Doctor of Philosophy, The Ohio State University, 2022, Mechanical Engineering
In recent years, the trend in the automotive industry has been favoring the reduction of fuel consumption in vehicles with the help of new and emerging technologies. This drive stemmed from the developments in communication technologies for Connected and Autonomous Vehicles (CAV), such as Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V) and Vehicle to Everything (V2X) communication. Coupled with automated driving capabilities of CAVs, a new and exciting era has started in the world of transportation as each transportation agent is becoming more and more connected. To keep up with the times, research in the academia and the industry has focused on utilizing vehicle connectivity for various purposes, one of the most significant being fuel savings. Motivated by this goal of fuel saving applications of Connected Vehicle (CV) technologies, the main focus and contribution of this dissertation is developing and evaluating a complete Eco-Driving strategy for CAVs. Eco-Driving is a term used to describe the energy efficient use of vehicles.
In this dissertation, a complete and comprehensive Eco-Driving strategy for CAVs is studied, where multiple driving modes calculate speed profiles ideal for their own set of constraints simultaneously to save fuel as much as possible while a High Level (HL) controller ensures smooth transitions between the driving modes for Eco-Driving. The first step in making a CAV achieve Eco-Driving is to develop a route-dependent speed profile called Eco-Cruise that is fuel optimal. The methods explored to achieve this optimally fuel economic speed profile are Dynamic Programming (DP) and Pontryagin's Minimum Principle (PMP). Using a generalized Matlab function that minimizes the fuel rate for a vehicle travelling on a certain route with route gradient, acceleration and deceleration limits, speed limits and traffic sign (traffic lights and STOP signs) locations as constraints, a DP based fuel optimal velocity profile is found. The ego CAV (open full item for complete abstract)
Committee: Levent Guvenc (Advisor); Mrinal Kumar (Committee Member); Bilin Aksun-Guvenc (Committee Member)
Subjects: Automotive Engineering; Computer Science; Design; Energy; Engineering; Experiments; Mechanical Engineering; Systems Design; Technology; Transportation