed the 1D WKB approximation, and the quan-
tum wire density of states (Chapter II). For the tunneling probability calculation we
needed an analytic expression for the potential due to axial incident electric field. We
investigated two different cases: static and dynamic. For both of them we employed
the slender body approximation, which assumes large aspect (length to width) ratio,
rotational symmetry with respect to the ’long’ (z-) axis and no sharp edges. This
resulted in nondimensionalization and rescaling in such a way that the new length is
unity and the maximum radius of the fiber is a small parameter e.

In the static case we represented the electrostatic potential (solution to Laplace’s
equation) as a potential due to a superposition of charges on the z-axis with unknown
charge distribution f between unknown integration limits « and 3 (eq.(3.2) and eq.
(3.3)). The BC was simply a continuity requirement for the electrostatic potential on
the surface of the fiber, leading to a Fredholm integral equation of the first kind. We
proceeded by seeking a uniform asymptotic expansion of the integral. It was shown
that uniformity could be achieved by choosing appropriate a; and (; in the a and 3

expansions and they depend only on the geometry. The unknown charge distribution
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f was obtained in the form of an asymptotic expansion, which allowed us to evaluate
the electrostatic potential and subsequently, calculate the the field emission current
for different radii of the fiber. Comparison of the theoretical predictions of our model
with theoretical predictions by the Fowler-Nordheim model as well as recent exper-
imental data [48] showed that our model gives estimates for the FE current, which
are significantly closer to the experimental results than the Fowler-Nordheim model.
Also, the model shows that current density decreases as € becomes smaller.

In the dynamic case we represented the scattered electric field (solution to
Helmholtz’s equation) due to an axial plane wave as a field due to a superposition of
electric and magnetic dipoles on the z-axis with unknown distributions g and h be-
tween unknown integration limits o and (3. The BC was a requirement for tangential
components of the electric field to vanish on on the surface of the fiber, leading to two
linear integral equations. We proceeded by seeking a uniform asymptotic expansion
of the integrals. Just as before, uniformity was achieved by choosing appropriate «;
and (; in the a and [ expansions. In that case a and 3 were the same as in the
static case. Once the unknown distributions g and h were obtained, we were able to
obtain the electric potential by invoking the Lorentz-Lorenz gauge, which allowed us
to calculate the the field emission current for different radii of the fiber and different
frequencies of the incident field. Results show that for a fixed frequency, FE current
density decreases with the decrease of the fiber radius €, just as in the static case.
Also, for a fixed radius €, FE current density increases as the frequency of the incident
field increases.
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Additionally, we investigated the scattering properties of nanofibers in the
presence of transverse incident electric field. Using a similar technique as the one in
the axial dynamic case from above, we represented the scattered electric field as a
field due to a superposition of electric and magnetic dipoles on the z-axis with un-
known distributions g and h between the integration limits a and 3. Just as before,
we required vanishing tangential components of the electric field on the surface of
the fiber. Expanding the integrals from the resulting integral equations and collect-
ing terms at different orders allowed us to determine coefficients in the asymptotic
expansion of g and h. This allowed us to determine the scattered field and obtain
numerically the current distribution generating it. We compared the results to the
current distribution obtained by solving Hallen’s equation numerically for a delta gap
antenna feed. Results show that not only are currents within the same order of mag-
nitude for a given frequency and antenna radius, but current distributions display
very similar behavior in the center of the antenna away from the edges. Furthermore,
the comparison of the radiation patterns of the fiber as a scatterer (our model) and as
an emitter (Hallen) demonstrated a very high degree of similarity. The results above
have important practical implications. Since the magnitude of the calculated currents
is sufficiently large to induce a measurable EM field, an experimental validation of
our results is desired. There are several considerations for the preparation of such an
experiment. One of them is the length of the fiber. In our calculations we assumed
fiber length L = 107%m. Thus € = 0.1 corresponds to a fiber radius of r = 100nm.
Such a fiber length makes measurements difficult. For a more realistic experimental
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setup, a longer fiber can be chosen. In order for the fiber radius to still be on the
nanoscale, smaller values for € are required (for example L = 107%m and r = 100nm
implies € = 0.00001).

Finally, we investigated the behavior of an array of equally spaced aligned
fibers in the presence of transverse incident electric field. Since the incident field was
a plane wave, the current induced in every fiber had the same phase. As we discovered
in Chapter IV, the array factor modifies the total array radiation pattern by selecting
radiation lobes close to the xy-plane and suppressing the rest and thus increasing the
gain of the array, an effect that becomes more pronounced as the number of array
elements is increased. This fact has important practical implications, since increasing
the number of elements in the broadside uniform array significantly increases the gain
of the array.

There are several possible venues for future research. One of them is the
investigation of the field emission of two or more (an array) of parallel nanofibers. In
comparison to the single fiber case, one would expect a significant change in the field
emission current due to the influence of the field scattered by neighboring fiber(s).
Analytic expression for the scattered field, however, might be difficult to obtain due to
the fact that the rotational symmetry is broken by the second fiber and the problem
is not angularly independent. It is not clear at this point if this problem could be
addressed by a modification to the slender body approximation, since that method

relies on the rotational symmetry of the scattering object.
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Another possible direction for future work is the case of modeling axial rough-
ness on the fiber by introducing a periodic axial deviation from the cylindrical shape.
The proposed model above could be used in this case (as long as S(z) is smooth),
even if the deviation from the cylindrical shape is large, by introducing S(z) which
describes the geometry of the new system.

Yet another interesting possibility is investigating the radiative and scattering
properties of aligned parallel nanofibers. As we discussed earlier, broadside uniform
arrays of nanofibers allow achieving high gains. Aligning several broadside uniform
arrays in 2D arrays could possibly allow us to enhance the beam shaping capabilities
of a single broadside array. Furthermore, varying the current phase between adjacent
broadside arrays would possibly allow not only beam shaping, but scanning array
capabilities as well. Additional investigation of the case of a 3D array alignment
of nanofibers should be considered, since that configuration could possibly exhibit

photonic crystal properties.
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+ cos fig 62R <k2 Z; Rlz) — rzsin Gizel;ij <k2 + % + %) (A.21)
ikR+ K2R — 1 — 22 — ?’igz + %2
— _2@'11;71 I % F Rz — ) 4 ik(zg §? (= ;325)2
:k; {2# <%+k%z2) + (2 = €)? (i—%—%}p)]
= k7-2(27“2f1 +(z=%f) (A.22)

i (PR (2 — )24+ 2625(2) — 2(2 — £)2 — (2 — £)€2S (2)
b= _e2k2/ 7l R?
L2 0P () 208 2P

R
i Y |

- {—E + s H(z = )5 (2) — 28(2))h(E, e

/ fl (2 — )5/ (=) — 25(2)h(E, e)de (4.23)
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By =-5(2) /a gihR (W + ijg - %) g(€, e)de
p j 1 2 3i ,
=50) [ e (45~ 1~ i~ o) (22— 9+ €5 (a6, e
B , eikR ) » 1 i
:/a S(Z) R3R (Z_ﬁ_kgRg)g(gve)dg

B pikR i )
- / — ( - % - kf’m) (2= =€) + @5 (2))g(6,

B sz
)dé / D(fa— 20) 20z — &) + €5 (2))g (€, )de

5 62kR /
= / R3 (S (Z)f2((z - 5) + 625(2)) — S(Z)(f2 - 2f1)(2(z — 5) + 625 (z)))

