Doctor of Philosophy (Ph.D.), Bowling Green State University, 2022, Photochemical Sciences
Our overall goal here in this dissertation is to develop silicon-based hybrid materials that are potential high stability materials replacements for those in current electronics systems. To design the hybrid structures, a unique class of silicon-based compounds, silsesquioxanes (SQ) was used as the building block. SQs are three dimensionally compact Si-O bonded, cage-type compounds that can be synthesized to contain a variety of functional groups on each of the cage vertices. They offer useful properties such as thermal and photo stability, a high degree of functionalization, solution processability, and facile synthesis.
The works in this dissertation focus on mixed functional (vinyl/phenyl) SQs of different sized cages containing 8, 10, and 12 silicon atoms. They are synthesized by fluoride catalyzed rearrangement reaction in a statistically controlled manner to achieve the desired vinyl groups for oligomerization. Spectroscopic measurements in picosecond/subpicosecond timeframes were performed before evaluating their potential applications.
In chapter 2, vinyl/phenylSQs are cross-coupled by 4-di-bromo-aromatic linkers: Benzothiadiazole (BT), Phenanthrenequinone (PQ), Ethyl-carbazole (EC) and Phenyl-carbazole (PC). To compare photophysical properties between caged and non-caged structures, bis-tri-alkoxysilyl (linker) model compounds are synthesized. Luminescence quantum yields for oligomers are generally lower than the corresponding model compounds (except for PQ) which denotes non-radiative energy transfer possibility in oligomer. In addition, rapid transient absorption anisotropy decay (10's ps in oligomers) provide signatures for excitation energy transfer between linker chromophores in oligomers.
In chapter 3, we have designed hybrid oligomers with a vinyl/phenylSQ cage backbone linked with cross-linkers including 2,7-dibromo-9-fluorenone, 2,7-dibromo-9,9-dimethylfluorene, 1,4-dibromo-2,5-dimethoxybenzene, 2,5-dibromopyridine, 2,6-dibromopyridine, 2, (open full item for complete abstract)
Committee: Joseph Furgal Ph.D. (Committee Chair); Robyn Miller Ph.D. (Other); H. Peter Lu Ph.D. (Committee Member); Xiaohong Tan Ph.D. (Committee Member)
Subjects: Organic Chemistry; Physical Chemistry