Master of Science in Engineering (MSEgr), Wright State University, 2012, Biomedical Engineering
In computed tomography (CT) systems, many different artifacts may be present in the reconstructed image. These artifacts can greatly reduce image quality. For our laboratory prototype CT system, a fan-beam/cone-beam focal high-resolution computed tomography (fHRCT) scanner, the major artifacts that affect image quality are distortions due to errors in the reconstruction algorithm's geometric parameters, ring artifacts caused by uncalibrated detectors, cupping and streaking created by beam hardening, and patient-based motion artifacts. Optimization of the system was required to reduce the effects of the first three artifact types, and an algorithm for correction of translational motion was developed for the last.
System optimization of the system occurred in three parts. First, a multi-step process was developed to determine the geometric parameters of the scanner. The ability of the source-detector gantry to translate allowed a precise method to be created for calculating these parameters. Second, a general flat-field correction was used to linearize the detectors and reduce the ring artifacts. Lastly, beam hardening artifacts were decreased by a preprocessing technique. This technique assumes linear proportionality between the thickness of the calibration material, aluminum, and the experimental measurement of ln(No/N), where No is the total number of photons entering the material and N is the number of photons exiting the material.
In addition to system optimization to minimize artifacts, an algorithm for correction of translational motion was developed and implemented. In this method, the integral mass and center of mass at each projection angle was seen to follow a sinusoidal or sinusoidal-like curve. Fits were used on the motion-encoded sinograms to determine both of these curves and, consequently, the amount and direction of motion that occurred. Each projection was individually adjusted to compensate for this motion by widening or narrowing the projection bas (open full item for complete abstract)
Committee: Thomas Hangartner PhD (Advisor); David Short MS (Committee Member); Julie Skipper PhD (Committee Member)
Subjects: Biomedical Engineering