'36 ’
x (et = [ S (SGIEESEU + hls - €7) — 25(:)(z - (s~ 261)

x g(&, €)dg (A.24)
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g B OR
:2/05 %g(ﬁ,e)dﬁ—i—Q/a flah(g )d§
625,(2) B / 9(576)
2l / (S —2n) (20 — &) + 57 ) Lo e
8 8
:2/ 20 ,ed§+2/ fla—R
29'( OR g(&, €
+ C5E [y - 22 e
de Z 1 i 2 3 \|OR
s () = M m) )| e
ik 3 0R ek R 3 3t \OR k:elkR
® w5 =\ e ) 6

0eiks _ / fﬁ

25«/2() ﬁ
250 . ( €)d¢ +

d§+/ L

=2/j%g(§

€25'(2)
25(z)
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25/( )
25(2)

— S (2)(225(2) f1 + (2 — 5)2f2)) 9(2736)

&}
g +2 [ 5 5he e

B
| (Sl - €7+ 5 +25(): - O - 26)

5 (S + (2 - ) (Ji,’;)

&) + €5 (2))h(E, €)dE
/ (25(:)(= = (/> = 211)

dg

dg

(A.25)



5(2)
2(1—2)

RT = (172 4 2k ( — ﬂl) e*1=2) L O(e%)) [((1 —2)

+ € (2(f(j)z) — ﬂl> + O(€*))(log(1 — 2) + log 2 + ¢ (5(2)4?14_ﬁ1§;2_ 2) + O(e"))

R = ) RN B R

S(z) — 20611 —z)
2(1 — 2)?

— (14 €ik+/S(2) — 62%(2) + 0(€%)) * [en/S(2)(1 —1og 2)] — Rf

_ 2= (“4<f—(f)z> + ﬁl) — /51~ log2) — GikS(=)(1 ~log2) — R} + HOT

— 31) +0(e) + (log(1 - 2) + log2 + €

+ 0(64))}

(A.27)

ap=it [ pogtu s e = a5E) - viE =S
122’/ ulog(u + \/u? —€25(z)) — Ju® —€25(2) +u
er/S(z)

— ulog 2u)du = %(—2112 log 2u + 3u(u — Vu2 — €25) + (2u* + €25(2))

< logfu + VT = 8))| V2T L5 - 7 4 25(2)

x log 20/(8 — 2)? + €5(2) +3v/(8 — 2)> + €2S(2)(V/ (8 — 2)* + €25(2) — (6 — 2))

+(2(8 — 2)* + 3625(2)) log((V/ (B — 2)? + €5 (2) + (8 — 2))) — —( —2¢%5(2)
x log 267/ S(2) + 3€S(2) + 3€>S(z) log e\/%) = —(=2((8-2)*+€85(2))

x (log(1 — 2) +10g2+62% ((15_(22))2 — 12_”31Z))) +3((1—2) +¢€ ( 5(2) —61)

PO (1= 2) 4 (500 = ) = (5= ) + (29 - 97 + 35(2)
« (log(1— 2) +log2 + (Zi (I fﬁzl)(zl —) 1 oty - %(625(2) log e1/S(2)

+€25(2)(3 — 2log?2)) = %625(2)(—2 —loge/S(z) +1og2 —log(l — z2)) (A.28)

145



R~ = (e 4 ik <% — 51) e* L O(E)](2 + ¢ <@ ) + O(€*))(log 2

+10g2+62M+0(64))—Z+6a +z+¢€ 52) _
472 2z

2a1z

O(e")]

— (e (? - al) FOE) = (log = + log2 + 2 20— 20%

— (1 + €ik/S(z) — 62% + O(€%)) * [en/S(2)(1 —log2)] — Ry
= %eikz (—% + ozl) — e/ S(2)(1 — log2) — €%ikS(2)(1 — log2) — Ry + HOT
(A.29)

(z—a)2+€25(z)
AT = zk/ [ulog(u + /u? —€2S(z)) — Vu? — €2S(z) +
en/S(z)

— ulog 2u]du = %(—QUZ log 2u + 3u(u — Vu2 — €25) + (2u® + €25(2))

o+ VT = 5|20 Bz - a)? + 25(2)

xlog2v/(z — a)2 + 2S(2) + 3/ (2 — )2 + 25(2)(V/ (2 — @)2 + €25(2) — (2 — a))

+(2(2 — @)? + 3¢25(2)) log((V/ (2 — a)? + €25(2) + (2 — a))) — - (~2625(z)

—(=
4
x log 261/ S(2) + 3¢2S(2) + 3€2S(2) logey/S(2)) = %(—2(@ —a)? +€25(2))(log 2)
+log2 + 62% (% 2a1>)) +3(z+e€ (S(z) — al) +O(*)) * (2 + e2<%

z 2z 2z

€2(S(2) — 4ay2)
422

+0(")))

- al) —(z—a)) + (202 — a)? + 3¢25(2))(log z + log 2 +

—Z( e2S(2) logey/S(2) + €25(2)(3 — 2log2)) = fe S(2)(—2 —logey/S(2)

+log2 —log 2) (A.30)
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APPENDIX B

ASYMPTOTIC EXPANSIONS OF INTEGRAL OPERATORS
B.1 STATIC CASE

In this section, we obtain a uniform asymptotic expansion for each of the integrals

I, , Ly, Iss. I, = I, + I}, can be evaluated directly:

p-z dv

0 \VvP+e2S(z)

It = dv=1log(f — 2+ /(8 — 2)2+ €2S) — loge /S(z) (B.1)

dv =log(z — a+ /(2 — a)? + &2S) — logey/S(z) (B.2)

I = S
e /0 VU2 +€25(z)

logey/S(z) =loge + % log S(2). (B.3)

Since (A.1, A.2, A.3 and A.4)

( L=2) Zﬁ" ")+ €S(z ))1/2:(1—2)+62< 5() —/61)+O(e4),

2(1— 2)
(B.4)
og(5— =+ F= 27+ @50) = log2(1 — 2) + “EEL A=) o,
(B.5)
(z—Zan prese) =zt <%—a1)+0(64), (B.6)
log(z — o+ v/(z — ) £ #5(2)) = log 2z + O —412) 5y (B.7)

422
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the binomial expansion of 1/4/v? 4 €25(z) yields

1 1 i, €25(2) 12 1 1 1625(2) N §e452(z) n
(v2 +e28(2))/2 v v? v 2 02 8 vt
(B.8)
Adding and subtracting %62‘:2(2) to 1/4/1+ 62*:# — 1 we have
m 2S(2)\ ~? (14 2S(z)\ ~? 1 1e25(2) N 1e25(2)
v? v? 2 w2 2 w2
€25 (z) B e25(z)\’  1625(z)
:<1+ — ) —;Oaj<—v2 ) — 5 (B.9)

Adding and subtracting F'(z) + vF'(z) to F(z +v) — F(z) yields

F(z+v) — F(z) = F(z +v) — F(2) + vF'(2) + %F”(z) —vF'(2) — %F”(z)
2 G (5 02
= Fle+0) =Y FT() FoF/(z) + (), (B.10)
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Thus the expression for I3, becomes

. /ﬁ—z F(z+v) — F(z) <<1 . 6252(2)>—1/2 ) 1) .

/ﬁ—z F(z+wv) — Z?:o ij;.z)(Z) +vF'(2) + gFH(Z) <<1 n 625(2)) e _ 1) dv

0 v v?

