MS, University of Cincinnati, 2005, Engineering : Mechanical Engineering
Low-pressure turbines (LPT) experience large changes in chord Reynolds number as the turbine engine operates from take-off to cruise conditions. Due to prevailing conditions at high altitude cruise, the Reynolds number reduces drastically. At low Reynolds numbers, the flow is largely laminar and tends to separate easily on the suction surface of the blade, and this laminar separation in particular leads to significant degradation of engine performance due to large re-circulation zones. Therefore, a better understanding of low-Reynolds number flow transition and separation is very critical for an effective design of LPT blade, and in exploring various possibilities for implementing flow control techniques, passive or active, to prevent or delay the flow separation in the low-pressure turbine. The objective of the present study is to understand the three-dimensional flow separation that occurs inside an LPT cascade at very low Reynolds numbers, and a high-order accurate numerical solution procedure is used to attain the same. A multi-block, periodic, structured grid generated by the grid generation software, GRIDPRO, is used to represent the flow domain. A MPI-based higher-order, parallel, chimera version of the FDL3DI flow solver, developed by the Air Force Research Laboratory at Wright Patterson Air Force Base, is extended for the present turbomachinery application. A sixth-order accurate compact-difference scheme is used for the spatial discretization, along with second-order accurate temporal discretization. Up to tenth-order filtering has been applied to minimize the numerical oscillations, and maintain numerical stability. Simulations have been performed for Reynolds numbers (based on inlet velocity and axial chord) 10,000 and 25,000. The effect of these low-Reynolds numbers on the flow physics for a low-pressure turbine cascade has been studied in detail. At Re = 10,000, the flow undergoes more separation than at Re = 25,000 as expected and the separation remai (open full item for complete abstract)
Committee: Dr. Urmila Ghia (Advisor)
Subjects: