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Abstract 

There are many features a good mathematical proof may exhibit – it may be simple, 

surveyable, interesting, explanatory, pure, perspicuous, and even beautiful. The focus 

of this dissertation is rigor, a necessary feature of modern, mathematical proof. This 

dissertation proposes an account of mathematical rigor developed around the concept of 

conviction. 

In Chapter 1 and Chapter 2, I focus on the standard view of rigor. The standard view 

of rigor connects informal rigor to formal proof in a chosen formal deductive system. A 

proof is rigorous just in case it can be translated into a formal derivation. The standard 

view faces a number of problems with respect to mathematical practice. Many have argued 

that it fails to account for changing standards of rigor over time, diagrammatic proofs, and 

the psychology of mathematical knowledge. In Chapter 2, I work through three general 

categories of standard view. I present new objections to each of the three categories. One 

of the main takeaways is that mathematicians are convinced of the steps of the informal 

proof itself, not that some other formal proof could exist. 

In Chapter 3 I give a new account of rigor which is driven by the imagined universal 

audience. I argue that a proof is completely rigorous when each step is one that the 

mathematician’s universal audience assents to. Each inference is judged to be rigorous 

when it convinces one’s universal audience. For the mathematician, this amounts to the 

judgment that the inference would convince everyone. The audience view escapes the 

objection I posed to the standard view, since the mathematician judges that each inference is 
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convincing, not that some other object could exist. I also argue that my account is superior 

to the standard view since the audience view accommodates a gradable notion of rigor. A 

proof is more rigorous than another when it has more inferences to which the universal 

audience assents. 

In Chapter 4, I connect the audience view of rigor to core issues in social epistemology. 

The audience view claims that rigor judgments depend on social features, including who 

participates in mathematical practice. Given that participatory injustices seem to occur in 

mathematical practice, I argue a mathematician’s universal audience will be infuenced by 

those injustices. I argue that eliminating participatory injustice will lead mathematicians 

to have a more robust universal audience. A more robust universal audience leads to rigor 

judgments that are more stable over time. I argue that participatory injustice is detrimental 

to the proofs, as well as the participants. This provides a new reason to both eliminate 

participatory injustice in mathematics and to diversify the profession. In Chapter 5, I 

conclude and discuss some future issues that a social epistemological approach to rigor 

must address. 
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Chapter 1 

Introduction 

Mathematics is rigorous. With the demand for rigor come tangible benefts; rigor is con-

nected to features like reliability, correctness, and certainty. But what exactly does it mean 

for a proof to be rigorous? Burgess [2015] provides us with a seemingly straightforward 

answer which divides the demands of rigor into four conditions: 

(1) Mathematical rigor requires that every new proposition must be deduced 

from previously established propositions (coming either from earlier in the 

same paper, or from the earlier literature). 

(2) On pain of circularity or infnite regress, if later propositions must be 

proved from earlier ones, then we must start from some unproved propositions 

or postulates. 

(3) Mathematical rigor requires that every new notion must be defned in terms 

of previously explained notions (either from earlier in the same paper, or from 

the earlier literature). 

(4) On pain of circularity or infnite regress, if later notions must be explained 

in terms of earlier ones, then we must start from some unexplained notions or 

primitives. [Burgess, 2015, 6-7] 

And thus we know exactly what rigor demands: start from some unexplained primitives and 

unproved postulates. The only way to rigorously introduce new propositions is by deduction 
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from previous propositions deduced in turn, eventually, from the postulates. The same holds 

for new concepts, they are to be defned only in terms of the previously explained notions 

or the primitive notions. 

Of course, (1)-(4) are almost never fully satisfed in practice. So it cannot be that 

(1)-(4) defne rigor as witnessed by proofs in mathematical journals. Burgess himself notes 

this and settles on a less stringent version. He writes “what rigor requires is that each 

new result should be obtained from earlier results by presenting enough deductive steps to 

produce conviction that a full breakdown into obvious deductive steps would in principle 

be possible” [Burgess, 2015, 97]. We now seem to have two sets of demands from two 

types of rigor. First there is the clearly defned rigor of (1)-(4), which when combined with 

a specifed formal language is formal rigor. Then, there is a second notion of rigor which 

is “enough” for mathematicians. 

What informal proofs possess is an informal rigor. Most proofs found in mathematics 

textbooks and journals are informally rigorous. In modern mathematical contexts, rigor is a 

necessary condition for being a proof. I follow that convention and so ‘non-rigorous proof’ 

doesn’t exist. There are still non-rigorous purported proofs and non-rigorous arguments. 

According to Burgess above, informal rigor is related to formal rigor. A proof is informally 

rigorous when it exhibits enough formal rigor so as to convince mathematicians that a 

formal proof is possible. This relationship between informal and formal rigor is a version of 

the standard view which will comprise the bulk of our discussion in Chapter 1 and Chapter 

2. 

In the rest of Chapter 1, I’ll review some early discussions, and examples of, informal 

rigor. I’ll then discuss the literature on the standard view. While the standard view is 

appealing at frst glance, it faces a number of objections. Finally I’ll outline some extant 

alternatives to the standard view and the issues that arise with them. This chapter sets up the 
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rest of the dissertation, where in Chapter 2, I’ll raise new objections to the standard view. 

These objections motivate my own alternative view, presented in Chapter 3 and explored 

further in Chapter 4. 

1.1 Examples of Informal Rigor 

As we noted above, full formal rigor is not usually required of typical mathematical proof. 

Although there is no clear agreement about what informal rigor is, there is some discussion 

of its importance through the importance of informal proof. One of the most important 

features highlighted by Kreisel [1967, 1987], Lakatos [1976, 1978a], and Robinson [1991, 

1997] is the role informal rigor plays in defnitions and understanding. 

Kreisel [1967] is one of the earliest to argue for the importance of informal rigor. His 

analysis is also unique since it focuses on axioms and notions, not inferences. According 

to him, rigor aims at two things: ‘(i) to make [the analysis of intuitive notions] as precise 

as possible ... and (ii) to extend this analysis, in particular not to leave undecided questions 

which can be decided by full use of evident properties of these intuitive notions” [Kreisel, 

1967, 138-139]. In other words, informal rigor aims to take intuitive notions and produce 

precise, mathematical defnitions of them. This also leads us to the axioms. Kreisel [1967] 

goes on to provide examples of informal rigor at work. For example, he argues that our 

intuitive notion of ‘set’ was a vague concept and it was only by examining the intuitive 

notions that we arrived at mathematical defnitions and axioms. Kreisel [1987] argues that 

informal rigor should be invoked to understand discussions of Church’s Thesis. In each of 

his examples, the focus is on producing defnitions and axioms from informal notions. He 

justifes the use of informal rigor but does not tell us exactly how it works. He writes that 
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We do not pretend to have a theory of a mechanism which explains how we 

come to form intuitive notions which are so astonishingly successful ... But we 

regard it as absurd to reject the use of this ability just because we don’t have 

a theoretical explanation; this is what the formalist doctrine of precision does 

[Kreisel and Krivine, 1967, 169]. 

Kreisel’s view is that we somehow undertake an analysis of intuitive notions and produce 

defnitions and axioms from them. The ideal version of this analysis is informal rigor. He 

provides us with examples including the notion of set, the notion of validity, and Turing’s 

description of Church’s Thesis. But he does not tell us what informal rigor is and he doesn’t 

address the rigor of inferences in proof. 

While Kreisel was focused on the importance informal rigor plays in the discovery of 

notions, Lakatos [1976, 1978b] provide examples of the importance of informal proofs, 

which we assume to be informally rigorous. Lakatos [1978b] separates formal proofs from 

‘pre-formal’ and ‘post-formal’ proofs. Both pre-formal and post-formal proofs are informal 

proofs. Lakatos argues that these informal proofs play a key role in his Popperian, quasi-

empiricist account of mathematics. For Lakatos, formal systems should be formalizations 

of pre-established informal mathematical theory. He outright rejects the characterization of 

an informal proof as a formal proof with steps and references hidden. 

Lakatos gives an example of pre-formal proofs. Specifcally he turns to a proof of 

Euler’s theorem on simple polyhedra: V - E + F = 2, where V is the number of vertices, 

E the number of edges, and F the number of faces of the polyhedron. Lakatos claims that 

the pre-formal proof, which involves moves like ’assuming the polyhedron is made of thin 

rubber’, ’fattening it on a surface’, and even ’cutting and re-arranging it’, is “intuitively 

showing that the theorem was true” [Lakatos, 1978b, 64-65]. There is no defnition of 
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proof at the pre-formal level which allows us to decide whether this counts as a proof or 

“mere persuasive argumentation, rhetorical appeal” [Lakatos, 1978b, 65]. This example 

is explored in-depth in Lakatos [1976] where the discovery of various counterexamples 

to the proof results in refnement of the defnition of polyhedron. As Lakatos [1976] 

shows, it is important for the eventual defnition, and subsequent formal proofs, that we give 

and evaluate pre-formal proofs. Post-formal proofs, like those of the duality principles in 

geometry and undecidability are also informal proofs. According to Lakatos, these informal 

proofs are open to falsifcation: 

[Informal proofs] prove something about that sometimes clear and empirical, 

sometimes vague and ‘quasi-empirical’ stuf, which is the real though rather 

evasive subject of mathematics. This sort of proof is always liable to some 

uncertainty on account of hitherto unthought-of possibilities. [Formal proof] 

is absolutely reliable; it is a pity that it is not quite certain ... what it is reliable 

about [Lakatos, 1978b, 69] 

In other words, while formal proof gives us reliability, it does not take center stage in 

Lakatos’s discussion of proof. Rather, informal proof, with its potential for falsifcation 

through counterexample, is where most of the mathematical work happens. 

Robinson [1991] investigates the relationship between formal proofs and informal 

proofs. His main worry is that formal proof is incapable of satisfying the goal of in-

formal proof. Informal proofs aim to increase understanding.1 According to Robinson 

[1991, 1997], following an informal proof involves understanding the story as it devel-

ops and “grasping the meaning of the words and diagrams” [Robinson, 1991, 269]. For 

1Robinson does not adopt a specifc philosophical view regarding either understanding or explanation. 
He seems to believe we have a strong enough intuitive sense of what understanding and explanation are. 
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Robinson [1997], “PROOF = GUARANTEE + EXPLANATION” and he argues that for-

mal proofs can satisfy the guarantee but not the explanation component because they hide 

the meaning. He gives multiple examples of experiments which “go through an intuitive, 

rigorous proof which has a high degree of explanatory power” Robinson [1997]. Among 

these examples are the mutilated chessboard and the 27-subcube problem. Each proof is 

informal and invokes meanings, intuitive perception, and automatic operations. In sum, 

the rigor judgments in these experiments are meant to be independent of their ability to be 

formalized since the formalization would obscure their explanatoriness. 

The literature reviewed in this section did not give a defnition of informal rigor like the 

one in Burgess [2015]. However, they do comprise some of the earliest explicit discussions 

of the importance of informal rigor and informal proof. We also see some characterizations 

of what informal rigor and proof are about – understanding, communication, refning 

notions, and discovering defnitions and axioms. This literature recognizes a role for formal 

proof in terms of correctness while still demonstrating the importance of informal rigor and 

proof. But this leaves us with a question: how are we to relate informal and formal rigor, if 

at all? We turn to this question next. 

1.2 Some Varieties of Standard View 

We posed the obvious question at the end of the last section: how are informal and 

formal rigor related? The typical response in the literature is the standard view. Broadly, 

formulations of the standard view endorse the following: (a) privilege formal proof as 

being the ideal and (b) informal proofs qualify as rigorous because of their relationship 

to corresponding formal proofs. This is not just the claim that all informal proofs can be 

formalized (aka a formalization thesis). The standard view assumes a formalization thesis 
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and adds that informal rigor is determined by reference to formal rigor.2 In what follows, I 

review some major accounts of the standard view. 

One of the earliest, and most frequently cited, explicit formulations of the standard view 

is Azzouni [2004]’s derivation-indicator view. Azzouni argues that it is derivations in an 

‘algorithmic system’ which are characteristic of mathematical practice and, in particular, 

explain widespread mathematical consensus. An algorithmic system is a system which 

codifes the deductive rules for derivations such that “the recognition procedure for proofs 

is mechanically implementable” [Azzouni, 2004, 83]. Of course, Azzouni admits that 

derivations are not the currency of mathematical practice. Informal proofs are, according 

to Azzouni, indicators of a corresponding derivation. Azzouni asks quite a bit of his 

algorithmic systems – they are algorithmic but they are not restricted to a particular logic, 

subject-matter, or explicit language. He does this to ensure mathematicians can transcend 

these systems and are seen as “sprinting up and down algorithmic systems, many of which 

he or she invents for the frst time” [Azzouni, 2004, 103]. 

Whatever one may say of the algorithmic system, Azzouni must also tell us how math-

ematicians manage these systems and indicate the existence of derivations. This is particu-

larly difcult since mathematicians don’t have to know the rules codifed in an algorithmic 

system. To do so, Azzouni [2005, 2009] invoke the idea of an ‘inference package’ which 

is a “capacity to recognize the implications of several assumptions by means of the repre-

sentations of objects wherein those several assumptions have been knit together (psycho-

logically)” [Azzouni, 2009, 20]. These packages allow mathematicians to do what they 

normally do in informal proofs – recognize and tease out the implications of their assump-

tions without being aware of a formal derivation. The inference packages are rich enough 

2It’s probably for this reason that Tanswell [2017] refers to the standard view as a formalist-reductionist 
thesis. 
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to accommodate a wide set of algorithmic systems with which we reason compatibly. 

There are a number of questions and objections to Azzouni’s view. In part these 

objections focus on the seemingly mysterious nature of algorithmic systems, inference 

packages, and the indicator process. Let’s turn to a more precise formulation of the 

standard view given by Hamami [2019]. Hamami separates two diferent accounts of rigor 

– descriptive and normative. A descriptive account of rigor characterizes the mechanisms 

by which proofs are judged to be rigorous in practice. A normative account stipulates 

conditions that a proof ought to satisfy in order to count as rigorous. The standard view 

embeds both a descriptive and a normative account which is held together by the conformity 

thesis. The conformity thesis states that if a proof is rigorous in the descriptive sense, then 

that proof is rigorous in the normative sense. 

According to the normative component of the standard view, a proof is rigorous if it can 

be routinely translated into a formal proof. Hamami [2019] interprets ‘routinely translated’ 

as ‘algorithmic’ and attempts to provide algorithmic translations through four levels of 

granularity. He ofers three algorithmic translations which move (1) from vernacular 

proof to a higher-level proof comprised of higher-level inference rules, (2) from higher-

level proof to intermediate-level proof comprised of primitive rules of inference, and (3) 

from intermediate-level proofs to lower-level proofs comprised of rules in a system. In 

efect, Hamami [2019] de-mystifes the connection between informal and formal proofs by 

characterizing it as a sequence of algorithmic translations. Using his algorithmic method, 

and his distinction between the descriptive standard view and the normative standard view, 

he can answer a number of worries raised in the literature. According to the descriptive 

standard view, informal rigor is judged according to whether the mathematician can perform 

translation (1). The truth of the descriptive standard view, in conjunction with the conformity 

thesis, ensures the normative standard view. Moreover, the descriptive component can be 
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empirically tested, so, in theory, Hamami [2019] has provided an empirically testable 

argument for the standard view. We’ll discuss Hamami [2019]’s view in more detail in 

Chapter 2. 

As we noted before, Burgess [2015] also seems to endorse the standard view. Tatton-

Brown [2019] discusses Burgess [2015] as an example of the standard view. Although 

Tatton-Brown does not reference Hamami [2019], he gives an argument which could be 

seen as support for the descriptive standard view. Tatton-Brown roughly, and with diferent 

terminology, argues that students in analysis courses learn to prove with very detailed 

proofs. Then, as they progress through their courses, they learn to perform translations like 

Hamami’s frst translation when faced with less detailed proofs. By a sort of induction, 

Tatton-Brown argues that professional mathematicians are also engaged in giving proofs 

which they think can be translated into the highest level of detail and explicitness.3 We’ll 

re-visit Tatton-Brown’s arguments in Chapter 2. 

Many are implicitly committed to some version of the standard view since it straightfor-

wardly connects formal rigor and explanatory, communicative informal rigor. Azzouni’s 

and Hamami’s views comprise two vital interpretations of the standard view – an indicator-

based view and a translation-based view. As we will see in the next section, both of these 

interpretations face a number of objections. 

3Tatton-Brown has nothing to say about how mathematicians trained without a modern analysis course 
made rigor judgments. Nor does he explain how his argument works for those of us who learned analysis 
from Rudin [1976], an elegant industry-standard book which, starkly in contrast to Tatton-Brown’s choice 
of Abbott [2015], includes no explicit discussion of what proof is, which inferences are appropriate, or how 
much detail to provide. 
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1.3 Objections to the Standard View 

Having now set out some concrete versions of the standard view, we now turn criticisms 

which comprise a large part of the literature on rigor. I investigate three themes of criticism 

in this section. These three themes are the meaning-based objections, the diagram-based 

objections, and the translation-based objections. These are not the only ways to object to 

the standard. For example, Larvor [2016a] objects on the basis that a naive derivation-

indicator view produces a problematic regress. Tanswell [2015, 2017] both argue that the 

standard view is over-generative: for any informal proof, there are many corresponding 

formal proofs. Tanswell argues that there is no agent-independent link which selects the 

‘correct’ formal proof. Antonutti Marfori [2010] objects that the standard view creates 

an epistemic demand on mathematical knowledge that is not met in practice. Further, I’ll 

introduce new objections in Chapter 2. 

1.3.1 The Meaning Objections 

The name ’the meaning objection’ hardly does justice to the complex of ideas which goes 

into the objections. Broadly speaking, these objections argue that the standard view cannot 

be the correct account of informal rigor since rigor is related to grasping the concepts being 

manipulated. As Lakatos noted, the formal proof is certain, but it’s not clear what it’s talking 

about. We can see this as an early characterization of the meaning objection. Burgess [2015] 

calls this the paradox of rigor: any truly rigorous treatment of a subject matter will ipso 

facto cease to be a treatment of the subject matter alone. This is because formal logic 

is topic-neutral. Any formal proof cannot encapsulate topic-specifc information like the 

meaning of ‘polygon.’ So in formalizing a proof, one moves from engaging in topic-specifc 

subject matter to topic-neutral logical inferences on the syntactic forms. This is a problem 
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for the standard view because informal proofs seem to require a grasp of the subject matter, 

not manipulation of symbols. This is exhibited in both Lakatos [1976]’s and Robinson 

[1991, 1997]’s examples. One of the most sustained versions of the objection is found in 

Rav [1999, 2007] who directly engages with Azzouni’s derivation indicator view. 

Rav [1999] distinguishes between derivations which are syntactic objects of formal 

systems and proofs which are conceptual and have irreducible semantic content. Rav 

[1999] criticizes ‘Hilbert’s Thesis’, which is the idea that every informal proof can be 

converted into a derivation in a suitable formal system. ‘Hilbert’s Thesis’ is not yet the 

standard view, rather it is a formalization thesis. But, as we noted above, a formalization 

thesis is presupposed by the standard view. Rav [1999] argues that mathematical proofs, 

not theorems or derivations, are the sites of mathematical knowledge and, since conceptual 

meanings are lost in formalization, so is epistemic content. Note, again, that these are 

arguments against replacing proof with formal proofs and they are used to motivate a 

primary view of Rav’s own which I’ll discuss in sub-section 1.4.1. 

Rav [2007] is directly against the derivation-indicator view espoused by Azzouni [2004]. 

He writes that “when it comes to the nature of the logical justifcation of mathematical 

arguments in proofs ... Azzouni put[s] his faith in formal derivations, even if just indicated 

... I hold that mathematical proofs are cemented via arguments based on the meaning of 

the mathematical terms” [Rav, 2007, 294]. Rav examines the historical and methodological 

wealth of proof practices and concludes that the derivation-indication criterion cannot 

sustain rigor judgments in all these cases. Moreover, Rav argues, once we have an informally 

rigorous proof, the formal proof does not increase reliability. Formalizing the proof can 

only occur if the informal proof, including its mathematical concepts and informal logic, 

are already verifed to be reliable.4 The formal proof adds nothing to reliability. Azzouni 

4The informal logic of mathematics that Rav cites is Aberdein [2006]’s analysis. 
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[2009]’s response to the meaning objection is that the inference packages make it seem like 

mathematicians engage primarily with semantic content. But since inference packages are 

consistent with algorithmic systems, this concept-based reasoning is in line with the SV. Of 

course, this response is only satisfactory to the extent that (a) Azzouni’s algorithmic systems 

are sustainable and (b) inference packages provide a satisfactory account of mathematical 

cognition. We will re-visit (a) in sub-section 1.3.3. 

Thus, Rav’s meaning-based objection to the standard view is this: topic-specifc se-

mantic information is central to justifcation but cannot be in the formal proof. Judgments 

about goodness and rigor of informal proof cannot be grounded in the formal proof, since 

formal proofs typically lack semantic information. This is not the last we’ll hear about the 

meaning-based objection since we will re-visit the positive component in Section 1.4. 

1.3.2 The Diagram Objections 

The second class of objections are related to the role of diagrams and visual reasoning in 

informal proof. Take, for example, Euclid’s Elements which invokes visual reasoning and 

diagram manipulation. The diagram-based inferences in Euclid have proved to be success-

ful, fruitful, and largely reliable. Proofs in knot theory and low-dimensional topology also 

employ diagrammatic proof and modern mathematicians classify these proofs as rigorous. 

But under the standard view, rigor judgments are justifed in relation to a formal proof. Thus, 

an immediate worry arises: diagrammatic reasoning seems to be important and informally 

rigorous but difcult to relate to formal proof. 

Manders [2008] sees mathematical practice as a cooperative efort for control. Under 

his view, traditional geometrical demonstrations include both a discursive component and a 
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diagram. The discursive text attributes assertions to the diagram and steps in the demonstra-

tion can be either attributions or constructions in the diagram. Manders [2008] introduces 

two types of attributions: exact and co-exact. He claims that the fallacies of diagram use 

involve the presupposition that one can read exact information of a diagram. The fallacies 

are the supposed problems with diagram use; specifcally they encompass the worry that 

diagram use is unreliable and leads to false conclusions. This is not the case. Exact attri-

butions cannot, and are not, read of of the diagram. The reason for this is that co-exact 

features, e.g. that one region includes another, are unafected by continuous variation of 

a diagram. On the other hand, exact features, like the straightness of a line or the size of 

an angle, are not stable under continuous variation. By invoking this distinction, Manders 

[2008] argues that exact attribution is licensed only by the discursive text, while co-exact 

attributions can be licensed by either the diagram or the discursive text. By invoking these 

controls, the Euclidean geometer avoids disarray and incorrect inference, i.e. he avoids the 

fallacies of diagram use. According to Manders [2008], the diagram-based inferences are 

rigorous and succeed at the cooperative efort to control. 

Manders [2008] is not directly raising an argument against the standard view. He’s 

interested in describing the reliability and practice of Euclidean geometry. But the reliability 

that Manders [2008] explains does lead to an objection. In diagrammatic proof, reliability 

and justifcatory work is done by methods of control in the diagram. The objection requires 

another claim: these methods of control cannot be translated to formal proof. There are two 

ways to interpret “cannot be translated.” The frst interpretation is an anti-formalization 

thesis: there is no way to formalize the diagrammatic moves. The second interpretation 

is that the reasoning in diagrammatic proof cannot be faithfully translated. The second 

objection provides a stronger objection but is less feshed out. 

The frst response available to the standard view is in Azzouni [2013] which focuses on 
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diagram use generally, not just Euclidean diagrams. Azzouni admits that proofs invoking 

diagram use can be rigorous. One must be careful about the scope of conclusions that 

are read of diagrams but, given such care, there’s no reason to reject diagram usage as 

unreliable. But he rejects the claim that this informal rigor judgment is not related to 

formal rigor. To ft diagrams into the derivation-indicator view, Azzouni claims that what 

the diagram licenses is actually mechanically recognizable. There are properties of the 

diagram that can be mechanically recognized as an admissible rule in a suitable algorithmic 

system. Again, we see that the force of Azzouni’s reply lies in a coherent concept of 

algorithmic systems. 

A much stronger reply to the anti-formalizability diagram objection is to show that 

many diagrammatic proofs can be formalized. Although this is not the intended aim of 

Avigad et al. [2009], their formal system for Euclid’s Elements is an impressive move in that 

direction. Avigad et al. [2009] are clear that they intend only to create a formal system which 

models the proofs of the Elements. They identify and precisify the individual inferences 

which govern Euclid’s proofs. They aim only to provide the description and formalization 

of the norms, without explaining why the norms arose or why they should be followed. 

Showing that we can produce a formal system for the Elements undermines the claim that 

diagrammatic reasoning cannot be formalized. 

The second interpretation of the diagram objection is harder to characterize. But the 

core of the objection is this: even though one can formalize diagrammatic proofs, the new 

formal proof is importantly diferent. As Larvor [2019] puts it: ‘traduttore traditore’ which 

means that every translation traduces. According to Larvor, we should be looking at the 

Euclidean proofs only in their original idioms. These idioms are both context-dependent 

and content-dependent. The meaning and allowable actions in that context matters to how 

we judge the proof. We should not translate and then judge the proofs. He specifcally 
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relates this problem to Avigad et al. [2009]; according to Larvor, the proofs of the Avigad 

et al. [2009] system may have the same results, but they do not have the same inferences. 

As in Manders [2008], Larvor [2019] goes on to characterize requirements on rigorous 

diagrammatic proof which do not relate to formal proofs. 

Recent work on knot theory, which Larvor [2019] discusses, raises the issue more 

explicitly. For example, by examining determinate case studies in early knot theory, de 

Tofoli & Giardino challenge the “model of formal logic as adequate to account for proof” 

[De Tofoli and Giardino, 2016, 27]. Clearly they are talking about the standard view, as 

Tatton-Brown [2019] points out. De Tofoli and Giardino [2016] provide an account of 

how the proof of Alexander’s Lemma works, ie how it is judged to be rigorous, without 

reference to an associated formal proof. Tatton-Brown [2019], in adopting a Burgess [2015] 

inspired version of the standard view, argues that the inferences used in proving Alexander’s 

Lemma are not inconsistent with the standard view. This leads to a refnement of the 

original argument, found in De Tofoli [2021]. De Tofoli [2021] accepts that the proof is 

not inconsistent with the standard view but she rejects Tatton-Brown [2019]’s interpretation 

which classifes De Tofoli and Giardino [2016] as an anti-formalist argument. However, 

De Tofoli still endorses an adapted anti-formalist thesis: “there is a reasonable way to 

individuate proofs such that if topological proofs involving visualization are converted into 

formal proofs, they are thereby transformed into a diferent proof” [De Tofoli, 2021, 18]. 

We do not yet have a description of the individuation criterion that De Tofoli mentions. 

To recap, then, we see a similar feld of play in both the discussions on traditional 

Euclidean geometry and modern knot theory. The original objection is raised as strictly 

anti-formalization: diagrammatic proofs cannot be translated into formal proof. This is 

too strong and the standard view proponent has promising examples to the contrary. The 

better diagram objection lies in the claim that the new formal proof is diferent in some 

15 



important way. For both Larvor [2019] and De Tofoli [2021] there is some individuation 

criterion which makes the inferences or the proof diferent. This matters for the standard 

view because the informal proof must either indicate or translate into the formal proof. If the 

formal reasoning is so relevantly diferent, then justifcation is not a matter of recognizing 

routine translation. Even worse, the idea that the informal proof could indicate a vastly 

diferent formal proof is seemingly untenable. 

1.3.3 The Translation Objections 

One way of reading the standard view, in particular Hamami [2019]’s reading is that the 

connection between the informal proof and the formal proof is one of algorithmic translation. 

This worry does not arise exclusively for Hamami [2019], as Azzouni [2004] also relies on 

the notion of algorithmic systems. In this section, we look at translation objections which 

argue that the translation from informal to formal proof cannot be algorithmic. 

Rav [2007]’s second aim is at Azzouni’s notion of an algorithmic system. As we 

hinted at above, and as Rav argues, an algorithmic system must be formally specifed so 

that the derivations are formal proofs. But Azzouni also wants these algorithmic systems 

to be easily manipulable and transcend-able to match his view of mathematical practice. 

Again Rav distinguishes between proofs, which is a non-technical term, and derivation 

which is a technical term. For a derivation, there must be a formal object language T with 

explicit syntactical and inferential rules. A derivation is a fnite sequence of formulas in 

T where each formula is either a logical axiom, an axiom of T, or a result of applying 

one of the explicit rules of T. Given Azzouni’s claims about derivations in an algorithmic 

system, Rav points out that the above defnition of derivation is a fair characterization. 

But then an algorithmic system must be algorithmic, ie it must operate on a fxed formal 
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language. The problem arises, though because Azzouni’s algorithmic systems are meant 

to mechanically recognize the validity of informal proofs. Informal proofs do not have a 

fxed formal language. If the minimal requirement of operating on a fxed formal language 

cannot be met, then algorithmic systems are really a misnomer for a completely unspecifed 

non-algorithmic system. 

Hamami [2019] also claims that each of the translations (1), (2), and (3) described in 

Section 1.2 are algorithmic. The worry occurs at translation (1) which takes us from the 

vernacular proof to the higher-level proof. The vernacular proof much like the derivation-

indicator proofs is written in English. English is not a fxed formal language with explicit 

syntactical and inferential rules. So, again, this translation cannot be an algorithm in 

the technical sense. Moreover, Hamami [2019] needs it to be an algorthmic process in 

the technical sense because he equates ‘routine translation’ with ‘algorithmic translation.’ 

Routine translation serves as the bridge between informal and formal proof for Hamami 

[2019]. If he cannot rely on the algorithmic component, he must introduce a new defnition 

of ‘routine,’ most of which will not have the formal backing that appeals to the standard 

view. I’ll spell out a new objection to translation-based standard views in Chapter 2. 

Both Azzouni [2004] and Hamami [2019] rely on the technical nature of algorithms to 

argue that the translations required by the standard view are routine or identifable. But the 

technical defnition of algorithm requires a fxed formal language. Both authors attempt to 

apply algorithmic translations to vernacular, informal proofs which lead to contradictory 

claims about the nature of the translations. 
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1.4 Alternatives to the Standard View 

The standard view and responses to it comprise most of the literature on informal rigor. 

We’ve seen three types of objections to the standard view which are compelling. Here we 

turn to a few alternative accounts of informal rigor. These accounts are typically born out 

of a criticism of the standard view. Moreover, these accounts are not anti-formalization 

accounts. Many of them admit that formalizing proofs can be a worthwhile study for both 

logic and proof theory. The issue arises with the further claim of the standard view which 

evaluates informal rigor in terms of its relationship with formal rigor. 

1.4.1 The Meaning Account 

Let’s return for the fnal time, to the Rav-Azzouni debate. In addition to Rav’s criticisms 

of the standard view, he provides his own account of informal proof and informal rigor. 

Unsurprisingly, the account he provides is one based on what he calls the irreducible 

semantic content of the proof. 

The objections that Rav [1999, 2007] raises against the standard view produces a natural 

positive account. Rav claims that vital semantic content is lost in translating an informal 

proof to a formal one. Rav also claims that it is this semantic content that cements the 

informal proof. Given this characterization of informal proof, we also get a characterization 

of informal rigor. Judgments of informal rigor are related to the semantic content of the 

proof. Rav is not the only proponent of the view, Robinson also wrote that “unformalized 

proofs ... are judged to be rigorous (or not) directly, on the basis of criteria which are 

intuitive and semantic” [Robinson, 1997, 54]. The meaning-based account, much like 

the meaning-based objection, is tied to the idea that informal proofs provide a level of 

conceptual understanding which is lost in the formal proof. 
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One of the benefts of this view is that it connects a thread lost by the standard view. 

As we saw in Section 1.1, informal rigor was originally tied to defnitions, notions, and 

understanding. This connection was lost by the standard view where informal rigor merely 

pointed to formal proof which was topic-neutral and difcult to parse. The standard view 

often left the understanding of concepts out of rigor’s domain. The meaning account 

brings this back into focus. But, as Hamami [2019] points out, the meaning account is 

under-specifed.5 We have no clear account of what ‘intuitive’ or ‘semantic’ means in these 

accounts. The meaning account must answer those questions. To answer these questions, 

one might return to a view like Kreisel [1967] where informal notions from natural language 

are being examined. 

The meaning account aims to incorporate some of our earliest observations about 

informal rigor: it’s related to grasping the meaning of certain terms, it’s content and context 

dependent, it’s related to the notions, and it treats Burgess [2015]’s paradox of rigor as a 

signifcant problem. That being said, it is not entirely clear what semantic content is or how 

we reliably make rigor judgments on that basis. 

1.4.2 The Action Account 

The action account is intimately tied to the diagram objection. The core idea is that certain 

actions, specifcally inferential actions, are rigorous. The view holds that informal rigor is 

determined on the basis of certain actions, not formal proofs. 

Larvor [2012] is the main proponent of this view. Larvor starts with something very 

similar to the meaning-based claim: “the validity or invalidity of essentially informal argu-

ments does not depend on their logical form alone, but also on their content” [Larvor, 2012, 

5Hamami [2019] actually raises this against Robinson’s version of the meaning objection. But it clearly 
seems to afect the positive view as well. 
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720]. The essentially informal arguments Larvor discusses are exactly those arguments 

which, when translated to a formal proof, lose something. According to Larvor, the content-

specifcity is what defnes them. But, contrary to the meaning account, this is not the end 

of the characterization. Larvor reminds us that each move in a proof is not just a linear shift 

between propositions, but a genuine inferential action. This gives us the following account 

of rigor: 

[Informal arguments] are rigorous if they conform to the controls on permis-

sible actions in that domain. An action demonstrating (by performance) the 

possibility of a new gymnastic feat had better conform to the rules of gymnas-

tics; ice-core samples must be kept free of contamination; and so on. [Larvor, 

2012, 724] 

So what we have is a domain-specifc set of actions used to judge the rigor of a proof. If a 

proof conforms to those actions, then it is informally rigorous. This account applies well 

to diagrammatic proof where, as we saw in Manders [2008] and Larvor [2019], rigorous 

diagrammatic proofs were defned in terms of actions which exhibited certain control. 

One of the issues with this view is similar to the worries raised by Azzouni [2004] and 

Tatton-Brown [2019]. What counts as a rigorous action according to this view is defned 

in terms of rules. The issue is where we derive the rules. In the case of gymnastics, rules 

and regulations are set by governing committees. There is no such governing committee for 

mathematics. Mathematicians are fairly reliable at judging what is rigorous, but as Tatton-

Brown [2019] points out, there’s no reason to think that a community’s way of reasoning 

is necessarily accurate. Moreover, Tatton-Brown [2019] objects to the community-based 

view of appropriate actions since new branches of mathematics must be introduced before 

there is a defned community for them. 
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Like the meaning-based account, the inferential-action account places judgments of 

informal rigor in the informal proof. Here the focus is on admissable actions defned by a 

community. The standard view opponent needs to clarify who is setting the standards, how 

they earn that power, and why those standards are reliable. 

1.4.3 The Agential Virtue Account 

The fnal alternative account is the agential virtue account proposed by Tanswell [2017]. 

While Tanswell [2015, 2017] both raise objections to the standard view, the agential virtue 

account is not born directly from these objections. 

Tanswell [2017] argues that we should think of rigor as an agential virtue; in other words 

rigor is a characteristic of the mathematician. This is a result of his argument that we should 

take a virtue approach to mathematical epistemology. According to this view, it is through 

virtuous acts that we gain knowledge. Applying this to math, we get the uniquely virtuous 

acts involved in proving. Rather than permissible acts, as discussed in the last section, we 

now focus on virtuous acts. Rigor is a “an acquired character trait and excellence specifc 

to mathematical practices” [Tanswell, 2017, 180]. Thus he separates rigor into three types: 

formal rigor of derivations in formal systems, informal rigor of communal standards and 

norms, and rigor as an agential virtue. 

The agential virtue account raises a number of further questions. For example, what 

does it add to the communal or action account to say that certain mathematicians are rigor-

ous? And how exactly is a rigorous mathematician defned, if not in terms of community 

standards? While Tanswell has used the overall framework to examine problems in the 

philosophy of mathematics, as in Tanswell and Kidd [2020] and Tanswell and Rittberg 

[2020], the specifc aspect of rigor as a virtue needs investigation. 
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The goal of this chapter has been to review the literature on informal rigor. In Section 

1.1, we examined some of the earlier accounts of informal rigor. We then turned to the 

standard view, described in Section 1.2 and objections to it in Section 1.3. We looked at 

some alternatives in Section 1.4. Overall, the standard view held some intuitive appeal but 

it has not yet fully answered the objections against it. On the other side, the alternative 

proposals raise a number of questions of their own. 

1.5 Outline of the Dissertation 

This dissertation aims to characterize a new view of rigor which adopts some of the appealing 

components of each of the alternative views and locates rigor in relation to conviction. 

Next, in Chapter 2, I work through three general categories of standard view. I present 

new objections to each of the three categories. One of the main takeaways is that mathemati-

cians are convinced of the steps of the informal proof itself, not that some other formal proof 

could exist. The notion of conviction is a key component of the audience view developed 

in Chapter 3 and Chapter 4. 

In Chapter 3 I give a new account of rigor which is driven by the imagined universal 

audience. I argue that a proof is completely rigorous when each step is one that the 

mathematician’s universal audience assents to. Each inference is judged to be rigorous 

when it convinces one’s universal audience. For the mathematician, this amounts to the 

judgment that the inference would convince everyone. The audience view escapes the 

objection I posed to the standard view, since the mathematician judges that each inference is 

convincing, not that some other object could exist. I also argue that my account is superior 

to the standard view since the audience view accommodates a gradable notion of rigor. A 
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proof is more rigorous than another when it has more inferences to which the universal 

audience assents. 

In Chapter 4, I connect the audience view of rigor to core issues in social epistemology. 

The audience view claims that rigor judgments depend on social features, including who 

participates in mathematical practice. Given that participatory injustices seem to occur in 

mathematical practice, I argue a mathematician’s universal audience will be infuenced by 

those injustices. I argue that eliminating participatory injustice will lead mathematicians 

to have a more robust universal audience. A more robust universal audience leads to rigor 

judgments that are more stable over time. I argue that participatory injustice is detrimental 

to the proofs, as well as the participants. This provides a new reason to both eliminate 

participatory injustice in mathematics and to diversify the profession. In Chapter 5, I 

conclude and discuss some future issues that a social epistemological approach to rigor 

must address. 
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Chapter 2 

New Objections to the Standard View of Rigor 

In Chapter 1, we saw some introductory discussion of both the standard view of rigor and 

three types of objections to the standard view. In this chapter, I’ll argue, as others have 

before me, that the standard view does not give a satisfactory account of rigor. Unlike 

previous discussions of the standard view, I’ll use Burgess and De Tofoli [2022]’s choice 

points to mount objections to each possible type of standard view. The three choice points 

are how the informal proof is related to its formal counterpart, whether the formalization 

must be actual or merely potential, and whether the conversion is routine. The objections 

of this chapter are more general than those seen in Chapter 1 since they don’t focus on any 

single version of the standard view. 

First, in Section 2.1, I set out the target phenomenon of a theory of rigor. I’ll outline 

some goals for an account of rigor and an example of rigorous proof. In Section 2.2, I’ll turn 

to Burgess and De Tofoli [2022]’s summary of the standard view. They give a few choice 

points resulting in diferent versions of the standard view. In Section 2.3 through Section 

2.5, I discuss each of those versions. In each section, I’ll argue that each version of the 

standard view fails to account for how mathematicians make rigor judgments. I draw some 

overall conclusions about why the standard view fails and suggest we turn to alternative 

accounts. Such an account will be given in Chapter 3. 
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2.1 Target Phenomenon 

There are two goals for this section. The frst goal is to give an example of a mathematical 

proof which is rigorous. The second is to refne the goal of our study. More specifcally, 

I’ll argue that we’re trying to give an account of rigor which answers two questions. First, 

what features of a proof makes it rigorous? Second, how do mathematicians judge that a 

proof has those features? 

But let us begin with a proof. The proof is from [Casella and Berger, 2002, 58] and 

shows that the expected value of a random variable � (denoted � �) minimizes the distance 

� (� − �)2. This fact plays an important role in the development of well-behaved estimators 

used in linear regression. The proof is reproduced below. 

Suppose we measure the distance between a random variable � and a constant 

� by (� − �)2. The closer � is to � , the smaller this quantity is. We can now 

determine the value of � that minimizes � (� − �)2 and, hence, will provide us 

with a good predictor of � . (Note that it does no good to look for a value of 

� that minimizes (� − �)2, since the answer would depend on � , making it a 

useless predictor of � .) 

We could proceed with the minimization of � (� − �)2 by using calculus, but 

there is a simpler method. ... Using the belief that there is something special 

about � � , we write 

� (� − �)2 = � (� − � � + � � − �)2 

= � ((� − � �) + (� � − �))2 (2.1) 

= � (� − � �)2 + (� � − �)2 + 2� ((� − � �) (� � − �)) 
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where we have expanded the square. Now, note that 

� ((� − � �) (� � − �)) = (� � − �)� (� − � �) = 0 (2.2) 

since (� � − �) is constant and comes out of the expectation, and � (� − � �) = 

� � − � � = 0. This means that 

� (� − �)2 = � (� − � �)2 + (� � − �)2 . (2.3) 

We have no control over the frst term on the right-hand side of [2.3], and the 

second term, which is always greater than or equal to 0, can be made equal to 

0 by choosing � = � � . Hence, 

min � (� − �)2 = � (� − � �)2 . (2.4)
� 

This proof is considered rigorous by mathematicians. The textbook from which it’s copied 

is commonly used as a theory-heavy introduction to mathematical statistics. The proof 

requires some background knowledge including for example the linearity of expectation, 

that the expected value of a constant is the constant itself, some notational facts, and how 

to expand a square. But it is overall a simple and straightforward proof, especially when 

compared to a calculus-heavy counterpart. What we’ll see later is that this proof turns on 

the clever (but not wildly inventive or insightful) decision to add and subtract � � since we 

believe “there is something special about � � .” 

With a rigorous proof directly in our minds, let’s now look at what a theory of rigor 

aims to provide. The mathematician, at the end of the proof, knows that min� � (� − �)2 = 

� (� − � �)2. Philosophers of mathematics, I take it, are interested in how following the 
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proof can justify the mathematician’s knowledge of the theorem. We’re not just interested 

in the mere fact that the truth of the premises guarantees the truth of the conclusion, as 

that’s validity. We’re interested in how mathematicians come to know that the conclusion 

is true. Informal rigor is the element required to have, and share, mathematical knowledge 

in practice. It governs claims to justifcation in modern practice. The epistemological aim 

of giving or reading a proof is to establish the conclusion with as much certainty as the 

axioms. 

Informal rigor, then, seems deeply tied to mathematical knowledge. If that’s true, then 

what we’re seeking in a theory of rigor is a theory which makes sense of rigor in practice. 

We want a theory of rigor that does not just describe which proofs are rigorous or prescribes 

which proofs should be rigorous. We want a theory of rigor that explicates mathematician’s 

judgments of rigor. In other words, a theory of rigor which only answers “what feature(s) 

of the proof make it rigorous” is not complete since it fails to explain how rigor is judged, 

and therefore, fails to explain how knowledge is generated in practice. A theory of rigor 

must also include a plausible story about how mathematicians judge a proof to be rigorous. 

In this section I hope to have motivated two core assumptions. The frst core assumption 

is that a theory of rigor ought to identify the feature(s) that makes proofs like the Casella 

and Berger [2002] one rigorous. Second, a theory of rigor ought to account for how 

mathematicians make that judgment. In the following sections, I’ll argue that the standard 

view’s answer to the frst question precludes a satisfactory answer to the second question. 

2.2 A Picture of the Standard View 

The goal of a study into rigor is to determine two things: what makes a proof rigorous and 

how mathematicians judge the rigor of proofs. This chapter focuses on a subset of answers 
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to the frst question often called standard view of rigor. This section focuses on examining 

the overall structure of the standard view and the theses it requires. To do so, I follow the 

survey provided in Burgess and De Tofoli [2022]. In the sections that follow, I’ll look at 

more detailed accounts falling under the standard view. 

Burgess and De Tofoli [2022] formulate the standard view as follows: 

STANDARD VIEW: A mathematical argument is a rigorous proof if and only 

if it can in principle be converted into a formal derivation. 

where a formal derivation is a derivation in some suitable formal deductive system. This 

description of the standard view is sometimes called a formalization thesis – that every 

rigorous proof has a formal counterpart. Of course, ‘formal counterpart’ can be spelled 

out in diferent ways. Likewise, as Burgess and De Tofoli [2022] note, this defnition is 

incomplete. The phrase “it can in principle be converted” requires defnition and refnement. 

