
STUDY OF THE RELATIONSHIP BETWEEN Mus musculus

 PROTEIN SEQUENCES AND THEIR BIOLOGICAL FUNCTIONS

A Thesis

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Pawan Seth

May, 2007

 ii

STUDY OF THE RELATIONSHIP BETWEEN Mus musculus

PROTEIN SEQUENCES AND THEIR BIOLOGICAL FUNCTIONS

Pawan Seth

Thesis

Approved: Accepted:

_______________________________ _______________________________

Advisor Dean of the College

Dr. Zhong-Hui Duan Dr. Ronald F. Levant

_______________________________ _______________________________

Committee Member Dean of the Graduate School

Dr. Chien-Chung Chan Dr. George R. Newkome

_______________________________ _______________________________

Committee Member Date

Dr. Xuan-Hien Dang

Committee Member

Dr. Yingcai Xiao

Department Chair

Dr. Wolfgang Pelz

 iii

ABSTRACT

The central challenge in post-genomic era is the characterization of biological

functions of newly discovered proteins. Sequence similarity based approaches infer

protein functions based upon the homology between proteins. In this thesis, we present

the similarity relationship between protein sequences and functions for mouse proteome

in the context of gene ontology slim. The similarity between protein sequences is

computed using a novel measure based upon the local BLAST alignment scores. The

similarity between protein functions is characterized using the three gene ontology

categories. In the study, the ontology categories are represented using a general tree

structure. Three ontology trees are constructed using the definitions provided in gene

ontology slim. The mouse protein sequences are then mapped onto the trees. We present

the sequence similarity distributions at different levels of GO tree. The similarities of

protein sequences across gene ontology levels and traversing branches are studied. The

posterior probabilities for correct predictions are calculated to study the mathematical

underpinnings in evaluating the similarities between the protein sequences. Our results

indicate that proteins with similar amino acid sequences have similar biological

functions. Although the similarity distribution in each functional group across GO levels

varies from one functional group to another, the comparison between distributions of

parent and child groups reveals the strong relationship between sequence and function

similarity. We conclude that sequence similarity approach can function as a key measure

 iv

in the prediction of biological functions of unknown proteins. Our results suggest

that the posterior probability of a correct prediction could also serve as one of the key

measures for protein function prediction.

 v

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Dr. Zhong-Hui

Duan, for her constant encouragement and invaluable guidance during this study. I am

grateful to her for offering me an opportunity to do my thesis under her. I am very

impressed by her kindness and personality. This thesis and my study in Computer

Science Department would not have been possible without her help and support.

I would also like to acknowledge the help of Computer Science Department for

offering me an assistantship. I would also like to acknowledge the help from Dr.

Wolfgang Pelz, Dr. Yingcai Xiao, Dr. Timothy W. O’Neil, Dr. Xuan-Hien Dang, Dr.

Chien-Chung Chan, Dr. K.J. Liszka and Ms. Peggy Speck for their constant assistance.

I would like to dedicate this thesis to my family. Without their encouragement,

love and support, I do not think I can finish this degree, this thesis and the study at the

University of Akron. I am forever indebted to them, for the sacrifices they make to help

me to achieve this success.

 vi

TABLE OF CONTENTS

Page

LIST OF TABLES ………………………………………………………………..........viii

LIST OF FIGURES ………………………………………………………………….......ix

CHAPTER

I. INTRODUCTION ……………………………………………………………..............1

 1.1. Comparative Methods..............…………………………………………………...1

 1.1.1. Smith-Waterman Algorithm.................…………………………………...2

 1.1.2. Basic Local Alignment Search Tool.......………………………………….3

 1.2. Gene Ontology……………………………………………………………............3

 1.3. Chromosome (Mus Musculus)................………………………………………....6

 1.4. Overview of Thesis Work...........................……………………………………....7

II. MATERIALS AND METHODS………………………………………………….......9

 2.1. Dataset (Chromosome 1 of Mus Musculus)…............………………………........9

 2.2. Sequence Similarity Approach............……………………………………........12

 2.3. Basic Local Alignment Search Tool Algorithm..............……………………....16

 2.3.1. Scoring Matrices………………………………………………………...18

 2.3.2. Bl2seq........………………………………………………………….......21

 2.4. Gene Ontology.............………………………………………………………....24

 2.5. Perl...…………………………………………………………………………....26

 vii

III. RESULTS AND DISCUSSIONS……………………………………………...........27

IV. CONCLUSION………………………………………………………………...........49

REFERENCES..50

APPENDICES...53

 APPENDIX A. CRITICAL SOURCE CODE..54

 viii

LIST OF TABLES

Table Page

2.1 Information contained in UniProt flat file……………………………………......9

2.2 List of unique proteins for each chromosome pair (Mus Musculus) ……….......10

2.3 bl2seq options (cited from NIH website) ………………………………….........22

3.1 Annotated protein sequences distribution for GO slim……………………….....27

3.2 GO terms for three ontologies for which protein sequences were annotated.......28

3.3 p-value distribution for annotated protein sequence pairs……………………....34

3.4 p-value distributions of sequence pairs annotated for molecular function….......37

3.5 p-value distribution of sequence pairs annotated for biological process ….........38

3.6 p-value distribution of sequence pairs annotated for cellular component ….......41

3.7 p-value analysis for molecular function branch wise ……………………..........42

3.8 p-value analysis for cellular component branch wise ………………………......43

3.9 p-value analysis for biological process branch wise ……………………............45

3.10 Posterior probability for a molecular function’s branch ..………………….........47

 ix

LIST OF FIGURES

Figure Page

1.1 View of GO:0007610 using Gene Ontology Browser ……………………............4

1.2 Exploring the Mus Musculus genome using Ensembl site tool ……..................…7

2.1 Chromosome 1 using Ensembl site tool …………………………………............11

2.2 Matrix Hij generated after applying the algorithm …………………………........15

2.3 Standard substitution matrix for BLOSUM62 ……………………………..........21

3.1 Definition for GO:0008150 in GO slim ……………………………………........29

3.2 Definition for GO:0007582 in GO slim ……………………………………........30

3.3 GO tree (GO slim) for molecular function …...31

3.4 GO tree (GO slim) tree for biological process…………………………..........32

3.5 GOSlim tree for cellular component …….……………………………................33

3.6 Number of GO groups at different levels of ontologies …………………...........35

3.7 Number of proteins across different GO levels …………………………............36

3.8 p-value distribution of sequence pairs annotated for molecular function ….........37

3.9 p-value distribution of sequence pairs annotated for biological process …..........39

3.10 p-value distribution of sequence pairs annotated for cellular component …........40

 1

CHAPTER I

INTRODUCTION

The accrual of sequence data including genomic sequences, transcripts,

expression data [1] is primarily due to the effort started by U.S. Human Genome Project

in 1990 [2]. The rapid advancements in the technology have accelerated the current speed

of sequencing resulting in the accumulation of large amounts of information. This has

created a bottleneck for a large number of genes which still remain uncharacterized i.e.

they have no structural or functional notation [3].

The major problem that has baffled biologists in the post-genomic biology is the

functional assignment of proteins: A large percentage of Open Reading Frames (ORFs)

have unknown functions which unless resolved will not help biologists comprehend the

capabilities of an organism [4]. The challenge is to use bioinformatics to help abridge the

gap between the amount of sequence data and the functional annotation. Comparative

sequence analysis tools are used for the detection of functional regions in genomic

sequences.

1.1 Comparative Methods

The Comparative methods have become an important tool to study the protein

sequences. Proteins are composed of amino acids which can be aligned and compared to

other protein sequence(s) [5].

 2

The computational tools based on sequence homology -- BLAST, PSI BLAST,

are widely used for the functional annotations of genes in newly sequenced genomes [6].

In sequence similarity-approach the functions of a query protein are deduced from those

of homologous proteins of known functions obtained from database searches. The

sequence similarity approaches for these proteins are based on the assumption that they

are functionally linked. The hypothesis is that the evolution of proteins with similar

functions occurs in a correlated fashion and therefore the homology is present in the same

subset of organisms [7]. There are varieties of sequence similarity algorithms that can

find the regions of similarity between protein sequences.

1.1.1 Smith-Waterman Algorithm

Smith-Waterman is one of the most popular local sequence alignment schemes to

determine the similarities between the regions of the query sequence and a sequence

database (proteins or nucleotides). In 1981 Temple Smith and Michael Waterman

proposed this algorithm [8] based on dynamic programming technique which is

guaranteed to find an optimal local alignment between two sequences corresponding to

the scoring system being implemented (Substitution Matrix or Gaps Scoring). It identifies

the maximal homologous sequences among the protein sequences being compared. These

protein sequences can be of any length, at any location. The amino acid chains (in case of

proteins) or nucleotides are taken as a string and character by character comparison is

done. Relative weights are assigned to these character-to-character comparisons. If an

exact match is found (“hit”) or if a substitution is done a positive weight is assigned to

that comparison or else if an insertion or deletion operation is performed a negative

 3

weight is assigned to the comparison. These scores are arranged in the weight matrices

where they may be added together and the highest scoring alignment is reported.

1.1.2. Basic Local Alignment Search Tool

BLAST, a heuristic search algorithm, approximates the Smith-Waterman

algorithm is used to compare amino acid sequences of different proteins or the

nucleotides of Deoxyribonucleic acid (DNA) sequences [9, 10].

The BLAST then compares a query sequence (protein or nucleotide) and a

sequence database (protein database or nucleotide database) and identifies the database

sequences that resemble the query sequence above a certain threshold. The main idea

behind BLAST’s operation is that given a pair of sequences, algorithm will try to match

small fixed length W between the query and sequences in database and will try to extend

this length in both directions. Using this way it identifies regions of local alignment in the

query sequence similar to subsequences in database and label them as High Scoring Pairs

(H.S.P.) [10]. These regions of high sequence similarity are assigned some scores based

on the scoring system used and statistically significant alignments are displayed to the

user. These alignments can further be studied and with the help of statistical concepts and

inferences can be drawn.

1.2 Gene Ontology

The genetic information of a cell is carried by Deoxyribonucleic Acid (DNA) and

it consists of thousands of genes. Genes are the working subunits of DNA and encode

instructions on how to make proteins [11]. The Gene Ontology (GO) provides a

 4

controlled vocabulary to describe gene and gene products in an organism. The three

organizing principles of GO are - biological process, cellular component and molecular

function [12]. A gene or a gene product may be associated with one or more cellular

processes; active in biological process and perform molecular function. A cellular

component is a part of the cell, either an anatomical structure or a gene product. A

biological process refers to events attained by a single unit or assembly of molecular

functions. Molecular function describes the activities occurring at the molecular level.

