Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 2)

Mini-Tools

 
 

Search Report

  • 1. Smith, Nathanael Novel Closed-Loop Matching Network Topology for Reconfigurable Antenna Applications

    Doctor of Philosophy, The Ohio State University, 2014, Electrical and Computer Engineering

    As technology progresses, mobile devices such as laptops, tablets, cell phones, and two-way radios have become smaller in size. Consequently antennas become electrically small to fit inside aggressive packaging requirements with rapidly changing real and imaginary impedances. As such, these antennas are very narrow in bandwidth with high-Q and input impedance which is very sensitive to environmental effects. The radiation efficiency of the device is drastically decreased as the antenna is detuned and signal quality is degraded. As the number of mobile devices we use increases, adaptive impedance tuners have and will become a bigger necessity, especially as more radios are integrated into a single device. This dissertation presents novel improvements to closed loop tuning topologies from a system level perspective addressing impedance tuners, sensing techniques, and how they apply to different antennas. The biggest design hindrance to impedance tuners are losses due to small signal resistance, and loss due to circuit resonances and radiation. A detailed explanation of these loss mechanisms is developed, providing designers with the knowledge to minimize the impact of said losses and improve system efficiency. By exploiting loss mechanisms, a novel small and low cost VHF impedance synthesizer is presented to characterize impedance tuners in load pull measurements. With full consideration of circuit loss mechanisms, a new directional coupler based tuning topology is presented. Traditional tuning topologies aim to minimize |S11| of the matching network. As demonstrated in this work, such a method has the potential to maximize losses in the circuit, especially in multi-stage tuners. Alternative directional coupler based topologies are presented which maximize the system transducer gain. Furthermore, a novel method of sensing a tuned state through the use of a near field probe that detects far field radiated power is introduced. A design guide is detailed with sev (open full item for complete abstract)

    Committee: John Volakis Professor (Advisor); Chi-Chih Chen Professor (Committee Member); Chris Baker Professor (Committee Chair) Subjects: Electrical Engineering; Electromagnetics; Electromagnetism
  • 2. Obeidat, Khaled Design Methodology for Wideband Electrically Small Antennas (ESA) Based on the Theory of Characteristic Modes (CM)

    Doctor of Philosophy, The Ohio State University, 2010, Electrical and Computer Engineering

    Emerging broadband applications with market pressures for miniaturized communication devices have encouraged the use of electrically small antennas (ESA) and highly integrated RF circuitry for high volume low cost mobile devices. This research work focuses on developing a novel scheme to design wideband electrical small antennas that incorporates active and passive loading as well as passive matching networks. Several antennas designed using the proposed design technique and built and measured to assess their performance and to validate the design methodology. Previously, the theory of Characteristic Modes (CM) has been used mostly for antennas analysis. However; in this chapter a design procedure is proposed for designing wide band (both the input impedance bandwidth and the far field pattern bandwidth) electrically small to mid size antennas using the CM in conjunction with the theory of matching networks developed by Carlin. In order to increase the antenna gain, the antenna input impedance mismatch loss needs to be minimized by carefully exciting the antenna either at one port or at multiple ports and/or load the antenna at different ports along the antenna body such that the Q factor in the desired frequency range is suitable for wideband matching network design. The excitation (feeding structure), the loading of the antenna and/or even small modifications to the antenna structure can be modeled and understood by studying the eigenvalues and their corresponding eigencurrents obtained from the CM of the antenna structure. A brief discussion of the theory of Characteristic Modes (CM) will be presented and reviewed before the proposed design scheme is introduced. The design method will be used to demonstrate CM applications to widen the frequency bandwidth of the input impedance of an electrically small Vee shape Antenna and to obtain vertically polarized Omni-directional patterns for such antenna over a wide bandwidth. A loading technique based on the CM to eith (open full item for complete abstract)

    Committee: Roberto G. Rojas PhD (Advisor); Garbacz Robert PhD (Committee Member); Teixeira Fernando PhD (Committee Member) Subjects: Electrical Engineering; Engineering; Experiments