Burgess and De Tofoli [2022] raise three choice points. The answer to each results in 

diferent formulations of the standard view. The frst question, (A), is “how are the steps of 

the informal proof and the ones of its formal counterpart related?” The second question, 

(B), which we’ll largely set aside for this paper, is whether the formalization is actual or 

merely potential. The fnal question Burgess and De Tofoli [2022] raise is whether the 

conversion of a proof consists in a routine translation. The third question, (C), is often 

related to the frst; for example, in Hamami [2019] routine translation answers how the steps 

of an informal proof are related to a formal one. 

The second question is a red herring for this debate. It seems obvious that there are 

many rigorous, informal proofs which do not yet have formal counterparts. Likewise, 

mathematicians do not seem to require a formal proof to judge the rigor of an informal 

proof. I am unsure of whether any fully formal proof exists of Casella and Berger [2002]’s 
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proof that min� � (� − �)2 = � (� − � �)2. But I don’t need to fnd one in order to 

determine whether the textbook proof is rigorous. Focusing on which proofs have formal 

derivations and which merely have formal derivations in principle sidetracks us from the 

more philosophically rich debates in Burgess and De Tofoli [2022]’s questions (A) and (C). 

Question (A) focuses on how the steps of the informal proof relate to those of the formal 

proof. Burgess and De Tofoli [2022] ofer the two following possible answers: 

1. (A.1) The formalized versions of the steps of the informal proof are components of 

the formal proof. Therefore, the process of formalization is (apart from transcription 

into special symbols) one of flling in. 

2. (A.2) Parts of the informal proof, such as passages of reasoning with diagrams, though 

converitble into a sequence of formal steps, are not themselves expressible as informal 

counterparts of propositions of any of the usual formal systems. 

The choice between (A.1) and (A.2) generally lies in one’s interpretation of diagrammatic 

proof. De Tofoli [2021], for example, argues that some parts of diagrammatic proof are not 

expressible as informal counterparts of propositions in the formal derivations. If true, these 

arguments put serious pressure on (A.1), though there are many philosophers who believe 

that the informal diagrammatic inferences are, in a suitable formal system, the components 

of the formal proof. These philosophers are bolstered by work such as Avigad et al. [2009]’s 

formal system for Euclid’s Elements. As Burgess and De Tofoli [2022] note, an account 

of rigor shouldn’t rule out entire swathes of mathematical proofs. So whichever choice one 

makes with respect to Question A, it ought to allow for rigorous diagrammatic proof. 

The second question I’ll focus on is Question (C). (C) asks whether routine translation is 

the process by which informal proofs are converted to formal proofs. There are two options 

which cover all possible responses. 
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1. (C.1) Converting a proof into a formal proof is done by a routine translation. 

2. (C.2) Converting a proof into a formal proof requires more than a routine translation. 

As we’ll see in Section 2.3, there are multiple ways of interpreting routine translation. But 

the general idea is that a routine translation is straightforward, simple, or involves very little 

invention. We shouldn’t interpret routine as being synonymous with fast or short. As with 

many algorithms, there may be many steps which take a long time to perform. But the 

nature of the steps is routine and non-creative. We can think of routine translation as being 

similar to the work of Steiner [1975]’s logician midwife who never adds to the creative 

process but helps the mathematician birth his proof. 

The decision between (C.1) and (C.2) is related to the decision made in (A). As Burgess 

and De Tofoli [2022] themselves note, the choices (A.2) and (C.1) seem incompatible. If 

we view routine translation as a simple, algorithmic, or non-inventive process, then a routine 

translation is incompatible with the view that parts of the informal proof are inexpressible 

in the formal system. The reasoning of the formal proof would have to supplant the original 

reasoning through a creative, or non-routine method. In other words, inventive, creative, or 

heuristic work is necessary for converting the inexpressible. 

Setting aside responses to (B) and the incompatible combination of (A.2, C.1), we have 

three general routes a standard view can take. The three routes are characterized in the 

following way: 

1. (A.1, C.1) The formalized version of the steps of the informal proof are components 

of the formal proof. Formalization is a process of flling in. Moreover, flling in is 

performed by a routine translation. 
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2. (A.1, C.2) The formalized version of the steps of the infomal proof are components 

of the formal proof. Formalization is a process of flling in. But the process of flling 

in requires more than a routine translation. 

3. (A.2, C.2) Parts of the informal proof are convertible into a sequence of formal steps. 

But these parts aren’t expressible as informal counterparts of propositions in any usual 

formal system. Moreover, the formal proof is reached by a non-routine translation. 

This leaves us with three versions of the standard view to discuss: (A.1, C.1), (A.1, C.2), 

and (A.2, C.2). Burgess and De Tofoli [2022] point out that there might be more nuanced 

answers to either of (A) or (C). But they don’t point to authors with more nuanced answers 

and, to my knowledge, the routes characterized are representative of the positive literature 

on the standard view. If each faces signifcant objections, then it will be worthwhile to 

explore alternative views of rigor in more detail. This is what I’ll focus on in the rest of this 

chapter. 

The purpose of this section has been to give a picture of the standard view of rigor 

using Burgess and De Tofoli [2022]’s choice points. In the following sections, I look at the 

three possible views and argue that they fail to account for mathematical practice. To do so, 

I’ll take a published version of the view as an example but draw more general conclusions 

based on the generic features of the view. 

2.3 Filling in the Steps by Routine Translation 

Classifcation (A.1, C.1) is one of the most appealing versions of the standard view for 

proponents of formal rigor since it provides the tightest connection between informal rigor 

and formal derivations. It’s also the most stringent version since it places requirements 
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on both the informal proof and the process of translation. The (A.1, C.1) version of the 

standard view has the following consequence: an informal proof is rigorous if each of the 

steps in the informal proof can be routinely translated into those of a formal derivation. For 

the rest of this section, I’ll sketch Hamami [2019]’s view which sees routine translation as 

an algorithmic translation. Ultimately I’ll argue that views of the (A.1, C.1) variety fail to 

account for the frst step in translation – that of flling in the gaps via informal sub-proof. 

Hamami [2019] separates an account of rigor into three parts: a descriptive account, a 

normative account, and a linking thesis. Here is how Hamami describes the diference: 

A descriptive account of mathematical rigor provides a characterization of 

the mechanisms by which mathematical proofs are judged to be rigorous in 

mathematical practice; a normative account of mathematical rigor stipulates 

one or more conditions that a mathematical proof ought to satisfy in order to 

qualify as rigorous. [Hamami, 2019, 3] 

In other words, a descriptive account is one that explains how proofs are judged to be 

rigorous in practice while a normative account tells us what a proof ought to satisfy in 

order to qualify as rigorous. A proof which is rigorous according to a descriptive account is 

rigorous� while a proof which is rigorous according to a normative account is rigorous� . 

It is important to note that the descriptive accounts still involve evaluation. Rigorous� 

judgments are evaluative since they might exhibit implicit rules governing rigor judgments 

in practice. These norms might be built into the mechanisms by which proofs are judged to 

be rigorous. 

Hamami’s descriptive account of rigor aims to give an account of the mechanisms by 

which mathematicians judge proofs to be rigorous. Each proof P is composed of a set 

of inferences I. Each mathematician is engaged in a mathematical practice M. A proof is 
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rigorous when it has been completely verifed, i.e., all of the inferences it contains are 

verifed. According to Hamami, giving a descriptive account of rigor amounts to giving an 

account of how proofs are verifed to be valid within the mathematical practice.1 

According to Hamami, judging a proof to be rigorous involves two kinds of processes. 

The frst set of processes involved is decomposing a proof into a set of immediate mathemat-

ical inferences. A mathematical inference is immediate for a given agent if she can evaluate 

it as valid without introducing intermediate steps of deduction. For example, instances of 

modus ponens are immediate inferences. Once decomposed, the proof is verifed according 

to verifcation processes. Thus, letting �� be the set of decomposition processes and �� 

be the set of verifcation processes, we have the following re-formulation of a descriptive 

account. The set �� consists of processes � that map an inference � to either valid or 

invalid. 

A mathematical proof P is rigorous�,� 

⇐⇒ 

For every mathematical inference I in P there exist � ∈ �� and �1, ..., �� ∈ �� such that 

(1) � (�) = ⟨�1, ..., ��⟩ and (2) �� (��) = valid for all � ∈ [1, �]. 

Providing a full descriptive account of rigor amounts to providing an account of �� and 

�� . As Hamami notes, the decomposition processes �� “required to turn the mathematical 

inference �1, ...�� → � into a sequence of immediate mathematical inferences is identical 

to the proof search process required to prove the mathematical proposition ‘if �1, ..., �� 

then C.’ Decomposition processes are therefore proof search processes” (15). Drawing on 

Fallis [2003]’s discussion of enthymematic gaps, Hamami places two further constraints 

1Note that this equates rigor to successive judgments of validity. This is a substantive thesis. One prima 
facie reason to doubt such a thesis is that rigor judgments seems gradeable – some proofs are more rigorous 
than others – but validity is not. 
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on �� . First, the proof search processes in �� must be part of common background 

knowledge of the practitioners of � . Second, the proof search process must be completable 

in a ‘reasonable amount of time.’ So according to Hamami, decomposition processes are 

just a subset of proof search processes. 

According to Hamami, the standard view’s �� lies in higher-level rules of inference or, 

as he calls them, hl-rules. An hl-rule is determined entirely by its premise schema and its 

conclusion schema. These schemas are relative to the language of a mathematical practice 

� . An immediate mathematical inference is valid whenever it corresponds to an instance 

of an hl-rule. So each hl-rule R has a corresponding verifcation process ��. Specifying 

�� is done by characterizing the set of hl-rules that an agent in � acquires during their 

training. 

An agent begins her training in � with only the set of propositions accepted without 

proof by � . These are identifable by looking at the elementary textbooks in a practice 

� and identifying what is accepted without proof. In the case of Casella and Berger 

[2002], the axiom of countable additivity (or fnite additivity, depending on �) would 

be such an example. The agent is also equipped with starting rules of inference. These 

rules are “essentially basic rules of elementary logical reasoning necessary to reason with 

mathematical propositions” [Hamami, 2019, 18]. Hamami leaves open what the basic rules 

of elementary logical reasoning are. Whenever the trainee derives a proposition from the 

set of propositions she already accepts, she may add the new proposition to the set of 

mathematical propositions she knows. Likewise, she can update her hl-rules by turning 

deductions into new hl-rules. Whenever the mathematician “has derived a mathematical 

proposition C from a set of mathematical propositions �1, ..., �� through a sequence of 

applications of hl-rules [she already possesses] ... she is entitled to add to her set of hl-rules 

... the new rule: �1, ..., �� → �” [Hamami, 2019, 19]. Through this process, theorems and 
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defnitions also quickly become hl-rules in the set �� . 

For example, � [�� + �] = �� � + � when �, � are constants, could become an hl-rule 

through this process. The statement is not an immediate inference. But it can be proven 

by a student using the defnition of expected value, the defnition of probability distribution 

and mass functions, and some facts about integration.2 

By specifying the sets �� and �� , Hamami has given a descriptive account of rigor that 

explains the methods mathematicians use to evaluate proofs as rigorous. The descriptive 

view we’ve discussed so far focuses on (A.1) – how mathematicians fll in the gaps of an 

informal proof through decomposition and verifcation. The next step is to specify how 

(C.1), the routine translation, works. Accordingly, Hamami gives a normative account of 

rigor which focuses on routine translations that practitioners can undertake. The standard 

view normative account is: 

A mathematical proof P is rigorous� 

⇐⇒ 

P can be routinely translated into a formal proof. 

To give a full formulation of the normative account, Hamami must explain what a routine 

translation is. This is given in terms of a successive series of algorithmic translations through 

levels of proof granularity. 

There are four levels of granularity. The frst is the vernacular-level proof. A vernacular-

level proof is the general mathematical proof seen in textbooks and journals. It is a series 

of inferences as they are commonly presented in mathematical texts of the practice M. The 

Casella & Berger proof in Section 2.1 was a vernacular-level proof. The inferences of ∫ 
2It’s fun to note that the proof will most likely invoke the proposition that � [�(�)] = �(�) �� (�)� 

where �� (�) is the pdf of X. This proposition (and its discrete countepart) is often called the “law of the 
unconscious statistician” which yields some humorous evidence of learned hl-rules. 
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a vernacular-level proof are not all immediately verifed for a mathematician in M. They 

often must be decomposed which results in the second level of granularity. A higher-level 

proof is a sequence of inferences which are all hl-rules. There are two more levels of 

granularity – the intermediate level and the lower level. The intermediate-level proof is 

comprised of primitive rules of inference and primitive axioms. Thus, the intermediate-

level proof only contains inferences and axioms that mathematicians possess at the start of 

their mathematical training. The lower-level proof is a sequence of inferences comprised of 

rules of inference and axioms from a formal deductive system adequate for the foundations 

of mathematics. 

For Hamami, routine translation amounts to an algorithmic translation among the four 

levels of granularity. The frst translation, from vernacular-level to the higher-level proof, 

“corresponds exactly to the frst phase of the process that a typical mathematical agent 

engages in when judging the rigor of a mathematical proof, namely the decomposition of 

each inference in the proof that cannot be verifed directly into a sequence of immediate 

mathematical inferences” [Hamami, 2019, 22]. This has a corresponding algorithm ���→ℎ� 

for the standard view’s �∗ and �∗ which has three steps: 
� � 

1. It identifes a decomposition process � ∈ �∗ such that (1) � (�) = ⟨�1, ..., ��⟩ and (2) 

there exist �1, ..., �� ∈ �∗ such that �� (��) = valid for all � ∈ [1, �]. 

2. It decomposes I into the sequence of inferences ⟨�1, ..., ��⟩ using the decomposition 

process �. 

3. It replaces I in P by the sequence of inferences ⟨�1, ..., ��⟩. 

There are two similar algorithmic translations. One takes us from the higher-level proof to 

the intermediate-level proof and the other takes us from the intermediate-level proof to the 

lower-level proof. 
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For the routine translation view to succeed, the mathematician must be able to succeed 

at performing the routine translations. I want to focus in particular on the translation ���→ℎ� . 

I will argue that this algorithmic translation is not compatible with mathematical practice 

and thus, fails as an account of rigor. When discussing both ���→ℎ� and its role in proving 

the conformity thesis, Hamami claims that the translation corresponds to the decomposition 

and verifcation processes which typical mathematical agents are capable of performing. 

Additionally, this translation must be algorithmic. Hamami, in replying to critics of the 

standard view, argues that routine translation is algorithmic, not simple, easy, etc. Without 

the claim that these translations are algorithmic, then, the standard view does not have claim 

to “routine” and remains plagued by the objections of Robinson [1997], Detlefsen [2009], 

and Larvor [2012]. 

The problem with the algorithmic translation ���→ℎ� is apparent when we return to 

Hamami’s claim that decomposition is proof search. This one translation must live up to 

three demands: it must be algorithmic, it must be proof search, and it must be done by 

actual mathematicians. An algorithm is a fnite sequence of instructions. It is a precise set 

of steps applied on an input. The claim that translation ���→ℎ� is algorithmic amounts to 

the claim that searching for a sub-proof is algorithmic. But proof search, in general, is not 

algorithmic. Proof search is most often described as a heuristic process. Pólya [1945]’s 

famous discussion of problem solving highlights the importance of heuristic. According 

to this view, the process of fnding a proof invokes heuristic problem-solving techniques. 

Heuristic reasoning involves pragmatic or imaginative strategies which are not captured by 

a specifed set of rules. For example, reasoning by analogy or through an example might 

be heuristc proof techniques. Additionally, consider refective discussions of mathematical 

practice by Villani [2015], van der Waerden [1971], Hadamard [1945], etc. All of these 

discussions describe proof search as a messy and sometimes dialogical process. 
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As a concrete example, consider the proof in 2.1. The decision to add and subtract � � 

was based on the hypothesis that “there is something special about � � .” Likewise, similar 

minimization problems involving sums of squares in probability and statistics are solved by 

using the same method of adding and subtracting some function of the mean. The budding 

statistician searches for those proofs using heuristic methods like analogy and comparison. 

The ‘trick’, once learned, can occasionally be used in some minimization problems. But the 

‘trick’ hardly constitutes a precise set of steps that applies to every minimization problem. 

So the processes by which mathematicians search for proofs like this do not seem to be 

algorithmic. But the descriptive account given by Hamami states that that decomposition is 

proof search and proof search is algorithmic. This is incompatible with how mathematicians 

reason through proofs. Thus, Hamami’s account of the standard view fails at its frst level 

of translation. 

Without an argument that proof search is an algorithmic process, and mathematicians 

are simply wrong about their decomposition processes, there is no reason to believe the 

frst step of translation is an algorithmic process. In other words, the frst step in “flling 

in the gaps” is non-routine. It’s the creation of a new sub-proof. This translation may be 

routine in the cases where the proof of interest is not at the vernacular level. Then the proof 

search process will occur in a highly restricted and regimented context. But in general, the 

search for sub-proofs is not highly restricted. For example, in the Casella & Berger proof, 

the search for a sub-proof that � (� � − �)2 = (� � − �)2 will not be any easier (or harder) 

than when that proposition is presented as its own theorem. 

While I’ve focused on Hamami [2019]’s account, the objection applies to all accounts 

satisfying (A.1, C.1). Almost every informal proof requires some amount of “flling in the 

gaps” to check if the proof is rigorous. The frst level of “flling the gaps” is producing any 

necessary sub-proof. But to produce a sub-proof is to just fnd a proof. Finding a proof in 
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practice is often a creative, heuristic process, not an algorithmic one. Proof search may one 

day be an algorithmic practice done by computers or augmented humans. But we began our 

investigation by stating our interest in exploring what it means for modern, mathematical 

proofs to be rigorous in practice. 

2.4 Filling in the Steps by Non-Routine Translation 

In the last section, I focused on Hamami [2019]’s version of the standard view which is 

representative of position (A.1, C.1). According to those views, a proof is rigorous if it 

can be converted into a formal derivation by flling in the steps of the informal proof via 

routine translation. I argued that the problem with such views was that a routine translation 

is incompatible with the frst translation step which is fnding a sub-proof. In this section, 

I turn to two representatives for position (A.1, C.2). These views hold that a formal proof 

is rigorous if it can be converted into a formal derivation by flling in the steps of the 

informal proof. The procedure for flling in the steps may be non-routine or creative. The 

limitation is that the steps of the informal proof are expressible components of the formal 

derivation. I think there are two representatives of this view – Azzouni [2004, 2009]’s 

derivation-indication view and Tatton-Brown [2019]’s view following Burgess [2015] about 

conviction.3 

2.4.1 Derivation-Indication 

One of the earliest, and most frequently cited, formulations of the standard view is Azzouni 

[2004]’s derivation-indicator view. Azzouni argues that it is derivations in an ‘algorith-

3It’s worth noting that in Azzouni’s most recent work, like Azzouni [2020], Azzouni has retained the view 
that algorithmic processes are essential to rigor but attempted to separate it from the standard view of rigor. 
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mic system’ which are characteristic of mathematical practice and, in particular, explain 

widespread mathematical consensus. An algorithmic system is a system which codifes 

the deductive rules for derivations such that “the recognition procedure for proofs is me-

chanically implementable” [Azzouni, 2004, 83]. Azzouni admits that these derivations are 

not the currency of mathematical practice. The informal proofs are successful, according 

to Azzouni, because they are indicators of a corresponding derivation. In other words, 

informally rigorous proofs are proofs which indicate the existence of a formally rigorous 

derivation. Azzouni asks quite a bit of his algorithmic systems – they are algorithmic but 

they are not restricted to a particular logic, subject-matter, or explicit language. He does 

this to ensure mathematicians can be seen as “sprinting up and down algorithmic systems, 

many of which he or she invents for the frst time” [Azzouni, 2004, 103]. Notice that an 

algorithmic system is not an actual algorithm. An algorithm is a procedure. An algorithmic 

system is something of Azzouni’s own invention. 

Whatever one may say of the algorithmic system, Azzouni must also tell us how math-

ematicians manage these systems and indicate the existence of derivations. This is particu-

larly difcult since, according to Azzouni, mathematicians need not know the rules codifed 

in an algorithmic system. To do so, Azzouni [2005, 2009] invokes the idea of an ‘inference 

package’ which is “capacity to recognize the implications of several assumptions by means 

of the representations of objects wherein those several assumptions have been knit together 

(psychologically)” [Azzouni, 2009, 20]. These packages allow mathematicians to do what 

they normally do in informal proofs – recognize and tease out the implications of their 

assumptions without being aware of a formal derivation. Luckily, our inference packages 

are rich enough to accommodate a wide set of algorithmic systems with which they allow 

us to reason compatibly. And by flling out the inference packages, we can, in principle, 

produce the formal derivation. 

40 



Let’s return to the Casella & Berger proof to ground the derivation-indicator view. We 

said before that fnding this proof would be non-routine since there’s a ‘trick’ where we add 

and subtract � � within the squared term. Inference packages, it seems, rely heavily on past 

experiences. So one can imagine that the professor teaching this proof knows very well 

that the trick should be applied here. The professor, when asked, might say “this is because 

� � is special so we want to get it inside the squared term.” This would be an example 

of a psychologically knit-together inference package. Knowing � � is special seems to 

automatically get the professor to adding and subtracting � � . 

Under the derivation-indicator view, proofs are rigorous because they can be flled out 

into a formal derivation in an algorithmic system by means of inference packages. Inference 

packages, as implications psychologically knit-together, are most likely not algorithms. If 

they are algorithms, then we will just return to the objections of Section 2.3. This is what 

makes the derivation-indicator view a position in the space of (A.1, C.2). The problem 

with inference packages is that many psychologically knit-together inferences are simply 

not rigorous. The view over-generates. Think, for example, of afrming the consequent. 

Anyone who has taught frst-year logic knows that it’s difcult to train students out of 

using it. One reason for this might be that afrming the consequent is reminiscent of a 

nearby inductively strong IBE argument. IBEs are successful psychologically-knit together 

inference packages. But no argument via IBE is a rigorous proof. So the derivation-indicator 

view needs a strong, sufciently robust notion of inference package to ensure there’s no 

over-generation. 

The over-generation concern above focuses on the inference packages of people broadly. 

But focusing on only mathematicians does not yield a better result. Consider the mathe-

matician Srinivasa Ramanujan who made signifcant contributions to mathematics without 

formal training. In order to do so, it seems that Ramanujan must have had many well-knit 

41 



psychological inferences about mathematical concepts. Nevertheless, he failed to produce 

rigorous arguments for his theorems. Again, just because the inference packages were 

available to him, that didn’t make his arguments rigorous. 