/Oﬁ—z F(z+v)— UZ?:O % ((1 N 5252@))—1/2 B 1) "
+ /Oﬁ_Z(F’(z) +5F"(2)) ((1 + 6252@))_1/2 - 1) dv

_ /0 CF) + SF(2) <<1 + 62552))_1/2 - 1) dv

— %E2S(z) /Oﬁ—z %(F(z + ) — i %)dv—i— (B.11)
e SO (- ) S () e
(B.12)

Also, I, and I3, can be combined together to result in

J F(3)
as fFZF(z—i—v)—ZQZUF. (2)
1= Y ae@se) | e

0

n=0

> p@nt+l)(, fz 2n €25 (z)\~1/2 - e?S(z ’
e, (S () e

J=0

o

j=
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Similarly, /5, and I5; can be combined together as

on  (—v)iFU)(z)

> e F(z—v) =) g
e + 15, = Zan(GQS(z))"/O ( )2 & dv

> p@n+1)(, e €25(2)\ —1/2 n 25(2)\’
S Gt (=) /—Z( ) )
n g % /Oz_a 2}2n+1<<1 + 625#) . jzi;aj (625#)] )dv. (B.14)

Each of the terms above is of different order. To see that, let v = €/S(z)u. Then

= €/5(z)du and

_ /Oeﬁsf)(e S(z)u)2"<<1 N %>—1/2 B j:o (521)))6\/%@

= (/5G| " () - _ ) )evSE

= 0¥, (B.15)

[ 222

_ /Oe%(e S(z)u)2"+1((1 n %)—1/2 B j:o (Z;)])>emdu

= O(e¥"loge), (B.16)
/Oﬁ— U2i+1 (F(z +v) — iﬂ UJF;J!)(Z))(ZU
/ - VP (:3 RO s~ 00 (a7



For n =0,

F(2) /OB_Z ((1 + 6252@))_1/2 _ 1) dv

= F'(2)(z = B = ey/S(2) + V(B - 2)* + €5(2))

S(z)
2(1—2)

F;(Z) /06_2 ((1 + Eziz(z))_m - 1) vdv

_ F;(Z)(—(B_Z)QJF((ﬁ_z)\/(ﬂ_z)2+€25(2)

= F'(2)(—e\/S(2) + € + O(eY), (B.18)

+€25(2) log(V/ @S (2)) — €8(2) log(8 — 2 + /(B — 2)? + @5(2))) )
F(z) (e2® +25(2) log ey/S(2) — €28(2) log(2(1 — 2)) + o<e4)). (B.19)

4 2

Similarly,
o 25(2)\ 2 z
F’(z)/o ((1 + ig )) - 1) dv = F'(2) (/S + 252(; +O(Y)
(B.20)
and
" z—a 2 1/2
FQ(Z) /0 <<1 + ‘ iz(Z)) — 1) vdv
d "f) (625 (;) +25(2) logen/S(z) — €25(2) log(22) + 0(64)). (B.21)
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B.2 DYNAMIC CASE

Expansion of Iy(z, €, F):

Let us start with the integral

V5
(z,¢, F) / \/ = )F(ﬁ)d&

We are looking for an expansion of Iy(z, €, F') in the form [58]

Io(z,6, F) ~ —log €F + G F + € log Gy F + O(€?),

(B.22)

(B.23)

where the operators G, G5 and Gj3 are to be determined from the following asymp-

totic expansion. Let

Iy=1I; + I,

where

VE 0TSt
/ \/z— 2+ e25( )F(&)d&

and

2+€2S(Z)
/ \/z— 24+ e25( )F(g)dé

Changing of variables v = z — ¢ for I; and v = £ — z for I leads to

z—a zk v2+€e25(2 )

0 \/U2+€2S

Iy = —v)dv

and

B—=z 6ik v2+€25(z)
I = / F(z+v)dv.
0
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(B.25)

(B.26)

(B.27)

(B.23)



Since the Taylor expansion of F'(z + v) and F(z — v) for small v are

, > I (J
F(z+v)=F(2) +vF () + +Z F
F(z—v)=F(2) —vF (2) + +Z . )

the expression becomes

B—z zk\/v2+525(z) v2 .,
2) +uF' (2) + = F'(2))dv

0 \/U2+€2S 2

B—z zk U2+62S() 2 ,UjF(j)(Z)

+ F(z+wv) - 4
0 \/v2+e2S ) jz:; j!

Iy =

)dv. (B.29)

Also, since
iky/v24€25(z) ikv Letkv ikv
e e ) ike e A
_— = S — @) B.30
e e (N - roen mw
we obtain
B—z zk v2 €25(z B—z
I(T— * () F(Z+U)_F(Z)6zkvdv

JErase) v
) iky/v2+€25(2) . F” B—z iky/v24€25(z)
of {_ﬁ} o (o
0 0

v2 4+ €25(z 2 v+ €25(2)
2 B—z L nl0) ]
ikv € S(Z) ikv 2 v F (Z) ik 1
— ve }d'U‘l‘ 9 /0 € (F(Z‘I‘U)—]:OT> ﬁ_ﬁ d'U‘I‘R
+ + ' PN 1 € + +

2

Our next step is to investigate each of the integral operators W, Wi, W3"
and W," in the expansion of I (and similarly W, , W, W5 and W, in I;).

For

B—z zk v2+€e25(2 )
Wi = B.32
0= ), JEreso) (B.32)
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we consider the substitution u = y/v? + €25(z). Then v = \/u? — €25(z) and

2 1 26
dv = Mdu = Ealu, (B.33)
v v
and W, becomes
(B—2)2+€25(2) _iku (B—2)2+€25(2) iku
Wo—l—:/ ¢ gdU:/ ‘ du
ey/S(z) u v e\/S(z) U2—€2S<Z)
B—2P1e5G) g
_ / e L log(u + /i = @8(2))du, (B.34)
€r/S(z) du
since
D og(u+ /@ —@5()) ! (B.35)
— u u? —€e25(2)) = ———. .
du 8 u? — e25(z)

The expression for W, can be rewritten as:

. -7+ g
W, :/ e —log(u + v/u? — €25(z))du
0 /S(z) du

+52S(z elku (B—2)%+€25(2) etku
du —/

er/S(2) u

du
U

B—2)2+€25(z d
+ / ke Jog(u + /u? — €2S(z))du
/S(z du
VvV (B—2)24€25(z) elku
/ du
S(z) u
+ e —(log(u 4+ \/u? — €25(z)) — log 2u)du. B.36
e\/S(2) du

If we integrate by parts the second integral and add and subtract
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log /(8 24+ €25(2) — loge/S(2), we obtain

(B—2)2+€25(z) eiku -1

du

—log /(B — 2)2 + €25(2) — log e /S(2) + /m ”

+ kv B2+ [log(\/(ﬂ —2)2 4+ €28(2) + B — 2) — log(2y/(B 24+ e25(2 ))}
V (B=2)2+€2S(2)
+ eV SR og 2 — zk/
e\/S(z)

etk [log(u + —€25(z)) — log QU} du.

(B.37)

Using the fact that a(e) =Y 7 o, and B(e) =1 — >, 5,€*", as well as

X .n 2 1 1
log(l—z):—Z%; log(l—l—z):z—%+...; \/l—l—z:1+§z—§,22—|—...,

n=1

for the first term we get (byA.2)

log /(3 24+ €e25(z) =log(1 —2) + % <(1S_(22)2 — 12_/612> e+ O(e").

The second term can be written as loge\/S(z) = loge + 3 log S(z).