The terms in these ontology are organized in a Directed Acyclic Graph (DAG) and linked

by two relationships, 'is a' and 'part of'. DAG is also referred to as a rooted tree (tree with

a root). Gene Ontology Browser can be used to describe this tree like structure.

Figure 1.1. View of GO:0007610 using Gene Ontology Browser

 5

For example GO:0007610 represent the behavioral response to stimulus, assigned

to biological process and textual definition for this GO terms is "The specific actions or

reactions of an organism in response to external or internal stimuli. Patterned activity of

a whole organism in a manner dependent upon some combination of that organism's

internal state and external conditions.” GO slim is a cut down vocabulary provided by

GO ontologies. GO slim contains a subset of terms in the whole GO [13]. GO slims are

created by users according to their needs and provides a brief overview of ontology

content without going into specific fine grained specifications.

A wide variety of ontology based searches have been designed to annotate

sequences on a large scale. Vinagayam [14] used support vector machines for the

assignment of molecular function GO terms to uncharacterized cDNA sequences and to

define a confidence value for each prediction. cDNA sequences were annotated to GO

and these sequences were then used to train a Support Vector Machine (SVM) classifier.

The nucleotide sequences were searched against GO-mapped protein databases and

significant hits were recorded. Each GO-term obtained was either labeled as correct (+1)

or incorrect (-1) by comparing it with original annotation. BLAST results were associated

as "features" with these samples. The classifier was trained with this data to predict the

function of unknown sequences. This automated annotation system resulted in the large

scale cDNA functional assignment, to achieve a high-level of prediction accuracy without

any manual intervention. Zehetner [15] worked on the OntoBlast to predict the potential

functions for an unknown sequence by presenting a weighted list of ontology entries

associated with similar sequences from completely sequenced genomes identified in

BLAST search. It then finds information regarding the potential functions. The functional

 6

annotation of the sequences provides an insight to the processes in which a gene may be

involved . Xie et al's [16] GO engine combines homology search with text mining.

Schug [17] developed rule-based systems based on the intersection of GO terms that

contain protein domain at different similarity levels. The appeal of these approaches is

that they can directly assign a biological meaning to an uncharacterized protein sequence.

However, matching sequences do not always infer similar functions [4].

1.3 Chromosome (Mus Musculus)

 In this thesis, we investigated the degree of overall similarity of protein sequences

from Chromosome 1 (Mouse) in each functional group defined by GO terms. Mouse

(Mus musculus) is a common rodent, closely related to the rat. The mouse has been a

major organism, for research purposes to study basic biology, on which extensive works

have been done to sequence its genome. The genome of Mus musculus was the second

mammalian genome to be sequenced whose complete draft entered the public nucleotide

sequence repositories in 2002. It has 19 chromosome pairs, 1 X and 1 Y chromosomes

which can be viewed with the help of Ensembl tool [18].

 Ensembl project came into being with the collaborative efforts from EMBL -

European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI).

The main task was to develop a software system which could produce and maintain an

automatic annotation on selected eukaryotic genomes.

 7

Figure 1.2 Exploring the Mus Musculus genome using Ensembl site tool

1.4 Overview of Thesis Work

In this thesis, we investigated the mathematical underpinnings of an automated

sequence annotation approach based on sequence similarity and gene ontology. In the

Chapter I we revised the basic concepts of biology and bio-informatics relevant to the

area of this research study. In Chapter II - materials and methods, we studied the degree

of similarity of protein sequences in each functional group defined by a GO term, using

the protein sequences from chromosome 1 of Mus Musculus. The dataset (protein

sequences for chromosome 1 for Mus Musculus) was downloaded from European

Bioinformatics Institute (EBI) website [20], gene ontology file from gene ontology

consortium [12] and alignment tools from National Center for Biotechnology Information

 8

(NCBI) [9]. In chapter III - results and discussion, PERL scripts were processed and

parsed to get the distribution of similar pairs for the three ontologies - namely biological

process, molecular function and cellular component. We studied the degree of similarity

of protein sequences in each functional group defined by a GO term, using the protein

sequences from chromosome 1 of mouse. We explored the structures of the three

ontologies - biological, cellular and molecular category and re-evaluate the hypothetical

assumption - similar biological sequences implies similar functions. We used a novel

measure of overall similarity between protein sequences based on the results of local

BLAST alignments [19].

We also examined the effects of the levels of GO terms on the degree of similarity

and also discussed the sequence similarity distribution at different levels of GO tree.

Similarity distributions of sequence pairs were also analyzed for each of molecular

function, biological process and cellular component ontologies branch-wise. To analyze

and predict the plausible potential relationships of similar sequences we computed the

posterior probability of the hypothesis - probabilities of the A and B having similar

functions after it is known that both A and B have similar sequences.

 9

CHAPTER II

MATERIALS AND METHODS

This chapter addresses the strategies and operations used and implemented in our

studies. Mouse (Mus musculus) has been an important organism in biology and medicine

for research purposes. Sequence similarity approach, in particular Smith-Waterman

algorithm was proposed by Temple Smith and Michael Waterman in 1981. A more faster

and popular algorithm which approximates Smith-Waterman is Basic Local Alignment

Search Tool (BLAST) was developed by Stephen Altschul, Warren Gish, David Lipman,

which primarily compares biological sequence information.

2.1. Dataset (Chromosome 1 of Mus Musculus)

 The protein sequences for first chromosome of mouse (Mus Musculus) were

downloaded from the (EBI - UNIPROT format) [20] in May, 2006. Each line of an

experiment entry in the file begins with a two character line code (identifier) which

suggests the type of information contained in the line. The identifiers and the information

they suggest are shown in the Table 2.1.

Table 2.1 Information contained in UniProt flat file [20]

Code

Meaning

Description

ID Identification Contains identifying information and characteristics of the

sequence.

 10

Table 2.1 Information contained in UniProt flat file [20]

DT Date When the entry was created, or when the sequence or

annotation was modified.

DE Description The gene(s) that code for the protein.

GN Gene name(s) The organism from which the sequence is derived.

OS Organism species If the sequence is non-chromosomal in origin.

OG Organelle The taxonomic class to which the organism belongs.

OC Organism classification The NCBI TaxID for the OC line.

OX Taxonomy cross-

reference(s)

The sequential number of the literature citation within the

entry.

RN Reference number Bibliographic cross-reference, such as PubMed ID.

RX Reference cross-

reference(s)

Authors of the citation.

RA Reference authors Title of the citation.

RT Reference title Source of the citation, such as journal, book, or unpublished

data.

RL Reference location Free text notes about the protein.

CC Comments Pointers to sources or related information for the entry.

DR Database cross-

references

Annotation of specific residues of the sequence.

FT Feature table Marks the beginning of the sequence and provides summary

data.

SQ Sequence header The sequence itself.

(no

code)

Sequence data End of entry.

// Termination line

UniProt dataset was picked up [20] for this thesis as it comes along with a lot of

information related to any particular protein other than the amino acid sequences

comprising it.

Table 2.2 List of unique proteins for each chromosome pair (Mus Musculus)

Genome component Length (bp) Number of unique proteins

 11

Table 2.2 List of unique proteins for each chromosome pair (Mus Musculus)

Chromosome 1 197069962 1870

Chromosome 2 181976762 3709

Chromosome 3 159872112 1547

Chromosome 4 155029701 2811

Chromosome 5 152003063 1869

Chromosome 6 149525685 1728

Chromosome 7 145134094 2583

Chromosome 8 132085098 1565

Chromosome 9 124000669 1780

Chromosome 10 129959148 1450

Chromosome 11 121798632 3367

Chromosome 12 120463159 1088

Chromosome 13 120614378 1179

Chromosome 14 123978870 1177

Chromosome 15 103492577 1178

Chromosome 16 98252459 1017

Chromosome 17 95177420 1580

Chromosome 18 90736837 773

Chromosome 19 61321190 1063

Chromosome X 165556469 1378

Chromosome Y 16029404 38

UniProt sets for 19 chromosome pairs, 1 X and 1 Y pair were taken and base pairs

(bp) per chromosome and number of unique proteins in each of them were listed in Table

2.2 above. Two nucleotides on opposite complementary DNA or RNA strands that are

connected via hydrogen bonds are called base pairs. Chromosome 1 has the largest length

(bp) so it picked up for this thesis. There were 1870 protein sequences in the first

chromosome.

Figure 2.1 Chromosome 1 using Ensembl site tool

 12

2.2. Sequence Similarity Approach

There are varieties of sequence similarity tools that align the amino acid sequence

pairs (from two different proteins) and find the regions of high similarity scores between

them. Local or global alignments are the two main approaches to compute the regions of

high similarity between sequence pairs. Global alignment approach aligns the entire

amino acid sequences between the pairs. By contrast, local alignment scheme identifies

the similar regions within the long sequences thus increasing the chances of getting more

number of similar regions as compared to former method which tries to globally optimize

the entire sequence over the other [21].

Smith-Waterman is one of the most popular local sequence alignment schemes to

determine the similarities between the regions of the query sequence and a sequence

database (proteins or nucleotides).

This algorithm is based on the dynamic programming approach, which finds the

solutions to the smaller chunks of a problem and combines them on the whole to find a

complete optimal solution to the problem. It recursively performs the local alignment

comparison on the segments of all possible paths and picks up the one which has the

maximum similarity score as an optimal solution until a threshold has been reached.

Based on the above calculations, character-to-character comparison is done and scores or

weights are assigned to each comparison. It’s positive for exact matches/substitutions,

and negative for insertions/deletions. A weight matrix is build, scores are added and

highest scoring alignment is reported.

This technique is more sensitive and superior as compared to BLAST and FASTA

as it does pair wise comparisons which results in covering large number of possibilities

 13

but the time taken to run this algorithm is higher as compared to the other two. This

explains the popularity of the BLAST algorithm.

For example, there are two nucleotide sequences A = a1 a2 a3 ….. an and B = b1 b2

b3 ….. bm. s (a, b) denotes the similarity between sequence elements a and b. Wk denotes

the deletions of length k. A matrix H to find pairs of segments with high degrees of

similarity is set up

Hk0 = H0l = 0 for 0 ≤ k ≤ n and 0 ≤ l ≤ m

Hij is the maximum similarity of two segments ending in ai and bj respectively is

calculated from the equation [22]

 ij i-1, j-1 i j i-k, j k i, j-1 1H = max {H + s(a , b), max{H - W }, max{H - W }, 0} (Eq. 2.1)

Where, 1 ≤ i ≤ n and 1 ≤ j ≤ m

The calculation of Hij from equation 2.1 considers the following possibilities for ending

segments at any ai and bj.

