Doctor of Philosophy (PhD), Ohio University, 2016, Physics and Astronomy (Arts and Sciences)
As a part of my Ph.D research, initially I was involved in construction and calibration of an ultra-high vacuum thin film facility, and later on I studied structural, electronic, and magnetic properties of GaN, CrN, Fe/CrN bilayers, and Fe islands on CrN thin films. All of these films were grown by molecular beam epitaxy and characterized with a variety of state-of-the-art techniques including variable temperature reflection high energy electron diffraction, low temperature scanning tunneling microscopy and spectroscopy, variable temperature vibrating sample magnetometry, variable temperature neutron diffraction and reflectometry, variable temperature x-ray diffraction, x-ray reflectometry, Rutherford backscattering, Auger electron spectroscopy, and cross-sectional tunneling electron microscopy. The experimental results are furthermore understood by comparing with numerical calculations using generalized gradient approximation, local density approximation with Hubbard correction, Refl1D, and data analysis and visual environment program.
In my first research project, I studied Ga gas adatoms on GaN surfaces. We discovered frozen-out gallium gas adatoms on atomically smooth c(6×12) GaN(000¯1) surface using low temperature scanning tunneling microscopy. We identified adsorption sites of the Ga adatoms on c(6×12) reconstructed surface. Their bonding is determined by measuring low unoccupied molecular orbital level. Absorption sites of the Ga gas adatoms on centered 6$\times$12 are identified, and their asymmetric absorption on the chiral domains is investigated.
In second project, I investigated magneto-structural phase transition in chromium nitride (CrN) thin films. The CrN thin films are grown by molecular beam epitaxy. Structural and magnetic transition are studied using variable temperature reflection high energy electron diffraction and variable temperature neutron diffraction. We observed a structural phase transition at the surface at 277±2 K, and a sharp (open full item for complete abstract)
Committee: Arthur Smith (Advisor); Sergio Ulloa (Committee Member); Tatiana Savin (Committee Chair); Eric Stinaff (Committee Member)
Subjects: Condensed Matter Physics; Experiments; Low Temperature Physics; Nanoscience; Physical Chemistry; Physics