MS, University of Cincinnati, 2014, Engineering and Applied Science: Environmental Engineering
Surface water contains natural organic matter (NOM) that reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide insight with respect to DBP formation and water treatment process adaptation to climate change as the nature of NOM varies. This study collected NOM from the Ohio River over 15 months (April 2010 to July 2011) in order to assess seasonal variability in NOM characteristics. The NOM was characterized using fluorescence spectroscopy, UV254, TOC, high performance liquid chromatography – size exclusion chromatography (HPLC-SEC), and elemental analysis. NOM was concentrated, freeze-dried (lyophilized), and validated with the source NOM creating a standardized lyophilized NOM that may be used in water treatment process evaluations investigating utility adaptation to seasonal changes. Additionally, NOM was concentrated at multiple concentration factors, lyophilized, and reconstituted allowing for the determination of optimal NOM concentration and reconstitution conditions. The NOM was characterized using UV254, TOC, HPLC-SEC, fluorescence spectroscopy, and DBP formation.
Raw Ohio River water NOM was concentrated in the following order: ultrafiltration (UF), cation ion exchange, reverse osmosis (RO), sulfate removal, and lyophilization. Lyophilization allows for long-term storage of NOM while providing the ability to reconstitute at various NOM concentrations compared to liquid material with a short shelf-life. Lyophilized NOM was used for elemental analysis while UF effluent, concentrate, and reconstituted lyophilized NOM were employed for all other analyses. A single RO concentration factor (150X) was used during the 15-month study while 50X, 100X, 150X, 200X, and 250X were used to determine the optimal RO concentration factor versus reconstitution factor. Parallel factor
ii
analysis (PARAFAC) determined the locations of principle components within fluorescence excitatio (open full item for complete abstract)
Committee: Dominic Boccelli Ph.D. (Committee Chair); Jonathan Pressman Ph.D. (Committee Member); Margaret Kupferle Ph.D. P.E. (Committee Member)
Subjects: Environmental Engineering