1) If ai and bj are associated, then new score is the previous score plus the similarity

scores for the two residues.

Hi-1, j-1+ s (ai, bj)

2) If ai is at the end of a deletion of length k, the similarity is

Hi-1, j-WK

3) If bj is at the end of a deletion of length l, the similarity is

Hi-1, j-Wl

 14

4) Finally, a zero is included to prevent calculated negative similarity, indicating that

no similarity up to ai and bj.

Noticeably, we are transforming one string into another string by performing

certain operations on the individual characters that make up that string. So similarity

between two strings can also be defined as “the value of alignment between the two

strings that maximizes the total alignment value (highest score)”

Here’s an example to show the implementation of the Smith Waterman algorithm

more clearly [23]. Suppose there are two nucleotide sequences which are to be compared

against each other

Sequence 1: CAGCCUCGCUUAG

Sequence 2: AAUGCCAUUGACGG

Scores are derived from a simple similarity matrix, values chosen are:

→ Match = +1

→ Mismatch = -
1

3

→ Gap = -1+
1

3
× k (k = extent of gap, number of residues included in the gap)

A similarity matrix is build up with all cell values = 0 and to ensure that a new

alignment path can start at any point the scores are not allowed to fall below 0. Values are

updated in the cell based on the value of the cell plus the highest value in sub row, sub

column or direct diagonal while keeping the gap penalties in account. These values can

rise, fall or stay same. The value in any cell is the highest score for an alignment of any

length ending at that cell.

 15

Figure 2.2 Matrix Hij generated after applying the algorithm [23]

In the above example the alignment is obtained contains both a mismatch and an internal

deletion.

G-C-C-A-U-U-G

G-C-C-*-U-C-G

However, the Smith-Waterman algorithm is fairly demanding of time and memory

resources: in order to align two sequences of lengths m and n, O (mn) time and space are

required. In the next section we will be discussing about another comparison algorithm

popularly known as BLAST.

 16

2.3 Basic Local Alignment Search Tool Algorithm

Basic Local Alignment Search Tool (BLAST), an approximation of Smith-

Waterman algorithm searches for high scoring sequence alignments between the query

sequence and the database of sequences. BLAST works in three major steps [24, 25, 26,]:

1) Compile list of high-scoring strings (words) - BLAST filters out low complexity

regions from the query sequence and compiles a list of high-scoring words which

consists of all words with ‘w’ characters that scores at least ‘T’ with some word in

the query sequence. BLAST uses a scoring matrix (described below - BLOSUM

62 is by default for amino acids) to determine all matching words with high scores.

A Low complexity and small threshold score may result in reporting of large

number of statistical significant but biologically un-interesting results. The values

above a certain threshold are taken. There can be a tradeoff between speed and

sensitivity at this stage: higher threshold gives greater speed but might miss

biologically significant results [27].

2) Search for hits - In the second step BLAST searches through the target sequence

database for exact matches to the word list generated either using a hash table or

finite state machine. Finite state machines are used are used to calculate state

transition table that tells what state to go is based on the next character in the

sequence. If a match is found, it is used to seed a possible alignment between the

query and the database sequences.

3) Extend seeds to obtain segment pairs - In third step, BLAST method tries to

extend the alignment from these matching words in both directions as long as

score increases. The resulting segment pairs are called High Scoring Pair (H.S.P).

 17

BLAST determines whether each score found by one of the above methods is

greater in value than a given cutoff score S [27, 28]. The maximal scoring pairs, or MSPs,

from the entire database are identified and listed. Consequently, BLAST finds out the

statistical significance of each score, initially, by calculating the probability that two

random sequences, one the length of the query sequence and the other the length of the

database could produce the calculated score. When the expectation value for a given

database sequence is satisfied a match is reported. Typically the expect value is between

0.1 and 0.001.

 BLAST search of the sequence database may result in many alignments and it

becomes hard to distinguish between significant alignments and potential random

matches. BLAST provides information about: raw scores, bit scores and E values. The

raw score for a local sequence alignment is the sum of the individual scores making up

the MSP. Because of differences between scoring matrices, raw scores are not necessarily

comparable. Bit scores, however, can be compared, since they take into account the scale

or log base of the scoring matrix λ) and the scale of the search space size (K), and can be

expressed as:

 S’=
ln2

lnS K−λ

The expectation, or E value, corresponding to a given bit score is E =
S

nm
−

×× 2 , where n

is the length of the query sequence and m is the length of the database sequence. Given

that the score of the best local alignment (MSP score) is the maximum of scores of many

independent alignments, the probability of observing a score S greater than or equal to

certain given threshold when comparing two random sequences is given by extreme value

 18

distribution. For certain conditions, this can be rearranged to express the probability that

a pair wise alignment with score S could have been obtained by chance. Poisson

distribution can be used to find out the probability of observing a particular score in a

database of sequences. Expectation value for the Poisson distribution is given by E =

S
Kmne

λ− [27, 28] and describes the probability that a score as high as the one observed

between two sequences will be found purely by chance. E- values provide an estimate of

the number of alignments one would expect to find with a score greater than or equal to

that of the observed alignment in a search against a random database of the same

composition. An E value greater than 1 indicates that the alignment probably has

occurred by chance, and that the query sequence has been aligned to a sequence in the

database to which it is not related. E values less than 0.01 are typically taken to represent

biological significance [29, 30].

2.3.1. Scoring Matrices

 BLAST tool conducts a local similarity search between a target query sequence

and a sequence database. It assigns a weight to all relative relationships between different

amino acids in a protein sequence based on a match or a mismatch in the form of a

scoring matrix. A two dimensional matrix is used to model a match or a mismatch

between all pairs of amino acids. The two most used and popular matrices are the Block

Substitution Matrix (BLOSUM) [Henikoff and Henikoff, 1992] [31] and Point Accepted

Mutation (PAM) [Dayhoff and Schwartz, 1978 [32]. The BLOSUM matrix assigns a

probability score, 'P' for each position in an alignment based on the frequency with which

the substitution occurs within conserved blocks of related proteins. PAM is based on the

 19

Markov model where change of amino acid at a particular site is assumed to be

independent of previous mutation.

Blocks Substitution Matrix (BLOSUM)

It was developed by Heinkoff and Heinkoff and is based on the extraction of

conserved ungapped segments called “blocks” from a set of locally aligned protein

sequences. Local alignments can be represented as ungapped blocks with each row a

different protein segment and each column an aligned residue position.

A blocks database contains numerous aligned ungapped segments corresponding

to highly conserved regions of proteins. They are used to search for differences among

sequences of the much conserved regions of a protein family i.e. BLOcks SUbstitution

Matrix (BLOSUM) [33]. After all the sequences were collected in the blocks database,

then for each one the sum of the number of amino acids in each site is collected to get a

frequency table of how often different pairs of amino acids are found together in these

conserved regions. For example, BLOSUM62 can be used to represent a block which has

more than 62% identity in the gapped sequence alignment. BLOSUM 62 is the default

matrix for the BLAST program.

All the sequences of amino acids are collected in the BLOCK database and then

for each one the number of amino acids in each site is summed up to get a frequency

table (i jq , i, j =1, …, 20) which represents the number of times different pairs of amino

acids pairs are found together in these conserved regions. Hence the observed frequency

of occurrence of one amino acid is [34]

 20

1

2
 ij ii ij

i j

qp q
≠

×= + ∑

pij represents the expected probability of occurrence of the i
th

 residue in an (i, j) pair.

Frequency of the given pairs can be given as:

2 , ()ij ie p if i j like comparisons= =

 and

 2 , ()ij i je p p if i j unlike comparisons= × × ≠

Where pi, pj represents the number of times the residue i, j was observed in the column

respectively.

The odds matrix is given by 2 2 log () ij ij ijs q e÷= × after taking the logarithm

of the odd matrix. Where, sij = 0 represents that there are no differences between the

observed and expected number of pairs of amino acids. ijs < 0 represents if the observed

number of pairs of amino acids are less than the expected and if the observed is greater

than the expected then ijs > 0.

Scores are populated in the form of two dimensional matrixes where the relative

similarity and dissimilarity between the pairs of amino acids in the query sequence and a

sequence database are reported on the basis of percentage of similarity of the amino acids

in the groups. For example, BLOSUM62 matrix is calculated from the protein blocks

only if the two sequences are more than 62% identical. The standard substitution matrix

for BLOSUM62 contains the score for all possible exchanges of one amino acid with

another [35] is show below.

 21

Figure 2.3 Standard substitution matrix for BLOSUM62

There are many levels to score proteins which are less divergent as compared to

others which are more divergent. For distant related protein sequences BLOSUM45 can

be used. For closely related sequences BLOSUM80 matrices can be used. BLOSUM50,

BLOSUM62 and BLOSUM80 are few of the different levels of the BLOSUM matrix

scoring system that can be implemented to assign different weights to similarity between

two sequences. BLOSUM62 is the default for BLOSUM and studies have shown it to be

the best for detecting weak protein similarities [36]. So for this thesis BLOSUM62

scoring system was chosen as a substitution matrix for sequence alignment of proteins.

2.3.2. Bl2seq

BL2seq works on the BLAST algorithm and performs a comparison between the

two sequences using either the blastn or blastp program [37, 38, 39]. Both sequences

 22

must be either nucleotides or proteins. Input to the bl2seq is two sequences files (either

nucleotides or proteins) which are in the FASTA format. Typically the command to run

Bl2seq from the command line is as follows:

b l 2 seq - p - i - j - o

 Table 2.3 bl2seq options (cited from NIH website)

Option Definition Type Default

-i First sequence. [File In]

-j Second sequence. [File In]

-o Alignment output file. [File Out] stdout

-p Program name: blastp, blastn, blastx, tblastn, tblastx. For

blastx, the first sequence should be nucleotide; for tblastn,

the 2nd sequence should be nucleotide.

[String]

Bl2seq Results

 Statistically significant alignments are stored and result values are reported in

following way [40]:

• Score: It is calculated by summing the scores for each aligned position of the

amino acid and deducting the penalty of the gaps.

• Expect: It estimates the statistical significance of the match, specifying the

number of matches within a given score that are expected in a search of a

database of this size absolutely by chance.

 23

• Positives: The number and fraction of residues for which the alignment scores

have positive values.

• Identities: Number and percentage of exact residue matches.

Gaps: Positions at which a letter is paired with a null are called gaps.

