Doctor of Philosophy (PhD), Wright State University, 2016, Computer Science and Engineering PhD
Web 2.0 and social media enable people to create, share and discover information instantly anywhere, anytime. A great amount of this information is subjective information -- the information about people's subjective experiences, ranging from feelings of what is happening in our daily lives to opinions on a wide variety of topics. Subjective information is useful to individuals, businesses, and government agencies to support decision making in areas such as product purchase, marketing strategy, and policy making. However, much useful subjective information is buried in ever-growing user generated data on social media platforms, it is still difficult to extract high quality subjective information and make full use of it with current technologies.
Current subjectivity and sentiment analysis research has largely focused on classifying the text polarity -- whether the expressed opinion regarding a specific topic in a given text is positive, negative, or neutral. This narrow definition does not take into account the other types of subjective information such as emotion, intent, and preference, which may prevent their exploitation from reaching their full potential. This dissertation extends the definition and introduces a unified framework for mining and analyzing diverse types of subjective information. We have identified four components of a subjective experience: an individual who holds it, a target that elicits it (e.g., a movie, or an event), a set of expressions that describe it (e.g., "excellent", "exciting"), and a classification or assessment that characterize it (e.g., positive vs. negative). Accordingly, this dissertation makes contributions in developing novel and general techniques for the tasks of identifying and extracting these components.
We first explore the task of extracting sentiment expressions from social media posts. We propose an optimization-based approach that extracts a diverse set of sentiment-bearing expressions, including formal and sl (open full item for complete abstract)
Committee: Amit Sheth Ph.D. (Advisor); Krishnaprasad Thirunarayan Ph.D. (Committee Member); Keke Chen Ph.D. (Committee Member); Ingmar Weber Ph.D. (Committee Member); Justin Martineau Ph.D. (Committee Member)
Subjects: Computer Science; Information Science; Information Technology