Doctor of Philosophy (PhD), Ohio University, 2019, Physics and Astronomy (Arts and Sciences)
The work presented in this dissertation is concerned with properties of nuclei, their internal constituents, nucleons and quarks, of which nucleons are made, in the astrophysical settings of nucleosynthesis, core-collapse supernovae, neutron stars and their mergers.
Through energetic considerations, nuclei far-off the stability line are expected to be encountered in all of the arenas mentioned above. Properties of some of these nuclei are expected to be measured in upcoming rare-isotope laboratories across the world. Focussing on the pairing properties of extremely proton- or neutron-rich nuclei, a means to set bounds on their pairing energies was devised in the published work reported here. These bounds were achieved through the introduction of a new model, the Random Spacing Model, in which single-particle energy levels randomly distributed around the Fermi surface of a nucleus were employed. This arrangement ensured that it would encompass predictions of all possible energy density functionals currently being employed. Another new feature of this model is the inclusion of pairing gap fluctuations that go beyond the commonly used mean field approach of determining pairing energies of nuclei. These features, when combined together, enabled us to reproduce the S-shaped behavior of the heat capacity measured in laboratory nuclei. In future work, nuclear level densities, which depend sensitively on pairing energies at low excitation energies, will be calculated using the Random Spacing Model with the inclusion of pairing fluctuations.
For baryon densities below about two thirds the central density of heavy nuclei, a mixture of light nuclear clusters such as ${\rm \alpha}$, ${\rm d}$, ${\rm t}$, etc., are favored to be present along with nucleons (neutrons and protons), charge balancing electrons, and heavy nuclei. The concentration of each species is determined by minimizing the free energy density of the system with respect to baryon density, electron fra (open full item for complete abstract)
Committee: Madappa Prakash (Advisor); Zach Meisel (Committee Member); Steven Grimes (Committee Member)
Subjects: Astrophysics; Nuclear Physics; Physics; Theoretical Physics