However, to encompass the overall similarity of two protein sequences in terms of

functional, structural or evolutionary relationships is not obvious. For example, proteins

from the same domain with a certain similarity score might be more dissimilar as

compared to proteins from two different domains (based on the similarity scores

comparison). In this study, we employed the alignment technique to blast two protein

sequences so to obtain the similar regions with a certain statistical significant score, also

known as regions of optimal sequence alignments. If there are n regions having scores

1{ ,, } nR R of statistical significance, we use the following score to compute the

overall similarity of two sequences.

 ln - i

i

pS = ∑ (Eq. 2.2)

Where S is overall similarity score, ip is the probability of finding high-scoring

segment pair with a local alignment score of at least Si i.e. 1- i
i

Ep e−
=

and iE is

expected number of H.S.P.’s of score at least Si. Assuming that the H.S.P.’s are

independent of each other, the p-value can be given as Sp e−
= , probability of finding a

pair of protein sequences with a list of scores at least 1{ , , } nR R . We use p-

values and E-values to represent the significance of the alignment between a pair of

protein sequences. p-values and E-values are same when they are small. For convenience

 24

we will use p-values for our study. bl2seq (v. 2.2.14) alignment tool was downloaded

from NCBI website and implemented with a BLOSUM62 scoring system with all default

parameters. PERL scripts were written to parse the protein sequences and blast them

against the protein sequences from chromosome 1. Results were stored in the text files

which were easy to work with.

The GO terms for which the proteins from chromosome 1 were annotated and

also which have their definitions in GOSlim were stored in a tree like structure for each

of the three gene ontologies.

2.4. Gene Ontology

Gene ontology consortium started the gene ontology project which provides a

controlled vocabulary for the consistent description of gene and gene product attributes

for any organism. It encompasses broadly three roles:

• First, the development and maintenance of the structured vocabularies (ontologies)

themselves.

• The annotation of the gene products which includes the association between the

ontologies and the genes and gene products.

• Development of tools that can help in the making, maintaining and using

ontologies.

The Gene Ontology (GO) project describes the gene products in terms of three

structured controlled vocabularies (ontologies) namely biological process, cellular

component and molecular function. The GO terms are the building blocks for GO and are

represented by an unique alphanumerical identifier in the form ‘GO:XXXXXXX’, a term

 25

name, synonym, and a definition. GO terms are then classified into one of the three

ontologies and structured as a DAG. Each GO term has got a definition, association with

one of the three ontologies, along with a relationship identifier which describes the term’s

relationship (parent-child) with other GO terms. The consortium updates the ontology

frequently on the monthly basis [41]. If it is decided by the consortium that a GO term is

not appropriate then it is marked as obsolete. GO terms can also be represented using the

GOSlim which are the cut down version and subset of the gene ontology. The GOSlim

depicts a broader overview of the content of ontology without going into details of

specific grained terms [42]. GO slims are created by users according to their experimental

needs, purposes. The terms are represented as nodes and arcs the different relationships.

These relationships can be used to draw tree like structure where child nodes can be

derived from the root node or they are the part of their parent node. GOSlim has a tag-

value format to represent the definitions of the GO definitions file. The tag “id:” denotes

a unique GO id assigned to a term. This GO term is then recognized by this name only.

“name:” tag denotes the respectively ontology that a GO id belongs to [42]. It can be any

of the three ontologies. “def:” tag gives a formal definition for that GO id. The tag

“subset” describes the gene ontology of the organism from where this GO id is taken. GO

terms are classified according to their levels which corresponds to the depth it has in the

Gene Ontology tree and their defined functions. This tree like structure is actually an

acyclic diagraph which represents the parent-child relationship between various GO

terms. GOSlim definition file was downloaded from [42] (format-version: 1.0 dated:

21:12:2006 19:30). PERL scripts then parsed out to annotate protein sequences for

biological process, molecular function and cellular component ontologies.

 26

2.5. Perl

There are many languages like Java, C, FORTRAN, MATLAB etc. which can be

used to write bioinformatics applications. In our thesis we used Practical Extraction and

Report Language (PERL) [43] because of the following reasons.

• Protein sequences and other biological data is stored in enormous databases and

text files. PERL with its high capability of recognizing string patterns simplifies

the processing and analysis.

• It takes far less programming time to extract data with PERL than with C or with

Java.

• It is an excellent scripting language for text analysis. The built-in operators make

the searching, replacing and pattern matching effortless.

• PERL is easy to install and requires very less space to install the libraries.

• PERL has the portability of an interpreted language while achieving nearly the

speed of a compiled language.

• “Techniques" such as "fast CGI", keeps the frequently accessed CGI script in

memory for repetitive execution [44]. This avoids this startup latency, except on

the very first execution of a script.

 27

CHAPTER III

RESULTS AND DISCUSSIONS

The UNIPROT protein sequences data set for M. Musculus (chromosome 1) was

downloaded from EBI website [20]. There were 1870 protein sequences contained in it.

The protein sequences were annotated to GO terms for each biological process, molecular

function and cellular component ontology. In total there were 130 GO terms defined for

the three ontologies in GO slim file downloaded from GO consortium website.

GOSlim has 52 GO terms definitions in total for biological process ontology, 41

GO terms definitions for molecular function ontology, 37 GO terms definitions for

cellular component ontology. The next task was to calculate the actual number of GO

terms from these 130 GO terms for which protein sequences (1870 from chromosome 1)

were annotated (Table 3.1). There were 449 protein sequences (24.01 % of protein

sequences of chromosome 1) annotated with 29 molecular functions terms, 398 protein

sequences (21.28 % of protein sequences of chromosome 1) were annotated for 21

cellular component terms and 191 protein sequences (10.21 % of protein sequences of

chromosome 1) annotated for 26 biological process terms.

Tables 3.1 Annotated protein sequences distribution for GO slim

Protein sequences annotated to GOSlim

tree

(Number) (Percentage)

Ontologies associated with

protein sequences

Molecular function 449 449/1870 = 24.01 % 29

 28

Tables 3.1 Annotated protein sequences distribution for GO slim

Cellular component 398 398/1870 = 21.28 % 21

Biological process 191 191/1870 = 10.21 % 26

Table 3.2: GO terms for three ontologies for which protein sequences were annotated

From the above Table 3.2 we can see that there are 76 GO terms (29 + 21 + 26)

being actually used from 130 (total number of GO terms in GOSlim). However, the pre-

requisite for the construction of a GO tree is that for any ontology corresponding to a

child GO node we must have definitions for the parent GO node.

 29

For example: In Biological process there are proteins annotated for GO:0007582

which is a child of GO:0008150 as can be seen from “is_a” identifier in GO:0007582

definition (Table 3.1) given below. However there are no proteins annotated directly to

GO:0008150 although its definition is given in GOSlim file. So to build a GO tree for

biological process we have to include definitions both for the GO:0008150 and

GO:0007582. However this assumption is not valid vice versa. The definition for

GO:0008150 can be viewed from Figure 3.1.

Figure 3.1 Definition for GO:0008150 in GO slim

 30

GO:0008150 is the root node defined for the biological process as can be seen

from its “name:” identifier. GO:0007582 is a child of GO:0008150 and represents the

physiological process branch.

Figure 3.2 Definition for GO:0007582 in GO slim

All parent-child GO groups relationships were identified for biological process,

molecular function and cellular component ontogloies for which protein sequences (from

chromosome 1) were annotated. GO trees corresponding to each of these three ontologies

were built. GO terms were classified according to their levels which corresponds to the

depth it has in the Gene Ontology tree. GO terms are defined along with their functions,

parent (if any).

More specifically ontology can be viewed in a simple tree like structure separately

for each of the ontologies. The depth of the tree represents the GO level. As seen from

Figure 3.3 (next page) molecular function ontology tree have 31 nodes and 5 GO levels

 31

with the root node being GO: 0003674. In the molecular function, the GO: ID – 0003674,

has 9 child nodes. It represents the elemental activities, such as catalysis or binding and

describing the actions of a gene product at the molecular level.

Figure 3.3 GO tree (GO slim) for molecular function

At level 3 there are maximum GO: ID’s –11, which indicates that this level has

the maximum number of functionalities for Molecular function ontology. A given gene

product may exhibit one or more molecular functions.

 32

The Biological function Gene Ontology tree, as seen from Figure 3.4, has 6 levels

and a total of 38 GO terms. The root node is at GO: 0008150. GO: 0008150 denote a

phenomenon which is marked by changes that lead to a particular result, mediated by

Figure 3.4 GO tree (GO slim) tree for biological process

 33

one or more gene products. The first level has 1 node, second has 6 nodes, third level has

12 nodes, fourth level has 9 nodes, fifth level has 7 nodes and sixth level has 3 nodes

respectively. This means that Biological function ontology has the maximum number of

nodes at the third level.

Similarly for cellular component ontology GO tree (Figure 3.5) we see that there

Figure 3.5 GOSlim tree for cellular component

 34

are 40 nodes (GO terms) and 6 GO levels. The root node40 nodes (GO terms) and 6 GO

levels. The root node is at GO:0005575; 11 nodes at level 5; 8 nodes at level 4; 15 nodes

at level 3 and 4 nodes at level 2.

GO: 0043226 lies at the second level have the highest number of child nodes (10).

It has got the highest number of subclasses. It represents an organized structure of

distinctive morphology and function. This includes the nucleus, mitochondria, plastids,

vacuoles, vesicles, ribosomes and the cytoskeleton. It excludes the plasma membrane.

For the cellular second level the maximum number of nodes (GO terms) are at the third

level.

The local sequence alignments were performed for all-to-all pair-wise annotated

proteins using alignment tool downloaded from NCBI for blasting two sequences. The p-

values were calculated to determine the overall similarity of two protein sequences on

(Eq. 2.1). The p-value distributions for the protein sequence pairs over certain intervals

(p∈[0, 1]) are shown in Table 3.3.

Table 3.3 p-value distribution for annotated protein sequence pairs

 Percentage of pairs

p-value range Percentage of pairs

Biological

process

Molecular

function

Cellular

component

[1, 10
-1

) 89.2158 88.2447 89.2290 89.4219

[10
-1

, 10
-2

) 6.9106 6.0292 7.0285 6.963

[10
-2

, 10
-3

) 1.7165 1.3998 1.7658 1.7265

[10
-3

, 10
-4

) 0.5629 0.4574 0.5538 0.5987

[10
-4

, 10
-5

) 0.2134 0.1433 0.1998 0.2468

[10
-5

, 10
-10

) 0.2974 0.2315 0.2645 0.3544

[10
-10

, 10
-15

) 0.0824 0.0276 0.0686 0.1127

[10
-15

, 10
-20

) 0.0450 0.0441 0.0308 0.0633

[10
-20

, 10
-50

) 0.2589 0.7165 0.1969 0.2329

 35

Table 3.3 p-value distribution for annotated protein sequence pairs

[10
-50

, 10
-100

) 0.4618 2.1383 0.4514 0.0899

[10
-100

, 0] 0.2352 0.5676 0.2108 0.1899

In Table 3.3, the second column represents the p-value of protein sequence pairs

from chromosome 1; third column depicts the p-value distribution of protein sequence

pairs annotated for biological process, fourth column for molecular function, and fifth

column for cellular component. We can clearly see that p-value distribution of protein

sequence pairs for the three ontologies (third, fourth and firth columns) is quite similar

with the p-value distribution of total number of annotated proteins (second column),

indicating that protein sequences annotated for the ontologies is a representative sample

set of sequences from chromosome 1. More than 88% of the sequence-pairs lies in the

first interval indicating that majority of the pairs are not similar. Only about 5.7% of the

sequence pairs have p-values less than 0.01.

