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ABSTRACT 
 

 High performance control of permanent magnet machines (PMSM) requires 

accurate knowledge of the parameters that describe their mathematical models. This 

parameter information enables the controller to optimize the drive performance and 

efficiency, and to react to possible changes in the machine model. Several methods have 

been tested in order to get motor parameter estimates. Most of them are based on off-line 

measurements or estimates, which are then stored in the controller. Other methods 

published are compatible with on-line implementation, but these are usually restricted to 

a subset of the machine parameters. 

 This dissertation proposes a solution to the problem of on-line estimation of 

PMSM stator resistance, torque constant and d-q inductances. An analysis of the machine 

parameters and their effects on motor drive performance that motivates the development 

of a new parameter estimation algorithm is presented. This algorithm combines two 

instances of the recursive least squares method, which interact in order to account for 

different machine parameter dynamics. As a consequence, the presented method is able to 

provide the controller with parameter estimates even when sudden changes in operation 

take place. 

 The effectiveness of the proposed parameter estimation algorithm is validated 

using both a computer simulation and an experimental motor drive. This simulation 

model was developed specifically for this project and includes accurate inverter and
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controller modeling, in addition to a machine model that features parameter variation. 

The simulation model is used in both the algorithm development stages and its validation. 

The experimental setup provides additional verification of the effectiveness of the 

proposed algorithm. It is based on the use of a digital signal processor for the controller 

algorithm implementation, and includes motor drive classical algorithms as well as the 

proposed parameter estimation program. Both simulation and experimental results 

demonstrate the performance of the parameter estimation algorithm, both in transient and 

steady state operations.  
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CHAPTER I 

INTRODUCTION 

 
 
 

The development of digital electronics and the recent technological advancements 

in the field of power electronics have caused major changes in the industry related to 

electrical machines. The range of possible applications for such devices has expanded 

tremendously because of their ease of use and their excellent efficiency. Those 

technological changes have also led to the increased use of new types of electrical 

machines. For instance, the very popular DC motor is now being challenged for servo 

applications by Permanent Magnet (PM) motors, Switched Reluctance (SR) motors, and 

even induction motors. The development of vector control theory has also allowed 

improvements in terms of control for existing motor technologies, such as induction 

machines.  

The introduction of Digital Signal Processors (DSP) in motor control applications 

has allowed electrical machines to reach their full potential, in terms of speed range and 

dynamic behavior. Complex control algorithms can now be implemented and the motor 

drive can perform a wider range of operations with optimization of algorithms with 

regard to efficiency, robustness or dynamic response. For example, in permanent magnet 

machines the controller can optimize the machine output torque in order to minimize the 

required current, the required voltage, or the power losses. 
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 The performance of electric motor drives now relies as much on software as on  

hardware configuration. Numerous algorithms have been developed that can now 

substitute estimations for measurements, reducing the drive cost and increasing its 

robustness. The most popular of these indirect parameter estimations are related to rotor 

position estimation because of the price and bulkiness of position sensors. These 

estimators mostly use measured machine currents and electrical parameters to extract 

position information. On the other hand, efforts have been made in order to reduce the 

number of current sensors by reconstructing the three phase currents from DC bus current 

rather than from measurement of phase currents. 

A property that most advanced control algorithms have in common is their need 

for accurate knowledge of the machine analytical model. A control system designed for a 

plant that is different from the one it was intended for is likely to have poor performance. 

This is why the focus of this dissertation will be the estimation of plant parameters.  

 

1.1 Synchronous Machines  

Permanent magnet (PM) machines are electromechanical energy conversion 

devices that mainly use the interaction of the stator electromagnetic and rotor magnetic 

fields to produce torque. Most of these machines are non-salient, but depending on the 

mounting of the rotor magnets, they can also present magnetic saliency that can be used 

for torque production. 

In their operation and even construction, the PM machines are very similar to the 

wound rotor (WR) AC synchronous machines. The difference resides in the fact that the 

rotor excitation is fixed and provided by permanent magnets instead of coming from an 
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external circuit through slip rings and brushes. The stator construction can be the same 

for both types of machines. 

In the past, AC synchronous machines were used mostly for generator 

applications. Their use as a motor was limited due to the difficulty of controlling the 

frequency of their supply voltages. The introduction of power electronics PWM inverters 

has allowed the motor drive to have complete control over the magnitude and frequency 

of machine phase to phase voltages. 

Another factor that helped the development of PM synchronous machines is the 

expansion of industrial production of permanent magnets. The first magnet type to be 

produced on an industrial scale was the Alnico in the early twentieth century. As a result, 

S. Evershed [1][2] in 1920 made some important contributions to principles of PM torque 

production. At first, PM machines received severe criticism because of the large tolerance 

they have in terms of control parameters. Permanent magnet materials exhibit important 

nonlinearities and are sensitive to temperature and operating point. In 1946, W. Kober 

first mentioned using PM synchronous machines for alternator applications [3];  in 1951, 

R. M. Saunders and R. H. Weakley significantly contributed to their design 

considerations [4]. Most of these first approaches to PM machine design considered only 

Alnico type magnets. Rare earth magnets, which are significantly superior to the Alnico 

type, appeared in the 1970s. While at first very expensive, these materials have found an 

increasing interest in the last few years and are now commonly used in PM machines. 

PM synchronous machines present several advantages when compared to the WR 

type machines. First, the PM machines present a much larger energy density and can 

therefore be of smaller size for a given power. They also have much lower rotor inertia, 
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which is an important advantage for applications where a fast response is needed. Finally, 

the absence of brushes to supply the rotor circuit makes them much more mechanically 

robust. On the other hand, the price of PM materials is quite high and PM machines are 

not economically interesting above a certain power rating (about 20 kW). WR machines 

are consequently still used, typically for electrical energy production. 

 

1.2 Types of PM Synchronous Machines 

At this point it is necessary to mention the existence of two families of PM 

machines, depending on their stator construction. The first one, which will be referred to 

as PM synchronous machines and which will be the focus of this research, involves 

sinusoidally distributed windings on the stator side. It is, in that regard, essentially 

equivalent to a WR synchronous machine with no damper windings. The second family 

corresponds to a case where the stator windings are concentrated, so that the 

electromotive force generated by rotor movement is generally trapezoidal. These 

machines are usually called brushless DC machines, because their operation is very 

similar to that of standard DC machines. The focus of this research is not directly 

applicable to this type of machine. 

PM synchronous machines can be further decomposed into two main categories, 

depending on their rotor construction. While the stator remains essentially the same, the 

machine rotor can present varying magnetic properties depending on how the permanent 

magnets are attached to the rotor. Here one needs to familiarize oneself with the general 

structure of a PM machine. 



 

Fig. 1.1: PM machine construction example. 

Figure 1.1 shows a PM machine as an entity composed of two main parts, a stator 

and a rotor. The stator is a part that is mechanically fixed and connected to external 

circuitry. It can be broken down into an iron part, which is “magnetically conductive”, 

and winding slots, which contain electrical windings that generate the stator magnetic 

flux. The rotor, on the other hand, is the part that is mechanically free to rotate and is 

attached to the stator only with bearings (mechanical, sometimes magnetic). The rotor is 

also made of two parts: iron that conducts the magnetic flux, and permanent magnets that 

produce the rotor magnetic flux. The interaction between stator and rotor fluxes is what 

generates the main part of the machine electromagnetic torque. 

The distinction between the different types of PM machines is made essentially 

from the arrangement and location of the rotor permanent magnets. One important fact is 

that the permeability of the permanent magnets, which can be seen as the magnetic 

equivalent of the electrical conductivity, is almost the same as that of air. Depending on 

how the magnets are mounted on the rotor, there can be a large difference between a 
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magnetic path which includes magnets and one that does not. Figure 1.2 shows three 

examples of PMSM construction. 

 

Fig. 1.2: Different rotor configurations for PMSM. 

 These three rotor configurations are the three most commonly found in the 

industry. The rotor on the left has internal permanent magnets, and these are magnetized 

tangentially, with alternating directions. The middle example also has internal PM, but is 

magnetized radially. The rotor on the right is different from the two others in that the 

magnets are mounted on the external surface of the rotor iron. The interesting point about 

this third one is that the magnets are completely transparent to the stator magnetic flux, 

because from a magnetic standpoint they are equivalent to air. 

This third example in Figure 1.2 is also the most popular configuration because it 

is the easiest one to manufacture. This design is called a Surface Mounted PMSM. The 

magnets are glued to the iron, and a magnetically neutral wrap is also typically placed 

around them. It is interesting to note that this configuration does not show any magnetic 

saliency, and therefore cannot exploit any form of reluctance torque. 

6 

On the other hand, the left two configurations do present magnetic saliency, as a 

difference in magnetic paths between including the magnets and not doing so. This 

particularity allows them to offer both magnetic interaction and reluctance torque 
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production capabilities to the user. Usually these machines are used for higher speed 

operation than surface mounted PMSM because they can still produce reluctance torque 

in field weakening operation. These machines are usually called Interior or Internal 

PMSM, or IPM machines. They are naturally more expensive to manufacture, and 

slightly more complex to control, because of the need to optimize the combination of two 

methods of torque production. 

 

1.3 Research Objective 

The main objective of this research is to address the issue of on-line parameter 

estimation for IPM machines. The analysis presented should also be compatible with a 

surface mounted configuration and should provide performance improvements for that 

motor drive as well. This research will focus on the machine parameters that are the most 

relevant to a control system design for a PMSM. On-line parameter estimation for a 

PMSM controller is particularly relevant because of the time varying nature of these 

parameters. The most common perturbation factor to consider is the change in 

temperature, which cannot be measured in most controllers because of a lack of 

temperature feedback. Another factor which is often omitted in controller design is 

magnetic saturation, which has a very noticeable effect in most IPM machines.  

 Several attempts have been made to solve this problem in the past. However, most 

only focused on a subset of the parameters, relying on the assumption that the rest of the 

parameters were sufficiently known. Even for such a case, only a few methods were 

suitable for on-line parameter estimation. Other algorithms relied on the use of offline 

measurements that are introduced in the control algorithm using look-up tables or 
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interpolating functions. These methods present the important drawback of being unable to 

deal with conditions that cannot be easily accounted for, such as machine aging. The 

main problem that all these methods avoid or try to overcome is the poor mathematical 

conditioning of on-line parameter estimation for PM machines. One paper [5] presented a 

procedure for on-line parameter estimation of a WR synchronous machine, which has a 

more complex model than PM machines, but also relied on fixing a small subset of 

machine parameters and used a non linear method. 

 The research presented here aims at surmounting the numerical difficulties 

associated with the problem of IPM parameter estimation by using specific properties of 

parameter subsets to ease computation. Even though the focus of this research is on IPM 

machines, it will be shown that some surface mounted PMSM can also have significant 

saturation-related parameter dependency, and could potentially take advantage of the 

presented algorithm. 

 

1.4 Dissertation Organization 

 This dissertation began with an introduction to the focus of this research. A brief 

history of permanent magnet machines was presented, followed by a presentation of the 

different types of such machines, and then the current research objectives were explained. 

 Chapter II will go further into details with a more thorough presentation of PM 

machines modeling and control. A literature review will follow to show the prior research 

efforts in the area of PM machines parameter estimation. 
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 Chapter III will focus on the parameter set that is of interest for this research. It 

will analyze how they can be modified as the machine operates, and will then study the 

possible consequences of these changes on controller performance. 

 Chapter IV will introduce the reader with the solution to the problem of on-line 

parameter estimation for PM machines that is the subject of this research. The recursive 

least squares algorithm, which is the basis for this project, will be presented first, and 

then the proposed algorithm structure used in this research will be given. 

 Chapters V and VI will be dedicated to the simulation model that was developed 

for this research in order to design and first validate the proposed algorithm. Chapter V 

will focus on the simulation model itself, describing how it was designed, whereas 

Chapter VI will present the simulation results relevant to this research. 

 Chapters VII and VIII will have a similar structure, but they will be dedicated to 

the experimental setup. Chapter VII will present the different elements of the 

experimental setup and analyze features that are relevant to this research, while Chapter 

VIII will show experimental results obtained with this setup. 

 Finally, Chapter IX will conclude this dissertation and will present possible future 

research topics related to this control area of PM machine drives. 

 
 
 



CHAPTER II 

PM SYNCHRONOUS MACHINES 

 
 
2.1 PMSM Drive Structure 

 A PM synchronous machine drive includes several elements in addition to the 

machine itself. The complete motor drive is a structure that includes the machine, its 

associated sensors, a power electronics converter, and the controller. The latter processes 

sensor feedbacks and controls the converter for the desired operation. Figure 2.1 shows 

the motor drive structure that is used in most PMSM applications, and will also be used 

in this research. 

1 2 3 

4 5 6 

a
b 
c 

Machine Controller 

Vdc 

6 

Current 
feedbacks

Position 
feedback 

Switch commands

Voltage feedback 

PMSM 

Inverter 

Fig. 2.1: PMSM motor drive. 
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 In the drive structure shown, the position feedback is used to synchronize the 

stator flux with the rotor one. Position feedback is also used for speed estimation, and for 

speed or position control. The two current sensors allow the controller to reconstruct the 

three phase currents and to perform current control, which in turn allow torque control. 

The DC bus voltage feedback is used in the PWM controller to translate machine voltage 

commands into switch duty cycles. These feedbacks will also be used to achieve the 

goals of this research, and more emphasis will be placed on this aspect in later chapters. 

 

2.2 PMSM Modeling 

 PM synchronous machines are three phase AC machines that involve the 

interaction of the stator flux, which is controlled by the motor drive, and both the rotor 

PM flux and the reluctance flux path. The rotor has no windings or electrical connections 

to the stator. In order to operate the machine properly, the rotor position has to be known, 

either from the feedback given by a position sensor, or from a position estimation 

algorithm. 

 The following assumptions will be made for this research: 

• Saturation will be taken into account through parameter changes 

• The machine induced Electro-Motive Force (EMF) is sinusoidal 

• Eddy currents and hysteresis losses are negligible 

• There are no field current dynamics. 

 The approach that is commonly used in order to model three phase machines is 

the one based on the Park transformation [6]. This method transforms a three phase 

balanced system into a two-dimensional one. The transformation changes a complex non 



linear model into a much simpler one, where machine variables are referenced to a 

rotating reference frame attached to the rotor magnetic axis. Figure 2.2 illustrates this for 

a two-pole machine. 

 

Fig. 2.2: PM machine reference frames. 

 In Figure 2.2, the magnetic axes of the three stator windings are labeled a, b and c. 

From this three dimensional coordinate based system two possible results for the Park 

transformation are commonly used. The first one is labeled α-β and is attached to the “a” 

phase axis. It is consequently called the fixed reference frame. The corresponding 

machine model is rather complex, but can be useful in applications where the rotor angle 

is unknown, such as position estimators. The other case, which will be used in the 

analysis of this research, is attached to the rotating magnetic axis of the rotor, and is 

usually called the d-q rotor flux reference frame. With this base, the machine model 

becomes quite simple, and this makes it easier to develop control algorithms. The 

machine modeling starts in the “abc” reference frame with the following set of equations: 
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where Vabc are the machine voltages referenced to the ground, iabc are the machine phase 

currents, R is the machine phase resistance, and φabc are the magnetic fluxes associated 

with each phase. 

 The Park transformation is a matrix transformation which converts the three-

phase abc system to the d-q reference frame. A third component called “0” is also present 

in order to have a bijective transformation. This “0” or homopolar component is equal to 

zero in balanced three-phase systems and will be omitted later in the chapter. The 

matrices for the magnitude invariant Park transformation and its inverse are: 
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When the Park transformation is applied to equation (2.1) with θr being the rotor position 

and taking into account the previous assumptions, we obtain 
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In the above equations, the d-axis variables are the ones that are aligned with the 

permanent magnet position, whereas the q-axis corresponds to an axis 90 degrees ahead. 
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In these equations, p is the Laplace differential operatot. It can be noted that the 

permanent magnet flux φmag only appears on the d-axis. In terms of notations, Vqd are the 

q- and d-axes stator voltages, which are the results of the Park transformation applied to 

Vabc, and the same conclusion applies to iqd and φqd. Lqd are the inductances associated 

with the q- and d-axes, ωe is the electrical speed of the motor, which is equal to the 

number of machine pole pairs times the mechanical speed ωr, and p is the Laplace 

differential operator. The machine torque is obtained from the derivative of the magnetic 

energy with respect to the rotor position and is given as 

( )[ qdqdqmage iiLLiPT ⋅⋅−+⋅⋅
⋅

= ϕ
2

3 ]           (2.5) 

In equation (2.5), P is the number of rotor pole pairs in the machine. There are two torque 

producing terms present in equation (2.5). The first one involves the interaction of the 

magnet flux and the q-axis current and is the main machine torque. The second is based 

on the difference between the d- and q-axes inductances, and is therefore called the 

reluctance torque. This latter component is almost non-existent in surface mount PM 

synchronous machines but is a particularly interesting feature of IPM machines, giving 

them extended speed range capabilities. For convenience, a state space representation of 

the machine model can be obtained as 
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 In the previous set of equations, KT is the torque or back-emf constant of the 

machine and J is the moment of inertia of the rotor and its load. These equations can be 

used to build a model of the machine when coupled with equations (2.2) and (2.3).  

 It is necessary at this point to emphasize the fact that the model developed from 

equations (2.6) gives a somewhat simplified model for a PMSM. The exclusion of iron 

losses (eddy current and hysteresis losses) has a small impact on the accuracy of 

simulated results. The reason why these are not included here is that the controller 

complexity required for them to be taken into account generally is not justified by the 

small error introduced by neglecting them. The model described here is suitable for 

control oriented problems. However, in a machine design problem the emphasis would 

certainly be different and iron losses should be included. A simple way to visualize the 

impact of including iron losses in the model is to draw the machine equivalent circuit 

shown in Figure 2.3. 

 

Fig. 2.3: PMSM equivalent circuits including iron losses. 
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Usually, the core losses resistance Rc is not a constant, but a function of the operating 

frequency given as 

rccc RRR ω⋅
+=

10

111              (2.7) 

In this research, however, this resistance will be considered infinite, and consequently the 

core losses will be neglected. 

 

2.3 PMSM Control 

 The machine model that has been presented can be used for controller design. 

Since the focus of this research is on the electrical parameters of PM synchronous 

machines, our emphasis will be mostly on the current and torque controllers. If an outer 

loop were to be implemented for speed or position control, the dynamics involved would 

mostly rely on the mechanical parameters. 

 

Fig. 2.4: PMSM controller data flow. 
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 Figure 2.4 shows the different blocks that are commonly found in PMSM 

controllers. In this section, the operation of the torque and current controllers will be 

discussed, and the other blocks will be described in detail later in a hardware related part. 

The PWM controller does not require motor parameters because the operation it performs 

scales and shifts the voltage references in order to convert them into duty cycles for the 

inverter switches.  

 In the following sections, the equations relating the machine torque to its currents 

will be discussed along with the description of how to control current by acting on the 

voltages. This will then allow us to visualize more effectively the importance of machine 

parameters in such controllers. 

 

2.3.1 PMSM Torque Controller 

 This section will present the various algorithms that can be used with a PMSM in 

order to relate its machine currents with its electromagnetic torque. The motivation 

behind the choice of one algorithm over another is usually a function of complexity and 

the operating point of the machine at a given time. Each of the presented algorithms relies 

on equation (2.5) which is repeated here for convenience: 

( )[ qdqdqmage iiLLiPT ⋅⋅−+⋅⋅
⋅

= ϕ
2

3 ] .          (2.5) 

 

2.3.1.1 Zero d-axis Current Control 

 For a surface mounted PMSM (Ld = Lq) or if the d-axis current is set to zero, 

equation (2.5) becomes: 
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qmage iPT ⋅⋅
⋅

= ϕ
2

3
              (2.8) 

Equation (2.8) shows that the machine electromagnetic torque is completely independent 

of the d-axis current and is proportional to the q-axis current. In such a case, the d-axis 

current is usually controlled to remain at zero, so that the current vector magnitude is 

minimized. This operation is typically called “id = 0 control” [6] and the reference 

currents are obtained from 

mag

e
q P

T
i

ϕ⋅⋅
⋅

=
3

2
              (2.9) 

The algorithm is also compatible with IPM machines and is attractive due to its 

simplicity, but it completely nullifies the possible contribution of the reluctance torque. It 

is equivalent to using an IPM as a SM PMSM, which is not desirable due to the 

considerable price difference between the two types of machines. Equation (2.9) shows 

that this simple algorithm also has the attractive feature of using only one machine 

parameter φmag, since P can be regarded as a known constant. 

 

2.3.1.2 Maximum Torque per Ampere Control 

 Another possible algorithm in the case of IPM machines is the one that minimizes 

the input current to the machine for a given output torque. This type of operation is 

usually referred to as “maximum torque per ampere (MTPA)”. The current to minimize is 

22
qds iiI +=             (2.10) 
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The algorithm is based on finding the point where 0=
s

e
dI

dT . Equation (2.10) 

substituted into equation (2.5) gives [8]: 
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where β is the angle between Is and iq. From this relation the controller can obtain the d- 

and q-axes currents that give the maximum torque for a given current magnitude. The 

equations associated with this algorithm are nonlinear and require much more 

computational power than in the case of equation (2.9). However, this operation is very 

interesting because it maximizes the motor drive’s torque capability when the machine 

operates below its rated speed. It also minimizes copper losses, which are proportional to 

the square of the stator currents. In this case, the d-axis current is likely to be different 

from zero, which implies that the controller takes advantage of both the main machine 

torque and the reluctance torque capabilities of the machine to minimize the current used. 

 With the MTPA algorithm, however, a good knowledge of three machine 

parameters is required: both the d- and q-axes inductances in addition to the permanent 

magnet flux. Unlike in the “id = 0 control,” the relation between the desired torque and 

the machine currents is not linear and an error in machine parameters can have significant 

consequences. 
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2.3.1.3 Maximum Torque per Voltage Control 

 The maximum torque per voltage (MTPV) control for the PM machine, involves 

the optimization of the current vector to minimize the required input voltage to the 

machine. This is equivalent to minimizing the machine flux linkage between stator and 

rotor, and that is why this algorithm is also called maximum torque per flux (MTPF) 

control. The motor drive operates with both current and voltage constraints and it may 

happen in an application that the voltage constraint is the harder one to satisfy. This 

occurs typically at higher speeds, when the motor back-emf becomes so dominating that 

it leaves only small freedom in terms of voltage available. At low speeds, the MTPA 

algorithm is usually preferred because it yields a higher efficiency. In the case of MTPV, 

the variable to minimize in the torque equation (2.5) is the flux linkage, which is given in 

equation (2.12) 

20 
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0 qqmagdd iLiL ⋅++⋅= ϕϕ .         (2.12) 

When this term is combined with equation (2.5) and the resulting equation is 

differentiated with respect to the flux linkage, the following result is obtained [8] 
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This last term can be regarded as the amount of flux weakening necessary for the 

algorithm to achieve optimum operation. The MTPV algorithm requires the same 

parameters as the MTPA one. The MTPV is also an interesting control method since it 

minimizes the iron losses through the minimization of stator flux. These losses can be 

significant at high speeds and are directly related to the flux linkage of the machine. 

 

2.3.1.4 Loss Minimization Control  

 It has been mentioned in the two previous sections that the maximum torque per 

ampere minimizes the copper losses in the machine and the maximum torque per flux 

minimizes the iron losses. If the controller objective is to maximize the efficiency of the 

machine, then the resulting optimal control will be a combination of these algorithms. 

This combined control known as loss minimization control. In this case the current vector 

will be both a function of the machine speed and its torque. For a given torque, at low 

speeds the current vector loci will be close to the maximum torque per Ampere curve, 

and will gradually shift towards the maximum torque per flux trajectory as the speed 

increases. It is difficult to obtain an analytical function giving the current vector as a 

function of the torque and speed, and one way of doing it involves using the circuit of 

Figure 2.4 with a model for Rc. Common implementations of this algorithm involve a 

two-dimensional look-up table of results that are calculated offline. The problem with 

this method is that it fixes the algorithm for the set of machine parameters it was 

calculated for, which can vary, as will be shown. 

 

 



2.3.1.5 Flux Weakening Control 

 The flux linkage due to the permanent magnet cannot be controlled by the user, 

but equation (2.12) shows that its contribution can be minimized by injecting a negative 

d-axis current. This feature becomes interesting as machine speed increases because it 

can allow the drive to reach speeds that would otherwise cause the drive to exceed its 

voltage capability limit. The flux or field weakening method of control is one that will 

follow the voltage limit trajectory. This method is attractive because it is simple to 

implement and quite robust with regards to parameter changes since it relies on the drive 

electrical limits. With  we get maxmax
'

max IrVV s ⋅−=
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⎛
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        (2.14) 

Even though this method requires the same three machine parameters, its goal is not to 

achieve optimum performance, but rather to achieve operation at a desired operating 

point. In this regard, its operation at a point that would not be the optimum but would 

give the desired torque and speed could be deemed acceptable. 

 

2.3.1.6 Summary of Current Vector Control Schemes 

 The algorithms presented up to this point are summed up in Figure 2.5 for a 0.7 

kW IPM machine [9]. 

 For a given torque, there is a multitude of possibilities of current vectors. The one 

that has the smallest magnitude corresponds to the maximum torque per ampere 

algorithm (point A). The other algorithms require larger current vectors, but can 

minimize losses (point D), or the voltage required from the inverter (point B). The flux 
22 



weakening trajectory lies on a constant voltage ellipse, and the zero d-axis current control 

lies on the q-axis (point E). 

 
Fig. 2.5: Summary of current vector control schemes. 

