Master of Science, The Ohio State University, 2020, Mechanical Engineering
In order to keep turbine blade surface temperature below melting point in gas turbine engines, internal passages in blades must be used to route cooler air through the blade. Design optimization of cooling passages necessitates an understanding of heat transfer patterns to minimize cooling mass flow. This project compares two approximations used to determine the heat transfer rate inside cooling channels in both computational and experimental investigations. The two approximations used in this project are constant surface temperature and transient heating. In an operating engine, the accuracy of both these conditions are not guaranteed. During steady state operation, the blade can cycle through many different flow paths which will impart different temperatures across the surface, and at no time will a blade be under completely uniform temperature except for the starting cycle. However, to make measurements of heat transfer easier, the two assumptions mentioned beforehand are utilized extensively. The constant surface temperature method uses a heater attached to the back of a thin copper plate to hold the surface temperature at a constant value in air flow. In the transient full-field method, thermochromic liquid crystals, which change colors with temperature, are applied to flat plate and turbulated geometries to capture the change in wall temperature during heating and cooling processes. Heat transfer rates are then derived from the transient temperature data using a semi-infinite solid model. The constant temperature approach is better established than the transient method and produces significantly higher Nusselt numbers, but the transient method provides better spatial resolution. A numerical conjugate heat transfer model is used to further investigate the discrepancy between the methods. The experimental geometry is replicated for both methods to gain an understanding of the fluid dynamics in each setup and how they differ.
Committee: Randall Mathison Ph.D (Advisor); Michael Dunn Ph.D (Committee Member)
Subjects: Aerospace Engineering; Mechanical Engineering