Doctor of Philosophy, The Ohio State University, 2024, Electrical and Computer Engineering
With rapidly increasing demands for high-speed and data-intensive wireless communications, mm-wave technology has become a promising way to provide unparalleled data rates, ultra-reliable low latency, and a massive increase in device connectivity. However, there are some fundamental challenges in the deployment of mm-wave networks. Considering the same communication distance, the mm-wave suffers from a higher free-space path loss due to its shortened wavelength. The path loss becomes an issue especially when the device is working in rural areas where a longer coverage distance is required. Also, a shorter wavelength can result in extra attenuation brought by random obstacles, for example, the raindrops whose diameter is comparable to the wavelength. For the mm-wave antenna systems with a fixed narrow beam, even light mechanical motions can cause misalignment between the transmitter and receiver leading to intermittent communication. To address these challenges, mm-wave antennas are designed to be highly directional, concentrating energy in narrow beams to combat the high path loss. Besides, beam-steerable antennas, which can dynamically adjust the radiation direction, have been developed to maintain reliable communication links. While the conventional phased array designs have a planar aperture with beam-forming capability, their usage in the mm-wave band is limited by its cost, potentially low efficiency, and high power consumption due to numerous active RF components. The reflector antennas, which have been widely adopted thanks to their decent gain level and high efficiency, face the challenges of a complex reflecting aperture and a large volume due to the separated feeding source. Similar limitations have been observed in other designs using metasurfaces or lenses as well. Therefore, there is an innovation gap for a simple low-cost, low-volume, high-efficiency, high gain, and beam-steerable antenna design for the next-generation mm-wave applications.
A low-prof (open full item for complete abstract)
Committee: Chi-Chih Chen (Advisor); Scott Scheer (Committee Member); Fernando Teixeira (Committee Member); Kubilay Sertel (Committee Member)
Subjects: Electrical Engineering; Electromagnetics