  

2.3.2 PMSM Current Controller 

 In the block diagram of Figure 2.4, the purpose of the current controller block is 

to find the d-q axis voltages required from the inverter in order to establish the desired 

currents in the machine. Two methods can be used for that purpose. The first one is called 

hysteresis control [7]; it forces the machine phase currents to remain within a predefined 

range of their reference by switching inverter configurations whenever the error gets too 

large. This technique has the important drawback of forcing a variable switching 

frequency, which can get very large; it also requires external circuitry and makes it harder 

for the controller to track the voltage commands sent to the inverter. 
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 The second method is the one that will be used in this research; it uses Pulse 

Width Modulation (PWM) at a fixed frequency to control the voltage vectors sent to the 

machine. This technique requires the calculation of the voltage vector to be sent to the 

inverter, and is therefore made readily accessible by the controller [6][7]. Let us start 

from the machine electrical equations 
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        (2.15) 

A common method used to make the controller simpler is to use a feed forward 

compensator, which decouples the d- and q-axes, and cancels the back-emf term. The 

previous equations then become: 
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This in turn gives 
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 The above two transfer functions are simple and linear, and a PI controller is 

usually sufficient to achieve high performance current control. However, in order to reach 

this stage, a good knowledge of the machine parameters KT, Lq and Ld is required. If the 

values used in the controller differ significantly from the actual machine parameters, the 

system will present cross coupling and the perturbation of the back-emf, which would 

normally require a more complex type of control. 

 

24 



25 

2.4 Existing Achievements for Parameter Estimation of PMSM 

 Several methods exist in the literature that try to compensate for parameter 

variation in PM machines. These methods can be classified into offline ones and on-line 

ones. Offline algorithms use measurements taken at a certain point in time to build look-

up tables or interpolating functions to get parameter estimates as a function of external 

factors. These techniques are easy to implement, but are difficult to implement with 

parameters that can be functions of several variables. They will also fail to account for 

any change in the machine parameters due to factors unknown at the time of 

measurement, such as ageing factors. On the other hand, on-line methods use 

measurements provided by the controller while the machine is in operation in order to get 

their parameter estimates. The great advantage of these methods is that they can track 

parameter variations almost independently of their sources. Whether the stator resistance 

changes due to temperature or mechanical damage will not matter from the point of view 

of an on-line method. Nevertheless, these methods require complex numerical 

algorithms, which may sometimes become unstable and lead to drive malfunction. 

Particular care must be given to their design. 

 

2.4.1 Stator Resistance and Torque Constant Estimation 

 These two parameters need to be treated somewhat separately from the 

inductances, because most controllers for surface mounted PMSM will not even consider 

inductance variations. As a consequence, the problem of estimating rs and KT is common 

to surface mount and IPM machines. Offline identification of these two parameters as a 

separate subset is difficult to implement even if the assumption is made that they are only 



temperature dependent. The reason is that temperature feedback is generally unavailable 

in common PMSM drives. As a consequence, the only viable approach to this problem is 

on-line parameter estimation. Papers on this subject usually take the approach of 

considering only the steady state model of the machine [10]. By setting the differential 

terms in equations (2.15) to zero, one obtains  
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        (2.17) 

 The above equations will be referred to as steady state equations. Identification of 

the resistance and torque constant is usually done by considering the inductances to be 

constant; then the problem becomes well conditioned for either an observer structure or 

an algorithm like the least squares method. This approach is valid because the 

temperature change dynamics are much slower than the electrical ones. This technique is 

quite simple and is commonly used for surface mounted PMSM that do not have much 

saturation sensitivity. On the other hand, if saturation occurs, the errors in inductance will 

have a large impact on the estimation error. This approach was used in [10] with a 

position sensorless algorithm for a surface mount PMSM. 

 

2.4.2 Inductance Estimation 

 The problem of estimating the inductance for the controller is quite different from 

the previous one. In this case, it is possible to measure these two functions offline since 

each inductance can be considered as a function of the current in its axis, if cross-

saturation is neglected. The inductance in the controller is then obtained from the 

measured currents in the machine as it runs. 
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2.4.2.1 Offline Inductance Estimation 

 Several methods of parameter estimation in PMSM have focused on offline 

inductance measurement. The methods vary since the q- and d- axes inductances are not 

readily available for measurement, but are somewhat fictitious parameters obtained 

through the Park transformation. 

 A first method consists of getting inductance estimates from a finite element 

analysis. This technique requires the user to know precisely the geometric and material 

properties of the machine, and then to run a series of computationally intensive 

simulations. However, the data necessary to have accurate simulation results is not 

usually available from the manufacturer, and these simulation results often need to be 

double checked with experimental data for possible numerical problems. Another 

problem is that this method doesn’t solve the issue of finding estimates for the resistance 

and torque constant. An example of this technique has been presented in [11] and [12]. In 

both cases the results were verified experimentally: in [12], the inductances were 

obtained from locked-rotor measurements. Other methods for offline measurements are 

possible. Some use the decay time of a phase current following a voltage pulse for 

different locked rotor positions and initial current levels [13]. Offline measurements are 

usually more convenient than on-line ones because they can force situations that are 

inaccessible to a non-intrusive on-line algorithm. In the case of a locked rotor situation, 

the motor d-q equations become much simpler: 
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 Another technique to extract the machine inductances consists in running the 

machine in a succession of steady states and calculating inductance estimates from 

voltage, current and speed measurements. To get to this point, some methods directly 

work with the Park transformation of the measurement, like in [14], while others work 

with the Fourier transform of motor phase variables [15]. When it comes to using 

measurements obtained offline, a common method was given in [16] and [17], that used 

piecewise linear functions to approximate the inductances as a function of their respective 

currents. This approach of course neglected the impact of cross saturation. 

 

2.4.2.2 On-line Inductance Estimation 

 On-line parameter estimation methods have also been developed to identify the 

machine inductances. One approach found in [18] and [19] is to consider the stator 

resistance and torque constant to be fixed, and to run an observer based on the machine 

model. Additional information from offline inductance measurements was also injected 

in order to improve dynamic behavior and numerical stability. Figure 2.6 shows the 

implementation structure for this method. Three main drawbacks can be found for this 

technique. The first one is that errors in resistance and torque constant will have a 

negative impact on the estimation. Another one is that compensation for cross saturation 

can hardly be made. Finally, the method requires offline measurements, which take away 

some of the flexibility that could be expected from an on-line algorithm. 



 

Fig. 2.6: Observer based on-line inductance estimation. 

 A second approach was found in [5] where the parameters of a wound rotor 

synchronous generator are estimated using a non-linear version of least squares 

estimation. The model used in this paper is different from the one used in this research 

(different machine structure), and the method considered a small subset of the machine 

parameters to be constant in order to obtain decent numerical stability. This paper is 

mentioned here because it can be considered to be the closest one available in the 

literature to provide a solution to the problem of on-line parameter estimation of 

electrical machines. 

 

2.5 Shortcomings in Existing Research 

 The previous section has shown the various methods that have been tried to 

overcome the problem of parameter variation in PMSM. Off-line methods have been 

implemented based on both simulation results (FEA) or experimental measurements, but 

prove to be limited when it comes to having estimates for all four parameters. These 

methods also make it difficult for the controller to compensate for the effects that were 
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not foreseen at the time results were taken. These methods also lack compensation of 

temperature effects, since temperature sensors are usually not present in motor drives. 

 On the other hand there have been attempts to develop on-line parameter 

estimation, but the examples found limited themselves to a subset of the parameters 

and/or used a combination of off-line and on-line results to operate properly. 

 The advantages of having an on-line parameter estimation algorithm for PMSM 

are numerous. These include the fact that parameter estimates track machine parameters 

regardless of the causes of parameter changes. From the point of view of the algorithm, it 

is equivalent to estimate parameter variations due to cross saturation or temperature 

changes, as opposed to an off-line method. If the controller is constantly supplied with 

accurate parameter estimates, it can operate in an optimal way, depending on the control 

algorithm it uses. This allows the motor drive to reach its full potential, in terms of 

efficiency, speed range or dynamic response. 

 



31 

CHAPTER III 

PARAMETER VARIATION PROBLEM ANALYSIS 

 
 
 Based on the literature review done in the previous chapter, the need for the 

following have been identified: 

• An analysis of how and why the machine parameters change, the factors that 

affect them and their properties. 

• A complete study of the effects of electrical parameter variation on the 

performance of the torque and current controllers of PMSM. 

 These elements will serve as a basis for this research project and will show how 

on-line parameter estimation can improve controller performance. 

 

3.1 Machine Parameter Sensitivities 

 It has been shown in the previous chapter how machine parameters play an 

important role in determining the location of the desired current vector for a given torque 

level, machine speed and method of optimization. In this section we will focus on the 

different factors which can affect these parameters. The set of machine parameters that 

will be the subject of this research is defined in equation (3.1). 
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These four parameters are the ones found in the equivalent circuit of Figure 2.3, once 

core losses have been neglected. 

• Lq is the inductance associated with a magnetic path that links stator and rotor 

going between magnet poles 

• Ld is the inductance of a magnetic path linking stator and rotor that goes through 

the permanent magnets 

• rs is the electrical resistance associated with one stator phase 

• KT is the torque constant of the machine, and is directly proportional to φmag 

The torque constant KT is given by 

magT
PK ϕ⋅=
2

             (3.2) 

The objective of this research is to estimate these parameters and to track their possible 

variations on-line during machine operation. The following sections focus on the factors 

that affect them, and how they affect them. 

 

3.1.1 Parameter Sensitivities to Temperature 

 The main external factor that can cause the machine model to vary is the machine 

temperature since it affects both electrical and magnetic material properties. Most motor 

drives do not include temperature sensors and it is usually difficult to compensate for 

temperature variations. These variations can be caused by either the machine’s external 

32 



environment or the machine itself. Both copper and iron losses contribute to a rise in 

machine’s internal temperature, and mechanical losses due to friction in the bearings may 

add to this effect. It is difficult to quantify the way in which these temperature changes 

affect the different machine parameters, because these are essentially related to the types 

of material used in the motor construction. It is necessary to keep in mind that in PM 

machines, temperature changes are considered to have extremely slow dynamics when 

compared with the electrical or mechanical dynamics. 

 

3.1.1.1 Stator Resistance Sensitivity to Temperature 

 In the case of the stator resistance rs, the problem is not too complex because most 

electrical machines have copper windings. The general equation that relates resistance 

changes in conductors as a function of temperature is 
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where R0 is the resistance of the conductor measured at the reference temperature T0, and 

α is the temperature coefficient of the conductor material. This relation is of course an 

approximation, but is suitable for most applications. Most of the time α is given for a 

temperature T0 of 20˚C or sometimes 0˚C. For copper conductors, α = 0.004041˚C-1 and 

for aluminum conductors α = 0.004308˚C-1, both measured at 20˚C. This means that for a 

copper conductor, a change of 20˚C from the initial point leads to a variation of 8 % in its 

resistance value. PM machines usually have an operating temperature range of about 

100˚C, and the associated resistance range (about 40%) should not be neglected in 

controller design equations. 
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3.1.1.2 Torque Constant Sensitivity to Temperature 

 This machine parameter is directly associated with the intensity of the magnetic 

flux induced by the machine permanent magnets. This flux is temperature dependent, but 

the way it is affected is a function of the permanent magnet material, its shape, and the 

magnetic circuit attached to it. It consequently is very difficult to derive a simple model 

for the effects that temperature changes will have on the magnetic flux. 

 A rough estimate for a temperature coefficient can however be given by 

permanent magnet manufacturers and was also found in [20]. For example, the N3571 

Neodimium Iron Boron (NdFeB) will have a coefficient of -0.11%/˚C for its residual 

magnetism Br. As a consequence, an equation similar to equation (3.3) could be derived 

for this parameter. A decrease in Br is also likely to affect the magnet’s intrinsic coercive 

force, which is its resistance to demagnetization. Both these effects are likely to adversely 

affect the magnetic flux induced by the material in a given circuit.  

 In addition to the thermal coefficient, most permanent magnet materials will have 

an approximate Curie temperature [20], which is also function of magnet material, shape 

and circuit. This parameter is the temperature at which the permanent magnet becomes 

permanently demagnetized, and should consequently be avoided at all costs in permanent 

magnet machines. One of the few disadvantages of NdFeB when compared to other types 

of permanent magnet material such as Samarium Cobalt (SmCo) is its much lower Curie 

temperature and its higher sensitivity to temperature changes. For example, the 

temperature coefficient for the Br of a SmCo magnet is around -0.03%/˚C. However, 

SmCo magnets are generally more expensive than NdFeB and have a lower (B.H)max 

energy product. Both these magnet types are used in high performance PM machines. 
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3.1.1.3 Inductance Sensitivity to Temperature 

 Temperature changes also affect the q- and d- axes inductances of the machine. 

Most of the magnetic paths associated with these inductances take place in a 

ferromagnetic or ferrimagnetic material. Such types of materials also present certain 

sensitivity to temperature changes. For example, an increase in temperature in a typical 

ferrite of 80˚C can result in a permeability drop of about 25%. This, in turn, results in a 

decrease of about 25% in its inductance. 

 

3.1.2 Parameter Sensitivities to Magnetic Saturation 

 This section only concerns the changes in the machine q- and d- axes inductances 

due to iron saturation. Magnetic saturation is a phenomenon that occurs in the magnetic 

iron parts of PM machines. The electrical resistance is not affected by this effect, and the 

torque constant can be affected, but in a negligible way. On the other hand, machine 

inductances will directly be affected. Figure 3.1 provides a better understanding of the 

problem. 

 Figure 3.1 shows a typical flux response in an inductor with an iron core when 

subjected to an increasing current. One can see that past a certain point (P1), the curve 

ceases to be linear and magnetic flux tends to increase in a slower way. This is what is 

called magnetic saturation. The inductance is the slope of the curve at a given point. 

 The inductance will remain constant at its maximum value for the linear portion 

of the curve in Figure 3.1; then, its value drops as saturation comes into play. Electrical 

machines are much more complicated to model, but this example can serve as a basis for 

understanding the phenomenon. Another thing to notice here is that inductance changes 



in response to current changes in the machine have much faster time scales than 

temperature related parameter variations. 

Electrical Current (A) 

Flux (Wb) 

P2 

P1 

L1 L2<L1 

Fig. 3.1: Saturation in iron material. 

 When it comes to PM synchronous machines, both the q- and d- axis inductances 

are affected by saturation. However, it is necessary to consider important differences 

between the behaviors of these two parameters:  

• The d-axis of the machine includes the permanent magnet, and the corresponding 

iron path is subjected to the magnetic flux. This important magnetic flux can be 

the source of a certain level of saturation even when the machine is not excited (as 

in point P2 of Figure 3.1). The electrical currents associated with this axis are 

usually oriented to oppose the magnetic flux, either to exploit reluctance torque, 

or to achieve flux weakening. Depending on the intensity of these currents, a 

noticeable change may occur in the machine inductance. However, the artificially 

increased air gap thickness due to the magnets also reduces the sensitivity of Ld 

towards id. 
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• The q-axis inductance does not include the permanent magnets, and is not excited 

when the machine is at rest (except for remanent flux). For small q-axis currents, 

one can consider that the q-axis magnetic circuit operates in the linear region on 

the iron material. However, for large currents (i.e. large torques), the magnetic 

path may become saturated and the q-axis inductance will consequently drop. 

  

 Surface mounted machines differ from IPM machines because when the machine 

is at rest, their q- and d- axes inductances are almost the same. A consequence of their 

construction is also that they generally have larger air gaps than IPM, in order to 

accommodate the permanent magnets. However, when a surface mounted machine 

operates at heavy load, saturation effects can still appear in the q-axis and these effects 

will be discussed later. An assumption is usually made that the q- and d- axes inductances 

in PM machines are decoupled, which implies that iq will not affect Ld and vice versa.  

 Figure 3.2 shows the inductances of an IPM machine [9] with low saliency ratio, 

which is the kind of machine that was used in the experiments for this research project. 
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Fig. 3.2: Inductance variation in IPM due to saturation [9]. 



 This IPM machine has a small sensitivity towards saturation, and its saliency ratio 

Lq/Ld is not significantly affected by it. It is also possible to see that the d-axis inductance 

does not seem to be affected much by the d-axis current. Similar studies have also been 

conducted for surface mounted PMSM [21], as shown in Figure 3.3. 

 

Fig. 3.3: Saturation effects in surface mount PMSM. 

 In Figure 3.3, the currents are measured in Amperes and the inductances in 

Henries. One can notice large changes in inductances, with Lq decreasing with increasing 

q-axis currents, and Ld increasing with large demagnetizing currents (negative d-axis). 

Saturation effects in surface mounted machines are often neglected in controller design 

but the results of this research show that a high performance controller could probably be 

improved from considering these changes. 

 

3.2 Study on the Effects of Parameter Variation on Controller Performance 

 The previous chapter has shown that the issue of on-line parameter estimation for 

a permanent magnet synchronous machine has not been adequately addressed in previous 

research. The solutions that have been found to compensate for parameter variation 
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usually fail to correct what was not accounted for at the time of controller design. 

Temperature effects, cross-saturation and ageing effects, for example, will in most cases 

have an impact on controller performance. This section focuses on the impact of 

parameter variation on the controller, which served as the primary motivation for this 

research. The parameters of interest for this research have an impact on both the torque 

and current controller of PM synchronous machines, and the study on the effect of 

parameter variation is presented in the following sections. The study was restricted to the 

operation of a maximum torque per ampere controller in order to show the results. 

However, a similar analysis could be conducted based on another algorithm, which would 

lead to similar conclusions. 

 

3.2.1 Impact of Parameter Variation on Torque Controller 

 It has been seen in section 2.3.1 that for all torque controller designs that were 

presented, only the torque constant and d-q inductances were important. The stator 

resistance did not have an impact on the design equations of torque controllers. 

 The results presented in the following sections were obtained with the Matlab / 

Simulink® model developed for this project. They aim at simulating results that are 

achievable with a machine referred to as machine “B”, whose parameters are given in 

Table 3.1.  

 Since detailed information was not available about the machine construction 

materials, it was assumed that the stator windings were made of copper and the 

permanent magnets were NdFeB for the temperature effects. 
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Table 3.1: Machine “B” parameters 

Parameter name Machine “B” 

Stator resistance, rs (Ω) 1.45 

Torque constant, KT (V.s) 0.172 

Lq (mH) no saturation 18 

Ld (mH) no saturation 6 

Rotor inertia, J (N.m.s2) 99.6e-6 

Number of pole pairs, P 2 

Rated current, Imax (A) 25 

  

3.2.1.1 Torque Constant Variation 

 The results shown in this section are the (id, iq) loci for a torque reference that 

changes linearly from zero to almost the machine rated torque. Two sets of results were 

obtained for this section corresponding to two values of the torque constant or 

temperature. In this type of problem it is necessary to consider both the machine and 

controller sides to study the effect of temperature. Most controllers are designed by 

considering KT to be constant and use the value measured at room temperature. In these 

tests, first, the controller was assumed to be running in ideal conditions (room 

temperature), and then the drive was simulated to be operating at a higher temperature,  

inducing a 30% change in KT, both for the same controller, and for one that would have a 

feedback in KT.  

 These results were extracted from a speed control test at low speed, with a ramp 

load torque. The curve on the left side, labeled “ML-CL” corresponds to an initial test at 



low temperature, where controller and machine have matching parameters. On the right-

hand side, the two loci were taken from simulations where the machine was at high 

temperature (lower KT), one where the controller and machine parameter matched (MH-

CH) and one where they did not (MH-CL). 

 
Fig. 3.4: Torque constant change in max Torque / Ampere controller. 

 A conclusion that can be drawn from this test is that the machine will require 

larger currents to operate at the same torque level for operation at higher temperature. As 

an example, the points that are the farthest from origin correspond to the same torque 

level. However, the direct correspondence between torque level and current magnitude 

was omitted here for clarity. This is due to the fact that φmag drops with rising 

temperatures and so does the torque production capability of the machine for the 

interaction between stator and rotor magnetic fluxes. For a given torque level, the 
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machine will require larger currents at higher temperature to compensate for this drop. 

One can notice though, that the curve on the left (Figure 3.4 (a)), can almost be 

superimposed to the MH-CL one on the right (Figure 3.4 (b)), which is why it was left 

alone. The reason for this is that in both cases the controller operates on the same 

parameters, giving the same current loci. 

 For high temperature operation, the two curves in Figure 3.4(b) show that whether 

the controller has perfect knowledge of the torque constant or not will not make a large 

difference in the maximum Torque per Ampere locus. The sensitivity of this type of 

controller is therefore low to changes in temperature. This behavior is nonetheless a 

function of the machine, and a larger change could be seen on a machine with lower 

saliency.  

 There is however one interesting comment one can make about the two curves in 

Figure 3.4(b). The one that has the parameter mismatch (KT larger than it is in the 

machine) uses larger q-axis currents than the other one. In this particular case, the 

controller that uses the accurate parameter values appears to be relying more on the 

saliency component of the torque equation (2.5). The reason for this is that as the torque 

constant drops (or as the temperature increases), it becomes more and more efficient to 

use the saliency component rather than the permanent magnet one for a given current 

magnitude to maximize the output torque. The following equations may help visualize 

the problem. 

[ ]
[

ThighTlow

qdqTlowe

qdqThighe

KK

iiBiKAT

iiBiKAT

>

⋅⋅+⋅⋅=

⋅⋅+⋅⋅=
''' ]            (3.4) 

42 



43 

 The same torque Te is obtained with different q- and d-axes currents at two 

different temperatures. The controller that has the larger torque constant will try to use a 

larger q-axis current because it “thinks” that the machine’s permanent magnet torque 

capability is higher than it actually is. 

 

3.2.1.2 Effects of Saturation 

 The simulations realized for this section are based on the machine “B” saturation 

characteristics shown in Figure 3.5. 

 The load torque of the machine is varied linearly from zero to a value close to the 

rated one, and the machine is operated under speed control mode. As the load torque 

increases, the machine torque also increases (to maintain constant speed), and the q- and 

d- axis currents describe the maximum torque per ampere trajectory. However, as the 

currents increase, saturation starts to play its role as described in Figure 3.5, affecting 

machine performance. 

 The left side of Figure 3.6 (Fig. 3.6(a)) shows the maximum torque per Ampere 

loci in two different cases in terms of controller parameters, and the right side shows the 

corresponding stator current magnitude as a function of machine torque, which is 

supposed to be minimized for a given torque. 

 Relating Figure 3.6 with Figure 3.5, it can be observed that the d-axis inductance 

remained constant for the values of currents that were used in this test. On the other hand, 

the q-axis current went as high as about 18 A, which represents a decrease of about 70% 

of the value of q-axis inductance. The large increase in q-axis current affected the 

saliency ratio of the machine in a significant way. 
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Fig. 3.5: Inductance waveforms of machine “B”. 

  

Fig. 3.6: Saturation effect on max Torque / Ampere. 

44 



 Three tests were conducted to study the effects of saturation. The first one 

corresponds to the ideal case where there is no saturation (Mnosat-Cnosat). In that case 

the machine has constant q- and d-axes inductances, and the controller values match 

them. The second test (Msat-Cnosat) was essentially the same, except that the machine 

used the inductance waveforms of Figure 3.5, and the controller remained unchanged. In 

this case the current vector locus is almost the same as in the ideal case, although larger 

in magnitude (“Mnosat-Cnosat” stops at point “A” in Figure 3.6). The reason for this is 

that the controller operates on the same characteristic, even though it does not correspond 

to the optimum trajectory. The difference between these two cases shows on the right 

plot, where one can see that for the rated torque there is a 50% difference in motor 

current magnitude. 

 The third test is what is more important and really shows the importance of 

having accurate parameter feedback in the controller. In this last case, the machine 

presented saturation, and the controller used the saturated values of inductance to 

calculate the maximum Torque per Ampere trajectory. The difference between this locus 

and the others is very large. As the machine torque and currents increase, the saliency 

ratio diminishes and the machine begins to operate somewhat like a surface-mount 

machine. The contribution of the saliency torque becomes small and the torque controller 

finds it more efficient to use more of the magnetic flux interaction for the same torque 

level. 
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 From the above equations it is clear that the required optimal q-axis current will 

have to be larger for the controller that takes saturation into account ( ), for the same 

level of torque as in the initial one. However, the operating point that would be given by 

the maximum Torque per Ampere algorithm with parameter feedback is not the optimal 

operating point. The equations used to derive this algorithm in section 2.3.1.2 make the 

assumption that the d-q inductances in the machine are constant. To get the optimal point, 

it would be necessary to repeat the derivation and consider the inductances to be 

functions of the machine currents. This approach is however incompatible with a basic 

on-line parameter estimation algorithm. The reason for this is that optimum operation 

would require algorithm derivation with complete knowledge of machine parameters, and 

the parameter estimation algorithm only provides the controller with the inductance 

parameters that correspond to the current operating point. 

'' , dq ii

 These results also show that for an interior PM synchronous machine with high 

saturation it is not efficient to operate at high levels of saturation. When these machines 

are operated under flux weakening or maximum torque per flux, the controller takes 

advantage of the saliency torque and reduces the q-axis current, thereby reducing the 

effect of saturation. 

 

3.2.2 Impact of Parameter Variation on Current Controller 

 It has been shown in section 2.3.2 how machine parameters play a certain role in 

the performance and design of the current controller. The feedforward compensator 

which rejects the disturbances created by the cross coupling between the d- and q- axes 

and the back-electromotive force takes advantage of parameter feedback. The terms 
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introduced by that compensator are all proportional to the motor speed, and do not make 

a difference at standstill. The results to be presented in this section show the effect of 

speed as a disturbance in the complete current controller, i.e. one that includes 

feedforward. These results were obtained with a machine model that matches the one 

used in the experimental setup (machine “A”). The simulated machine was run at a speed 

of about 1500 RPM with a sinusoidal variation of 500 RPM around that. The q- and d- 

axes currents were to be maintained constant by the current controller. 
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Fig. 3.7: Response of current controller to sinusoidal speed perturbation. 

 In Figure 3.7, the response of the current controller to a step in the q- and d-axes 

reference currents as the machine speed varies sinusoidally is shown. The current 

responses track the references very effectively, and the speed perturbation doesn’t seem 

to affect the performance. 
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 Figure 3.8 on the other hand shows the response of the current controller to the 

same speed perturbation, but with errors in its torque constant and q-axis inductance. Just 

as in section 3.1.1, a variation of 30% in torque constant and 40% in q-axis inductance 

were used. 
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Fig. 3.8: Current controller response with parameter error to speed perturbation. 