Also (byA.3),

e2(S(z) —46:1(1 — 2))
4(1 — 2)?

log(v/(8 — 2)2+€2S(2) + 3 — 2) = log2(1 — 2) + +O(e").

Finally, let [y = e*V5®) Fy = /(B —2)2+ €25(z) and Fy = V=27 +56) ang

use Taylor expansion in powers of €. This leads to:

Fy =1+ €ik\/S(2) — € K2S(2) + O(€%)

2
Fim-9+¢ (g -) o
F3 — ez’k(l—z) —I—E%k‘ (2(?1( ) ) —/61) k(1—=) —I-O( )
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The second and the last term in the expansion of W, still remain to be evaluated.

Starting with the second term, let

(B-2)2+€25(2) giku _ q
T(e)t = du. (B.38)
ey/S(z) u

Expanding T'(¢)* in a Taylor series yields
! ]. 1
T(e)m=T0)" + eI (0) + §G2T+ (0) + O(€?). (B.39)

Now let

(8—2)24€25(z) iku _ 1 (B—2)2+€2S(2) giku _ 1
T(e)* = / C  du-= / ———du
er/S(z) u 0 u
/ew/S(z) eiku -1
0

u

du=Ti(e)t —Ty(e)™. (B.40)

The leading term in the expansion of T3 (€)™ is

1-2 eiku -1
T (0)F = / du. (B.A1)
0

u

Next term is derived by employing Leibnitz’s rule, i.e:

du

, d (B—2)2+€25(z) eiku 1
17'0-4 |
0

~ de
eik (B—2)2+€25(z) —1d
— \/(ﬂ oG - (B—2)2+€25(2)

u

TG i
- (B —2)2 + €5(z) ((/6 - Z)E + ES(Z’)>, (B.42)

and since % |le—0=0,
T (0) = 0. (B.43)
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Also

T+” B d eik\/(ﬁ—z)2+625(z) 1 d/@ 5
()= de ( (B— 22+ e5(2) ((B— Z)% T e (Z))>
d e* (B—2)24€2S(z) __ 1 dﬂ
- <% (B—2)% + &5(2) ) ((ﬁ A%t 65(z)>
WETET 1 ey 4y’

+ orrase (PG (?) +5(). (B.44)

and thus
. eik(l—z) -1
T7(0) = W(S(z) —26:(1 = 2)). (B.45)

For T»(e)* we have a different approach. We expand the exponential function in the

integrand in Taylor series. This yields:

e\/S(2) jiku ey/S(z) ©© SAY)
To(e)™ :/ ¢ 1du:/ Z (ik) u" " du
0 n=1

u 0 — n!
/{32
= tke\/S(z) — ZezS(z) + O(e%). (B.46)
Therefore
1—2z _iku

v e 1
T(e)"™ = /0 " du

6ik(1—z) -1 k2
+ 62m(5(2> - 261(1 - Z)) - ikE\/ S(Z) + Z€2S(Z> + 0(63). (B47)

The last term in the expansion of W' is

. (B—2)2+€25(z) . ( - - ( )) ( )
RT = / et [log u+\u? —e2S(z)) — log QU} du, B.48
e\/S(z)

which is the remainder resultant from the integration by parts. Using the fact that
d
log(u 4+ v/u? — €25(z)) — log2u = T [u log(u 4+ v/u? — €25(z)) — Ju? — €25(z)
u
+u —ulog QU} : (B.49)
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and integrating R™ by parts leads to

(B—2)2+€25(2)
Rt = zku [u log(u + _ 625 \/T —I— uU—1u log QU]

(B=2)2+€25(2)
— / [ulog(u +Vu? —€25(z)) — Vur —e2S(z) +u — ulog?u}d thu

S(2)
(B.50)
which after integration by parts becomes
R* = "V OIS /(5 — 2)2 4 25(2) log(V/ (B — 2)2 + €25(2) + - 2)
—(B=2) V(B2 +5(2) = V(8 — 2)? + 25(2) log 2/ (8 — 2)2 + €25(2)]

— " VSR /S(2) log(e/S(2)) 4+ e4/S(2) — ey/S(2) log 2e4/S
(5—2)7+25(2) |
— / [u log(u + —€25(2)) — Vu? — €2S(z) + u — ulog QU} de’.

S(z)
(B.51)
Evaluating R* we obtain (eq.A.27)
S(z
Rt = e%eh1-2) (—4(1(_)2) —l—ﬂl) —€ey/S(2)(1 —log?2)
— %ikS(2)(1 —log2) — R + HOT. (B.52)
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For the new remainder R we have

= [T wtostu+ AT ASE) - VP = @S
R1:/ ulog(u + v/u? — €25(2)) — Vu* —€2S(z) +u
er/S(2)

— ulog QU} de’t = zk;/
ey/S(z)

(B—2)?+€*S(2)
ek [u log(u + —€e25(2))

o (Zk‘)n (B—2)2+€25(z)
—Vu?—e5(z) +u— ulog2u}du = sz —'/
n=0 n ey/S(z)

X [u log(u + \/u? —€25(2)) — Vu? —e2S(z) + u — ulogQu] du

uTL

(B—2)*+€25(2)
:ik/ [ulog (u+ /u? — €25(2)) — Ju? — e25(z )—i—u—ulogQu]du

X (iR (B—2)2+€25(2)
+ik Z (i) u” [u log(u 4+ \/u? — €25(2)) — Vu? — €25(z2)
er/S(z)

+u —ulog QU} du = Af + A7 (B.53)
The expression for A eq.A.28 yields
Y A P @) &
A7 :ik/ [ulog u+u?—e2S(z)) — Ju? —e25(z
ey/S(z)

ik
—I—u—ulogQu]du = Zz<—2u2log2u+3u(u— u? — €29)

2)2+€25(z)

\/—>
= —625( ( —log e/ S(2) +log2 — log(1 — z)), (B.54)

+ (20 + @5(2)) log(u + Va2 — e20|

and AJ ~ O(€®). To verify that, we use the substitution familiar from the static case,
ie. v =¢€/S(z)u. Then dv = €4/S(z)du and

The next term in the expansion of I is

B2 B ,
Wi = / Flzt0) = ) g, (B.55)
0

(%

159



By expanding W, (¢) in a Taylor series we get

Wﬂ@zw?mwf%wmﬂn+%ﬂwﬁ%m+0w) (B.56)
Clearly,
quy:/k?mz+2_F@kmm@ (B.57)

and W, " can be evaluated by using Leibnitz’ theorem:

. d [PFFF —F(2) | . F(B)—-F
W = i J G 1)2 ) ey = —eHB=2) —((6/; — Z>(Z) (614 2626 + ...),
(B.58)
and hence
, , F(l)-F
w?my;fﬂkw<&_dkmy (B.59)

Now consider

B—z Ueik v2+€25(2) '
wgz/] el gy (B.60)
0 v2 4+ €25(z)

and let u? = v? + €25(z). Then vdv = udu and

(B—2)2+€2S(2) -z
W, = / e dy — / e dy
ey/S(z) 0

— i {eik\/(ﬁ—z)Z-i-EQS(z) +1— eikew/S(z) o ezk(ﬁ—z)} ) (B61)

1k

Since e*(0=2) = ¢*k1=2) _ 213, e*(1=2) 1 O(€®), W, becomes

=€ (25(5)2)) e*1=2) e\ /S(2) — 62%5(2). (B.62)

