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ABSTRACT 

 

The central challenge in post-genomic era is the characterization of biological 

functions of newly discovered proteins. Sequence similarity based approaches infer 

protein functions based upon the homology between proteins. In this thesis, we present 

the similarity relationship between protein sequences and functions for mouse proteome 

in the context of gene ontology slim. The similarity between protein sequences is 

computed using a novel measure based upon the local BLAST alignment scores. The 

similarity between protein functions is characterized using the three gene ontology 

categories. In the study, the ontology categories are represented using a general tree 

structure. Three ontology trees are constructed using the definitions provided in gene 

ontology slim. The mouse protein sequences are then mapped onto the trees. We present 

the sequence similarity distributions at different levels of GO tree. The similarities of 

protein sequences across gene ontology levels and traversing branches are studied. The 

posterior probabilities for correct predictions are calculated to study the mathematical 

underpinnings in evaluating the similarities between the protein sequences. Our results 

indicate that proteins with similar amino acid sequences have similar biological 

functions. Although the similarity distribution in each functional group across GO levels 

varies from one functional group to another, the comparison between distributions of 

parent and child groups reveals the strong relationship between sequence and function 

similarity. We conclude that sequence similarity approach can function as a key measure 
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in the prediction of biological functions of unknown proteins. Our results suggest 

that the posterior probability of a correct prediction could also serve as one of the key 

measures for protein function prediction. 
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CHAPTER I 

INTRODUCTION 

 

 

The accrual of sequence data including genomic sequences, transcripts, 

expression data [1] is primarily due to the effort started by U.S. Human Genome Project 

in 1990 [2]. The rapid advancements in the technology have accelerated the current speed 

of sequencing resulting in the accumulation of large amounts of information. This has 

created a bottleneck for a large number of genes which still remain uncharacterized i.e. 

they have no structural or functional notation [3]. 

The major problem that has baffled biologists in the post-genomic biology is the 

functional assignment of proteins: A large percentage of Open Reading Frames (ORFs) 

have unknown functions which unless resolved will not help biologists comprehend the 

capabilities of an organism [4]. The challenge is to use bioinformatics to help abridge the 

gap between the amount of sequence data and the functional annotation. Comparative 

sequence analysis tools are used for the detection of functional regions in genomic 

sequences.  

 

1.1    Comparative Methods 

The Comparative methods have become an important tool to study the protein 

sequences. Proteins are composed of amino acids which can be aligned and compared to 

other protein sequence(s) [5]. 
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The computational tools based on sequence homology -- BLAST, PSI BLAST, 

are widely used for the functional annotations of genes in newly sequenced genomes [6]. 

In sequence similarity-approach the functions of a query protein are deduced from those 

of homologous proteins of known functions obtained from database searches. The 

sequence similarity approaches for these proteins are based on the assumption that they 

are functionally linked. The hypothesis is that the evolution of proteins with similar 

functions occurs in a correlated fashion and therefore the homology is present in the same 

subset of organisms [7]. There are varieties of sequence similarity algorithms that can 

find the regions of similarity between protein sequences.  

 

1.1.1 Smith-Waterman Algorithm 

Smith-Waterman is one of the most popular local sequence alignment schemes to 

determine the similarities between the regions of the query sequence and a sequence 

database (proteins or nucleotides). In 1981 Temple Smith and Michael Waterman 

proposed this algorithm [8] based on dynamic programming technique which is 

guaranteed to find an optimal local alignment between two sequences corresponding to 

the scoring system being implemented (Substitution Matrix or Gaps Scoring). It identifies 

the maximal homologous sequences among the protein sequences being compared. These 

protein sequences can be of any length, at any location. The amino acid chains (in case of 

proteins) or nucleotides are taken as a string and character by character comparison is 

done. Relative weights are assigned to these character-to-character comparisons. If an 

exact match is found (“hit”) or if a substitution is done a positive weight is assigned to 

that comparison or else if an insertion or deletion operation is performed a negative 
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weight is assigned to the comparison. These scores are arranged in the weight matrices 

where they may be added together and the highest scoring alignment is reported.  

 

1.1.2. Basic Local Alignment Search Tool 

BLAST, a heuristic search algorithm, approximates the Smith-Waterman 

algorithm is used to compare amino acid sequences of different proteins or the 

nucleotides of Deoxyribonucleic acid (DNA) sequences [9, 10]. 

The BLAST then compares a query sequence (protein or nucleotide) and a 

sequence database (protein database or nucleotide database) and identifies the database 

sequences that resemble the query sequence above a certain threshold. The main idea 

behind BLAST’s operation is that given a pair of sequences, algorithm will try to match 

small fixed length W between the query and sequences in database and will try to extend 

this length in both directions. Using this way it identifies regions of local alignment in the 

query sequence similar to subsequences in database and label them as High Scoring Pairs 

(H.S.P.) [10]. These regions of high sequence similarity are assigned some scores based 

on the scoring system used and statistically significant alignments are displayed to the 

user. These alignments can further be studied and with the help of statistical concepts and 

inferences can be drawn.  

 

1.2 Gene Ontology 

The genetic information of a cell is carried by Deoxyribonucleic Acid (DNA) and 

it consists of thousands of genes. Genes are the working subunits of DNA and encode 

instructions on how to make proteins [11]. The Gene Ontology (GO) provides a 



 4 

controlled vocabulary to describe gene and gene products in an organism. The three 

organizing principles of GO are - biological process, cellular component and molecular 

function [12]. A gene or a gene product may be associated with one or more cellular 

processes; active in biological process and perform molecular function. A cellular 

component is a part of the cell, either an anatomical structure or a gene product. A 

biological process refers to events attained by a single unit or assembly of molecular 

functions. Molecular function describes the activities occurring at the molecular level. 

The terms in these ontology are organized in a Directed Acyclic Graph (DAG) and linked 

by two relationships, 'is a' and 'part of'. DAG is also referred to as a rooted tree (tree with 

a root). Gene Ontology Browser can be used to describe this tree like structure. 

 

Figure 1.1. View of GO:0007610 using Gene Ontology Browser 
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For example GO:0007610 represent the behavioral response to stimulus, assigned 

to biological process and textual definition for this GO terms is "The specific actions or 

reactions of an organism in response to external or internal stimuli. Patterned activity of 

a whole organism in a manner dependent upon some combination of that organism's 

internal state and external conditions.” GO slim is a cut down vocabulary provided by 

GO ontologies. GO slim contains a subset of terms in the whole GO [13]. GO slims are 

created by users according to their needs and provides a brief overview of ontology 

content without going into specific fine grained specifications. 

A wide variety of ontology based searches have been designed to annotate 

sequences on a large scale. Vinagayam [14] used support vector machines for the 

assignment of molecular function GO terms to uncharacterized cDNA sequences and to 

define a confidence value for each prediction. cDNA sequences were annotated to GO 

and these sequences were then used to train a Support Vector Machine (SVM) classifier. 

The nucleotide sequences were searched against GO-mapped protein databases and 

significant hits were recorded. Each GO-term obtained was either labeled as correct (+1) 

or incorrect (-1) by comparing it with original annotation. BLAST results were associated 

as "features" with these samples. The classifier was trained with this data to predict the 

function of unknown sequences. This automated annotation system resulted in the large 

scale cDNA functional assignment, to achieve a high-level of prediction accuracy without 

any manual intervention.  Zehetner [15] worked on the OntoBlast to predict the potential 

functions for an unknown sequence by presenting a weighted list of ontology entries 

associated with similar sequences from completely sequenced genomes identified in 

BLAST search. It then finds information regarding the potential functions. The functional 
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annotation of the sequences provides an insight to the processes in which a gene may be 

involved .  Xie et al's [16] GO engine combines homology search with text mining. 

Schug [17] developed rule-based systems based on the intersection of GO terms that 

contain protein domain at different similarity levels. The appeal of these approaches is 

that they can directly assign a biological meaning to an uncharacterized protein sequence. 

However, matching sequences do not always infer similar functions [4].  

 

1.3 Chromosome (Mus Musculus) 

           In this thesis, we investigated the degree of overall similarity of protein sequences 

from Chromosome 1 (Mouse) in each functional group defined by GO terms. Mouse 

(Mus musculus) is a common rodent, closely related to the rat. The mouse has been a 

major organism, for research purposes to study basic biology, on which extensive works 

have been done to sequence its genome. The genome of Mus musculus was the second 

mammalian genome to be sequenced whose complete draft entered the public nucleotide 

sequence repositories in 2002. It has 19 chromosome pairs, 1 X and 1 Y chromosomes 

which can be viewed with the help of Ensembl tool [18]. 

            Ensembl project came into being with the collaborative efforts from EMBL - 

European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI). 

The main task was to develop a software system which could produce and maintain an 

automatic annotation on selected eukaryotic genomes.  
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Figure 1.2 Exploring the Mus Musculus genome using Ensembl site tool 

 

1.4 Overview of Thesis Work 

In this thesis, we investigated the mathematical underpinnings of an automated 

sequence annotation approach based on sequence similarity and gene ontology. In the 

Chapter I we revised the basic concepts of biology and bio-informatics relevant to the 

area of this research study. In Chapter II - materials and methods, we studied the degree 

of similarity of protein sequences in each functional group defined by a GO term, using 

the protein sequences from chromosome 1 of Mus Musculus. The dataset (protein 

sequences for chromosome 1 for Mus Musculus) was downloaded from European 

Bioinformatics Institute (EBI) website [20], gene ontology file from gene ontology 

consortium [12] and alignment tools from National Center for Biotechnology Information 
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(NCBI) [9]. In chapter III - results and discussion, PERL scripts were processed and 

parsed to get the distribution of similar pairs for the three ontologies - namely biological 

process, molecular function and cellular component. We studied the degree of similarity 

of protein sequences in each functional group defined by a GO term, using the protein 

sequences from chromosome 1 of mouse. We explored the structures of the three 

ontologies - biological, cellular and molecular category and re-evaluate the hypothetical 

assumption - similar biological sequences implies similar functions. We used a novel 

measure of overall similarity between protein sequences based on the results of local 

BLAST alignments [19].  