 The first plot in Figure 3.8 shows that a variation in the torque constant translates 

into a poor compensation of the speed variation in the q-axis current. In contrast, a 

variation of the q-axis inductance has no effect on the q-axis current, but shows the 

sinusoidal perturbation on the d-axis current. This can be explained by looking at the 

design equations of the feedforward current controller (2.16). 
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 Due to the cross-coupling effect between q- and d-axes of the machine, the 

consequences of a poor estimation of Lq will lead to errors in the d-axis current control 

and vice versa. On the other hand, errors in the torque constant will lead to problems on 

the q-axis. In addition to this, for the machine under study in this research, we have 

maxmax iLK qT ⋅>> or . maxmax iLd ⋅

This makes the current controller much more sensitive to errors in the torque constant 

than in inductance, which can be observed from Figure 3.5. 

 The effects of stator resistance change only the dynamics of the current controller 

and affect only mildly the design of the PI controller. Resistance feedback would be 

useful if the current controller was designed to account for such changes. In the present 

case, dynamic performance is satisfactory for the purpose of this research. The possible 

role and importance of stator resistance estimation will be further analyzed later. 

 

3.3 Research Objectives 

 The objectives for the research presented in this paper are multiple, but its general 

goal is to find a solution to the problem of on-line parameter estimation of PM machines 

for the parameters outlined in section 3.1. The algorithm to be found should have the 

capabilities of tracking parameter variations due to temperature and saturation, and 

parameter estimation at steady state. Further details on the objectives of the algorithm are 

presented in the following subsections. 
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3.3.1 Tracking of Parameter Variations due to Temperature 

 The method to be found should be able to track parameter variations due to 

temperature, which are slow compared to the dynamics involved in the machine 

controller. These temperature effects can affect all four parameters, but they are likely to 

affect the stator resistance and torque constant most.  

 Interest in tracking the stator resistance changes has not been emphasized so far, 

because it can be seen as secondary from the point of view of controller design. The 

resistance only comes into play in the design of the compensator for the current 

controller, which is important for very high performance controllers, but requires 

additional computations as the machine is running. On the other hand, the material 

properties of electrical conductors are very well known, and it could be possible to use an 

on-line resistance estimate to get an idea of the machine operating temperature. 

Monitoring resistance changes could also be interesting for the purpose of machine or 

inverter diagnostics. This could be done as a system self check before startup. Finally, the 

most important role of knowledge of stator resistance for this project is that it will allow a 

much easier operation for the identification of other machine parameters, as it will be 

shown later. A reliable resistance estimate will likely be crucial for the numerical stability 

of the entire algorithm. Existing algorithms [18] [19] acknowledge the importance of 

having good resistance and torque constant estimates for the purpose of identifying the q- 

and d-axes inductances. 

 The machine torque constant is another parameter that changes mostly because of 

temperature variation. Having a good estimate for this parameter is very important for the 

operation of the current controller and is appreciable when it comes to the torque 
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controller, as it has been mentioned in sections 3.2.1.1 and 3.2.2. Depending on the 

magnet material used in the rotor, the torque constant may present a high sensitivity to 

temperature. As for the stator resistance, the torque constant will also be of importance 

for the overall stability of the parameter estimation algorithm. 

 Identification of parameter variation due to temperature changes should be 

realized with the steady-state machine model in order to maintain numerical simplicity 

and to avoid the inclusion of current derivative terms that are especially difficult to 

estimate in motor drive applications. This should not be an issue because of the relative 

slowness of temperature variation when compared to the motor drive dynamics. 

 

3.3.2 Tracking of Inductance Variation due to Saturation 

 The problem related to saturation is of a different nature than the one related to 

temperature changes. As opposed to the latter, saturation effects are directly related to the 

current levels flowing in the machine, and their dynamics are as fast as the currents’. As a 

consequence, an on-line estimation algorithm for inductances must operate at a much 

faster rate than one designed for temperature related phenomena. The algorithm may 

have to use the machine model including current dynamics, or operate at a rate that 

makes it possible to neglect them. Another solution could be to use the results given by 

the algorithm in steady state operation and update a look-up table used by the controller. 

An advantage in the use of an on-line estimation algorithm is that it can track the effects 

of cross-saturation transparently from the user point of view. The method should also be 

able to operate so as not to disturb the one related to temperature changes if they are 

distinct. These issues will be discussed further in chapters IV and VI. 
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3.3.3 Steady-State Detection Capability 

 In order to best use and coordinate the estimation of all electrical machine 

parameters, an algorithm will have to be developed that can operate when the machine is 

in steady state. For example, a method based on the steady-state model of the machine is 

bound to show errors during a change of operating point because the model it uses does 

not represent the controlled system during that time. This “steady-state detection” 

algorithm should then be able to enable or disable the operation of the parameter 

estimation algorithms, and even discard some estimation results. This method will be 

based on the current or voltage commands that the different controllers issue. 

 

3.4 Conclusion 

 This chapter presented the phenomena that affect the main machine parameters, 

and the subsequent effect of parameter variation on controller performance. This analysis 

served as a basis for the determination of precise objectives for this research project. 
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CHAPTER IV 

ON-LINE PARAMETER ESTIMATION ALGORITHM 

 
 
 The objective of this research is to provide the machine controller with parameter 

estimates that are calculated as the machine is operated. The Recursive Least Squares 

(RLS) algorithm was chosen as a basis for this purpose. It is a relatively fast algorithm 

that provides reliable parameter estimations, even in the presence of white noise. Since 

the structure of the machine model was known beforehand, this algorithm is suitable for 

this research. 

 

4.1 Least Squares algorithms 

        The RLS algorithm is based on the Least Squares (LS) algorithm.  When applied to 

system parameter estimation, the latter simply gives an estimate of unknown model 

parameters based on a given number of input and output system measurements.  These 

measurements can be done at any point in time prior to the execution of the LS algorithm.  

On the other hand, the RLS algorithm is one that can be directly adapted to on-line 

parameter estimation because its structure allows easier expressions for new parameter 

estimates each time it is supplied with new input and output data. 
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Fig. 4.1: Comparison between RLS and LS algorithm structures. 

 Figure 4.1 shows the fundamental structural difference between the RLS and LS 

algorithms.  A simple technique to obtain an on-line estimation algorithm from the LS 

algorithm would be to execute it each time new input/output data is available. Although 

this could be possible in theory, the numerical computation power required for that would 

quickly become an impediment for an on-line implementation. One major constraint that 

one encounters when confronted with real-time numerical control techniques is that the 

various programs associated with an application have to be executed fast enough in order 

to be able to maintain the desired sampling rate.  

        In applications, the sampling rate is set to a value that allows the control system to 

take into account the main dynamics of the system. The sampling rate is usually deduced 

from Shannon’s law, which states that the sampling rate has to be at least twice that of the 

highest frequency to be considered. Usually, the sampling rate choice of a control system 

is a compromise between software complexity and system stability. Control algorithms 
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are typically executed at the sampling rate in order to account for the complete  system 

dynamics. For that to be possible, the various algorithms associated with the application 

have to be executed in a time that is shorter than the sampling period. If this condition is 

not realized, the program can easily become unstable. The inherent structure of the LS 

algorithm makes it unsuitable for on-line applications. The RLS algorithm was developed 

to overcome this limitation and still give the same estimates for a given set of inputs. 

         

4.2 Introduction to the LS algorithm 

 For a system described by 

( ) ( ) θϕ ⋅= T
kky               (4.1) 

where y is the system output, φ represents a measurement vector and θ the system 

parameter vector that is to be estimated. If we have N equations like equation (4.1), we 

can write them in a combined form as 

θ⋅Φ=Y  

where  and ( ) ( ) ( ) ( )[ ]Tkk ϕϕϕ ,...,, 21=Φ ( ) ( ) ( ) ( )[ ]Tkk yyyY ,...,, 21= . The Least Squares 

algorithm calculates an estimate of the system parameters such that 

( )( )( )
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The solution to this problem is as follows [22]: 

( ) YTT
est ⋅Φ⋅Φ⋅Φ=

−1
θ             (4.2) 

55 



 One can see that this solution requires the inversion of a matrix that can be large, 

depending on the number N of input/output equations considered. The RLS algorithm is 

one that would only use data available at a particular point in time and its previous 

estimate to provide the user with the same result as the LS algorithm. 

 

4.3 RLS algorithm 

4.3.1 Definition of the RLS algorithm  

 The approach taken to get the RLS algorithm from the regular LS algorithm is 

interesting because it is one that could be applied to other offline algorithms. To obtain a 

formulation of the RLS algorithm, we start from the result that the LS algorithm would 

give at the kth sample (Eq (4.2)) as: 

( ) ( ) ( )( ) ( ) ( )k
T
kk

T
kkest Y⋅Φ⋅Φ⋅Φ=

−1
θ         (4.3) 

Introducing ( ) ( ) ( )[ ]k
T
kkF Φ⋅Φ= , leads to . ( ) ( ) ( ) ( )k

T
kkestk YF ⋅Φ=⋅θ

By decomposing the matrices at the kth step, one can get 

( ) ( ) ( )[ ] ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

T
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kkk
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k

k
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T
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⎦

⎤
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⎡Φ
⋅Φ= −−−

−
− 111

1
1  

The F matrix can be obtained recursively using the above equation. Going back to the LS 

algorithm, it is possible to get: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )

( )
⎥
⎦

⎤
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⎡
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And then  

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ]kkkestkkkkk
T
kkkest yFFyYF ⋅+⋅⋅=⋅+⋅Φ⋅= −−

−
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− ϕθϕθ 11
1

11
1  
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This expression can be further simplified as follows: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]kkkest
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kkkestkkkest

kkkest
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ϕθϕϕθ

11
1

1
1

 

And from this last equation, the first version of the RLS algorithm can be deduced: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )⎪⎩

⎪
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−
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This algorithm can be practically implemented as it is, but it presents the problem of 

requiring the inversion of a possibly large matrix at each step. Matrix inversions are 

extremely time consuming operations and are to be avoided as much as possible in real-

time algorithms. As a consequence, this version of the RLS algorithm had to be further 

modified in order to make it more practical. 

 A simplified recursive expression for the inverted matrix had to be found. For this 

purpose, the following matrix is introduced: 

( ) ( )
1−= kk FP  

And from 

( ) ( ) ( ) ( )
T
kkkk FF ϕϕ ⋅+= −1  

one can obtain 

( ) ( ) ( ) ( )
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1
1
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−
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At this point, a matrix inversion lemma can be used: 

[ ] [ ] 1111111 −−−−−−− ⋅+⋅⋅⋅⋅−=⋅⋅+ ADCBADBAADCBA  

with  where In is the identity matrix. ( ) ( ) ( )
T
knkk DICBPA ϕϕ ==== −

− ,,,1
1
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Therefore, 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )1
1

111 −

−

−−− ⋅⋅+⋅⋅⋅⋅−= k
T
knkk

T
kkkkk PIPPPP ϕϕϕϕ . 

Introducing, 

( ) ( ) ( )kkk PK ϕ⋅=  and , ( ) ( ) ( ) ( )1−⋅−= kest
T
kkk y θϕε

Rewriting the previous algorithm and obtain the final implementation of the RLS 

algorithm [22] [23] can be obtained as: 
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( ) ( ) ( )[ ] ( )

⎪
⎩

⎪
⎨

⎧

⋅⋅−=
⋅⋅+⋅⋅=

⋅+=

−

−

−−

−

1

1
11

1

k
T
kknk

kk
T
knkkk

kkkestkest

PKIP
PIPK

K

ϕ
ϕϕϕ

εθθ
]          (4.4) 

 One can notice that this algorithm may also require a matrix inversion, but this 

time the matrix to be inverted is a function of the number of system outputs. In the case 

of a Single-Input-Single-Output (SISO) system, this matrix is scalar. In the case of 

interest, the matrix to be inverted will be one with a dimension of 2, which is quite simple 

to invert. 

 

4.3.2 Modified RLS algorithm 

 The RLS algorithm as it is presented here is still not suitable for the kind of 

parameter estimation required by this project. The algorithm gives equal weight to all 

measurements, just like in the original LS algorithm, and the adaptation gain matrix K 

tends towards the zero matrix as k increases. This comes from the assumption that the 

parameters are constant for all measurements. The aim of this project is to have an 

algorithm that can estimate motor parameters and track their variations. The RLS 
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algorithm has to be modified in order to give higher importance to the most recent 

measurements, since they correspond to the most recent motor model parameters. 

 A solution to this problem can be obtained by changing the initial cost function 

and introducing an exponential “forgetting factor”: 

( )( )( )
( ) ( ) ( )( )⎪⎩
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 The introduction ofλ , which is a real number that has a value between 0 and 1, 

allows the algorithm to weigh the measurements and give more importance to the most 

recent ones. If the forgetting factor is equal to “1”, we will get the regular RLS algorithm, 

and if it is set at zero, we will get a simplified algorithm called “gradient algorithm”. 

Usually, values of the forgetting factor range from 0.95 to 0.999. If the same approach 

that gave the RLS algorithm (Eq. (4.4)) is used with this modified cost function, the 

following algorithm is obtained [23]: 
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         (4.5) 

 The above algorithm is the one that will serve as a basis for parameter estimation 

for the research project. 
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4.4 Estimation Algorithms 

4.4.1 Overview 

 The parameter vector to be estimated in this project was given in Eq. (3.1). 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

T

s

d

q

K
r
L
L

θ               (3.1) 

 The inductances can vary because of saturation at a rate that is comparable to that 

of the machine currents. On the other hand, the most important factor that affects the 

motor phase resistance and the torque constant is the motor temperature, which varies at a 

much slower rate than the other electromechanical variables in the machine. A 

decoupling between the inductances and the latter two parameters was necessary in order 

to minimize the program execution time. A simple approach to the problem of estimating 

all four parameters in the machine would be to have a RLS algorithm which would aim at 

estimating all four parameters at a fast rate, possibly at the sampling rate of the 

application.  This approach is not possible for a few reasons, one of which is that it 

would be a heavy burden on the control program, and another one will be mentioned later 

in the chapter. A more simple approach to the problem would be to split the estimation 

algorithm as a function of the different execution rates required. A simpler algorithm 

would focus only on the estimation of the q- and d-axes inductances and run at the 

sampling rate, with the assumption that the resistance and torque constant remain 

constant at this rate. The estimation of the remaining two parameters can be done in a 

separate program that would be run at a lower frequency. 
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Fig. 4.2: Proposed algorithm structure. 

 The algorithm chosen for the PM machine parameter estimation has the structure  

shown in Figure 4.2. It is decomposed into two subroutines, a “fast” one that estimates 

the inductances, and a slower one that estimates all four parameters. A method where the 

two pairs of parameters would be completely decoupled was tested but proved to be 

unstable; an error in any of the four parameters would get amplified by the other 

estimation program and build up. 

 

4.4.2 Fast Estimation Algorithm 

 The goal for this portion of the program is to estimate the machine q- and d-axes 

inductances, assuming the motor phase resistance and torque constant are known. As 

mentioned earlier, this routine will run at the fastest rate possible in the program, which is 

the sampling rate. The sampling frequency was set to 20 kHz for the experimental and 

simulation setups; this value is commonly used in high performance motor control 

applications. Because of measurement limitations, the algorithm was developed from the 

steady state model of the machine (the equations are restated here for clarity): 
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⎩
⎨
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⋅⋅−⋅=
⋅+⋅⋅+⋅=

qeqdsd

rTdedqsq

iLirV
KiLirV

ω
ωω

        (2.17) 

 This model does not include the current differential terms because of the limited 

precision, the signal to noise ratio that was available for the experimental design, and the 

high sampling rate. These terms are of the following form: 

dt
di

LA qd
qdqd ⋅=  

For a small dt, a small error in diqd would lead to a large error in A. On the other hand, a 

larger dt would introduce an undesirable lag in the treatment of the measurements. If they 

had been included in the experimental algorithm, they would have introduced a level of 

error that would probably outweigh the motivations for their inclusion. Excluding these 

terms will cause the model to misrepresent the machine behavior whenever there is a 

change in machine current. These changes however are usually relatively short but 

depend on the application. The benefits of including these terms will be studied through 

simulation. 

 The RLS algorithm is set up as follows. The voltage equations are rewritten in 

order to isolate the parameters to be identified: 
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This can then be written as the RLS matrices: 
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 The RLS algorithm can be implemented with the above equations and give 

estimates for the motor inductances as a function of the inputs and measurements to and 

from the motor. The only constraint is that the phase resistance and motor torque constant 

have to be supplied externally. When the machine is at room temperature, these 

parameters can be set to constant values that are measured offline, but for the final 

algorithm implementation, these will be supplied from another identification routine. The 

program structure is given in Figure 4.3. 

 

Fig. 4.3: “Fast” estimation program structure. 

 The primary concern in terms of numerical implementation was the size of the 

matrix to be inverted in equation (4.5): 

( ) ( ) ( )kk
T
kn PI ϕϕλ ⋅⋅+⋅ −1  

In this case, both ϕ  and  are 2x2 matrices, and from this we can deduce that P is of 

dimension 2x2. Finally, the identity matrix must have the same size in order to be added 

properly. The matrix that has to be inverted is of size 2x2, and its inversion is a simple 

operation: 

Tϕ
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 This identification program is suitable to be run continuously and will converge 

even if the machine stays in one set operating point in terms of currents, voltages and 

speed. Usually, for the RLS algorithm to converge properly, it needs to be supplied with 

input and output data that is “rich” enough in information. In the present case, the vector 

that has to be estimated is of size 2, and one operating point gives two equations, one for 

the q-axis, and another for the d-axis. There is therefore enough information in one 

operating point for the RLS algorithm to converge properly. This would not be true if the 

vector to be estimated was any larger in size, as it is the case with the second part of the 

estimation algorithm. 

 

4.4.3 “Slow” Estimation Algorithm 

 The second part of the complete estimation method is one that was designed to be 

run at a much slower frequency than the sampling rate (500 to 2000 Hz in simulation and 

experiments). The purpose of this program is to estimate all four parameters using the 

RLS algorithm. However, the inductance estimate given by this algorithm is not used in 

other parts of the program and was introduced in order to avoid isolating the two sets of 

machine parameters and improve algorithm stability. This algorithm is also based on the 

steady state d-q model of the machine, but as opposed to the “fast” identification 

program, it will only be run during steady states. 

This time the machine model equations are written as: 
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And the RLS matrices are: 
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 In this case, ϕ  is a 4x2 matrix and  is a 2x4 matrix, and from this we can 

deduce that P is of dimension 2x2. The matrix that has to be inverted for this algorithm 

will be a matrix of size two, just like in the case of the “fast” algorithm. On the other 

hand, the algorithm will require matrix products and sums that will handle larger matrices 

than in the case of the “fast” algorithm, and will consequently take a longer time to 

execute. 

Tϕ

 The primary constraint associated with the implementation of this RLS algorithm 

came from the fact that it would require data from more than one operating point in order 

to be stable. Since the parameter vector is of size four and the system is of size two, this 

algorithm needs at the very least data from two different operating points in order to 

operate properly. On the other hand, a design constraint associated with a practical 

implementation of the algorithm is that it should be unintrusive as possible. In other 

words, the estimation algorithm does not set the machine operating points; they are 

defined by the application (speed, torque or position control). The solution that was 

chosen was a compromise: the estimation algorithm will add a perturbation to the d-axis 
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of the machine and get its data from the machine feedback. This perturbation was chosen 

to be on the d-axis because it usually is the least torque producing one, especially in a 

surface mounted machine or an IPM with low reluctance. In the case of an IPM with very 

high reluctance, or a synchronous reluctance machine, it may become more interesting to 

use the q-axis. 

 The d-axis perturbation will have to be as small as possible, in order to minimize 

the torque ripple in the machine, but will have to be large enough to have its effects felt 

in the controller feedback. It is therefore mostly a function of the hardware in terms of the 

quality of the machine current feedback. The perturbation was chosen to be a succession 

of small steps at a rather low frequency, leading to a succession of electrical steady states 

in the machine. The excitation frequency was chosen to be much lower than the electrical 

dynamics of the machine, so that the current transients would not dominate a time step. 

On the other hand, it also had to be chosen high enough in order to be able to feed the 

RLS algorithm with data that would allow it to track parameter variations. This minimum 

magnitude is a direct function of the sensing capabilities of the system (resolution). The 

perturbation magnitude also has to be fast and small enough in order to minimize the 

machine torque ripple and the perturbation in mechanical dynamics. 

 Another design constraint associated with the implementation of this algorithm is 

that the injected current perturbation may also result in an inductance perturbation, due to 

saturation and/or cross saturation. The solution to this problem was to disable the 

algorithm during current transients, and to copy the estimated inductances coming from 

the “fast” algorithm when the “slow” algorithm would be enabled again. 



 The program structure associated with the implementation of this algorithm is 

shown on Figure 4.4. 

 

Fig. 4.4: “Slow” estimation program structure. 

 The algorithm uses the same inputs as the “fast” estimation algorithm, except for 

the fact that it requires updates in its estimated inductances at the end of current 

transients. Figure 4.4 shows in details the interaction between the two algorithms during a 

transient. 

 When a current transition occurs in the controller, either due to a change in 

controller operating point, or to the perturbation necessary to excite the “slow” algorithm, 

the estimation algorithms have to respond accordingly. In the example shown in Figure 

4.5, a change in the d-axis current was introduced by the controller. The first plot shows 

how the d-axis current reference changes from one level to another, and how the actual d-

axis current tracks it, this being the result of the operation of the current controller. 

 The second plot shows the operation of the “fast” estimation algorithm; it is 

assumed that d-axis inductance value is being effectively tracked initially. When the 

transient occurs, the differential terms start to appear in the machine equations, but are 
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not taken into account by the estimation algorithm. This explains why the estimation 

cannot track the inductance during the current transient. Once the current has reached 

steady state again, the estimation algorithm converges again. During that time however, 

the “slow” estimation algorithm was disabled, and the estimated resistance and torque 

constant remained unchanged. This approach is valid because current transients are much 

faster than temperature transients. 

 
Fig. 4.5: Estimation algorithm behavior during current transient. 

 However, when the “slow” estimation algorithm resumes its operation, it still has 

the old d-axis inductance value in memory, which does not match the actual machine 

inductance anymore. The inductance coming from the “fast” algorithm is therefore 

copied in the “slow” algorithm when it resumes its operation. This allows the current 

transient to be almost transparent from the point of view of the “slow” algorithm. 
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4.5 Conclusion 

 The recursive least squares algorithm and its derivation were presented in this 

chapter. An on-line parameter estimation algorithm was then introduced, based on this 

algorithm. The proposed structure takes advantage of the different dynamics of the 

parameters that had to be estimated and is decomposed into three main blocks. One will 

be dedicated to machine inductance estimation, another one will try to estimate all four 

machine parameters, and the last block will supervise their operations. In the following 

chapters, the effectiveness of this proposed algorithm will be investigated and verified 

both through simulation and experiments. 
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CHAPTER V 

PARAMETER ESTIMATION SIMULATION MODEL 

 
 
 The first step in developing and validating an algorithm for on-line parameter 

estimation in PMSM is to develop a machine and controller model that would be used for 

simulation. This model would serve the purpose of verifying the effectiveness of the 

proposed algorithm in a simulated environment that is as close as possible to the 

experimental design. In addition to this, the model could also be used to verify and 

measure variables that may not be easily accessible in the experimental design. 

 The platform that was chosen to develop the simulation model was Matlab®, and 

its extension Simulink®. They were chosen because of the simple visual representation 

of the system they provide, and also because they provide easy access to any model 

variable. Designing a model with Simulink® also enables the programmer to visualize 

the program in ways that are helpful for the final experimental implementation. The 

simulation model is decomposed into blocks that can be separated or coupled in ways that 

can reflect the DSP program structure. Newer versions of Simulink® can also produce 

code from the model that is directly downloadable into a DSP, making software 

development much faster. The global model structure in Matlab/Simulink environment 

for this project is given in Figure 5.1. 

 



 
Fig. 5.1: Global controller model structure. 

 Figure 5.1 shows the decomposition of the model into important subsystems. 

These will be presented in details next. 

 

5.1 Machine Model 

 The first step in creating a simulation model for the whole controller is to design a 

model for the machine behavior. This model is based on the equations given by the d-q 

transformation of a three phase PMSM. This part of the model calculates the phase 

currents, the machine torque, speed and rotor position for a given input voltages and load 

torque. It is also necessary for the purpose of this project to be able to have the machine 

parameters be functions of external or internal factors. The phase resistance and torque 

constant are consequently chosen to be linear functions of the temperature, and the d- and 

q-axes inductances were made functions of the machine currents. The temperature is an 

external variable, and for most of the experiments, it was set to be constant or a slowly 

increasing linear function of time. 
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Fig. 5.2: Machine simulation model. 

 The machine model takes three phase voltages as its inputs, performs the Park 

transformation on them using the rotor position, and calculates the d-q input voltages. 

The electromechanical model block is the one that performs the integration of the d-q 

currents as a function all the inputs. Equations (2.6) were adapted for that purpose as: 
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         (5.1) 

 In numerical system modeling, it is usually preferable to avoid differentiations, 

which can cause instability and accuracy errors, and hence the electrical equations were 

written in an integral form. The currents are then used in the torque equation to calculate 

the machine electromechanical torque. Equation (2.5) was used for that purpose and is 

given here for the sake of clarity. 

( )[ qdqdqmage iiLLiPT ⋅⋅−+⋅⋅
⋅

= ϕ
2

3 ]           (2.5) 
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 Both the torque and currents are outputs to this block. The currents are 

transformed back to the abc domain using the Park inverse transformation and are sent 

out, because they are measured in the experimental design and available to the 

experimental controller. The difference between machine and load torque is integrated to 

get machine speed (Equation (2.6)), which is then integrated to obtain the rotor position, 

neglecting rotational losses like bearing friction. This position is also used as an output 

because of the presence of a position sensor in the experimental design. On the other 

hand, the machine speed is not set to be an output, because there is no tachometer in the 

experimental design. The machine speed is estimated from the rotor position feedback 

information available in the controller. One can also notice the presence of blocks that 

calculate the values of the machine model parameters as functions of temperature and 

currents. The structure of the machine model is shown in Figure 5.2. 

