Master of Science, University of Akron, 2023, Polymer Science
In the realm of perovskite solar cells, there has been a substantial rise in research focusing on organic-inorganic halide perovskites (OIHPs) in recent years. This is owing to remarkable progress in single junction OIHPs' power conversion efficiency (PCE), which has improved from 3.8% in the initial prototype built in 2009 to a current state-of-the-art value of approaching 26%. However, the weak bonding of the organic components in the hybrid crystal structure has made the OIHPs chemically unstable and susceptible to degradation caused by humidity, ultraviolet light, and heat. This is a major challenge that must be addressed for them to be suitable for industrial-scale production. In response to this challenge, alternative materials, such as inorganic cesium-based metal halide perovskites (CsPbX3, X = I, Br, or mixed), have attracted significant interest. These materials have shown great promise in terms of their power conversion efficiency (PCE), with some achieving PCE values exceeding 20%. Among these inorganic materials, CsPbI2Br stands out as a promising candidate due to its suitable bandgap and stable phase under operation conditions. However, the significant voltage deficit in inorganic CsPbI2Br-based PSCs, particularly in the inverted structure, remains a challenge for further PCE enhancement. This study presents a simple and effective approach to improve the performance of inverted all-inorganic CsPbI2Br-based PSCs by leveraging unreacted metal halide (PbI2) to passivate grain boundaries in the bulk perovskite film. The CsPbI2Br solar cells with an optimized excess of PbI2 exhibit reduced voltage deficits, boosting the open-circuit voltage from 1.04 V to 1.18 V, resulting in a PCE of 13.19% for inverted CsPbI2Br PSCs. Furthermore, the devices demonstrate improved long-term and thermal stability compared to the pristine devices. This approach holds promise for the development of inorganic perovskite solar cells with superior performance and stability, circu (open full item for complete abstract)
Committee: Mark Soucek (Advisor); Xiong Gong (Committee Member)
Subjects: Chemistry; Condensed Matter Physics; Electrical Engineering; Engineering; Nanotechnology; Physics; Solid State Physics