We also examined the effects of the levels of GO terms on the degree of similarity 

and also discussed the sequence similarity distribution at different levels of GO tree. 

Similarity distributions of sequence pairs were also analyzed for each of molecular 

function, biological process and cellular component ontologies branch-wise. To analyze 

and predict the plausible potential relationships of similar sequences we computed the 

posterior probability of the hypothesis - probabilities of the A and B having similar 

functions after it is known that both A and B have similar sequences.  
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CHAPTER II 

MATERIALS AND METHODS 

 

This chapter addresses the strategies and operations used and implemented in our 

studies. Mouse (Mus musculus) has been an important organism in biology and medicine 

for research purposes. Sequence similarity approach, in particular Smith-Waterman 

algorithm was proposed by Temple Smith and Michael Waterman in 1981. A more faster 

and popular algorithm which approximates Smith-Waterman is Basic Local Alignment 

Search Tool (BLAST) was developed by Stephen Altschul, Warren Gish, David Lipman, 

which primarily compares biological sequence information.  

 

2.1.      Dataset (Chromosome 1 of Mus Musculus) 

            The protein sequences for first chromosome of mouse (Mus Musculus) were 

downloaded from the (EBI - UNIPROT format) [20] in May, 2006. Each line of an 

experiment entry in the file begins with a two character line code (identifier) which 

suggests the type of information contained in the line. The identifiers and the information 

they suggest are shown in the Table 2.1.  

Table 2.1 Information contained in UniProt flat file [20] 

 

Code 

 

Meaning 

 

Description 

 

ID Identification Contains identifying information and characteristics of the 

sequence. 
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Table 2.1 Information contained in UniProt flat file [20] 

DT Date When the entry was created, or when the sequence or 

annotation was modified. 

DE Description The gene(s) that code for the protein. 

GN Gene name(s) The organism from which the sequence is derived. 

 

OS Organism species If the sequence is non-chromosomal in origin. 

 

OG Organelle The taxonomic class to which the organism belongs. 

 

OC Organism classification The NCBI TaxID for the OC line. 

 

OX Taxonomy cross-

reference(s) 

The sequential number of the literature citation within the 

entry. 

RN Reference number Bibliographic cross-reference, such as PubMed ID. 

 

RX Reference cross-

reference(s) 

Authors of the citation. 

 

RA Reference authors Title of the citation. 

 

RT Reference title Source of the citation, such as journal, book, or unpublished 

data. 

RL Reference location Free text notes about the protein. 

 

CC Comments Pointers to sources or related information for the entry. 

 

DR Database cross-

references 

Annotation of specific residues of the sequence. 

 

FT Feature table Marks the beginning of the sequence and provides summary 

data. 

SQ Sequence header The sequence itself. 

 

(no 

code) 

Sequence data End of entry. 

 

// Termination line  

 

 

UniProt dataset was picked up [20] for this thesis as it comes along with a lot of 

information related to any particular protein other than the amino acid sequences 

comprising it.  

Table 2.2 List of unique proteins for each chromosome pair (Mus Musculus) 

Genome component Length (bp) Number of unique proteins 
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Table 2.2 List of unique proteins for each chromosome pair (Mus Musculus) 

Chromosome 1 197069962 1870 

Chromosome 2 181976762 3709 

Chromosome 3 159872112 1547 

Chromosome 4 155029701 2811 

Chromosome 5 152003063 1869 

Chromosome 6 149525685 1728 

Chromosome 7 145134094 2583 

Chromosome 8 132085098 1565 

Chromosome 9 124000669 1780 

Chromosome 10 129959148 1450 

Chromosome 11 121798632 3367 

Chromosome 12 120463159 1088 

Chromosome 13 120614378 1179 

Chromosome 14 123978870 1177 

Chromosome 15 103492577 1178 

Chromosome 16 98252459 1017 

Chromosome 17 95177420 1580 

Chromosome 18 90736837 773 

Chromosome 19 61321190 1063 

Chromosome X 165556469 1378 

Chromosome Y 16029404 38 

             

UniProt sets for 19 chromosome pairs, 1 X and 1 Y pair were taken and base pairs 

(bp) per chromosome and number of unique proteins in each of them were listed in Table 

2.2 above. Two nucleotides on opposite complementary DNA or RNA strands that are 

connected via hydrogen bonds are called base pairs. Chromosome 1 has the largest length 

(bp) so it picked up for this thesis. There were 1870 protein sequences in the first 

chromosome.  

 

 

Figure 2.1 Chromosome 1 using Ensembl site tool 

 



 12 

2.2.      Sequence Similarity Approach 

There are varieties of sequence similarity tools that align the amino acid sequence 

pairs (from two different proteins) and find the regions of high similarity scores between 

them. Local or global alignments are the two main approaches to compute the regions of 

high similarity between sequence pairs. Global alignment approach aligns the entire 

amino acid sequences between the pairs. By contrast, local alignment scheme identifies 

the similar regions within the long sequences thus increasing the chances of getting more 

number of similar regions as compared to former method which tries to globally optimize 

the entire sequence over the other [21]. 

Smith-Waterman is one of the most popular local sequence alignment schemes to 

determine the similarities between the regions of the query sequence and a sequence 

database (proteins or nucleotides). 

This algorithm is based on the dynamic programming approach, which finds the 

solutions to the smaller chunks of a problem and combines them on the whole to find a 

complete optimal solution to the problem. It recursively performs the local alignment 

comparison on the segments of all possible paths and picks up the one which has the 

maximum similarity score as an optimal solution until a threshold has been reached. 

Based on the above calculations, character-to-character comparison is done and scores or 

weights are assigned to each comparison. It’s positive for exact matches/substitutions, 

and negative for insertions/deletions. A weight matrix is build, scores are added and 

highest scoring alignment is reported. 

This technique is more sensitive and superior as compared to BLAST and FASTA 

as it does pair wise comparisons which results in covering large number of possibilities 
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but the time taken to run this algorithm is higher as compared to the other two. This 

explains the popularity of the BLAST algorithm.  

For example, there are two nucleotide sequences A = a1 a2 a3 ….. an and B = b1 b2 

b3 ….. bm. s (a, b) denotes the similarity between sequence elements a and b. Wk denotes 

the deletions of length k. A matrix H to find pairs of segments with high degrees of 

similarity is set up 

Hk0 = H0l = 0 for 0 ≤  k ≤  n and 0 ≤  l ≤  m 

Hij is the maximum similarity of two segments ending in ai and bj respectively is 

calculated from the equation [22] 

       ij i-1, j-1 i j i-k, j k i, j-1 1H = max {H + s(a , b ), max{H - W }, max{H  - W }, 0}                    (Eq. 2.1)  

Where, 1 ≤  i ≤  n and 1 ≤  j ≤  m 

The calculation of Hij from equation 2.1 considers the following possibilities for ending 

segments at any ai and bj. 

1) If ai and bj are associated, then new score is the previous score plus the similarity 

scores for the two residues.  

Hi-1, j-1+ s (ai, bj) 

2) If ai is at the end of a deletion of length k, the similarity is 

Hi-1, j-WK 

3) If  bj is at the end of a deletion of length l, the similarity is 

Hi-1, j-Wl 



 14 

4) Finally, a zero is included to prevent calculated negative similarity, indicating that 

no similarity up to ai and bj. 

Noticeably, we are transforming one string into another string by performing 

certain operations on the individual characters that make up that string. So similarity 

between two strings can also be defined as “the value of alignment between the two 

strings that maximizes the total alignment value (highest score)” 

Here’s an example to show the implementation of the Smith Waterman algorithm 

more clearly [23]. Suppose there are two nucleotide sequences which are to be compared 

against each other 

 

Sequence 1: CAGCCUCGCUUAG 

Sequence 2: AAUGCCAUUGACGG 

Scores are derived from a simple similarity matrix, values chosen are: 

→  Match = +1 

→  Mismatch = -
1

3
 

→  Gap = -1+
1

3
×  k (k = extent of gap, number of residues included in the gap) 

A similarity matrix is build up with all cell values = 0 and to ensure that a new 

alignment path can start at any point the scores are not allowed to fall below 0. Values are 

updated in the cell based on the value of the cell plus the highest value in sub row, sub 

column or direct diagonal while keeping the gap penalties in account. These values can 

rise, fall or stay same. The value in any cell is the highest score for an alignment of any 

length ending at that cell.  
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Figure 2.2 Matrix Hij generated after applying the algorithm [23] 

In the above example the alignment is obtained contains both a mismatch and an internal 

deletion. 

G-C-C-A-U-U-G 

G-C-C-*-U-C-G 

However, the Smith-Waterman algorithm is fairly demanding of time and memory 

resources: in order to align two sequences of lengths m and n, O (mn) time and space are 

required. In the next section we will be discussing about another comparison algorithm 

popularly known as BLAST. 
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2.3       Basic Local Alignment Search Tool Algorithm 

Basic Local Alignment Search Tool (BLAST), an approximation of Smith-

Waterman algorithm searches for high scoring sequence alignments between the query 

sequence and the database of sequences. BLAST works in three major steps [24, 25, 26,]: 

1) Compile list of high-scoring strings (words) - BLAST filters out low complexity 

regions from the query sequence and compiles a list of high-scoring words which 

consists of all words with ‘w’ characters that scores at least ‘T’ with some word in 

the query sequence. BLAST uses a scoring matrix (described below - BLOSUM 

62 is by default for amino acids) to determine all matching words with high scores. 

A Low complexity and small threshold score may result in reporting of large 

number of statistical significant but biologically un-interesting results. The values 

above a certain threshold are taken. There can be a tradeoff between speed and 

sensitivity at this stage: higher threshold gives greater speed but might miss 

biologically significant results [27]. 

2) Search for hits - In the second step BLAST searches through the target sequence 

database for exact matches to the word list generated either using a hash table or 

finite state machine. Finite state machines are used are used to calculate state 

transition table that tells what state to go is based on the next character in the 

sequence. If a match is found, it is used to seed a possible alignment between the 

query and the database sequences.  