 

5.2 Inverter Model 

5.2.1 Basic Inverter Operation 

 The power inverter is the element that converts the small power Pulse Width 

Modulation (PWM) outputs of the microcontroller into higher power signals that are used 

by the machine. It is also the source of non-idealities and discrepancies between the 

desired machine voltages and their actual value. The inverter is a device that is made of 

six switching cells, each of them being subdivided into two semiconductor switches. One 

of them is a controllable switch, which will turn on and off as a function of its input 

voltage. These controllable switches can be from different families, like the Insulated 

Gate Bipolar Transistors (IGBT), the Metal Oxide Semiconductor Field Effect 



Transistors (MOSFET), or the Bipolar Junction Transistors (BJT). They also are usually 

limited in their operation to one voltage-current quadrant: they are unidirectional in both 

voltage and current. To overcome this limitation, common inverter designs attach a diode 

in parallel to the controllable switch. This diode is not controllable by any external signal, 

and its state will be dictated by the external circuit. 

 

Fig. 5.3: Three phase bridge inverter. 

 Fig. 5.3 shows the circuit used to design a classical bridge inverter structure. The 

six switching cells (labeled 1 to 6) are arranged into three legs (1 and 2, 3 and 4, 5 and 6) 

and each of these legs is connected to a machine phase in the experimental design. 

 

Fig. 5.4: Inverter leg. 

 Figure 5.4 can be used to describe the operation of an ideal inverter leg. The same 

analysis can be conducted on the complete three phase bridge inverter. If we assume the 
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current labeled “I” has a return path through other parts of the circuit and that the inverter 

switches (transistor and diode) are ideal, the voltage Vph at the output will take values as 

described in Table 5.1. It is necessary here to point out that in such an inverter leg, the 

top and bottom switching cells are never ordered to be “on” at the same time, since that 

would result in a source short circuit. In addition to this, in a typical PMSM application, a 

configuration where both switching cells are ordered “off” does not occur.  

Table 5.1: Operation of ideal inverter leg. 

Switch commanded “on” Sign(I) Vph 

1 + Vdc 

1 - Vdc 

2 + 0 

2 - 0 

 One can see from Table 5.1 that if the top cell is commanded to be on, the inverter 

leg will act as if the cell was a closed switch; the current sign (direction) only determines 

which switch (transistor or diode) is conducting. Likewise, when the bottom cell is 

commanded to be on, the inverter acts as if the bottom cell was closed. 

 

5.2.2 Inverter Nonlinearities 

 A real inverter, like the one used in the experimental design associated with this 

project, differs to some extent in its operation from its ideal model. In most motor control 

applications, these differences do not affect the motor control much and they are ignored. 

However, in the present application, any error between the voltages desired in the 
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controller and the voltages applied to the machine will have a direct impact on the 

parameter estimation performance. This impact will be the subject of a later chapter. 

 The main errors introduced by the inverter will be studied in detail in the 

following sections. 

 

5.2.2.1 Deadtime 

 The switches that compose the inverter cannot change state instantaneously, and 

in order to avoid DC bus short circuits, it is necessary to introduce a deadtime in the 

PWM algorithm during which both switches in transition are ordered to be open. This 

deadtime is a delay that is introduced whenever there is a transition between commanding 

top and bottom switch conductions.  

 The simultaneous turn-on of both the switches in one leg of the inverter due to 

switch non-idealities is prevented by the insertion of this deadtime period, whenever a 

switch transition command comes from the PWM algorithm. In the experimental design, 

the DSP controls the deadtime period by ordering both the switches “off” for a short 

predetermined duration. 

 Figure 5.5 shows the transient associated with the turn-on of one of the 

experimental design IGBTs.  The inverter circuit used in this project was a single 

integrated circuit, including both switches and gate drivers (part #IRAMX16UP60A). It 

is possible to see that it takes approximately 200 μs before the switch can be considered 

“on”. Diode conduction transients and IGBT turn-off characteristics also present 

nonlinear responses. The inverter manufacturer recommends the introduction of a 300 μs 



deadtime for safe inverter operation which is fast for an IGBT based inverter. These types 

of inverters usually require deadtime delays ranging up to the order of a microsecond. 

 

Fig. 5.5: Inverter IGBT turn-on transient (Junction Temperature = 150˚C) [24]. 

 Figure 5.6 shows an example of deadtime insertion by the DSP. The ratio between 

PWM period and deadtime was made larger in the plots than in the experimental case to 

be able to visualize it. In the experimental design the deadtime is 160 times smaller than 

the PWM period TPWM. The delay t2 – t1 is equal to t4 – t3 and they are both equal to the 

desired deadtime. It is also possible to see from Figure 5.6 that the time when the switch 

“1” is “on” is different from the time in the ideal case. This error is small in most cases 

but can become significant when the desired switch “on” time is small.  

 An important thing to notice for the effect of the deadtime delay is that its effect 

on the output voltage is a function of the phase current. If, in Figure 5.6, the phase current 

is sufficiently large and positive (flowing towards the machine), the diode at the bottom 

of the inverter leg will conduct during the deadtime. On the other hand, if the current is 
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sufficiently large and negative, the top diode will conduct during the deadtime. Having a 

current that is sufficiently large in these cases means that the current is large enough to 

maintain its polarity throughout the PWM period. 

 

Fig. 5.6: DSP Deadtime insertion. 

  

5.2.2.2 Switch Conduction Transients 

 Another problem introduced by the real inverter as opposed to the ideal one is 

also shown in Fig. 5.5. The switch transient behavior differs from an ideal one where it is 

assumed that the currents and voltages would instantaneously assume their new values. 

The values taken by the switch current and voltage during transient are also sources of 

discrepancies between the desired voltage in the controller and the voltage at the output 

of the inverter. This error is very small and would require extensive knowledge of the 

inverter switches for any type of compensation to be implemented. It would also require 
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an extremely small simulation time step, which would lead to extremely long simulation 

times. It is consequently neglected in this project. 

 

5.2.2.3 Switch Steady State Voltage Drops 

 In the experimental design for this project, the inverter transistors are IGBTs. This 

type of transistor presents a voltage drop when it conducts current, and so does the diode 

connected in parallel with it. These voltage drops change slightly the applied voltage to 

the machine from the ideal situation. The voltage drops introduced by the inverter 

switches are not constant, but are functions of the current flowing through the switch at a 

given time. The voltages applied to the motor phase windings after taking the non-

idealities into account can be derived according to the logic outlined in Table 5.2. In the 

table, VIGBT represents the voltage drop in the IGBT and VD represents the voltage drop 

in the diode. 

Table 5.2: Steady state operation of an actual inverter leg. 

Switch commanded “on” Sign(I) Vph 

1 + Vdc – VIGBT(I) 

1 - Vdc + VD(I) 

4 + 0 - VD(I) 

4 - 0 + VIGBT(I) 

 The switch voltage characteristics were measured experimentally and are 

compiled in Figure 5.7. 
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Fig. 5.7: Inverter switch voltage drops. 

 

5.2.3 Simulation Model 

 The inverter model used for the simulation model for this project includes the 

deadtime delay generator block, and also the steady state switch characteristics shown in 

Figure 5.7. However, it does not include the switch transient behavior, because it would 

require a much longer simulation time for results that would not be affected noticeably. 

On the same note, deadtime was not always included in the simulations, because it was 

effectively compensated for in the experimental design, and it would also require a 

smaller than practical time step in order to be simulated effectively. The deadtime 

imposed in the experimental design was 300 ns, and the time step that was desired for the 

simulations was 400 ns, which is a compromise between simulation speed and result 

precision. From the point of view of the controller, the existence of the deadtime is 
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transparent, since it was compensated for in the PWM block, for the controller the 

deadtime it was as if it did not exist. The switch voltage drops were also compensated for 

in the experimental design, and hence, were not included in simulation results shown in 

Chapter VI. Both the deadtime and switch voltage drops compensation algorithms will be 

explained in details in Chapter VII. 

 Initial simulations for this project were done with an ideal inverter because the 

effect of the inverter nonlinearities was assumed to be negligible. However, experiments 

showed that the errors introduced were quite large, sometimes even comparable to values 

of certain terms in the voltage equations that the estimation algorithms had to estimate. 

 The effect of the inverter non-linearities on the machine applied voltage were 

simulated using the developed simulation model. Figures 5.8 and 5.9 show the result of a 

low speed test over one mechanical revolution where the control algorithm fixed the d-q 

input voltages of the inverter. The DC bus voltage was set at 50 V, because the 

experimental results that were obtained for similar results were done with a voltage 

around this value. 

 Figure 5.8 shows the results obtained with an ideal inverter configuration, where 

the deadtime delay is set to zero, and where the switch voltage drops are also set to zero. 

The results seen in that figure are the ones that we would like to achieve in the 

experimental design, because they correspond to a case where the inverter is almost 

transparent from the point of view of the controller. 

 It is necessary to bear in mind however, that even an ideal inverter will introduce 

perturbations in the machine phase voltages, because of the lagging response of the 



PWM, and because of the high frequency content of the square wave signals that are 

applied to the machine. In most cases however these affects can be neglected. 
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Fig. 5.8: Simulated ideal inverter response to constant d-q voltage inputs. 

 Figure 5.8 shows the d-q voltages and currents in the machine, as well as the 

phase “a” current. The d-q voltages were not directly accessible as a continuous signal 

because of the nature of the inverter output voltages. They were obtained by filtering the 

output of the Park transformation at the input of the machine model. The plot that shows 

the d-q voltages of the machine also shows the reference voltages at the input of the 

controller, which were constant at: 
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However, it is difficult to distinguish them in Figure 5.8 because they match closely. 

 

Fig. 5.9: Simulated real inverter response to constant d-q voltage inputs. 

 In Figure 5.9, the simulation model of the inverter included both the deadtime 

delay, and the steady state switch voltage drops. One can see significant changes on each 

of the three plots from the ideal case shown in Figure 5.8. In terms of the d-q voltages of 

the machine, it is possible to see both a distortion of the signals from their reference, and 

a change in their average level. Additional simulations were run in order to isolate the 
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problems, and showed that most of the distortions were due to the deadtime, because the 

switch voltage drops tend to cause a constant drop in the d-q voltages. These results show 

a significant problem from the controller point of view: while the controller thinks it is 

sending the reference d-q voltages (Vd = -4V, Vq = 8V), the inverter is only applying (Vd 

= -3.5V, Vq = 7V), and the machine feedback is a response to this latter pair. This error, if 

not compensated or taken into account by the estimation algorithms, can have an 

enormous impact on the performance of the controller. 

 In the case of the d-q currents, the values obtained are slightly different from the 

ones in the ideal case, and the oscillations in the machine voltages have an impact on the 

current waveforms. Another way to look at the distortion caused in the current 

waveforms is to look directly at the phase currents; phase “a” current was shown in both 

figures 5.8 and 5.9. With the realistic inverter results, we can see some small distortions 

in the current waveform, mostly around zero current, from the waveform obtained in the 

ideal case, which was sinusoidal.  

 The distortion around zero comes from the fact that in the case of small currents, 

the effect of the deadtime on the controller voltage changes because the phase current get 

small enough to allow the diode to reach an “open” state or even change the conducting 

diode during the PWM period. On the other hand, when the current is sufficiently large, 

the effect of deadtime is easy to estimate because the diode remains in a known state of 

conduction. The effect of the deadtime for large currents is to introduce a voltage error 

whose polarity is a function of the sign of the current, because of the diode that conducts 

during the deadtime delay. This is not the case when the current gets smaller and the 

distortion comes from the change of behavior of the perturbation. 



 It is also necessary to note that whereas the voltage disturbance due to the switch 

voltage drops is a function of the current flowing through them, the deadtime effect, 

except for smaller currents, is a function of the switch duty cycles. Since the deadtime is 

a fixed delay, the ratio between the “on” time of the switch and the desired “on” time is a 

function of the latter. The impact of the deadtime delay for larger currents will be felt 

mostly in the case of smaller duty cycles. 

 A series of tests was done in order to estimate and model the error in the 

controller voltage introduced by the inverter. The experimental approach chosen was 

designed to use the experimental machine in the simplest way. The machine was 

connected to the inverter and the controller applied different sets of constant q-axis input 

voltages (the d-axis voltage remaining at zero). The machine rotor was locked and current 

measurements were taken in steady state. In these conditions, the machine electrical 

model reduces to: 
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dsd

qsq
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The tests were conducted with the machine at room temperature and were completed 

within a short time, so that we could assume the machine temperature did not change 

significantly. As a result, it was possible to assume the stator resistance remained 

constant at a value that was measured offline. The error introduced by the inverter was 

then estimated by taking the difference between the controller voltage and the estimated 

resistive drop. 

 The results shown in the lower part of Figure 5.10 (Figure 5.10(b)) show that the 

error introduced by the inverter for the locked position and the type of voltage used in the 
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experiment is pretty much constant. Theoretically, there should be a small increase in the 

error as the current gets larger with the switch characteristics shown in Figure 5.7, but the 

noise level was too high for it to appear clearly. These results show, however, that the 

error introduced by the inverter is quite significant and requires compensation. A similar 

plot was obtained in the case of the d-axis. 

 

Fig. 5.10: Experimental inverter response with locked rotor. 

  

5.3 PWM Algorithm 

 The PWM algorithm block performs the transformation from the desired d-q 

machine voltages to the inverter switch duty cycles. The duty cycle for a power 

electronics switch is the ratio between its “on” time and the switching period. This is the 

first block of the simulation model that is part of the machine controller, which is not run 
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continuously at the simulation time step. In the experimental design, the various segments 

of the control program are either run periodically or on the occurrence of certain events. 

The controller simulation model is executed at a frequency matching the experimental 

design, in order to represent the real situation more accurately. In the project, the PWM 

frequency was set at 20 kHz, and the simulated PWM was executed at the same rate. For 

comparison, the simulation frequency (inverse of time step), which is used by the 

machine and inverter blocks as “real time”, was 2.5 MHz. In addition to being more 

realistic, having portions of the simulation model execute at lower frequencies allows the 

complete model to run much faster than it would if everything was executed at each time 

step. 

 The inverse Park transformation is the first step in the implementation of the 

conversion d-q reference voltages into duty cycles. The transformation is obtained from 

equation (2.3): 
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 The next step is to scale the three phase voltages in order to obtain the correct 

duty cycles at the inverter input. The solution chosen for this project consists in scaling 

the three desired phase voltages with respect to the available DC voltage at the source of 

the inverter, and then creating a virtual zero for a duty cycle of 50%. As a consequence, 

negative voltages will result in duty cycles that are smaller than 50%, and positive 

voltages give duty cycles larger than this value. There are two immediate consequences 

of using this algorithm: First, a strong homopolar voltage component is applied to the 
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machine stator (which does not affect operation or performance), and the second is that 

the maximum achievable phase voltages are half the DC bus voltage. On the other hand, 

using this method makes it easier to compensate switch non-idealities. 

 Another method was also considered, which was based on the use of the smallest 

of the three phase voltages as a fictitious reference and expresses the other two phase 

voltages as differences between their initial values and the new reference. This algorithm 

uses phase to phase voltages instead of individual phase voltages. 

 Let us see on an example how both these algorithms would operate on a set of 

input voltages to obtain the duty cycles dabc. 

For 
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And the second PWM algorithm gives 
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 The immediate advantage that one can see in using the second algorithm is that it 

always keeps one of the three phases at a zero duty cycle, which means the corresponding 

phase voltage remains unchanged for the PWM period. This helps minimizing the 
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switching losses in the inverter. The switching losses are a consequence of the non-ideal 

behavior of the inverter switches depicted in Figure 5.5: during a switching transient, the 

product between voltage and current in the switch becomes nonzero and translates into 

heat losses. By switching only two phases out of the three, one reduces significantly these 

losses. On the other hand, maintaining a phase at a zero duty cycle makes it impossible 

for the voltage compensation algorithm to operate optimally.  

 The first algorithm has been chosen, since adequation between machine model 

and machine response is one of the primary concerns of this project. 

 The inverter compensation algorithms have been implemented inside the PWM 

model block to achieve a proper match between the controller voltages and the inverter 

outputs. 

 

5.4 Current Controller 

 The current controller model block calculates the d-q voltages required to obtain 

the desired levels in d-q currents and is similar to the experimental DSP program. This 

segment of the program is executed at the PWM frequency of 20 kHz which is the same 

as in the PWM block. 

 The first step in achieving current control is to have adequate feedback. The 

currents that are measured in the experimental design are not the d-q currents, but usually 

two of the abc phase currents. It is therefore necessary to perform the Park transformation 

on them in order to obtain the corresponding d-q currents. We can use equations (2.2) for 

this purpose: 
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The simulation model also incorporates the precision of the Analog-to-Digital Converter 

(ADC) of the DSP at this point, which is 12 bits in theory. However, measurement noise 

and the real precision of the ADC reduced the available resolution to about 9-10 bits. 

This effect was not simulated except through a decrease in simulated ADC resolution. 

 The next task for the current controller is to extract the command voltages 

required to establish the desired machine currents. The controller algorithm uses the 

machine electrical model along with the current feedbacks. 

 The transfer functions that describe the operation of the current controller with 

feedforward have already been presented and are repeated here for the sake of 

convenience: 
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The error between the d-q reference currents and the feedback is sent to a Proportional 

and Integral (PI) controller, whose output is shifted by the feedforward terms so that the 

system is linear from the controller’s perspective. 
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5.5 Speed Estimation 

 The machine speed is an important variable in the program, but is not readily 

available to the controller. The position signal given by the optical encoder needs to be 

integrated to obtain the speed information. This sensor provides a relative rotor position 

with a precision of 4096 counts per mechanical revolution, or 2048 counts per electrical 

revolution, since the machine has four rotor poles. To obtain the motor speed, the 

program subtracts the current position with the one it had during its last execution, and 

applies a low-pass filter to the result. The filter pole is adjusted to get a compromise 

between ripple and response speed. 

 

5.6 Fast Identification Algorithm 

 Another program that is executed at the sampling rate is the fast parameter 

estimation algorithm. The algorithm uses the d-q current feedback calculated by the Park 

transformation and the output voltages sent to the inverter to estimate the d-q machine 

inductances. Two other parameters, KT and rs are required in this fast algorithm. The 

operation of this algorithm and the equations on which it is based have already been 

presented in Chapter IV. The fast identification algorithm is included in the current 

control block of the global simulation model for convenience. 

 

5.7 Low Frequency Controller 

 The last block that is a part of both the simulation model and the experimental 

program runs non time-critical tasks and executes at a slower rate than the sampling 

frequency. The cycle frequency for this block was chosen to be 2 kHz. 
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 The speed controller has been included in this block, because the mechanical 

dynamics are much slower than electrical dynamics. The speed controller uses a PI 

compensator on the error between the estimated speed feedback and the desired reference 

speed, giving the reference magnitude of the stator current. This magnitude is then 

converted into the d-q currents by using either the maximum Torque per Ampere 

algorithm, or the zero d-axis current algorithm, both of which were presented in Chapter 

II. It is to be noted that the speed controller is to be used only when the application 

demands it. Other cases exist where the parameter to be controlled is the machine torque 

or rotor position. 

 Another program that was executed at the lower frequency is the slow 

identification algorithm, which is mostly used to track the variations in the stator 

resistance and the machine torque constant. The equations and operation of this slow 

identification algorithm were discussed in Chapter IV. 

 

5.8 Conclusion 

 This chapter has introduced the reader with the simulation model developed for 

this project. The various blocks of the model, and the constraints present and necessary to 

be modeled were discussed. Chapter VI will focus on how this simulation model was 

used to develop and verify the parameter estimation algorithm in PMSM that is the 

primary objective of this research. 
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CHAPTER VI 

PARAMETER ESTIMATION SIMULATION RESULTS 

 
 
 The first step in validating the proposed algorithm was to verify its effectiveness 

using the simulation model presented in the previous chapter. For this purpose, the 

algorithm was tested on two different machine models. One of these models matches the 

motor that was used experimentally for this project. A problem that was encountered with 

this machine is that it does not show significant saturation characteristics, and as a 

consequence it could not be used to show some of the results that motivated this research. 

The second motor model chosen displayed significant inductance saturation at higher 

torque levels; it was obtained from the motor data used in [19]. This latter motor was 

selected for simulation to show the possible effects of saturation on the maximum Torque 

per Ampere algorithm in Chapter III. 

 

6.1 Machine Models 

 In this section the machine model parameters that were used for simulation will 

be presented. The parameters of the two machines are shown in Table 6.1. The machine 

“A” has been used experimentally to demonstrate the functionality of the developed 

algorithm. Parameter variations due to temperature were introduced as variations from 

the nominal values given in Table 6.1.  



94 

 Parameter variation due to saturation was introduced by changing the d-q 

inductance values in the program as a function of the machine currents. 

Table 6.1: Simulation model parameters. 

Parameter name Machine “A” Machine “B” 

Stator resistance, rs (Ω) 1.55 1.45 

Torque constant, KT (V.s) 0.207 0.172 

Lq (mH) no saturation 9.6 18 

Ld (mH) no saturation 5.1 6 

Rotor inertia, J (N.m.s2) 46.1e-6 99.6e-6 

Number of magnet pole 
pairs, P 

2 2 

Rated current, Imax (A) 5 25 

 

6.1.1 Machine “A” Inductances 

 In the case of the experimental machine, the inductance waveforms were 

measured offline by taking steady state measurements for a variety of operating points 

and extracting the corresponding inductance values from the model equations. These tests 

were done with the machine at room temperature so that the resistance and torque 

constant  could be assumed to be at their nominal values: These parameter values were 

also measured with other tests. The phase resistance was measured directly with a 

multimeter, and the torque constant was obtained from an open-circuit test described in 

section 7.2.3 of Chapter VII. The mechanical load in the experimental design was a 

controlled brake, that was not able to produce motoring torque on the motor shaft. 

Because of this it was not possible to do the tests with the machine q-axis current set to 



zero since they would not produce any motoring torque from the machine, and the motor 

speed would be zero. A non-zero speed is required for the inductance terms to appear in 

the steady state model equations. The q-axis current is required to get motoring torque 

(see equation (2.5)).  

 For a given electrical operating point, the machine was run at a constant speed in 

steady state and the controller recorded a large number of data points (compensated 

command voltages and measured currents). An average of these points was done in order 

to improve precision, and the steady state model of the machine was used to extract the 

machine inductances from equation (2.17), which is stated again below for convenience: 
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 Results were only obtained for a negative d-axis and a positive q-axis current 

because positive d-axis currents are never used in practice for motoring applications (they 

generate negative torque) and the quadrant that corresponds to the negative q-axis current 

is symmetrical to the positive side. The values of the inductance for the applied d-q axes 

currents are given in Tables 6.2 and 6.3. 
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Table 6.2: Machine “A” q-axis inductance in mH. 

iq \ -id (A) 0 1 1.5 2 2.5 3 

0 9.6 9.9 10.13 10.48 10.89 11.6 

0.75 9.6 9.9 10.13 10.48 10.89 11.6 

1.25 9.6 9.9 10.13 10.48 10.89 11.46 

1.8 9.5 9.9 10.13 10.48 10.89 11.34 

2.35 9.4 9.88 10.1 10.43 10.78 11.34 

2.9 9.15 9.78 10 10.43 10.78 11.34 

Table 6.3: Machine “A” d-axis inductance in mH. 

iq \ -id (A) 1 1.5 2 2.5 3 

0.75 5.87 6.68 6.89 6.95 7.11 

1.25 5.87 5.89 6.4 6.69 6.91 

1.8 5.56 5.57 6.12 6.44 6.57 

2.35 5.35 5.55 5.61 5.96 6.57 

2.9 5.27 5.46 5.61 5.96 6.57 

 In tables 6.2 and 6.3, the values in bold correspond to inductance values that were 

extrapolated (clamped) from neighboring results. The reason for extrapolation is that for 

small values of current for both the q- and d- axes, the inductance term is too small to 

overcome the feedback noise. Other measurements that correspond to the largest values 

of d- and q- axes currents were not obtained because they were too close to the machine 

ratings. The corresponding surface plots are shown in figures 6.1 and 6.2. 



 

Fig. 6.1: Machine “A” q-axis inductance. 

 

Fig. 6.2: Machine “A” d-axis inductance. 
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 The measurements done to get the d- and q-axes inductances show the presence of 

cross-coupling between the two axes. Each of the two inductances is a function of both 

the q-axis and the d-axis currents. 

 For a constant d-axis current, the q-axis inductance is decreasing as a function of 

the q-axis current because of magnetic saturation in the corresponding iron path. In the 

case of a constant q-axis current, the q-axis inductance is increasing as a function of the 

d-axis current magnitude. The d-axis flux works against the magnet flux as the d-axis 

current becomes negative, thereby reducing the global amount of flux in the machine and 

saturation, and hence the inductance increases. This dependency of the q-axis inductance  

on d-axis current is referred to as cross-coupling phenomenon. 

 The d-axis inductance plots can also be explained similarly accounting for the 

cross-coupling effects. Increasing the d-axis current magnitude reduces the d-axis flux for 

a constant q-axis current, and consequently the corresponding inductance gets closer to 

its linear region value and increases in value. Reducing the magnitude of the q-axis 

current for a constant d-axis current reduces the q-axis flux and the cross coupling flux, 

which increases the d-axis inductance. 

 

6.1.2 Machine “B” Inductances 

 In the case of machine “B”, the data available provided only the q-axis inductance 

as a function of the q-axis current. The d-axis inductance waveform was provided only 

for positive d-axis currents, which have not been used in this project. The author of the 

paper [19] stated that the d-axis inductance did not vary much and we made the 
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assumption that the d-axis inductance was constant at the value given for a zero d-axis 

current. 