Setting aside the specifcities of the derivation-indicator account, it seems to point 

to something important about training. Mathematicians seem to get better and better at 

producing rigorous proofs with lots of hidden details. Mathematicians seem to be convinced 

that they can fll in any gaps. Perhaps inference packages are too broad to fll in the details. 

So in the next account, we look at a more compelling account of knowing that one can “fll 

in the gaps non-routinely.” 

2.4.2 Conviction 

Azzouni’s inference packages are one non-routine route to “flling in the gaps” in an informal 

proof. If there is a routine flling-in procedure, then it either must be algorithmic which 

we’ve discussed above or the routine procedure must be non-algorithmic and also non-

creative. Someone may spell out such a view but it’s not yet on ofer for us to discuss. But 

view (A.1, C.2) encompasses a number of options for non-routine translations since there are 

many non-routine ways to reach a formal derivation. Rather than spelling out non-routine 

methods for flling in gaps, we can instead focus on the question of how mathematicians 

know that the gaps can be flled in. So then how does a mathematician judge this? She 

cannot know that the gaps can be flled in algorithmically. She must judge just that the 

gaps can be flled in somehow. In Burgess [2015]’s words, “what rigor requires is that each 

new result should be obtained from earlier results by presenting enough deductive steps to 

produce conviction that a full breakdown into obvious deductive steps would in principle 

be possible” [Burgess, 2015, 97]. If this is to be understood as a breed of the standard view 
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in Burgess and De Tofoli [2022], then what a mathematician needs to judge a proof as 

rigorous is to be convinced that a formal derivation could be reached by flling out the steps 

in the informal proof. 

The obvious question arises: how do mathematicians come to know what can be 

flled out? Tatton-Brown [2019] sketches an account of how mathematicians learn that 

informal proofs can be converted into formal derivations. He argues that mathematicians 

are introduced to proofs at the least granular level, i.e. where all of the immediate inferences 

are explicitly shown. Proofs at the earliest stage rely on only the most obvious deductions 

as in a formal derivation. Then, as mathematicians proceed in their training, proofs become 

more coarse. Students prove things over time and add to the list of acceptable higher level 

rules. Nevertheless, students know that if they enquire into a step, they can also break 

it down into a greater level of granularity. They proceed in this manner with larger gaps 

between steps and with the faith that, if they must, they could produce the most detailed 

proof. 

Let’s return to the Casella & Berger example from Section 2.1. According to Tatton-

Brown [2019], the proof is not one that mathematicians would experience at the very start 

of their training since it includes higher-level inferences. In particular, the fnal equality of 

equation (2.1) involves dropping the expectation of (� � − �)2. In other words, one must 

know that � (� � − �)2 = (� � − �)2 since � � − � is a constant. Rather, it’s an example of a 

proof where the mathematician judges it to be rigorous because she could “fll in the gaps” 

(in a non-algorithmic way). A student can provide that proof in whatever way she fnds 

feasible whether that’s algorithmic or heuristic. Moreover, to check if the proof is rigorous, 

she doesn’t have to fnd that sub-proof. She just needs to be convinced that she could fnd the 

sub-proof and that the sub-proof could be a maximally detailed formal derivation. Without 

the second clause in italics, the view is not a standard view because it doesn’t relate a rigor 
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judgment to a formal derivation. 

The problem with the conviction views discussed here is that the mathematician must be 

convinced of something very specifc. She must be convinced that a full formal derivation 

could be given by flling out the steps of the informal proof. I agree with Tatton-Brown 

[2019] that mathematicians, through training, come to believe that the gaps in any rigorous 

proof can be flled in. But there is an important point that Tatton-Brown [2019] seems 

to miss: mathematicians fll gaps with more informal proofs. They don’t fll gaps with 

formal derivations. In other words, mathematicians are not convinced that they can fll gaps 

with formal derivations, they’re convinced they can fll gaps with more informally rigorous 

proofs. Thus the training model described by Tatton-Brown [2019] doesn’t support the 

standard view unless students start their training with formal derivations. But that is an 

empirical claim and it is false. 

Intuitively, for a person to be convinced that X could become Y, they must know what 

Y is. To be convinced that a bunch of metal can become an engine, I have to know 

something about the makeup of engines. I don’t have to make the engine to be convinced 

of its possibility. But I must know at least what the outcome should be and what it’s made 

of. Likewise, if mathematicians judge rigor in a similar fashion, then they ought to know 

what a formal derivation is and what is required of one. But mathematicians are rarely 

trained in a derivation-forward manner. They don’t start their educations with logic classes 

or discussions of formal derivations. As Tatton-Brown [2019] notes, most mathematicians 

begin training in proofs during their real analysis courses. The proofs mentioned foremost in 

Abbott [2015], which is what Tatton-Brown [2019] focuses on, are not formal derivations. 

The informal, mathematical training is the primary source of training regarding rigor. The 

issue of training in formal derivations is even clearer when we consider historical proofs. 

Under this standard view, for ancient Greek mathematicians to claim that a proof was 

44 



rigorous, they had to be convinced that a formal derivation was in principle possible. This 

simply could not have been the case since the concept of formal derivation being invoked 

by the standard view is a defnition of the 20th century. 

There’s an interesting rejoinder to the objection I’ve just raised. I’ll briefy sketch it. The 

argument is that historical mathematicians judged things to be rigorous while lacking a fully 

explicated understanding of rigor. The argument compares rigor to things like gold. Ancient 

scientists had tests for determining whether a substance was gold. But they didn’t know 

that the real test for gold was whether the substance had atomic number 79. The tests were 

fairly reliable, though, and so when ancient scientists referred to gold, they were referring 

to the substance with the atomic number 79 without knowing about atomic numbers. The 

analogous case would be that mathematicians didn’t have the modern concept of formal 

derivation. But they were reliably referring to it by tests of rigor through other means. I think 

there’s a problem with this objection. Gold is not like rigor because there are patterns of 

deference associated with scientifc natural kinds that are not associated with rigor. Ancient 

scientists had tests for whether something was gold, but they left open for future scientists 

the nature of gold. Likewise, jewelers employing tests for gold will defer to scientists for 

the ultimate decision of whether a substance is gold in virtue of its atomic number. But this 

is not the case in mathematics. Mathematicians regarded Euclid’s Elements as a paragon of 

informal rigor, not as an example of superfcial qualities. For the analogy to go through, we’d 

expect mathematicians to defer to logicians regarding rigor in the same way jewelers defer 

to scientists regarding gold. Again, this prediction is empirically false. Mathematicians 

converge on whether a proof is rigorous without deference to logicians. When Mochizuki 

‘proved’ the abc conjecture, it was evaluated by mathematicians. Mathematicians Scholze 

and Stix, both arithmetic geometers, not mathematical logicians, were the ones to argue that 

Mochizuki’s proof was not rigorous. If a massive, important chunk of metal was purported 
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to be gold by some jewelers, the issue would be settled by sending it to scientists who can 

check its atomic properties. But a similar process is not observed in cases of mathematical 

uncertainty. Without the above sketched deference pattern, I think we can reject the analogy 

between tests for mathematical rigor and tests for gold. 

In other words, the conviction account gets one thing right – mathematicians often judge 

that a gappy proof is rigorous if they can back it up with a sub-proof. And mathematicians 

are trained to believe they can fll the gaps in. But mathematicians are convinced about 

being able to provide informal sub-proofs. Just because they’re convinced they can fll in 

some detail for specifc audiences (like flling in extra details for a reviewer or a student), 

that does not mean they’re convinced a formal derivation is possible. This is in part because 

they’re simply not trained in providing formal derivations of informal proofs. That cannot 

be the content of their conviction. Standard views of the (A.1, C.2) variety fail because the 

mathematician isn’t judging that a formal derivation is possible, they’re judging that futher 

informal proofs can be supplied. 

2.5 Bare Conversion 

The fnal variety of standard view we’ll consider falls into (A.2, C.2). An informal proof is 

rigorous if it can be converted into a formal derivation but the inferences of the informal 

proof may not be expressible as transitions among the propositions in the formal derivation. 

In other words, the crucial inferences of the informal proof may not be in the formal 

derivation and vice versa. The motivation for such a view is that the reasoning involved in 

diagrammatic proofs is often difcult to faithfully express in a sentential way. De Tofoli 

and Giardino [2014], De Tofoli and Giardino [2016] gives examples of such proofs in knot 

theory and topology. I call the (A.2, C.2) view bare conversion since it places no limitation 
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on the process of conversion (it may be non-routine) and it also places no limitation on 

fdelity. Some of the steps of the informal proof may be abandoned in favor of a formal 

derivation proving the same conclusion. Under bare conversion, an informal proof is 

rigorous just in case it is convertible in any way into a formal derivation. 

The problem with bare conversion is that it wildly over-generates. The bare conversion 

view doesn’t require a special procedure that takes you from the informal proof to the formal 
√ 

derivation. Consider the following ‘proof’ that 2 is irrational. 

√ 
Proof. The proof runs as follows. If 2 is rational, then the equation 

�2 = 2�2 (2.5) 

√ 
is soluble in integers �, � with (�, �) = 1. This produces a contradiction. So 2 is 

irrational. □ 

√ 
There are formal derivations that show 2 is irrational. By a very non-routine translation, 

this ‘proof’ can be converted into that formal derivation. By the bare conversion view, this 

proof is rigorous. But no mathematician would consider such a proof to be rigorous. The 

conviction account is immune because it still requires enough of the steps of the formal 

derivation be revealed in the informal proof. But choice point (A.2) is built to allow 

massive components of diagrammatic proofs to be replaced by diferent reasoning in the 

formal derivation. So there’s no requirement that enough of a formal derivation be shown 

in the informal proof. Without such a requirement, the above ‘proof’ should be rigorous. 
√ 

There is a formal derivation of the proof that 2 is irrational. So a conversion is possible. 

The conversion process is simple – replace the contents of the proof with the contents of 

the derivation. 

47 



The bare conversion view fails to be extensionally adequate regarding rigor judgments. 

Any informal proof would be judged to be rigorous once a known formal derivation exists. 

It’s open to proponents of the standard view to sketch an account satisfying (A.2, C.2) which 

doesn’t amount to bare conversion. But such a view is currently not in the literature. For 

now, I plan to set it aside and discuss the overall results of this study into the standard view. 

2.6 Concluding Remarks 

I took Burgess and De Tofoli [2022]’s survey of the standard view as a starting point for 

discussing the types of standard view. They outlined three choice points. I then argued 

against the prominent views in each of the resulting choice points. If the list is exhaustive, it 

should be clear that the standard view has failed to account for rigor judgments in practice 

and that a new view is called for. There may be room for further nuance within the views. 

The arguments I’ve given have varying degrees of generality with respect to nuance. 

The arguments I’ve sketched in Section 2.3 are quite general. The process of conversion 

will always frst involve generating sub-proofs. Generating sub-proofs is a heuristic and 

creative process, not an algorithmic or routine one. I did not address the possibility that 

one day we might have an empirically adequate theory under which proof search is routine. 

This seems to be the same future where automated theorem proving is the norm. That 

discussion is outside the scope of this paper and far in the future, if it’s even possible. 

In Section 2.4, my arguments were general with respect to conviction. Any view where 

the proof must be judged as rigorous by reference to the in-principle existence of a formal 

derivation will fail to account for historical and pedagogical considerations. It fails to 

explain mathematical behavior and deference patterns. There is plenty of room for new, 
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nuanced views within (A.2, C.2), though. My arguments may not apply to more nuanced 

versions which avoid bare conversion. 

Overall, I have aimed to survey some new reasons why the standard view provides an 

inadequate account of mathematicians’ rigor judgments. A proponent of the standard view 

may respond by sketching a new method of indication or translation. But there will likely 

be historical, diagrammatic, and pedagogical objections when we try to explicate rigor 

judgments in terms of formal derivations. Given this, in Chapter 3 I’ll provide an account 

of rigor which focuses on the conviction that mathematicians have in the informal proofs 

without reference to any formal proof. 
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Chapter 3 

An Audience View of Rigor 

The purpose of this chapter is to provide a new alternative to the standard view. The 

alternative view I give here will be called the audience view. The core motivation for the 

audience view is that a rigorous proof is one that convinces the right kind of audiences. The 

tagline ‘a proof is that which convinces’ is sometimes mentioned, and quickly dismissed, 

by proponents of the standard view. It is quickly dismissed since there are many things 

which are convincing – including testimony – but not rigorous proof. Likewise, genuine 

proofs don’t always convince real people on frst exposure. Nevertheless, there seems to 

be something right about the tagline. Conviction even lurks in the background of some 

standard views like the one presented by Burgess [2015]. But the standard view seems 

to get the object of conviction wrong. Mathematicians aren’t convinced some other proof 

could be written. They’re convinced by the proof before them. So a modifcation of the 

standard view wouldn’t make more sense of the intuition that conviction and rigor are 

related. The standard view’s main focus is formal derivations. Similarly, the main focuses 

of the alternative views mentioned above are, respectively, the meaning of mathematical 

concepts, acceptable actions, and the virtues of a mathematician. Prima facie, none of those 

three help make sense of the intuitive connection between conviction and rigorous proof. 

So a modifcation of them will not help make sense of the tagline. 

Now the goal is to give an account of rigor that makes sense of the idea that conviction 

plays a role in rigor. First, in Section 3.1 I review two examples of proofs which mathemati-
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cians and philosophers of mathematics judge to be rigorous. Then in Section 3.2, I’ll make 

some over-arching remarks about what a theory of rigor might attempt to do. This will 

be vital to frame Section 3.3, in which I characterize the diferent claims of the audience 

view. The goal of this chapter is not to give necessary and sufcient conditions for a proof 

to be rigorous. Rigor, as it’s used in practice, is open-textured and sometimes vague. The 

aim of this paper is to provide a useful explication of the concept. The audience view will 

be broken into three related components. Having provided the audience view in Section 

3.3, I’ll turn to arguments in favor of the audience view in Section 3.4. I’ll argue that the 

audience view outperforms the standard view with respect to some intuitive conditions on a 

theory of rigor. The audience view, then, should be a serious contender against the standard 

view of rigor. 

3.1 Target Phenomenon 

The goal of this section is to provide two examples to reference. These two examples 

are chosen because they seem intuitively correct and rigorous, they are often cited in the 

literature, and both have been the subject of formalization. The frst example is from a 

number theory textbook and the second example is from a book of mathematical games. 
√ 

The frst example is one of [Hardy and Wright, 1975]’s proof that 2 is irrational. 

√
Theorem 1. (Pythagoras’ Theorem). 2 is irrational. 

√ 
Proof. The traditional proof ascribed to Pythagoras runs as follows. If 2 is rational, then 

the equation 

�2 = 2�2 (3.1) 
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is soluble in integers �, � with (�, �) = 1. Hence �2 is even, and therefore � is even. If 

� = 2�, then 4�2 = 2�2, 2�2 = �2, and � is also even, contrary to the hypothesis that 

(�, �) = 1. □ 

Here, the reader must possess a bit of background knowledge. For example, the reader 

must know that (�, �) = 1 means that the only positive integer divisor both � and � share is 

1. The mathematician will still likely need to fll out some gaps in the proof. One such gap 

is between recognizing that �2 is even and recognizing that � is even. Verifying that the 

proof is rigorous involves flling these gaps in. Additionally, Wiedijk [2004] has provided 

a formal version of this proof in Mizar. The Mizar proof is much longer than the original. 

Simply translating the proof into the Mizar language results in a number of justifcatory 

errors. So a formal proof requires flling in some of the aforementioned gaps. Overall, 

though, the Hardy and Wright proof was recognized as rigorous without referencing the 

Mizar article. 

The second example is the mutilated chessboard problem which has received attention 

from Tanswell [2015]. The problem was originally presented as a puzzle for a critical 

thinking textbook. But Martin Gardner took it up as a mathematical puzzle and then gave 

a proof. Gardner’s formulation of the problem, including the original diagram, and his 

solution are given below. 

The props in this problem are a chessboard and 32 dominoes. Each domino 

is of such size that it exactly covers two adjacent squares on the board. The 

32 dominoes therefore can cover all 64 of the chessboard squares. But now 

suppose we cut of two squares at diagonally opposite corners of the board 

[see Fig. 13] and discard one of the dominoes. Is it possible to place the 31 
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dominoes on the board so that all the remaining 62 squares are covered? If so, 

show how it can be done. If not, prove it impossible. [Gardner, 1988, 24] 

Figure 3.1: The mutilated chessboard image given in Gardner [1988]. 

It is impossible to cover the mutilated chessboard (with two opposite corner 

squares cut of) with 31 dominoes, and the proof is easy. The two diagonally 

opposite corners are the same color. Therefore their removal leaves a board 

with two more squares of one color than of the other. Each domino covers 

two squares of opposite color, since only opposite colors are adjacent. After 

you have covered 60 squares with 30 dominos, you are left with two uncovered 
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squares of the same color. These two cannot be adjacent, therefore they cannot 

be covered by the last domino. [Gardner, 1988, 28] 

[Robinson, 1991, 271] claims that it is “not easy to think of an improvement on Gardner’s 

statement of the impossibility proof. It is simple, clear, elegant and convincing.” Following 

Robinson [1991], the proof itself has been discussed in the literature about formalization and 

rigor, specifcally by Tanswell [2017, 2015]. There are formal proofs of the impossibility 

of covering the mutilated chessboard problem in both Mizar and Lean. 

Both of the examples given in this section are widely regarded as examples of rigor in 

informal proofs. The rest of this paper is dedicated to exploring what features the proofs 

have that make them rigorous. Recall that both proofs can, and have been, formalized 

by providing formal portrayals of the proofs in Mizar and Lean. The existence of formal 

counterparts is not in istelf evidence for the standand view nor is it an objection to the 

audience view. As mentioned in Chapter 1, proponents of the standard view have argued 

that, in addition to the fact that formal proofs exist, the proofs are informally rigorous in 

virtue of some relationship to the formally rigorous proofs. The existence of a few formal 

proofs does not guarantee that (a) all proofs can be formalized or (b) that the informal proofs 

are judged rigorous in virtue of some relationship to the formal proofs. The audience view 

presented in Section 3.3 claims that the proofs are rigorous in virtue of something other 

than their formally rigorous counterparts. 

3.2 What is a Theory of Rigor? 

Before giving the audience view of rigor, note that there are a few types of account that 

one may aim to develop. Mathematicians engage in an evaluative practice when they 

judge proofs to be rigorous. Burgess [1992] discusses the diference between a descriptive 
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and prescriptive theory of an evaluative practice. A descriptive theory aims to explicitly 

describe the implicit standards of the practice. Descriptive theories are evaluated according 

to how well they conform with the practice. A prescriptive theory aims to provide what the 

practice’s standards should be. The practice is evaluated with respect to the prescriptive 

theory. 

Data for descriptive theorizing involves spontaneous evaluations of particular instances 

made by practitioners. Even when we assume the practitioners are following general rules, 

they may not be able to state the rules they are following. Descriptive theorizing aims to 

make these rules explicit. Once the theorist insists on a set of rules which do not match with 

conficting data, the theorist is engaged in prescriptive theorizing. According to Burgess 

[1992], linguistic descriptive theorizing takes the form of judgments like “that’s not good 

English” or “that isn’t said” while prescriptive theorizing takes the form of judgments 

like “people talk that way all the time, but it’s wrong.” Burgess [1992] then applies the 

distinction to classical logic. A descriptive logic is a branch of naturalized epistemology 

where one aims to examine one’s own practices and reveal the implicit rules. A prescriptive 

logic is an ‘alienated epistemology’ where the logician evaluates practices from without. 

The prescriptive logician often appeals to privileged intuitions and fundamental critical 

insights. 

Burgess [1992] was interested in grammatical practices and logical practices. Here, I’m 

interested in expanding to mathematical practices. In the case of rigor, a descriptive account 

of rigor might explore what mathematicians mean when they say they “know it when they 

see it” about rigor. It can do so without ofering a further claim that what mathematicians 

are doing is the right way of determining a proof is rigorous. In addition to the descriptive 

and prescriptive distinction, I want to add that a descriptive theory may look at diferent 

levels. One may aim to give a descriptive theory of the implicit rules of a community or of 
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a single agent. 

Using the mutilated chessboard example, then, an agent-level descriptive theory explains 

the standards by which an individual mathematician judges Gardner’s proof to be rigorous. 

A community-level descriptive theory could explain the standards by which Gardner’s 

proof is accepted as rigorous within the community. Finally, a prescriptive theory tells us 

whether the mutilated chessboard proof ought to be rigorous according to some standard. 

It is possible for the prescriptive theoretician to say “everyone thinks the Gardner proof is 

rigorous but that’s wrong.” It is not possible for the descriptive theoretician to say that. The 

practice has judged the proof to be rigorous. 

A last important note about theorizing is that descriptive and prescriptive grammar are 

related. Almost no prescriptive grammar is devoid of descriptive theorizing since native 

judgments guide prescriptive theorizing. Likewise, native judgments are infuenced by 

some prescriptive pedagogical grammar. Language learners are told which rules are good 

and bad. In other words, the descriptive and the prescriptive are often linked through 

education. Descriptive and prescriptive theories of rigor will also most likely be linked and 

difcult to separate. 

These distinctions are useful for identifying the goals of providing an account of rigor. 

For example, according to Hamami [2019], some objections to the standard view fail because 

they’re objections to the standard view as a descriptive theory which is not the typical aim 

of the standard view. The audience view described in Section 3.3 has three components: 

an agent-level descriptive theory, a community-level descriptive theory, and a prescriptive 

theory. 
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3.3 The Audience View 

The purpose of this section is to introduce a new account of rigor called the audience view. In 

broad strokes, the audience view claims that a fully rigorous proof is one where an idealized 

universal audience would assent to every inference. The universal audience is a fctional 

audience meant to represent all reasonable people and it is constructed from experiences 

with real audiences. According to the audience view, proofs are rigorous without reference 

to formal proofs. The audience view does not imply that formalizability is impossible. Nor 

does it imply that formal proofs have no infuence on mathematical practices. Rather, I 

argue for an account of rigor which focuses on the social components of practice which 

may be orthogonal to formalization. 