3) Extend seeds to obtain segment pairs - In third step, BLAST method tries to 

extend the alignment from these matching words in both directions as long as 

score increases. The resulting segment pairs are called High Scoring Pair (H.S.P).  
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BLAST determines whether each score found by one of the above methods is 

greater in value than a given cutoff score S [27, 28]. The maximal scoring pairs, or MSPs, 

from the entire database are identified and listed. Consequently, BLAST finds out the 

statistical significance of each score, initially, by calculating the probability that two 

random sequences, one the length of the query sequence and the other the length of the 

database could produce the calculated score. When the expectation value for a given 

database sequence is satisfied a match is reported. Typically the expect value is between 

0.1 and 0.001. 

 BLAST search of the sequence database may result in many alignments and it 

becomes hard to distinguish between significant alignments and potential random 

matches. BLAST provides information about: raw scores, bit scores and E values. The 

raw score for a local sequence alignment is the sum of the individual scores making up 

the MSP. Because of differences between scoring matrices, raw scores are not necessarily 

comparable. Bit scores, however, can be compared, since they take into account the scale 

or log base of the scoring matrix λ ) and the scale of the search space size (K), and can be 

expressed as:                                

                               S’=
ln2

lnS K−λ
 

The expectation, or E value, corresponding to a given bit score is E =
S

nm
−

×× 2 , where n 

is the length of the query sequence and m is the length of the database sequence. Given 

that the score of the best local alignment (MSP score) is the maximum of scores of many 

independent alignments, the probability of observing a score S greater than or equal to 

certain given threshold when comparing two random sequences is given by extreme value 
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distribution. For certain conditions, this can be rearranged to express the probability that 

a pair wise alignment with score S could have been obtained by chance. Poisson 

distribution can be used to find out the probability of observing a particular score in a 

database of sequences. Expectation value for the Poisson distribution is given by E = 

S
Kmne

λ−  [27, 28] and describes the probability that a score as high as the one observed 

between two sequences will be found purely by chance. E- values provide an estimate of 

the number of alignments one would expect to find with a score greater than or equal to 

that of the observed alignment in a search against a random database of the same 

composition. An E value greater than 1 indicates that the alignment probably has 

occurred by chance, and that the query sequence has been aligned to a sequence in the 

database to which it is not related. E values less than 0.01 are typically taken to represent 

biological significance [29, 30]. 

2.3.1.   Scoring Matrices 

            BLAST tool conducts a local similarity search between a target query sequence 

and a sequence database. It assigns a weight to all relative relationships between different 

amino acids in a protein sequence based on a match or a mismatch in the form of a 

scoring matrix. A two dimensional matrix is used to model a match or a mismatch 

between all pairs of amino acids. The two most used and popular matrices are the Block 

Substitution Matrix (BLOSUM) [Henikoff and Henikoff, 1992] [31] and Point Accepted 

Mutation (PAM) [Dayhoff and Schwartz, 1978 [32]. The BLOSUM matrix assigns a 

probability score, 'P' for each position in an alignment based on the frequency with which 

the substitution occurs within conserved blocks of related proteins. PAM is based on the 
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Markov model where change of amino acid at a particular site is assumed to be 

independent of previous mutation.       

Blocks Substitution Matrix (BLOSUM)   

It was developed by Heinkoff and Heinkoff and is based on the extraction of 

conserved ungapped segments called “blocks” from a set of locally aligned protein 

sequences. Local alignments can be represented as ungapped blocks with each row a 

different protein segment and each column an aligned residue position. 

A blocks database contains numerous aligned ungapped segments corresponding 

to highly conserved regions of proteins. They are used to search for differences among 

sequences of the much conserved regions of a protein family i.e. BLOcks SUbstitution 

Matrix (BLOSUM) [33]. After all the sequences were collected in the blocks database, 

then for each one the sum of the number of amino acids in each site is collected to get a 

frequency table of how often different pairs of amino acids are found together in these 

conserved regions. For example, BLOSUM62 can be used to represent a block which has 

more than 62% identity in the gapped sequence alignment. BLOSUM 62 is the default 

matrix for the BLAST program.  

All the sequences of amino acids are collected in the BLOCK database and then 

for each one the number of amino acids in each site is summed up to get a frequency 

table  ( i jq , i, j =1, …, 20) which represents the number of times different pairs of amino 

acids pairs are found together in these conserved regions. Hence the observed frequency 

of occurrence of one amino acid is [34]  
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1

2
    ij ii ij

i j

qp q
≠

×= + ∑  

pij represents the expected probability of occurrence of the i
th

 residue in an (i, j) pair. 

Frequency of the given pairs can be given as: 

2   ,      (  )ij ie p if i j like comparisons= =  

 and  

   2 ,    (  )ij i je p p if i j unlike comparisons= × × ≠  

Where pi, pj represents the number of times the residue i, j was observed in the column 

respectively. 

The odds matrix is given by 2  2 log  ( )  ij ij ijs q e÷= ×  after taking the logarithm 

of the odd matrix. Where, sij = 0 represents that there are no differences between the 

observed and expected number of pairs of amino acids. ijs < 0 represents if the observed 

number of pairs of amino acids are less than the expected and if the observed is greater 

than the expected then ijs > 0. 

Scores are populated in the form of two dimensional matrixes where the relative 

similarity and dissimilarity between the pairs of amino acids in the query sequence and a 

sequence database are reported on the basis of percentage of similarity of the amino acids 

in the groups. For example, BLOSUM62 matrix is calculated from the protein blocks 

only if the two sequences are more than 62% identical. The standard substitution matrix 

for BLOSUM62 contains the score for all possible exchanges of one amino acid with 

another [35] is show below.  
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Figure 2.3 Standard substitution matrix for BLOSUM62 

There are many levels to score proteins which are less divergent as compared to 

others which are more divergent. For distant related protein sequences BLOSUM45 can 

be used. For closely related sequences BLOSUM80 matrices can be used. BLOSUM50, 

BLOSUM62 and BLOSUM80 are few of the different levels of the BLOSUM matrix 

scoring system that can be implemented to assign different weights to similarity between 

two sequences. BLOSUM62 is the default for BLOSUM and studies have shown it to be 

the best for detecting weak protein similarities [36]. So for this thesis BLOSUM62 

scoring system was chosen as a substitution matrix for sequence alignment of proteins.  

 

2.3.2.   Bl2seq 

BL2seq works on the BLAST algorithm and performs a comparison between the 

two sequences using either the blastn or blastp program [37, 38, 39]. Both sequences 
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must be either nucleotides or proteins. Input to the bl2seq is two sequences files (either 

nucleotides or proteins) which are in the FASTA format. Typically the command to run 

Bl2seq from the command line is as follows: 

 
b l 2 seq   - p    - i    - j   - o   

 

 

  Table 2.3 bl2seq options (cited from NIH website) 

Option Definition  Type  Default  

-i First sequence.  [File In]    

-j Second sequence.  [File In]    

-o Alignment output file.  [File Out]  stdout  

-p Program name: blastp, blastn, blastx, tblastn, tblastx. For 

blastx, the first sequence should be nucleotide; for tblastn, 

the 2nd sequence should be nucleotide.  

[String]    

  

 

Bl2seq Results 

            Statistically significant alignments are stored and result values are reported in 

following way [40]: 

• Score: It is calculated by summing the scores for each aligned position of the 

amino acid and deducting the penalty of the gaps.  

• Expect: It estimates the statistical significance of the match, specifying the 

number of matches within a given score that are expected in a search of a 

database of this size absolutely by chance.  
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• Positives: The number and fraction of residues for which the alignment scores 

have positive values. 

• Identities: Number and percentage of exact residue matches. 

Gaps: Positions at which a letter is paired with a null are called gaps.  

 

However, to encompass the overall similarity of two protein sequences in terms of 

functional, structural or evolutionary relationships is not obvious. For example, proteins 

from the same domain with a certain similarity score might be more dissimilar as 

compared to proteins from two different domains (based on the similarity scores 

comparison). In this study, we employed the alignment technique to blast two protein 

sequences so to obtain the similar regions with a certain statistical significant score, also 

known as regions of optimal sequence alignments.  If there are n regions having scores 

1{ , .....,  } nR R of statistical significance, we use the following score to compute the 

overall similarity of two sequences. 

                                            ln  - i

i

pS = ∑                                                          (Eq. 2.2) 

Where S is overall similarity score, ip  is the probability of finding high-scoring 

segment pair with a local alignment score of at least Si i.e. 1- i
i

Ep e−
=

 
and iE  is 

expected number of H.S.P.’s of score at least Si. Assuming that the H.S.P.’s are 

independent of each other, the p-value can be given as Sp e−
= , probability of finding a 

pair of protein sequences with a list of scores at least 1{ ,  . . . . . ,  }  nR R . We use p-

values and E-values to represent the significance of the alignment between a pair of 

protein sequences. p-values and E-values are same when they are small. For convenience 
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we will use p-values for our study. bl2seq (v. 2.2.14) alignment tool was downloaded 

from NCBI website and implemented with a BLOSUM62 scoring system with all default 

parameters. PERL scripts were written to parse the protein sequences and blast them 

against the protein sequences from chromosome 1. Results were stored in the text files 

which were easy to work with. 

The GO terms for which the proteins from chromosome 1 were annotated and 

also which have their definitions in GOSlim were stored in a tree like structure for each 

of the three gene ontologies.  

 

2.4. Gene Ontology 

Gene ontology consortium started the gene ontology project which provides a 

controlled vocabulary for the consistent description of gene and gene product attributes 

for any organism. It encompasses broadly three roles: 

• First, the development and maintenance of the structured vocabularies (ontologies) 

themselves. 

• The annotation of the gene products which includes the association between the 

ontologies and the genes and gene products. 

• Development of tools that can help in the making, maintaining and using 

ontologies. 

