Doctor of Philosophy, The Ohio State University, 2024, Electrical and Computer Engineering
We present an exposition on Koopman operator-based reduced-order modeling of high-dimensional electromagnetic (EM) systems exhibiting both linear and nonlinear dynamics. Since the emergence of the digital age, numerical methods have been pivotal in understanding physical phenomena through computer simulations. Computational electromagnetics (CEM) and computational plasma physics (CPP) are related yet distinct branches, each addressing complex linear and nonlinear electromagnetic phenomena. CEM primarily focuses on solving Maxwell's equations for intricate structures such as antennas, cavities, high-frequency circuits, waveguides, and scattering problems. In contrast, CPP aims to capturing the complex behavior of charged particles under electromagnetic fields. This work specifically focuses on the numerical simulation of electromagnetic cavities and particle-in-cell (PIC) kinetic plasma simulations.
Studying electromagnetic field coupling inside metallic cavities is crucial for various applications, including electromagnetic interference (EMI), electromagnetic compatibility (EMC), shielded enclosures, cavity filters, and antennas. However, time-domain simulations can be computationally intensive and time-consuming, especially as the scale and complexity of the problem increase. Similarly, PIC simulations, which are extensively used for simulating kinetic plasmas in the design of high-power microwave devices, vacuum electronic devices, and in astrophysical studies, can be computationally demanding, especially when simulating thousands to millions of charged particles. Moreover, the nonlinear nature of the complex wave-particle interactions complicates the modeling task.
Data-driven reduced-order models (ROMs), which have recently gained prominence due to advances in machine learning techniques and hardware capabilities, offer a practical approach for constructing "light" models from high-fidelity data. The Koopman operator-based data-driven ROM is a powerful met (open full item for complete abstract)
Committee: Mrinal Kumar (Advisor); Fernando Teixeira (Advisor); Ben McCorkle (Committee Member); Balasubramaniam Shanker (Committee Member)
Subjects: Electrical Engineering; Electromagnetics; Engineering; Physics; Plasma Physics