 The inductance characteristics of machine “B” are shown in Chapter III, in Figure 

3.5. This machine shows a more significant saliency ratio than machine “A”. As a 

consequence, the saliency torque producing term will be more important to the controller 

and the machine will be more suitable for high speed operation. However, this motor also 

shows a more significant saturation characteristic than the other one and a consequence 

of this is that motor drive performance may get degraded if it is not taken into account. 

Figure 3.2 also shows a region, where the q-axis inductance could get smaller than the d-

axis inductance, making the reluctance torque zero or even negative.  

 

6.2 Novel Parameter Estimation Algorithm 

6.2.1 Algorithm Structure 

 The novel parameter estimation algorithm proposed for this research has a 

modular structure. The algorithm can be divided into three main components: 

• The first one is the “fast” identification algorithm. It is a part of the program that 

runs continuously and provides estimates of the machine inductances from the 

other two parameters and the machine inputs and feedback. This program is non-

intrusive, and could also be used independently of the rest of the program if it 

were provided with estimates of the stator resistance and the torque constant. 

• The second part is the one referred to as the “slow” identification algorithm. As 

opposed to the previous program, this one is more demanding in terms of inputs. 

The primary factor for its effective execution is that it needs to be supplied with 
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data that corresponds to steady state operating points. An error in its inputs could 

have important repercussions considering its slow rate of execution. Another 

constraint associated with this program is the necessity to provide it with data that 

is “rich” enough with information about the system. The data for the slow 

algorithm was enriched with a small perturbation signal was introduced on the d-

axis. This program can therefore be seen as intrusive in the controller operation. 

However, considering the very slow rate of change of the stator resistance and 

torque constant, it is conceivable to disable the algorithm for long periods of time 

and only activate it when new estimates for these two parameters are required. 

• The third and last component of the proposed parameter estimation algorithm is 

one that controls the interactions between the first two programs and also between 

the motor drive and them. This block detects when the motor drive is operating in 

steady state and enables or disables the “slow” identification program. It also 

controls the times at which the “fast” program will update the parameters in the 

“slow” one. This block also generates the small d-axis perturbation used by the 

“slow” algorithm. Figure 6.3 shows a clearer picture of the interaction between 

the three blocks. 

 

 Figure 6.3 shows a typical machine startup operation with machine “B”. The first 

plot shows the machine d-q currents as a function of time for a period of one second. The 

q-axis current is set at a constant value, which is the case in most current or speed control 

applications in steady state. The d-axis current, on the other hand, shows small step 

variations around the set point. These are the consequence of the small perturbation 



injected in the d-axis of the controller. The second plot shows a closer look on the d-axis 

current, and also shows the signal that enables or disables the “slow” estimation 

algorithm. When this signal is at “1”, the “slow” algorithm is enabled and will run 

continuously, though at a slow rate. 

 
Fig. 6.3: Example of interaction between elements of algorithm. 

 It can be observed that this “Enable” signal does not really correspond to times 

where the machine is in steady state. For example, between the time “0.82” and the time 

at which the enable signal turns to “1”, the machine currents can be considered constant 

and the machine could be considered to be in steady state. The reason for this is that 

enabling the “slow” algorithm for a too long period of time on the information of a single 

operating point will decrease the “richness” of its input and may lead to instability of the 
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algorithm. In this example, the “slow” algorithm is executed about 10 times during an 

“enable” period (for a 500 Hz execution loop). 

 

6.2.2 Supervising Program 

 The program that decides whether or not to enable the “slow” identification 

program operates by using both the current references in the controller and the current 

feedback. In all cases, if the current feedback shows a change in the d-q currents that is 

larger than a threshold, the algorithm will be disabled. The advantage in using the current 

references is that they usually lead the actual machine currents and allow the controller to 

disable the “slow” algorithm before it is too late. Another advantage is that the 

perturbation that is used in the d-axis is known and its transitions can be monitored 

precisely. Another feature that is included in this portion of the program is the 

introduction of a delay when the disabling of the parameter estimation algorithm is 

triggered by the reference current. This delay allows the user to control the window 

during which the identification program is active. The appropriate length of this window 

and the frequency of the d-axis perturbation will vary from motor drive to motor drive, 

mainly as a function of the RLS forgetting factor. 

 Another feature of the supervising program concerns the monitoring of times 

when the parameter estimates coming from the fast algorithm are copied into the slow 

one. This aspect was introduced to solve the following problem: when there is a large 

change in the operating point of the machine, the inductances may suddenly vary 

depending on the amount of saturation. The “fast” algorithm will follow accurately this 

possible change, and the “slow” algorithm is disabled during that time. However, when 



103 

the latter program resumes its operation, a large error would have been introduced in its 

estimation and the program will have to reconverge, possibly causing transient errors in 

the other parameters. Such transients are usually fast compared to the mechanical and 

temperature dynamics in the machine. It is consequently a valid assumption to assume the 

stator resistance and the torque constant do not change during a current transient. The 

“fast” algorithm should operate properly given the set of machine parameters at the 

beginning of the transient and for its duration. 

 On the other hand, from the “slow” algorithm’s point of view, its parameter 

estimates after resuming operation should be a closer match than if its execution had not 

been disabled. Combining the two algorithms in the way described above allows the 

parameter estimation algorithm to track fast inductance changes without affecting the 

estimation of the other two machine parameters. 

 An example of the operation during an inductance step change with machine “B” 

can be seen in Figure 6.4. In this figure, the top and middle plots show the q-axis 

inductance and its controller estimate. The top plot shows a larger time scale than the 

middle, which focuses on a step change in the inductance, which was itself caused by a 

step change in the q-axis current from 12 A to 8 A and back. In the middle plot, the 

machine inductance matches the controller “fast” estimate, labeled “Lqf”, and the “slow” 

algorithm estimate is labeled “Lqs”. This nomenclature will appear throughout this 

chapter and is also used for the d-axis inductances. 



 
Fig. 6.4: Simulation example of inductance step change. 

 The bottom plot of Fig. 6.4 shows the machine torque constant (“Kt”) and its 

estimate, labeled “Kt est”. This plot demonstrates that the estimation of the torque 

constant is not affected by the transient. The operation of the supervising algorithm can 

be seen from the middle plot. At the beginning of the transient, the “slow” parameter 

estimation is disabled and the corresponding parameter estimates are “frozen”. The “fast” 

estimation algorithm follows the variation in inductance effectively, and at the end of the 

transition (6.4s), the “slow” algorithm is enabled again and uses the new “fast” 

inductance estimates instead of the values it was using before the transient. 

 For comparison, Figure 6.5 shows simulation for the same conditions as in Figure 

6.4, but with the “fast” inductance copy to the slow algorithm disabled. Before the 

transient, the results in both figures match closely. When the inductance step occurs, the 

“slow” identification algorithm is disabled and operation is the same as in the previous 
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case, but as soon as the algorithm resumes its estimation (at about 6.4s), the error caused 

by the mismatch between the “slow” algorithm inductance estimate and the correct 

estimate provided by the fast algorithm causes a large error in the torque constant 

estimate. It can also be observed that the error in the resistance and torque constant 

estimates affects the “fast” algorithm by looking at the “fast” estimate after the problem 

starts. The algorithms are able to converge after some time, but such an operation and 

parameter error has adverse effects on the torque and current controllers. 

 
Fig. 6.5: Inductance step change without “fast” inductance copy. 

 

6.3 Effects of Neglecting Differential Terms 

 It has been mentioned in Chapter IV that the “fast” RLS algorithm implemented 

in the experimental design associated with this project does not include the differential 

terms from the electrical model equations.  
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These terms are of the following form: 

dt
di

LA q
q ⋅=  and 

dt
diLB d

d ⋅=  

These terms are present on both the d- and q-axes. This omission is equivalent to making 

the assumption that the algorithm is executed at steady state. However, whether it is 

caused by the d-axis perturbation or a fast change in operating point, the “fast” 

identification algorithm will at times be executed in a case where the differential terms 

are not zero. 

 The effect of such an omission is presented in Figure 6.6, where results from the 

“fast” algorithm are obtained in the case where the differential terms are neglected and in 

the case where they are not. These terms could easily be accounted for with a different 

and improved experimental setup, but in the present implementation the noise level 

increases the errors in estimation when these terms are included. 

 The conclusion that can be drawn from Figure 6.6 is that the “fast” algorithm is 

affected by the exclusion of the differential terms. The small pikes observed in the 

estimated q-axis inductance show this. On the other hand, as soon as the transient ends, 

the identification algorithm converges again to the same value as in the case where the 

differential terms were included. Special care should be taken during transient operation 

and when results are copied from the “fast” algorithm into the “slow” one in the case of 

an implementation without the differential terms. The effect of differential terms could 

also be low-pass filtered to extract the desired signal. 
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Fig. 6.6: Comparison between inclusion and exclusion of differential term. 

 

6.4 Sensitivity Analysis of “Fast” Algorithm Estimates 

 The performance of the fast identification algorithm is discussed in this section. In 

contrast to the “slow” algorithm, if the fast algorithm is provided with accurate estimates 

of the stator resistance and the torque constant, it will be able to provide accurate 

estimates of the machine inductances. The analysis in this section is presented with the 

assumption that there are no errors in the machine currents. This is a valid assumption 

since in the experimental design the currents are directly measured and except for their 

average signal to noise ratio, these measurements are accurate. 
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 Let us consider the machine electrical equations in steady state: 
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The following expressions can be extracted from the above equation 
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In the context of the parameter estimation algorithm, conditions are sought for a set of 

four parameters that will verify these equations. If a fixed operating point is considered 

such that the inductances are constant, the estimated inductances will satisfy the 

following relationship 
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In these equations, the subscript “est” denotes an estimate of a parameter, and the 

subscript “ctrl” refers to variables as they are thought to be by the controller. As shown in 

Chapter IV, there can be a mismatch between the desired machine voltages in the 

controller and the voltages at the output of the inverter because of its non-idealities. In the 

experimental program, this error is compensated using the method that will be described 

in Chapter VII, but its effects will be investigated here. 

 For the operating point under consideration one can obtain 
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and 
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Eq. (6.1) gives 
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In the experimental case, the inverter voltage error is compensated for and there is an 

accurate match between the controller and machine voltages. In the end, the previous 

sensitivity equations reduce to: 
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 Both the inductance estimates will be affected by an error in the stator resistance. 

The impact of error on the q-axis inductance will be smaller for operating points that 

present a large q-axis current, high speed and low d-axis current. Usually, in IPMs the 

high speed operation translates into flux weakening operation, which reduces the q-axis 

current and increases the d-axis one. In the case of a surface mount machine, the d-axis 

current is set to zero for operation below base speed, which minimizes the resistance 

error impact. On the other hand, the d-axis inductance estimation requires low q-axis and 
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high d-axis currents and speed to minimize the error. Operation in the flux weakening 

region will consequently be best suited for this estimate. 

 An important problem associated with the d-axis inductance estimation is the 

impact that an error in the torque constant can have on its accuracy. The corresponding 

sensitivity term is only a function of the d-axis current and can be quite large. 

 The conclusion of this analysis is that the estimation of the d-axis inductance will 

be more sensitive to errors in the other parameter estimates than the estimation of the q-

axis inductance. Consequently, this estimation will probably be of poorer quality than the 

latter. However, it is common in permanent magnet machines to have a much lower d-

axis inductance variation due to saturation than on the q-axis and the d-axis in such cases 

could be considered constant for this problem. Such a solution can also be considered for 

cases where the d-axis current is too small to extract the d-axis inductance, in low torque 

and speed for an IPM or below base speed operation for a surface mount machine. In this 

case, the d-axis inductance is considered constant at a value that can be measured offline, 

and the “fast” estimation algorithm can be rewritten to only estimate the q-axis 

inductance. 

 Figure 6.7 shows a simple representation of the torque-speed characteristic of a 

PM machine. The space within the envelope of the characteristic can be divided into four 

regions depending on the performance of the parameter estimation algorithm. 

 The primary concern in estimating the machine inductance is that the 

corresponding term in the electrical equation, qdeqd iL ⋅⋅ω  has to be measurable. For this 

reason, if the currents or the machine speed are too small, the inductance cannot be 

extracted from the electrical model. In the case of low torque operation, the controller can 
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use the inductance values given by the manufacturer or values measured offline. On the 

other hand, operation at low speed, whether it is at low or high torque, is not suitable for 

this algorithm. 

 
Fig. 6.7: Torque-speed regions for parameter estimation. 

 A different method that relies on the differential terms in the electrical equation 

could be implemented, but would be very difficult to implement experimentally in a non-

intrusive manner because of the noise associated with estimation of the differential terms. 

Table 6.4: Performance of parameter estimation in Torque-speed regions. 

Region Surface mount PMSM IPM 

1 Speed is too low for operation Speed is too low for operation 

2 Ld unimportant 

Good performance for Lq est 

Average performance for Ld est 

Good performance for Lq est 

3 Average performance for Ld est 

Average performance for Lq est 

Better performance for Ld est 

Average performance for Lq est 

4 d-q currents are too small d-q currents are too small 
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 The difference between surface mount and IPM machines in region “3” of Figure 

6.7 is due to the fact that usually IPM machines require a larger d-axis current than 

surface mount PM machines. 

 

6.5 Algorithm Initialization 

 The RLS algorithm needs to be properly initialized when the machine starts to 

achieve maximum stability of the system. At machine startup, the assumption is that the 

machine is at room temperature, so that the stator resistance and torque constant are at 

their nominal values. This does not necessarily require offline measurements, because 

these values are usually given by the manufacturer. Offline measurements would be more 

accurate since these parameters can change slightly from one machine to another. On the 

other hand, the information of the d-q inductances is seldom available and it was assumed 

that only a rough estimate was available. 

 The first step in starting up the parameter estimation algorithm is to make sure 

that the “fast” identification program has converged before the other algorithm is started. 

Initially, only the “fast” algorithm will be run, after startup, and will use the room 

temperature estimates of the resistance and torque constant. After the “fast” algorithm has 

converged and steady state has been reached, the “slow” algorithm begins its operation 

using the estimates from the “fast” algorithm as its initial values for inductance, and the 

complete algorithm gets underway. 

 An example of initial convergence of the algorithm can be seen in Figure 6.8. The 

top plot shows the d-q inductances and their estimates. The fast estimation algorithm is 



enabled at 0.2s and converges towards the correct value for the q-axis inductance very 

quickly.  

 
Fig. 6.8: Initial parameter estimation convergence. 

 The slow algorithm starts its operation at 0.5s, and uses the results from the “fast” 

estimation algorithm. After that point, the three waveforms are indiscernible. In the case 

of the d-axis inductance, the same conclusions apply (the result from the “slow” 

estimation program was omitted for clarity) except for the fact that the estimate appears 

to be more noisy and has a small error until the slow algorithm starts. This is consistent 

with our previous analysis, which stated that the d-axis inductance estimate was more 

likely to be poor than the q-axis inductance estimate. In this simulation, the inductances 

were initialized with values matching the machine inductances when there is no current 
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(nominal values). There was therefore an error present when the “fast” algorithm was 

first enabled, which was reduced in a few cycles. One can also notice the small step 

waveform that the d-axis inductance has; this is due to the introduction of the d-axis 

perturbation necessary for the “slow” algorithm to converge. 

 The middle and bottom plots of Figure 6.8 show the stator resistance and the 

torque constant along with their estimates. Just like in the first plot, the execution of the 

parameter identification program that estimates them does not start until 0.5s. A small 

steady state error is present after the initial transient. The small oscillations before the 

final convergence at 3 s do not affect the algorithm stability. These are due to the limited 

simulated precision in controller measurements.  

 Another test was conducted with the same conditions as that of the first test 

except that the initial conditions on the stator resistance and the torque constant were off 

by 20%. These results are shown on Figure 6.9. The objective of these results was to 

show that the algorithm could converge even if the initial guesses for the machine 

parameters were wrong. This could happen if the machine was started without being at 

room temperature, for example after a long high torque operation. The parameters take a 

longer time than in Figure 6.8 to converge, but they do so quite effectively. It is possible 

to note that the error in the stator resistance reflects directly in the error in q-axis 

inductance (similar waveform). On the other hand, both the error in resistance and torque 

constant affect the d-axis inductance, with the initial 20% error causing more than 300% 

error in the inductance estimate. This numerical property of the d-axis inductance 

estimate will definitely be a problem in some cases. Note that parameter estimates are 



clamped for increased stability and values that would threaten system stability should not 

be allowed.  

 The results shown in Figure 6.9 also indicate that the algorithm may be able to run 

intermittently. In other words, to minimize the intrusive aspect of the “slow” 

identification program knowing that the stator resistance and the torque constant change 

slowly as a function of time, it may be possible to run this algorithm for limited periods 

in time. This allows the algorithm to reconverge to possibly new parameter values in a 

manner such as the one seen in Figure 6.9 if parameters needed to be updated 

significantly. On the other hand, the execution of the “fast” algorithm is non-intrusive 

and should be executed at all times. 

 
Fig. 6.9: Initial parameter convergence with 20% initial error. 
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6.6 Effect of Cross-Saturation 

 Cross-saturation is a phenomenon that makes both the d- and q-axes inductances 

functions of both d- and q-axes currents. In other words, the magnetic flux associated 

with magnetic paths aligned with the rotor permanent magnets affects the magnetic flux 

that is in quadrature with it, and vice versa. Cross-saturation surfaces were measured 

experimentally for machine “a” and the results were shown in figures 6.1 and 6.2. 

 The cross-saturation has one adverse effect with regards to the task of parameter 

estimation: the d-axis perturbation, which in the case where no cross saturation is present 

affects only the d-axis inductance, may now affect both d- and q-axes inductances. In 

most cases, however, the d-axis inductance variation is small, but the introduction of 

cross-saturation may affect the q-axis inductance significantly. 

 
Fig. 6.10: Cross-saturation effect on machine inductances. 
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 Figure 6.10 shows the effect of cross-saturation on both the q- and d-axes 

inductances in the context of execution of the parameter estimation algorithm. A 

variation of about 25% in the d-axis current is the cause of a variation of 2% in q-axis 

inductance, and about 4% in d-axis inductance. Although these changes are not 

significant, they cause the system to have different inductance parameters at each step of 

the perturbation, as opposed to the normal case, where only the d-axis inductance is 

affected. 

 
Fig. 6.11: Parameter estimation results with cross-saturation. 

 Parameter estimation results are shown in Figure 6.11 in the case where saturation 

is present in machine “A”. The q-axis inductance, stator resistance and torque constant 

have fairly accurate estimates, but the d-axis inductance estimate is of poor quality. This 

is because the d-axis inductance is also a function of the q-axis current, which is quite 
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large in this case. Having a large q-axis current increases the amount of flux present in 

the stator iron and consequently increases saturation. A consequence of this is that the d-

axis inductance becomes smaller than in the case where the q-axis current is zero (no 

cross saturation case). Having a smaller d-axis inductance term will make the 

corresponding inductive drop smaller in the electrical model equations, and more difficult 

to estimate. Another reason for the poor estimate is that the small inductance changes 

measured by the “fast” inductance algorithm are not copied into the “slow” one at every 

cycle, since it would nullify the inductance estimation capability of the latter program, 

and make the overall algorithm less stable. The solution adopted in the experimental case 

is to set the d-axis inductance to be constant, since small errors in its estimation have 

negligible effect on the other parameter estimates. 

 
Fig. 6.12: Parameter estimation results with no cross-saturation. 
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 For comparison purposes, simulation results obtained without cross-saturation in 

machine “A” are shown in Figure 6.12. In this case, the d-axis inductance estimate is 

quite accurate, as well as the other three parameter estimates. 

 

6.7 Tracking of Temperature Effects 

 In this section, the simulation results that correspond to cases where the machine 

temperature increases linearly as a function of time are shown. The temperature change 

affects the stator resistance and the machine torque constant directly. It is important for 

the parameter estimation algorithm to be able to track these changes. 

 
Fig. 6.13: Parameter estimation with +1˚C/s ramp temperature on machine “A”. 

 In Figure 6.13, parameter estimation results are shown in the case of a ramp 

temperature increase in machine “A”. The rate of change was set to be quite fast 
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compared to common temperature dynamics in electrical machines. The three plots show 

that the different parameter estimates converge within acceptable range of the real 

machine parameters. The fact that the algorithm converges with such a temperature rate 

of change is a good indication that the algorithm will be able to track parameter 

variations due to temperature changes in any experimental case. 

 
Fig. 6.14: Parameter estimation with +2˚C/s ramp temperature on machine “B”. 

 Similar results and conclusion were obtained with machine “B” and are shown in 

Figure 6.14. The temperature rate of change in this simulation was set to be twice as large 

(2˚C/s) as in Figure 6.12, and the results were still satisfactory. 
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6.8 Effect of Back-Emf Harmonics 

 A common non-ideality associated with permanent magnet machines and the d-q 

model is that the back electromotive force is not a perfect sine wave. The presence of 

higher order harmonics is sometimes felt, especially in the case of IPMs. The purpose of 

this section is to investigate the effect that such harmonic perturbations can have on the 

parameter estimation algorithm. The analysis can easily be done with the three phase 

machine model expressed in the d-q domain. To begin this analysis, it is easier to go back 

to the three phase domain. Going back to the Park transform equations, presented in 

Chapter II, we have 
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 Considering the back emf term rTK ω⋅  term in the q-axis electrical equation, the 

inverse Park transform of this term will only have a component on the q-axis. This 

component is constant at constant speeds, neglecting signal harmonics. After we apply 

the inverse Park transform to this q-axis term, we can see that it corresponds to a three-

phase signal as follows: 
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 In this above equation, Ex (x =a, b or c) symbolizes the phase back-emf. The 

introduction of an additional term which corresponds to the kth harmonic will 

consequently lead to the following form: 
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where KTk is the magnitude coefficient of the kth harmonic. It is now necessary to go back 

to the d-q domain, using the Park transform equations, to see the effects of the 

introduction of harmonics on the d-q model of the machine. The d-q transformation 

equations are repeated here for convenience. 

( ) ( ) ( )
( ) ( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅+⋅−
⋅+−⋅−−−

⋅=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c

b

a

rrr

rrr

d

q

f
f
f

f
f
f

212121
32cos32coscos
32sin32sinsin

3
2

0

πθπθθ
πθπθθ

 

 Using the distributive property of the Park transform, we can separate the Park 

transform of the fundamental back-emf ( rTK ω⋅  in the q-axis) from the Park transform 

of the kth harmonic. An interesting property arises in the case of harmonics of ranks that 

are multiples of 3 (k = 3.p, for some integer p): 
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And in the case of the d-axis: 
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 A consequence of these results is that harmonics of orders that are multiples of 3 

will not affect the result of the Park transformation. As a result, the d-q model will not be 

affected by such harmonics, and the results obtained in this chapter would not be affected 

by their introduction. 

 However, harmonics that are not of such orders will introduce a perturbation 

voltage on both the d- and q-axes of the machine electrical model. As an example, we 

chose to study the effect of the 7th harmonic, which is often present in the back-emf of 

PM machines. The effect of introducing this harmonic on the d-q model of the machine 

can be seen in Figure 6.15. 

 
Fig. 6.15: Effect of 7th harmonic on d-q model ((a) Phase “a” / (b) d-q equivalent). 
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 In Figure 6.15, the effect of a 10% seventh harmonic is shown when applied to a 

fundamental back-emf of unity magnitude. The left hand side of the Figure (Fig. 6.15 (a)) 

shows the phase back-emf waveform, with and without the additional harmonic, and the 

right hand side (Fig. 6.15 (b)) shows the corresponding d-q voltages. One can see that the 

perturbation associated with the seventh harmonic directly affects both the d- and q-axes 

back emfs. The effect of this additional term will consequently be a perturbation on both 

axes of the d-q model of the machine. This perturbation is not accounted for by the 

controller and the parameter estimation algorithm. In order to simulate the effects of such 

a perturbation on the performance of parameter estimation algorithm, the perturbation 

was introduced on both the d- and q-axes in the form of a sine function (cosine for the q-

axis) of the position having a magnitude proportional to the motor speed. A test similar to 

the one that gave Figure 6.12 was conducted with the introduction of this perturbation 

and the results are shown in Figure 6.16. 

 
Fig. 6.16: Effect of 7th harmonic on parameter estimation ((a) non filtered / (b) filtered). 
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 Figure 6.16 has two sets of results: Figure 6.16 (a) shows the results that would be 

obtained directly from the parameter estimation algorithm, and Figure 6.16 (b) comes 

from estimation results that have been filtered. The motivation for filtering is apparent 

from the noise present in the results of Figure 6.16 (a), which is a direct consequence of 

the perturbation. It can be observed that the perturbation affects the d-axis inductance 

more that the q-axis one, although the perturbation is of same magnitude on both axes 

and the term corresponding to the d-axis inductance drop is smaller than the q-axis one. 

One can see that once the perturbation has been filtered, the results are acceptable. The 

lag introduced by the filtering is acceptable and has no effect on the “slow” parameter 

estimation program as long as it is not enabled during an inductance transient, which is 

usually not the case. 

 

6.9 Conclusion 

 This chapter was dedicated to the presentation of simulation results that were a 

first step in validating the proposed algorithm. These results were either related to 

difficulties or concerns at the algorithm development stage, or were related to actual 

results obtained with the proposed parameter estimation algorithm in various situations. 

Two machine models were used to validate the algorithm performance, and the results 

were satisfactory. The following chapters will focus on the experimental verification of 

the effectiveness of the parameter estimation algorithm. 
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CHAPTER VII 

PMSM DRIVE EXPERIMENTAL DESIGN 

 
 
 This chapter introduces the different elements of the experimental design created 

and used to verify the effectiveness of the proposed algorithm. Each of these elements is 

introduced in details, with special emphasis on features that could affect the project. 

 The motor model parameters were presented in Chapter VI and the inverter was 

introduced in Chapter V. This chapter follows with the details of the feedback circuit 

design and the digital processor. 

 

7.1 Inverter 

7.1.1 Inverter Choice 

 The inverter chosen for this project has the classical three-phase bridge structure 

presented in the previous chapters. The package chosen included all six switches and the 

required driver in one integrated circuit. In addition to saving space, this structure also 

allows a better match between switch characteristics and propagation delays. However, 

the problem with this structure is that the whole integrated circuit has to be replaced even 

if only one switch is damaged. The inverter ratings were chosen to largely exceed the 

machine ratings in terms of voltage and current, in order to minimize damage.  