The Gene Ontology (GO) project describes the gene products in terms of three 

structured controlled vocabularies (ontologies) namely biological process, cellular 

component and molecular function. The GO terms are the building blocks for GO and are 

represented by an unique alphanumerical identifier in the form ‘GO:XXXXXXX’, a term 
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name, synonym, and a definition. GO terms are then classified into one of the three 

ontologies and structured as a DAG. Each GO term has got a definition, association with 

one of the three ontologies, along with a relationship identifier which describes the term’s 

relationship (parent-child) with other GO terms. The consortium updates the ontology 

frequently on the monthly basis [41]. If it is decided by the consortium that a GO term is 

not appropriate then it is marked as obsolete. GO terms can also be represented using the 

GOSlim which are the cut down version and subset of the gene ontology. The GOSlim 

depicts a broader overview of the content of ontology without going into details of 

specific grained terms [42]. GO slims are created by users according to their experimental 

needs, purposes. The terms are represented as nodes and arcs the different relationships. 

These relationships can be used to draw tree like structure where child nodes can be 

derived from the root node or they are the part of their parent node. GOSlim has a tag-

value format to represent the definitions of the GO definitions file. The tag “id:” denotes 

a unique GO id assigned to a term. This GO term is then recognized by this name only. 

“name:” tag denotes the respectively ontology that a GO id belongs to [42]. It can be any 

of the three ontologies. “def:” tag gives a formal definition for that GO id. The tag 

“subset” describes the gene ontology of the organism from where this GO id is taken. GO 

terms are classified according to their levels which corresponds to the depth it has in the 

Gene Ontology tree and their defined functions. This tree like structure is actually an 

acyclic diagraph which represents the parent-child relationship between various GO 

terms. GOSlim definition file was downloaded from [42] (format-version: 1.0 dated: 

21:12:2006 19:30). PERL scripts then parsed out to annotate protein sequences for 

biological process, molecular function and cellular component ontologies. 
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2.5. Perl 

There are many languages like Java, C, FORTRAN, MATLAB etc. which can be 

used to write bioinformatics applications. In our thesis we used Practical Extraction and 

Report Language (PERL) [43] because of the following reasons.  

• Protein sequences and other biological data is stored in enormous databases and 

text files. PERL with its high capability of recognizing string patterns simplifies 

the processing and analysis.  

• It takes far less programming time to extract data with PERL than with C or with 

Java. 

• It is an excellent scripting language for text analysis. The built-in operators make 

the searching, replacing and pattern matching effortless.  

• PERL is easy to install and requires very less space to install the libraries.  

• PERL has the portability of an interpreted language while achieving nearly the 

speed of a compiled language. 

• “Techniques" such as "fast CGI", keeps the frequently accessed CGI script in 

memory for repetitive execution [44]. This avoids this startup latency, except on 

the very first execution of a script.  
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CHAPTER III 

RESULTS AND DISCUSSIONS 

 

 

The UNIPROT protein sequences data set for M. Musculus (chromosome 1) was 

downloaded from EBI website [20]. There were 1870 protein sequences contained in it. 

The protein sequences were annotated to GO terms for each biological process, molecular 

function and cellular component ontology. In total there were 130 GO terms defined for 

the three ontologies in GO slim file downloaded from GO consortium website. 

GOSlim has 52 GO terms definitions in total for biological process ontology, 41 

GO terms definitions for molecular function ontology, 37 GO terms definitions for 

cellular component ontology. The next task was to calculate the actual number of GO 

terms from these 130 GO terms for which protein sequences (1870 from chromosome 1) 

were annotated (Table 3.1). There were 449 protein sequences (24.01 % of protein 

sequences of chromosome 1) annotated with 29 molecular functions terms, 398 protein 

sequences (21.28 % of protein sequences of chromosome 1) were annotated for 21 

cellular component terms and 191 protein sequences (10.21 % of protein sequences of 

chromosome 1) annotated for 26 biological process terms.  

Tables 3.1 Annotated protein sequences distribution for GO slim 

Protein sequences annotated to GOSlim 

tree 

 

(Number) (Percentage) 

Ontologies associated with 

protein sequences 

Molecular function 449 449/1870 = 24.01 % 29 
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Tables 3.1 Annotated protein sequences distribution for GO slim 

Cellular component 398 398/1870 = 21.28 % 21 

Biological process 191 191/1870 = 10.21 % 26 

 

Table 3.2: GO terms for three ontologies for which protein sequences were annotated  

 

From the above Table 3.2 we can see that there are 76 GO terms (29 + 21 + 26) 

being actually used from 130 (total number of GO terms in GOSlim). However, the pre-

requisite for the construction of a GO tree is that for any ontology corresponding to a 

child GO node we must have definitions for the parent GO node. 
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For example: In Biological process there are proteins annotated for GO:0007582 

which is a child of GO:0008150 as can be seen from “is_a” identifier in GO:0007582 

definition (Table 3.1) given below. However there are no proteins annotated directly to 

GO:0008150 although its definition is given in GOSlim file. So to build a GO tree for 

biological process we have to include definitions both for the GO:0008150 and 

GO:0007582. However this assumption is not valid vice versa. The definition for 

GO:0008150 can be viewed from Figure 3.1. 

 

Figure 3.1 Definition for GO:0008150 in GO slim 
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GO:0008150 is the root node defined for the biological process as can be seen 

from its “name:” identifier. GO:0007582 is a child of GO:0008150 and represents the 

physiological process branch. 

 

 

Figure 3.2 Definition for GO:0007582 in GO slim 

All parent-child GO groups relationships were identified for biological process, 

molecular function and cellular component ontogloies for which protein sequences (from 

chromosome 1) were annotated. GO trees corresponding to each of these three ontologies 

were built. GO terms were classified according to their levels which corresponds to the 

depth it has in the Gene Ontology tree. GO terms are defined along with their functions, 

parent (if any). 

More specifically ontology can be viewed in a simple tree like structure separately 

for each of the ontologies. The depth of the tree represents the GO level. As seen from 

Figure 3.3 (next page) molecular function ontology tree have 31 nodes and 5 GO levels 
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with the root node being GO: 0003674. In the molecular function, the GO: ID – 0003674, 

has 9 child nodes. It represents the elemental activities, such as catalysis or binding and 

describing the actions of a gene product at the molecular level.  

 

Figure 3.3 GO tree (GO slim) for molecular function 

At level 3 there are maximum GO: ID’s –11, which indicates that this level has 

the maximum number of functionalities for Molecular function ontology. A given gene 

product may exhibit one or more molecular functions.  
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The Biological function Gene Ontology tree, as seen from Figure 3.4, has 6 levels 

and a total of 38 GO terms. The root node is at GO: 0008150. GO: 0008150 denote a 

phenomenon which is marked by changes that lead to a particular result, mediated by 

 

Figure 3.4 GO tree (GO slim) tree for biological process 
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one or more gene products. The first level has 1 node, second has 6 nodes, third level has 

12 nodes, fourth level has 9 nodes, fifth level has 7 nodes and sixth level has 3 nodes 

respectively. This means that Biological function ontology has the maximum number of 

nodes at the third level. 

Similarly for cellular component ontology GO tree (Figure 3.5) we see that there  

 

Figure 3.5 GOSlim tree for cellular component 
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are 40 nodes (GO terms) and 6 GO levels. The root node40 nodes (GO terms) and 6 GO 

levels. The root node is at GO:0005575; 11 nodes at level 5; 8 nodes at level 4; 15 nodes 

at level 3 and 4 nodes at level 2. 

GO: 0043226 lies at the second level have the highest number of child nodes (10). 

It has got the highest number of subclasses. It represents an organized structure of 

distinctive morphology and function. This includes the nucleus, mitochondria, plastids, 

vacuoles, vesicles, ribosomes and the cytoskeleton. It excludes the plasma membrane. 

For the cellular second level the maximum number of nodes (GO terms) are at the third 

level.  

The local sequence alignments were performed for all-to-all pair-wise annotated 

proteins using alignment tool downloaded from NCBI for blasting two sequences. The p-

values were calculated to determine the overall similarity of two protein sequences on 

(Eq. 2.1). The p-value distributions for the protein sequence pairs over certain intervals 

(p∈[0, 1]) are shown in Table 3.3.  

Table 3.3 p-value distribution for annotated protein sequence pairs 

  Percentage of pairs 

p-value range Percentage of pairs 

Biological 

process 

Molecular 

function 

Cellular 

component 

[1, 10
-1

) 89.2158 88.2447 89.2290 89.4219 

[10
-1

, 10
-2

) 6.9106 6.0292 7.0285 6.963 

[10
-2

, 10
-3

) 1.7165 1.3998 1.7658 1.7265 

[10
-3

, 10
-4

) 0.5629 0.4574 0.5538 0.5987 

[10
-4

, 10
-5

) 0.2134 0.1433 0.1998 0.2468 

[10
-5

, 10
-10

) 0.2974 0.2315 0.2645 0.3544 

[10
-10

, 10
-15

) 0.0824 0.0276 0.0686 0.1127 

[10
-15

, 10
-20

) 0.0450 0.0441 0.0308 0.0633 

[10
-20

, 10
-50

) 0.2589 0.7165 0.1969 0.2329 
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Table 3.3 p-value distribution for annotated protein sequence pairs 

[10
-50

, 10
-100

) 0.4618 2.1383 0.4514 0.0899 

[10
-100

, 0] 0.2352 0.5676 0.2108 0.1899 

 

In Table 3.3, the second column represents the p-value of protein sequence pairs 

from chromosome 1; third column depicts the p-value distribution of protein sequence 

pairs annotated for biological process, fourth column for molecular function, and fifth 

column for cellular component. We can clearly see that p-value distribution of protein 

sequence pairs for the three ontologies (third, fourth and firth columns) is quite similar 

with the p-value distribution of total number of annotated proteins (second column), 

indicating that protein sequences annotated for the ontologies is a representative sample 

set of sequences from chromosome 1. More than 88% of the sequence-pairs lies in the 

first interval indicating that majority of the pairs are not similar. Only about 5.7% of the 

sequence pairs have p-values less than 0.01.  

