Doctor of Philosophy (Ph.D.), University of Dayton, 2021, Electrical Engineering
The demand for autonomous systems is increasing in multiple domains, including mobile systems (UAVs, cars, and robots) and planning systems, as it improves the performance of the systems beyond human capabilities. In autonomous systems, agents mine a massively large knowledge database to make intelligent and optimal decisions in run-time. Knowledge mining and decision-making are cast as constraint satisfaction problems (CSP), where solutions are generated by satisfying a number of constraints from the domain. CSPs have become a point of interest because of their affiliation with both artificial intelligence and operations research. From resource allocation and automated decision-making to gaming, constraint satisfaction problems are widely noticeable. An autonomous system achieves its autonomy by solving these problems using CSP solving approaches, including Boolean satisfiability, satisfiability modulo theories, answer set programming. Autonomy is the degree of acquired autonomous capability. Within the Air Force, autonomy is defined as the ability to select the required course of action (COA) to achieve higher objectives. The Cognitively Enhanced Complex Event Processing (CECEP) framework being developed at the US Air Force is an autonomous decision support tool that enables enhanced agent-based decision making.
CECEP enables the autonomous system to process complex real-world events and select the required course of action to achieve optimal results. CECEP is capable of representing and processing declarative, procedural, and domain-specific knowledge to deal with all forms of real-world events. CECEP also incorporates several task independent knowledge processing frameworks to perform as a generic problem-solving framework. CECEP's problem-solving capability makes it a universal complex event processing framework that can be utilized in both military and civilian domains.
CECEP captures its domain knowledge in a cognitive domain ontology (CDO), storing it (open full item for complete abstract)
Committee: Tarek Taha (Committee Chair)
Subjects: Electrical Engineering