Figure 3.6 Number of GO groups at different levels of ontologies

 36

The distribution of sizes of GO groups across GO levels were also studied (Figure

3.6). We see clearly that the GO groups in all the three ontologies namely; molecular

function, cellular component and biological process populate the third level of the

ontologies. Molecular level has the maximum GO groups - 11 at the third level, the

biological process has the maximum GO groups - 12 at the third level and the cellular

process has the maximum GO groups -15 at the third level.

Figure 3.7 (below) depicts the distribution of number of proteins at different

levels of ontologies. We see that in all three GO categories the average size of the GO

groups decreases in most of the cases as their level increases.

Figure 3.7 Number of proteins across different GO levels

The numbers of proteins for molecular process, biological function and cellular

component decreases down. The first level represents the root node, and the subsequent

nodes represent the child nodes. The highest numbers of proteins, 449 are in the

 37

molecular process, followed by cellular component which has 398 proteins and 191 being

in the biological function.

 Table 3.4 depicts the p-value distribution of protein sequence pairs for annotated

for molecular function ontology GO terms at different levels.

Table 3.4 p-value distribution of sequence pairs annotated for molecular function

 GO levels

p value range 1 2 3 4 5

log p <= 0 100.0000 100.0000 100.0000 100.0000 100.0000

log p <= -1 10.77096 13.5106 14.94208 15.5121 16.6271

log p <= -2 3.742444 5.2973 6.703111 6.6558 7.8385

log p <= -3 1.976615 3.0396 4.418847 3.9391 3.8005

log p <= -4 1.422805 2.2932 3.689965 3.1513 3.3254

log p <= -5 1.222956 2.0055 3.400364 2.7710 3.0879

log p <= -10 0.958479 1.6061 2.905766 2.2005 2.8504

log p <= -15 0.889874 1.4995 2.756085 2.1462 2.6128

log p <= -20 0.859052 1.4453 2.804894 2.0103 2.1378

log p <= -50 0.662186 1.1221 2.102043 1.5213 0.9501

log p <= -100 0.210786 0.3588 0.657295 1.1953 0.7126

The curve in the Figure 3.8 (next page) represents the percentages of sequence pairs less

than or equal to certain p-value plotted across different GO levels. We see clearly that,

majority of the sequence pairs, 90 % of them, are considered non-similar across all the

GO levels, have at least p-values greater than 0.1. However, the percentage of similar

sequence pairs does increase steadily with their GO levels. For level 1 around 3.7 %

sequence pairs have p-values ≤ 10
-2

 which increments with the GO level. Level 5 has the

highest percentage of similar pairs for molecular function ontology. At this level around

8 % of the sequence pairs have similarity p-value less than or equal to 10
-3

.

 38

0.001

0.01

0.1

1

10

100

1 2 3 4 5

GO Level of sequence pairs

P
e

rc
e

n
ta

g
e

 (
%

)

log p <= 0 log p <= -1

log p <= -2 log p <= -3

log p <= -4 log p <= -5

log p <= -10 log p <= -15

log p <= -20 log p <= -50

log p <= -100

Figure 3.8 p-value distribution of sequence pairs annotated for molecular function

In particular, the percentage of pairs with high similarity scores (p ≤ 10
-10

) has an

increase from level 1 to level 3. The percentage increase is not monotonic for level 4 and

5. At these levels a downward slope is observed, may be due to the nature of the

ontology graph in which fewer GO terms are on levels higher than 3 but overall there is a

trend of percentage increase with the level.

Table 3.5 p-value distribution of sequence pairs annotated for biological process

 GO levels

P value range 1 2 3 4 5 6

log p <= 0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000

log p <= -1 11.7553 16.6457 20.6776 16.8246 13.3822 13.0435

log p <= -2 5.7261 10.1088 14.6198 12.7962 7.6994 10.4348

log p <= -3 4.3263 8.4717 12.9442 11.1374 5.8662 8.6957

log p <= -4 3.8688 7.8077 12.1525 10.4265 4.9496 8.6957

log p <= -5 3.7255 7.5673 11.8210 10.1896 4.5830 8.6957

 39

Table 3.5 p-value distribution of sequence pairs annotated for biological process

log p <= -10 3.4941 7.1208 11.3239 9.4787 3.8497 6.9565

log p <= -15 3.4665 7.0979 11.3055 9.4787 3.8497 6.9565

log p <= -20 3.4224 7.0063 11.1766 9.2417 3.7580 6.9565

log p <= -50 2.7060 5.5867 8.9486 7.3460 2.9789 4.3478

log p <= -100 0.5676 1.1677 1.8413 5.6872 2.3831 2.6087

Table 3.5 above depicts the p-value distributions of sequence pairs annotated for

biological process. In particular, the percentage of pairs with high similarity scores

(p ≤ 10
-10

) increases from 3.5 % for level 1 to 7 % for level 5. There is an increase of 3.49

% of the sequence pairs having p-value ≤ 10
-15

from level 1 to level 5. There is a

monotonous increase in the percentage of sequence pairs from level 1 to level 3. Level 3

has the highest percentage of similar pairs for biological process ontology.

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6
GO level of sequence pairs

P
e

rc
e

n
ta

g
e

 (
%

)

log p <= 0 log p <= -1

log p <= -2 log p <= -3

log p <= -4 log p <= -5

log p <= -10 log p <= -15

log p <= -20 log p <= -50

log p <= -100

Figure 3.9 p-value distribution of sequence pairs annotated for biological process

 40

At this level over 13 % of the sequence pairs have similarity p-values less than or

equal to 10
-3

while for level 1 there are over 4.3 % sequences. Figure 3.9 (previous page)

shows the curves for the p-value distribution of sequence pairs annotated for biological

process. As seen clearly the percentage increase is not monotonic from level 4 to level 6.

There is a downward slope at level 4 and level 5, may be due to less number of proteins

annotated for GO terms at these level. Especially if we see at log p ≤ -100 (p ≤ 10
-100

)

curves which represent the maximum similarity % there is a steep increase from level 3

to 4 suggesting that there is a steep increase in the similarity between the protein

sequence pairs when we go from level 3 to 4. The level of a GO term is defined as the

lowest level on which it appears in the GO Directed Acyclic Graph.

Figure 3.10 p-value distribution of sequence pairs annotated for cellular component

 41

Figure 3.10 (previous page) depicts curve for the p-value distribution of sequence

pairs annotated for cellular component ontology. For the cellular component Ontology,

Over 90% (Table 3.6 next page) of the sequence pairs at all levels have p-values greater

than 0.1. However, the number of similar sequence pairs does increase steadily with their

GO levels. In particular, the percentage of pairs with high similarity scores (p ≤ 10
-10

) has

a steep increase from level 4 to level 5. At level 4 around 2.7 % of the sequence pairs

have similarity p-value less than or equal to 10
-3

while for level 5 over 4 % sequence pairs.

Level 5 has the highest percentage of similar sequence pairs apparently much higher than

molecular function and biological process.

Table 3.6 p-value distribution of sequence pairs annotated for cellular component

 GO levels

p value range 1 2 3 4 5 6

log p <= 0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000

log p <= -1 10.5781 11.6281 12.4448 12.6145 13.1602 0.0000

log p <= -2 3.6151 4.1525 4.6553 4.8455 6.2338 0.0000

log p <= -3 1.8885 2.2546 2.5893 2.7613 4.0693 0.0000

log p <= -4 1.2898 1.6215 1.9089 2.1288 3.7229 0.0000

log p <= -5 1.0430 1.3437 1.5980 1.8247 3.7229 0.0000

log p <= -10 0.6886 0.9434 1.1266 1.3421 3.6364 0.0000

log p <= -15 0.5759 0.7945 0.9862 1.1759 3.5498 0.0000

log p <= -20 0.5126 0.7106 0.8876 1.0624 3.4632 0.0000

log p <= -50 0.2797 0.3941 0.5232 0.6407 3.1169 0.0000

log p <= -100 0.1899 0.2665 0.3611 0.4298 2.4242 0.0000

Similar to the other two ontologies there is a rise in the percentage of similar

sequence pairs from level 1 to level 3 but in particular, there is a significant percentage

increase in similar pairs from level 4 to level 5 for cellular component. Overall there is a

percentage in increase in similarity of sequence pairs with their GO levels.

The percentage of similarity of sequence pairs across their GO levels was also

examined branch wise. Percentage of sequence pairs for each GO group lying in an

 42

interval (interval was defined for p∈ [0, 10
-20

]) was calculated and the ratio was taken

between the parent GO group (second column) and the child GO group (third column):

 Ratio =
])[0,10(p intervalin lying group GO childin pairs sequence of %

])10,0[(p intervalin lying group GOparent in pairs sequence of %
20-

20

∈

∈
−

The value for ratio < 1 implied that percentage of similarity in sequence pairs is more in

child GO group as compared with its parent GO group for that interval.

Table 3.7 p-value analysis for molecular function branch wise

Parent GO term

Child GO term

Ratio

(% of similar pairs in parent /
% of similar pairs in child)

Count 1 if ratio is < 1

GO:0003674 *GO:0005488 1.7920

*GO:0005488 **GO:0005509 0.0815 1

*GO:0005488 **GO:0003682 0.0360 1

*GO:0005488 **GO:0003676 0.3309 1

GO:0003676 *GO:0003677 0.8355 1

GO:0003677 *GO:0003700 0.9362 1

GO:0003676 *GO:0003723 0.6591 1

*GO:0005488 **GO:0000166 0.1246 1

*GO:0005488 **GO:0005515 0.7629 1

GO:0005515 *GO:0008092 0.0518 1

GO:0008092 *GO:0003779 1.6970

GO:0005515 *GO:0005102 0.0440 1

GO:0003674 *GO:0003824 1.1838

*GO:0003824 **GO:0009055 0.0508 1

*GO:0003824 **GO:0016787 0.6609 1

GO:0016787 *GO:0008233 0.1647 1

*GO:0003824 **GO:0016740 0.6368 1

GO:0003674 *GO:0003774 0.0430 1

GO:0003674 *GO:0004871 0.0263 1

*GO:0004871 **GO:0004872 0.8364 1

GO:0003674 *GO:0030528 0.5201 1

*GO:0030528 **GO:0003700 0.8919 1

GO:0003674 *GO:0005215 0.0401 1

 43

Note: GO term with no ‘*’ represents root node (level 1).