 

Figure 3.6 Number of GO groups at different levels of ontologies 
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The distribution of sizes of GO groups across GO levels were also studied (Figure 

3.6). We see clearly that the GO groups in all the three ontologies namely; molecular 

function, cellular component and biological process populate the third level of the 

ontologies. Molecular level has the maximum GO groups - 11 at the third level, the 

biological process has the maximum GO groups - 12 at the third level and the cellular 

process has the maximum GO groups -15 at the third level. 

Figure 3.7 (below) depicts the distribution of number of proteins at different 

levels of ontologies. We see that in all three GO categories the average size of the GO 

groups decreases in most of the cases as their level increases. 

 

Figure 3.7 Number of proteins across different GO levels 

The numbers of proteins for molecular process, biological function and cellular 

component decreases down. The first level represents the root node, and the subsequent 

nodes represent the child nodes. The highest numbers of proteins, 449 are in the 
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molecular process, followed by cellular component which has 398 proteins and 191 being 

in the biological function.  

            Table 3.4 depicts the p-value distribution of protein sequence pairs for annotated 

for molecular function ontology GO terms at different levels.  

Table 3.4 p-value distribution of sequence pairs annotated for molecular function 

 GO levels 

p value range 1 2 3 4 5 

log p <= 0 100.0000 100.0000 100.0000 100.0000 100.0000 

log p <= -1 10.77096 13.5106 14.94208 15.5121 16.6271 

log p <= -2 3.742444 5.2973 6.703111 6.6558 7.8385 

log p <= -3 1.976615 3.0396 4.418847 3.9391 3.8005 

log p <= -4 1.422805 2.2932 3.689965 3.1513 3.3254 

log p <= -5 1.222956 2.0055 3.400364 2.7710 3.0879 

log p <= -10 0.958479 1.6061 2.905766 2.2005 2.8504 

log p <= -15 0.889874 1.4995 2.756085 2.1462 2.6128 

log p <= -20 0.859052 1.4453 2.804894 2.0103 2.1378 

log p <= -50 0.662186 1.1221 2.102043 1.5213 0.9501 

log p <= -100 0.210786 0.3588 0.657295 1.1953 0.7126 

 

The curve in the Figure 3.8 (next page) represents the percentages of sequence pairs less 

than or equal to certain p-value plotted across different GO levels. We see clearly that, 

majority of the sequence pairs, 90 % of them, are considered non-similar across all the 

GO levels, have at least p-values greater than 0.1. However, the percentage of similar 

sequence pairs does increase steadily with their GO levels. For level 1 around 3.7 % 

sequence pairs have p-values ≤ 10
-2

 which increments with the GO level. Level 5 has the 

highest percentage   of similar pairs for molecular function ontology.  At this level around 

8 % of the sequence pairs have similarity p-value less than or equal to 10
-3

. 
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Figure 3.8 p-value distribution of sequence pairs annotated for molecular function 

In particular, the percentage of pairs with high similarity scores (p ≤  10
-10

) has an 

increase from level 1 to level 3. The percentage increase is not monotonic for level 4 and 

5. At these levels a downward slope is observed,  may be due to the nature of the 

ontology graph in which fewer GO terms are on levels higher than 3 but overall there is a 

trend of percentage increase with the level.  

Table 3.5 p-value distribution of sequence pairs annotated for biological process 

 GO levels 

P value range 1 2 3 4 5 6 

log p <= 0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 

log p <= -1 11.7553 16.6457 20.6776 16.8246 13.3822 13.0435 

log p <= -2 5.7261 10.1088 14.6198 12.7962 7.6994 10.4348 

log p <= -3 4.3263 8.4717 12.9442 11.1374 5.8662 8.6957 

log p <= -4 3.8688 7.8077 12.1525 10.4265 4.9496 8.6957 

log p <= -5 3.7255 7.5673 11.8210 10.1896 4.5830 8.6957 
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Table 3.5 p-value distribution of sequence pairs annotated for biological process 

log p <= -10 3.4941 7.1208 11.3239 9.4787 3.8497 6.9565 

log p <= -15 3.4665 7.0979 11.3055 9.4787 3.8497 6.9565 

log p <= -20 3.4224 7.0063 11.1766 9.2417 3.7580 6.9565 

log p <= -50 2.7060 5.5867 8.9486 7.3460 2.9789 4.3478 

log p <= -100 0.5676 1.1677 1.8413 5.6872 2.3831 2.6087 

 

Table 3.5 above depicts the p-value distributions of sequence pairs annotated for 

biological process. In particular, the percentage of pairs with high similarity scores 

(p ≤ 10
-10

) increases from 3.5 % for level 1 to 7 % for level 5. There is an increase of 3.49 

% of the sequence pairs having p-value ≤  10
-15 

from level 1 to level 5. There is a 

monotonous increase in the percentage of sequence pairs from level 1 to level 3. Level 3 

has the highest percentage of similar pairs for biological process ontology.                                                                         
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Figure 3.9 p-value distribution of sequence pairs annotated for biological process 
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At this level over 13 % of the sequence pairs have similarity p-values less than or 

equal to 10
-3 

while for level 1 there are over 4.3 % sequences. Figure 3.9 (previous page) 

shows the curves for the p-value distribution of sequence pairs annotated for biological 

process. As seen clearly the percentage increase is not monotonic from level 4 to level 6. 

There is a downward slope at level 4 and level 5, may be due to less number of proteins 

annotated for GO terms at these level. Especially if we see at log p ≤ -100 (p ≤ 10
-100

) 

curves which represent the maximum similarity % there is a steep increase from level 3 

to 4 suggesting that there is a steep increase in the similarity between the protein 

sequence pairs when we go from level 3 to 4. The level of a GO term is defined as the 

lowest level on which it appears in the GO Directed Acyclic Graph. 

 

Figure 3.10 p-value distribution of sequence pairs annotated for cellular component 
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Figure 3.10 (previous page) depicts curve for the p-value distribution of sequence 

pairs annotated for cellular component ontology. For the cellular component Ontology, 

Over 90% (Table 3.6 next page) of the sequence pairs at all levels have p-values greater 

than 0.1. However, the number of similar sequence pairs does increase steadily with their 

GO levels. In particular, the percentage of pairs with high similarity scores (p ≤ 10
-10

) has 

a steep increase from level 4 to level 5. At level 4 around 2.7 % of the sequence pairs 

have similarity p-value less than or equal to 10
-3 

while for level 5 over 4 % sequence pairs. 

Level 5 has the highest percentage of similar sequence pairs apparently much higher than 

molecular function and biological process. 

Table 3.6 p-value distribution of sequence pairs annotated for cellular component 

 GO levels 

p value range 1 2 3 4 5 6 

log p <= 0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 

log p <= -1 10.5781 11.6281 12.4448 12.6145 13.1602 0.0000 

log p <= -2 3.6151 4.1525 4.6553 4.8455 6.2338 0.0000 

log p <= -3 1.8885 2.2546 2.5893 2.7613 4.0693 0.0000 

log p <= -4 1.2898 1.6215 1.9089 2.1288 3.7229 0.0000 

log p <= -5 1.0430 1.3437 1.5980 1.8247 3.7229 0.0000 

log p <= -10 0.6886 0.9434 1.1266 1.3421 3.6364 0.0000 

log p <= -15 0.5759 0.7945 0.9862 1.1759 3.5498 0.0000 

log p <= -20 0.5126 0.7106 0.8876 1.0624 3.4632 0.0000 

log p <= -50 0.2797 0.3941 0.5232 0.6407 3.1169 0.0000 

log p <= -100 0.1899 0.2665 0.3611 0.4298 2.4242 0.0000 

 

Similar to the other two ontologies there is a rise in the percentage of similar 

sequence pairs from level 1 to level 3 but in particular, there is a significant percentage 

increase in similar pairs from level 4 to level 5 for cellular component. Overall there is a 

percentage in increase in similarity of sequence pairs with their GO levels. 

The percentage of similarity of sequence pairs across their GO levels was also 

examined branch wise. Percentage of sequence pairs for each GO group lying in an 
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interval (interval was defined for p∈ [0, 10
-20

]) was calculated and the ratio was taken 

between the parent GO group (second column) and the child GO group (third column): 

         Ratio = 
])[0,10(p intervalin  lying group GO childin  pairs sequence of %

])10,0[(p intervalin  lying group GOparent in  pairs sequence of %
20-

20

∈

∈
−

 

 

The value for ratio < 1 implied that percentage of similarity in sequence pairs is more in 

child GO group as compared with its parent GO group for that interval. 

 

Table 3.7 p-value analysis for molecular function branch wise 

 

Parent GO term 

 

Child GO term 

 

Ratio  

(% of similar pairs in parent /  
% of similar pairs in child) 

Count 1 if ratio is < 1 

 

GO:0003674 *GO:0005488 1.7920  

*GO:0005488 **GO:0005509 0.0815 1 

*GO:0005488 **GO:0003682 0.0360 1 

*GO:0005488 **GO:0003676 0.3309 1 

**GO:0003676 ***GO:0003677 0.8355 1 

***GO:0003677 ****GO:0003700 0.9362 1 

**GO:0003676 ***GO:0003723 0.6591 1 

*GO:0005488 **GO:0000166 0.1246 1 

*GO:0005488 **GO:0005515 0.7629 1 

**GO:0005515 ***GO:0008092 0.0518 1 

***GO:0008092 ****GO:0003779 1.6970  

**GO:0005515 ***GO:0005102 0.0440 1 

GO:0003674 *GO:0003824 1.1838  

*GO:0003824 **GO:0009055 0.0508 1 

*GO:0003824 **GO:0016787 0.6609 1 

**GO:0016787 ***GO:0008233 0.1647 1 

*GO:0003824 **GO:0016740 0.6368 1 

GO:0003674 *GO:0003774 0.0430 1 

GO:0003674 *GO:0004871 0.0263 1 

*GO:0004871 **GO:0004872 0.8364 1 

GO:0003674 *GO:0030528 0.5201 1 

*GO:0030528 **GO:0003700 0.8919 1 

GO:0003674 *GO:0005215 0.0401 1 
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Note: GO term with no ‘*’ represents root node (level 1). 

          GO term with one ‘*’ represents node at level 2. 

          GO term with two ‘*’ represents node at level 3. 