127 

 The switch driver in the package included a temperature and a current monitor 

that could be used for shutdown in the event of a problem. These features were disabled 

for this project. Another interesting feature is the insertion of a forced deadtime and the 

prevention of inverter short circuit even when a faulty controller would command it. 

 

7.1.2 Inverter Voltage Compensation 

 The non-linear characteristics of the experimental inverter were presented in 

Chapter V. Their effects were investigated and it was shown that they would need to be 

minimized in the context of this project. The compensation algorithm used for this project 

treated two problems. The first one being the deadtime compensation and the second is 

the switch voltage drop. The goal of this algorithm is to get a better match between the 

controller voltage and the inverter output. 

 

7.1.2.1 Deadtime Compensation 

 The method chosen for the purpose of compensating the deadtime delay in the 

controller is a simple one. It was derived from Figure 5.6 in Chapter V and observations 

made about it. The introduction of a deadtime delay changes the voltage applied to the 

machine by changing the effective input duty cycles of the inverter.  

 Figure 7.1 shows the DSP outputs that correspond to a case of deadtime 

introduction, and the corresponding phase voltage at the machine terminal. Two 

assumptions were made in this compensation technique; the first one is that the phase 

current does not change sign during the switch deadtime, and the second one is that the 

switch voltage drops were negligible. The second assumption is valid because the switch 



voltage drops are compensated for by another algorithm. The assumption that the phase 

current does not change sign may in some cases not be valid, but even if the current 

changes sign, the diode reverse recovery time (the time it takes for a diode to switch 

“off”) will maintain the voltage error constant longer. There will be cases, however, 

where this assumption is not valid, but they will introduce a very small error, for a very 

short time. 

 

Fig. 7.1: Deadtime error as a function of phase current. 

 The error introduced by the deadtime delay Tdead is a function of the sign of the 

phase current. The explanation for this is that when both switches are commanded to 

open, the inductive nature of the motor circuit will prevent the current from switching to 

zero and will force one of the leg diodes to turn “on”. The diode that turns “on” depends 

on the sign of the current. If it is positive (going toward the machine), the bottom diode 

will conduct and the phase voltage will be zero, and in the other case the top diode will 

conduct and the phase voltage will be high, as shown in Fig. 7.1. If we refer back to the 
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ideal case, shown in Figure 5.6 of Chapter V, we know that the controller command 

voltage would have the inverter switch at times t1 and t3.  

It follows that  

deadTtttt =−=− 3412 . 

The voltage error can be expressed as: 

( )ph
PWM

dead
dcinverterctrldeaderr isign

T
T

VVVV ⋅⋅−=−=  

where TPWM is the PWM period, Vctrl is the controller command voltage, Vinverter is the 

actual inverter output voltage and iph is the phase current. The voltage error term is 

introduced in the controller at the PWM stage to compensate the error given by the above 

equation. This way, the compensation is transparent from the controller’s point of view. 

 

7.1.2.2 Switch Drop Compensation 

 As mentioned in Chapter V, the inverter switches do not have ideal 

characteristics, and when they conduct, both diodes and IGBTs introduce a voltage drop. 

The method presented in this chapter is specific to the hardware that was used in this 

project. Other power electronics devices, such as MOSFETs, would not present the same 

characteristics, since when they are “on” they act like a small resistance. In the case of 

IGBTs and diodes, a voltage drop is present during conduction that is a non-linear 

function of the current going through the switch. The voltage drop was recorded as a 

function of this current and the results were shown in Chapter V for both types of switch. 

 For the analysis, it will be assumed that deadtime is not present (or compensated), 

and that the phase current does not change sign during the PWM period. The effect of the 
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switch voltage drops is a function of the phase current sign, similar to the case of 

deadtime compensation as shown in Table 5.2. 

 

Fig. 7.2: Switch voltage drop error as a function of phase current. 

 Figure 7.2 shows the two possible cases that can be obtained from the inverter as 

a function of the sign of the phase current in the case of phase “a”. Both the diode and 

IGBT voltage drops are also function of the magnitude of the phase current, as shown in 

Chapter V. 

 In an ideal case, both the diode and IGBT voltage drops would be zero, and the 

phase duty cycle could be calculated as: 

dc

ctrla
a V

V
d =  

where Va ctrl is the phase “a” voltage desired by the controller. If the switch voltage drops 

are taken into consideration, this equation is not valid anymore, and compensation is 

necessary to match the controller and inverter voltages. To obtain an expression for the 
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compensation voltages, or the duty cycle, it is necessary to consider two cases separately. 

In the case of a positive phase current, we have: 
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)( ) ( DaaIGBTdcctrla VddVVV ⋅−−⋅−= 1  

where the controller is assumed to have the same voltage command as the inverter output 

voltage. The phase duty cycle can then be extracted as: 

IGBTDdc

Dctrla
a VVV

VV
d

−+

+
=  

In this equation, the diode and IGBT voltage drops are positive and quite close to each 

other considering the results shown in Figure 5.7. These two variables can also be 

considered to be much smaller than Vdc, which is at least larger than 50 V in this project. 

On the other hand, the phase “a” controller voltage is a variable and may not be 

considered to be much larger than the diode forward voltage drop. As a consequence, the 

compensated duty cycle can be rewritten as 

dc

Dctrla
a V

VV
d

+
=          (7.1) 

 In the case of a negative phase current, a similar analysis can be conducted. The 

controller phase voltage can be expressed as 

( ) ( ) IGBTaaDdcctrla VddVVV ⋅−−⋅+= 1  

And the compensated duty cycle can be extracted as 

IGBTDdc
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−
=  

In this case the denominator is the same as in the previous case, and the same conclusion 

applies. The final compensated duty cycle can be obtained as 



dc

IGBTctrla
a V

VV
d

−
=              (7.2) 

 One can notice that in the case of a positive phase current, the error induced by 

the switch voltage drops is dominated by the diode drop, and in the case of a negative 

current the IGBT drop dominates.  

 The compensation algorithm uses look-up tables to store the results shown in 

Figure 5.7. Interpolation functions could also be used and this choice depends on a 

compromise between calculation complexity and program memory requirement. In the 

PWM program, the measured currents are used to obtain the switch voltage drops as a 

function of each phase current. The corresponding three phase duty cycles are calculated 

from equations (7.1) and (7.2) and the deadtime compensation algorithm is applied to the 

result. 

 

7.1.2.3 Compensation Verification 

 To verify the effectiveness of the combined compensation algorithms, an 

experiment similar to the one conducted to obtain Figure 5.10 was done. The q-axis 

voltage was varied in steps for a locked rotor condition, and the inverter voltage error was 

measured by taking the difference between the resistive voltage drop, and the controller 

voltage. These results are shown in Figure 7.3. If the results on this plot are compared 

with the ones shown on Figure 5.10, one can see a substantial improvement. The voltage 

error in the case that had no compensation was around 1 V for the considered conditions, 

and is now around zero. As a consequence, the controller voltage matches the inverter 

one much more accurately. 
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Fig. 7.3: Experimental inverter response with locked rotor and voltage compensation. 

 Another way of showing the effect of the voltage and deadtime compensations is 

to look at the controller voltages for a given operating point for different cases of 

compensation. 

Table 7.1: Effects of controller voltage compensation. 

Types of compensation Vq (V) Vd (V) Lq est (mh) 

None 24.6 4.5 11.8 

Deadtime 24 4.26 11.1 

Deadtime and switch voltage 22.8 3.82 9.7 

 Table 7.1 shows results that were obtained in the case of a current-control 

experiment at constant speed. The results shown correspond to an operating point that has 

the q-axis current at 1.5 A, and the d-axis current at -0.5 A at a speed of 1000 RPM. The 
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controller voltages are shown, as well as the estimated q-axis inductance, in order to 

show the effect of the voltage error on parameter estimation. Since the operating point is 

the same in the three cases, we can deduce that the inverter output voltage remains 

constant too. If we refer to the inductance table shown in Chapter VI (Table 6.2), we see 

that the q-axis inductance for the considered operating point is between 9.6 and 9.9 mH. 

The case that includes both voltage compensations matches this value closely, but this is 

not the case with the other experiments. The omission of the voltage compensation 

algorithms has a significant effect on the inductance estimation for this operating point. 

 

7.2 Digital Signal Processor 

 The DSP that was chosen for this project is the TMS320F2812 from Texas 

Instruments. Its design is optimized for motor control operations. Consequently, it offers 

many interesting features for this project which will be highlighted in the following 

sections. 

 

7.2.1 PWM Generation 

 The DSP features a number of digital PWM outputs, with associated timers that 

can generate PWM signals with minimal CPU supervision. In other words, after the 

dedicated registers are initialized, the only operation needed from the CPU is to update 

the duty cycle.  

 The way PWM is generated is by having a timer counting either upwards, or 

upwards and downwards (symmetric or asymmetric PWM) up to a value chosen by the 

user, at a rate chosen by the user. Consequently, both PWM precision and frequency can 
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be accurately selected. The timer value is then compared at each step with a variable 

contained in another register, called the compare register. Depending on the desired 

output logic, the PWM output will have a state that will depend on whether or not the 

timer value is larger than the compare value. It is also possible to associate two PWM 

outputs with one timer and compare value, in order to control the two switches that form 

an inverter leg. 

 Various interrupts can be generated to synchronize the programs with PWM. An 

interrupt function is a program that is executed when a preprogrammed event occurs, 

such as PWM period or underflow. This can be useful for example to synchronize the 

various program measurements (analog to digital conversions) with the PWM. 

 An additional feature that the DSP offers in terms of PWM generation is the 

automatic introduction of a user-specified deadtime delay. This feature is necessary for a 

PMSM drive and its effects, and the compensation techniques for them have been 

discussed in previous sections. 

 

7.2.2 Analog to Digital Converters 

 The 2812 DSP has 16 possible analog to digital (AD) inputs that are multiplexed 

with two sample and hold units and one analog to digital converter (ADC). Two inputs 

can be sampled simultaneously, and then converted sequentially by the ADC. This is 

convenient for applications where synchronization is important. For example, the 

machine phase currents require at least the measurements of two phase currents 

simultaneously for optimal precision. If the conversions are not taken at the same time, it 

may have an effect on the measurement quality. This is however a minor concern and 



there are structures where a single current sensor is used in combination with a variable 

delay to reconstruct the three phase currents. 

 Another very interesting aspect of the ADC in the 2812 DSP is the speed at which 

they operate. They are able to provide a precision of up to 12 bits for a conversion time of 

60 to 200ns. This allows very high sampling frequencies and the possibility of 

oversampling, in order to improve measurement quality and precision. Twelve bits of 

precision give a maximum accuracy of 2.5 mA for a maximum current of 10 A. 

 The ADC can also be automatically synchronized with the PWM circuits so that 

conversions can be started when specific events occur, without any CPU supervision. 

This can be helpful in some current sampling cases, like the one that was mentioned 

previously (single shunt current sensor for three phase machine). 

 However, in reality, for the present project and its associated hardware, the 

effective precision of the ADC was closer to 10 bits. The ADC input voltage range is 3 

V, which was made to correspond to 20 A and this gives about  

20
2
20

10 ≈ mA 

for  maximum accuracy. Another problem introduced by the ADC was the introduction of 

an offset and ramp error. These errors were specific to each DSP chip and had to be 

compensated.  The response of the ADC can be described by the following equation 

 ( OffVGADC inout +⋅⋅=
3

4096 )            (7.3) 

where ADCout is the digital output of the ADC (between 0 and 212 - 1), G is the ADC 

gain, Vin is the ADC input voltage, and Off is the ADC offset. The “4096/3” gain comes 

from the 12 bit precision of the ADC and its maximum input voltage, which is 3 V. 
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Ideally, G would be equal to “1” and Off would be zero, but this was not the case in 

practice. For example, the last DSP used for this project had a 32% full range gain error 

and a 40 mV offset. These were measured with known fixed voltages, which were 

compared with the conversion result. Each time the DSP had to be changed, the gain and 

offset parameters had to be measured and were introduced in the program, so that their 

effect could be compensated. If these errors were not compensated, the ADC would 

introduce significant errors when measuring sinusoidal signals, because its error would be 

largely different from the maximum of the signal to its minimum, introducing significant 

distortion. 

 Another constraint that was associated with the ADC was the relatively low 

maximum input voltage. In order to get maximum precision from the DSP, it was 

necessary to scale all input signals so that they would strictly remain within the 0-3 V 

region. If an ADC input signal were to be outside of this region, even for a very short 

time, the ADC circuits would most likely be damaged. The level of noise introduced by 

the inverter was important; and ADC damage was definitely an inconvenience, since the 

whole processor had to be changed. 

 

7.2.3 Encoder Interface 

 The DSP has dedicated circuits that can be interfaced with a digital encoder, 

which is the type of position sensor used for this project. The encoder outputs, which are 

two square-waves in quadrature, are decoded so that they either increment or decrement 

the counter value in a timer. The DSP detects the rotor movement direction from the 

leading of the two signals and the timer’s value is updated accordingly. In addition to 



this, the encoder had an index output, which is a digital output that gives a small pulse 

once per revolution. This allows the program to get absolute rotor position. This required 

an additional offline test where the motor was spun with open terminals. The machine 

phase to phase back-emf was measured with an oscilloscope and was displayed with the 

encoder index output. The result is shown in Figure 7.4. 

 

Fig. 7.4: Machine bench test result. 
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 It is possible to see from Figure 7.4 that the index pulse of the encoder was 

synchronized with the zero crossing point of the phase to phase (a-b) back-emf of the 

machine. The zero position chosen for the Park transform is the zero crossing point of the 

phase “a” back-emf, which could not be directly measured (neutral point not accessible), 

but is 30 electrical degrees away from the phase to phase zero crossing. As a result, when 

the DSP receives a pulse from the associated encoder output, it executes an interrupt 



function that resets the controller position at 30˚. This allows the controller to avoid 

accumulation errors. 

 The test that was conducted in order to get Figure 7.4 was also used to get an 

estimate of the torque constant. The peak value of the phase to phase back emf is directly 

related to the torque constant value by equation (7.4). 

r

peak
T

V
K

ω⋅
=

3
           (7.4) 

where Vpeak is the peak value of the phase to phase back-emf, and the motor speed is the 

one that was measured for the test (which can also be obtained from the back-emf 

frequency). 

 

7.2.4 DSP Central Processing Unit 

 The 2812 DSP is a 32-bit fixed point processor that is able to process up to 150 

millions of instructions per second (MIPS). It was chosen for this project because it is a 

processor that is becoming increasingly popular in the industry and it meets the 

performance requirements. However, working with a fixed point DSP makes it more 

difficult to calculate mathematical expressions that involve non-integer variables. A 

floating point DSP on the other hand would have solved this issue, but these are more 

expensive processors, and are consequently less popular. 

 

7.2.4.1 Introduction to Fixed-Point Mathematics 

 In the software program that was written for this project, decimal numbers had to 

be represented in a special way because only integers can be directly represented in the 
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CPU. Depending on its range and the precision we would want with it, each variable was 

assigned a certain number of bits (binary digits) after their decimal point. A simple 

example given below explains how this was done. 

 Let us consider the calculation where the product of A and B for 25.1=A and 

 is desired. If a precision of 4 bits after the decimal point for A, and 8 bits for B 

is chosen, the product can be written as 

04.0=B

16
20

16
1625.1

=
⋅

=A  and 0391.0
256
10

256
24.10

256
25604.0

2
204.0

8

8

=≈=
⋅

=
⋅

=B  

 The number A can directly be represented by the integer “20” if we keep in mind 

that it has four bits after the decimal point. On the other hand, B can be rounded to “10” 

and we would have eight bits after the decimal point. A simple notation for that was 

introduced: and204 =qA 108 =qB , where the subscript marks the precision associated 

with each number. It is possible to see that in the case of B, an error was introduced by 

this method. This error could be reduced by introducing more bits after the decimal point. 

For example,  and . The product of the two variables can 

be obtained as follows: 

3
8 10−≈− qBB 5

10 104 −⋅≈− qBB

121284 200
2
200

256
10

16
20

qqq BA ==⋅=⋅  

 The same example could be followed for the product of a “q x” variable and a “q 

y” one, which would always give a “q (x + y)” result. From the processor’s point of view 

in this example, the only operation necessary is the product of “10” and “20”, but the user 

has to take into account the precision of the result. For comparison purposes, 

, and 05.004.025.1 =⋅ 0488.0200 12 =q . If the user wanted the result to be of any 
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different precision, all that is needed is to multiply or divide by the appropriate power of 

two.  

 Divisions are a very time consuming operation for fixed point processors and 

have to be avoided at all costs. Fortunately, multiplying or dividing by a power of two is 

the same as doing a register shift left or right by the corresponding number of bits, which 

comes from the fact that the CPU operates in base two. An analogy can be made with 

dividing by “10” in base “10”, which amounts to shifting the decimal point to the left. 

 It was possible to see from this example that the error introduced by the rounding 

of B had an important consequence on the result of the product. It is a difficult problem to 

find the optimal precision to associate with each variable. One could think that having 

more than enough precision for each variable would be a solution, but this can also 

introduce problems.  

 To illustrate the difficulty, let us consider we are working with an eight bit CPU, 

which can only work with integers that are between 0 and 255 (or -128 to +127 if signed 

variables are used). If one attempted to increase the accuracy by increasing the precision 

on B, the result would be 

14104104 8204120 qqqqq BA =⋅=⋅  

The above result cannot be easily represented in the CPU because it is outside of the 

range of integers that can be represented, as opposed to the result obtained when B was a 

“q8”. Choosing the precision for each variable is consequently a compromise between the 

actual precision desired and the capacity of the CPU. 
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7.2.4.2 Known Limitations 

 Fortunately, the 2812 DSP has a 32 bit CPU which can effectively multiply 32 bit 

variables, because it has a 64 bit register that can be used to extract a result if it exceeds 

32 bits. However, one very important limitation introduced in the program was from the 

interfaces with external hardware, the ADC and the position sensor. 

 The analog to digital converter has an effective precision that ranges from 9 to 12 

bits, and the position sensor has a precision of 11 bits per electrical cycle. If we take the 

case of the ADC and current sampling, the worst case scenario gives us a precision of 

about 0.02 A. For such a case, it is useless to represent the associated integer variables 

with a precision greater than “q9”. In the case of the rotor position, the maximum 

precision is around 0.003 rd and anything larger than a “q9” would also be useless. These 

precision limitations may have an effect on the precision of calculations that are present 

in the motor control programs. 

 

7.2.4.3 Program Execution Times 

 A constraint associated with real time implementation of a program is that its 

different elements have to execute fast enough to sustain the sampling rate and not 

interfere with each other. In the final program implementation, there were two sorts of 

programs that were implemented: 

• Programs that would be synchronized with the PWM or another event, such as 

data acquisition and treatment, current control, PWM and parameter estimation 

algorithms. The encoder index could also trigger a program to reset the rotor 

position. These programs are executed from an interrupt routine which is 



triggered when specific events happen. In the case of PWM synchronization, 

timer period match and underflow were used, and for the encoder index, an input 

capture interrupt was used. 

• Programs that would not require execution at specific times. The main example 

for this is the serial communication interface that was implemented to transmit 

data to a computer (to display results and debug). The communication program 

would run with a low priority and its execution would be stopped by any interrupt 

event and resume when the DSP would have executed the interrupt program. DSP 

diagnostics and other non time critical programs could be executed like that. 

 The way various program sections were executed as a function of time is 

explained in Figure 7.5. 

 

Fig. 7.5: Program executions as a function of time. 
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In Figure 7.5, different letters correspond to different types of programs: 

• A: This type of program includes high priority time critical applications. 

They are executed on a timer underflow (zero value) interrupt, at the 

beginning of the PWM period. These programs include: ADC result 

treatment, Park transformation of currents, position and speed update, 

current control, PWM algorithm, voltage compensation and “fast” 

parameter estimation algorithm. The total maximum execution time for 

this block is around 19 µs. 

• B/C: The “slow” parameter estimation algorithm was split into two blocks 

because of its high execution time, so that time was available for “D” 

programs to execute in the PWM period. In addition to the parameter 

estimation algorithm, the speed control program could also be included in 

these blocks. These programs were chosen to be synchronized with the 

timer period interrupt and consequently have a high priority. Execution 

times are around 7.9 µs for “B” and 11.4 µs for “C”. 

• D: Most of the programs included in this block have a low priority and 

stop their execution whenever an interrupt occurs. There are two 

exceptions for that. The first one was with the interrupt associated with the 

encoder index, which resets the rotor position and has a very small 

execution time. The second one is the interrupt associated with the 

reloading of the serial communication transmit register, whenever its 

buffer is empty. The other programs in this category are not time critical 
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and include data conversion and serial transmission to the computer. They 

could also include diagnostics and a supervising program. 

 Figure 7.5 contains a lot of information about how the different portions of the 

program were arranged together in order to provide smooth execution. The top diagram 

shows the value that the PWM counter takes as a function of time. A symmetric PWM 

carrier was chosen for this project, and the PWM timer counts up and down from zero to 

a chosen period value that sets the PWM frequency. 

 The other two diagrams show how programs are executed in two cases. Case “1” 

corresponds to program execution that occurs most of the time, almost every 50 µs. Case 

“2” happens when a program needs to execute at a specific frequency lower than the 

PWM frequency, like the “slow” identification algorithm. For example, if a frequency of 

2 kHz was chosen for the “slow” identification program, case “2” would take place two 

times (one for B and another for C) every ten PWM cycles. 

 The time noted “tADC” in Figure 7.5 corresponds to the time at which ADC 

conversions are triggered. This time was chosen so that the data used in the “A” programs 

would use measurements that would be as recent as possible. 

 The software program was written with special care so that they would execute as 

fast as possible. Time consuming operations, such as divisions, trigonometric functions 

and repetitions were avoided as much as possible. For example, the inversion of a 2x2 

matrix was calculated by multiplying each element of the transposed comatrix by the  

inverse of the original matrix’s determinant (calculated once), instead of dividing each 

transposed comatrix element by the determinant (four divisions). It is very important that 
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the various program elements do not “overlap” because that could lead to program 

instability and the loss of synchronization with PWM. 

 

7.3 Feedback Circuits 

 The last experimental design part that needs to be mentioned in this chapter is the 

analog feedback circuits. As stated earlier in the chapter, the analog inputs to the DSP 

have to be strictly within the 0 – 3 V range. The sensor outputs of the analog values that 

were measured were not in that range and additional circuits had to be designed to adapt 

them. 

 

7.3.1 Current Sensing 

 In the case of current sensing, Hall effect sensors were used and their output is a 

bidirectional current that is proportional to the current they are sensing. This current had 

to be converted into a voltage that would be within the ADC input range. Figure 7.6 

shows the analog circuit that was designed for this purpose. 

 The output of the Hall effect sensor had to be converted first into a voltage. This 

was done with a simple resistor “R1” whose value was designed to introduce a gain such 

that the largest possible phase current would not induce a voltage larger (in magnitude) 

than 1.5 V. This voltage was consequently proportional to the machine phase current and 

could be negative, because of the sinusoidal nature of the machine currents. It was then 

necessary to shift this voltage by 1.5 V and create a virtual zero for the DSP analog to 

digital converter. 



 

Fig. 7.6: Analog current feedback circuit. 

 The “OA1” and “OA3” operational amplifiers have a “follower” function, which 

means their output is equal to their input, but they load their input in a minimal way. The 

voltage divider at the input of “OA3” is set to provide a 1.5 V reference. The resistors R3 

and R4 were chosen so that 
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 The last operational amplifier, “OA2”, is an inverting adder whose gain is simply 

“-1” in this case. It is important to note that for a sinusoidal input current, the output will 

be a sinusoidal voltage oscillating around 1.5 V, with a 180 degrees phase shift from the 

original current.  
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 Two of the circuits shown in Figure 7.6 were used for this project. Upon 

initialization, before the machine is started, the DSP program measures the input voltages 

coming from these circuits and saves them. These values, which are around 1.5 V,  

correspond to a zero current and will be subtracted from the later measurements in order 

to obtain current samples oscillating around zero. In addition to this, the DSP will also 

have to invert the obtained waveform to compensate the inverting gain of “OA2”. 

 

7.3.2 Voltage Sensing 

 In the case of the DC bus voltage feedback, the problem was simpler, because it is 

a strictly positive voltage. The only necessary operation was to scale down the high 

voltage such that ADC ratings are never exceeded. This was done with a combination of 

a voltage divider and a voltage follower, as shown in Figure 7.7. 

 

Fig. 7.7: Analog voltage feedback circuit. 

The resistors in this circuit (Figure 7.7) were chosen according to the following inequality 
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7.3.3 Feedback Filtering 

 The presence of the capacitor “C” in Figure 7.7 is the only difference of this 

circuit when compared with the current feedback circuits. It was mentioned throughout 

this dissertation that noise was an important issue for this project. The capacitor, 

combined with the two resistors, provides a low-pass filter that helps improve the 

feedback quality. 

 On the other hand, such an approach could not be taken with the current feedback 

circuits, because the machine currents are sinusoidal waveforms, and would be affected 

by a phase shift (lag) if a low pass filter was applied to them, even in the steady state. A 

software filter was chosen in the case of the currents. However, it did not act on the three 

phase currents but rather on the d-q currents obtained from them with the Park transform. 

In steady state, the effect of this filter is to reduce the noise level in the current feedback. 

It only has a small adverse effect during transients. 

 

7.4 Conclusion 

 This chapter has introduced the reader with the experimental design and the 

various issues that had to be resolved for this project. The introduction of the inverter 

made it necessary for some of its non-linearities to be compensated. The DSP and its 

features were presented, as well as the feedback hardware. The next chapter will focus on 

experimental results that were obtained with this experimental setup. 
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CHAPTER VIII 

PARAMETER ESTIMATION EXPERIMENTAL RESULTS 

 
 
 This chapter presents the results that were obtained with the experimental design 

in order to verify the effectiveness of the proposed parameter estimation algorithm. These 

results include data from the “fast” algorithm either alone or combined with the “slow” 

one. Current controller performance improvements are also shown. 