 GO term with one ‘*’ represents node at level 2.

 GO term with two ‘*’ represents node at level 3.

 GO term with three ‘*’ represents node at level 4.

In particular, the percentage of pairs with high similarity scores with p-value lying

in interval p∈[0, 10
-20

] was studied. The ratio of the parent-child GO term relationship

was taken only once for a branch.

As observed from the above table there is general trend of increase in the

similarity of sequence pairs while traversing down the GO levels branch wise. Among 23

parent-child GO group pairs, there is a short trend of decreasing similarity from parent to

child GO group, and only 3 pairs have ratio > 1. This may be due to few number of

protein sequences annotated for that child GO group. Overall with the increase in the GO

levels there is a general increase in the similarity of the sequence pairs as we move down

the GO tree branch wise. On the same parallel lines we examined the p-value distribution

of the sequence pairs for cellular component.

Table 3.8 p-value analysis for cellular component branch wise

Parent GO term

Child GO term

Ratio

(% of similar pairs in parent /

% of similar pairs in child)

Count 1 if ratio is < 1

GO:0005575 *GO:0005623 0.8358 1

*GO:0005623 *GO:0005622 0.9966 1

GO:0005622 *GO:0005929 #### No count

GO:0005622 *GO:0005737 0.9574 1

GO:0005737 *GO:0016023 0.0386 1

GO:0005737 *GO:0005829 0.1479 1

GO:0005737 *GO:0005783 0.1463 1

GO:0005737 *GO:0005768 0.0386 1

GO:0005737 *GO:0005794 0.1286 1

GO:0005737 *GO:0005739 0.5465 1

 44

Table 3.8 p-value analysis for cellular component branch wise

GO:0005737 *GO:0005840 0.135 1

GO:0005737 *GO:0005773 #### No count

****GO:0005773 *****GO:0005764 #### No count

GO:0005622 *GO:0005856 0.0431 1

GO:0005622 *GO:0005634 0.3742 1

GO:0005634 *GO:0005635 0.0658 1

****GO:0005635 ****GO:0005730 #### No count

****GO:0005730 ****GO:0005654 #### No count

GO:0005575 **GO:0005886 0.0987 1

GO:0005575 *GO:0005576 0.3156 1

*GO:0005576 **GO:0005578 0.0266 1

*GO:0005576 **GO:0005615 1.1588

GO:0005575 *GO:0043226 0.6601 1

*GO:0043226 **GO:0005929 #### No count

*GO:0043226 **GO:0016023 0.0466 1

*GO:0043226 **GO:0005856 0.0544 1

*GO:0043226 **GO:0005783 0.1767 1

*GO:0043226 **GO:0005768 0.0466 1

*GO:0043226 **GO:0005794 0.1553 1

*GO:0043226 **GO:0005739 0.6602 1

*GO:0043226 **GO:0005634 0.4722 1

GO:0005634 *GO:0005635 0.0658 1

GO:0005634 *GO:0005730 #### No count

GO:0005634 *GO:0005654 #### No count

*GO:0043226 **GO:0005840 0.1631 1

*GO:0043226 **GO:0005773 #### No count

GO:0005773 *GO:0005764 #### No count

GO:0005575 *GO:0043234 0.1077 1

*GO:0043234 **GO:0005840 1 1

Note: #### denotes ‘un-defined’ value

In the above Table 3.8 p-value distributions of sequence pairs for cellular

component had been listed out as a relationship between parent-child GO term groups for

p values lying in interval p∈[0, 10
-20

]. Interestingly, cellular component ontology has 10

parent-child GO group pairs (ratio as “####”) for which nothing can be said. This may be

due to there were no protein sequences annotated for this interval for parent-child GO

 45

groups or child GO group alone so nothing can be stated for these 10 pairs. Out of the

remaining 29 parent-child GO group pairs, noticeably 27 of them have ratio < 1 which

implies that there is more similarity in sequence pairs as we go down the GO level branch

wise. Only 1 pair has a ratio > 1 and the other 1 has ratio = 1. This implies that there is a

general trend in the increase in the similarity as we traverse cellular component GO tree

branch wise.

We also examined percentage of similarity between the sequences pairs for

biological process (Table 3.9)

Table 3.9 p-value analysis for biological process branch wise

Parent GO term

Child GO term

Ratio

(% of similar pairs in parent /

% of similar pairs in child)

Count 1 if ratio is ≤ 1

GO:0008150 *GO:0007610 0.0342 1

GO:0008150 *GO:0007154 0.0959 1

*GO:0007154 **GO:0007267 0.7138 1

*GO:0007154 **GO:0007165 0.9636 1

GO:0008150 *GO:0007275 3.5934

*GO:0007275 **GO:0030154 0.1429 1

*GO:0007275 **GO:0009790 #### No count

*GO:0007275 **GO:0009653 #### No count

GO:0009653 *GO:0016049 #### No count

GO:0008150 **GO:0040007 #### No count

**GO:0040007 **GO:0016049 #### No count

GO:0008150 *GO:0007582 3.0544

*GO:0007582 **GO:0007049 #### No count

*GO:0007582 **GO:0016043 #### No count

GO:0016043 *GO:0016049 #### No count

GO:0016043 *GO:0006996 #### No count

GO:0006996 *GO:0007010 #### No count

*GO:0007582 **GO:0008283 0.1046 1

*GO:0007582 **GO:0008152 0.727 1

GO:0008152 *GO:0009058 0.524 1

GO:0009058 *GO:0006412 1.147

GO:0008152 *GO:0006091 0.1753 1

 46

Table 3.9 p-value analysis for biological process branch wise

GO:0006091 *GO:0006118 1

GO:0008152 *GO:0044238 0.4576 1

GO:0044238 *GO:0005975 0.1613 1

GO:0008152 *GO:0044238 0.4576 1

GO:0044238 *GO:0006629 0.0337 1

GO:0044238 *GO:0006139 0.3088 1

****GO:0006139 *****GO:0006350 0.7855 1

GO:0044238 *GO:0019538 1.1788

****GO:0019538 *****GO:0006412 1.1143

****GO:0019538 *****GO:0006464 0.0286 1

*GO:0007582 **GO:0006810 0.107 1

GO:0008150 **GO:0006950 #### No count

Note: #### denotes ‘un-defined’ value

There are 17 parent-child GO group pairs which have ratio > 1, implies that there

is an increase in similarity of sequence pairs as we go down the GO tree but as such there

is a vague trend of increasing degree of similarity with the GO levels. As we can see that

there are 11 pairs for which no inference can be drawn, 1 pair has ratio = 1 and 5 pairs

have ratio > 1.

These above results suggest that proteins of similar biological functions tend to

have higher sequence similarity. In general, we see, from the three p-value distribution

tables that the deeper a GO group is the more similarity it will have. More convincingly,

20 out of 23 molecular function groups, 27 out of 39 cellular component groups, and 17

out of 34 biological process groups have higher percentage of sequence pairs having p-

values ≤ 10
-20

 than those of their parents. This result indicates the strong correlation

between sequence similarity and function similarity.

To actually determine the relationship between similarity between two protein

sequences and its contribution in predicting the biological function we computed the

 47

posterior probabilities using Bayes’ theorem [45] (Duan et al) for acid binding branch of the

molecular function ontology tree.

2 1 1 2(| , (,)P S G S G p S S ε∈ ∈ ≤) = 2 1 1 2

1 1 2

P (S G, S G, p(S , S))

P (S G, p(S , S))

ε

ε

∈ ∈ ≤

∈ ≤
 (Eq. 3.1)

Where,

L.H.S. of the equation describes the posterior probability of finding a random

sequence S2 in GO group G when S1 is already present in the same GO group G

with a p-value between S1 and S2 greater than or equal to a certain threshold value .

 G denotes a particular GO group.

 p (S1, S2) is the p-value calculated as Equation 2.1 (materials & methods section)

 ε represents a particular value for which p-value threshold for S1 and S2 .

Posterior probabilities for molecular function, biological process and cellular

component were calculated branch wise for intervals (p ≤ [0, 1]) (using Eq. 2.2).

Table 3.10 Posterior probability for a molecular function’s branch.

 48

Table 3.10 above represents the acid binding branch (GO:0005488) of molecular

function ontology. We can see clearly that posterior probability of a correct assignment

varies greatly from group to group. For example, if a database search hits the acid

binding group then one can have 95% confidence that the query sequence belongs to G,

for p-value lying in the interval log p∈(-100, 0]. Noticeably, on the other hand a hit

corresponding to transcription factor activity group would have 40% confidence that the

protein belongs to the group for the same p-value interval. With the distribution of

posterior probabilities of the GO groups over a wider range, indicates that posterior

probability could serve as one of the features in determining unknown function prediction.

 49

CHAPTER IV

CONCLUSION

There is an association between the similar protein sequences of M. Musculus

(chromosome 1 [20]) and the functions pertinent to the three fundamental principles of

gene ontology -- molecular function, biological process and cellular component [12]. The

similarity distribution curves for the three ontologies indicate that the protein pairs have

higher sequence similarity when picked up from the same functional GO group rather

than a sample randomly drawn from a pool of protein sequence pairs. The range of p-

value distribution of the sequence pairs is wide and varies across the groups. Interestingly,

as we traverse down the GO levels branch-wise, we find that the p-values consistently

decreases indicating the protein sequences in a child node are more similar than those in

the parent node. Furthermore, our study on posterior probability of a correct prediction

indicates that the protein function prediction confidence increases steady with the

decrease of p-values. These studies done in conjunction with the yeast study by Duan et

al [19] suggest that sequence similarity approach can play a vital role as a preliminary

tool in the prediction of protein functions. These results need to be validated through

other complimentary approaches, encompassing different features including gene

ontology structure attributes, gene expression patterns, protein structure similarity, etc.

The complimentary approaches are more likely to provide a much accurate function

prediction

 50

REFERENCES

[1] WIKI cited; http://en.wikipedia.org/wiki/Genome_project

[2] http://www.ornl.gov/sci/techresources/Human_genome/project/about.shtml

[3] Yu Zheng, R.J.R., and Simon Kasif, Genomic functional annotation using co- evolution

profiles of gene clusters. Genome Biol., 2002. 3(11): p. research 0060.1– research 0060.9.