          GO term with three ‘*’ represents node at level 4. 

 

In particular, the percentage of pairs with high similarity scores with p-value lying 

in interval p∈[0, 10
-20

] was studied. The ratio of the parent-child GO term relationship 

was taken only once for a branch.  

As observed from the above table there is general trend of increase in the 

similarity of sequence pairs while traversing down the GO levels branch wise. Among 23 

parent-child GO group pairs, there is a short trend of decreasing similarity from parent to 

child GO group, and only 3 pairs have ratio > 1. This may be due to few number of 

protein sequences annotated for that child GO group. Overall with the increase in the GO 

levels there is a general increase in the similarity of the sequence pairs as we move down 

the GO tree branch wise. On the same parallel lines we examined the p-value distribution 

of the sequence pairs for cellular component. 

Table 3.8 p-value analysis for cellular component branch wise 

 

Parent GO term 

 

Child GO term 

 

Ratio 

(% of similar pairs in parent / 

% of similar pairs in child) 

Count 1 if ratio is < 1 

 

GO:0005575 *GO:0005623 0.8358 1 

*GO:0005623 *GO:0005622 0.9966 1 

**GO:0005622 ***GO:0005929 #### No count 

**GO:0005622 ***GO:0005737 0.9574 1 

***GO:0005737 ****GO:0016023 0.0386 1 

***GO:0005737 ****GO:0005829 0.1479 1 

***GO:0005737 ****GO:0005783 0.1463 1 

***GO:0005737 ****GO:0005768 0.0386 1 

***GO:0005737 ****GO:0005794 0.1286 1 

***GO:0005737 ****GO:0005739 0.5465 1 
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Table 3.8 p-value analysis for cellular component branch wise 

***GO:0005737 ****GO:0005840 0.135 1 

***GO:0005737 ****GO:0005773 #### No count  

****GO:0005773 *****GO:0005764 #### No count 

**GO:0005622 ***GO:0005856 0.0431 1 

**GO:0005622 ***GO:0005634 0.3742 1 

***GO:0005634 ****GO:0005635 0.0658 1 

****GO:0005635 ****GO:0005730 #### No count 

****GO:0005730 ****GO:0005654 #### No count 

GO:0005575 **GO:0005886 0.0987 1 

GO:0005575 *GO:0005576 0.3156 1 

*GO:0005576 **GO:0005578 0.0266 1 

*GO:0005576 **GO:0005615 1.1588  

GO:0005575 *GO:0043226 0.6601 1 

*GO:0043226 **GO:0005929 #### No count 

*GO:0043226 **GO:0016023 0.0466 1 

*GO:0043226 **GO:0005856 0.0544 1 

*GO:0043226 **GO:0005783 0.1767 1 

*GO:0043226 **GO:0005768 0.0466 1 

*GO:0043226 **GO:0005794 0.1553 1 

*GO:0043226 **GO:0005739 0.6602 1 

*GO:0043226 **GO:0005634 0.4722 1 

**GO:0005634 ***GO:0005635 0.0658 1 

**GO:0005634 ***GO:0005730 #### No count 

**GO:0005634 ***GO:0005654 #### No count 

*GO:0043226 **GO:0005840 0.1631 1 

*GO:0043226 **GO:0005773 #### No count 

**GO:0005773 ***GO:0005764 #### No count 

GO:0005575 *GO:0043234 0.1077 1 

*GO:0043234 **GO:0005840 1 1 

 
Note: #### denotes ‘un-defined’ value 

In the above Table 3.8 p-value distributions of sequence pairs for cellular 

component had been listed out as a relationship between parent-child GO term groups for 

p values lying in interval p∈[0, 10
-20

]. Interestingly, cellular component ontology has 10 

parent-child GO group pairs (ratio as “####”) for which nothing can be said. This may be 

due to there were no protein sequences annotated for this interval for parent-child GO 
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groups or child GO group alone so nothing can be stated for these 10 pairs. Out of the 

remaining 29 parent-child GO group pairs, noticeably 27 of them have ratio < 1 which 

implies that there is more similarity in sequence pairs as we go down the GO level branch 

wise. Only 1 pair has a ratio > 1 and the other 1 has ratio = 1. This implies that there is a 

general trend in the increase in the similarity as we traverse cellular component GO tree 

branch wise.  

We also examined percentage of similarity between the sequences pairs for 

biological process (Table 3.9) 

Table 3.9 p-value analysis for biological process branch wise 

 

Parent GO term 

 

Child GO term 

 

Ratio 

(% of similar pairs in parent / 

% of similar pairs in child) 

Count 1 if ratio is ≤ 1 

 

GO:0008150 *GO:0007610 0.0342 1 

GO:0008150 *GO:0007154 0.0959 1 

*GO:0007154 **GO:0007267 0.7138 1 

*GO:0007154 **GO:0007165 0.9636 1 

GO:0008150 *GO:0007275 3.5934  

*GO:0007275 **GO:0030154 0.1429 1 

*GO:0007275 **GO:0009790 #### No count 

*GO:0007275 **GO:0009653 #### No count 

**GO:0009653 ***GO:0016049 #### No count 

GO:0008150 **GO:0040007 #### No count 

**GO:0040007 **GO:0016049 #### No count 

GO:0008150 *GO:0007582 3.0544  

*GO:0007582 **GO:0007049 #### No count 

*GO:0007582 **GO:0016043 #### No count 

**GO:0016043 ***GO:0016049 #### No count 

**GO:0016043 ***GO:0006996 #### No count 

***GO:0006996 ****GO:0007010 #### No count 

*GO:0007582 **GO:0008283 0.1046 1 

*GO:0007582 **GO:0008152 0.727 1 

**GO:0008152 ***GO:0009058 0.524 1 

***GO:0009058 ****GO:0006412 1.147  

**GO:0008152 ***GO:0006091 0.1753 1 

 



 46 

Table 3.9 p-value analysis for biological process branch wise 

***GO:0006091 ****GO:0006118 1  

**GO:0008152 ***GO:0044238 0.4576 1 

***GO:0044238 ****GO:0005975 0.1613 1 

**GO:0008152 ***GO:0044238 0.4576 1 

***GO:0044238 ****GO:0006629 0.0337 1 

***GO:0044238 ****GO:0006139 0.3088 1 

****GO:0006139 *****GO:0006350 0.7855 1 

***GO:0044238 ****GO:0019538 1.1788  

****GO:0019538 *****GO:0006412 1.1143  

****GO:0019538 *****GO:0006464 0.0286 1 

*GO:0007582 **GO:0006810 0.107 1 

GO:0008150 **GO:0006950 #### No count 

 
Note: #### denotes ‘un-defined’ value 

There are 17 parent-child GO group pairs which have ratio > 1, implies that there 

is an increase in similarity of sequence pairs as we go down the GO tree but as such there 

is a vague trend of increasing degree of similarity with the GO levels. As we can see that 

there are 11 pairs for which no inference can be drawn, 1 pair has ratio = 1 and 5 pairs 

have ratio > 1.  

These above results suggest that proteins of similar biological functions tend to 

have higher sequence similarity. In general, we see, from the three p-value distribution 

tables that the deeper a GO group is the more similarity it will have. More convincingly, 

20 out of 23 molecular function groups, 27 out of 39 cellular component groups, and 17 

out of 34 biological process groups have higher percentage of sequence pairs having p-

values ≤ 10
-20

 than those of their parents. This result indicates the strong correlation 

between sequence similarity and function similarity. 

To actually determine the relationship between similarity between two protein 

sequences and its contribution in predicting the biological function we computed the 
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posterior probabilities using Bayes’ theorem [45] (Duan et al) for acid binding branch of the 

molecular function ontology tree. 

                                        

2 1 1 2( | , ( , )P S G S G p S S ε∈ ∈ ≤ ) = 2 1 1 2

1 1 2

P (S G, S G, p(S , S )  )

P (S G, p(S , S )  )

ε

ε

∈ ∈ ≤

∈ ≤
                      (Eq. 3.1) 

                    

Where, 

L.H.S. of the equation describes the posterior probability of finding a random 

sequence S2 in GO group G when S1 is already present in the same GO group G 

with a p-value between S1 and S2 greater than or equal to a certain threshold value . 

      G denotes a particular GO group. 

            p (S1, S2) is the p-value calculated as Equation 2.1 (materials & methods section) 

            ε represents a particular value for which p-value threshold for S1 and S2 . 

 

Posterior probabilities for molecular function, biological process and cellular 

component were calculated branch wise for intervals (p ≤  [0, 1]) (using Eq. 2.2).  

Table 3.10 Posterior probability for a molecular function’s branch. 
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Table 3.10 above represents the acid binding branch (GO:0005488) of molecular 

function ontology. We can see clearly that posterior probability of a correct assignment 

varies greatly from group to group. For example, if a database search hits the acid 

binding group then one can have 95% confidence that the query sequence belongs to G, 

for p-value lying in the interval  log p∈(-100, 0]. Noticeably, on the other hand a hit 

corresponding to transcription factor activity group would have 40% confidence that the 

protein belongs to the group for the same p-value interval. With the distribution of 

posterior probabilities of the GO groups over a wider range, indicates that posterior 

probability could serve as one of the features in determining unknown function prediction.  
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CHAPTER IV 

CONCLUSION 

 

 

There is an association between the similar protein sequences of M. Musculus 

(chromosome 1 [20]) and the functions pertinent to the three fundamental principles of 

gene ontology -- molecular function, biological process and cellular component [12]. The 

similarity distribution curves for the three ontologies indicate that the protein pairs have 

higher sequence similarity when picked up from the same functional GO group rather 

than a sample randomly drawn from a pool of protein sequence pairs. The range of p-

value distribution of the sequence pairs is wide and varies across the groups. Interestingly, 

as we traverse down the GO levels branch-wise, we find that the p-values consistently 

decreases indicating the protein sequences in a child node are more similar than those in 

the parent node. Furthermore, our study on posterior probability of a correct prediction 

indicates that the protein function prediction confidence increases steady with the 

decrease of p-values. These studies done in conjunction with the yeast study by Duan et 

al [19] suggest that sequence similarity approach can play a vital role as a preliminary 

tool in the prediction of protein functions. These results need to be validated through 

other complimentary approaches, encompassing different features including gene 

ontology structure attributes, gene expression patterns, protein structure similarity, etc. 