I begin this section by giving an overview of the requisite rhetorical groundwork. I’ll 

frst identify multiple kinds of audiences that an arguer might be interested in. Following 

Ashton [2021], I identify the universal audience as the most important of these audiences 

for the purposes of mathematical proof. I’ll then detail three claims: a descriptive claim 

about how proofs are judged to be rigorous by agents in practice; a descriptive claim about 

how proofs are judged to be rigorous within a community of practitioners; and a prescriptive 

claim about what feature proofs ought to have in order to be rigorous. The benefts of the 

descriptive claims will be explored in Section 3.4. 

3.3.1 Rhetorical Groundwork 

The philosophy of mathematics and argumentation theory have traditionally been divorced 

from one another. It was Aristotle who wrote “it is evidently equally foolish to accept 

probable reasoning from a mathematician and to demand from a rhetorician scientifc 

proofs” (Aristotle, NE I.3). In recent years, argumentation theory has been successfully 
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applied to mathematical practice. An overview of that work is available in Aberdein and 

Ashton [2024]. But the divide has been especially strong with respect to the study of 

audience-focused argumentation like rhetoric. Rhetoric is often conceived of as dealing 

with persuasion and uncertainty. The traditional division between mathematics and rhetoric 

continued in modern texts. Perelman and Olbrechts-Tyteca [1969] aimed to provide a New 

Rhetoric according to which persuasion was just one way of moving an audience. They gave 

an account aimed at convincing audiences which was appropriate in legal and philosophical 

contexts. More recently, Tindale [2015] gives an updated account of argumentation to 

audiences which relies heavily on Perelman and Olbrechts-Tyteca [1969]. 

Both Perelman and Olbrechts-Tyteca [1969] and Tindale [2015] separated the realm of 

rhetoric from the realm of deduction. The problem with most of these arguments, discussed 

by Dufour [2013] and Ashton [2021], is that formal proof is what Perelman and Olbrechts-

Tyteca [1969] and Tindale [2015] claimed to be audience-free. But mathematical proofs 

are rarely fully formal proofs. Mathematical proof is gappy and various audiences are 

considered in presentation, axiom choice, and even development. Ashton [2021] argued 

that proofs are arguments constructed with audiences in mind and that the core audience in 

proof development is the universal audience which is a useful, fctional audience. The goal 

of this subsection is to outline the concept of the universal audience and explain some of its 

important features. In following subsections, I’ll use this concept to characterize rigor. 

Let us distinguish among a few kinds of audiences. Perelman and Olbrechts-Tyteca 

[1969] are not entirely clear about how to diferentiate between types of audiences. In the 

following, I adopt Sigler [2015]’s distinction, as they synthesize the views and comments 

Perelman makes in later work as well. According to Sigler [2015], there are primarily three 

types of audiences which arise in Perelman’s work. The frst kind of audience is the real 

audience. These are physical audiences which receive arguments and can react to them. 
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They are the real people whose assent the arguer hopes to gain. Real audiences can receive 

arguments in person or through media like text. Each of these real audiences belong to 

diferent groups and react diferently to diferent argumentative strategies. 

It is not possible to access the real audience every time one constructs an argument. 

To overcome the issue of audience access, arguers invoke fctional, constucted audiences, 

which Perelman calls particular audiences. They are particular audiences because they are 

created by abstracting from some particular feature of real audiences. But many of our 

arguments are to a group, not a single person. One may have experience with how a number 

of real mothers react to real arguments. When the arguer tries to develop an argument for 

mothers as a group, then the arguer focuses on the particular audience of mothers. It is by 

arguing to real mothers that the arguer forms an idea of which arguments mothers assent to. 

For example, an arguer might notice that his real mother is persuaded to buy a product if it 

will help her son avoid getting sick. He might argue directly to his mother that he needs this 

product to avoid an illness. But a marketer, having experiences with multiple real mothers, 

forms an idea that the audience of mothers in general are swayed to buy products that protect 

children from illness. The marketer may even be confdent enough in his generalization 

to say “all mothers are willing to buy products to protect their kids from illness.” He is, 

strictly speaking, incorrect. There are some mothers who do not care about their childrens’ 

health. The “all” that the marketer invokes makes sense when he’s never met uncaring 

mothers. If pushed with evidence of uncaring mothers, the marketer will drop the “all” 

and adopt “most” or “all the mothers we care about.” In this sense, sentences invoking 

particular audience assent function like a generic statement. Psychological research like 

Leslie et al. [2011] indicates that people often default to a generic interpretation when 

faced with a quantifed statement. Just as adults accept “all ducks lay eggs” using a generic 

interpretation, a marketing executive might accept “all mothers would buy a product if it 
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protected their child from illness.” 

Arguers construct fctional, particular audiences in their minds to test arguments out 

before approaching real audiences. Arguers can check the quality of both the argument 

and the fdelity of their fctional, particular audience by arguing to real audiences which 

closely instantiate that particular audience. For example, our marketing executive may run 

a focus group selecting only mothers in order to test his marketing campaign and verify 

that mothers, in general, are persuaded by arguments that invoke protecting children from 

sickness. The focus group is a real audience. It is a real group of people, all of whom 

are mothers, who receive and react to the marketing executive’s arguments. The particular 

audience is a mental concept employed by the marketing executive, based on his experiences 

with real moms, to represent mothers as a whole. The marketer obviously can’t test his 

argument with all real mothers because he can’t collect all mothers from all of time in one 

room. Nevertheless, he has an idea of what is required to be a mother in his current society 

and he’s had experiences arguing with those mothers. So he can construct an imagined 

audience which is representative of mothers based on his experiences with real mothers. 

Sometimes, arguers want to convince everyone. When an arguer aims to convince 

every reasonable person, they are arguing to the universal audience. Just as mothers 

comprise a particular audience defned by motherhood, the universal audience is a particular 

audience defned by reasonableness. The universal audience is called universal because 

reasonableness is assumed to be a feature of all real audiences whereas motherhood is not 

a feature of all real audiences. 

What is a reasonable person? Perelman and Olbrechts-Tyteca [1969] and Tindale [2015] 

both seem to take reasonableness as a feature people implicitly grasp over time. They give 

very little theoretical defnition of reasonableness by which arguers can judge audiences or 

people. To be a reasonable person means, at minimum, that most of the time this person 
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takes reasons into account when forming beliefs and making decisions. Reasonable people 

are receptive to evidence and argument. There are multiple ways of being reasonable. 

A reasonable person might follow either of two opposing schools of thought since both 

“command equal respect because they express thoughtful and recognized ways of thinking 

and in this they are both reasonable” [Perelman, 1979, 113]. Reasonableness is something 

people exhibit by engaging in discussion and argumentation in recognized ways. These 

recognized ways change over time and can be diferent in diferent societies. But people 

who continuously give and take reasons, evaluate evidence, and form judgments on the basis 

of reasons and evidence are called reasonable. Those are the people we wish to convince by 

constructing audiences to the universal audience. This characterization of reasonableness 

is open-textured. There may be people in the future for whom a decision must be made 

even though there is no fact of the matter as to whether they’re reasonable. 

Given a certain set of experiences, one may come to bar unreasonable people but this 

should be based on an overall pattern of behavior, not a single instance of non-adherence 

to an argument. A dialethist, for example, may still be a reasonable person since, on the 

whole, they exhibit a willingness to share and evaluate reasons for their beliefs. On the other 

hand, someone with Cotard’s syndrome who believes themselves to be dead and refuses to 

consider any evidence of their existence will be unreasonable. Their pattern of behavior 

is not due to a recognized pattern of thinking but to an insurmountable neuropathology. 

Moreover, a group of people who consistently follow a diferent, but recognizable, pattern 

of thought are not unreasonable. This seems clear in Perelman’s discussion of opposing 

schools of thought. He says that “both are seen as equally reasonable; we will choose, 

but not on the basis of the falsity or irrationality of the one or the other” [Perelman, 1979, 

113]. So we may disagree with whole groups of people while also recognizing them to be 

reasonable. Reasonableness seems to be a virtue that a person can possess. We know people 
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are reasonable because they exhibit recognized ways of thinking within a community. 

We now have a loose characterization of reasonable person. Again, this characterization 

is meant to be context sensitive. Children learn who counts as reasonable from the parents, 

educators, etc. They learn to apply the term “reasonable” in a similar way that they learn 

to apply terms like “mother.” The ability to imagine an audience is also taught to children 

when they’re asked to consider explaining a concept to a sibling, writing a paper for their 

mom, or trying to persuade their friends to do something. Each particular audience is an 

abstraction from the real audiences that an arguer encounters. When the arguer wants to try 

to generalize his argument so as to convince everyone, he argues to his universal audience. 

It’s a fctional audience, infuenced by his experiences and his communities, that can be 

used to construct, and test, arguments. We can imagine how “any reasonable person” might 

react to an argument. 

Again, this “any” should not be strictly interpreted as every real reasonable person. As 

with mothers, it’s more likely that the “all” in “all reasonable people” is interpreted by-

default like a generic. There is no real counterpart to the universal audience which an arguer 

can access, since no arguer can interact with all reasonable people over all time. Arguers 

only experience a fnite, temporally limited number of real audiences and construct their 

universal audience by abstracting from those real audiences. Because of this, a universal 

audience will not perfectly represent all people over all time. But by experiencing a wide 

variety of real, reasonable perople, and learning which arguments they accept, an arguer 

can construct a better concept of all reasonable people, and thus, a more representative 

universal audience. In other words, the universal audience is a type of mental fction we 

use to develop arguments which appeal to reasonable people. To the arguer, the universal 

audience will seem to be truly universal since reasonableness is the most general trait of 

audiences. From a theoretical perspective, it’s clear that the fctional universal audience 
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is afected by real audiences and so the arguer’s universal audience will not approximate 

everyone forever. 

Before closing this sub-section, I want to address one immediate concern. One might 

worry that any person who does not assent to an argument to the universal audience is 

immediately unreasonable and excluded. In other words, if an arguer believes they have 

created a successful argument to the universal audience, then there is no possibility to 

engage in genuine disagreement with reasonable people. This concern is rooted in a 

misconception about the universal audience. The universal audience is a synthetic concept 

meant to represent all reasonable people. As is common in synthesis, it privileges a whole 

over each individual part. As such, an argument to the universal audience may not, in fact, 

convince every reasonable person. Moreover, no actual person is an instantiation of the 

universal audience alone. This is because no real person is just reasonable. People belong 

to multiple, composite audiences and so their dissent is often grounded in their inclusion in 

a diferent audience. This can be a source of genuine disagreement. 

This completes the overview of types of audiences. The universal audience is one 

of the rarer audiences that one aims to convince. Perelman and Olbrechts-Tyteca [1969] 

believed that it was primarily for philosophers and lawyers. By mistakenly limiting all 

of mathematical argument to formal proof, they failed to consider the possibility that 

mathematicians might be interested in convincing all reasonable people. Ashton [2021] 

takes this consideration seriously and argues that the goals of arguing to a universal audience 

are similar to the goals of producing a proof. Thus, proof development involved arguing to 

the universal audience, as opposed to particular audiences or specifc, real mathematicians. 

Moreover, the universal audience was a useful framework for explaining features of proofs 

like the invention of new techniques as in Alexander [1928]’s knot diagrams. All of this is 

good evidence that universal audiences are important to proof development. In the following 
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subsections, I will explicitly apply the universal audience to the concept of rigor. 

3.3.2 Agent-Level Descriptive Account 

The frst claim of the audience view is an agent-level descriptive account. An agent-

level descriptive account explains how a single mathematician judges a proof, like those 

provided by Hardy & Wright or Gardner, to be rigorous. I’ll begin by giving the claim that 

the audience view makes for the agent-level descriptive account. Then, I’ll concretize what 

that looks like for the examples from Section 3.1. Finally, I’ll give some reasons to think 

that mathematical training supports the audience view. 

The rigor of a proof seems to derive from its inferential moves. We’ll begin with the 

most extreme case – when a proof is judged to be rigorous by looking at every inferential 

move. This is, as Andersen [2020] and Geist et al. [2010] have discussed, not typically how 

proofs are evaluated. But it does happen in some cases. For example, a new graduate student 

might check the rigor of a proof by looking at every inferential move. Or a conscientious 

reviewer might examine every inference in a proof of a surprising theorem. The audience 

view characterizes an agent’s judgment of full rigor as follows. 

Agent-Level Full Rigor: a practitioner judges a mathematical proof to 

be fully rigorous when every inferential move in the proof is one that the 

practitioner’s universal audience assents to. 

When a mathematician checks to see if a proof is rigorous, she asks herself, at each 

inferential move whether every reasonable person would accept such a move. But Andersen 

[2020]’s interviews with mathematicians indicate that proofs are rarely checked move-by-

move. Interviews suggested that referees use two methods of validation when reading 

proofs. Andersen calls the frst method Type 1 validation, where mathematicians check 
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whether “the subresults of the proof seems reasonable in light of what she knows and, at 

least, for most of the subresults, whether it seems reasonable that this type of result can be 

proved in this type of way” [Andersen, 2020, 238]. If the proof passes the tests of Type 1 

validation, then the mathematician will usually not go on to check a subproof line-by-line. 

This empirical data indicates that mathematicians rarely check every inference of a proof. 

The audience view is compatible with this empirical data in two ways. First, we may bracket 

the rigor-check to just Type 2 validation. In other words, the agential-level full rigor account 

is what happens when a mathematician engages in Type 2 rigor validation. But I think the 

audience view is compatible with even more of the data. When a mathematician performs 

Type 1 validation, she is still judging whether the proof is rigorous using her universal 

audience. She looks at a number of sub-results and applies her version of the reasonable 

person standard to them. The mathematician has a sense of whether a result is correct and 

can be reached using the methods mentioned in the proof. In performing Type 1 validation 

and checking the subresults to see if they’re surprising, she’s asking whether an audience of 

reasonable people would assent to those subresults. So she does judge the rigor of a proof 

through both Type 1 and Type 2 validation using her concept of the universal audience. 

Let’s examine what this would look like for the Hardy & Wright proof of Section 3.1. 
√ 

The frst inferential move is from the assumption that the 2 is rational to the fact that 

�2 = 2�2 is soluble in integers �, �. The audience view posits that the mathematician 

would think something like “yeah everyone would agree there, so that’s good.” The fact 

that integers �, � can be assumed without loss of generality to be co-prime is also quickly 

checked. For an advanced mathematician, these steps might be Type 1 verifcations. The 

mathematician might proceed fairly quickly until the claim that “�2 is even and therefore 

� is even.” The mathematician asks herself “hold on, would everyone accept that claim?” 

This inference requires more verifcation work than earlier claims. The mathematician will 
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essentially need to provide a sub-proof that “for any integer n, if �2 is even, then � is even.” 

This sub-proof flls in the gaps of the original proof and decomposes inferential moves of 

the original proof into new inferential moves. The mathematician continues through the 

sub-proof verifying, at each step, whether it seems as though everyone would assent to that 

move. 

Return to the mutilated chessboard problem. One of the frst inferences to be verifed in 

Gardner’s proof is the one that concludes “the two diagonally opposite corners are the same 

color.” This information is not in the statement of the problem. It is inferred from other 

information, namely the diagram which represents facts about chessboard coloring. To 

verify the inference, the mathematician only needs to ask “given the diagram representing 

the mutilated chessboard, would everyone assent that the two cut corners are the same 

color?” If the answer is ‘yes,’ then the inference is verifed by the practitioner. At this level, 

the mathematician might not think everyone would assent to this inference. For example, 

they might ask themelves whether the diagram is general enough. What happens when 

we cut of the other corner diagonals instead? This would involve further decomposition 

processes: produce a similar diagram for the other diagonal, ask again whether everyone 

would have to assent to the claim that both corners are the same color given the diagram. 

If the answer is ‘yes,’ then the inference is verifed. There is no need to fnd some suitable 

formal system and method of translating the inferential move. 

Sometimes, though, not every inference in a proof is judged to be one which the 

mathematician’s universal audience would assent to. For example, a mathematician might 

write a proof where she thinks most inferences are ones which everyone would assent 

to, but there’s one step that only a particular group of people would assent to. Or the 

mathematician might validate a proof using Type 1 validation and think that all the subresults 

seem reasonable, but only for mathematicians in her own feld. In those cases, she may 
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judge the proof to be somewhat rigorous. The audience view can also account for these 

judgments. The audience view characterizes an agent’s judgment of partial rigor as follows. 

Agent-Level Partial Rigor: a practitioner judges a mathematical proof 

to be somewhat rigorous when most inferential moves are ones that the prac-

titioner’s universal audience assents to while some inferential moves are ones 

that a practitioner’s particular audience of some mathematicians would assent 

to. 

Proofs are more or less rigorous based on the number, and relative importance, of inferential 

moves that the universal audience assents to. A proof which relies heavily on inferential 

moves that only some audiences of mathematicians would assent to might be judged as 

somewhat rigorous or barely rigorous. For example, the Hardy & Wright proof might be 

made more detailed in a classroom by adding the subproof of the claim that “�2 is even 

and therefore � is even” by utilizing the contrapositive. The mathematician, presenting this 

more detailed proof, might naturally tell her class that “the proof I’m giving you here is 

more rigorous than in the book since you did not already know or accept that if �2 is even 

then � is even.” The professor might even hold some reservation that her classroom proof 

was maximally rigorous, since some of her inferential moves are such that only modern 

mathematicians (not Pythagoras, for example) would assent to. Our example mathematician 

is entrenched in that practice, though, so she would most likely not worry about Pythagoras. 

So she may think that her classroom proof is about as rigorous as it gets. Rigor is a gradable 

concept that depends on the audience being addressed. 

In addition to making sense of gradable determinations, the agent level descriptive view 

is supported by mathematical training. Some versions of the standard view, like Tatton-

Brown [2019] and Hamami [2019], seem to assume that mathematicians enter their training 
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as blank-slate logicians and build up from the axioms. The audience view assumes that 

mathematicians enter their training as social arguers. A practitioner’s universal audience 

depends on their training. Young mathematicians rarely enter their training with a logic 

course, much less a clearly outlined set of axioms. But the audience view is continuous with 

a mathematician’s life. They’ve argued to particular audiences their whole lives. It’s not 

far-fetched to think that they’ve formed some idea of what all reasonable people accept. For 

example, they might learn that any reasonable person accepts that 2 is an even number. They 

also might think that reasonable people assent to conjunction elimination. They believe this 

without choosing a formal deductive system in which it is valid. They simply recognize 

that all reasonable people adhere to the conclusion Q when given “if P then Q” and “P.” 

But they’ve also built an idea of all reasonable people which is probably too permissive for 

mathematical practice. This is where some enculturation, as Tanswell and Rittberg [2020] 

discusses, is necessary. The mathematician refnes the universal audience by encountering 

new types of audiences. It’s important to note that such enculturation extends beyond the 

mathematician’s proof practices. The mathematician doesn’t think that only mathematicians 

reject “if P then Q, Q, therefore P.” He’ll refrain from using such inferential moves no matter 

who he is arguing to. This is compatible with the audience view’s agent-level descriptive 

account. Compatibility with mathematical training is an important part of evaluating a 

descriptive account. 

The agent-level descriptive account aims to provide the procedures by which proofs are 

judged to be rigorous by individual practitioners. The way mathematicians judge proofs 

to be rigorous under the audience view is by considering whether her universal audience 

would assent to it. I’ve argued that this method of judging rigor makes sense of gradable 

rigor judgments and is supported by mathematical training. Next, I turn to community 

judgments of rigor. 

68 



3.3.3 Community-Level Descriptive Account 

So far I have described how individual mathematicians judge proofs to be rigorous. But 

an individual may judge a proof to be rigorous while still getting something wrong. The 

frst level at which a mathematician might be wrong about the rigor of a proof is that 

the community may have a diferent standard of rigor than the individual. The audience 

view also explains how communities judge proofs to be rigorous. I’ll begin by stating the 

audience view for the community-level descriptive account. Then I refect on how that 

account explains the examples of Section 3.1. I then discuss the close connections between 

the agent-level and the community-level descriptive accounts. 

A single mathematician has a universal audience in her mind, her conception of which 

has been infuenced by her training in a community. She must satisfy her own universal 

audience when judging a proof to be rigorous. At a community level, the inferential moves 

must satisfy the community’s universal audience. So, for a mathematical practice M, we 

have the following community-level descriptive account of rigor: 

Community-Level Full Rigor: A mathematical proof is judged fully rig-

orous by a practice M when every inferential move in that proof is one to which 

the universal audience of each M-practitioner would assent. 

As in the agent-level descriptive account, we also have a gradable notion of rigor. 

Community-Level Partial Rigor: A mathematical proof P is judged some-

what rigorous by a practice M when most inferential moves in the proof are ones 

to which the universal audience of each M-practitioner would assent. Some 

inferential moves would be assented to by a recognizable, particular audience 

of M. 
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Each arguer faces diferent real audiences which means that each arguer could have diferent 

universal audiences. But people belonging to a certain practice will have similar real 

audiences and similar universal audiences. This is especially true in modern mathematical 

training. These similarites result in universal audiences common to a practice. Moreover, 

practice-specifc rules about what is reasonable can alter this common universal audience. 

At this point, a common universal audience might appear to be just a particular audience 

of mathematicians. But, as Ashton [2021] argued, mathematicians rarely believe their 

arguments are convincing only to mathematicians trained like them. They often think 

anyone who could be brought up to speed on the facts, should be convinced. They also think 

proofs persist – a proof that is rigorous today should also be rigorous to the mathematicians 

of tomorrow. All of this indicates that mathematicians intend their arguments to be accepted 

universally, even if that never happens. 

An example of a community judging a proof to be partially rigorous is the computer-

assisted proof of the Kepler conjecture. The Kepler conjecture states that the densest 

packing of congruent balls in 3-dimensional Euclidean space is the face-centered cubic 

packing. Ferguson and Hales frst posted a proof for the conjecture on arXiv in 1998 but 

that proof wasn’t published fully until 2006. The delay was due to the fact that the proof was 

computer-assisted. A team of 13 reviewers worked to verify the proof. But it was difcult 

to check every step reliably because of the “nature of this proof, consisting in part of a 

large number of inequalities having little internal structure, and a complicated proof tree” 

[Lagarias, 2011, 17]. The proof involved a computer verifcation of 5,000 confgurations 

of spheres and over 100,000 linear programming problems. Reviewers for the Annals of 

Mathematics, and some mathematicians in the community, were overall quite confdent 

about the proof but held some uncertainty. The proof, as frst presented, was somewhat 

rigorous for that practice as it was known that there were groups of the community who 
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did not fully assent since they couldn’t fully survey the computer portion. We can infer the 

proof is rigorous to the community because the Annals of Mathematics published the proof. 