Also, consider
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—z iky/v2+€25(z) .
W?j—:/ {w——elk”}vdv
0

v? 4+ €25(2)
B—z U2eik\/U2+E2S(Z) 8-z
= / v — / e*ydu
0 v2 4+ €25(2) 0
B—z B—z
_ (e SR / G
o ik otk
_ iv<eik\/v2+525(z) _ 6ikv> =z
1k 0
(B—2)2+€2S(2)
_ i/ (eiku _ eik\/u2—525(z)>u du )
ik Je\/50) u? — €25(z)
Since
iky/v2+€25(2) ikv | 2 et 4
e ="+ e S(2)ik + O(€"),
v
iky/u2—e2S(z) iku 2 . etk 4
e =" — e S(2)ik + O(¢Y),
2u
—2)24€28(2 iku
W;:e2®eik”ﬁ_z_€2®/ (B-2)*+ S()eku du .
2 0 2 Jo /50 u u? — e25(z)
But
—2)24+€25(2
WJ:/ (6—2)+ ()6Zku du |
e\/S(2) u? —€25(z)
and thus
5(2) ko]~ 5(2)
W-‘r — 2 ikv 2 W-‘r
T g 0
_ 62 S<22> (eik(l—z) 1 — Wdl—)

Finally, the expression for W, is

pz IFD(2)\ (ik 1
;= o SN (B - ) v
W, /0 e ( (z+v) j; 7 2 )Y

(B.63)

(B.64)

(B.65)

(B.66)

(B.67)



By combining all the results above, the expression for I becomes

I = F(z){ log(1 —2) + /1_Z eikuu_ du —loge — %log S(z)
0
ik(1—z S(Z) 61 . k2
+ ek )<4<1 0 —z)) —ikey/S(2) + e e25(2)

+ (1 + eikm — 62%> log 2

m@amzw—4g@d+@)—esgmfmgm—éwa@u—mg»

+ ik(%e25(z)(—2 —loge/S(2) +log2 — log(1 — z))) }

EF(z4v) - F (2) ik gyy _ gib1-n FA) = F(2)
+/0 " d (1—2) &

+ F/(Z){622(f(j)z> e*1=2) _ e /S(z) — 62%5@)}

n F"(2) {62 S(z) (eik(l—z) —1)— 62@(10g 2(1—2) —loge S(Z))}

2 2
2S(z) 177 . 2 WIFO(z i
S5 [T e (F(z+v) —2%”) (G-5)w+oe). ®oy

Similarly, for I; we have

z—a ik\/v2+625(z)
Iy :/ —F(z—v)dv
v? 4+ €25(2)
VIIE e P ) < PE)
) zk\/v2+525(z) ' F’ z—a iky/v2+€25(2)
—F (z)/ v e gy () / e
0 v+ e25(2) 2 Jo v2 + €25(2)
2 Z—a 2 (] 1
zkv € S(Z> / ikv jF ik 1 —
")
}d +— 5 ; e ( ; ) 2 ) +R
, F//
_F@MG+WT—F@MG+—éQW§+WZ+R‘ (B.69)
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and

(z—a)?2+€25(2) iku
er/5(2) u v

(z—a)?+€25(2) d
= / e* —log(u + /u? — €2S(z))du. (B.70)
ey/S(z) du

Using the same procedure as in the case of W, we obtain the result

(z—a)2+€25(z) etku _ 1

du

Wy =log \/(z—a)2+e25(z)—loge\/S(z)+/m ”

+ e VETHESE log /(2 — ) + 25 (2) + 2 — a) — log(2/(z — )2 + 25(2)) |
+ eike«/S(z) log2 _ Zk’/

er/S(z)

(z—a)?+€28(2)
etku [log(u + Vu? —€25(z)) — log QU} du.

(B.71)
By (A.5 and A.6)
log \/(z —a)?2+€e25(z) =log(z) + % (Sz(j) — %) e+ O(eh),
log(v/(z — P T €5() + 2 — a) = log(2) + log2 + SE0E) —4012) 54y

422

Let us define Fy = \/(z — )2 + €2S(2) and Fy = e*VEP+@5G) and use

Taylor expansion in powers of €. This leads to:

Fy=z+4¢ (%? — al) +0(€%),

Fy = e + &ik (? - al) e* 1 0().
2

We want to expand the second term in W

(z—a)?4€25(2) iku _ 1
1~ [ ‘

\/S(z) u
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in a Taylor series in powers of ¢, i.e.

1"

T(e)* = T(0)" + €T~ (0) + %&r— (0) + O(e®). (B.73)

Also, we split T'(€)~ in two;

(z—a)2+€25(2) jiku _ 1 (z—a)?+€*S(z) giku _ 1
T(e) = / C  du-= / ———du
€ 0

S(2) u u
ey/S(z) eiku —1 B B
- du =Ti(e)” —Ty(e)™. (B.74)
0 u

The leading term in the expansion of 7T} (€)™ is

z iku __ 1
T,(0)" = / c du. (B.75)
0 u

Next term is derived by employing Leibniz’s rule, i.e:

du

d (z—a)2+€28(2) eiku -1
-2 /0
67;](2\/(2—01)2-‘1-6251(2) —1d

BN T zeV/ - E5E)

Tl_l<€)

u

6ik (z—a)2+€2S(z) _ 1 dov
= CETETSE ( —(z— OA)E + 65(2)), (B.76)
and since % |._o=0
77 (0) = 0. (B.77)

Also

de
iky/(z—0)2+€25(z) _
_(de 1 (_(Z_a)d_a+65(z)>
de (z— )2+ €e25(z) de
T o fda?
Hmarras (CC-0g (@) o) e
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and thus

7="(0) = (S(2) — 2a12). (B.79)

For T5(e)~ we have the same expression as for Ty(e)™, i.e.:

TQ(E)—_/O\/—Z“”M_ u—/ Z n,)n "Ly

n=1

=ike/S(z) — %625(2) + O(€%). (B.80)

Therefore

U 222

Zeiku_l 26ikz_1
T(e)” :/ du+ € (S(z) — 2a12) — ikey/ S +—6 2) + O(€).
0
(B.81)
Analogous to the W' case, we can introduce R~ to be the last term in the

expansion of W~ and integrate it by parts to obtain the expression:

(z—a)2+€25(z) " |: :|
R~ = / e™ |log(u + —€25(2)) — log2u| du
e\/S(z)

= VSR = )T + @25(2) log(v/ (= — a)? + 25(2) + 2 — a)

—(z—a)+V(z— )24+ e5(2) — /(2 — a)? + €25(2) log 2/ (z — a)? 625(2)]
_ eiher/5() [ VS(2) log(e/S(2)) + e/S(z) — ey/S(2) log 26\/5@)]

/ (z—a)2+€25(z) [ .
— ulog(u + /u? — €25(z)) — Ju? — e25(z )—i—u—ulogQu]dZ“
e\/S(z)

(B.82)

which after evaluation (eq.A.29) becomes

R™ = %™ <—% + oq) — e/ S(2)(1 — log2) — €*ikS(2)(1 — log2) — Ry .

