Doctor of Philosophy, The Ohio State University, 2020, Earth Sciences
The Greenland Ice Sheet (GrIS) is losing mass at accelerated rates in the 21st century, due in part to faster flow at large outlet glaciers. Chapter 2 presents work published in The Cryosphere (King et al., 2018). Here, we sample rapid changes in thickness and velocity at all large outlet glaciers to derive the first continuous, GrIS-wide record of total ice sheet discharge, or the volume of ice glaciers export, for the 2000-2016 period. We resolve a distinct pattern of seasonal variability with an amplitude of 6%, and analyze how seasonal to annual variability in the discharge time series relates to both meltwater runoff and glacier front position changes over the same period. We find that the annual magnitude of discharge is closely related to cumulative front position change (r2 = 0.79), averaging over 2 km of retreat since 2000. We find that larger seasonal quantities of runoff do not relate to increased annual discharge, although seasonal acceleration of ice discharge does closely coincide with the onset of the melt season. These results suggest that changes in glacier front position drive secular trends in discharge, whereas the impact of runoff is likely limited to the summer months when observed seasonal variations are substantially controlled by the timing of meltwater input.
In Chapter 3, we extend our 2000-2016 discharge time series to the period 1985-2018, combining more than three decades of GrIS-wide observational products of outlet glacier velocity, elevation, and front position changes, and compare decadal variability in discharge with calving front position. We find that the close relationship between frontal change and ice discharge identified over the 2000-2016 record holds true for the 34-year record, and that increased glacier discharge can be attributed almost entirely to the retreat of glacier fronts, rather than inland ice sheet processes, such as changes in meltwater runoff. Discharge sensitivity to retreat is remarkably consistent across (open full item for complete abstract)
Committee: Ian Howat (Advisor); Lonnie Thompson (Committee Member); Michael Durand (Committee Member); Bryan Mark (Committee Member)
Subjects: Climate Change; Earth; Environmental Studies; Geological; Geophysical; Geophysics