Master of Science (MS), Wright State University, 2012, Earth and Environmental Sciences
Constructed wetlands are an efficient and cost effective means for chlorinated aliphatic hydrocarbon remediation, and will therefore continue to gain momentum as an accepted treatment by the US EPA (U.S. EPA, 1995; Amarante, 2000; Lien, 2001; WETPOL, 2009). The treatment options for chlorinated aliphatic hydrocarbons (CAHs), including wetlands, capitalize on aerobic/anaerobic interfaces in which bacterially mediated reduction-oxidation reactions degrade pollutants (Li, 1997; Bradley, 1998; Lorah and Voytek, 2004; Amon, 2007; Imfeld, 2008).
In August 2000, researchers at Wright State University (WSU) combined efforts with the United States Air Force Institute of Technology (AFIT) to construct a pilot-scale upward-flow treatment wetland on Wright-Patterson Air Force Base with parameters that could remediate perchloroethene (PCE) found in a nearby aquifer (Amon et al., 2007). Eleven studies of short duration have since documented the existance of anerobic and aerobic interfaces by measuring various terminal electron acceptors (sulfate, nitrate, methane, iron) and numerous other parameters. The studies evaluated PCE degradation rates, geochemical profiles, hydraulic conductivity and chlorinated ethene concentrations. (Bugg, 2002; Opperman, 2002; Clemmer, 2003; Kovacic, 2003; BonDurant, 2004; Sobolewski, 2004; Lach, 2004; Schlater, 2006; Mohamud, 2007; Waldron, 2007, Corbin, 2008).
The present research has attempted to compile, organize, and re-analyze the data collected by AFIT and WSU researchers during 2001-2006. Data was analyzed using Jenks Optimization (goodness of variance fit) method to identify and remove outliers. Meta analysis of CAH concentrations and redox parameters was performed by creating data subsets of individual piezometer and depths, influent to effluent transect data and ArcGIS maps.
The present analysis concludes that a fully functioning wetland with strongly reducing geochemical conditions and flow patterns capable of PCE destruction (open full item for complete abstract)
Committee: Abinash Agrawal Ph.D. (Advisor); Christina Powell Ph.D. (Committee Member); Songlin Cheng Ph.D. (Committee Member)
Subjects: Biogeochemistry; Earth; Environmental Engineering; Environmental Geology; Environmental Science; Environmental Studies; Freshwater Ecology; Geochemistry; Geographic Information Science; Soil Sciences