(B.83)
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The new remainder R; becomes

(z—a)2+4€25(2)
Rl_:/ [ulog u+ \/u? — e25(z2)) — Ju? — 25(z) +
€r/S(z)

' (z—a)2+€25(z)
— ulog 2u] de’t = zk/

e*ulog(u + —€25(2))
en/S(z) |:

00 (Zk‘)n (z—a)2+€25(z)
—\/u2—62S(z)+u—ulog2u]du:ik2—' u”
n=0 n en/S(z)
X [u log(u + —€25(z)) — Vu? —€25(z) + u —ulog 2u}d
(z—a)*+€2S(2)
:ik/ [ulog w4 \/u? — €25(2)) — /u? — €25(z )+u—ulog2u}du
ey/S(z)

X (s (z—a)?24€25(z)
+ik Z (ik) / u” [u log(u + \/u? — €25(z)) — Vu? — €25(2) + u

S(z)

—ulog Qu] du = A7 + A5 (B.84)
The expression for A7 after evaluation (eq.A.30)

(z—a)2+€25(z) [ ( . 25( )) . 25( )
Af:ik/ ulog(u + \/u? — €25(2)) — Vu? — €25(z
er/S(z)

k
+u—ulog2u}du: ZZ(—2u210g2u—|—3u(u— u? — €29)

+ (2u® + €25(2)) log(u + m)> Njﬁ

= %e%’(z)( — 2 —logey/S(z) +1og2 —log z) (B.85)
and
Ay ~ O(€). (B.86)
Let
W — / RG _”2 = P2 g, (B.87)
0
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Expanding Wy (¢€) in a Taylor series yields

"

Wi(e) = W7 (0) + (07 (0) + 56 (77" (0) + O(e),

where
F(z — F -
Wl_ (0) — / (Z 'U) (Z) 6zkvdv
0 v
and
) L AF(0) - F
Wl— (0) _ ezk(z) (O) . (Z) ay.
Also consider
z—a Ueik\ /v2+€25(z) '
W, = / N [
0 v2 4+ €25(2)

After the substitution u? = v? + €2S(z) and direct integration

W2_ _ l {eikw(z—a)Q—l—ezS(z) +1— eike«/s(z) _ eik(z—a)} )

ik
Since

6zk(z—a) — ezkz . €2z~kalezkz + 0(63),

W, becomes

W2_ _ ik {eik\/(z—a)2+625(z) +1— 6ike\/5(z) _ 6ik(z—a)}
1

= ¢ <52(j)) e _ e /5 — X502,
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For W5~ we have

2 U2+€25( ) '
Wy _/ —e* b udu
m+@a)
z—a 2 ik U2+€2S()

z—a
ikv

e vdv
0 VU2 + 62S(z) 0
/ id(eikw/v2+625(z)) _ /2_0‘ v
0 0

—d ikv
ik ™)
.iU (6“6\/’024-625(2) _ 6ikv> e
ik 0
(z—a)2+€25(z)
— i (eik“ —e* uz_ezs(z))u—du . (B.95)
ik Je\/50) u? —€25(z)
Recall that
iky/v2+€2S(2) __ _ikv 2 . e’ 4
e =" +te S(z)zk: +O(e)
zku
6ik u?—e2S(z) _ eiku S( )Zk‘ ‘l‘ 0(64).
The expression for W5 becomes
Wg_ _ 62 S(Z) ikv e . 62 S(Z) / (z—a)2+525(z) €ikuu du
2 0 2 Jo/56 u u? —€25(z)
S ' S (z—a)?+€28(z)
=¥%?W“—D—&%Q/ e dlog(u + /a2 = €25(2)), (B.96)
er/S(z)
which combined with the fact that
vV (z—a)?+e2S(z) du
Wy :/ ehv (B.97)
S u? — €25(z)
yields
—_ 25(2) ik S(2) 11—
Wy = € 5 k o 2 B W
S
262 ;Z)(zkz 1—W0)

(B.98)



Recall that W, is given by

z—a 2 J (J ;
, F Eo1
W, = /0 etkv < z—0) g )> (;L;_? - E) dv (B.99)
=

By combining the results from the expansions for W, W, W5, W; and W, the

expression for [, becomes

_ Zettn— 1 1
Iy = F(2)} logz+ du —loge — §logS(z)
0 u

+€26ikz<%——) — ike \/7+—e
+ (1 + eik\/% — 627) log 2
zk( 'f( . 54(5) ) — e/S(2)(1 - log 2) — 2ikS(2)(1 — log 2))

+ ik<%625<2)(—2 —log e/ S(z) +log2 — log z)) }

+/Z F(Z_U)_F(Z)eikudv_eikZF(O)_F(Z)

—F'(z){g%e“ﬁ—e S(z)—ezg (z)}
N F/’Q(z) {625(22) (€™ — 1) — @?(log% —loge S(z))}
eS(z) 7, 2 (=) FU)(z i
. 5;( )/0 ik (F(z_v)_g()j—fTU> (U_’Z_%) dv. + O(&%). (B.100)

169



Finally, the O(1) terms in I are:

1-2z eiku o

F(z){log(l—z) - %logS(z)jL/o du — log 2

1 Z etk _
+log(z) — 3 log S(z) +/ du — log2}

0 u

+ TFEGE+0) = F(2) kg, + /Z PEZ0) 2 ) g,
0 v 0 !
(1 — =~ 1—zeiku_1 Zeik“—l
= F(z){log(ﬁ)ﬂL/o " du+/0 " du}
n /1_2 F(Z + U) - F(Z) eikvd,u + /Z F(Z — ,U) _ F(Z) eikvdv (B 101)
0 v 0 ! | |
Let
Z(I—Z) l—zeiku_l Zeik“—l
Vig) =1 d d 1. B.102
(2) og<45(z))+/0 ” u—l—/o " u ~+ (B.102)
Then

GiF = (V(:) - DF() + | TECED PG g, 4 [t (=0 = F(E) oy,

0 v v
(B.103)
and
GoF = ?(k@ﬂz) + F"(2)) (B.104)
are the operators in the expansion of
Io(z,6, F) = —log €F + G F + € log Gy F + O(€?). (B.105)
Expansion of I1(z, ¢, F):
Recall that
B (€ _ etk (2—€)*+€e25(2)
Li(z € F) = / (€= 2)e F(£)de. (B.106)
o V(E—82+e5(2)



and

L =1 +1,

where

2—a zk\/v2+525(z)

I =- — v)dv.

0 \/U2 +e25(z
and
B—=z Ueik\ /v2+€25(z) F
0o U2+ erS(z)

Also, since

eik\ /v24€25(2) elkv
V—— = v— +
>y 5z v 2

V2

e2S(2)v (ike““’ ethv

the expression for I; becomes

z—o ,Ueik\/UQ—l-EQS(z)
I =— ——F(z—v)dv=—
0o 2+ erS(z) 0
z—a zk\/vz—l—ezS( )
( Z — U
0 \/m

:_/ﬁ

; )dv

(F(2) = vF'(2))dv

_ /Oz—a (U : &Séz) ( U;kv - 6::)) +O(€4)> <F<Z o) -
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z—o ,Ueik\/v2+528(z) (F<
\/v2 +€25(2)

(B.107)

(B.108)

(B.109)

(B.110)

z) —vF'(z))dv



Recombining the terms in I; leads to

zZ—a tky/v2+€25(z) 4 z—a iky/v2+€25(2)
Iy = —F(z)/ {”e— - e’k”}dv + F’(z)/ {”e—
0 0

v2 4+ €25(2) v2 4 €25(2)

oo Z—a eikv

— "™ Sudv — v—UF(z —v)dv
0 v

e2S(z) [ [iketRr  eikv L (=) FO)(2)

_T/o v( 2 —U3)<F(z—v)—;ﬁ>dv+HOT.
(B.112)
Using a Taylor expansion and the results of Leibnitz’s theorem
- ikv _ - ik(z—¢) 2 tk(z—a) do
e"F(z—v)dv= | e F(&)dv+ e (—e F(a)—2>
0 0 de?/ le=o
:/ eFEOP(&)dv — 2™ F(0)ay, (B.113)
0

and finally

Iy = =F(:)Wy + F'(2)Wy — / METOR(E)dE + M F(0)an
0

_E8(2) /Oz—oev (ikeikv B eikv) (F(z L) i M)dv L HOT.