The Annals of Mathematics decided to publish the original proof. That is clear evidence 

that the proof was rigorous by community standards since the journal is well-respected. 

The editor’s note claims that the human part was “refereed for correctness in the traditional 

manner” and the computer part was “examined for the methods by which the authors have 

eliminated or minimized possible sources of error.” Nevertheless, Hales launched the 

Flyspeck project to provide a complete formal verifcation. He says that this decision was 

partly “in response to the lingering doubt about the correctness of the proof” [Hales, 2006, 

1]. The Flyspeck project was completed and published in Hales et al. [2017] which, again, 

indicates the formal verifcation is rigorous. Under the audience view, the original proof 

was rigorous and the formally verifed proof is rigorous. The formally verifed proof may 

be more rigorous, assuming it eliminated the doubts of the same communities which judged 

the original proof to be somewhat rigorous. 

Let’s return to the examples of Section 3.1. The Hardy & Wright proof is rigorous for 

most modern mathematical practices because those practices have mathematicians whose 

universal audiences are common to the practice. Likewise, the practitioners of most modern 

mathematical practices judge the Gardner proof to be rigorous. Imagine, for example, a 

community that completely eschews any use of diagrams or visual props in a proof. The 

individuals engaged in that practice would not judge Gardner’s proof to be rigorous since it 

involves reference to a diagram or ‘prop’. The community-level descriptive account depends 

on the judgments of individuals in the practice. 

When the mathematician learns from their training and remains in contact with that 

practice, then, agent-level judgments usually match with community-level rigor judgments 

for that practice. Through training, the mathematician brings her universal audience in line 

71 



with the universal audience common to M. Still a mathematician might judge a proof to be 

rigorous and discover that, after presenting it, the proof is not rigorous for the community. 

At this point, the mathematician must re-examine her argument or her universal audience. 

Either she mistook an inference as one that the common universal audience would accept 

or her universal audience does not match the universal audience common to M. 

The audience framework could help diagnose cases of recalcitrant disagreement like 

the one De Tofoli and Fontanari [2023] discuss. De Tofoli and Fontanari argue that 

there are six species of mathematical disagreement. They claim that disagreement over the 

correctness of a putative proof can sometimes be recalcitrant. Recalcitrant putative proof 

disagreements arise, according to them, in communities where the abstract criterion of 

rigor and the local criteria of acceptability are not aligned. The authors identify the abstract 

criterion of rigor with formalizability. They adopt a version of the standard view. They 

then present a case study from the Italian school of algebraic geometry. Many incorrect 

putative proofs were given and sometimes accepted by the community, although there was 

signifcant controversy between mathematicians Federigo Enriques and Francesco Severi. 

Although De Tofoli and Fontanari adopt a version of the standard view, their discussion 

of Severi’s faults is more compatible with the audience view. [De Tofoli and Fontanari, 

2023, 23] argue that Severi’s putative proofs lacked rigor because he developed a kind of 

autoreferential trust. But autoreferential trust is more closely tied to convincing an audience 

than formalizability. Under the audience view, Severi’s autoreferential trust in an example 

of a mathematician who has confated the audience of himself with his universal audience. 

Severi had great success which led him to believe he was the ideal audience for his proofs. 

He fails to re-calibrate his universal audience by arguing with other real mathematicians. 

Instead, he determines his universal audience in line exclusively with what convinces him. 

Enriques, as quoted in [De Tofoli and Fontanari, 2023, 38], wrote of Severi’s work that 

72 



the “exposition seemed obscure to me and therefore dubious” which indicates that Severi 

failed to truly account for his fellow mathematicians in his fctional universal audience. 

Examples of how the audience view handles disagreement like this deserves serious study 

in further work. But for now, this example can be used to show what happens when a single 

mathematician like Severi fails to recalibrate his audience to one common to the community. 

The audience view does not guarantee that diferent mathematical practices will agree 

as to whether a proof is rigorous. This is especially important when considering historical 

practices. Some historical proofs may have once been judged to be rigorous but are not 

rigorous with respect to current practices. An example of this, discussed further in Section 

3.4, would be Euclid’s proof of Proposition 1 in Book I. This is because the universal 

audiences common to a practice vary across practices. The universal audience is a mental 

fction which arguers create by abstracting from experiences with real audiences. Historical 

practices had diferent encounters with real audiences. So they had diferent universal 

audiences because they had formed diferent concepts of what all reasonable people would 

be like. 

The audience view has a descriptive theory for both agent-level rigor judgments and 

community-level rigor judgments. The judgments will usually line up, assuming a math-

ematician is in touch with her practice and receives feedback from the real audiences that 

comprise the practice. By combining the two accounts, we can make sense of some instances 

when individual mathematicians erroneously judged a putative proof to be rigorous. 

3.3.4 Prescriptive Account 

We now have two theses from the audience view. The frst is a claim about how agents judge 

proofs to be rigorous. The second is how communities judge proofs to be rigorous. We 
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discovered one way that a mathematician might err with respect to rigor: she might judge a 

proof to be rigorous that the community would not judge to be rigorous. In these cases, we 

think the single mathematician has made the error. But discussions about error lead us into 

prescriptive theorizing. The purpose of this sub-section is to sketch the audience view’s 

prescriptive account. A complete defense and discussion of the prescriptive theory will be 

taken up in further work. 

Let’s return to our ‘erroneous’ rigor judgment. A mathematician reviews her proof and 

judges it to be rigorous since each inferential move is something her universal audience 

assents to. She submits it for publication. Reviewers in her practice review the proof and 

judge that it is not rigorous, since their universal audiences do not assent to all the inferential 

moves of the proof. We have a disagreement about whether the proof is rigorous. But we 

usually privilege the reviewers’ judgments over the single mathematician. Perhaps, upon 

refection, the mathematician will discover that her universal audience wouldn’t actually 

assent to one of the steps. But perhaps she must revise her universal audience to better 

match the one common to the practice. 

But why should we privilege the community? The answer is that the goal of building 

a universal audience is to try to approximate a genuinely universal audience. Each arguer 

constructs her own universal audience which results in idiosyncracies, but she believes it to 

be universal. The intuition behind claiming that the single mathematician is in error, not the 

group, is that a single mathematician’s universal audience is less likely to approach genuine 

universality than multiple mathematicians’ universal audiences. Having more reasonable 

people thinking about what all reasonable people would accept is more likely to approach 

its goal than having a single person do so. This is related to the sheer number and variety 

of real audiences that each mathematician has encountered. 

Of course, we still can’t access every real person. And demanding that every real, 
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reasonable person assent to every inferential move in a proof is too high a standard. Thus 

the prescriptive account of rigor shouldn’t appeal to every real reasonable person. Instead, 

it appeals to a universal audience constructed under ideal conditions or in an ideal practice. 

So, the prescriptive theory of rigor can be sketched as this: 

Prescriptive Rigor: A mathematical proof ought to be judged rigorous by 

a person or practice when every inferential move in the proof is one that a 

universal audience common to an ideal practice assents to. 

Providing a complete characterization of an ideal practice is a topic for future work which 

will connect to issues in social epistemology. I will characterize some requirements on it 

now. First, an ideal practice would not be motivated by fame or self-interest. It would not be 

about gaining ‘theorem credits’ as Thurston [1994] puts it. It would also be a practice which 

was not plagued by epistemic injustice. An ideal practice might also be one that endorses 

reliability and consistency of results or even control as Manders [2008] and Wagner [2017] 

discuss. 

This needs a number of refnements which will be the focus of future work. One obvious 

issue is that it’s conceptually possible that a large group of people may come to a consensus 

about what counts as rigorous that leads to unreliable results. There’s a sense in which that 

happened with Euclid’s Elements. Many communities judged those proofs to be rigorous. 

But later developments showed that the proofs were not always reliable since some of the 

hidden assumptions were not necessarily true. Similarly, we might have equally sized 

competing groups who have conficting results but seem otherwise equally reasonable. A 

possible example of similarly sized competing groups could be the camps of Enriques and 

Severi mentioned earlier and examined by De Tofoli and Fontanari [2023]. In that case, 

Severi seemed less reasonable once he developed an autoreferential trust. 

75 



The primary focus of this sub-section is to sketch how all three components of the 

audience view work together. Note that one need not adopt the prescriptive view in order 

to adopt the descriptive views. But it’s worth having a prescriptive audience view on the 

table since it helps make sense of our original motivation – a rigorous proof is that which 

convinces the right kinds of people. The next section focuses on the benefts derived from 

accepting the descriptive views. 

3.4 Benefts of the Audience View 

To close this chapter, I’ll highlight the benefts of adopting the audience view and I’ll 

also discuss some common concerns. I begin by discussing the motivating tagline and its 

original concerns. Then I turn to the benefts of gradable rigor judgments. Then I look at 

the relationship between the audience view and a mathematician’s life as an arguer. I wrap 

up by discussing the relationship between reliability and rigor under the audience view. 

3.4.1 The Motivating Tagline 

First, recall that I motivated the audience view using the tagline that an informally rigorous 

“proof is that which convinces.” The audience view has clearly lived up to that tagline, 

since the descriptive and prescriptive components are inherently tied to convinction. We’ve 

refned the tagline by introducing which audience needed to be convinced. But, as we saw, 

this tagline was often quickly dismissed because some convincing things are not proofs and 

some proofs are not convincing. The audience view does not fall prey to these objections 

as easily as the tagline does. 
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Not all proofs will be convincing immediately since every real reader of a proof is a real 

audience, not the idealized universal audience. A student might not be convinced on frst 

pass because he’s a real person who possesses many other qualities besides reasonableness 

that may interfere with his judgment. The student can be a reasonable person but not be 

convinced immediately because he simply can’t remember what inferences came before or 

what was discussed in the class before. Note also that it would not help that student to see a 

formal proof. There are many issues that real audiences encounter which can inhibit their 

ability to be convinced. The issues of a real audience are compatible with the belief that an 

idealized, fctional audience would be convinced. 

The more interesting objection is that some convincing things are not rigorous proofs. 

For example, the teacher could say “look I know you’re not convinced by the proof but trust 

me, the theorem is true.” By this testimony, the student is fully convinced that the theorem 

is true. But no mathematician would say that testimony should constitute rigorous proof. 

Broadly, the audience view stated that an argument would be judged rigorous when the 

mathematician’s universal audience assents to every inference in it. Under that description, 

testimony would not be judged rigorous by either the student or the teacher. This is because 

the experthood and authority required for testimony are both very particular. The teacher is 

an expert with reference to a real audience of pupils. He is not an expert for all reasonable 

people. We don’t seem to consider reliable authorities to have an atemporal quality to them. 

We usually recognize them as authorities in a local community. This helps dispel the classic 

objection to the tagline “a proof is that which convinces” since we don’t believe appeals to 

authority convince our universal audiences. 
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3.4.2 Benefts of Gradable Rigor 

In subsections 3.3.2 and 3.3.3, I discussed descriptive accounts that allowed for both full 

rigorous and somewhat rigorous proofs. This helped make sense of some linguistic data 

about rigor judgments. This is crucial because we want to characterize and evaluate 

mathematical rigor as it is used by mathematicians. And they seem to be able to compare 

and rank proofs as more or less rigorous. To my knowledge, there is no standard view in 

the literature that has a gradable notion of rigor. In this subsection, I’ll discuss some other 

benefts of having a gradable notion of rigor. 

We can use the gradable notion of rigor to make sense of historical rigor judgments. 

Take, for example, Book I Proposition 1 of Euclid’s Elements. We begin with a straight 

line AB and describe two circles of radius AB, one with A at its center and one with B at 

its center. The proof assumes that the two circles will intersect at a point C from which we 

can construct the rest of the triangle. But that inference is only warranted if there is such a 

point. To supply the point, in modern terms, we invoke the principle of continuity. This is 

the very frst proof in the Elements which was long regarded as a paragon of mathematical 

rigor. Under the standard view, either the proof of Proposition 1 was not rigorous, and all 

the mathematicians who judged it to be rigorous were wrong, or the proof is fully rigorous 

in virtue of its relationship to a formal counterpart. But with the audience view, we have 

more coherent options. In Euclid’s time, and according to de Risi [2020] up until the Early 

Modern period, that the intersection point existed was taken for granted. In my analysis, the 

mathematicians of those periods had universal audiences who assented to the inference – 

they thought any reasonable person would have to admit a point existed at the intersection. 

So for both Euclid and a number of communities before the Early Modern period, the proof 

of I.1 is fully rigorous. In modern times, most mathematicians would say the proof is 
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only somewhat rigorous. Most of its inferential moves retain their impressive, universally 

assentable nature. But the inference involving the intersection point is only admissible for 

some particular audiences of the past. In other words, the gradability of the audience view 

allows us to make sense of seemingly conficting rigor judgments where a proof might be a 

paragon of rigor historically but is only somewhat rigorous by modern standards. 

We can also use the audience view’s gradable account of rigor to make sense of feld-

specifc standards of rigor. For a community of knot theorists, a diagrammatic proof may 

be fully rigorous while an algebraist might consider the same proofs to be only somewhat 

rigorous. And we can make sense of rigor comparisons between two proofs that are vastly 

diferent. Such comparisons, as well as historical and feld-specifc considerations are not 

as straightforward under the standard view, if they’re possible at all. 

One fnal beneft of the gradable notion of rigor is that it can help us make sense of the 

intuition that mathematicians hold formal proof as a gold standard. The audience view is 

compatible with the intuition that formal proofs are a gold standard. Formal proofs contain 

only immediate inferences within a formal deductive system. In other words, anyone who 

assents to the formal deductive system must assent to the formal proof. Formal proofs are 

a gold standard because it is presupposed that all reasonable people should assent to the 

inferences therein. So a formal proof can still be a gold standard because it’s a fully rigorous 

proof under the audience view. This doesn’t reduce the audience view to a standard view, 

though, because rigor is not determined by formalizability. Rather, formalization sometimes 

matches the overarching desire to produce an argument that all reasonable people would 

assent to. Thus the audience view can, and does, accommodate the intuition that formal 

proof is a gold standard since it is a fully rigorous proof. 
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3.4.3 Mathematicians are Arguers, Proofs are Arguments 

There’s a broad reason to adopt the audience view which is related to something in sub-

section 3.3.2. The audience view gives an account of mathematical rigor where mathe-

matical arguments are connected to, but relevantly diferent from, everyday argumentation. 

Mathematicians are people engaging in a practice which centers around a particular kind of 

argument. The standard view asks us to reduce these arguments to a formalization thesis. 

The audience view respects the natural place of informal proof as argument. Thus, rigor 

judgments are not mysteriously tied to formal proofs in formal deductive systems that math-

ematicians may not know about. Rigor judgments are, instead, centered on argumentative 

practices which are continuous with all of rational life. Moreover, given the importance of 

the universal audience, rigor is still a special property of mathematical proof. People argue 

all the time, but they rarely argue to a universal audience. Rigor is special because it aims 

at the assent of all reasonable people. Jurisprudential rigor and philosophical rigor also aim 

to do a very similar thing. However, jurisprudential and philosophical rigor are not nearly 

as successful at achieving long-term assent. 

This raises a natural question: what is special about mathematical rigor under the 

audience view? We started this paper by claiming that one of the special features of modern 

mathematical proof is that it is rigorous. Nothing about the audience view of rigor is bound to 

mathematical arguments. We could judge the rigor of any argument containing inferential 

moves using the same theory. Mathematical proofs are diferent because mathematical 

practice demands rigor for justifcation of a theorem. One can provide rigorous arguments 

in other felds but it’s rarely required or useful. Consider, for example, legal arguments. 

Legal arguments are occasionally rigorous in the sense described by the audience view. 

Sometimes we craft legal arguments that are meant to appeal to every reasonable person. 
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But current legal practice doesn’t always demand rigor for justifcation. Although, perhaps 

this could have been diferent if legal formalism were sustained. Policy arguments, for 

example, are often grounded in notions of public welfare that are not considered universal, 

even by the people making those arguments. 

It seems to me that one of the key reasons that we can demand rigorous arguments in 

mathematics, but not in the law, is that the nature of the facts, defnitions, and values at stake 

are very diferent. Contingent facts guide policy considerations. But mathematics is about 

necessary facts. The contingency of the facts involved in law, along with its defnitions 

and values, are seen as particular to a community. Since the very content of the arguments 

are particular and contingent, there’s little demand for universality, and hence for rigor as 

described here. But in mathematics, the content of the arguments have a universality of 

their own and the demand for rigor can be met. This might help explain why we sometimes 

see rigorous arguments in philosophy or law. But legal and philosophical contexts don’t 

demand rigorous argument since they’re not about universal topics. This paper on rigor, for 

example, is written to my particular audience of philosophers of mathematics. 

To sum, mathematical practice is special since it demands rigor but rigor itself can be 

exhibited by arguments in any feld. Mathematical arguments are more disposed to rigor 

since they involve necessary facts and explicit defnitions. That rigor can be exhibited by 

some non-mathematical arguments is a feature of the audience view. The view charac-

terizes mathematicians as arguers and proofs as arguments in a way consistent with other 

justifcatory social practices. 
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3.4.4 Reliable, Reasonable People 

Historically, an increase in rigor has led to greater reliability. Rigorization is often driven by 

the desire to have more reliable results. Additionally, mathematical arguments, specifcally 

proofs, are more reliable than arguments in other felds. An account of rigor must explain 

how rigor is tied to reliability. The standard view does not succeed at explaining this 

connection. As Avigad [2021] points out, formal proofs are quite fragile. They’re fragile in 

the sense that they are long and so have many steps and if any step is incorrect, the quality 

of the whole proof decreases. These formal proofs are difcult for humans to grasp, survey, 

or verify. It is unclear why standard view-rigorous proofs would be more reliable if the 

most rigorous proofs, i.e., formal proofs, are fragile. So, the standard view alone does not 

explain why rigorous proofs would be more reliable. 

The audience view is in a slightly better position than the standard view with respect to 

reliability. Rigorous proofs are reliable because they inherently try to avoid and overcome 

disagreement from a seemingly universal audience. Giving and receiving feedback on 

arguments helps us avoid mistakes and unclarities. The more people we can convince of 

something, the less likely there is to be a genuine error in it. So, under the audience view, 

we still have a theoretical connection between reliability and rigor. Of course, it doesn’t 

guarantee reliability in practice. We might be systematically mistaken about which axioms 

are true. Then even our most rigorous proofs will be unreliable. Or, as in the case of the 

pre-Early Modern mathematicians, we might take for granted principles which ought to be 

expressed and examined. So rigor under the audience view is reliability-conducive even if 

it doesn’t guarantee reliability. This is similar to the correctness-conducive quality of rigor 

that De Tofoli and Fontanari [2023] discusses. 
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Reliability is most likely ensured by methods other than rigor alone. Although Avi-

gad [2021] is interested in explaining reliability in conjunction with a standard view, the 

reliability-increasing features that Avigad describes are not inherently tied to the standard 

view. For them to be intrinsically tied to the standard-view, Avigad needed to show that 

there were features in informal proofs that (a) increased reliability and (b) indicated or were 

routinely translatable into formal proofs. I have no doubt that Avigad shows (a) is true. 

The problem is that there is nothing about these techniques that indicate formal proofs. To 

show why, consider modularization which occurs when something can be broken down into 

smaller components which have limited interaction with each other. Modularizing increases 

reliability in mathematics, but it also increases reliability in engineering and design. Mod-

ularization makes it less likely that my plane, or my software, will crash. But modularized 

plane designs do not indicate the existence of some formal plane design.1 

Another example is reasoning by analogy. Reasoning by analogy helps to isolate critical 

information. If I refer you to a similar proof, then I don’t have to go through every step and 

can focus on the new information. Moreover, casting the proof as analogous allows one to 

focus on ways that the diferences may make a diference. This supports error checking. 

Modularizing occurs when something can be broken down into smaller components which 

have limited interaction with each other. When one component fails, it only minimally 

afects the others. This is a common technique in engineering and design. Avigad [2021] 

also argues that modularity in proof minimizes the required information, helps keep the fow 

of information clear, and supports error checking. Collecting examples is also an important 

technique since it often helps to prove a particular instance before moving to a more general 

setting. So collecting a number of various examples to test and keep in mind when proving 

1The fact that this category error is so painful and unparseable ought to be strong evidence against (b). 
What could possibly be indicated in the plane case? 
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helps the mathematician fnd out what works and what will not generalize. 

The fact that Avigad’s methods for increasing reliability occur in other types of argu-

ments across disciplines is very natural under the audience view since rigor is not about 

formalization. While neither the standard view nor the audience view immediately explain 

the reliability of proofs, the audience view provides an account of rigor that is reliability-

conducive since it naturally accommodates rhetorical maneuvers like those cited by Avigad 

[2021]. 

To sum up, the audience view provides an important new development in accounts of 

rigor, namely gradable rigor judgments. It is consistent with the idea that mathematicians 

are arguers while maintaining that mathematical practices are special in their demands 

for rigor. And the audience view maintains a conceptual relationship between rigor and 

reliability. Given all of this, one should prefer the audience view over the standard view 

at least for any descriptive account of rigor. I’ve also sketched some reasons for adopting 

the audience view’s prescriptive account of rigor but reserve a fuller discussion for future 

work. 

3.5 Concluding Remarks 

The goal of this chapter was to outline a new theory of rigor in terms of rhetorical concepts. 

To do so, we frst had to delimit what a theory of rigor could be about. A theory could be 

descriptive or prescriptive. In line with these dimensions, I characterized the audience view 

of rigor through three components: the agent-level descriptive account, the community-

level descriptive account, and the prescriptive account. I argued that there are numerous 

benefts to adopting the descriptive accounts over a standard view of rigor. Note that the 

descriptive accounts of the audience view may be adopted without adopting the prescriptive 
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view. Indeed, it may be possible to create a new prescriptive formulation of the standard 

view that is consistent with the descriptive accounts outlined in this paper. I do not think 

this is the best future direction, though, since it involves disconnecting the mathematical 

practices of rigor (the descriptive) from what rigor ought to be (the prescriptive). It will be 

more fruitful and interesting to see how the new audience view, which was designed from 

the descriptive practices up to an ideal prescriptive view, fares with respect to current issues 

in the epistemology of mathematics. One rich direction for such research is to examine 

how work on epistemic injustice in mathematics might seep into the universal audience and 

rigor judgments. This is the direction taken next in Chapter 4. 
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Chapter 4 

Rigor, Conviction, and Injustice 

Recent work in epistemology has highlighted the importance of the social and ethical 

dimensions of knowledge. Mathematical knowledge has often been treated as immune 

to these issues. This is due to the belief that mathematical proof is objective, certain, 

and formally verifable. In the last chapter, and in Ashton [2021] and Aberdein and 

Ashton [2024], I argued that a rigorous mathematical proof is more social than previously 

recognized. I argued that rigorous proofs are arguments that convince the right kind of 

audience. The right kind of audience is the universal audience. The universal audience is 

a fctional audience meant to represent all reasonable people. This audience is a mental 

construct and functions like a generic in some evaluations. Universal audiences were 

constructed by experiences with the real audiences that a mathematician encountered. Thus 

the account of rigor I proposed was deeply social and infuenced by the real people that a 

mathematician encounters throughout their life. The audience view situates rigor among 

topics in social epistemology as opposed to topics of formalizability and computability. 

