Doctor of Philosophy (PhD), Wright State University, 2009, Engineering PhD
Laser peening (LP) is a surface enhancement technique that has been applied to improve fatigue and corrosion properties of metals. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbomachinery, airframe structures, and medical appliances. In the past, researchers have investigated the effects of LP parameters experimentally and performed a limited number of simulations on simple geometries. However, monitoring the dynamic, intricate relationships of peened materials experimentally is time consuming, expensive, and challenging. With increasing applications of LP on complex geometries, these limited experimental and simulation capabilities are not sufficient for an effective LP process design. Due to high speed, dynamic process parameters, it is difficult to achieve a consistent residual stress field in each treatment and constrain detrimental effects. With increased computer speed as well as increased sophistication in non-linear finite element analysis software, it is now possible to develop simulations that can consider several LP parameters.
In this research, a finite element simulation capability of the LP process is developed. These simulations are validated with the available experimental results. Based on the validated model, simplifications to complex models are developed. These models include quarter symmetric 3D model, a cylindrical coupon, a parametric plate, and a bending coupon model. The developed models can perform simulations incorporating the LP process parameters, such as pressure pulse properties, spot properties, number of shots, locations, sequences, overlapping configurations, and complex geometries. These models are employed in parametric investigations and residual stress profile optimization at single and multiple locations.
In parametric investigations, quarter symmetric 3D model is used to investigate tempor (open full item for complete abstract)
Committee: Ramana Grandhi PhD (Advisor); Allan Clauer PhD (Committee Member); Robert Brockman PhD (Committee Member); Nathan Klingbeil PhD (Committee Member); Ravi Penmetsa PhD (Committee Member); David Stargel PhD (Other); Kristina Langer PhD (Other)
Subjects: Engineering