PhD, University of Cincinnati, 2016, Engineering and Applied Science: Biomedical Engineering
Tendon injuries are common, debilitating, and often difficult to treat. Reattaching ruptured tendons to their bony insertions has been a fundamental challenge in orthopaedics for decades, yet effective solutions that restore normal fibrocartilaginous enthesis architecture and mechanical function are still lacking. In our tissue engineering laboratory, we believe that the developmental signals governing tendon differentiation and patterning can be strategically reintroduced and/or manipulated during adult tendon repair in order to achieve better functional outcomes. In recent years, Indian hedgehog (Ihh) signaling has emerged as a key regulator of enthesis differentiation, growth, and mineralization. Given Ihh's importance during development, the overall objective of this dissertation was to examine the role of hedgehog signaling in mature tendons and evaluate the potential therapeutic effects of recombinant Ihh during enthesis healing.
In aim 1, we developed and biomechanically characterized a new murine model of patellar tendon (PT) enthesis injury. Unlike the larger animal models that have been traditionally used for studies of tendon-to-bone healing, the murine model provides us the opportunity to conduct both basic and translational tissue engineering studies in transgenic strains relatively quickly and at low cost. In aim 2, we defined the natural patterns of endogenous hedgehog signaling in the mature murine PT. We found that hedgehog signaling remained active in the unmineralized entheseal fibrocartilage even in 46 week old mice, thereby suggesting a role for Ihh in enthesis homeostasis throughout life. Prominent hedgehog signaling activity was also seen in regions of tendon undergoing fibrocartilaginous metaplasia. This observation, coupled with our finding that direct stimulation of cultured tenocytes with Ihh caused the cells to adopt a more chondrocytic phenotype, suggests that hedgehog signaling may regulate fibrocartilage formation in tendons. In ai (open full item for complete abstract)
Committee: Jason Shearn Ph.D. (Committee Chair); Keith Kenter M.D. (Committee Member); David Butler Ph.D. (Committee Member); Rulang Jiang Ph.D. (Committee Member)
Subjects: Biomedical Research