A question naturally arises after connecting mathematical rigor and social epistemology. 

Does epistemic injustice occur in rigor judgments and their associated practices? I think 

the answer is yes. We’ll see that there are genuine cases of epistemic injustice related to 

mathematical rigor. As elsewhere in discussions of epistemic injustice, I’ll suggest that we 

leverage a virtue-theoretic approach to correct epistemic injustices related to rigor. 
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This chapter has two goals. The frst is to discuss two examples of epistemic injustice 

in mathematics that relate to rigor. Along the way, I’ll demonstrate the usefulness of the 

audience view in characterizing these instances of injustice. The second goal is to suggest an 

epistemic virtue that will begin to deepen the prescriptive audience view of rigor sketched 

in Chapter 3. In Section 4.1 I’ll review some varieties of epistemic injustice and highlight 

the core requirements. I’ll then discuss two examples of epistemic injustice in mathematics 

related to rigor in Section 4.2. I’ll also review the audience view of rigor and argue that it 

helps reveal the key epistemic capacity needed to identify participatory injustice in math. 

Finally, in Section 4.3, I’ll argue that a necessary virtue for a well-constructed universal 

audience is the virtue of participatory justice. 

4.1 Background: Epistemic Injustice 

To begin, it’s worth reviewing what an epistemic injustice is and how it difers from other 

injustices that one might face. The purpose of this section is to review three kinds of 

epistemic injustice drawing on discussions from both Fricker [2007] and Hookway [2010]. 

We’ll also review the current literature on epistemic injustice in mathematics to motivate 

the idea that mathematical practice is not immune to the phenomenon. 

4.1.1 Varieties of Epistemic Injustice 

According to Fricker [2007], an epistemic injustice occurs when someone is harmed in their 

capacity as a knower because of some identity prejudice. There are two key components 

of this account. First, the harm involved is genuinely epistemic. The harm undermines 

a person’s ability to possess knowledge. Second, the relevant identity prejudice must be 
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one that tracks someone through multiple dimensions of social activity. For example, race 

can be involved in a tracker prejudice since the prejudices associated with one’s race can 

occur in many areas of their social life. On the other hand, a prejudice against continental 

philosophers would not be a tracker prejudice since it is limited to one relatively small 

social domain. The harm of a localized prejudice may still be ethically devastating. But 

it is not, according to [Fricker, 2007, 29], the main focus of epistemic injustice. Both 

of these features are made clearer by looking at specifc breeds of epistemic injustice. 

Fricker [2007] introduced the concept of epistemic injustice by identifying two varieties 

– testimonial injustice and hermeneutical injustice. Further, Hookway [2010] has argued 

that there are also participatory injustices which fall under the phenomenon of epistemic 

injustice. 

The frst form of epistemic injustice that Fricker [2007] discusses is testimonial injustice. 

A testimonial injustice occurs when an audience assigns lower credibility to a speaker’s 

testimony than they deserve on the basis of an identity prejudice. Fricker’s central example 

of this is Tom Robinson’s case in To Kill a Mockingbird. The book is set in 1930’s Alabama 

where Robinson is a black man on trial for the rape of a white girl. Robinson is innocent. 

Given the milieu, it’s obvious that Robinson faces an identity prejudice which tracks him 

throughout his social activities. As a result of this identity prejudice, Robinson faces 

a testimonial injustice. His testimony in the courtroom is not assigned the appropriate 

credibility because of harmful stereotypes about his race. Robinson is wrongly prevented 

from conveying his knowledge due to his race. Prejudicial credibility defcits harm the 

speaker in their capacity as knowers and are thus epistemic wrongs. This kind of epistemic 

harm can also produce an obstacle to truth and can limit the circulation of critical ideas. 

Moreover, a recipient of testimonial injustice may lose confdence in their own reasoning. 

In doing so, they may reduce her own confdence to the point that they fail to meet the 
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conditions required for knowledge. This is, again, best characterized as an epistemic harm 

since it wrongs the speaker as a knower. 

The second type of epistemic injustice discussed by Fricker [2007] is hermeneutical 

injustice. A hermeneutical injustice occurs when “some signifcant area of one’s social ex-

periences [is] obscured from collective understanding owing to a structural identity prejudice 

in the collective hermeneutical resource” [Fricker, 2007, 155]. An example of hermeneuti-

cal injustice is women who sufered unwanted sexual advances in the work-place before the 

term sexual harassment. The hermeneutical resources lacked a term for the distincive social 

experience that women were facing in the workplace. That lack of terminology prevents 

a suferer from understanding a signifcant part of her own social experience. Again, the 

injustice relies on the concept of social power – women had less power in the workplace 

and their gender tracked them throughout many social experiences. And the harm done is 

epistemic – part of someone’s social experience is obscured from them in a way that leaves 

them confused and doubtful. Unlike testimonial injustice, there is no particular culprit for 

hermeneutical injustice. In testimonial injustice, the hearer inficts harm by not afording 

the speaker an appropriate amount of credibility. But in hermeneutical injustice, there is a 

systematic hermeneutical failure. 

Hookway [2010] cites a third type of epistemic injustice which occurs without credibility 

defcit or conceptual impoverishment. Hookway argues that there is a type of epistemic 

injustice which harms someone as a potential knower by excluding them participating. 

While testimonial and hermeneutical injustice harm someone as a knower, participatory 

injustice harms them as an epistemic participant. The core idea is that the ability to know 

isn’t the only good epistemic activity – they also include the ability to inquire and deliberate. 

In testimonial injustice, the person is harmed from an informational perspective; they’re 

not treated as a reliable source of information. But in participatory injustices, the person is 
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harmed as a participant in an activity. They’re not treated as “competent to carry out some 

particular activity that has a fundamental role in carrying out inquiries into the solution of 

some problem” [Hookway, 2010, 7]. One of Hookway’s examples of participatory injustice 

is a woman, perceived stereotypically to be, shy who attempts to engage in philosophical 

discussion. She’s viewed as an incompetent discussant because of her shyness. Since 

discussion is a mark of success for a philosopher, prejudicial stereotyping leads her to 

be perceived as a poor performer along a dimension of her epistemic life. Participatory 

injustices are epistemic since they call into question whether the person is capable of 

participating in certain epistemic activities. 

In this sub-section, we’ve surveyed three types of epistemic injustice. All three require 

that the injustice is related to an identity prejudice and that the injustice harms the person 

in an epistemic way. The main goal in surveying these three types of epistemic injustice 

is to set the stage for applying them to mathematical practices. Historically, certain groups 

have been excluded from mathematical education, training, and discussion. In other words, 

mathematical practice can be part of one’s social world where identity prejudices were 

recognized and enforced. The question naturally arises: do these injustices occur along 

an epistemic dimension? Some have argued that the answer is yes. We’ll turn in the next 

sub-section to an overview of the literature on epistemic injustice in mathematics. 

4.1.2 Epistemic Injustice in Mathematics 

The main goal of this section is to review the current literature on epistemic injustice in 

mathematics. The proposed injustices are not examples of epistemic injustice related to 

rigor. But this discussion will set us up to explore that possibility. The most salient type of 

epistemic injustice relied on in this literature is participatory injustice. 
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Rittberg et al. [2020] investigate the potential for epistemic injustice in mathematics via 

ghost theorems. A ghost theorem is a type of folk theorem. Folk theorems are theorems 

which everyone believes to be true and proved but they don’t know where or who proved it. 

Ghost theorems are folk theorems where the proof cannot be traced back to the literature. 

Their main focus is participatory injustices in the sense that Hookway [2010] defned. 

They look at a particular example of a ghost theorem afecting Olivia Caramello. The 

authors are clear that they “do not pass judgment on whether Caramello sufered epistemic 

injustice” but hope that it will function as an “indicative story” that raises our awareness 

for the possibility of epistemic injustice. But they also provide a more general argument 

that ghost theorems can be a potential source of epistemic injustice. In Caramello’s case, 

she was not able to publish a number of results since they were deemed “well-known” 

or “folklore.” Thus the ghost theorem acts as a barrier to Caramello’s participation in a 

specifcally epistemic practice. The authors are clear that they couldn’t fnd any evidence 

of a gender-based bias against Caramello. But, they argue, there could be a diferent kind 

of epistemic injustice at play. There are a group of experts in the feld that shape what 

the “existing body of knowledge” is. But in shaping this body of knowledge, they come to 

possess a “secret knowledge” that Caramello doesn’t fully possess. The authors claim that 

“to judge the originality of Caramello’s work on the basis of a conception of the ‘existing 

body of knowledge’ which comprises both secret and possible knowledge is intellectually 

callous” [Rittberg et al., 2020, 3888]. The authors don’t specifcally claim that Caramello 

sufered this kind of epistemic injustice, but that secret knowledge can create epistemic 

injustice in cases like Caramello’s. 

Tanswell and Kidd [2020] look at epistemic injustices in mathematics education. They’re 

specifcally interested in how the ethical components of teaching proofs can be used to refne 

the apprenticeship model of mathematics education. Under the apprenticeship model, 
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classroom mathematical practices ought to refect professional practices – the students 

should be enculturated into the professional practices. According to Tanswell and Kidd 

[2020], the cultural and class backgrounds of learners clashes with the apprenticeship 

model. Ultimately, they argue that the apprenticeship model “encourages teachers to 

enforce the norms of mathematical proving practices ... that strict enforcement of the norms 

of mathematical proving practices in classrooms can be a source of epistemic injustices” 

[Tanswell and Kidd, 2020, 1207]. One of the features of mathematical proving practices 

that allows for epistemic injustice, in their view, is the acontextuality of proof. This involves 

separating proofs from their authors, histories, and communities. Learners from certain 

backgrounds, like working-class children and Pasifka learners, face barriers that confict 

with the acontextuality. Working-class children have less exposure to the rigid use of 

language required for these proofs. And Pasifka children view mathematics as a group 

enterprise which makes it difcult to separate the proof from the community. The authors 

concede that this alone is not an epistemic injustice but merely a potential source of injustice. 

They write that “by strictly enforcing the ethical order of mathematics in the classroom one 

risks disadvantaging some learners in their participation in an epistemic practice. The 

ethical order of mathematics can thus be a source of epistemic injustice” (1208). 

Both of the papers discussed in this sub-section aimed to explore areas where epistemic 

injustice might occur in mathematics. Although both make important strides in the discus-

sion, neither are related to the concept of mathematical rigor. In the rest of this chapter, I’ll 

discuss two such examples and explore the epistemic harm through the audience view of 

rigor. 
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4.2 Epistemic Injustice in Mathematics 

In Chapter 3 of this dissertation, I introduced an account of mathematical rigor called the 

audience view. This account is driven by the idea that an argument is judged to be rigorous 

when it convinces the right kind of audience. The main goal of this section is to examine 

some examples of epistemic injustice related to rigor through the lens of the audience view. 

To do so, I’ll begin by reviewing the audience view. Then, in subsection 4.2.2, I’ll 

examine two examples of epistemic injustice using the audience view to defne rigor through 

capacities. We’ll see that exploring potential instances of epistemic injustice leads us to a 

clarifcation of the audience view in Section 4.3 which is a legitimate contribution to the 

philosophy of mathematics. 

Before we begin, let’s lay out some starting assumptions. A mathematical proof is an 

argument from premises to a conclusion. Its content concerns the structures and/or objects 

of mathematics. Although they contain mathematical symbols and notation, proofs are 

primarily written in a natural language like English or French. Moreover, proofs form an 

important part of mathematical epistemology. They’re a core component of mathematical 

justifcation. Setting aside the phenomenon of ghost theorems, one typically can’t claim to 

know a conjecture is true without a proof. In modern mathematics, an argument must be 

rigorous in order to qualify as a proof. So two necessary conditions for having a mathe-

matical proof is that the argument must be about mathematics and it must be rigorous.1 I 

mention all of this because it sets the foundation for our epistemological journey. Credibility 

is a crucial component of testimony so an unfair credibility defcit can lead to testimonial 

injustice. Concepts are a crucial part of understanding our experiences so a conceptual 

lacuna can lead to hermeneutical injustice. Some activities like conjecturing, discussion, 

1These are most likely not sufcient conditions on proof. Also note that published mathematical proofs 
must also be interesting, worthwhile, etc. 
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etc are crucial parts of participation in certain epistemic domains so an unfair capability 

judgment can lead to participatory injustice. Evaluating the rigor of proofs and making rigor 

judgments are mathematical epistemic activities. If a mathematician is made incapable of 

making or giving rigor judgments due to identity prejudice, then we’ll have examples of 

epistemic injustice in mathematics. 

4.2.1 The Audience View 

The frst step to is to explore what constitutes a rigor judgment at all. I’ve argued in 

Chapter 3 of this dissertation that the best account of rigor is the audience view.2 This 

view is motivated by the idea that a rigorous proof is one that convinces the right kind of 

audience. This is an intrinsically social view and should allow for a clear connection to 

social epistemological issues like epistemic injustice. I’ll briefy sketch the view in the rest 

of this subsection. I’ll then outline three types of rigor judgments in terms of the audience 

view. 

To begin, we need a partial taxonomy of audiences following Perelman and Olbrechts-

Tyteca [1969] and Sigler [2015]. First, there are real audiences. These are people we 

actually argue with and who can receive and question our arguments. Of course, we don’t 

have access to real audiences all the time. We often have to imagine some version of our 

real audiences in order to build and evaluate arguments. When we imagine audiences, we 

use a mental heuristic built on our previous experiences with real audiences. For example, a 

PhD student in philosophy can’t actually argue to her advisor as she writes a paper. Instead, 

she has an imagined audience of philosophers that she tests arguments out with while she’s 

2The audience view is an alternative to the standard view of rigor. The standard view claims that rigor is 
due to the relationship between an informal proof and a formal proof. For an overview of arguments against 
the standard view, see the frst chapter of this dissertation. 
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writing. That same philosophy student might teach her own students to write papers as if 

they were writing them to explain an idea to their mom. These are instances of imagined 

particular audiences. They’re particular because they’re defned along a dimension that 

only some real audiences have. Not every real person is a philosopher or a mother. But 

we can imagine audiences that are defned primarily by being mothers or philosophers. 

Those imagined audiences are informed by real experiences arguing with philosophers and 

mothers. One of the crucial concepts of Perelman and Olbrechts-Tyteca [1969] is that there 

is another kind of imagined audience which is defned by a feature we think is universal. 

This is the universal audience and is an imagined audience built out of experiences with 

reasonable people. Unlike motherhood and philosophical training, reasonableness is a 

seemingly universal aspect of real audiences. When an arguer wants to convince everyone, 

she’ll invoke the universal audience in building and evaluating an argument. Every real 

arguer encounters diferent real mothers and thus has diferent imagined audiences of 

mothers. Additionally, every arguer will have encountered diferent real reasonable people 

which leads each arguer to have diferent universal audiences. In Ashton [2021] I’ve argued 

that the universal audience is the main audience involved in developing proofs. Further, in 

Chapter 3 of this dissertation, I’ve argued that it plays a core role in rigor judgments. In 

what follows, I’ll describe how rigor can be evaluated using the universal audience. 

The main claims of this section will be at the level of descriptive account. The descriptive 

component of the audience view aims to explain the rigor judgments that mathematicians 

make. The descriptive accounts of rigor are always relative to an agent or a community. 

Proofs are made up of many inferential moves. The descriptive-agential audience view of 

rigor claims that a mathematician judges a proof to be fully rigorous when every inferential 

move in the proof is one that the practitioner’s universal audience assents to. Mathematicians 

often give “more or less” rigorous proofs though, so there’s also an account of partial rigor. A 
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practitioner judges a mathematical proof to be mostly rigorous when most inferential moves 

are ones that the practitioner’s universal audience assents to while some inferential moves 

are ones that a practitioner’s particular audience of some mathematicians would assent to. 

The number and importance of the inferences which fail the universal audience standard 

will determine how rigorous the proof is in comparison to other proofs. Mathematicians 

engaged in a practice will have similar universal audiences since they’ll have encountered 

similar reasonable people. So a proof will be judged fully rigorous for a community when 

every inference is one that the universal audiences common to that community assent to. 

Similarly, a mathematical proof is judged somewhat rigorous for a practice when most 

inferential moves in the proof are ones that the universal audiences common to that practice 

assent to while some inferential moves are such that some particular mathematical audiences 

would assent to. Usually, a proof is rigorous for a community when it’s passed the judgment 

of a few peer reviewers. Proofs are not usually judged by every member of a community. 

But peer review works in part because we take it that peer reviewers have a concept of 

what is acceptable to the whole community. In our terminology, that means they have a 

concept of universal audience that matches the universal audiences common to a practice. 

In practice, then, judgments of rigor depend on whether the inferences in a proof would be 

assented to by the practitioner’s imagined universal audience. 

In addition to a descriptive account of rigor, a philosopher of mathematics will want a 

prescriptive account of rigor. A prescriptive account tells us when a proof really is rigorous, 

not just when we can expect a mathematician or a community to judge it to be rigorous. 

This can help us adjudicate between debates in rigor and to help us reveal the underlying 

epistemic norms of rigor that help ensure reliability and correctness of results. In Chapter 

3 of this dissertation, I sketched the start of such an account. A mathematical proof is 

rigorous when every inferential move in the proof is one that a well-constructed universal 
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audience assents to. Minimally, a well-constructed universal audience refects a large group 

of real, reasonable people. This is essential for securing the connections between reliability 

and rigor. Rigorous arguments are more reliable because they try to avoid counterexamples 

from any reasonable person; the proofs that stand the test of time are those that can appeal 

to a majority of reasonable people across time and areas. In Section 4.3, I plan to spell out 

one ideal construction through the lens of virtue epistemology. This is a natural move in 

the literature on epistemic injustice – resolve sources of epistemic injustice by developing 

epistemic virtues. 

4.2.2 Injustice in the Descriptive Account 

The goal of this subsection is to identify two cases of epistemic injustice related to rigor 

and characterize them by using the audience view. Our frst example involves Sophie 

Germain’s contributions to elasticity theory. In the frst case, the purported proofs did 

lack rigor by contemporary and modern standards. But examination of why the proofs 

lacked rigor reveals an important dimension of rigor acquisition. The second is drawn from 

Grete Hermann’s work on quantum theory. In this second case, her work was rigorous by 

modern and contemporary standards. But that rigor was not recognized due to participatory 

injustice. 

The most obvious way that epistemic injustice might occur in rigor judgments is through 

stereotyping a social group as non-rigorous. Consider, for example, the prejudicial stereo-

type that women are guided by emotion, not rigorous logic. Being a woman is a feature of 

one’s social identity and this stereotype can track them throughout many aspects of their 

social life. In mathematical practice, the prejudicial stereotype can be exhibited through 

rigor judgments. For example, a prejudiced mathematician may judge a proof to be lacking 
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in rigor if he knows it’s written by a woman. This can harm the female mathematician as 

a knower since she’s judged unfairly to lack the capacities required for rigorous argument. 

This is a straightforward participatory injustice in Hookway [2010]’s sense. Providing 

rigorous arguments is an important epistemic activity in mathematics that she’s not able to 

fully participate in due to prejudice about her capacities. While this example of epistemic 

injustice causes clear harm, it doesn’t require any particular theory of rigor or mathematical 

practice to understand it. Moreover, the issues involved in this kind of epistemic injustice 

can be solved via blind review. The ease with which a harm can be resolved is not a sign that 

the harm is less important. But I think there are more subtle, insidious spaces for epistemic 

injustice and rigor judgments to interact. 

Sophie Germain 

Sophie Germain was a female mathematician, physicist, and philosopher around the turn of 

the 19th century in France.3 She taught herself mathematics during the French revolution 

using the books in her father’s library. Her parents were not supportive of her studies so she 

had no formal education in mathematics. After the revolution, she could not attend the École 

Polytechnique because she was a woman. But lecture notes were made available to any man 

who asked. So she wrote in to obtain Legendre’s lecture notes under the pseduonym Le 

Blanc. She sent her thoughts on the lecture notes to Legendre under the same pseudonym. 

Eventually, Legendre was so impressed that he insisted on meeting the young Le Blanc. 

After discovering Germain was actually a woman, Legendre was largely supportive and 

acted as an occasional mentor. 
3The story of Germain’s life described here is drawn from Musielak [2015]’s biography. Information 

about her correspondence with Gauss is drawn from Del Centina and Fiocca [2012]. 
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Under her assumed identity, Germain corresponded with a number of other mathe-

maticians including Gauss and Poisson. Her correspondences with Gauss regarding his 

Disquitiones Arithmeticae are a useful example of both Germain’s approach to mathematics 

and how other mathematicians treat her. In the frst four letters to Gauss, she presents herself 

as Le Blanc. All of her letters contain extensive mathematical notes and proofs. Many of 

these mathematical arguments involve lengthy, unnecessary calculations. Gauss responds 

to all of these letters with praise. He is impressed by the young mathematician. In her 

ffth letter to Gauss, she is forced to announce her true identity. This is because she had a 

family friend in the military check in on Gauss during the Napoleonic wars. Gauss was safe 

but he swore he didn’t know anyone named Germain. Gauss’s letter to Germain upon this 

discovery is rife with praise. He exalts her for being able to overcome the barriers women 

face to participating in mathematics. He then presents a single counterexample to one of 

her previous proofs.4 The mathematical content of Germain’s sixth letter is ignored. Gauss 

writes back only to say he will be too busy to correspond further. Over the next decade, 

Germain sends a further four letters which go unanswered. 

After her correspondence with Gauss, Germain took up elasticity theory in response to 

a contest held by the Paris Academy of Sciences. The goal of the contest was to provide 

a theory of the vibration of elastic surfaces that would match empirical evidence from 

Chladni’s experiments with vibrating plates. The Academy held the contest three times. 

Each time, Germain was the only entrant. The frst time, she was supported by Legendre 

who provided her with the current research. The second time, Legendre stops supporting 

her and she’s all alone in developing her work. The third time she consults with Poisson. 

