Doctor of Philosophy (PhD), University of Toledo, 2023, Experimental Therapeutics
Triple-negative breast cancer (TNBC), the most lethal and aggressive subtype of breast cancer, lacks estrogen receptors, progesterone receptors, and human epidermal receptors, rendering it unsuitable with targeted-based treatment. TNBC has higher relapse rate, worst prognosis and higher metastasis rate compared to non-TNBC because of their tendency to resist to apoptosis, a form of programmed cell death, induced by chemotherapy. Hence, non-apoptotic cell death inducers could be a potential alternative to circumvent the apoptotic drug resistance. In this study, we discovered two novel compounds, TPH104c and TPH104m, which induce non-apoptotic cell death in TNBC cells. These lead compounds were 15 to 30-fold more selective in TNBC cell lines and significantly decreased the proliferation of TNBC cells compared to normal mammary epithelial cell lines. TPH104c and TPH104m induced a unique type of non-apoptotic cell death characterized by no cellular shrinkage, absence of nuclear fragmentation and f apoptotic blebs. Although TPH104c and TPH104m produced the loss of the mitochondrial membrane potential, TPH104c- and TPH104m-induced cell death did not increase total cytochrome c and intracellular ROS, lacked caspases activation, and was not rescued by pan-caspase inhibitor, zVAD-FMK. Moreover, TPH104c and TPH104m significantly downregulated mitochondrial fission protein, Drp1 and its levels determined their cytotoxic efficacy. Studies have shown that protein, Bcl-2 interacting protein 3 (BNIP3), mediates a non-apoptotic, necrosis-like cell death similar to that produced by TPH104c and TPH104m that lacked activation of caspases and reduced mitochondrial transmembrane potential. Therefore, we determined the effect of TPH104c and TPH104m on various mitochondrial functions, in triple negative breast cancer (TNBC) cells, BT-20 and MDA-MB-231. TPH104c and TPH104m (2 and 5 μM), compared to vehicle, significantly increased the levels of reactive oxygen species (ROS) BNIP3 and c-Jun (open full item for complete abstract)
Committee: Amit K. Tiwari (Committee Chair); Aniruddha Ray (Committee Member); Ana Maria Oyarce (Committee Member); Frederick E. Williams (Committee Member)
Subjects: Pharmacology