Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 2)

Mini-Tools

 
 

Search Report

  • 1. Shen, Dai Investigation of Charge Transfer Kinetics in Non–Aqueous Electrolytes Using Voltammetric Techniques and Mathematical Modeling

    Doctor of Philosophy, Case Western Reserve University, 2020, Chemical Engineering

    Deep eutectic solvents (DES) are attracting attention for their potential use in energy storage applications such as redox flow battery. In such application, knowledge of the transport and electrochemical kinetics properties of DES is critically important. To date, attempts to measure the kinetics parameters of the Cu2++e <-> Cu1+ reaction in ethaline DES have yielded unreliable kinetic results. In this work, detailed recommendations are developed and verified for avoiding pitfalls in kinetics analysis of highly resistive DES electrolytes. Incorporating these recommendations, a comprehensive study of the kinetics and transport properties of the aforementioned redox reaction was carried out. Using steady–state and transient polarization measurements on RDE and microelectrodes combined with diffusion–reaction modeling, we demonstrate that the Cu2+/Cu1+ transition exhibits a charge transfer coefficient in the range of 0.49 – 0.54 and a reaction rate constant in the range (1.78 – 1.95) × 10-4 cm/s. The result indicates that the Cu2+/Cu1+ redox reaction in chloride–containing DES media suffers from sluggish charge transfer kinetics. The effects of DES composition and temperature on kinetics provided insights into the origins of the sluggish kinetics. Specifically, species complexation with Cl– which is present in excess in the chosen DES systems is shown to be the reason for slow charge transfer. For potential application in rare-earth metal recovery from spent waste, the electrodeposition of neodymium (Nd) metal from NdCl3–containing molten LiCl–KCl eutectic melts was investigated using voltammetry and diffusion–reaction modeling. Voltammetry studies confirmed that Nd electrodeposition is a two–step reduction process involving first a reversible one–electron transfer reduction of Nd3+ to Nd2+, followed by quasi–reversible reduction of Nd2+ to Nd metal. In the electrode potential range where Nd3+ is reduced to Nd2+, the peak current density measured in a voltammetry (open full item for complete abstract)

    Committee: Rohan Akolkar Ph.D. (Committee Chair); Robert Savinell Ph.D. (Committee Member); Uziel Laudau Ph.D. (Committee Member); Mark De Guire Ph.D. (Committee Member) Subjects: Chemical Engineering
  • 2. Wu, Evan Integrated Study of Rare Earth Drawdown by Electrolysis for Molten Salt Recycle

    Doctor of Philosophy, The Ohio State University, 2017, Nuclear Engineering

    Pyroprocessing is an electrochemical method that is capable of separating uranium (U) and minor actinides from LiCl-KCl eutectic salt where used nuclear fuel (UNF) is dissolved. During the process, fission products including rare earth metals (RE) continually accumulate in the salt and eventually affecting uranium recovery efficiency. To reduce the salt waste after uranium and minor actinides recovery, electrolysis is performed to drawdown rare earth materials from molten salt to restore salt initial state. Present research focus on the development of RE fundamental physical properties in LiCl-KCl eutectic salt. These properties includes apparent potential, activity coefficient, diffusion coefficient and exchange current density. Additional properties including charge transfer coefficient and reaction rate constant are calculated during the analysis. La, Nd and Gd are three RE that we are particularly interested in due to the high ratio of these elements in UNF (La, Nd), the well-studied properties in dilute solution to provide a base for comparison, and the highest standard potential among all RE (Gd). Fundamental properties of La, Nd, Gd in LiCl-KCl eutectic salt are studied at a temperature ranging from 723 K to 823 K and RE concentration ranging from 1 wt% to 9 wt%. These properties are studied by electroanalytical methods including Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Tafel method, Chronocoulummetry (CC) and Chronopoentiometry (CP). BET model that considers the RE adsorption on the electrode is developed for diffusion coefficient analysis. Electrode kinetic model is developed to account for mass transfer effect during the analysis of exchange current density. Correlations of diffusion coefficient, apparent potential, exchange current density with temperature and concentration are developed. These fundamental data are integrated with a electrolysis model to predict the electrolysis process for RE drawdown from LiCl-KCl sa (open full item for complete abstract)

    Committee: Jinsuo Zhang (Committee Chair); Marat Khafizov (Advisor); Lei Cao (Committee Member); Longya Xu (Committee Member) Subjects: Chemistry; Nuclear Engineering