[4] John A. Gerlt, P.C.B., Can sequence determine function? Genome Biology, 2000. 1: p.

reviews0005.1-0005.10.

[5] Hudak J, M.M., A comparative analysis of computational motif-detection methods. Pac

Symp. Biocomput., 1999: p. 138-49.

[6] http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12429059

[7] Pellegrini M., M.E., Thompson M.J., Eisenberg D., Yeates T.O., Assigning protein functions

by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A.,

1999. 96(8): p. 4285-8.

[8] T. F. SMITH, M.S.W., Identification of Common Molecular Subsequences. J Mol Biol.

147(1): p. 195-7 7265238

[9] NCBI - BLAST. cited; Available from: http://www.ncbi.nlm.nih.gov/blast/

[10] Altschul, S.F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment

search tool. J. Mol. Biol., 1990. 215: p. 403-410.

[11] http://www.accessexcellence.org/AE/AEPC/NIH/gene03.html

[12] http://www.geneontology.org/GO.doc.shtml

[13] http://www.geneontology.org/GO.slims.shtml

[14] Arunachalam Vinayagam RK, Jutta Moormann, Falk Schubert, Roland Eils, Karl-Heinz,

Glatting and Sándor Suhai: Applying Support Vector Machines for the Gene ontology

based gene function prediction. BMC Bioinformatics 2004, 5(116), doi:10.1186/1471-

2105-5-116.

[15] Zehetner, G., OntoBlast function: from sequence similarities directly to potential functional

annotations by ontology terms, Nucleic Acids Research, 2003.

 51

[16] Hanqing Xie, A.W., Zurit Levine, Amit Novik, Vladimir Grebinskiy, Avi Shoshan and Liat

Mintz, Large-Scale Protein Annotation through Gene Ontology Genome Research, 2002.

12(5): p. 785-794.

[17] Schug J DS, Mazzarelli J, Brunk BP, Stoeckert CJ Jr.: Predicting gene ontology functions

from ProDom and CDD protein domains. PubMed, 12(4):648-655.

[18] HouseMouse, E. Explore the Mus musculus genome. [cited; Available from:

www.ensembl.org/Mus_musculus/]

[19] Zhong-Hui Duan BH, Lothar Reichel, Dianne M Perez and Ting Shi: The relationship

between protein sequences and their gene ontology functions. BMC Bioinformatics 2006,

7(Suppl4):S11. doi: 10.1186/1471-2105-7-S4-S11

[20] Cited from http://www.ebi.ac.uk/integr8/FtpSearch.do?orgProteomeId=59

[21] http://lectures.molgen.mpg.de/Variants/LocalAli/index.html

[22] http://gel.ym.edu.tw/~chc/AB_papers/03.pdf

[23] http://cse.stanford.edu/class/sophomore-college/projects-00/computers-and-the-hgp/smith_waterman.html

[24] http://www.cs.uakron.edu/~zduan/BioinformaticsSummerWorkshop/

[25] http://bioinformatics.unc.edu/docs/tutorial_fasta/fasta.doc

[26] www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html

[27] http://en.wikipedia.org/wiki/BLAST

[28] http://www.lacim.uqam.ca/~anne/BIF7000/Pertsemlidis.pdf

[29] http://www.broad.mit.edu/annotation/blast/blast_help.html

[30] http://www.cas.org/express/help/601/blast/topics/settings.htm

[31] Henikoff, S.H., J. G., Amino acid substitution matrices from protein blocks. Proc Natl Acad

Sci U S A, 1992. 89(22): (10915–10919)

[32] Dayhoff, M.O., Schwartz,R.M. and Orcutt,B.C. , Atlas of Protein Sequence and Structure.

Dayhoff, M.O.(ed.) 1978

[33] http://selab.janelia.org/publications/Eddy-ATG2/Eddy-ATG2-reprint.pdf

[34] http://www.egeen.ee/u/vilo/edu/2003-04/ATABI_2004k/Lists/blosum.html

[35] http://helix.biology.mcmaster.ca/721/distance/node10.html

[36] http://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/Similarity/simsrch16.html

[37] http://bioweb.pasteur.fr/seqanal/interfaces/bl2seq.html

 52

[38] http://biowulf.nih.gov/apps/blast/doc/bl2seq.html

[39] http://web.csb.ias.edu/blast/blast.txt.

[40] http://bioinformatics.ubc.ca/resources/workshops/web_based_blast/tutorial.

[41] http://en.wikipedia.org/wiki/Gene_Ontology

[42] www.geneontology.org/GO.slims.shtml

[43] http://www.perl.com/pub/q/documentation

[44] www.ibm.com/developerworks/linux/library/l-perl-parsing

[45] http://en.wikipedia.org/wiki/Bayes'_theorem

 53

APPENDICES

 54

APPENDIX A

CRITICAL SOURCE CODE

protein_count.pl #

Script counts the number of unique proteins in each of the genome component for any #

organism. Place the name of the genome component i.e. “*.dat” file as input and #

number of unique proteins. #

#!/usr/bin/perl

#use strict;

open INPUT, "< Musculus_1.dat" or die "cannot open file Musculus_1.dat $!";

$count=0;

checks for each entry line whether it has an identifier ‘ID’ & ‘AC’

foreach $line(<INPUT>)

{

 @item = split (/\s+/, $line);

 $key1 = shift @item;

 $key2 = shift @item;

 if($key1 eq 'ID')

 {

 $flag=1111;

 }

 if ($key1 eq 'AC' && $flag==1111)

 {

 $flag=9999;

 $count++;

 }

 }

print "Number of Protein Sequences: ".$count;

 55

extract_proteins.pl #

Script extracts sequences for each protein and stores it into individual files and also #

stores the name of the proteins in ‘values.txt’ file so that number of proteins extracted #

can be verified against the first script too.

#!/usr/bin/perl

#use strict;

open INPUT, "< Musculus_1.dat" or die "cannot open file Musuculus_1.dat $!";

$sequence = '';

$SQ_start = FALSE;

open EV, ">>$values.txt" or die "Cannot open the file!";

foreach $line(<INPUT>)

 {

 @item = split (/\s+/, $line);

 $key1 = shift @item;

 $key2 = shift @item;

 if ($key1 eq 'AC')

 {

 $accession_num = $key2;

 $accession_num =~ s/;//g;

 $fname = 'Protein_Sequences/'.$accession_num.'.txt';

 print " $accession_num\n";

 print EV "$accession_num\n";

 open SQ_OUTPUT, "> $fname" or die "cannot open file $fname; $!";

 }

 if ($key1 eq 'SQ' && $key2 eq 'SEQUENCE')

 {

 $SQ_start = TRUE;

 }

 if ($key1 eq ''&& $SQ_start eq TRUE) \

 {

 $line =~ s/\s+//g;

 $sequence .= $line."\n";

 }

 if ($key1 eq '//' && $key2 eq '')

 56

 {

 print SQ_OUTPUT '>', $accession_num,"\n";

 print SQ_OUTPUT $sequence;

 #print $accession_num,"\n";

 #print $sequence;

 $SQ_start = FALSE;

 $sequence='';

 close SQ_OUTPUT;

 }

}

close INPUT;

blast_proteins.pl #

Blasts the proteins against each other. Picks up the name of each protein from #

‘values.txt’ file and then picks up the sequences associated with it from its particular #

sequences text file, uses a blast.exe program and compares and stores the result in #

text files.

#!/usr/bin/perl

#use strict;

open(INFO,'values.txt');

@lines1=<INFO>;

@checks=@lines1;

$count=0;

foreach $line1(@lines1)

{

 @item1 = split (/\s+/, $line1);

 $key1=shift @item1;

 $count++;

 print "$line1:\n";

 print "$count\n";

 foreach $check(@checks)

 {

 @item2 = split (/\s+/, $check);

 $key2=shift @item2;

 if($key1 ne $key2)

 {
 @lines = `bl2seq -i Protein_Sequences/$key1.txt -j Protein_Sequences/$key2.txt -p blastp`;

 $result=$key1.'_query';

 57

 open EV, ">>Result/$result.txt" or die "Cannot open Result/$result.txt!";

 print EV "$key1 - ";

 print EV "$key2\n";

foreach $line(@lines)

{

 $pattern1="Score";

 $pattern2="Identities";

 if ($line =~ m/$pattern1/i)

 {

 print EV " $line\n";

 }

 if ($line =~ m/$pattern2/i)

 {

 print EV " $line\n";

 }

}

print EV "---\n";

 }

 }

}

}

GO_Slim.pl #

Checks out GO term from GO Slim file and classifies it into Biological process, #

cellular component and molecular function ontologies #

#!/usr/bin/perl

#use strict;

open(INFO2,'goslim_generic.obo');

@myarray3=<INFO2>;

$fname1 = 'Total_GO_Molecular.txt';

open EV1, ">>$fname1" or die "cannot open file $fname1; $!";

$fname2 = 'Total_GO_Cellular.txt';

open EV2, ">>$fname2" or die "cannot open file $fname2; $!";

 58

$fname3 = 'Total_GO_Biological.txt';

open EV3, ">>$fname3" or die "cannot open file $fname3; $!";

$temp;

$count4=0;

print "\nList of GO terms \n";

foreach $g(@myarray3)

 {

 @item_3 = split (/\s+/, $g);

 $key1_1 = shift @item_3;

 $key2_1 = shift @item_3;

 if($key1_1 eq 'id:')

 {

 $temp=$key2_1;

 $count4++;

 print "$key2_1 - $count4 \n";

 }

 if($key1_1 eq 'namespace:')

 {

 if($key2_1 eq 'molecular_function')

 {

 print EV1 "'$temp;', ";

 $count1++;

 $count++;

 }

 if($key2_1 eq 'cellular_component')

 {

 print EV2 "'$temp;', ";

 $count2++;

 $count++;

 }

 if($key2_1 eq 'biological_process')

 {

 print EV3 "'$temp;', ";

 $count3++;

 $count++;

 }

 }

 }

 59

$count5=0;

foreach $g(@myarray3)

 {

 @item_3 = split (/\s+/, $g);

 $key1_1 = shift @item_3;

 $key2_1 = shift @item_3;

 if($key1_1 eq '[Term]')

 {

 $count5++;

 }

}

print "\n\n\nGO terms for Molecular function - "."$count1 \n";

print "GO terms for Cellular component - "."$count2 \n";

print "GO terms for Biological process - "."$count3 \n";

print "Total GO terms - "."$count5\n";