 

8.1 Time Scale Uncertainty 

 It was mentioned in Chapter VII that the serial communication program that was 

used to retrieve data from the DSP was executed in an asynchronous way. This means 

that depending on the tasks with a higher priority that the DSP has to execute, the transfer 

rate will not be constant. The data transmission software was programmed in two parts: 

• The first one accepted a number of integer inputs, corresponding to the value of 

variables to be transmitted (in a preset order), and converted them into ASCII 

(American Standard Code for Information Interchange) code. For example, the 

number “73”, which is coded by “0100 1001” in the DSP, will be coded as two 

characters, “7” and “3”, which are represented respectively by “0011 0111” and 

“0011 0011”. This conversion made it easier on the PC side to retrieve data and 

store it with a minimum processing, but put an additional burden on the DSP.  



Different variables could be separated by a “space” character and data 

corresponding to different times could be separated by a “carriage return”. The 

program used on the computer side should use the same norms. 

• The second part configured the DSP serial communication hardware so that it 

would send the characters that had to be transmitted. After the transmission of the 

first characters, it uses an interrupt to reload the transmission buffer register until 

the data corresponding to a full message has been sent. Once this has been done, it 

goes back to the first program which converts the next message data. The serial 

data transmission speed was set to 115200 baud, or bits per second, but with an 

additional start bit, a stop bit, and a parity bit. 

 

Fig. 8.1: Transmission of one data byte. 

 Figure 8.1 shows the transmission of one byte of data through the serial 

communication hardware. When the serial line is at rest, it is at a “high” state. The “start” 

bit notifies the receiver that transmission is starting, and the eight bits that follow are the 

actual data to be transmitted, one at a time, where LSB is “Least Significant Bit” and 

MSB is “Most Significant Bit”. The parity bit is an interesting feature that prevents some 

transmission errors. Both transmitter and receiver count the number of “high” states in 

the data byte, and if for example, an even parity was chosen, the parity bit will be at zero 

if that number is even. The transmitter sends this bit, and the receiver compares it to what 

it counted; if there is a mismatch, the data byte is discarded. The stop bit notifies the 

receiver of the end of transmission of the current data byte. One can see that it takes 11 

151 



152 

bits to send an 8 bit piece of data. With a transmission rate of 115200 baud, the maximum 

byte transmission rate is around 10 kHz. The number “73” takes two characters and will 

consequently take at least 0.2 ms to send. 

 A consequence of this structure is that depending on how busy the CPU is and 

how long the variables to be sent are, the effective transmission rate will be affected. A 

larger number will take longer to convert than a smaller one, and will also require more 

characters (bytes) to be sent. Consequently, it was difficult to get an exact estimate of the 

times to which each data sample corresponded on the PC side. A solution to this problem 

would be to include a variable in the transmitted data that would indicate the exact time at 

which the sample was taken, but this would further decrease the transmission speed. The 

solution chosen was to have only a rough estimate of the transmission rate as a function 

of the number of integer variables sent. Time was not a critical piece of information for 

this project and an estimate of it was enough for most results. These variables were scaled 

to a reduced precision so that only the most important bits would be sent. For most of the 

results shown in this chapter, the transmission speed measured was around 500 Hz. The 

variables sent through serial communication are in integer format, and were then scaled 

to decimal numbers depending on their precision. 

 The low transmission speed and time uncertainty was an important hardware 

limitation for this project. However, if the time scale is not exactly accurate, results 

shown in this chapter were synchronized together. In other words, for each of the plots 

that follow, all the data was taken with the same time scale. 

 

 



8.2 Current Controller Performance 

 This section presents the results obtained with the current controller in order to 

verify the need for accurate parameter feedback for optimal performance. These results 

can be related with the simulation results shown in section 3.1.2 of Chapter III. The 

machine was run in current control mode (iq = 1.5 V and id = -0.5 V) with a load that 

limited its speed at 1000 RPM. After steady state was reached, a perturbation was 

introduced in the load that affected the machine speed. This perturbation was introduced 

in the form of friction and was not exactly repeatable. However, the conclusions that will 

be drawn are not affected by this. The effects of this perturbation were then studied in 

different cases of current controller parameter feedforward. 

 The equations related to these terms are shown here for the sake of clarity: 
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 Figure 8.2 shows the results obtained in the case of a current control that does not 

include any feedforward term ( ). The error obtained from the difference 

between reference and feedback current went through a PI controller and its output was 

used as a voltage command for both q- and d- axes. The speed perturbation was of fairly 

small magnitude in this experiment, but one can see that the q-axis current control was 

directly affected by it.  

qdqd VV ='
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Fig. 8.2: Current controller response without feedforward term. 

 In Figure 8.2, the d-axis current shows small variations due to the perturbation, 

and they are negligible. The difference in d- and q- axes currents for the chosen operation 

arises from the dominating back-emf term in the electrical model of the machine 

compared to the other terms. This back-emf term only affects the q-axis and is directly 

proportional to the rotor speed. For example, if the speed decreases suddenly, the back-

emf will decrease, and the current controller PI will have to compensate that voltage to 

maintain the q-axis current constant. However, its response is not instantaneous and this 

is why we can see perturbations in the q-axis control. For example, at 2.2 s, the machine 

shows a fast acceleration and the current decreases from its set point. In this Figure, at 2.2 

s in Figure 8.2, a variation of 27% in speed induces an error of 11% in current control. 
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 In the case of the d-axis current, the only term that could affect current control is 

the inductive drop qeq iL ⋅⋅ω , but it is small and its variations are quickly compensated 

for by the PI controller. 

 To prove the effectiveness of a current controller with accurate feedforward 

compensation, another test was conducted in similar conditions but with feedforward 

compensation and its results are shown in Figure 8.3. 
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Fig. 8.3: Current controller response with feedforward. 

 In the plots shown in Figure 8.3, a small speed perturbation was followed by a 

very large one (70%). The d-q currents were not affected at all by this perturbation and 

remained constant and equal to the reference currents. The reason is the speed 

perturbation does not change anything from the PI compensator’s point of view. The 

difference in voltage required by a change in speed is directly taken into account by the 
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feedforward terms and is transparent from the compensator’s viewpoint. In this last case 

the perturbation was quite large, and one can imagine that a controller without 

feedforward terms would have been strongly affected. 

 One last test was then conducted to check the effects of poor parameter estimation 

on controller performance. In this test, a 30% error on the torque constant was introduced 

in the feedforward compensation. The corresponding results are shown in Figure 8.4. 
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Fig. 8.4: Current controller response with feedforward (30% KT error). 
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 Figure 8.4 shows that the torque constant error makes the controller sensitive to 

changes in speed. However, when these results are compared with those of Figure 8.2, 

one can consider that the problem has been compensated by at least by 70% (70% from 

torque constant plus the inductive drops). It is also possible to see that the error seems to 

be more important when the acceleration or deceleration is most important. For example, 
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the error introduced in Figure 8.4 from 1.2s to 2s is smaller than the one introduced from 

2.3s to 2.8s. The reason for this is that in the case of a slow variation, it will be easier for 

the PI controller to compensate the perturbation. 

 The test results shown in figures 8.2, 8.3 and 8.4 show that for optimum current 

controller robustness, it is important to have accurate parameter estimates with a 

feedforward compensator for optimum current controller robustness. For applications 

where speed and torque transients are not important, such as pumps and fans, this might 

not be necessary. On the other hand, high performance servo controllers can take 

advantage of this feature. 

 

8.3 Inductance Estimation 

8.3.1 Steady State Operation 

 Several results that were used to build the inductance tables shown in Chapter VI 

(tables 6.2 and 6.3) were compared with results obtained using the “fast” identification 

algorithm with the experimental hardware. A similar table was built to verify the 

effectiveness of this part of the algorithm in the hardware. 

 Table 8.1 shows results obtained from the “fast” estimation algorithm for the 

same tests that were used to build tables 6.2 and 6.3. The currents are shown in Amperes, 

and the internal cells give the estimated inductances in mH, and the percentage of error 

between these results and the ones obtained in Table 6.2. This table shows a good match 

between estimated and calculated inductances, especially for larger currents, where the 

signal-to-noise ratio gets larger. The cells that were not filled correspond to results that 

were extrapolated in Table 6.2. 
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Table 8.1: q-axis inductance estimated by “fast” algorithm. 

iq \ id 1 1.5 2 2.5 3 

1.25 9.26 – 3.5% N/A 10.4 – N/A 10.95 – N/A 11.83 – 3.2% 

1.8 9.5 – 4% 9.71 – 4.1% 10.3 – 1.7% 10.85 – 0.4% 11.42 – 0.7% 

2.35 9.33 – 5.6% 9.83 – 2.7% 10.1 – 3.2% 10.55 – 2.1% N/A 

2.9 9.21 – 5.8% 9.5 – 5% N/A N/A N/A 

  

8.3.2 Initial Convergence 

 An experimental test was conducted to show how the “fast” estimation algorithm 

converges towards a satisfactory estimate for machine inductance. The machine was 

started in current control mode with its speed set at 1000 RPM, and the parameter 

estimation program started after the initial transient. The q-axis current was set at a 2.5 A 

reference and the d-axis current was set at -0.5 A. Figure 8.5 shows the associated results. 

 In Figure 8.5, the top plot shows estimation results obtained from this initial 

convergence test for a 0.028 s window, and the bottom plot is a zoom on the first part of 

the top plot. In this test, the serial communication program had to be changed in order to 

be able to see the algorithm operate at the PWM frequency. The samples that had to be 

transmitted were stored in a memory table in the DSP at the PWM frequency, starting 

from the time when the “fast” algorithm was activated. Once the table was filled, the 

communication program was started and transmitted the data at low speed. This way, it 

was possible to extract a short window of high frequency data with an exact time scale. 



The DSP memory was too small to be able to use this method for an extended amount of 

time, and would be a limitation for other experimental results shown in this chapter. 

 
Fig. 8.5: Initial convergence of “fast” algorithm. 

 It is possible to see from Figure 8.5 that algorithm convergence was very fast, 

taking less than ten PWM cycles to converge towards its final value from initial values of 

15 mH for the q-axis inductance and 10 mH for the d-axis inductance. The algorithm was 

able to converge even in the case of a large initial error, because of the inherent 

robustness of the fast algorithm. It is also possible to see the high level of noise present in 

the estimation, which is mostly due to the noise level in the current feedback. A low pass 

filter was later used when the “fast” estimation algorithm was interfaced with other parts 

of the controller program. 
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8.3.3 Tracking Ability 

 The “fast” estimation algorithm was tested for transient operation. In the 

following experiment, the machine was run at constant speed under current control 

(speed limiting load), and a step in q-axis current was introduced. The d-axis current was 

set at zero for this test. The step went from one-third to about two-thirds of the machine 

rated current. The current waveform and the corresponding q-axis inductance estimate are 

plotted in Figure 8.6. 

 
Fig. 8.6: “Fast” algorithm step response. 

 The top plot in Figure 8.6 shows the filtered q-axis current in the machine for this 

test; it is a step waveform from 1.5A to 3A. The bottom plot shows the corresponding q-

axis inductance estimated by the “fast” identification algorithm. It is possible to see a 

slight change in the inductance estimate, as well as a reduction in its noise level. This 

reduction comes from the fact that the current magnitude was doubled, thereby reducing 
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the corresponding signal-to-noise ratio. The inductance waveform had an average around 

9.35mH before the step, and 9.07mH after the step. These values roughly match the ones 

found in Table 6.2. 

 

8.4 Complete Algorithm Tests 

8.4.1 Current Waveforms 

The results shown in the remaining sections of this chapter correspond to current control 

operations, with a constant or varying q-axis current, and a three-level perturbation d-axis 

current with a frequency around 10Hz. A typical corresponding current waveform is 

shown in Figure 8.7. 

 
Fig. 8.7: Typical current waveforms. 
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8.4.2 d-axis Inductance Estimation 

 It has been shown in Chapter VII that the d-axis inductance was the most sensitive 

parameter that was to be estimated by the algorithm. In addition to this, it is also the 

smallest one, and corresponds to the smallest term ( dde iL ⋅⋅ω ) in the electrical model 

equations. For the machine used on the experiments, the saliency ratio ( dq LL ) was 

fairly small: as a consequence, this machine would require a fairly small d-axis current 

for optimum operation. This made it all the more difficult for the parameter estimation 

algorithm to extract this parameter. Several attempts were made to estimate the d-axis 

inductance for low d-axis current values but they did not yield satisfactory results. 

 
Fig. 8.8: d-axis inductance estimation problem. 

 Figure 8.8 shows the results obtained for closed loop parameter estimation of all 

four machine parameters. The two identification algorithms were interfaced in the way 

that has been presented earlier in Chapter VI. All four parameter estimates are shown in 
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the plots, and it can be observed that three out of the four parameters were relatively 

stable and remained in the vicinity of the actual motor parameters (resistance around 

1.55Ω at 25˚C, torque constant around 0.2V.s at 25˚C and q-axis inductance around 

10mH). On the other hand, the d-axis inductance estimate is very unstable and bounces 

off the boundaries of its estimation region. A positive conclusion that can be drawn from 

this plot is that the poor estimation of the d-axis inductance does not seem to affect the 

other parameters in a significant way. The reason for this is the rather small value of the 

inductive term in the q-axis electrical equation. However, it does introduce a problem that 

could possibly destabilize the algorithm and would disrupt controller operation. A 

consequence of such results is that for the experimental machine, the estimation of the d-

axis inductance had more of an adverse effect than a beneficial one. In addition to that, 

the fact that we know the machine would operate at a low d-axis current in most cases 

allows us to think that we could consider this parameter to be constant at a value obtained 

from Table 6.3 (or given by the motor manufacturer). 

 If a different motor had been considered, such as machine “B”, the d-axis 

inductance estimation would have been less of a problem. Figure 3.3 in Chapter III 

showed that this machine operates with a larger d-axis current (due to the higher saliency 

ratio) and usually such machines are designed for high speed operation. Therefore the 

corresponding d-axis inductance term would be easier to estimate than for machine “A” 

which is the machine used in the experiments. 

In the results that follow this section, the d-axis inductance estimate was set to be 

constant in the “fast” estimation algorithm. 

 



8.4.3 Initial Convergence 

 The complete algorithm was tested under current control mode. Results 

corresponding to its initialization will be shown in this section. The machine was started 

and the “fast” parameter estimation algorithm was activated; after a delay, the “slow” 

parameter estimation algorithm was enabled and the complete algorithm was run in the 

way described earlier in Chapter VI. The algorithm was started with a large error on the 

initial estimation of the stator resistance (about 30%).  

 
Fig. 8.9: Initial convergence of complete algorithm. 

 The parameter estimation results corresponding to this complete algorithm 

experiment are shown in Figure 8.9. At 0s, the “fast” algorithm was started and ran with 

the resistance error until the “slow” algorithm started at about 0.3s. The parameter 

estimation then converged towards its final estimates. It can be observed that the large 

error in stator resistance has a large effect on the initial q-axis inductance estimate. 
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However, as the algorithm converges and the stator resistance estimates improves, there 

is a direct improvement on the inductance estimation. Except for the glitch around 2s 

which was caused by the jump in resistance estimation, the torque constant estimation 

was fairly robust and stayed around the nominal value. The reason for this robustness is 

that the back-emf term rTK ω⋅  usually dominates the other terms in the q-axis electrical 

model, and is consequently less sensitive to noise. It also does not depend on the machine 

currents, which are the noisiest signals in the controller feedback. 

 The small glitch seen in the torque constant estimate around 2.3s is most likely an 

error introduced by the serial communication. If such an error occurred in the estimation 

of this parameter, it would have a large direct effect on the q-axis inductance (and 

possibly also on the stator resistance). The serial communication line was subject to a 

significant amount of noise (from both the inverter and mechanical load drive) and 

presented errors in some cases. Some of these errors were easily noticeable, such as 

impossible characters (letters and symbols), and others such as the one mentioned above 

where one or more of the digits in the transmitted data have changed. 

 

8.4.4 Steady State Operation 

 Experimental results corresponding to a longer steady state operation are shown 

in Figure 8.10. For this test, the machine was run at constant speed and d-q currents. The 

q-axis inductance and the machine torque constant seemed to remain constant over the 

duration of this test. On the other hand, the machine resistance showed a slight increase 

which is explained by a rising machine temperature due to continued operation. The step-

like appearance of the torque constant waveform comes from the fact that it was 
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transmitted as a “q8” variable, which limits the precision to 4.10-3 but reduces the size of 

the transmitted variable. This discretization only affected displayed results, since the 

corresponding variable in the DSP program remained as a “q12” (0.25.10-3 precision) 

variable. 

 
Fig. 8.10: Algorithm steady state operation. 

 

8.4.5 Operation During Transient 

 Another experiment was conducted to verify the stability of the proposed 

algorithm under a machine transient operation. The corresponding results are displayed in 

Figure 8.11. The machine and algorithm were started under current control at 1000 RPM, 

and at the point in time that corresponds to 0s in the plots the q-axis current reference was 

increased from 1 A to 2 A with an external potentiometer connected to an ADC pin. 
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 It can be observed from these plots that algorithm operation was not disrupted by 

the transient; the stator resistance and machine torque constant estimates were not 

affected by the change in the operating point. On the other hand, the q-axis inductance 

estimate diminished slightly as the current increased, because of saturation. There is 

however a small error in the inductance estimate from the values obtained from Table 

6.2. 

 
Fig. 8.11: Operation during transient. 

 One can notice that for this test the d-axis current perturbation was introduced at a 

lower frequency than in Figure 8.7. Different frequencies were tried for the project, and 

as a general rule higher frequencies are to be preferred because the mechanical load will 

filter them out and it will provide “richer” information to the “slow“ algorithm, but the 
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current controller capability is the limitation for the high end of the d-axis current 

perturbation frequency. A perturbation frequency of 12 Hz was used in the experiment 

corresponding to Figure 8.11. 

 

8.5 Conclusions 

 This chapter presented results obtained with the experimental machine of this 

project (machine “A”), which is an IPM with a low saliency ratio. Results have verified 

the performance improvement with accurate parameter estimates in the case of the 

current controller. The parameter estimation algorithm was also tested; its performance 

and stability were verified under different conditions. The “fast” algorithm was tested 

separately, and its initial convergence, steady state operation and transient behavior were 

verified. A similar treatment was done with the complete algorithm.   
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CHAPTER IX 

CONCLUSIONS AND FUTURE WORK 

 
 

9.1 Introduction 

 This dissertation focused on on-line parameter estimation in three-phase 

permanent magnet machines. The research motivation came from an analysis of the 

phenomena that affect machine parameters and the effects of parameter variation on 

motor drive performance (Chapter III). An on-line parameter estimation algorithm was 

developed in order to solve this problem and its effectiveness was verified.  

 This parameter estimation algorithm is based on a combination of two recursive 

least squares programs. One of them is dedicated to the estimation of the d-q machine 

inductances and is to be run at a fast rate. The other one is structured to estimate all four 

machine parameters at a slower rate. This latter program also requires external 

stimulation in the form of a d-axis current perturbation to operate properly. 

 A simulation model that represented the complete motor drive (motor, inverter 

and digital controller) was created in order to study the performance of the proposed 

algorithm. This model was also used to design the parameter estimation structure which 

helped solve numerous problems with the algorithm. The simulation model was used on a 

machine that was available for experiments so that simulation results could be verified 

experimentally.  
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 Another machine was studied through simulation that had a larger saliency ratio, 

so that possible performance improvements for such machines could be studied. The 

simulation model allowed us to create test scenarios that could not have been 

implemented experimentally. It also enabled the user to isolate problems and test them 

separately. Such an approach is very important to the motor drive designer.  

The parameter estimation algorithm was also tested experimentally with a low saliency 

IPM machine. A complete motor drive was designed using a DSP and inverter along with 

the necessary feedback circuits. The results obtained verified the stability and 

effectiveness of the novel algorithm. 

 

9.2 Research Contributions 

 The unique contributions of this dissertation can be summarized as follows: 

• Analysis of PMSM parameter variation 

o The sources of parameter variation and their characteristics were 

investigated 

o The effect of parameter variation was studied through simulation for both 

torque and current controllers 

• Development of a new on-line parameter estimation algorithm 

o An algorithm was developed and first validated with simulation 

o The algorithm estimates all four machine electrical parameters and is able 

to track sudden changes in saturation as well as slow changes in 

temperature 
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o The complete algorithm included inverter non-linearity compensation in 

both simulations and experiments 

 

9.3 Limitations in Experimental Setup 

 The experimental design in the current setup presented several problems that 

affected the parameter estimation performance. The issues encountered are mentioned in 

the following. 

• The analog to digital converter did not perform according to its specifications. It 

was extremely sensitive to noise and its effective precision was much lower than 

expected. This was an issue for the parameter estimation algorithm because it 

limited the numerical precision available for the measured variables. The ADC 

also presented significant gain and offset errors that had to be compensated. The 

structure of the analog circuits designed for this project may also have affected 

ADC performance because of grounding problems and the use of long wires. 

• The hardware circuit designed for this project was not suitable for a high 

performance motor drive. The main reason for this was that the electrical ground 

for the power circuits (motor and inverter) was not isolated from the digital and 

analog grounds of the DSP. As a result, there were high levels of noise in the 

ground which affected the analog feedback. Consequently, the program required 

larger currents than it should have needed in order to run properly, so that the 

signal to noise ratio was satisfactory. 

• The use of a fixed point DSP made program design more complex and may have 

introduced precision limitations in the parameter estimation algorithm. 
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• The serial communication developed to send data to a computer for debugging 

and displaying purposes was slow and sensitive to noise. This made data analysis 

difficult in some cases. 

 

9.3 Suggested Future Work 

 There are a few extensions of the research accomplished in this project that may 

be of interest for future work. The first one would be to try the algorithm on a new 

experimental design, with adequate isolation between the control and power stages (such 

as opto-couplers) for better noise immunity. A different DSP, or a different ADC design 

than the one presented in the current project could also show improvements on the 

results. 

 It would also be interesting to try the algorithm on different machine types, such 

as a surface-mount machine or a machine with a high saliency ratio such as machine “B”. 

The algorithm, by its design, should operate independently of the machine type, but the 

benefits that could be obtained with it are machine dependent. This is also why machine 

“B” was studied through simulation. The benefits of using the algorithm on surface 

mount PMSM could also be of interest and improve knowledge and possibly performance 

of corresponding motor drives. 