2 U3

2 v “so J!
(B.114)
Similarly, for I} we get
5oz /TS ,
It :/ ——————(F(2) + vF'(2))dv
0 v2 4+ €25(2)
= R E2S(2)v [ikehr etk A ! v FU)(2)
+/0 (vv +— ( 2 _03)+O(€) (F(z+v)—j§07j! )dv
(B.115)
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Using a Taylor expansion and Leibnitz’s theorem yields

)

Bz 1 .
/ M E (2 +v)dv = / FEEP(E)dv 4 € (6lk(ﬁ_z)F(ﬁ) e
0 z

1
_ / eMED P () dy — 2e*1-2) P(1)3,.

Therefore

1
I = F(2)W) + F'(2)W; + / eFE2 R () de — 212 F(1)3,

1

2 B—=z -1, ikv ikv jF(j)
+eS(z)/ U(zke e ) (F(z+v)—zw>d“+HOT'
0

2 v? v3 j!

J=0

After summing I; and I} for I; we obtain:

Iy = F(2)(Wy" = Wy ) + F'(2)(W5" + Wy) — / MO (€)dg

. %</Ol_zv <zk§2k ) e?;) (Pt _2%)@
) /OZU (zk;kv ) e@/;) (F(Z - i HZ&)C@)

5=0
Also
B S(Z) 6ik(1—z) eikz
+_ _ 2 _
Wi - Wy =% (1_2 - )+H0T.
and

4z(1 — 2)
S(2)

S . .
Wi+ W, = 62% (e’k(l_z) +¢e** —2 —log + log €

1—2 _iku z iku 1
—/ ¢ 1du—/ ¢ du>+HOT
0 u 0 u

= 62—5(2Z> (eik(l_z) +e** —V(2) + log 62) + HOT.
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(B.117)

(B.118)

(B.119)
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Expansion of J(z,¢, F):

Recall that

J(z,6,F) = o (ZOHESE P(¢)de. (B.121)
and
J=J +J%, (B.122)
where
J = o eik\/mF(z —v)dv. (B.123)
0
and
Jt = B_Z eik\/mF(z + v)dv. (B.124)
0
Also, since

1. ,ikv
RV P HES(e)  giko S (z) (Zk; ) +O(e), (B.125)

the expression for J~ becomes

J = F(Z)/ (62'19 v2+e25(z) eikv)dv
0

N /0 TR PG~ )do + 62““2(2) /0 B e: (F(z —v) - F(z))dv. (B.126)

The first in J~ can be rewritten as

ra , V(z—a)?+€25(z) jiku _ iky/u2—€25(z)
/ (6lk Vurtes(z) _ elk”> dv = / ¢ ¢ udu. (B.127)
0 €

S() u? — e25(z)

But e — ehvV =8 — 62@# + O(€*) and therefore

z2—a V(z—a)2+€25(2) jiku _ iky/u?—€25(z)
/ (eik v24€25(z) eikv)dv — / € €
0 €

udu
/5() u? — €25(z)
. (z—a)2+€25(2) iku ;
= €2S(z)zk / C u= ezMWO_. (B.128)
2 e\/S(2) u? — e25(z) 2
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Also

z—o z ' d
/0 e E (2 —v)dv = /0 e*EO P (&) dv + €2< — e’k(z_o‘)F(a)d—:;>

e=0

:/ eFEO (&) dv — e F(0)ay. (B.129)
0

Similarly, for J* we get

B—z
Jt = F(Z)/ (eik\/vz—i-eZS(z) _ eikv) dv
0

B—z . B—z _ikv
+ / 6ika(Z + U)dv + EQZkS(Z) / € (F(Z + ’U) — F(Z))dl}, (B130)
0 2 0 v

where

-z V(B—2)24€25(z) iku _ ,iky/u?—€2S(z
/ﬁ (eikw/v2+e25(z) _ eikv)dv _ / (=2 ®e € =)
0 €

udu
NGE) u? — e25(z)
; (B—2)2+€25(z) iku .
_ 2 S(Z)Zk‘ € du — €2S(Z)Zk Wdl— (B.131)
2 ev/S(2) u? — 625(2’) 2

By using a Taylor expansion and Leibnitz’s theorem

b 1 : ap
/0 e F(z +v)dv = /Z IR+ <62k(ﬁ_Z)F(ﬁ)@) e=0
1
_ / e*E= F(6)dy — 2612 F(1),, (B.132)
and thus
J =€ S(Z)Zk




Using the expressions for W™ and W, we obtain

L 42(1 — 1-z _iku 1 z iku 1
J=é S(2)i log A1 —2) —log € +/ ‘ du+/ ‘ du
2 S(z) 0 u 0 u

1 z
+ / eME=) F(€)d + /0 MO F(E)dE — M F(1), — e F(0)ay

+€22’k5;(2) </01—z et (F(z+v) —F(z))dv+/z e (F(z—v) —F(z))dv) + HOT.

v 0 U

(B.134)
Expansion of I1(z, €, F):

Recall that

B ; LA ik
L [ e () Fleade = —¢ [ e (- ) Fleade. B3

The kernel of the integral above is a Helmholtz kernel as well as the kernels

of the integrals

w7 RN~ A B
I" = ) e Z; RZJ'H_Hﬁ F(¢&,e)d¢. (B.136)
]:

provided A; and B; meet the following criteria:

B, = —kA, for n=1

k(1 —2j+n)

A. = B.
TG ) (1 + 29)

for n>1

To see this,suppose

A .
w: n :I:m@ ZkRZ<R2]+1 + %) (B137)

where R = [2% + r%]1/2.
We need to prove that 1 satisfies

V2 + k*) =0 (B.138)
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1.e.

10 ([ oY L %,
__<T_)+r_2ﬁ+ﬁ+kw_

or

P 1P 1P Py,
o T rar Tpoe Tam TRYEY

Suppose 1) = 11)5. Then

oy O Oy
- sz + W%

oy O Oy

2. -t
o’ iy Oy Dby D1y

or2  Or? Y2+ 2 or Or * or ¥
o 0%y o1 Opy D%y
022 022 w2+28z 0z + 0z ¥1
and
82
= —nnts
Also, let
¢1 — ,r,ne:l:zne
Then
a’wl _n
Br !