The complimentary approaches are more likely to provide a much accurate function 

prediction 
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APPENDIX A 

CRITICAL SOURCE CODE 

######################################################################## 

#                                                                 protein_count.pl                                                # 

# Script counts the number of unique proteins in each of the genome component for any # 

# organism. Place the name of the genome component i.e. “*.dat” file as input and          # 

# number of unique proteins.                                                                                               # 

######################################################################## 

 

#!/usr/bin/perl  

#use strict; 

 

open INPUT, "< Musculus_1.dat" or die "cannot open file Musculus_1.dat $!"; 

$count=0; 

 

# checks for each entry line whether it has an identifier ‘ID’ & ‘AC’ 

 

foreach $line(<INPUT>)  

{ 

   @item = split (/\s+/, $line); 

    $key1 = shift @item; 

    $key2 = shift @item; 

 

    if($key1 eq 'ID') 

    { 

      $flag=1111; 

     } 

  

    if ($key1 eq 'AC' && $flag==1111)  

     { 

       $flag=9999;  

       $count++; 

     }   

 } 

 

print  "Number of Protein Sequences: ".$count; 
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######################################################################## 

#                                                                 extract_proteins.pl                                             #  

# Script extracts sequences for each protein and stores it into individual files and also     # 

# stores the name of the proteins in ‘values.txt’ file so that number of proteins extracted # 

# can be verified against the first script too. 

######################################################################## 

 

#!/usr/bin/perl  

#use strict; 

 

open INPUT, "< Musculus_1.dat" or die "cannot open file Musuculus_1.dat $!"; 

 

$sequence = ''; 

$SQ_start = FALSE; 

 

open  EV, ">>$values.txt" or die  "Cannot open the file!"; 

 

foreach $line(<INPUT>)  

 { 

    @item = split (/\s+/, $line); 

    $key1 = shift @item; 

    $key2 = shift @item; 

  

    if ($key1 eq 'AC')  

    { 

        $accession_num = $key2; 

        $accession_num =~ s/;//g; 

        $fname = 'Protein_Sequences/'.$accession_num.'.txt'; 

        print " $accession_num\n"; 

        print EV  "$accession_num\n"; 

        open SQ_OUTPUT, "> $fname" or die "cannot open file $fname; $!"; 

    } 

  

   if ($key1 eq 'SQ' && $key2 eq 'SEQUENCE')  

   { 

        $SQ_start = TRUE; 

    } 

 

    if ($key1 eq ''&& $SQ_start eq TRUE) \ 

    { 

        $line =~ s/\s+//g; 

        $sequence .= $line."\n"; 

     } 

     

    if ($key1 eq '//' && $key2 eq '')  
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     { 

        print SQ_OUTPUT '>', $accession_num,"\n"; 

        print SQ_OUTPUT $sequence; 

        #print   $accession_num,"\n"; 

        #print  $sequence; 

        $SQ_start = FALSE; 

        $sequence=''; 

        close SQ_OUTPUT; 

    } 

} 

close INPUT; 

 

######################################################################## 

#                                                                 blast_proteins.pl                                                #  

# Blasts the proteins against each other. Picks up the name of each protein from              # 

# ‘values.txt’ file and then picks up the sequences associated with it from its particular   # 

# sequences text file, uses a blast.exe program and compares and stores the result in       # 

# text files. 

######################################################################## 

 

#!/usr/bin/perl  

#use strict; 

 

open(INFO,'values.txt');    

@lines1=<INFO>; 

@checks=@lines1; 

 

$count=0; 

 

foreach $line1(@lines1) 

{ 

   @item1 = split (/\s+/, $line1); 

    $key1=shift @item1; 

    $count++; 

    print "$line1:\n"; 

    print "$count\n"; 

     

   foreach $check(@checks) 

    { 

     @item2 = split (/\s+/, $check); 

     $key2=shift @item2; 

    

      if($key1 ne $key2) 

      { 
      @lines = `bl2seq -i Protein_Sequences/$key1.txt -j Protein_Sequences/$key2.txt -p blastp`; 

      $result=$key1.'_query'; 
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      open  EV, ">>Result/$result.txt" or die  "Cannot open Result/$result.txt!"; 

      print EV "$key1 - "; 

      print EV "$key2\n";   

 

      

foreach $line(@lines)  

{         

 $pattern1="Score"; 

 $pattern2="Identities"; 

 

 if ($line =~ m/$pattern1/i)  

 { 

   print EV  " $line\n"; 

  } 

 

 if ($line =~ m/$pattern2/i)  

 { 

   print EV  " $line\n"; 

 } 

} 

print EV "-------------------------------------------------\n"; 

 } 

 } 

}   

}    

 

 

######################################################################## 

#                                                         GO_Slim.pl                                                               # 

# Checks out GO term from GO Slim file and classifies it into Biological process,           # 

# cellular component and molecular function ontologies                                                    # 

######################################################################## 

 

#!/usr/bin/perl  

#use strict; 

 

open(INFO2,'goslim_generic.obo'); 

@myarray3=<INFO2>; 

 

$fname1 = 'Total_GO_Molecular.txt'; 

open EV1, ">>$fname1" or die "cannot open file $fname1; $!"; 

 

$fname2 = 'Total_GO_Cellular.txt'; 

open EV2, ">>$fname2" or die "cannot open file $fname2; $!"; 
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$fname3 = 'Total_GO_Biological.txt'; 

open EV3, ">>$fname3" or die "cannot open file $fname3; $!"; 

 

$temp; 

$count4=0; 

 

print "\nList of GO terms \n"; 

foreach $g(@myarray3) 

 { 

        @item_3 = split (/\s+/, $g); 

        $key1_1 = shift @item_3; 

        $key2_1 = shift @item_3;  

    

         if($key1_1 eq 'id:') 

         {           

          $temp=$key2_1; 

          $count4++; 

          print "$key2_1 - $count4 \n"; 

         } 

 

         if($key1_1 eq 'namespace:') 

         {           

           if($key2_1 eq 'molecular_function') 

            {           

              print EV1 "'$temp;', "; 

   $count1++; 

   $count++; 

            } 

   

          if($key2_1 eq 'cellular_component') 

            {           

              print EV2 "'$temp;', "; 

   $count2++; 

   $count++; 

            } 

 

          if($key2_1 eq 'biological_process') 

            {           

              print EV3 "'$temp;', "; 

   $count3++; 

   $count++; 

            } 

         } 

     } 
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$count5=0; 

 

foreach $g(@myarray3) 

 { 

  @item_3 = split (/\s+/, $g); 

  $key1_1 = shift @item_3; 

  $key2_1 = shift @item_3;  

    

 if($key1_1 eq '[Term]') 

 {           

  $count5++; 

 } 

} 

 

print "\n\n\nGO terms for Molecular function - "."$count1 \n"; 

print "GO terms for Cellular component - "."$count2 \n"; 

print "GO terms for Biological process - "."$count3 \n"; 

print "Total GO terms - "."$count5\n"; 

 

 

########################################################################

#                                                         Bio.pl                                                                         # 

# Picks up GO term from Biological process and maps the proteins from dataset for        # 

# each GO term and also counts the proteins for each of them                                           #                       

######################################################################## 

  

#!/usr/bin/perl  

#use strict; 

 

@myarray3= ('GO:0000003;', 'GO:0005975;', 'GO:0006091;', 'GO:0006118;', 

'GO:0006139;', 'GO:0006259;', 'GO:0006350;', 'GO:0006412;', 'GO:0006464;', 

'GO:0006519;', 'GO:0006629;', 'GO:0006810;', 'GO:0006811;', 'GO:0006950;', 

'GO:0006996;', 'GO:0007005;', 'GO:0007010;', 'GO:0007028;', 'GO:0007049;', 

'GO:0007154;', 'GO:0007165;', 'GO:0007267;', 'GO:0007275;', 'GO:0007582;', 

'GO:0007610;', 'GO:0008037;', 'GO:0008150;', 'GO:0008152;', 'GO:0008219;', 

'GO:0008283;', 'GO:0009056;', 'GO:0009058;', 'GO:0009605;', 'GO:0009607;', 

'GO:0009628;', 'GO:0009653;', 'GO:0009719;', 'GO:0009790;', 'GO:0015031;', 

'GO:0016032;', 'GO:0016043;', 'GO:0016049;', 'GO:0016265;', 'GO:0019538;', 

'GO:0019725;', 'GO:0019748;', 'GO:0030154;', 'GO:0040007;', 'GO:0040029;', 

'GO:0044238;', 'GO:0044403;', 'GO:0050789;'); 

 

 

open(INFO4,'Musculus_1.dat'); 

@myarray4=<INFO4>; 
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$fname = 'GOCHECK_BIO_DUPLICATE.txt'; 

open EV, ">>$fname" or die "cannot open file $fname; $!"; 

 

$count=0; 

$tot=0; 

foreach $g(@myarray3) 

 { 

       $tot=990; 

       print EV "\n"; 

       print EV "--"; 

       print EV "\n"; 

 

       $d=substr($g,0,10);           

       print EV "$d\n"; 

       print "$d\n"; 

   

   foreach $g1(@myarray4) 

   { 

      @item_3 = split (/\s+/, $g1); 

      $key1_1 = shift @item_3; 

      $key2_1 = shift @item_3;  

      $key3_1 = shift @item_3; 

       

     if($key1_1 eq '//') 

      { 

       $sq=FALSE; 

      }           

 

     if($key1_1 eq 'AC') 

     {        

      $sq=TRUE; 

      $tem_protein=$key2_1; 

      } 

 

     if($sq eq 'TRUE' && $key1_1 eq 'DR') 

     {        

      $sq1=TRUE; 

     } 

 

     if($sq1 eq 'TRUE' && $key3_1 eq $g)  