4This counterexample posed a curiosity for modern mathematicians since it’s unusually large when 
smaller counterexamples will do. Some like Mackinnon [1990] assumed that Gauss purposely chose a difcult 
counterexample so as not to ofend Germain. Others like Waterhouse [1994] believe the counterexample is 
the most obvious within Gauss’s frame of mind. 
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Poisson would eventually publish their work together without any reference to Germain. 

The frst two times, her entry is rejected because it’s not rigorous enough. She wins the 

prize on the third attempt but is forced to self-publish because the Academy still judges it 

to be insufciently rigorous. Poisson would go on to rigorously prove many of the results 

Germain tried to prove using a similar methodology. 

Germain has access to all the physical materials she needs to succeed, she had the 

occasional support of other mathematicians, and she had the right ideas for solving. No 

other mathematicians were even willing to attempt the problem. She consistently evaluates 

her own proofs as rigorous while the community correctly recognized them as lacking in 

rigor. So why does Germain think she’s rigorously proved something that’s seemingly 

impossible at the time? I think the answer lies in her own concept of rigor. Germain cannot 

possess a well-constructed universal audience because of the severe limitations she faces 

with real audiences. She has no consistent, honest interlocutors. In her non-mathematical 

life, she’s limited to discussions with people who are deemed incapable of the reasonableness 

required for mathematics. In her mathematical life, she receives largely empty praise. She’s 

treated as an oddity, not a genuine interlocutor. This is why the Gauss correspondence is 

of such importance to her. And even Gauss did not correspond with her in any signifcant 

way after discovering she’s a woman. These two features result in a universal audience that 

does not represent all reasonable people. So she can still make rigor judgments but they 

won’t reliably match those of the community or genuine constraints on rigor. 

This is clearly a sad story. But it’s also a genuine case of epistemic injustice in 

mathematics. Germain is harmed as a knower because she’s blocked from forming an 

adequate universal audience. She’s blocked because of identity prejudices. There were 

rules in place to stop women from gaining a mathematical education that were based on 

harmful stereotypes about women’s capacity for reason. This is an identity prejudice that 
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stops her from gaining an education. The praise that Germain receives demonstrates that 

her contemporaries think she might be the exception to the stereotype. But even her 

contemporaries seem to fear ‘upsetting her’ which indicates that they judge her to be so 

sensitive that she’s incapable of reasonable argument. These are participatory injustices – 

she’s unfairly judged to be incapable of reasonable argument on the basis of a prejudice 

against her sex. These participatory injustices fuel another injustice. By not treating her as a 

genuine interlocutor, she’s further harmed because she’s not allowed to develop a functional 

concept of rigor. Again, this is blocked due to identity prejudice against her sex. 

So there are two levels of epistemic harm that Germain faces – a participatory injustice 

against her capacity for reason and an epistemic injustice blocking her from acquiring a vital 

capacity. The audience view of rigor is implicitly useful in characterizing these harms. First, 

according the audience view of rigor, rigor judgments are tied to a universal audience which 

is constructed by one’s experiences with real audiences. And so there’s a clear connection 

between Germain’s isolation and her impoverished concept of rigor. She writes proofs that 

lack rigor because she’s been excluded from the mathematical interlocution necessary to 

align her concept of rigor with the community. 

Compare, for example, how a proponent of the standard view might characterize Ger-

main’s case. For versions of the standard view, like Tatton-Brown [2019] or Hamami [2019], 

Germain’s judgments should be based on the in-principle formalizability of her purported 

proofs. Moreover, the skills needed to verify whether or not a proof is in-principle for-

malizable were gained by training but not necessarily by interlocution. Both Tatton-Brown 

[2019] and Hamami [2019] think developing a concept of rigor begins by reading and 

proving with the most basic inference rules and axioms. Then the trainee learns to leave 

steps out because she has previously proved the sub-proofs related to common inferences. 

She learns through books on logic and mathematics. Under the standard view, interlocutive 
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experiences with real people are not required to grasp the concept of rigor. Germain has all 

of the textbooks and notes she should need to learn to be rigorous under the standard view. 

And so, under the standard view, Germain’s systematic faulty rigor judgments are an issue 

separate from the participatory injustices she faces. The audience view provides a much 

clearer connection between her faulty rigor judgments and the participatory injustices she 

faces. This helps to reveal the distinct epistemic harm that she faces by being isolated or 

treated as incapable of being rigorous. 

Grete Hermann 

One person’s concept of rigor can be fawed by epistemic injustice. The concept of rigor 

will sufer with every injustice that causes a person to assign less of a capacity for reason to 

a group or person on the basis of a tracker prejudice. This is because the injustice blocks 

the required feedback loop between real, reasonable audiences and imagined, universal 

audiences. While one’s universal audience can never fully represent all reasonable people, 

it should at least approximate it in some way. Since a community-level rigor judgment is 

based on representative agential rigor judgments, we should expect that epistemic injustice 

can arise at a community level as well. 

Let’s turn to an example involving rigor judgments in particular. In 1932, in his Mathe-

matical Foundations, John von Neumann published a purported proof of the impossibility 

of hidden-variable theories in quantum mechanics. It was accepted as a rigorous proof until 

1966 when John Bell published a devastating objection to the proof. The proof contains a 

problematic assumption – that of the linearity of expectation for all possible observables. 

But this assumption does not actually hold. There are well-known counterexamples involv-

ing eigenvalues in the quantum mechanical case. Bell is clear – von Neumann’s “‘very 

general and plausible’ postulate is absurd” [Bell, 1982, 994]. There’s clearly been a failure 
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in rigor at a community level. In the 30 years between von Neumann’s proof and Bell’s 

criticism, the von Neumann proof was venerated and afected the entire study of quantum 

mechanics. It’s interesting to note that criticisms of the rigor of von Neumann’s proof 

involve a kind of reasonable-person standard. Mermin [1993, 806] writes that “von Neu-

mann’s no-hidden-variables proof was based on an assumption that can only be described 

as silly – so silly, in fact, that one is led to wonder whether the proof was ever studied by 

either the students or those who appealed to it.” This kind of analysis is in-line with the 

audience view of rigor – we know the proof is not rigorous because any reasonable person 

ought to have seen the use of such a silly assumption. 

On its own, this is an interesting story about how long it might take to correct incorrect 

rigor judgments. Von Neumann clearly thought his own proof was rigorous. And at least a 

few mathematicians also judged it to be so. Bell managed to point out an assumption that 

most reasonable people would not agree with which resulted in the community recognizing 

the von Neumann proof as non-rigorous. The core issue is that John Bell was not the frst 

to point out the absurd use of linearity assumptions in von Neumann’s proof. In 1935, 

Grete Hermann published an essay ‘The Circle in Neumann’s Proof.’ She argues that von 

Neumann’s proof is circular since it attempts to rule out the existence of dispersion-free 

states by assuming the additivity rule but the additivity rule only holds when there are no 

such states. Hermann’s argument was almost entirely ignored in the years between von 

Neumann and Bell. People have made a number of assumptions as to why. The obvious 

examples are that the paper was not published in a popular journal, von Neumann was an 

almost prophet-like fgure, she was young, she was a woman, she was a political outsider 

(read: openly anti-Nazi), she typed that part of her article in a small font, she did not ascribe 

signifcance to her own argument, and she “did not desire the status of a revolutionary 

or radical” [Seevinck, 2016, 116]. Paparo [2012] argues that since later editions of her 
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work don’t include the argument criticizing von Neumann, this shows that she thought the 

argument was insignifcant. Again, that seems like an absurd conclusion to draw about a 

paper literally entitled ‘The Circle in Neumann’s Proof.’ It seems fairly obvious that she 

did attribute importance to her argument since she went through the trouble of having it 

published and titled in a clear, non-conciliatory way. I think we can dismiss any arguments 

that Hermann’s critique was ignored on the basis of her personality. The stronger argument 

is that the essay is not published in a popular journal. This would be a strong argument if 

the paper had not received further contemporary attention. As Seevinck points out, Carl 

Friedrich von Weizsäcker wrote a review of the 1935 essay so must have at least read her 

circularity objection. Likewise she composed the argument while working with Heisenberg 

at his institute in Leipzig. The journal she published in is not the strongest, but the arguments 

within the paper were clearly read by important physicists at the time. 

Having ruled out the absurd arguments, combined with the evidence that Hermann’s 

circularity argument must have been read by important, respected physicists independent of 

the publishing journal, we are left with the sad, but obvious conclusion. Her clear, correct 

argument against von Neumann’s proof was ignored for a social factor. It doesn’t matter 

for the purposes of this paper whether that social factor was her youth, sex, or political 

orientation. What matters is that each of those carry an identity prejudice that can track 

her throughout her social life. That identity prejudice is what allows mathematicians and 

physicist to exclude her from their universal audience and, in turn, to ignore her circularity 

objections and continue to make incorrect rigor judgments about von Neumann’s proof. 

Grete Hermann sufered an epistemic harm by having her rigor judgment ignored on the 

basis of an identity prejudice. 

There are a few core points to pull from Hermann’s case. First, she has a prescriptively 

adequate concept of rigor. Unlike Germain, Hermann has sustained, stable interlocutors in 
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the feld who don’t treat her with kid gloves. Second, her proof is published which indicates 

that she understands the community’s working concept of rigor. So she doesn’t face the 

secondary epistemic injustice that Germain faced. Hermann does still face an epistemic 

injustice. She’s harmed by having her correct rigor judgment ignored on the basis of an 

identity prejudice. Since an entire community ignores her, this is an epistemic injustice 

occurring at the community level. Moreover, von Neumann’s lapse in rigor propagates 

throughout the feld and hinders quantum mechanical progress for over 30 years. So the 

epistemic injustice Hermann experienced was an epistemic harm to both her and the feld 

itself. 

Again, we may be tempted to ask what the standard view would say about Hermann’s 

case. Hermann’s critique of von Neumann was correct. According to the standard view, 

when disagreements about the status of a proof occur, they can be passed to the ‘higher 

court’ of formalization. That clearly is not what happens in Hermann’s case. Her critique 

is ignored altogether. And when Bell’s critique is accepted, it is no more formal than 

Hermann’s. So the standard view doesn’t help us explain why Bell’s critique was taken 

seriously while Hermann’s was not. 

Both Germain and Hermann’s cases are examples of genuine epistemic injustice. This 

is because both examples satisfy the core components of epistemic injustice – an epistemic 

harm and an associated identity prejudice. To best characterize the epistemic harm, we 

identifed reasonableness and rigor as epistemic capacities which are vital to mathematical 

practice. This involved invoking the descriptive audience view of rigor. In the next section, 

I aim to characterize a necessary virtue for a prescriptive account of rigor that avoids 

epistemic injustice. 
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4.3 Righting the Wrongs: Virtue Argumentation 

The purpose of this fnal section is to refne the prescriptive component of the audience 

view so as to avoid participatory injustices leading to lapses in rigor. Just as Fricker [2007] 

suggested cultivating the virtues of testimonial and hermeneutical justice, I’ll suggest that 

we should cultivate the virtue of participatory justice. I’ll defne this virtue in terms of who 

should be included in the universal audience. I’ll suggest that the virtuous mathematician 

(the one with good rigor judgments in line with the prescriptive view) works to adjust his 

capacity judgments in the face of identity prejudices. 

There has been a recent resurgence in virtue-theoretic approaches to many areas of 

philosophy including ethics and epistemology. Virtue-theoretic turns involve shifting the 

focus to one’s epistemic or ethical character instead of the rules or conditions of an act. 

A virtue is a certain disposition to value and act in characteristic ways. Virtue-theoretic 

thinking was characteristic of ancient Greek thought. Plato, Socrates, and Aristotle all 

endorsed studies of the virtues. Aristotle’s virtue theory is perhaps the most infuential on 

Western philosophical thought. Both his ethical works discuss the role of cultivating virtue 

in pursuit of the good life. In the Nichomachean Ethics, he discusses the idea that each 

virtue can be understood as the right degree of a property situated between the dual vices 

of excess and defcit. Virtue ethics and virtue epistemology both have varying potential 

lists of the important virtues. But they also diverge on which aspects of virtue are the most 

important. For example, virtue epistemologists tend to fall into either a responsibilist or a 

reliabilist camp each of which stresses a diferent component of virtue as being important 

for generating knowledge. The focus of this section is not to provide a comprehensive 

account of the epistemic virtues, but to focus on one type of epistemic virtue – those which 

arise in discussions on epistemic injustice. 
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Fricker identifes testimonial injustice as a kind of vice where hearers fail to correct 

for identity prejudice when hearing testimony. She argues that “testimonial responsibility 

requires a distinctly refexive critical social awareness” [Fricker, 2007, 91] which a virtuous 

hearer uses to neutralize prejudicial impacts on her credibility judgment. She gives a 

characterization of the fully virtuous hearer as follows: 

The fully virtuous hearer, then, as regards the virtue of testimonial justice, is 

someone whose testimonial sensibility has been suitably reconditioned by suf-

fcient corrective experiences so that it now reliably issues in ready-corrected 

judgements of credibility. She is someone whose pattern of spontaneous cred-

ibility judgement has changed in light of past anti-prejudicial corrections and 

retains an ongoing responsiveness to that sort of experience. Full posssession 

of the virtue, then, in a climate that has a range of prejudices in the social 

atmosphere, requires the hearer to have internalized the refexive requirements 

of judging credibility in that climate, so that the requisite social refexivity of 

her stance as hearer has become second nature. [Fricker, 2007, 97] 

In singular instances, the virtuous hearer refects on potential credibility defcits at play in 

her evaluation of a speaker owing to identity prejudices. She then upwardly corrects her 

credibility assignment to adjust for the efect of prejudice. But full possession of a virtue 

cannot occur in a single instance. We can’t determine whether a person is honest on the basis 

of a single instance. Likewise, a testimonially just hearer, reliably adjusts her credibility 

assignments to correct prejudicial defcits. Virtue comes in degrees so a person may be 

more or less virtuous. But for full possession of the virtue, she must issue in ready-corrected 

judgments spontaneously, in a similar way that an honest person is spontaneously disposed 
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to tell the truth. Parallel to Fricker’s introduction of testimonial justice, she also introduces 

a virtue of hermeneutic justice. We’re provided with a characterization: 

The form the virtue of hermeneutical justice must take, then, is an alertness 

or sensitivity to the possibility that the difculty one’s interlocutor is having 

as she tries to render something communicatively intelligible is due not to its 

being a nonsense or her being a fool, but rather to some sort of gap in collective 

hermeneutical resources. ... The virtuous hearer, then, must be refexively 

aware of how the relation between his social identity and that of the speaker 

is impacting on the intelligibility to him of what she is saying and how she is 

saying it. [Fricker, 2007, 169] 

So again we see that to combat epistemic injustice, we need to cultivate the associated 

virtues. And the associated virtues themselves involve adjusting the hearer’s interpretation 

of the speaker’s credibility or hermeneutical struggle in light of the prejudices they face. 

Given Fricker’s use of the virtues, we’d expect Hookway [2010] to characterize a 

similar virtue of participatory justice. But he only points to the importance of a wide 

range of participatory activities which might also require refective virtues. One obvious 

set of epistemic activities are those involved in argumentation. Aberdein [2010] argues 

that a virtue-theoretic approach to argumentation is fruitful and attempts to survey some 

of the argumentational virtues. He argues that the virtues of argument propagate truth and 

virtuous arguers are disposed to spread true beliefs around. Argumentative virtues fall into 

categories like a willingness to engage in argumentation, willingness to listen to others, 

willingness to modify one’s own position, and a willingness to question the obvious. The 

category of willingness to listen to others includes intellectual empathy and fairmindedness. 
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Along the dimension of willingness to listen to others, I’d like to sketch a virtue of 

participatory justice as it relates to the construction of a universal audience. The universal 

audience represents what the arguer takes to be all reasonable people. Reasonableness 

is a capacity required for consideration when building the audience. In other words, if 

an arguer thinks that a group of people is straightforwardly unreasonable, or judges them 

to be incapable of giving, taking, and evaluating reasons, then that group will not be 

considered when the arguer constructs his universal audience. We saw in earlier sections 

that judgments of unreasonableness can occur on the basis of a prejudicial stereotype, 

like “women are too emotional to be properly reasonable.” This example illustrates how 

certain kinds of particular audiences – like women – can be excluded from one’s universal 

audience. The particular identity overshadows the potential for exhibiting reasonableness. 

When the particular audience is deemed unreasonable, then dissenting opinions won’t be 

incorporated into the arguer’s universal audience. And the arguer’s universal audience 

will be less likely to represent real reasonable people. The virtue of participatory justice, 

then, involves refecting on whether one’s judgment of a reasonable person is based on the 

person’s reasoning or based on an identity prejudice. When it is based on their identity, 

the virtuous arguer is aware that seeming unreasonableness is due to an identity prejudice 

and makes extra efort to incorporate those real audiences when constructing his universal 

audience. The virtuous arguer adjusts his willingness to change his conceived universal 

audience in the face of arguing with real audiences subject to participatory prejudices. 

4.3.1 The Virtuous Mathematician 

We’ve now sketched the virtue of participatory justice. The goal of this subsection is to 

discuss how that virtue afects mathematical practices. We’ll discuss the descriptive and 
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prescriptive accounts of mathematical rigor. Then I’ll discuss an example where a particular 

audience is excluded in a vicious fashion, resulting in rigor judgments which fail to meet 

the prescriptive standard. 

Let’s return to the descriptive account of rigor. There, a virtuous mathematician will 

improve her rigor judgments by including real, reasonable audiences in the process by which 

she constructs her universal audience. Based on the account given in this dissertation, we 

can venture the following empirical hypothesis, if enough mathematicians in the community 

exhibit the virtue of participatory justice, then community-wide rigor judgments will be 

improved as well. For example, in Grete Hermann’s case, her argument against von 

Neumann’s purported proof was ignored on the basis of some feature of her identity. She 

encountered participatory injustice and the people who ignored her work failed to exhibit 

the virtue of participatory justice. In this case, people judged that von Neumann’s proof was 

rigorous using their universal audience. If those mathematicians were virtuous, they would 

have put extra efort into recognizing and evaluating her dissent and then incorporating 

her into their universal audience. By incorporating that real audience in constructing 

their universal audience, the same mathematicians would come to judge von Neumann’s 

purported proof as lacking in rigor. In this case, the virtue of participatory justice would 

improve rigor judgments, reaching an epistemic aim. 

Now let’s turn to the prescriptive account of rigor. Earlier in this paper, we said that a 

mathematical proof is fully rigorous when every inferential move in the proof is one that 

a well-constructed universal audience assents to. Minimally, a well-constructed universal 

audience refected a large group of real, reasonable people. This is essential for securing the 

connections between rigor and reliability across time and contexts. We can now characterize 

a necessary condition for constructing a universal audience well – the arguer must exhibit 

the virtue of participatory justice. For a proof to really be fully rigorous, it must at least 
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be an argument that a universal audience free of participatory injustice assents to. As it 

stands, this account allows for pluralism – there are many ways of being a virtuous arguer 

and, thus, many ways of having a well-constructed universal audience. So there might be 

many ways for a proof to be genuinely rigorous. 

4.4 Conclusion 

The main goal of this chapter was to examine whether, and how, epistemic injustice might 

be related to rigor judgments. We saw two examples where participatory injustices afected 

rigor judgments. Along the way, we showed that the audience view of rigor could help 

illustrate the epistemic harm involved in Germain and Hermann’s examples. To avoid such 

injustices in mathematics, I sketched a new virtue of participatory justice that would refne 

the audience view. 
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Chapter 5 

Conclusion 

The focus of this dissertation was mathematical rigor as it is exhibited and judged in practice. 

In Chapters 1 and 2, I examined the standard views of mathematical rigor and argued that 

they did not make sense of mathematical practices. In Chapter 3 I outlined the audience 

view of rigor through three interrelated rigor judgments. For a proof to be rigorous, it must 

convince the right kind of audience. This is a deeply social account of mathematical rigor. 

In Chapter 4, I discussed examples demonstrating that the social and ethical dimensions of 

knowledge apply in mathematical rigor. To conclude this dissertation, I’ll briefy mention 

some areas for future work that were not addressed here. 

The audience view focuses on the inferences of a rigorous proof. But, as we saw in 

Chapter 1, concepts, defnitions, and notions all play a role in informal rigor. For Kreisel 

[1967, 1987] and Rav [1999, 2007] the meaning of the terms involved was a crucial part 

of informal rigor. The audience view does not yet provide us with an account of rigorous 

defnition. This is in line with current literature on the standard view, which also fails to 

give an extensionally adequate account of rigorous defnition. Mathematicians in practice 

don’t translate their defnitions into a formal language in order to rigorize them and Burgess 

[2015] tells us that rigor demands any new concepts be defned in terms of the primitives 

or previously defned concepts. Moreover, proponents of the standard view often face the 

paradox of rigor: a fully rigorous treatment of a subject matter will ipso facto cease to 

be a treatment of the subject matter alone. So we should have serious doubts that the 

112 



standard views on ofer can strike a balance between meaningful defnition and rigorous 

defnition. The audience view will avoid the paradox of rigor and should be compatible 

with an account of rigorous defnition. I leave it open to future work whether an account 

of rigorous defnition can fruitfully involve the universal audience or whether we should 

identify a separate, complementary view of rigorous defnition. 

In addition to rigorous defnition, there are other aspects of mathematical practices 

around rigor that may be worth examining using the audience view. For example, Tanswell 

and Rittberg [2020] have already begun to look at epistemic injustice in mathematics 

education. I think the audience view could also help to construct more dialogical methods 

for teaching proof in a more inclusive manner. 

Another aspect worth exploring in closer detail is diagrammatic proof. Again the 

audience view does not rule out diagrammatic proof and a universal audience can assent to 

a variety of inferential moves, including those involving diagram manipulation. But further 

investigation into diagram use is needed to help identify how misleading diagrams are ruled 

out. 

One fnal topic is the issue of deductive validity. Unlike the standard view, rigor does 

not guarantee validity (or vice versa) under the audience view. Nevertheless, there should 

be some reliable connection between the two. So I plan in future work to connect the 

dialogical account of deduction proposed by Dutilh Novaes [2020] to the audience view 

of rigor. This will help tighten the connection between rigor and validity from a social, 

argumentative perspective. 

Overall, there are numerous topics left to be explored relating to mathematical rigor. 

There have been very few alternatives to the standard view of rigor and even fewer are 

sensitive to the social dimension of mathematical rigor. This dissertation provides an 

alternative account from which we can begin to explore those topics through a social lens. 
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