Plugging this into

Py 19 1 Y,
a2 Tror Taae T gm TRY=0
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(B.139)

(B.140)

(B.141)

(B.142)
(B.143)

(B.144)

(B.145)

(B.146)

(B.147)

(B.148)



leads to

Py 10y 0%y Py 10y 0ty
(aw r or 02)¢ (az r or 822>w1

oYy O oYy O
+( a@il a% + ail (;/;2) + (k- )Wﬁ? (B.149)
and since
PPy 1o Py n?
orz 1 or 022 ﬁwl =0 (B.150)
0? 2n+ 10 0?
aw += a¢ " a¢ + Ky =0 (B.151)
Since
. A, B,
thy = e*Y " (RQJ'JJrl + zR—;j> (B.152)
j=1

0 —1) Bj(—2j
ﬂ o k_ ZkRZ <R2j+1 R;]) ZkRZ ( R2jj+2 ) + }52]‘4—5))

~een(n 3, (i) -3 (Y ) o
Jj= Jj=

w e (5 (e i) - 35 (st + D)

=

<ﬂfi<w ) - (M0 i)
= e i) <sz (s i) - 3o (M0 )
S (M | B S (kg

N Z'Bj(_g;f)@j))) (B.154)
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and

—M IS (i) - (e + G2
A

7j=1
—2)  Bj(-2j-1 = —3)(25 +1
(sz( R2j]+3 +1 (R2j]+2 )> z;( i ]R2j+)4(] )
=

Bj(—2j — 2)(27)))

+1 7013

(B.155)
Thus

2, .2 i j '
ZkR r2 4z Bj Aj(2.] —+ 1) BJ(QJ)
(2 + ik R <Zk § : R2y+2 R2j+1> B Z ( R2i+3 T R2i+2 )
j=1

Lt 2 +z (m ( —2j —2) +_Bj(—2j—1)> _i(Aj(—2j—3)(2j+1)

7 - -
- R2j+3 R2j+2 R2j+4
j= Jj=1

Bj(—2j —2)(2j) iR . B,
Fi ) |+ 2n e+ De sz(RWHR%L)

n

A;(27+1)  Bj(25) o bR i B,
-2 ( Rt i ) +hke Z (sz+1 + Zﬁ) =0 (B.156)
j=1

=1

i.e.

B A2 41)  Bi(2)
(2+ikR) (zl{:z <R2J+2 +ZR2jJ+1> - z;( ]l(gzjjurg ) T };2(34;72))>
]:

i —2)  Bj(—2j—1 "L A(=25—3)(25+ 1
(s (MG B 3 (A

j=1
Bj(=2j —2)(2) o~/ A . B
_'_ VA J R2j+3 ) _'_ (2n + 1) Z]f Z <R2.7‘7+2 _'_ ZR2,7:]+1>
AR BN ey A B,
B Z < R2i+3 T R2j+2 ) +k Z (RQJH + Zﬁ) =0 (B.157)
Jj=1 j=1
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and finally

B "oA25+1)  By(2)
(2 +ikR) (sz(szHleszil) —Z;( ];gﬁg >+ZR]2(j'f:72))>

1=

_ R(zk:zn: ( (27 +2) ZBj(2j + 1)) B Z": (Aj(Qj +3)(25 + 1)

R2i+3 R2+2 R2i+4

j=1

B;(2) +2)(2)) o~/ 4; . B
+1 7o ) +(2n+1) sz<R2j+2+zR2j+l)

(25 +1) B;(2j A, B,
B Z ( Rij-ﬁ-?: +i éz(gé))) + Z <R23+1 + Zﬁ) =0 (B.158)

7j=1

Consider first the case of n =1, i.e.
. i Al Bl 3141 231
2+ ikE) <Zk(ﬁ tig) = (G + Zﬁ))
(44, 3D 154, 8B
B R(Z’f(ﬁ tig) = (Gt “ﬁ))
. A B1 3141 2Bl 2 Al B1 .
+3<zk‘<ﬁ+ ﬁ)—<ﬁ+ R4))+k:(R3+ ﬁ)_o (B.159)

leading to

By = —kA (B.160)
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where A; can be arbitrary. For n > 1, we use

(203 (i v ) 23 (M 5420))
(%221<Ri+1+@>+mz< )
_ (”“Z ( (2 +2) B2+ 1)) B z": (Aj(zj +3)(2+1)

R2j+2 R2]+1 R2j+3
=1

B;(25 +2)(2)) o~/ A B
+1 TS ) + (2n+1) ZkZ<R2j+2+zR2j+l)

(27 +1) B;(2j A; B,
_Z< Rij-ﬁ-?: +e éz(gé))) kzz <R2 Tt ﬁ) =0 (B.161)

j=1

and collecting coefficients in front of =i yields:

2ikA; — 4ijB; — ik* By — ik(25 + 1)A; — k(25 + 2)A; + 2i§(2j + 2) B,

+ (2n + 1)(ikA; — 2ijB;) + ik*B; 11 = 0 (B.162)
i.e.
2ikA;(n — 2j) = 2ijB;(2n — 25 + 1) (B.163)
and
B, — At =%) (B.164)

Ti2n —25+1)

Collecting coefficients in front of ﬁ yields:
—2kBjy 1 —2(2j + 1)A; — K*Ajq + 25kBjyy + k(25 +1)Bjyy + (25 +1)(27 + 3)A;
+(2n+1)(=kBjz1 — (2j + 1)A;) + K*Aj4, =0 (B.165)

leading to

Aj(j =n)(1 +2j) = Bjik(l — 2j +n) (B.166)
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and
k(1 —2j+mn)
(J —n)(1+2j)

Forn=1and A; =1/2, B = —k/2 and

Aj = Bjn (B.167)

= [ (e - e - aFieas

_! / ’ (75 - ﬁ)emw —)(§ — ) F(&)d¢

2| B~ R
B cikR 4 ~
-5 (8% ((5 9% ) - kR) (8- €)(€ — ) ()
B cikR ~
- 575 ( [ (e 2 5 58 - 0l - F(eas

L /j MR(3_ £)(€ — @F(g)dg) - _26%5(2)(11 (z, a_g) k(2 F)).

On the other hand,

8 ; [ ik
L= [ e () Fleade = —¢ [ e (- ) Fleade, (B0

and thus

L =21 (B.170)

kR <% _ ﬁ) = 250 <zke kR _ 3 ((5 — Z)eR ,)) (B.171)
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the expression for I, becomes

i (P ar ik 1
[2:_E/a ek <ﬁ—ﬁ)F(§,e)d§
i Blo etk R .
B ke25(z)/a (a_g <(f‘z)7) — ike™ )(ﬁ—&)(&—a)F(ﬁ)df

i B eikR 0 ~
:—m< / (€= 2) = ((B—&)( — ) F(£))de

(B.172)
However
%((ﬁ—:“)(s—a)F(s» = —(E—)FO+B-OFE)+(B-E(E—a)F'(€). (B.1T3)

Also

z 1
L(z,e,F)=— / eFE-O R (&) de + / eFEAP(€)dE + €2 log €Ly + €Ly + HOT.
0 z
(B.174)

But

ik /0 TG g) (€ — a)F(€)de (B.175)
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and

1

[ ML (B~ )€ - P = MG - €)(€ - Q)

— ik / 2B — €)(€ — a)F(£)de = e* (B = 1)(1 — ) F(1)

(B 2)(z— a)F(z) — ik / KEA (3 )€ — a)F(€)de. (B.176)

I (z €, %_?) — ¢t (53— 1)(1 = @)F(1) — 28 — 2)(2 — a)F(2) — e*=afF(0)

— ik /0 k9 (B —&) (& — a)F()dE — ik / e (B — &) (€ — a)F(€)dE,

(B.177)

and since
2(8 — 2)(z — a)F(2) = 22(z — 1) F(2) — 262(B1z + a1 (1 — 2))F(2) + O(¢*), (B.178)

the expression for Iy <z, €, %—?) becomes

h(se gg) = =221 PG ik [ 96— )¢ - )P

— ik / e (B=8&)(E—a)F(§)dE + € log €Ly
+ €2 (Lo 4 262 (Brz 4 an (1 — 2))F(2) — e*1=2) 3, F(1) — %0, F(0)) + HOT.

(B.179)
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