##

Bio.pl #

Picks up GO term from Biological process and maps the proteins from dataset for #

each GO term and also counts the proteins for each of them #

#!/usr/bin/perl

#use strict;

@myarray3= ('GO:0000003;', 'GO:0005975;', 'GO:0006091;', 'GO:0006118;',

'GO:0006139;', 'GO:0006259;', 'GO:0006350;', 'GO:0006412;', 'GO:0006464;',

'GO:0006519;', 'GO:0006629;', 'GO:0006810;', 'GO:0006811;', 'GO:0006950;',

'GO:0006996;', 'GO:0007005;', 'GO:0007010;', 'GO:0007028;', 'GO:0007049;',

'GO:0007154;', 'GO:0007165;', 'GO:0007267;', 'GO:0007275;', 'GO:0007582;',

'GO:0007610;', 'GO:0008037;', 'GO:0008150;', 'GO:0008152;', 'GO:0008219;',

'GO:0008283;', 'GO:0009056;', 'GO:0009058;', 'GO:0009605;', 'GO:0009607;',

'GO:0009628;', 'GO:0009653;', 'GO:0009719;', 'GO:0009790;', 'GO:0015031;',

'GO:0016032;', 'GO:0016043;', 'GO:0016049;', 'GO:0016265;', 'GO:0019538;',

'GO:0019725;', 'GO:0019748;', 'GO:0030154;', 'GO:0040007;', 'GO:0040029;',

'GO:0044238;', 'GO:0044403;', 'GO:0050789;');

open(INFO4,'Musculus_1.dat');

@myarray4=<INFO4>;

 60

$fname = 'GOCHECK_BIO_DUPLICATE.txt';

open EV, ">>$fname" or die "cannot open file $fname; $!";

$count=0;

$tot=0;

foreach $g(@myarray3)

 {

 $tot=990;

 print EV "\n";

 print EV "--";

 print EV "\n";

 $d=substr($g,0,10);

 print EV "$d\n";

 print "$d\n";

 foreach $g1(@myarray4)

 {

 @item_3 = split (/\s+/, $g1);

 $key1_1 = shift @item_3;

 $key2_1 = shift @item_3;

 $key3_1 = shift @item_3;

 if($key1_1 eq '//')

 {

 $sq=FALSE;

 }

 if($key1_1 eq 'AC')

 {

 $sq=TRUE;

 $tem_protein=$key2_1;

 }

 if($sq eq 'TRUE' && $key1_1 eq 'DR')

 {

 $sq1=TRUE;

 }

 if($sq1 eq 'TRUE' && $key3_1 eq $g)

 {

 $d1=substr($tem_protein,0,6);

 print EV "$d1\n";

 $count++;

 }

 61

 }

 print EV 'count '."$count";

 $tot=$tot+$count;

 $count=0;

 }

##

Mol.pl #

Picks up GO term from Molecular function and maps proteins from dataset for #

each GO term and also counts the proteins for each of them #

#!/usr/bin/perl

#use strict;

@myarray3= ('GO:0000166;', 'GO:0003674;', 'GO:0003676;', 'GO:0003677;',

'GO:0003682;', 'GO:0003700;', 'GO:0003723;', 'GO:0003774;', 'GO:0003779;',

'GO:0003824;', 'GO:0004518;', 'GO:0004672;', 'GO:0004721;', 'GO:0004871;',

'GO:0004872;', 'GO:0005102;', 'GO:0005198;', 'GO:0005215;', 'GO:0005216;',

'GO:0005326;', 'GO:0005488;', 'GO:0005509;', 'GO:0005515;', 'GO:0008092;',

'GO:0008135;', 'GO:0008233;', 'GO:0008289;', 'GO:0009055;', 'GO:0016209;',

'GO:0016301;', 'GO:0016740;', 'GO:0016787;', 'GO:0019825;', 'GO:0030188;',

'GO:0030234;', 'GO:0030246;', 'GO:0030528;', 'GO:0030533;', 'GO:0031386;',

'GO:0045182;', 'GO:0045735;');

open(INFO4,'Musculus_1.dat');

@myarray4=<INFO4>;

$fname = 'GOCHECK_MOL_DUPLICATE.txt';

open EV, ">>$fname" or die "cannot open file $fname; $!";

$count=0;

$tot=0;

foreach $g(@myarray3)

 {

 $tot=990;

 print EV "\n";

 print EV "--";

 print EV "\n";

 $d=substr($g,0,10);

 print EV "$d\n";

 print "$d\n";

 62

 foreach $g1(@myarray4)

 {

 @item_3 = split (/\s+/, $g1);

 $key1_1 = shift @item_3;

 $key2_1 = shift @item_3;

 $key3_1 = shift @item_3;

 if($key1_1 eq '//')

 {

 $sq=FALSE;

 }

 if($key1_1 eq 'AC')

 {

 $sq=TRUE;

 $tem_protein=$key2_1;

 }

 if($sq eq 'TRUE' && $key1_1 eq 'DR')

 {

 $sq1=TRUE;

 }

 if($sq1 eq 'TRUE' && $key3_1 eq $g)

 {

 $d1=substr($tem_protein,0,6);

 print EV "$d1\n";

 $count++;

 }

 }

 print EV 'count '."$count";

 $tot=$tot+$count;

 $count=0;

 }

##

Cell.pl #

Picks up GO term from Cellular component and maps proteins from dataset for #

each GO term and also counts the proteins for each of them #

#!/usr/bin/perl

#use strict;

 63

@myarray3= ('GO:0000228;', 'GO:0000229;', 'GO:0005575;', 'GO:0005576;',

'GO:0005578;', 'GO:0005615;', 'GO:0005618;', 'GO:0005622;', 'GO:0005623;',

'GO:0005634;', 'GO:0005635;', 'GO:0005654;', 'GO:0005694;', 'GO:0005730;',

'GO:0005737;', 'GO:0005739;', 'GO:0005764;', 'GO:0005768;', 'GO:0005773;',

'GO:0005777;', 'GO:0005783;', 'GO:0005794;', 'GO:0005811;', 'GO:0005815;',

'GO:0005829;', 'GO:0005840;', 'GO:0005856;', 'GO:0005886;', 'GO:0005929;',

'GO:0005941;', 'GO:0009536;', 'GO:0009579;', 'GO:0016023;', 'GO:0030312;',

'GO:0030313;', 'GO:0043226;', 'GO:0043234;');

open(INFO4,'Musculus_1.dat');

@myarray4=<INFO4>;

$fname = 'GOCHECK_CELL_DUPLICATE.txt';

open EV, ">>$fname" or die "cannot open file $fname; $!";

$count=0;

$tot=0;

foreach $g(@myarray3)

 {

 $tot=990;

 print EV "\n";

 print EV "--";

 print EV "\n";

 $d=substr($g,0,10);

 print EV "$d\n";

 print "$d\n";

 foreach $g1(@myarray4)

 {

 @item_3 = split (/\s+/, $g1);

 $key1_1 = shift @item_3;

 $key2_1 = shift @item_3;

 $key3_1 = shift @item_3;

 if($key1_1 eq '//')

 {

 $sq=FALSE;

 }

 if($key1_1 eq 'AC')

 {

 $sq=TRUE;

 $tem_protein=$key2_1;

 64

 }

 if($sq eq 'TRUE' && $key1_1 eq 'DR')

 {

 $sq1=TRUE;

 }

 if($sq1 eq 'TRUE' && $key3_1 eq $g)

 {

 $d1=substr($tem_protein,0,6);

 print EV "$d1\n";

 $count++;

 }

 }

 print EV 'count '."$count";

 $tot=$tot+$count;

 $count=0;

 }

cal.pl #

For each GO term, corresponding to sequence pairs in it, calculates the posterior #

probability for each of them and puts them into sub-intervals #

#!/usr/bin/perl

#use strict;

$pattern='GO:0043234';

$pattern1=substr($pattern,3);

open(INFO1,$pattern1.'_n.txt');

@myarray1=<INFO1>;

open(INFO2,'all_cell.txt');

@myarray3=<INFO2>;

$fname = $pattern1.'_post.txt';

open EV, ">>$fname" or die "cannot open file $fname; $!";

print 'Opening file - '.$pattern1.'_n.txt'."\n";

print "---------------------------\n\n";

 65

@num=('1', '0.1', '0.01', '0.001', '0.0001', '0.00001', '0.0000000001',

'0.000000000000001', '0.00000000000000000001',

'0.0001',

'0.00

000000000000000000000000000001');

foreach $comp(@num)

{

$num = 0 ;

$deno = 0;

$res=999999;

foreach $g(@myarray3)

 {

 @item_3 = split ('\t', $g);

 $key1_1 = shift @item_3;

 $key2_1 = shift @item_3;

 $key3_1 = shift @item_3;

 if($key3_1 <= $comp)

 {

 $sb1=check($key1_1, $pattern1);

 $sb2=check($key2_1, $pattern1);

 if($sb1 == 1111 || $sb2 == 1111)

 {

 $deno++;

 }

 if($sb1 == 1111 && $sb2 == 1111)

 {

 $num++;

 }

 } #if condition

 } #myarray3

if($deno != 0)

 {

 $res=$num/$deno;

 }

print "num-$num, deno=$deno\n";

 66

 if($comp eq '1')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= 0 ----- $res\n";

 }

 if($comp eq '0.1')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -1 ----- $res\n";

 }

 if($comp eq '0.01')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -2 ----- $res\n";

 }

 if($comp eq '0.001')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -3 ----- $res\n";

 }

 if($comp eq '0.0001')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -4 ----- $res\n";

 }

 if($comp eq '0.00001')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -5 ----- $res\n";

 }

 if($comp eq '0.0000000001')

 {

 $res=$res*100;

 67

 print EV "$res ";

 print "LOG p <= -10 ----- $res\n";

 }

 if($comp eq '0.000000000000001')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -15 ----- $res\n";

 }

 if($comp eq '0.00000000000000000001')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -20 ------ $res\n";

 }

 if($comp eq '0.0001')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -50 ------ $res\n";

 }

 if($comp eq

'0.00

000000000000000000000000000001')

 {

 $res=$res*100;

 print EV "$res ";

 print "LOG p <= -100 ------ $res\n";

 }

}

sub check

{

 $val=$_[0];

 $pattern1=$_[1];

 open(INFO4,$pattern1.'_n.txt');

 @mya = <INFO4>;

 foreach $a(@mya)

 {

 68

 @az = split (/\s+/, $a);

 $s1 = shift @az;

 $s2 = shift @az;

 if($s1 eq 'protein:' && $s2 eq $val)

 {

 return 1111;

 } # end of if

 } #end of mya

}

close EV;