 Finally, it was mentioned in Chapter II that core losses were omitted in the 

machine model and the parameter estimation algorithm. Although these are usually small 

and consequently neglected, they can become important in some cases and could 

potentially have an effect on machine parameter estimation. A further study of the effect 

of these losses and a possible new parameter estimation algorithm could be derived. This 
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algorithm could be based on the structure that has been presented, with the same “fast” 

identification program dedicated to machine inductances and the “slow” one including all 

machine parameters, plus a new one representing core losses. 
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APPENDIX 
 
 

Sample “C” code for identification algorithms 
 
 
#include "DSP281x_Device.h" 
#include "IQmathLib.h" 
 
const S32 two30 = 1073741824; 
const S32 two24 = 16777216; 
const S32 two26 = 67108864; 
const S32 two16 = 65536; 
 
 
/**********************************************************************/ 
/*    "Fast" identification algorithm    
                  */ 
/**********************************************************************/ 
 
extern S32 w_rds_q4,wflt_rds_q4,weflt_rds_q4;  // Mechanical speed 
extern S32 Vqref_q16,Vdref_q16;    // Voltage commands 
extern S32 Iq_q8,Id_q8;     // Current feedback 
extern S32 Iq_flt_q8,Id_flt_q8;    // Filtered Current feedback 
extern S32 Iq_fltfast_q8,Id_fltfast_q8; 
extern S32 Lqini_q16,Ldini_q16;     // Initial parameters 
extern S32 P_fast_ini_q20; 
extern S32 lamda_fast_q16;    // Forgetting factor 
extern S32 Pole_pairs; 
 
extern S32 Ke_cst_q12;    // External required parameters 
extern S32 R_cst_q12; 
extern S32 RK_q12[2]; 
extern S32 Kmax_fast_q20;    // Saturation boundaries 
extern S32 Pmax_fast_q20; 
extern S32 Pmin_fast_q20; 
extern S32 Lqmax_q16,Lqmin_q16; 
extern S32 Ldmax_q16,Ldmin_q16; 
extern S32 we_rds_q4; 
extern S32 Idmin_q8,Iqmin_q8; 
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extern U32 ISR2mscount; 
extern S32 R_flt_q12,K_flt_q12; 
 
S32 Ke_fast_q12,R_fast_q12;   // External parameters 
S32 RIq_q16,RId_q16,Kw_q16; 
S32 Y_fast_q16[2],Y_fast_est_q16[2];  //Algorithm Matrices 
S32 P_Phi_q16[2][2],PhiT_P_Phi_q16[2][2]; 
S32 ToBe_Inv_q16[2][2]; 
S32 det_fast_q2,inv_det_fast_q28; 
S32 inverted_fast_q16[2][2]; 
S32 K_fast_q20[2][2]; 
S32 KPhiT_fast_q16[2][2]; 
S32 temp1_fast_q16[2][2],temp2_fast_q20[2][2]; 
S32 Err_fast_q16[2],dpara_fast_q16[2]; 
 
S32 enable_fast=0;     //Used to enable/ disable algorithm 
S32 Lq_flt_q16=0,Ld_flt_q16=0; 
 
S32 Lqd_fast_q16[2];     // Identif output 
S32 P_fast_q20[2][2]; 
S32 lamda_inv_fast_q16;    // 1/lamda 
S32 PhiT_fast_q8[2][2],Phi_fast_q8[2][2]; 
S32 neg_Pmax_fast_q20,neg_Pmin_fast_q20,neg_Kmax_fast_q20; //Negative saturation 
 
void identif_Lqd_init(void) 
// Initialize identif variables for first run 
{ 
Lqd_fast_q16[0]=Lqini_q16; 
Lqd_fast_q16[1]=Ldini_q16; 
P_fast_q20[0][0]=P_fast_ini_q20; 
P_fast_q20[1][1]=P_fast_ini_q20; 
P_fast_q20[0][1]=0; 
P_fast_q20[1][0]=0; 
 
lamda_inv_fast_q16 = _IQ16div(65536,lamda_fast_q16); 
neg_Pmax_fast_q20=-Pmax_fast_q20; 
neg_Pmin_fast_q20=-Pmin_fast_q20; 
neg_Kmax_fast_q20=-Kmax_fast_q20; 
// These terms will remain at zero 
PhiT_fast_q8[0][0] = 0; 
PhiT_fast_q8[1][1] = 0; 
Phi_fast_q8[0][0] = 0; 
Phi_fast_q8[1][1] = 0; 
} 
 



179 

void identif_fast(void) 
// Given R and K, uses RLS algorithm to get Lq and Ld 
// Assumes steady state because running at 20kHz, not disabled when steady=0 
{ 
if(ISR2mscount>1500) //uses parameters from slow identification after 3s 
 { 
 Ke_fast_q12 = RK_q12[1];//Ke_cst_q12;//RK_q12[1]; 
 R_fast_q12 = RK_q12[0];//R_cst_q12;//RK_q12[0]; 
 } 
else 
 { 
 Ke_fast_q12 = Ke_cst_q12; 
 R_fast_q12 = R_cst_q12; 
 } 
 
if(enable_fast==1) 
 { 
 // Calculate system output matrix 
 Y_fast_q16[0] = Vqref_old_q16-((R_fast_q12*Iq_fltfast_q8)>>4)-
 (Ke_fast_q12*wflt_rds_q4); 
 Y_fast_q16[1] = Vdref_old_q16-((R_fast_q12 * Id_fltfast_q8)>>4); 
 
 // Update feedback matrix 
 PhiT_fast_q8[0][1] = ((-weflt_rds_q4) * Id_fltfast_q8)>>4; 
 PhiT_fast_q8[1][0] = ((weflt_rds_q4) * Iq_fltfast_q8)>>4; 
 Phi_fast_q8[0][1] = PhiT_fast_q8[1][0]; 
 Phi_fast_q8[1][0] = PhiT_fast_q8[0][1]; 
 
 // Calculate PxPhi 
 P_Phi_q16[0][0] = _IQ12mpy(P_fast_q20[0][1],Phi_fast_q8[1][0]); 
 P_Phi_q16[0][1] = _IQ12mpy(P_fast_q20[0][0],Phi_fast_q8[0][1]); 
 P_Phi_q16[1][0] = _IQ12mpy(P_fast_q20[1][1],Phi_fast_q8[1][0]); 
 P_Phi_q16[1][1] = _IQ12mpy(P_fast_q20[1][0],Phi_fast_q8[0][1]); 
     
 // Calculate lamda * I + PhiT * P * Phi 
 PhiT_P_Phi_q16[0][0] = _IQ8mpy(PhiT_fast_q8[0][1],P_Phi_q16[1][0]); 
 ToBe_Inv_q16[0][0]   =  lamda_fast_q16 + PhiT_P_Phi_q16[0][0]; 
 PhiT_P_Phi_q16[0][1] = _IQ8mpy(PhiT_fast_q8[0][1],P_Phi_q16[1][1]); 
 ToBe_Inv_q16[0][1]   =  PhiT_P_Phi_q16[0][1]; 
 PhiT_P_Phi_q16[1][0] = _IQ8mpy(PhiT_fast_q8[1][0],P_Phi_q16[0][0]); 
 ToBe_Inv_q16[1][0]   =  PhiT_P_Phi_q16[1][0]; 
 PhiT_P_Phi_q16[1][1] = _IQ8mpy((PhiT_fast_q8[1][0]),P_Phi_q16[0][1]); 
 ToBe_Inv_q16[1][1]   =  lamda_fast_q16 + PhiT_P_Phi_q16[1][1]; 
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 // 2x2 Matrix inversion of ToBe_Inv_q16 : 
 det_fast_q2 = (_IQ30mpy(ToBe_Inv_q16[0][0],ToBe_Inv_q16[1][1]) 
   -_IQ30mpy(ToBe_Inv_q16[1][0],ToBe_Inv_q16[0][1])); 
 if(det_fast_q2==0)inv_det_fast_q28 = 0; 
 else inv_det_fast_q28 = two30 / det_fast_q2; 
  
 inverted_fast_q16[0][0] = _IQ28mpy(inv_det_fast_q28,ToBe_Inv_q16[1][1]); 
 inverted_fast_q16[1][1] = _IQ28mpy(inv_det_fast_q28,ToBe_Inv_q16[0][0]); 
 inverted_fast_q16[1][0] = _IQ28mpy(-inv_det_fast_q28,ToBe_Inv_q16[1][0]); 
 inverted_fast_q16[0][1] = _IQ28mpy(-inv_det_fast_q28,ToBe_Inv_q16[0][1]); 
  
 // Calculate gain matrix for parameter update 
 K_fast_q20[0][0] = _IQ12mpy(P_Phi_q16[0][0],inverted_fast_q16[0][0]) 
           +_IQ12mpy(P_Phi_q16[0][1],inverted_fast_q16[1][0]); 
 if(K_fast_q20[0][0]>Kmax_fast_q20) K_fast_q20[0][0]=Kmax_fast_q20; 
 if(K_fast_q20[0][0]<neg_Kmax_fast_q20) 
    K_fast_q20[0][0]=neg_Kmax_fast_q20; 
 K_fast_q20[0][1] = _IQ12mpy(P_Phi_q16[0][0],inverted_fast_q16[0][1]) 
         +_IQ12mpy(P_Phi_q16[0][1],inverted_fast_q16[1][1]); 
 if(K_fast_q20[0][1]>Kmax_fast_q20) K_fast_q20[0][1]=Kmax_fast_q20; 
 if(K_fast_q20[0][1]<neg_Kmax_fast_q20) 
    K_fast_q20[0][1]=neg_Kmax_fast_q20; 
 K_fast_q20[1][0] = _IQ12mpy(P_Phi_q16[1][0],inverted_fast_q16[0][0]) 
         +_IQ12mpy(P_Phi_q16[1][1],inverted_fast_q16[1][0]); 
 if(K_fast_q20[1][0]>Kmax_fast_q20) K_fast_q20[1][0]=Kmax_fast_q20; 
 if(K_fast_q20[1][0]<neg_Kmax_fast_q20) 
    K_fast_q20[1][0]=neg_Kmax_fast_q20; 
 K_fast_q20[1][1] = _IQ12mpy(P_Phi_q16[1][0],inverted_fast_q16[0][1]) 
         +_IQ12mpy(P_Phi_q16[1][1],inverted_fast_q16[1][1]); 
 if(K_fast_q20[1][1]>Kmax_fast_q20) K_fast_q20[1][1]=Kmax_fast_q20; 
 if(K_fast_q20[1][1]<neg_Kmax_fast_q20) 
    K_fast_q20[1][1]=neg_Kmax_fast_q20; 
  
 // Calculate K x PhiT 
 KPhiT_fast_q16[0][0] = _IQ12mpy(K_fast_q20[0][1],PhiT_fast_q8[1][0]); 
 KPhiT_fast_q16[0][1] = _IQ12mpy(K_fast_q20[0][0],PhiT_fast_q8[0][1]); 
 KPhiT_fast_q16[1][0] = _IQ12mpy(K_fast_q20[1][1],PhiT_fast_q8[1][0]); 
 KPhiT_fast_q16[1][1] = _IQ12mpy(K_fast_q20[1][0],PhiT_fast_q8[0][1]); 
  
 // Calculate I - K x PhiT 
 temp1_fast_q16[0][0] = 65536 - KPhiT_fast_q16[0][0]; 
 temp1_fast_q16[0][1] = 0 - KPhiT_fast_q16[0][1]; 
 temp1_fast_q16[1][0] = 0 - KPhiT_fast_q16[1][0]; 
 temp1_fast_q16[1][1] = 65536 - KPhiT_fast_q16[1][1]; 
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 // Prepare covariance matrix update 
 temp2_fast_q20[0][0] = _IQ16mpy(temp1_fast_q16[0][0],P_fast_q20[0][0]) 
                +_IQ16mpy(temp1_fast_q16[0][1],P_fast_q20[1][0]); 
 temp2_fast_q20[0][0] = _IQ16mpy(lamda_inv_fast_q16,temp2_fast_q20[0][0]); 
 
 temp2_fast_q20[0][1] = _IQ16mpy(temp1_fast_q16[0][0],P_fast_q20[0][1]) 
        +_IQ16mpy(temp1_fast_q16[0][1],P_fast_q20[1][1]); 
 temp2_fast_q20[0][1] = _IQ16mpy(lamda_inv_fast_q16,temp2_fast_q20[0][1]); 
 
 temp2_fast_q20[1][0] = _IQ16mpy(temp1_fast_q16[1][0],P_fast_q20[0][0]) 
        +_IQ16mpy(temp1_fast_q16[1][1],P_fast_q20[1][0]); 
 temp2_fast_q20[1][0] = _IQ16mpy(lamda_inv_fast_q16,temp2_fast_q20[1][0]); 
  
 temp2_fast_q20[1][1] = _IQ16mpy(temp1_fast_q16[1][0],P_fast_q20[0][1]) 
        +_IQ16mpy(temp1_fast_q16[1][1],P_fast_q20[1][1]); 
 temp2_fast_q20[1][1] = _IQ16mpy(lamda_inv_fast_q16,temp2_fast_q20[1][1]); 
  
 // Update covariance matrix 
 P_fast_q20[0][0]=temp2_fast_q20[0][0]; 
 if(P_fast_q20[0][0]>0) 
  { 
  if(P_fast_q20[0][0]>Pmax_fast_q20)P_fast_q20[0][0]=Pmax_fast_q20; 
  if(P_fast_q20[0][0]<Pmin_fast_q20)P_fast_q20[0][0]=Pmin_fast_q20; 
  } 
 else 
  { 
 if(P_fast_q20[0][0]<neg_Pmax_fast_q20)P_fast_q20[0][0]=neg_Pmax_fast_q20; 
 if(P_fast_q20[0][0]>neg_Pmin_fast_q20)P_fast_q20[0][0]=neg_Pmin_fast_q20; 
  } 
  
 P_fast_q20[0][1]=temp2_fast_q20[0][1]; 
 if(P_fast_q20[0][1]>0) 
  { 
  if(P_fast_q20[0][1]>Pmax_fast_q20)P_fast_q20[0][1]=Pmax_fast_q20; 
  } 
 else 
  { 
 if(P_fast_q20[0][1]<neg_Pmax_fast_q20)P_fast_q20[0][1]=neg_Pmax_fast_q20; 
  } 
  
 P_fast_q20[1][0]=temp2_fast_q20[1][0]; 
 if(P_fast_q20[1][0]>0) 
  { 
  if(P_fast_q20[1][0]>Pmax_fast_q20)P_fast_q20[1][0]=Pmax_fast_q20; 
  //if(P_fast_q20[1][0]<Pmin_fast_q20)P_fast_q20[1][0]=Pmin_fast_q20; 
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  } 
 else 
  { 
 if(P_fast_q20[1][0]<neg_Pmax_fast_q20)P_fast_q20[1][0]=neg_Pmax_fast_q20; 
  } 
  
 P_fast_q20[1][1]=temp2_fast_q20[1][1]; 
 if(P_fast_q20[1][1]>0) 
  { 
  if(P_fast_q20[1][1]>Pmax_fast_q20)P_fast_q20[1][1]=Pmax_fast_q20; 
  if(P_fast_q20[1][1]<Pmin_fast_q20)P_fast_q20[1][1]=Pmin_fast_q20; 
  } 
 else 
  { 
 if(P_fast_q20[1][1]<neg_Pmax_fast_q20)P_fast_q20[1][1]=neg_Pmax_fast_q20; 
 if(P_fast_q20[1][1]>neg_Pmin_fast_q20)P_fast_q20[1][1]=neg_Pmin_fast_q20; 
  } 
 
 // Calculate estimated output: 
 Y_fast_est_q16[0] = (PhiT_fast_q8[0][1]*Lqd_fast_q16[1])>>8; 
 Y_fast_est_q16[1] = (PhiT_fast_q8[1][0]*Lqd_fast_q16[0])>>8; 
 
 // Error between system and estimated outputs 
 Err_fast_q16[0] = Y_fast_q16[0] - Y_fast_est_q16[0]; 
 Err_fast_q16[1] = Y_fast_q16[1] - Y_fast_est_q16[1]; 
  
 // Error x gain -> change in parameters 
 dpara_fast_q16[0] = _IQ20mpy(K_fast_q20[0][0],Err_fast_q16[0]) 
         + _IQ20mpy(K_fast_q20[0][1],Err_fast_q16[1]); 
 dpara_fast_q16[1] = _IQ20mpy(K_fast_q20[1][0],Err_fast_q16[0]) 
         + _IQ20mpy(K_fast_q20[1][1],Err_fast_q16[1]); 
  
 // Parameters' update and saturation 
 Lqd_fast_q16[0] += dpara_fast_q16[0]; 
 Lqd_fast_q16[1] += dpara_fast_q16[1]; 
 if(Lqd_fast_q16[0]>Lqmax_q16)Lqd_fast_q16[0]=Lqmax_q16; 
 if(Lqd_fast_q16[0]<Lqmin_q16)Lqd_fast_q16[0]=Lqmin_q16; 
 if(Lqd_fast_q16[1]>Ldmax_q16)Lqd_fast_q16[1]=Ldmax_q16; 
 if(Lqd_fast_q16[1]<Ldmin_q16)Lqd_fast_q16[1]=Ldmin_q16; 
 
 // Low pass, pole at 0.98 q12  
 Lq_flt_q16 = ((82*Lqd_fast_q16[0])>>12) + ((4014 * Lq_flt_q16)>>12);   
 Ld_flt_q16 = ((82*Lqd_fast_q16[1])>>12) + ((4014 * Ld_flt_q16)>>12);  
 } 
} 
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/**********************************************************************/ 
/*    "Slow" identification algorithm    
                  */ 
/**********************************************************************/ 
 
extern S32 Vqref_flt_q16,Vdref_flt_q16;  // Voltage commands 
extern S32 Iq_flt_q8,Id_flt_q8;   // Current feedback 
extern S32 Lqini_q16,Ldini_q16;   
extern S32 Rsini_q16,Keini_q16; 
extern S32 P_slow_ini_L_q20,P_slow_ini_RK_q20; 
extern S32 lamda_slow_q16; 
extern S32 weflt_rds_q4; 
extern S32 wflt_rds_q4; 
 
extern S32 Lqmin_q16,Lqmax_q16; 
extern S32 Ldmin_q16,Ldmax_q16; 
extern S32 Rmin_q16,Rmax_q16; 
extern S32 Kmin_q16,Kmax_q16; 
 
extern S32 Kmax_slow_q20; 
extern S32 Pmax_slow_q20; 
extern S32 Pmin_slow_q20; 
extern S32 Pmin_slowL_q20; 
extern S32 Lqd_fast_q16[2]; 
extern S32 Lq_flt_q16,Ld_flt_q16; 
extern S32 Ld_zero_q16; 
 
S32 Y_slow_q16[2],Y_slow_est_q16[2],Err_slow_q16[2]; 
S32 P_Phi_slow_q16[4][2]; 
S32 PhiT_P_Phi_slow_q16[2][2]; 
S32 ToBe_Inv_slow_q16[2][2],inverted_slow_q16[2][2]; 
S32 det_slow_q2,inv_det_slow_q28; 
S32 K_slow_q20[4][2]; 
S32 KPhiT_slow_q16[4][4]; 
S32 temp1_slow_q16[4][4]; 
S32 temp2_slow_q20[4][4]; 
S32 enable_slow=1; 
 
S32 R_flt_q12=0,K_flt_q12=0; 
S32 LRK_q16[4]; 
S32 RK_q12[2]; 
S32 P_slow_q20[4][4]; 
S32 lamda_inv_slow_q16;   // 1/lamda 
S32 PhiT_slow_q8[2][4]; 
S32 Phi_slow_q8[4][2]; 
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S32 dpara_slow_q16[4]; 
S32 neg_Kmax_slow_q20; 
S32 neg_Pmax_slow_q20; 
S32 neg_Pmin_slow_q20; 
S32 neg_Pmin_slowL_q20; 
 
 
void identif_LRK_init(void) 
// Initialize identif variables for first run 
{ 
U16 i,j; 
LRK_q16[0]=Lqini_q16; 
LRK_q16[1]=Ldini_q16; 
LRK_q16[2]=Rsini_q16; 
LRK_q16[3]=Keini_q16; 
 
RK_q12[0] = LRK_q16[2]>>4; 
RK_q12[1] = LRK_q16[3]>>4; 
 
for(i=0;i<4;i++) 
 for(j=0;j<4;j++) 
  { 
  P_slow_q20[i][j]=0; 
  } 
P_slow_q20[0][0]=P_slow_ini_L_q20; 
P_slow_q20[1][1]=P_slow_ini_L_q20; 
P_slow_q20[2][2]=P_slow_ini_RK_q20; 
P_slow_q20[3][3]=P_slow_ini_RK_q20; 
 
lamda_inv_slow_q16 = _IQ16div(65536,lamda_slow_q16); 
for(i=0;i<2;i++) 
 for(j=0;j<4;j++) 
  { 
  PhiT_slow_q8[i][j]=0; 
  Phi_slow_q8[j][i]=0; 
  } 
neg_Kmax_slow_q20 = -Kmax_slow_q20; 
neg_Pmax_slow_q20 = -Pmax_slow_q20; 
neg_Pmin_slow_q20 = -Pmin_slow_q20; 
neg_Pmin_slowL_q20= -Pmin_slowL_q20; 
} 
 
 
void identif_slowA(void) 
// Assuming steady state, tries to estimate Lq, Ld, Rs and Ke, needs "rich" inputs 
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// Disabled when system in transient 
// Code avoids loops on purpose, for faster execution 
//Some Matrix product functions omitted because of their length 
{ 
if(enable_slow==1) 
 { 
 // System output matrix 
 Y_slow_q16[0] = Vqref_flt_q16; 
 Y_slow_q16[1] = Vdref_flt_q16; 
 
 // Update feedback matrix 
 PhiT_slow_q8[0][1] = ((-weflt_rds_q4) * Id_flt_q8)>>4; 
 PhiT_slow_q8[0][2] = Iq_flt_q8; 
 PhiT_slow_q8[0][3] = wflt_rds_q4<<4; 
 PhiT_slow_q8[1][0] = ((weflt_rds_q4) * Iq_flt_q8)>>4; 
 PhiT_slow_q8[1][2] = Id_flt_q8; 
 
 Phi_slow_q8[0][1] = PhiT_slow_q8[1][0]; 
 Phi_slow_q8[1][0] = PhiT_slow_q8[0][1]; 
 Phi_slow_q8[2][0] = PhiT_slow_q8[0][2]; 
 Phi_slow_q8[2][1] = PhiT_slow_q8[1][2]; 
 Phi_slow_q8[3][0] = PhiT_slow_q8[0][3]; 
 
 Calc_P_Phi();  //Matrix product function 
 
 // Calculate lamda x I + PhiT x P x Phi 
 PhiT_P_Phi_slow_q16[0][0] = 
 _IQ8mpy(PhiT_slow_q8[0][1],P_Phi_slow_q16[1][0]) 
 + _IQ8mpy(PhiT_slow_q8[0][2],P_Phi_slow_q16[2][0]) 
 + _IQ8mpy(PhiT_slow_q8[0][3],P_Phi_slow_q16[3][0]); 
 ToBe_Inv_slow_q16[0][0] = lamda_slow_q16 + PhiT_P_Phi_slow_q16[0][0]; 
 
 PhiT_P_Phi_slow_q16[0][1] = 
 _IQ8mpy(PhiT_slow_q8[0][1],P_Phi_slow_q16[1][1]) 
 + _IQ8mpy(PhiT_slow_q8[0][2],P_Phi_slow_q16[2][1]) 
 + _IQ8mpy(PhiT_slow_q8[0][3],P_Phi_slow_q16[3][1]); 
 ToBe_Inv_slow_q16[0][1] = PhiT_P_Phi_slow_q16[0][1]; 
 
 PhiT_P_Phi_slow_q16[1][0] = 
 _IQ8mpy(PhiT_slow_q8[1][0],P_Phi_slow_q16[0][0]) 
 + _IQ8mpy(PhiT_slow_q8[1][2],P_Phi_slow_q16[2][0]); 
 ToBe_Inv_slow_q16[1][0] = PhiT_P_Phi_slow_q16[1][0]; 
 
 PhiT_P_Phi_slow_q16[1][1] = 
 _IQ8mpy(PhiT_slow_q8[1][0],P_Phi_slow_q16[0][1]) 
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 + _IQ8mpy(PhiT_slow_q8[1][2],P_Phi_slow_q16[2][1]); 
 ToBe_Inv_slow_q16[1][1] = lamda_slow_q16 + PhiT_P_Phi_slow_q16[1][1]; 
 
 // 2x2 Matrix inversion of ToBe_Inv_q16 : 
 det_slow_q2 = 
 (_IQ30mpy(ToBe_Inv_slow_q16[0][0],ToBe_Inv_slow_q16[1][1]) 
 -  _IQ30mpy(ToBe_Inv_slow_q16[1][0],ToBe_Inv_slow_q16[0][1])); 
 if(det_slow_q2==0)inv_det_slow_q28 = 0; 
 else inv_det_slow_q28 = two30 / det_slow_q2; 
 
 inverted_slow_q16[0][0] = 
 _IQ28mpy(inv_det_slow_q28,ToBe_Inv_slow_q16[1][1]); 
 inverted_slow_q16[1][1] = 
 _IQ28mpy(inv_det_slow_q28,ToBe_Inv_slow_q16[0][0]); 
 inverted_slow_q16[1][0] = _IQ28mpy(-
 inv_det_slow_q28,ToBe_Inv_slow_q16[1][0]); 
 inverted_slow_q16[0][1] = _IQ28mpy(-
 inv_det_slow_q28,ToBe_Inv_slow_q16[0][1]); 
 
 // Calculate gain matrix for parameter update 
 Calc_Kslow(); 
 
 // Calculate I - K x PhiT 
 Calc_IminKPhiT(); 
 // ... Continued in identif_slowB()... 
 } 
} 
 
 
void identif_slowB(void) 
{ 
if(enable_slow==1) 
 { 
 // Calculate New covariance matrix 
 Calc_Ptemp();  //Similar to identify_fast() code only longer 
 Upd_P(); 
 
 // Calculate estimated output: 
 Y_slow_est_q16[0] = ((PhiT_slow_q8[0][1]*LRK_q16[1]) 
       +  (PhiT_slow_q8[0][2]*LRK_q16[2]) 
       +  (PhiT_slow_q8[0][3]*LRK_q16[3]))>>8; 
 Y_slow_est_q16[1] = ((PhiT_slow_q8[1][0]*LRK_q16[0]) 
       +  (PhiT_slow_q8[1][2]*LRK_q16[2]))>>8; 
 
 // Error between system and estimated outputs 
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 Err_slow_q16[0] = Y_slow_q16[0] - Y_slow_est_q16[0]; 
 Err_slow_q16[1] = Y_slow_q16[1] - Y_slow_est_q16[1]; 
 
 // Error x gain -> change in parameters 
 dpara_slow_q16[0] = _IQ20mpy(K_slow_q20[0][0],Err_slow_q16[0]) 
                 + _IQ20mpy(K_slow_q20[0][1],Err_slow_q16[1]); 
 dpara_slow_q16[1] = _IQ20mpy(K_slow_q20[1][0],Err_slow_q16[0]) 
           + _IQ20mpy(K_slow_q20[1][1],Err_slow_q16[1]); 
 dpara_slow_q16[2] = _IQ20mpy(K_slow_q20[2][0],Err_slow_q16[0]) 
           + _IQ20mpy(K_slow_q20[2][1],Err_slow_q16[1]); 
 dpara_slow_q16[3] = _IQ20mpy(K_slow_q20[3][0],Err_slow_q16[0]) 
           + _IQ20mpy(K_slow_q20[3][1],Err_slow_q16[1]); 
 
 // Estimated parameters' update 
 LRK_q16[0] += dpara_slow_q16[0]; 
 LRK_q16[1] += dpara_slow_q16[1]; 
 LRK_q16[2] += dpara_slow_q16[2]; 
 LRK_q16[3] += dpara_slow_q16[3]; 
 
 //Saturation 
 if(LRK_q16[0]>Lqmax_q16)LRK_q16[0]=Lqmax_q16; 
 if(LRK_q16[0]<Lqmin_q16)LRK_q16[0]=Lqmin_q16; 
 if(LRK_q16[1]>Ldmax_q16)LRK_q16[1]=Ldmax_q16; 
 if(LRK_q16[1]<Ldmin_q16)LRK_q16[1]=Ldmin_q16; 
 if(LRK_q16[2]>Rmax_q16)LRK_q16[2]=Rmax_q16; 
 if(LRK_q16[2]<Rmin_q16)LRK_q16[2]=Rmin_q16; 
 if(LRK_q16[3]>Kmax_q16)LRK_q16[3]=Kmax_q16; 
 if(LRK_q16[3]<Kmin_q16)LRK_q16[3]=Kmin_q16; 
 
 RK_q12[0] = LRK_q16[2]>>4; 
 RK_q12[1] = LRK_q16[3]>>4; 
 R_flt_q12 = ((410*RK_q12[0])>>12) + ((3686 * R_flt_q12)>>12); 
 K_flt_q12 = ((410*RK_q12[1])>>12) + ((3686 * K_flt_q12)>>12); 
 } 
 //When algorithm is disabled, Lqd are copied from identify_fast() 
 else{ 
 LRK_q16[0]=Lq_flt_q16; 
 LRK_q16[1]=Ld_flt_q16; 
 } 
 
} 