      {     

        $d1=substr($tem_protein,0,6); 

        print EV "$d1\n"; 

        $count++; 

      } 
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    } 

   print EV 'count '."$count";  

   $tot=$tot+$count; 

   $count=0; 

 } 

 

########################################################################

#                                                         Mol.pl                                                                        # 

# Picks up GO term from Molecular function and maps proteins from dataset for             # 

# each GO term and also counts the proteins for each of them                                           #                       

######################################################################## 

 

#!/usr/bin/perl  

#use strict; 

 

@myarray3= ('GO:0000166;', 'GO:0003674;', 'GO:0003676;', 'GO:0003677;', 

'GO:0003682;', 'GO:0003700;', 'GO:0003723;', 'GO:0003774;', 'GO:0003779;', 

'GO:0003824;', 'GO:0004518;', 'GO:0004672;', 'GO:0004721;', 'GO:0004871;', 

'GO:0004872;', 'GO:0005102;', 'GO:0005198;', 'GO:0005215;', 'GO:0005216;', 

'GO:0005326;', 'GO:0005488;', 'GO:0005509;', 'GO:0005515;', 'GO:0008092;', 

'GO:0008135;', 'GO:0008233;', 'GO:0008289;', 'GO:0009055;', 'GO:0016209;', 

'GO:0016301;', 'GO:0016740;', 'GO:0016787;', 'GO:0019825;', 'GO:0030188;', 

'GO:0030234;', 'GO:0030246;', 'GO:0030528;', 'GO:0030533;', 'GO:0031386;', 

'GO:0045182;', 'GO:0045735;'); 

 

open(INFO4,'Musculus_1.dat'); 

@myarray4=<INFO4>; 

 

$fname = 'GOCHECK_MOL_DUPLICATE.txt'; 

open EV, ">>$fname" or die "cannot open file $fname; $!"; 

 

$count=0; 

$tot=0; 

 

foreach $g(@myarray3) 

 { 

       $tot=990; 

       print EV "\n"; 

       print EV "--"; 

       print EV "\n"; 

 

       $d=substr($g,0,10);           

       print EV "$d\n"; 

       print "$d\n"; 
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   foreach $g1(@myarray4) 

   { 

       @item_3 = split (/\s+/, $g1); 

       $key1_1 = shift @item_3; 

       $key2_1 = shift @item_3;  

      $key3_1 = shift @item_3; 

          

      if($key1_1 eq '//') 

      { 

        $sq=FALSE; 

       }           

 

      if($key1_1 eq 'AC') 

       {        

          $sq=TRUE; 

          $tem_protein=$key2_1; 

       } 

 

      if($sq eq 'TRUE' && $key1_1 eq 'DR') 

       {        

         $sq1=TRUE; 

       } 

 

      if($sq1 eq 'TRUE' && $key3_1 eq $g)  

        {     

          $d1=substr($tem_protein,0,6); 

          print EV "$d1\n"; 

          $count++; 

        } 

     } 

   print EV 'count '."$count";  

   $tot=$tot+$count; 

   $count=0; 

 } 

 

 

########################################################################

#                                                         Cell.pl                                                                        # 

# Picks up GO term from Cellular component  and maps proteins from dataset for           # 

# each GO term and also counts the proteins for each of them                                           #                       

######################################################################## 

 

#!/usr/bin/perl  

#use strict; 
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@myarray3= ('GO:0000228;', 'GO:0000229;', 'GO:0005575;', 'GO:0005576;', 

'GO:0005578;', 'GO:0005615;', 'GO:0005618;', 'GO:0005622;', 'GO:0005623;', 

'GO:0005634;', 'GO:0005635;', 'GO:0005654;', 'GO:0005694;', 'GO:0005730;', 

'GO:0005737;', 'GO:0005739;', 'GO:0005764;', 'GO:0005768;', 'GO:0005773;', 

'GO:0005777;', 'GO:0005783;', 'GO:0005794;', 'GO:0005811;', 'GO:0005815;', 

'GO:0005829;', 'GO:0005840;', 'GO:0005856;', 'GO:0005886;', 'GO:0005929;', 

'GO:0005941;', 'GO:0009536;', 'GO:0009579;', 'GO:0016023;', 'GO:0030312;', 

'GO:0030313;', 'GO:0043226;', 'GO:0043234;'); 

 

open(INFO4,'Musculus_1.dat'); 

@myarray4=<INFO4>; 

 

$fname = 'GOCHECK_CELL_DUPLICATE.txt'; 

open EV, ">>$fname" or die "cannot open file $fname; $!"; 

 

$count=0; 

$tot=0; 

 

foreach $g(@myarray3) 

 { 

       $tot=990; 

       print EV "\n"; 

       print EV "--"; 

       print EV "\n"; 

 

       $d=substr($g,0,10);           

       print EV "$d\n"; 

       print "$d\n"; 

   

   foreach $g1(@myarray4) 

   { 

        @item_3 = split (/\s+/, $g1); 

        $key1_1 = shift @item_3; 

        $key2_1 = shift @item_3;  

        $key3_1 = shift @item_3; 

         

        if($key1_1 eq '//') 

         { 

          $sq=FALSE; 

         }           

 

       if($key1_1 eq 'AC') 

        {        

          $sq=TRUE; 

          $tem_protein=$key2_1; 
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        } 

 

     if($sq eq 'TRUE' && $key1_1 eq 'DR') 

      {        

        $sq1=TRUE; 

      } 

 

     if($sq1 eq 'TRUE' && $key3_1 eq $g)  

      {     

        $d1=substr($tem_protein,0,6); 

        print EV "$d1\n"; 

        $count++; 

       } 

     } 

    print EV 'count '."$count";  

    $tot=$tot+$count; 

    $count=0; 

 } 

 

 

######################################################################## 

#                                                              cal.pl                                                                     # 

# For each GO term, corresponding to sequence pairs in it, calculates the posterior          # 

# probability for each of them and puts them into sub-intervals                                         # 

######################################################################## 

 

#!/usr/bin/perl  

#use strict; 

 

$pattern='GO:0043234'; 

$pattern1=substr($pattern,3); 

open(INFO1,$pattern1.'_n.txt'); 

 

 

@myarray1=<INFO1>; 

 

open(INFO2,'all_cell.txt'); 

@myarray3=<INFO2>; 

 

$fname = $pattern1.'_post.txt'; 

open EV, ">>$fname" or die "cannot open file $fname; $!"; 

 

print 'Opening file - '.$pattern1.'_n.txt'."\n"; 

print "---------------------------\n\n"; 
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@num=('1', '0.1', '0.01', '0.001', '0.0001', '0.00001', '0.0000000001',  

'0.000000000000001', '0.00000000000000000001',  

'0.00000000000000000000000000000000000000000000000001',  

'0.0000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000001'); 

 

 

foreach $comp(@num) 

{  

 

$num = 0 ; 

$deno = 0; 

$res=999999; 

 

foreach $g(@myarray3) 

 { 

   @item_3 = split ('\t', $g);  

   $key1_1 = shift @item_3; 

   $key2_1 = shift @item_3;  

   $key3_1 = shift @item_3; 

           

   if($key3_1 <= $comp) 

   {     

     $sb1=check($key1_1, $pattern1); 

     $sb2=check($key2_1, $pattern1); 

   

     if($sb1 == 1111 || $sb2 == 1111) 

      { 

        $deno++; 

       } 

  

      if($sb1 == 1111 && $sb2 == 1111) 

       { 

         $num++; 

        } 

     } #if condition 

   } #myarray3    

 

if($deno != 0) 

 { 

   $res=$num/$deno; 

 } 

 

print "num-$num, deno=$deno\n"; 
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 if($comp eq '1') 

 {  

   $res=$res*100; 

   print EV "$res "; 

   print  "LOG p <= 0 ----- $res\n"; 

  } 

 

 if($comp eq '0.1') 

 {  

   $res=$res*100; 

   print EV "$res "; 

   print "LOG p <= -1 ----- $res\n"; 

 } 

 

 if($comp eq '0.01') 

 {  

   $res=$res*100; 

   print EV "$res "; 

   print "LOG p <= -2 ----- $res\n"; 

 } 

 

 if($comp eq '0.001') 

 {  

   $res=$res*100; 

   print EV "$res "; 

   print  "LOG p <= -3 ----- $res\n"; 

  } 

 

 if($comp eq '0.0001') 

 {  

   $res=$res*100; 

   print EV "$res "; 

   print "LOG p <= -4 ----- $res\n"; 

 } 

 

 if($comp eq '0.00001') 

 {  

   $res=$res*100; 

   print EV "$res "; 

   print "LOG p <= -5 ----- $res\n"; 

 } 

 

 if($comp eq '0.0000000001') 

 {  

   $res=$res*100; 
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   print EV "$res "; 

   print "LOG p <= -10 ----- $res\n"; 

 } 

 

 if($comp eq '0.000000000000001') 

 {  

   $res=$res*100; 

   print EV "$res "; 

   print "LOG p <= -15 ----- $res\n"; 

 } 

 

 if($comp eq '0.00000000000000000001') 

 {  

  $res=$res*100; 

  print EV "$res "; 

  print "LOG p <= -20 ------ $res\n"; 

 } 

 

 if($comp eq '0.00000000000000000000000000000000000000000000000001') 

 {  

  $res=$res*100; 

  print EV "$res "; 

  print "LOG p <= -50 ------ $res\n"; 

 } 

      

 if($comp eq 

'0.0000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000001') 

 {  

  $res=$res*100; 

  print EV "$res "; 

  print "LOG p <= -100 ------ $res\n"; 

 } 

} 

 

sub check 

{ 

 $val=$_[0]; 

 $pattern1=$_[1]; 

 

 open(INFO4,$pattern1.'_n.txt'); 

 @mya = <INFO4>; 

 

 foreach $a(@mya) 

  { 
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   @az = split (/\s+/, $a); 

   $s1 = shift @az; 

   $s2 = shift @az;   

   

   if($s1 eq 'protein:' && $s2 eq $val) 

    { 

     return 1111;   

    } # end of if           

 } #end of mya 

}                   

close EV;  


