Doctor of Philosophy, The Ohio State University, 2019, Environment and Natural Resources
Urbanization of watersheds leads to myriad changes to streams, including modified sediment and streamflow regimes that can result in altered fluvial geomorphic processes and channel structure. Hydrogeomorphic features have been linked to community composition of aquatic biota, as well as to stream ecosystem functioning. Biotic communities in urban stream ecosystems can be markedly different than their counterparts in more natural streams, often exhibiting reduced abundance, diversity, and shifts in assemblage composition, though the specific mechanisms through which urban land use and subsequent hydrogeomorphic modification effects these changes remain unresolved. Hydrogeomorphic modifications may impact both instream habitat as well as connectivity to the surrounding landscape, influencing both biotic assemblage composition as well as ecological connectivity between streams and their adjacent riparian zones. In 23 small urban stream reaches in the Columbus Metropolitan Area (CMA), Ohio, USA, I investigated potential linkages between urban-induced hydrogeomorphic characteristics and: (1) fish assemblage compositional changes over time (3-5 years); (2) fish assemblage trophic dynamics; (3) aquatic-to-terrestrial nutritional subsidies to a common riparian consumer (spiders of the family Tetragnathidae); and (4) downstream drift of larval macroinvertebrates in the water column.
Hydrogeomorphic features related to instream habitat, the hydraulic environment (e.g., slope, shear stress, D50 [median bed sediment particle size]) and stream-floodplain connectivity (e.g., entrenchment ratio, sinuosity, incision ratio) emerged as common influences on fish assemblage composition and trophic dynamics, aquatic-terrestrial connectivity, and invertebrate drift. At a subset of 12 study reaches, several hydrogeomorphic variables showed significant changes over 3-5 years, with many decreasing (e.g., discharge [by 39%], slope [by 0.1%], and shear stress [by 29%, which decreased in co (open full item for complete abstract)
Committee: Mažeika Sullivan PhD (Advisor); Lauren Pintor PhD (Committee Member); Charles Goebel PhD (Committee Member)
Subjects: Aquatic Sciences; Ecology; Environmental Science